
PRENTICE
HALL

OSF/1™
Operating
System

User's Guide

OPEN SOFTWARE FOUNDATION

Open Software Foundation

jiii Prentice Hali Englewood Cliff• New Jersey 07632

OSF/1
User's Guide

Revision 1. 0

Cover design
and cover illustration: BETH FAGAN

This book was formatted with troff

Published by Prentice-Hall, Inc.

A Simon & Schuster Company

Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change without notice.
OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for any direct or indirect, incidental, special or consequential damages in connection
with the furnishing, performance, or use of this material.

Copyright© 1991, 1992 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:
• ©Copyright 1987, 1988, 1989 Carnegie-Mellon University
• © Copyright 1985, 1988, 1989, 1990 Encore Computer Corporation

• ©Copyright 1985, 1987, 1988, 1989 International Business Machine Corporation

• © Copyright 1988, 1989, 1990 Mental Inc.

• ©Copyright 1987, 1988, 1989, 1990 SecureWare, Inc.

• This software and documentation are based in part on the Fourth Berkeley Software Distribution under license from The Regents
of the University of California. We acknowledge the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz ©Copyright 1980,
1981, 1982, 1983, 1985, 1986, 1987, Regents of the University of California.

All Rights Reserved Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE
USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF
THE ABOVE COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH
OSF OR ITS LICENSORS.
Open Software Foundation, OSF, the OSF logo, OSF II, OSF /Motif, and Motif are trademarks of the Open Software Founation, Inc.

Printed in the United States of America
10 9 8 7 6 5 4 3

ISBN 0-13- 643594-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

AT&T is a registered trademark of American Telephone & Telegraph Company in the U.S. and other countries.
Ethernet is a registered trademark of Xerox Corporation.
UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the U.S. and other countries.
FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE
These notices shall be marked on any reproduction of this data, in whole or in part.
NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the
rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer
Software-Restricted Rights clause.
RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.
RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph
(b) (3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted
with "restricted rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79
(April 1985) "Commercial Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74
"Rights in Data General" then the "Alternate III" clause applies.
US Government Users Restricted Rights-Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished-All rights reserved under the Copyright Laws of the United States.
This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface

Audience

Applicability

Purpose

Document Usage

Related Documents

Typographic and Keying Conventions

Problem Reporting .

Part 1. General User Tasks

Chapter 1. Getting Started on OSF/1

Logging In

Logging Out

Using Commands

Stopping Command Execution

Setting Your Password .
Password Guidelines
Password Procedure

Using the learn Online Tutorial

Getting Help
Displaying and Printing Online Manual Pages
(man)
Finding Out About Commands (apropos)

Chapter 2. Overview of Files and Directories .

Overview of Text Editors •

Creating Sample Files with the vi Text Editor •

Understanding Files, Directories, and Pathnames

OSF/1 User's Guide

xv

xvi

xvi

xvi

xvn

XIX

xx

XXl

1-1

1-2

1-5

1-5

1-7

1-7
1-8
1-9

1-11

1-12

1-12
1-14

2-1

2-2

2-2

2-6

Files and Filenames
Directories and Subdirectories
Displaying the Name of Your Current Directory
(pwd)
The Tree-Structure File System and Pathnames

Specifying Files with Pattern Matching

Chapter 3. Managing Files

Listing Files (ls)
Listing Contents of the Current Directory
Listing Contents of Other Directories
Flags Used with the ls Command

Displaying Files
Displaying Files Without Formatting (pg, more,
cat)
Displaying Files With Formatting (pr) •

Printing Files (lpr, lpq, lprm) •

Linking Files (In)
Hard Links and Soft Links
Links and File Systems
Using Links •
How Links Work-Understanding Filenames and i­
numbers •
Removing Links

Copying Files (cp) •
Copying Files in the Current Directory
Copying Files into Other Directories

Renaming or Moving Files (mv) •
Renaming Files
Moving Files into a Different Directory

Comparing Files (diff) •

Sorting File Contents (sort)

Removing Files (rm)
Removing a Single File
Removing Multiple Files-Matching Patterns

Determining File Type (file)

Chapter 4. Managing Directories

ii

Creating a Directory (mkdir)

Changing Directories (cd)
Changing Your Current Directory
Using Relative Pathname Notation

2-7
2-8

2-9
2-9

2-14

3-1

3-2
3-3
3-3
3-4

3-7

3-7
3-9

3-12

3-16
3-16
3-17
3-18

3-19
3-20
3-22
3-23
3-24

3-26
3-26
3-27
3-29

3-31

3-32
3-33
3-34

3-35

4-1

4-2

4-4
4-4
4-5

Accessing Directories Through Symbolic Links

Displaying Directories (ls -F)

Copying Directories (cp) .

Renaming Directories (mv)

Removing Directories (rmdir)
Removing Empty Directories
Removing Multiple Directories
Removing Your Current Directory
Removing Files and Directories Simultaneously (rm
-r) •

Chapter 5. Controlling Access to Your Files and Directories

Understanding Password and Group Security Files
The /etc/passwd File
The /etc/group File

Protecting File and Directories

Displaying File and Directory Permissions (ls)

Setting File and Directory Permissions (chmod)
Specifying Permissions with Letters and Operation
Symbols •
Specifying Permissions with Octal Numbers

Setting the User Mask •

Changing Your Identity to Access Files (su, whoami)

Superuser Concepts

Changing Owners and Groups

Additional Security Considerations

Using Enhancements to the Security System

Chapter 6. Using Processes

Understanding Programs and Processes

Understanding Standard Input, Output, and Error
Redirecting Input and Output
Redirecting Standard Error to a File
Redirecting Both Standard Error and Standard
Output

Running Several Processes Simultaneously
Running Foreground Processes
Running Background Processes

Monitoring and Terminating Processes

OSF/1 User's Guide

Contents

4-8

4-9

4-9

4-11

4-12
4-13
4-14
4-14

4-15

5-1

5-2
5-3
5-4

5-5

5-7

5-9

5-10
5-14

5-16

5-21

5-22

5-24

5-25

5-26

6-1

6-2

6-2
6-3
6-5

6-7

6-8
6-8
6-9

6-11

iii

Checking Process Status • • .
Canceling a Foreground Process (Ctrl-c) .
Canceling a Background Process (kill) • .
Suspending and Resuming Processes (C Shell
Only) . • • •

Displaying Information About Users and Their Processes

Chapter 7. OSF/1 Shell Overview . . • . . • •

Purpose of OSF/1 Shells

Summary of Bourne, C, and Korn Shell Features • •
More Information on C and Korn Shell Features •
The Restricted Bourne Shell • . . .

Changing Your Shell . • . • . • . . . •
Determining What Shell You Are Running
Temporarily Changing Your Shell •
Permanently Changing Your Shell . .

Command Entry Aids • . .
Using Multiple Commands and Command Lists •
Using Pipes and Filters
Grouping Commands
Quoting . . • .

The Shell Environment
The login Program • •
Environment Variables
Shell Variables . • .

Login Scripts and Your Environment

Using Variables . . • • • • • •
Setting Variables • • • . . •
Referencing Variables (Parameter Substitution)
Displaying the Values of Variables
Clearing the Values of Variables

How the Shell Finds Commands • •

Using Logout Scripts • . • • • •
Logout Scripts and the Shell
A Sample .logout File • . •

Using Shell Procedures • • • . • • • •
Writing and Running Shell Procedures
Specifying a Run Shell

Chapter 8. OSF/1 Shell Features . . • • . • . •

Comparison of C, Bourne, and Korn Shell Features

C Shell Features . • . •

iv

6-11
6-14
6-15

6-17

6-18

7-1

7-2

7-3
7-4
7-5

7-5
7-6
7-7
7-7

7-8
7-8

7-11
7-13
7-14

7-17
7-17
7-18
7-21

7-22

7-24
7-25
7-27
7-28
7~29

7-30

7-31
7-32
7-33

7-33
7-34
7-36

8-1

8-2

8-3

Sample .cshrc and .login Scripts
Metacharacters • .
Command History .
Filename Completion
Aliases .
Built-In Variables .
Built-In Commands

Bourne Shell Features . . .
Sample .profile Login Script
Metacharacters . .
Built-In Variables .
Built-In Commands

Korn Shell Features
Sample .profile and .kshrc Login Scripts
Metacharacters .
Command History . .
Editing Command Lines
Filename Completion
Aliases . • . .
Built-In Variables .
Built-In Commands

Chapter 9. Useful Productivity Tools

Searching Files for Text Patterns (grep)

Finding Files (find) .

Part 2. Communications Tasks

Chapter 10. Using Simple Communications Facilities

Sending Messages (write) . . .
Having a Conversation
Retaining a Local Connection
Sending a Long Message .
System Errors • • . .

Conducting an Online Talk Session (talk) .

Controlling Messages and Online Talk Sessions (mesg)
Using the mesg Command
Changing the mesg Start-Up Procedure

Chapter 11. Using the UUCP Networking Utilities

Introduction to the UUCP Networking Utilities

Identifying Compatible Systems (uuname)

OSF/1 User's Guide

Contents

8-3
8-7

8-10
8-12
8-12
8-14
8-15

8-17
8-18
8-20
8-22
8-23

8-24
8-25
8-29
8-31
8-33
8-36
8-37
8-39
8-41

9-1

9-1

9-5

10-1

10-1
10-3
10-5
10-6
10-7

10-7

10-9
10-9

10-10

11-1

11-2

11-2

v

Pathnames Used with UUCP Commands 11-3

Communicating with a Remote System 11-5
Connecting to a Remote Computer with the cu
Command 11-6
Connecting to a Remote Computer with the tip
Command 11-19
Connecting a Remote Terminal to Your System Using a Modem
(ct) 11-30

Running Remote Commands (uux) .
The uux Examples •
Additional Information About the uux Command

Sending and Receiving Files (uucp) .
The uucp Command and System Security .
The uucp Examples (Bourne and Korn Shells)
The uucp Examples (C Shell)

Another Method for Transferring and Handling Files (uuto,
uupick)

Sending Files to a Specific ID (uuto)
Locating Files for a Specific ID (uupick)

Displaying the Status of UUCP Jobs . . •
Getting Status Information about UUCP Jobs
(uustat)
Additional Information About the uustat
Command

11-35
11-39
11-40

11-42
11-45
11-46
11-47

11-48
11-49
11-51

11-54

11-54

11-59

Chapter 12. Using TCP/IP Commands 12-1

12-2

12-4

12-5
12-7

vi

Requesting Information About Users (finger) •

Requesting Information About Remote Systems (ruptime)

Transferring Files with ftp
Using ftp Subcommands

Transferring Files with tftp
Interactive tftp .
Command Line tftp

Copying Files (rep)

Logging In to Remote Systems
Logging In with rlogin
Logging In with telnet

Executing Commands Remotely (rsh)

Displaying Who Is on Remote Systems (rwho)

12-12
12-13
12-17

12-18

12-20
12-21
12-22

12-26

12-27

Part 3. System Administration Tasks for the User

Chapter 13. Adding and Removing Users and Groups

Adding Users

Adding a New User Interactively

Adding a New User Manually
Adding a User Account to the /etc/passwd File
Adding a User Account to the /etc/group File
Creating the Login ($HOME) Directory
Providing the Default Shell Scripts
Creating a Mail File
Assigning an Initial Password

Removing a User
Removing the User's Files and Directories
Removing the User's Account from the /etc/group
File
Removing the User's Account from the /etc/passwd
File

Adding and Removing Groups
Adding a New Group to the /etc/group File
Removing a Group

Chapter 14. Shutting Down and Rebooting Your System

Shutdown and Reboot Concepts •

Shutdown and Automatic Reboot Procedure

Chapter 15. Backing Up the System

Why Backups are Essential

Sample Backup Procedures

Appendix A. A Beginner's Guide to Using vi

Getting Started •
Opening a File •
Moving Within the File
Entering New Text
Editing Text
Finishing Your Edit Session

Using Advanced Techniques •
Searching for Strings
Moving Text
Copying Text
Other vi Features

OSF/1 User's Guide

Contents

13-1

13-2

13-3

13-4
13-4
13-7
13-9

13-10
13-11
13-12

13-12
13-13

13-14

13-14

13-14
13-15
13-17

14-1

14-2

14-5

15-1

15-2

15-3

A-1

A-3
A-3
A-4
A-6
A-8
A-9

A-10
A-10
A-11
A-12
A-12

vii

Using the Underlying ex Commands • • • • •
Making Substitutions • • • • •
Writing a Whole File or Parts of a File •
Deleting a Block of Text • • . .
Moving and Copying Blocks of Text
Customizing Your Environment
Saving Your Customizations .

Appendix B. Creating and Editing Files with ed

Understanding Text Files and the Edit Buffer

Creating and Saving Text Files • . • •

viii

Starting the ed Program • . • .
Entering Text-The a (Append) Subcommand
Displaying Text-The p (Print) Subcommand
Saving Text-Thew (Write) Subcommand
Leaving theed Program-The q (Quit)
Subcommand

Loading Files into the Edit Buffer .
Using theed (Edit) Command
Using thee (Edit) Subcommand •
Using the r (Read) Subcommand

Displaying and Changing the Current Line
Finding Your Position in the Buffer
Changing Your Position in the Buffer

Locating Text • . • . . . • • •
Searching Forward Through the Buffer
Searching Backward Through the Buffer
Changing the Direction of a Search . •

Making Substitutions-The s (Substitute) Subcommand
Substituting on the Current Line
Substituting on a Specific Line • • •
Substituting on Multiple Lines
Changing Every Occurrence of a String
Removing Characters .
Substituting at Line Beginnings and Ends •
Using a Context Search . . . • .

Deleting Lines-The d (Delete) Subcommand
Deleting the Current Line
Deleting a Specific Line • . • •
Deleting Multiple Lines . • • •

Moving Text-Them (Move) Subcommand

Changing Lines of Text-The c (Change) Subcommand
Changing a Single Line . • • . .

A-13
A-14
A-16
A-17
A-17
A-17
A-19

B-1

B-2

B-2
B-3
B-3
B-4
B-5

B-8

B-8
B-9
B-9

B-10

B-12
B-13
B-14

B-15
B-16
B-17
B-17

B-18
B-18
B-19
B-20
B-20
B-21
B-22
B-22

B-23
B-24
B-25
B-25

B-26

B-27
B-28

Changing Multiple Lines .

Inserting Text-The i (Insert) Subcommand
Using Line Numbers
Using a Context Search

Copying Lines-The t (Transfer) Subcommand

Using System Commands from ed

Ending the ed Program

Appendix C. Using Internationalization Features

Understanding Locale •

How Locale Affects Processing and Display of Data
Collation
Date and Time Conventions .
Numeric and Monetary Formatting
Program Messages .
Yes/No Prompts

Determining Whether a Locale Has Been Set

Setting Locale
Locale Functions
Limitations of Locale Variables

Appendix D. Sending and Receiving Mail .

Understanding the Mail System .
Parts of the Mail System
Addressing Mail
Addressing for Users on Your Local System
Addressing for Users on Your Network
Addressing for Users on a Different Network
Addressing for Users Connected with a UUCP
Link .
Creating Aliases and Distribution Lists
Sending Mail
Composing and Sending a Message
Sending a File .
Receiving Mail .
Forwarding Your Mail
Looking at Your Personal Mailbox
Looking at a Mail Folder .

Processing Messages in a Mailbox
Using Mailbox Commands
Looking at a Mailbox •
Leaving the Mailbox •
Getting Help

OSF/1 User's Guide

Contents

B-29

B-29
B-30
B-31

B-32

B-33

B-34

C-1

C-2

C-4
C-5
C-6
C-7
C-8
C-8

C-8

C-9
C-11
C-13

D-1

D-2
D-2
D-7
D-8
D-9

D-11

D-13
D-16
D-18
D-18
D-19
D-20
D-22
D-24
D-25

D-26
D-27
D-30
D-30
D-31

ix

x

Finding the Name of the Current Mailbox
Changing Mailboxes
Reading a Message from a Mailbox
Displaying the Contents of a Mailbox •
Deleting and Recalling Messages
Saving Messages in a File or Folder
Editing a Message .
Creating a Message
Listing Defined Aliases

Using the Mail Editor .
Starting the Mail Editor
Sending a Message
Quitting Without Sending the Message
Getting Help
Using the Escape Character
Displaying a Message .
Changing a Message •
Reformatting a Message
Checking for Misspelling
Changing the Header •
Including Information from Another File •
Including Another Message .
Resending Undelivered Messages

Changing Mail to Meet Your Needs .
Commands for Customizing Mail
Checking Mail Characteristics
Prompting for a Subject: Field
Prompting for a Cc: Field
Changing How Mail Displays a Message
Creating and Using Folders
Keeping a Record of Messages Sent
Selecting a Different Editor .
Defining How to Exit the Mail Editor
Defining How Mail Stores Messages

D-31
D-32
D-32
D-34
D-35
D-36
D-38
D-38
D-41

D-41
D-42
D-42
D-42
D-43
D-43
D-44
D-44
D-46
D-46
D-47
D-51
D-51
D-52

D-53
D-54
D-56
D-57
D-58
D-58
D-63
D-64
D-65
D-66
D-67

List of Figures

Figure 1-1. Shell Interaction with the User and the Operating System

Figure 2-1. A Typical OSF/l File System

Figure 2-2. Relative and Full Pathnames

Figure 3-1. Removing Links and Files .

Figure 4-1. Relationship Between a New Directory and the Current
Directory

Figure 4-2. Copying a Directory Tree

Figure 5-1. File and Directory Permission Fields

Figure 7-1. Flow Through a Pipeline

Figure D-1. Parts of the Mail System

Figure D-2. General Domain Naming Structure with Example
Connections

Figure D-3. Example of UUCP Connection on a Network

OSF/1 User's Guide

Contents

1-6

2-10

2-13

3-21

4-3

4-10

5-8

7-11

D-3

D-12

D-16

xi

List of Tables

xii

Table 3-1. The ls Command Options . . •

Table 3-2. The ls -1 Command Information •

Table 3-3. The pr Command Flags

Table 3-4. The lpr Command Flags

Table 5-1. Differences Between File and Directory Permissions .

Table 5-2. Permission Combinations • . • . . • .

Table 5-3. How Octal Numbers Relate to Permission Fields . •

Table 5-4. The umask Permission Combinations • • • •

Table 6-1. Shell Notation for Reading Input and Redirecting Output

Table 7-1. Shell Filenames and Default Prompts

Table 7-2. Multiple Command Operators

Table 7-3. Command Grouping Symbols

Table 7-4. Shell Quoting Conventions

Table 7-5. Selected Shell Environment Variables

Table 7-6. System and Local Login Scripts • .

Table 7-7. Description of Example Shell Script

Table 8-1. C, Bourne, and Korn Shell Features . •

Table 8-2. Description of an Example .cshrc Script

Table 8-3. Description of an Example .login Script

Table 8-4. C Shell Metacharacters

Table 8-5. Reexecuting History Buffer Commands

Table 8-6. Built-In C Shell Variables

Table 8-7. Built-In C Shell Commands • •

Table 8-8. Description of an Example Bourne Shell .profile Script

3-5

3-6

3-10

3-13

5-6

5-15

5-16

5-18

6-3

7-6

7-9

7-13

7-15

7-18

7-23

7-35

8-2

8-4

8-6

8-8

8-11

8-14

8-16

8-19

Table 8-9. Bourne Shell Metacharacters

Table 8-10. Built-In Bourne Shell Variables

Table 8-11. Built-In Bourne Shell Commands

Table 8-12. Description of an Example Korn Shell .profile Script

Table 8-13. Description of an Example .kshrc Script

Table 8-14. Korn Shell Metacharacters

Table 8-15. Reexecuting History Buffer Commands

Table 8-16. Built-In Korn Shell Variables

Table 8-17. Built-In Korn Shell Commands

Table 9-1. The grep Command Flags

Table 10-1. Login Script Information . .

Table 11-1. The cu Command Flags and Entries

Table 11-2. The cu Local Commands . .

Table 11-3. The tip Command Flags and Entries

Table 11-4. The tip Local Commands . .

Table 11-5. The ct Command Flags and Entries •

Table 11-6. The uux Command Flags and Entries

Table 11-7. The uucp Command Flags and Entries

Table 11-8. The uuto Command Flags and Entries

Table 11-9. The uupick Command Options

Table 11-10. The uustat Command Flags

Table 12-1. The ftp Subcommands .

Table 12-2. The tftp Subcommands

Table 12-3. The telnet Subcommands

Table 13-1. Shells and Their Login Scripts

Table A-1. Selected vi Environment Variables

Table C-1. OSF/l Locale Names •

Table C-2. Environment Variables That Influence Locale Functions

Table D-1. Mailbox Information

OSF/1 User's Guide

Contents

8-20

8-22

8-23

8-26

8-28

8-29

8-32

8-40

8-41

9-3

10-11

11-9

11-14

11-21

11-25

11-32

11-36

11-43

11-50

11-52

11-56

12-7

12-15

12-24

13-10

A-17

C-10

C-12

D-21

xiii

Pref ace

The OSF/1 User's Guide introduces users to the basic features of the
OSF/1 TM operating system.

This preface covers the following topics:

• Audience

• Applicability

• Purpose

• Document Usage

• Related Documents

• Typographic and Keying Conventions

• Problem Reporting

OSF/1 User's Guide xv

Audience

This guide is written for those who have little or no familiarity with
computers, and no extensive knowledge of UNIX1 compatible systems or
any other operating systems. As a result, the guide explains important
concepts, provides tutorials, and is organized according to task.

Applicability

Purpose

This is Revision 1.0 of this guide, which applies to Release 1.0 of OSF/l.

This guide introduces you to the features of OSF/l. After reading the guide,
you should be able to do the following:

• Gain access to your system and issue commands

• Understand file and directory concepts

• Manage files and directories

• Control access to your files and directories

• Manage processes

• Understand and manage your shell environment

• Use the grep and find productivity tools

• Use electronic mail and other facilities for communications between
your system and other systems

1. UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the U.S. and other countries.

xvi

Preface

• Perform basic system administrator tasks

• Use the mail program as well as theed and vi text editors

• Use internationalization features

Document Usage

This guide is organized into three parts:

Part 1. General User Tasks

• Chapter 1 shows you how to log in and out of your system, enter
commands, set your password, and obtain online help.

• Chapter 2 gives an overview of the OSF/l file system, consisting of the
files and directories that are used to store text, programs, and other data.
This chapter also introduces you to the vi text editor, a program that
allows you to create and modify files.

• Chapter 3 shows you how to manage files. You will learn how to list,
display, copy, move, link, and remove them.

• Chapter 4 explains how to manage directories. You will learn how to
create, change, display, copy, rename, and remove them.

• Chapter 5 shows you how to control access to your files and directories
by setting appropriate permissions. It also describes standard password
and group security issues as well as provides an overview of optional
security enhancements.

Note that the OSF/1 operating system provides one of the following
security levels:

- Standard level: a version equivalent to most UNIX implementations.

- C2 level: a version that provides National Center for Computer
Security (NCSC) C2 level security features.

- B 1 level: a version that provides NCSC B 1 security level features.

If your system provides C2 level or B 1 level security enhancements, see
your system administrator and the OSF/1 Security Features User's Guide
for details.

OSF/1 User's Guide xvii

• Chapter 6 describes how OSF/1 creates and keeps track of processes. It
tells you how to redirect process input, output, and error information, run
processes simultaneously, display process information, and cancel
processes.

• Chapter 7 introduces you to features common to the three shells
available with OSF/1: the Bourne, C, and Korn shells. You learn how to
change your shell, use command entry aids, understand some features of
your shell environment (login scripts, environment and shell variables),
set and clear variables, write logout scripts, and write and run basic shell
procedures. The Korn Shell (ksh) is available only to AT &T2 Tool
Chest Licensees.

• Chapter 8 provides detailed reference information about the C, Bourne,
and Korn shells, comparing their features. It details the commands and
environment variables of each program and shows you how to set up
your login script.

• Chapter 9 describes the grep and find commands that allow you to
examine the contents of files and to determine their location in the
system.

Part 2. Communications Tasks

• Chapter 10 shows you how to use simple communications programs that
permit you to send mail to and hold 2-way conversations with other
users.

• Chapter 11 describes the UUCP Networking Utilities, which allow you
to connect to, transfer files between, and run programs on remote
systems.

• Chapter 12 describes how to use the Transmission Control
Protocol/Internet Protocol (TCP/IP), which allows you to connect to,
transfer files between, and run programs on remote systems.

Part 3. System Administration Tasks for the User

• Chapter 13 shows you how to add and remove individual user accounts
and user groups.

2. AT&T is a registered trademark of American Telephone & Telegraph Company in the U.S. and other
countries.

xviii

Preface

• Chapter 14 describes the system shutdown and reboot procedures, which
you may occasionally perform to correct operational problems.

• Chapter 15 provides basic conceptual information about backups, where
you save copies of files and directories on a storage medium. It also
provides you with simple backup and restore procedures.

The following appendixes provide reference information for this guide:

• Appendix A teaches you how to use the basic features of the vi text
editor.

• Appendix B teaches you how to use the ed text editor. Detailed
information about ed is provided because all systems have this editor
and because it can be used in critical system management situations
when no other editor can be used.

• Appendix C describes the internationalization features of OSF/l that
allow users to process data and interact with the system in a manner
appropriate to their native language, customs, and geographic region.

• Appendix D instructs you in the use of the mail program.

Related Documents

The following OSF/l documents are currently available from Prentice-Hall:

• OSF/l Command Reference

• OSF/l Programmer's Reference

• OSF/l System and Network Administrator's Reference

• Application Environment Specification-Operating System Programming
lnteifaces Volume

In addition, versions of the following documents may be available from your
systt<m vendor:

• OSF/l System Programmer's Reference Volume 1

• OSF/l System Administrator's Guide

• OSF/l Network and Communications Administrator's Guide

OSF/1 User's Guide xix

• OSF/l Applications Programmer's Guide

• OSF/l System Extension Guide

• OSF/l Network Applications Programmer's Guide

• OSF/l Security Features User's Guide

• OSF/l Security Features Programmer's Guide

• OSF/l Security Features Administrator's Guide

• OSF/l Security Detailed Design Specification

• Design of the OSF/l Operating System

• OSF/l POSIX Conformance Document

Typographic and Keying Conventions

xx

This document uses the following typographic conventions:

Bold

Italic

Constant width

[]

{ }

<>

Bold words or characters represent system
elements that you must use literally, such as
commands, flags, and pathnames. Bold words
also indicate the first use of a term included in
the glossary.

Italic words or characters represent variable
values that you must supply.

Examples and informatioh that the system
displays appear in typeface.

Brackets enclose optional items in format and
syntax descriptions.

Braces enclose a list from which you must
choose an item in format and syntax descriptions.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the
keyboard.

Preface

Horizontal ellipsis points indicate that you can
repeat the preceding item one or more times.
Vertical ellipsis points indicate that you can
repeat the preceding item one or more times.

This document uses the following keying conventions:

<Ctrl-x> or Ax The notation <Ctrl- x > or A x followed by the
name of a key indicates a control character
sequence. For example, <Ctrl-c> means that
you hold down the control key while pressing
<C>.

<Return>

Entering commands

Problem Reporting

The notation < Return> refers to the key on your
terminal or workstation that is labeled with the
word Return or Enter, or with a left arrow.

When instructed to enter a command, type the
command name and then press< Return>. For
example, the instruction "Enter the ls command"
means that you type the ls command and then
press <Return> (enter = type command + press
<Return>).

If you have any problems with the software or documentation, please
contact your software vendor's customer service department.

OSF/1 User's Guide xxi

Part 1
General User Tasks

Chapter 1

Getting Started on OSF/1

This chapter introduces you to the basic tasks for using the OSF/1 operating
system. Before you read this chapter, familiarize yourself with your system's
hardware components.

If you are new to computing, you will find this chapter to be especially
useful. If you are familiar with the UNIX operating system or other
operating systems, you may wish to skim this chapter.

After completing this chapter, you will be able to do the following:

• Log in and log out of the system

• Execute commands

• Stop command execution

• Change your password

• Know how to access online help and tutorials

Next, you must learn how to create and modify files with a text editing
program. See Chapter 2 for an overview of text editors, and Appendixes A
and B for information on the vi anded text editors, respectively. Once you
learn how to use a text editor, you should have the basic skills necessary to
start using the operating system.

OSF/1 User's Guide 1-1

General User Tasks

Logging In

1-2

To use the OSF/l operating system, your system must be running and you
must be logged in. Logging in identifies you as a valid system user and
creates a work environment that belongs to you alone.

Before you can log in, you must obtain your username and password from
the system administrator. A username (typically, your surname or given
name) identifies you as an authorized user. A password (a word or group of
characters that is easy for you to remember, but hard for others to guess)
verifies your identity.

You may wish to think of your username and password as electronic keys
that give you access to the system. When you enter them during the login
process, you identify yourself as an authorized user.

Your password is an important part of system security because it prevents
unauthorized use of your data. For more information on passwords, see
''Password Guidelines'' later in this chapter.

The first step in the login process is to display the login prompt. When your
system is running and your workstation is on, the following login prompt
appears on your screen:

login:

On some systems, you may have to press <Return> a few times to display
the login prompt.

Your system's login prompt screen may be somewhat different. For
example, in addition to the login prompt, the screen may display the system
name and the version number of the operating system.

To log in, perform the following steps:

1. Enter your username at the login prompt. If you make a mistake, use
the Delete key to correct it.

For example, if your username is larry, enter:

login: Jarry

Getting Started on OSF/1

The password prompt appears:

login: larry
Password:

2. Enter your password. For security reasons, the password does not
display on the screen as you type it.

If you think you made a mistake while typing your password, press
<Return>. If your password is incorrect, the system tells you so and
asks you to enter your usemame and password again.

After you enter your usemame and password correctly, the system
displays the shell prompt, usually a dollar sign($) or a percent sign
(%). Your system's shell prompt may be different.

Note: In this guide, the shell prompt display is a dollar sign
($).

The shell prompt display tells you that your login is successful, and that the
system is ready to go to work for you. The shell prompt is your signal that
the shell is running. The shell is a program that interprets all commands you
enter, runs the programs you have asked for, and sends the results to your
screen. For more information about commands and the shell prompt, see
"Using Commands" later in this chapter, and Chapter 7 "OSF/l Shell
Overview."

When you first log in, you are automatically placed in your login directory.
See Chapter 2 for information about your login directory.

If your system does not display the shell prompt, you are not logged in. You
may, for example, have entered your usemame or your password
incorrectly. Try to log in again. If you still cannot log in, see your system
administrator.

Note: Your system may not require you to have a password, or you
may have been assigned a password that is common to all new
users. To ensure security in these cases, it is usually a good
idea to set your own password. For information on how to
create or change a password, see "Setting Your Password."

OSF/1 User's Guide 1-3

General User Tasks

1-4

Many systems display a welcome message and announcements whenever
users log in. For example, the following is a typical login screen (your
screen may vary):

Welcome to the OSF/1 Operating System
Fri Dec 7 09:48:25 EDT 1990
You have mail.
$

The preceding announcements contain the following pieces of information:

• A greeting

• The date and time of your last login.

Note this information whenever you log in, and tell your system
administrator if you have not logged in at the time specified. A wrong
date and time might indicate that someone has been breaking into your
system.

• Whether you have mail messages waiting to be read.

Briefly, mail is a program that allows you to both send and receive
electronic mail. The system displays the message You have mail
when there are mail messages for you that are waiting to be read. If you
have no mail messages, this line does not appear.

For more information about mail, see Appendix D.

Note: Your system may contain enhanced security features in
addition to those provided with all OSF/l systems. These
enhancements may result in a system that is certified at either
the Bl or C2 security levels specified by the National Center
for Computer Security (NCSC). As a result, you may be
required to enter more than just a usemame and password
during the login process. If so, see your system administrator
and the OSF/l Security Features User's Guide for details.

Getting Started on OSF/1

Logging Out

When you are ready to end your work session, log out of the system.
Logging out leaves the operating system running for other users and also
ensures that no one else can use your work environment.

To log out, perform the following steps:

1. Make sure that the shell prompt is displayed.

2. Press <Ctrl-d>. If <Ctrl-d> does not work, enter exit or logout.

The system displays the login prompt. On some systems, a message
may also be displayed.

At this point, you or another user may log in.

Using Commands

Operating system commands are programs that perform tasks on the OSF/l
system. The OSF/1 operating system has a large set of commands that are
described in the remaining chapters of this guide and in the OSF/1
Command Reference.

A shell reads every command you enter and directs the OSF/l operating
system to do what is requested. Therefore the shell is a command
interpreter. Think of entering a command as an interactive process in
which you enter a command, the shell interprets that command, and then
gives an appropriate response-that is, the system either runs the program
or displays an error message.

The shell acts as a command interpreter in the following way:

• The shell displays a shell prompt and waits for you to enter a command.

• You enter a command, the shell analyzes it, and locates the requested
program.

• The shell asks the system to run the program, or it returns an error
message.

OSF/1 User's Guide 1-5

General User Tasks

• When the program completes execution, control returns to the shell,
which again displays the prompt.

Figure 1-1 shows the relationship between the user, the shell, and the
operating system. The shell interacts with both the user (to interpret
commands) and with the OSF/l operating system (to request command
execution).

Figure 1-1. Shell Interaction with the User and the Operating System

1-6

D
User

enters command

Command line Interpreted 8 command
Shell

Shell
interprets command

OSF/1
Operating
System

OSF/1
executes command

The OSF/1 operating system supports three different shells: the Korn, C,
and Bourne shells. Your system administrator determines which shell you
get when you log in for the first time. For more information on OSF/1
shells, see Ch~pter 7.

When you use the OSF/l operating system, you typically enter commands
following the shell prompt on the command line. For example, to display
today's date and time, enter:

$ date

If you make a mistake while typing a command, use the Delete key to erase
the incorrect characters and then retype them.

An argument is a string of characters that follows a command name. An
argument specifies the data the command uses to complete its action. For
example, the man command gives you information about OSF/l
commands. If you wish to display complete information about the date
command, you would enter:

$ mandate

Last, OSF/l commands can have options the modify the way a command
works. These options are called flags and immediately follow the
command name. Most commands have several flags. If you use flags with
a command, arguments follow the flags on the command line.

Getting Started on OSF/1

For example, suppose that you wish to use the -f flag with the man
command. This flag displays a one-line description of a specified OSF/1
command. To display a one-line description of the date command, you
would enter:

$ man-fdate

While a command is running, the system does not display the shell prompt
because the control passes to the program you are running. When the
command completes its action, the system displays the shell prompt again,
indicating that you can enter another command.

In addition to using the commands provided with the system, you can also
create your own personalized commands. Refer to ''Writing and Running
Shell Procedures'' in Chapter 7 for information about creating these special
commands.

Stopping Command Execution

If you enter a command and then decide that you do not want it to complete
execution, press <Ctrl-c>.

The command stops executing, and the system displays the shell prompt.
You can now enter another command.

Setting Your Password

Your usemame is public information and generally does not change. Your
password, on the other hand, is private.

In most instances, when your system account is established, the system
administrator assigns you a password that is common to new users. After
getting familiar with the system, you should select your own password to
protect your account from unauthorized access. In addition, you should
change your password periodically to protect your data from unauthorized
access.

OSF/1 User's Guide 1-7

General User Tasks

To set your password, use the passwd command. If your account does not
have a password, you can use the passwd command to set one. For
information on the passwd command, see ''Password Procedure'' later in
this chapter.

Password Guidelines

1-8

You may find the following guidelines useful in selecting a password.

Here is a list of things you should not do:

• Do not choose a word found in a dictionary.

• Do not use personal information as your password, or as a substring of
it, such as your username, names (yours, your family's, your
company's), initials, or the make or model of your car.

• Do not use the default password you received with your account.

• Do not use old passwords or the same prefix or suffix you used in
previous passwords. This rule also applies to any passwords you may
have used in previous jobs.

• Do not choose a password that is easy to guess (includes all of the above
options) even if you reverse their spelling. Choose a password that is
hard-to-guess, not hard-to-remember.

• Do not choose passwords shorter than six characters in length. Your
password can be up to eight characters long. (Strictly speaking,
password length is measured in bytes, rather than characters, but we can
regard these terms as the same, for now.)

• Do not write your password on paper or place it into a file.

Here is a list of things you should do:

• If possible, use a mixture of uppercase and lowercase letters in your
password. You also should include any combination of numbers,
punctuation-marks, underscores (_), or spaces. Put them in the middle
of your password, or at the end.

• Change your password frequently, especially if you think it might have
been compromised.

Getting Started on OSF/1

On most systems, you can change your password as frequently, or as rarely,
as you like. However, to protect system security, your system administrator
may set limits on how often you may change your password, on the length
of time your password remains valid, or on the nature of changes you can
make. Some typical password restrictions could be the following:

• Character restrictions

- Minimum number of alphabetic characters

- Minimum number of "other" characters, such as punctuation or
numbers

- Minimum number of characters in a new password that must be
different from the old password

- Maximum number of consecutive duplicate characters allowed in a
password

• Time restrictions

- Maximum number of weeks before your password expires

- Number of weeks before you can change a password

See your system administrator for more information about password
restrictions.

Password Procedure

To set or change your password, perform the following steps:

1. Enter the passwd command:

$ passwd

The system displays the following message (identifying you as the
user) and prompts you for your old password:

Changing password for usemame
Old password:

OSF/1 User's Guide 1-9

General User Tasks

1-10

If you do not have an old password, the system does not display this
prompt. Go to step 3.

2. Enter your old password. For security reasons, the system does not
display your password as you type it.

After the system verifies your old password, it is ready to accept your
new password, and displays the following prompt:

New password:

3. Enter your new password following the prompt. Remember that your
new password entry does not appear on the screen.

Finally, to verify the new password (since you cannot see it as you
type), the system prompts you to enter the new password again:

Re-enter new password:

4. Enter your new password once again. As before, the new password
entry does not appear on the screen.

Your password should be no more than eight bytes. For security
reasons, it should be easy for you to remember, but difficult for
anyone else to guess.

When the shell prompt returns to the screen, your new password is in
effect.

If you change your password and the new password is not proper, you
receive a message stating the specific problem and the restrictions in effect
for the system.

Note: Try to remember your password because you cannot log in to
the system without it. If you do forget your password, see
your system administrator.

Getting Started on OSF/1

Using the learn Online Tutorial

The learn online tutorial teaches you about selected system features. It
guides you through examples of various commands and tells you whether
you have performed an operation correctly. In addition, it adjusts its
instructions according to your skill level.

The learn tutorial provides lessons on the following seven subjects:

files

editor

VI

more files

macros

eqn

c

Gives elementary lessons on the use files within
OSF/1.

Teaches the use of ed, the line editor.

Teaches the use of the vi, screen editor.

Gives additional lessons about using files.

Teaches the ms macro package for text formatting.

Teaches the eqn package for typesetting
mathematics.

Provides introductory lessons in C programming.

Each of the preceding subjects is covered in one or more lessons.

Because learn is composed of modular course units, you can choose to take
only those subjects that are relevant to your work. For example, if you wish
to find out about files and the vi editor, you would take the minicourses
called files, morefiles, and vi.

To use the learn tutorial, enter:

$ learn

The system then displays information about learn and prompts you for the
course you wish to take. Enter the name of the course, and the system
guides you through the lesson.

OSF/1 User's Guide 1-11

General User Tasks

Getting Help

Most OSF/l operating system commands needed for your work are
described in this guide. If you wish to learn more about these and other
commands, see the OSF/l Command Reference. You will find exhaustive
descriptions of all OSF/1 commands.

When the documents are unavailable, you can quickly access online
command documentation by using one of the following commands:

• The man command: Displays online manual pages.

• The apropos command: Displays a one line summary of each command
pertaining to a specified subject.

The following sections describe these features.

Displaying and Printing Online Manual Pages (man)

$ mandate

date(l)

NAME

Online manual pages or manpages contain complete information about
OSF/l commands. Each manpage is a copy of the command description in
the OSF/l Command Reference and can be displayed and printed.

To view a manpage, use the man command. For example, to view the
manpage for the date command, enter the following (your screen may
vary):

Open Software Foundation date(l)

date - Displays or sets the date

SYNOPSIS
With Superuser Authority:

1-12

date (-nu] [MMddhhmrn.ssyy I alternate_date_format]
[+field_descriptor ...]

Getting Started on OSF/1

Without Superuser Authority:

FLAGS

date [-u] [+field_descriptor ...]

The date command writes the current date and time to
standard output.

-n Does not set the time globally on all machines in a
local area network that have their clocks synchronized
(superuser only).

-u Displays and sets time in Coordinated Universal Time
(CUT), which is the default.

DESCRIPTION

The date command writes the current date and time to
standard output if called with no flags or with a flag list
that begins with a + (plus sign) . Only a user operating with
superuser authority can change the date and time. The
LC_TIME variable, if it is defined, controls the ordering of
the day and month numbers in the date specifications. The
default order is MMddhhmm.ssyy where:

o MM is the month number (Ol=January)

o dd is the number of the day in the month
--More--(30%)

The symbol - -More- - (3 0 %) at the bottom of the page indicates that
30% of the manpage is currently displayed. Press the space bar to display
more, or type q to quit and return to the shell prompt.

To print the manpage for the date command, enter:

$ man date I lpr
$

The manpage is now queued for printing. See Chapter 3 for more
information about the lpr command.

OSF/1 User's Guide 1-13

General User Tasks

To display a brief, one-line description of an OSF/1 command, use the man
-f command. For example, to display a brief description of the who
command, enter:

$ man-fwho
who (1) - print who and where users are logged in
$

For complete information on the man command and its options, you can
display the manpage by entering the following:

$ manman

Finding Out About Commands (apropos)

Because the OSF/l operating system provides many powerful commands,
you may forget a command name now and then. At those times, the
apropos command and the man -k command are useful tools.

The apropos and man -k commands do exactly the same thing. They allow
you to describe a command, and then they list commands that answer that
description.

For example, assume that you cannot remember the name of the command
that sets passwords. To display the names and descriptions of all commands
that have something to do with passwords, enter one of the following:

$ apropos password
or
$ man -k password

A portion of what the system displays is the following:

passwd (1)
passwd (4)

- change your login password
- password file

Getting Started on OSF/1

Note that the numbers enclosed in parentheses refer to the section numbers
in the OSF/l Command Reference (section 1) and the OSF/l Programmer's
Reference (section 4).

You can now use the passwd command to set your password.

OSF/1 User's Guide 1-15

Chapter 2

Overview of Files and Directories

This chapter introduces you to files, file systems, and text editors. A file is a
collection of data stored together in the computer. Typical files contain
memos, reports, correspondence, programs, or other data. A file system is
the useful arrangement of files into directories.

A text editor is a program that allows you to create new files and modify
existing ones.

After completing this chapter, you will be able to do the following:

• Create files with the vi text editor. These files will be useful for working
through the examples later in this guide.

• Understand OSF/l file system components and concepts.

This knowledge can help you design a file system that is appropriate for the
type of information you use and the way you work.

OSF/1 User's Guide 2-1

General User Tasks

Overview of Text Editors

An editor is a program that allows you to create and change files containing
text, programs, or other data. An editor does not provide the formatting and
printing features of a word processor.

With a text editor, you can do the following:

• Create, read, and write files

• Display and search data

• Add, replace, and remove data

• Move and copy data

• Run OSF/l commands

Your editing takes place in an edit buffer that you can save or discard.

The following text editing programs are available on the OSF/l operating
system: vi and ed. Each editor has its own methods of displaying text as
well as its own set of subcommands and rules.

For information on vi, see the following section and Appendix A. For
information on ed, see Appendix B.

Your system may contain additional editors, so see your system
administrator for details.

Creating Sample Files with the vi Text Editor

2-2

This section shows you how to create three files with the vi text editor.

Teaching you how to use the vi editor is not the purpose of this section.
Instead, the goal is have you create, with a minimal set of commands, files
that can be used for working through the examples later in this guide. For
more information on vi, see Appendix A, "A Beginner's Guide to Using vi"
and the vi entry in the OSF/1 Command Reference.

Overview of Files and Directories

Note: If you are familiar with a different editing program, you can
use that program to create the three example files described
next. If you have already created three files with an editing
program, you can use those files by substituting their names
for the filenames used in the examples.

When trying the following procedures, you should enter the text that is
printed in boldface characters. System prompts and output are shown in a
different typeface, like this.

To create three sample files, perform the following steps:

1. Start the vi program by typing the command vi and the name of a new
file, and then pressing <Return>:

$ vi filel

This is a new file, so the system responds by putting your cursor at the
top of a screen that looks like the following:

"filel" [New file]

Note the blank lines on your screen that begin with a - (tilde). These
tildes indicate the lines that contain no text. Because you have not
entered any text, all lines begin with a tilde.

2. Specify that you want to add text to the new file by typing the letter i
(insert text). The system does not display the i that you type.

3. Enter the following text. If you make mistakes and wish to correct
them before moving to the next line, use <Delete> to erase backward
over the current line of text.

OSF/1 User's Guide 2-3

General User Tasks

2-4

You start the vi program by entering
the command vi, optionally followed by the name
of a new or existing file.

"filel" [New file]

That is all you need to enter for the text of filel.

4. Indicate that you have finished your current work by pressing <Esc>
and then typing a : (colon). The colon is displayed as a prompt at the
bottom of the screen as follows:

You start the vi program by entering
the command vi, optionally followed by the name
of a new or existing file.

Then enter the letter w. Entering the letter w indicates to the system
that you want to write, or save a copy of the new file.

Your screen will look like the following:

You start the vi program by entering
the command vi, optionally followed by the name
of a new or existing file.

Overview of Files and Directories

11 filel 11 [New file] 3 lines, 112 characters

Note that the system displays the name of the new file as well as the
number of lines and characters it contains.

You are still in vi, so you can create two more sample files. The
process is the same as the one you used to create filel, but the text
you enter will be different.

5. To create the second file, file2, type a : (colon). The colon is
displayed as a prompt at the bottom the screen. Then enter the vi file2
command.

The system responds with a screen that looks like the following:

11 file2 11 No such file or directory

The message 11 file2" No such file or directory
indicates that file2 is a new file.

Indicate that you want to add text to the new file by typing the letter i.
Then enter the following text:

If you have created a new file, you will find
that it is easy to add text.

Then, press <Esc>, type a : (colon) and enter the letter w to save the
file.

OSF/1 User's Guide 2-5

General User Tasks

Your screen will look like the following:

If you have created a new file, you will find
that it is easy to add text.

"file2" [New file) 2 lines, 75 characters

6. To create the third file, follow the instructions in step 5. However,
name the file file3, and enter the following text:

You will find that vi is a useful
editor that has many features.

Then, press <Esc>, type a : (colon) and enter the wq command.

The wq command writes the file, exits the editor, and returns you to
the shell prompt.

Understanding Files, Directories, and Pathnames

2-6

A file is a collection of data stored in a computer. A file stored in a
computer is like a document stored in a filing cabinet because you can
retrieve it, open it, process it, close it, and store it as a unit. Every computer
file has a filename that both users and the system use to refer to the file.

A file system is the arrangement of files into a useful pattern. Any time you
organize information, you create something like a computer file system. For
example, the structure of a manual file system (file cabinets, file drawers,
file folders, and documents) resembles the structure of a computer file
system. (The software that manages the file storage is also known as the file
system, but that usage of the term does not occur in this chapter.)

Overview of Files and Directories

Once you have organized your file system (manual or computer), you can
find a particular piece of information quickly because you understand the
structure of the system. To understand the OSF/1 file system, you should
first become familiar with the following three concepts:

• Files and filenames

• Directories and subdirectories

• Tree structures and pathnames

Files and Filenames

A file can contain the text of a document, a computer program, records for a
general ledger, the numerical or statistical output of a computer program, or
other data.

A filename can contain any character except the I (slash), but to prevent
difficulties, construct your filenames without the characters that have a
special meanings to your shell. For example, the following characters have
special meaning to the shell: \ (back slash), & (ampersand), < > (angle
brackets), ? (question mark), $ (dollar sign), [] (brackets), * (asterisk), or I
(vertical bar or pipe symbol). You may use a. (period or dot) in the middle
of a filename, but never at the beginning of the filename, unless you wish
the file to be ''hidden'' when doing a simple listing of files. For information
about characters with special meanings to your shell, refer to Chapter 8. For
information about listing hidden files, see Chapter 3.

Note: Unlike some operating systems, the OSF/1 operating system
distinguishes between uppercase and lowercase letters in
filenames (that is, it is case sensitive). For example, the
following three filenames specify three distinct files: filea,
Filea, and FILEA.

It is a good idea to use filenames that reflect the actual contents of your
files. For example, a filename such as memo.advt could indicate that the
file contains a memo dealing with advertising. On the other hand, a filename
such as a, b, or c tells you little or nothing about the contents of that file.

OSF/1 User's Guide 2-7

General User Tasks

It is also a good idea to use a consistent pattern to name related files. For
example, suppose you have a report that is divided into chapters, with each
chapter contained in a separate file. You might name these files in the
following way:

chapl
chap2
chap3
and so on ...

The maximum length of a filename depends upon the file system used on
your computer. For example, your file system may allow a maximum
filename length of 255 bytes (the default), or it may allow a maximum
filename length of only 14 bytes. Because knowing the maximum filename
length is important for helping you name files meaningfully, see your
system administrator for details.

Directories and Subdirectories

2-8

You can organize your files into groups and subgroups that resemble the
cabinets, drawers, and folders in a manual file system. These groups are
called directories, and the subgroups are called subdirectories. A well­
organized system of directories and subdirectories lets you retrieve and
manipulate the data in your files quickly.

Directories differ from files in two significant ways:

• Directories are organizational tools; files are storage places for data.

• Directories contain the names of files, other directories, or both.

When you first log in, the system automatically places you in your login
directory. This directory was created for you when your computer account
was established. However, a file system in which all files are arranged under
your login directory is not necessarily the most efficient method of
organizing your data.

As you work with the system, you may want to set up additional directories
and subdirectories so you can organize your files into useful groups. For
example, assume that you work for the Sales department and are
responsible for four lines of automobiles. You may wish to create a
subdirectory under your login directory for each automobile line.

Overview of Files and Directories

Each subdirectory can contain all memos, reports, and sales figures
applicable for the automobile model.

Once your files are arranged into a directory structure that your find useful,
you can move easily between directories as you work first with File A,
located in Directory X, and then with File B, located in Directory Y. See
Chapter 4 for information on creating directories and moving between them.

Displaying the Name of Your Current Directory (pwd)

The directory in which you are working at any given time is your current
or working directory.

Whenever you are uncertain what directory you are working in, or where
that directory exists in the file system, enter the pwd (print working
directory) command as follows:

$ pwd

The system displays the name of your current directory in a form such as the
following:

/usr/msg

indicating that you are currently working in a directory named msg that is
located under the usr directory.

The /usr/msg notation is called the pathname of your working directory.
See the following section for information about pathnames.

The Tree-Structure File System and Pathnames

The files and directories in the OSF/1 file system are arranged
hierarchically in a structure that resembles an upside-down tree with the
roots at the top and the branches at the bottom. This arrangement is called a
tree structure.

OSF/1 User's Guide 2-9

General User Tasks

Figure 2-1 shows a typical OSF/l file system arranged in a tree structure.
The names of directories are printed in bold, and the names of files are
printed in italics.

Figure 2-1. A Typical OSF/1 File System

2-10

bin usr
user d tmp

ev etc lib lost+found

/~~th
chang

plans

IQ~4Q
2Q 3Q

report

~
part I part3

part2

payroll

~
regular contract

~ IQ 2Q 3Q 4Q JQ~Q
2Q 3Q

At the top of the file system shown in Figure 2-1 (that is, at the root of the
inverted tree structure) is a directory called the root directory. The symbol
that represents this first major division of the file system is a slash (/).

At the next level down from the root of the file system are eight directories,
each with its own system of subdirectories and files. Figure 2-1, however,
shows only the subdirectories under the directory named user. These are
the login directories for the users of this system.

The third level down the tree structure contains the login directories for two
of the system's users, smith and chang. It is in these directories that smith
and chang begin their work after logging in.

The fourth level of the figure shows three directories under the chang login
directory: plans, report, and payroll.

The fifth level of the tree structure contains both files and subdirectories.
The plans directory contains four files, one for each quarter.

Overview of Files and Directories

The report directory contains three files comprising the three parts of a
report. Also on the fifth level are two subdirectories, regular and contract,
which further organize the information in the payroll directory.

A higher level directory is frequently called a parent directory. For
example, in Figure 2-1, the directories plans, report, and payroll all have
chang as their parent directory.

A pathname specifies the location of a directory or a file within the file
system. For example, when you want to change from working on File A in
Directory X to File Bin Directory Y, you enter the pathname to File B. The
OSF/l operating system then uses this pathname to search through the file
system until it locates File B.

A pathname consists of a sequence of directory names separated by slashes
(/) that ends with a directory name or a filename. The first element in a
pathname specifies where the system is to begin searching, and the final
element specifies the target of the search. The following pathname is based
on Figure 2-1:

/user/chang/report/part3

The first I represents the root directory and indicates the starting place for
the search. The remainder of the pathname indicates that the search is to go
to the u directory, then to directory chang, next to directory report, and
finally to the file part3.

Whether you are changing your current directory, sending data to a file, or
copying or moving a file from one place in your file system to another, you
use pathnames to indicate the objects you wish to manipulate.

A pathname that starts with a I (the symbol representing the root directory)
is called a full pathname or an absolute pathname. You can also think of
a full pathname as the complete name of a file or a directory. Regardless of
where you are working in the file system, you can always find a file or a
directory by specifying its full pathname.

The OSF/l file system also lets you use relative pathnames. Relative
pathnames do not begin with the I that represents the root directory because
they are relative to the current directory.

OSF/1 User's Guide 2-11

General User Tasks

2-12

You can specify a relative pathname in one of four ways:

• As the name of a file in the current directory

• As a pathname that begins with the name of a directory one level below
your current directory

• As a pathname that begins with .. (dot dot, the relative pathname for the
parent directory).

• As a pathname that begins with • (dot, which refers to the current
directory). This relative path name notation is useful when you wish to
run your own version of an operating system command in the current
directory (for example ./Is).

Every directory contains at least two entries: •• (dot dot), and • (dot, which
refers to the current directory).

In Figure 2-2, for example, if your current directory is chang, the relative
pathname for the file lQ in directory contract is payroll/contract/lQ. By
comparing this relative pathname with the full pathname for the same file,
/u/chang/payroll/contract/lQ, you can see that using relative pathnames
means less typing and more convenience.

Overview of Files and Directories

Figure 2-2. Relative and Full Pathnames

usr
11 user dev l'ib lost+found tmp , etc

/r~h
chang - - -

report

~
plans

JQ~4Q
2Q 3Q

part] part3
part2

payroll
' '

' '

~
regular , ' contract

~
JQ 2Q 3Q 4Q

Relative pathname =
Full pathname =

In the C shell and the Korn shell, you may also use a tilde C) at the
beginning of relative pathnames. The tilde character specifies a user's login
(home) directory.

For example, to specify your own login directory, use the tilde alone. To
specify the login directory of user chang, specify -chang.

For more information on using relative pathnames, see "Using Relative
Pathname Notation'' in Chapter 4.

Note: If there are other users on your system, you may or may not be
able to get to their files and directories, depending upon the
permissions set for them. For more information about file and
directory permissions, see Chapter 5. In addition, your system
may contain enhanced security features that may affect access
to files and directories. If so, see your system administrator
and the OSF/1 Security Features User's Guide for details.

OSF/1 User's Guide 2-13

General User Tasks

Specifying Files with Pattern Matching

2-14

Commands often take filenames as arguments. To use several different
filenames as arguments to a command, you can type out the full name of
each file, as the next example shows:

$ ls first.t second.t third.t fourth.t fifth.t

However, if the filenames have a common pattern (in this example, the .t
suffix), the shell can match that pattern, generate a list of those names, and
automatically pass them to the command as arguments.

The asterisk (*) matches any string of characters. In the following example,
ls finds the name of every text file in this directory that includes the suffix
.t:

$ ls * .t

The * .t matches any filename that begins with a character string and ends
with .t. The shell passes every filename that matches this pattern as an
argument for ls.

Thus, you do not have to type (or e"._en remember) the full name of each file
in order to use it as an argument. Both commands (ls with all filenames
typed out, and ls * .t) do the same thing-theY'1Jass all files with the .t suffix
in the directory as arguments to ls.

There is one exception to the general rules for pattern matching. When the
first character of a filename is a period, you must match the period
explicitly. For example, ls * displays the names of all files in the current
directory that do not begin with a period. The command ls -a prints all
filenames that begin with a period.

This restriction prevents the shell from automatically matching the relative
directory names. These are. (called dot, standing for the current directory)
and .• (qtlled dot dot, standing for the parent directory). For more
information on relative directory names, see Chapter 4.

Overview of Files and Directories

If a pattern does not match any filenames, the shell displays a message
informing that no match has been found.

In addition to the asterisk (*), OSF/1 shells provide other ways to match
character patterns. The following list summarizes all pattern-matching
characters and provides examples.

Character

*

?

[...]

[.-.]

[! ...]

OSF/1 User's Guide

Action

Matches any string, including the null string.

For example, th* matches th, theodore, and theresa.

Matches any single character.

For example, 304?b matches 304Tb, 3045b, 304Bb, or
any other string that begins with 304, ends with b, and
has one character in between.

Matches any one of the enclosed characters.

For example, [A G X]* matches all filenames in the
current directory that begin with A, G, or X.

Matches any character that falls within the specified
range, as defined by the current locale. For more
information on locale, see Appendix C, "Using
Internationalization Features.''

For example, [T-W]* matches all filenames in the
current directory that begin with T, U, V, or W.

Matches any single character except one of those
enclosed.

For example, [!abyz]* matches all filenames in the
current directory that begin with any character except a,
b,y,orz.

This pattern matching is available only in the Bourne
and Korn shells.

2-15

General User Tasks

2-16

Because OSF/1 is an internationalized operating system, it provides the
following additional pattern-matching features:

Character

[[:class:]]

[[=char=]*]

Action

A character class name enclosed in bracket-colon
delimiters matches any of the set of characters in the
named class.

The supported classes are alpha, upper, lower, digit,
alnum, xdigit, space, print, punct, graph, cntrl.

For example, the alpha character class name specifies
that you wish to match any alphabetic character
(uppercase and lowercase) as defined by the current
locale. If you are running an American-based locale,
alpha would match any character in the alphabet (A-Z,
a-z).

A character enclosed in bracket-equal delimiters
matches any equivalence class character.

An equivalence class is a set of collating elements that
all sort to the same primary location. It is generally
designed to deal with primary-secondary sorting; that is,
for languages such as French that define groups of
characters as sorting to the same primary location, and
then having a tie-breaking, secondary sort.

For example, if your current locale is France, [[=a=]*]
would match any filename starting with the following
characters: a, a, a, or a.

For more information on internationalized pattern-matching characters, see
the grep entry in the OSF/l Command Reference. For more information on
OSF/1 internationalization features, see Appendix C, ''Using
Internationalization Features."

Chapter 3

Managing Files

This chapter shows you how to manage files on your system. After
completing this chapter, you will be able to do the following:

• List files

• Display and print files

• Link files

• Copy, rename, and move files

• Compare and sort files

• Remove files from the system

• Determine file type

A good way to learn about managing files is to try the examples in this
chapter. Do each example in order so that the information on your screen is
consistent with the information in this guide.

Before you can work through the examples, you must be logged in and your
login directory must contain the following three files created in Chapter 2:
filel, file2, and file3. To produce a listing of the files in your login directory,
enter the ls command, which is explained in the following section. If you
are using files with different names, make the appropriate substitutions as
you work through the examples.

OSF/1 User's Guide 3-1

General User Tasks

In the following examples, when you are asked to return to your login
directory, enter the cd (change directory) command as follows:

$ cd
$

Note that in the preceding example, the $ indicates the shell prompt, and the
_ (underscore) represents the cursor. Your shell prompt and cursor may
vary.

In addition, before working on the examples in this chapter, create a
subdirectory called project in your login directory. To do so, enter the
following mkdir (make directory) command from your login directory:

$ mkdir project
$

For more information on the cd and mkdir commands, see Chapter 4.

Note: Your system may contain enhanced security features that may
affect how you manage files. If so, see your system
administrator and the OSF/1 Security Features User's Guide
for details.

Listing Files (ls)

3-2

You can display a listing of the contents of one or more directories with the
ls (list directory) command. This command produces a list of the files and
subdirectories (if any) in your current directory. You can also display other
types of information such as listing the contents of directories other than
your current directory.

The general format of the ls command follows:

ls

The ls command has a number of options, called flags that enable you to
display different types of information about the contents of a directory.
Refer to "Flags Used with the ls Command" for information about these
flags.

Managing Files

Listing Contents of the Current Directory

To list the contents of your current directory, enter:

Is

Used without flags in this format, the ls command simply lists the names of
the files and directories in your current directory:

$ ls
filel
$

file2 file3 project

You may also list portions of your current directory's contents by using the
command format:

ls filename

The filename entry can be the name of the file or a list of filenames
separated by spaces. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

For example, to list the files whose names begin with the characters file, you
would enter the following command:

$ ls file*
filel file2 f ile3
$

Listing Contents of Other Directories

To display a listing of the contents of a directory other than your current
directory, use the following command:

lsdirname

The dirname entry is the pathname of the directory whose contents you
want to display.

OSF/1 User's Guide 3-3

General User Tasks

In the following example, the current directory is your login directory, and
you wish to display the /users directory. (Your system may contain another
directory with a name similar to the /users directory.) Note that the name
of the /users directory is preceded by a slash (/), which indicates that the
system should begin searching in the root directory.

$ ls/users
amy beth chang george jerry larry
mark monique ron
$

The ls command ordinarily lists directory and filenames in collated order as
determined by the current locale.

Flags Used with the ls Command

3-4

In its simplest form, the ls command displays only the names of files and
directories contained in the specified directory. However, ls has several
flags that provide additional information about the listed items or change
the way in which the system displays the listing.

When you want to include flags with the ls command, use the following
format:

ls -fiagname(s)

The -flagname(s) entry specifies one or more flags (options) that you are
using with the command. For example, the -1 flag produces a long listing of
the directory contents. Note also that all ls flags are preceded by the dash
character (-).

If you want to use multiple flags with the command, enter the flag names
together in one string:

ls -ltr

Managing Files

Table 3-1 lists some of the most useful ls command flags.

Table 3-1. The Is Command Options

Flag Action

-I Lists in long format. An -I listing provides the type,
permissions, number of links, owner, group, size, and time
of last modification for each file or directory listed.

-t Sorts the files and directories by the time they were last
modified (latest first), rather than collated by name.

-r Reverses the order of the sort to get reverse collated order
(Is -r), or reverse time order (Is -tr).

-a Lists all entries including "hidden files." Without this flag, the
Is command does not list the names of entries that begin
with a (dot), such as .profile, .login, and relative
pathnames.

The following example shows a long (-1) listing of a current directory. (The
name larry shows the owner of the files. Your usemame will replace
larry on your screen.)

$ ls -1
total 4
-rw-r--r-- 1 larry system 101 Jun 5 10:03 filel
-rw-r--r-- 1 larry system 75 Jun 5 10:03 file2
-rw-r--r-- 1 larry system 65 Jun 5 10:06 file3
drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
$

Table 3-2 explains the information displayed on your screen after you enter
the ls -1 command.

OSF/1 User's Guide 3-5

General User Tasks

Table 3-2. The Is -I Command Information

3-6

Field

total 4

drwxr-xr-x

1

Information

Number of 1-kilobyte blocks taken up by files in this
directory.

File type and permissions set for each file or directory.
The first character in this field indicates file type:

- (dash) for ordinary files
d for directories
b for block-special files
c for character-special files
p for pipe-special files (first in, first out)
I for symbolic links.

The remaining characters indicate what read, write, and
execute permissions are set for the owner, group, and
others. In addition, other permission information may
also be displayed. For more information on permissions,
see Chapter 5.

Number of links to each file. For an explanation of file
links, see "Linking Files (In)."

larry Username of the file's owner.

system Group to which the file belongs.

1o1 Number of bytes in the file.

Jun 5 1 o : o 3 Date and time the file was created or last modified in the
format defined by your current locale.

filel Name of the file or directory.

There are other ls command flags that you rnay find useful as you gain
experience with the OSF/1 operating system. For detailed information about
the ls cornrnand flags, see the OSF/l Command Reference.

Managing Files

Displaying Files

You can view any text file stored on your system with a text editor.
However, if you wish to just look at a file without making any changes, you
may view it (with or without screen formatting) using a variety of OSF/l
commands. The following sections describe these commands.

Displaying Files Without Formatting (pg, more, cat)

The following commands display a file just as it is, without adding any
special characteristics that govern the appearance of the contents:

• pg

• cat

• more
For information on displaying files with formatting, see the following
section.

To display a file without formatting, the general format is the following:

command filename

The command entry is one of the following command names: pg, more, or
cat. The filename entry can be the name of one file, or a series of filenames
separated by spaces. You may also use pattern-matching characters to
specify your files. See Chapter 2 for information on using pattern-matching
characters.

The pg command allows you to view one or more files. In the following
example, the pg command displays the contents of the filel in your login
directory:

$ pg filel
You start the vi program by entering
the command vi, optionally followed by the name
of a new or existing file.
$

OSF/1 User's Guide 3-7

General User Tasks

3-8

Now, view the contents of both filel and file2. Note that the command
displays both files without a break between them.

$ pg filel file2
You start the vi program by entering
the command vi, optionally followed by the name
of a new or existing file.
If you have created a new file, you will find
that it is easy to add text.
$

The pg command always displays multiple files in the order in which you
listed them on the command line.

When you display files that contain more lines than will fit on the screen,
the pg command pauses as it displays each screen. To see the next screen of
information, press <Return>.

The more command is very much like the pg command in the way that it
handles long files. If the file contains more lines than are on your screen,
more pauses and displays a message telling you what percentage of the file
you have viewed thus far. At this point, you can do one of the following:

• Press the space bar to display the remainder of the file a page at a time.

• Press <Return> to display a line at a time.

• Type q to quit viewing the file.

The cat command also displays text. However, it is less useful for viewing
long files because it does not paginate files. When viewing a file that is
larger than one screen, the contents will display too quickly to be read.
When this happens, press <Ctrl-s> to halt the display. You can then read the
text. When you wish to display the rest of the file, press <Ctrl-q>. Because
cat is not very easy to use for viewing long files, you may prefer using the
pg or more command in these cases.

The pg, more, and cat commands all have additional options that you may
find useful. For more information, refer to the OSF/l Command Reference.

Managing Files

Displaying Files With Formatting (pr)

Formatting is the process of controlling the way in which the contents of
your files appear when you display or print them. The pr command formats
a file in a simple but useful style.

To display a file with formatting, the general format is the following:

pr filename

The filename entry can be simply the name of the file, the relative pathname
of the file, the full pathname of the file, or a list of filenames separated by
spaces. The format you use depends on where the file is located in relation
to your current directory. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

Used without any options, the pr command does the following:

• Divides the contents of the file into pages

• Puts the date, time, page number, and filename in a heading at the top of
each page

• Leaves five blank lines at the end of the page

When you use the pr command to display a file, its contents may scroll off
your screen too quickly for you to read them. When this happens, you can
view the formatted file by using the pr command along with the more
command. The more command instructs the system to pause at the end of
each screenful of text. See the immediately preceding section for
information on the more command.

For example, suppose that you wish to display a long file, report, so that it
pauses when the screen is full. To do so, enter the following command:

$ pr report I more
$

When the system pauses at the first screenful of text, press <Return> to
display the next screen. The previous command uses the pipe symbol (I) to
take the output from the pr command and use it as input to the more
command. For more information on pipes, see "Using Pipes and Filters" in
Chapter 7.

OSF/1 User's Guide 3-9

General User Tasks

Sometimes you may prefer to display a file in a more sophisticated format.
You can use a number of flags in the command format to specify additional
formatting features. Table 3-3 explains several of these flags.

Table 3-3. The pr Command Flags

3-10

Flag Action

+num Begins formatting on page number num. Otherwise,
formatting begins on page 1 .

For example, the pr +2 file1 command starts formatting file1
on page 2.

-num Formats page into num columns. Otherwise, pr formats pages
with one column.

For example, the pr -2 file1 command formats file1 into two
columns.

-m Formats all specified files at the same time, side-by-side, one
per column.

For example, the pr -m file1 file2 command displays the
contents of file1 in the left column, and that of file2 in the
right column.

-d Formats double-spaced output. Otherwise, output is single­
spaced.

For example, the pr -d file1 command displays file1 in
double-spaced format.

-wnum Sets line width to num bytes. Otherwise, line width is 72
bytes.

For example, the pr -w40 file1 command sets the line length
of file1 to 40 bytes.

-onum Offsets (indents) each line by num byte positions. Otherwise,
offset is O (zero) byte positions.

For example, the pr -o5 file1 command indents each line of
file1 five spaces.

Flag

-lnum

Managing Files

Action

Sets page length to num lines. Otherwise, page length is 66
lines.

For example, the pr -130 file1 command sets the page length
of file1 to 130 lines.

-h Uses next string of characters, rather than the filename, in the
header (title) that is displayed at the top of every page. If the
string includes blanks or special characters, it must be
enclosed in ' ' (single quotes).

For example, the pr -h 'My Novel' file1 command specifies
"My Novel" as the title.

-t Prevents pr from formatting headings and the blank lines at
the end of each page.

For example, the pr -t file1 command specifies that file1 be
formatted without headings and blank lines at the end of each
page.

-schar Separates columns with the character char rather than with
blank spaces. You must enclose special characters in single
quotes.

For example, the pr -s'*' file1 command specifies that
asterisks separate columns.

You can use more than one flag at a time with the pr command. In the
following example, you instruct pr to format filel with these
characteristics:

• In two columns (-2)

• With double spacing (d)

• With the title My Novel rather than the name of the file

$ pr -2dh 'My Novel' filel
$

For detailed information about pr and its flags, refer to the OSF/1 Command
Reference.

The pr command can also be used to format files for printing. See the
following section for more information.

OSF/1 User's Guide 3-11

General User Tasks

Printing Files (lpr, lpq, lprm)

3-12

Use the lpr command to send one or more files to the system printer. The
lpr command actually places files in a printqueue, which is a list of files
waiting to be printed. Once the lpr command places your files in the queue,
you can continue to do other work on your system while you wait for the
files to print.

The general format of the lpr command is

lpr filename

The filename entry can be simply the name of the file, the relative pathname
of the file, the full pathname of the file, or a list of filenames separated by
spaces. The format you use depends on where the file is located in relation
to your current directory. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

If your system has more than one printer, use the following format to
specify where you want the file to print:

lpr -Pprintername filename

The -P flag indicates that you wish to specify a printer. The printername
entry is the name of a printer. Printers often have names such as lpO, lpl,
and lpn. Ask your system administrator for the printer names.

If your system has more than one printer, one of them is the default printer.
When you do not enter a specific printername, your print request goes to the
default printer.

The following example shows how to use the lpr command to print one or
more files on a printer named lpO:

$ lpr -PlpO filel
$ lpr -PlpO file2 file3
$

The first lpr command sends filel to the lpO printer and then displays the $
prompt. The second lpr command sends file2 and file3 to the same print
queue, and then displays the shell prompt before the files finish printing.

Managing Files

You may wish to use the lpr command together with the pr command so
that your file will be formatted. The pr command is described in the
immediately preceding section.

For example, suppose that you wish to format a long file, report and then
print it. To do so, enter the following command:

$ pr report I lpr
$

This command uses the pipe symbol (I) to take the output from the pr
command and use it as input to the lpr command. For more information on
pipes, see "Using Pipes and Filters" in Chapter 7.

Several lpr command flags enable you to control the way in which your file
prints. Following is the general format for using a flag with this command:

lpr flag filename

Table 3-4 explains some of the most useful lpr command flags.

Table 3-4. The lpr Command Flags

Flag Action

-#num Prints the number of copies of the file specified by num.
Otherwise, lpr prints one copy.

For example, the lpr -#2 file1 command prints two copies of
file1.

-wnum Sets line width to num bytes. Otherwise, line width is 72
bytes.

For example, the lpr -w40 file1 command prints file1 with
lines that are 40 bytes long.

-inum Offsets (indents) each line by num 8 space positions.
Otherwise, offset is 8 spaces.

For example, the lpr -i5 file1 command prints file1 with lines
that are indented 5 spaces.

OSF/1 User's Guide 3-13

General User Tasks

3-14

Flag Action

-p Formats the file using pr as a filter.

-T Uses next string of characters, rather than the filename, in the
header used by pr. Requires the -p option. If the string
includes blanks or special characters, it must be enclosed in
, , (single quotes).

For example, the lpr -p -T 'My Novel' file1 command
specifies "My Novel" as the title.

-m Sends mail when the file completes printing. For example, the
command lpr -m file1 specifies that you wish mail to be sent
to you once file1 prints.

Once you have entered the lpr command, your print request is entered into
the print queue.

If you wish to see the position of the request in the print queue, use the lpq
command. To look at the print queue, enter:

$ lpq

If your request has already been printed, or if there are no requests in the
print queue, the system responds with the following message: no
entries

If there are entries in the print queue, the system lists them and indicates
which request is currently being printed. Following is a typical listing of
print queue entries (your listing will vary):

Rank Owner Job Files Total Size
active marilyn 489 report 8470 bytes
1st sue 135 letter 5444 bytes
2nd juan 360 (standard input) 969 bytes
3rd larry 490 travel 1492 bytes

As shown, the system displays the following for each print queue entry:

• Its priority

• Its owner

Managing Files

• Its job number

• Name of the file

• Size of the file in bytes

For example, Marilyn's report (job number 489) is currently being printed,
and the requests of Sue, Juan, and Larry are pending.

When you print files, the position of the request in the queue as well as its
size may help you estimate when your request may be finished. Generally,
the higher the priority number in the queue and the larger the print request,
the more time it will take.

If your system has more than one printer, use the following format to
specify which print queue you wish to see:

lpq -Pprintername filename

The -P flag indicates that you wish to specify a print queue. The
printername entry is the name of a particular printer. Use the lpstat -s
command to learn the names of all the printers.

If you decide not to print your request, you can delete it from the print
queue by using the lprm command. The general format of the lprm
command is the following:

$ lprmjobnumber
$

The jobnumber entry specifies the job number that the system has assigned
to your print request. (You can see the job number by entering the lpq
command.)

For example, if Larry wishes to cancel his print request, he can enter:

$ lprm 490
$

The travel file will be removed from the print queue.

OSF/1 User's Guide 3-15

General User Tasks

Linking Files (In)

A link is a connection between a filename and the file itself. Usually, a file
has one link-a connection to its original filename. However, you can use
the In (link) command to connect a file to more than one filename at the
same time.

Links are convenient whenever you need to work with the same data in
more than one place. For example, suppose you have a file containing
assembly-line production statistics. You use the data in this file in two
different documents-in a monthly report prepared for management, and in
a monthly synopsis prepared for the line workers.

You can link the statistics file to two different filenames, for example,
mgmt.stat and line.stat, and place these filenames in two different
directories. In this way, you save storage space because you have only one
copy of the file. More importantly, you do not have to update multiple files.
Because mgmt.stat and line.stat are linked, editing one automatically
updates the other, and both filenames always refer to the same data.

Hard Links and Soft Links

3-16

There are two kinds of links available for your use: hard links and soft
(symbolic) links.

• Hard links allow you to link only files in the same file system. When
you create a hard link, you are providing another name for the same file.
All the hard link names for a file, including the original name, are on
equal footing. It is incorrect to think of one file name as the ''real
name," and another as "only a link."

• Soft links or symbolic links allow you to link both files and directories.
In addition, you may link both files and directories across different file
systems. A symbolic link is actually a distinct file that contains a
pointer to another file or directory. This pointer is simply the pathname
to the destination file or directory. Only the original filename is the real
name of the file or directory. Unlike a hard link, a soft link is actually
"only a link."

Managing Files

With both hard and soft links, changes made to a file through one name
appear in the file as seen through another name.

A major difference between hard and soft links occurs when removing them.
A file with hard-linked names persists until all its names have been
removed. A file with soft-linked names vanishes when its original name has
been removed; any remaining soft links then point to a nonexistent file. See
''Removing Links'' later in this chapter.

Links and File Systems

The term file system as used in this discussion of links differs from its
earlier usage in this guide. Previously, a file system was defined as a useful
arrangement of files into a directory structure. Here, the same term acquires
a more precise meaning, ''the files and directories contained within a single
disk partition.'' A disk partition is a physical disk, or a portion of one, that
has been prepared to contain file directories.

You can use the df command to discover the name of the disk partition that
holds any particular directory on your OSF/l system. Here is an example in
which df shows that the directories /ul/info and /etc are in different file
systems, but that /etc and /tmp are in the same file system.

$ df /ul/info
Filesystem 512-blks used avail capacity Mounted on
/dev/rz2c 196990 163124 14166 92% /ul
$ df /etc
Filesystem 512-blks used avail capacity Mounted on
/dev/rz3a 30686 19252 8364 70% I
$ df /tmp
Filesystem 512-blks used avail capacity Mounted on
/dev/rz3a 30686 19252 8364 70% I
$

OSF/1 User's Guide 3-17

General User Tasks

Using Links

3-18

To link files in the same file system, use the following command format:

In /dirnamel/filenamel /dirname2/filename2

The ldirnamel/filenamel entry is the pathname of an existing file. The
/dirname2/filename2 entry is the pathname of a new filename to be linked to
the existing /dirnamel /filename I. The dirname is optional if you are
linking files in the same directory.

If you wish to link files and directories across file systems, you can create
symbolic links. To create a symbolic link, add an -s flag to the In command
sequence and specify the full pathnames of both files. The In command for
symbolic links takes the following form:

In -s ldirnamel/filenamel ldirname2/filename2

The ldirnamel /filename] entry is the pathname of an existing file. The
ldirname2/filename2 entry is a pathname of a new filename in a different
file system.

In the following example, the In command links the new filename checkfile
to the existing file named file3:

$ In file3 checkfile
$

Now use the more command to verify that file3 and checkfile are two
names for the same file:

$ more ftle3

The system displays the following:

You will find that vi is a useful
editor that has many features.
$

Now display the text of checkfile:

$ more checkfile
You will find that vi is a useful
editor that has many features.
$

Managing Files

Notice that both file3 and checkfile contain the same information. Any
change that you make to the file under one name will show up when you
access the file by its other name. Updating file3, for example, will also
update checkfile.

If your two files were located in directories that are in two different file
systems, you need to create a symbolic link to link them. For example, to
link a file called newfile that is in the /reports directory to the file called
mtgfile in the /summary directory, you can create a symbolic link by using
the following:

$ In -s /reports/newfile /summary/mtgfile
$

The information in both files is still updated in the same manner as
previously explained.

How Links Work-Understanding Filenames and i-numbers

Each file has a unique identification number, called an i-number. The i­
number refers to the file itself-data stored at a particular location-rather
than to the filename. The i-number distinguishes the file from other files
within the same file system.

A directory entry is simply a link between an i-number that represent a
physical file and a filename. It is this relationship between files and
filenames that enables you to link multiple filenames to the same physical
file-that is, to the same i-number.

To display the i-numbers of files in your current directory, use the ls
command with the -i (print i-number) flag in the following form:

ls -i

OSF/1 User's Guide 3-19

General User Tasks

Now, examine the identification numbers of the files in your login directory.
The number preceding each filename in the listing is the i-number for that
file.

$ Is -i
1079 checkfile 1077 filel 1078 file2 1079 file3
$

The i-numbers in your listing will probably differ from those shown in this
example. However, the important thing to note is the identical i-numbers for
file3 and checkfile, the two files linked in the previous example. In this
case, the i-number is 1079.

Because an i-number represents a file within a particular .fi/esystem, hard
links cannot exist between separate file systems.

The situation is entirely different with symbolic links, where the link
becomes a new file with its own, new i-number. The symbolic link is not
another filename on the original file's i-number, but instead is a separate file
with its own i-number. Because the symbolic link refers to the original file
by name, rather than by i-number, symbolic links work correctly between
separate file systems.

Removing Links

3-20

The rm (remove file) command does not always remove a file. For
example, suppose that a file is linked to more than one filename; that is,
several names refer to the same i-number. In this case, the rm command
removes the link between the i-number and that filename, but leaves the
physical file intact. The rm command actually removes a physical file only
after it has removed the last link between that file and a filename, as shown
in Figure 3-1. When a symbolic link is removed, the filename specifying
the pointer to the destination file or directory is removed.

For detailed information about the rm command, refer to ''Removing
Files."

Managing Files

Figure 3-1. Removing Links and Files

6-name2J

I - rm name1
name1

I EJ- nome21

- rmname2

To display both the i-numbers and the number of filenames linked to a
particular i-number, use the ls command with the -i (print i-number) and the
-I (long listing) flags, in the following format:

Is -ii

Now examine the links in your login directory. Remember that the i­
numbers displayed on your screen will differ from those shown in the
example and that your usemame and your group's name will replace the
larry and system entries.

$ Is -ii
total 3

1079 -rw-r--r-- 2 larry system 65 Jun 5 10:06 checkfile
1077 -rw-r--r-- 1 larry system 101 Jun 5 10:03 filel
1078 -rw-r--r-- 1 larry system 75 Jun 5 10:03 file2
1079 -rw-r--r-- 2 larry system 65 Jun 5 10:06 file3
1080 drwxr-xr-x 2 larry system 32 Jun 5 10:07 project

$

Again, the first number in each entry shows the i-number for that filename.
The second element in each line shows the file permissions, described in
detail in Chapter 5.

OSF/1 User's Guide 3-21

General User Tasks

The third field for each entry, the number to the left of the username,
represents the number of links to that i-number. Notice that file3 and
checkfile have the same i-number, 1079, and that both show two links. Each
time the rm command removes a filename, it reduces the number of links to
that i-number by one.

In the following example, use the rm command to remove the filename
checkfile.

$ rm checkfile
$

Now, list the contents of the directory with the ls -ii command. Notice that
the rm command has reduced the number of links to i-number 1079, which
is the same i-number to which file3 is linked, by one.

$ ls -ii
total

1077 -rw-r--r-- 1 larry system 101 Jun 5 10:03 filel
1078 -rw-r--r-- 1 larry system 75 Jun 5 10:03 file2
1079 -rw-r--r-- 1 larry system 65 Jun 5 10:06 file3
1080 drwxr-xr-x 2 larry system 32 Jun 5 10:07 project

$

Copying Files (cp)

3-22

The cp (copy) command copies files either within your current directory, or
from one directory into another directory.

The cp command is especially useful in making backup copies of important
files. Because the backup and the original are two distinct files, you can
make changes to the original while still maintaining an unchanged copy in
the backup file. This is helpful in case something happens to the original
version. Also, if you decide you do not want to save your most recent
changes to the original file, you can begin again with the backup file.

Managing Files

Note: Compare the cp command, which actually copies files, with
the In command, which creates multiple names for the same
file. "Linking Files (In)" explains the In command in some
detail. Refer also to the OSF/1 Command Reference for
additional information about the cp and In commands.

To copy a file, the general format of the cp command is the following:

cp source destination

The source entry is the name of the file to be copied. The destination entry
is the name of the file to which you want to copy source.

The source and destination entries can be filenames in your current
directory, or pathnames to different directories.

To copy files to a different directory, the general format of the cp command
is the following:

cp source destination

In this case, source is a series of one or more filenames and destination is a
pathname that ends with the name of the target directory. In the source
entry you may also use pattern-matching characters.

Copying Files in the Current Directory

The cp command creates the destination file if it does not already exist.
However, if a file with the same name as the destination file does exist, cp
copies the source file over the existing destination file.

Caution: If the destination file exists, your shell may allow the
cp command to erase the contents of that file before it
copies the source file. As a result, be certain that you
do not need the contents of the destination file, or that
you have a backup copy of the file, before you use it as
the destination file for the cp command. If you use the
C shell, see Table 8-6 for the noclobber variable that
can be set to prevent the erasure of the destination file.

OSF/1 User's Guide 3-23

General User Tasks

In the following example, the destination file does not exist, so the cp
command creates it. First, list the contents of your login directory.

$ Is
filel
$

file2 file3

Now, copy the source file, file2, into the new destination file, file2x:

$ cp file2 file2x
$

List the contents of the directory to verify that the copying process was
successful:

$ Is
filel
$

file2 file2x file3

Copying Files into Other Directories

3-24

You need a subdirectory to work through the following example, so create
one called reports with the mkdir command:

$ mkdir reports
$

To copy the file file2 into the directory reports, enter:

$ cp file2 reports
$

Now, list the contents of reports to verify that it contains a copy of file2:

$ Is reports
file2
$

Managing Files

You can also use the cp command to copy multiple files from one directory
into another directory. The general format of the command is the
following:

cpfilenamel filename2 dimame

In the following example, enter the cp command to copy both file2 and
file3 into the reports directory, and then list the contents of that directory:

$ cp file2 file3 reports
$ ls reports
file2 file3 notes
$

Note that in the above example, you do not have to specify file2 and file3
as part of the dirname entry. This is because the files being copied are
retaining their original filenames.

You may also use pattern-matching characters to copy files. For example,
to copy file2 and file3 into reports, enter:

$ cp file* reports
$

To change the name of a file when you copy it into another directory, enter
the name of the source file (the original file), the directory name, a slash (/),
and then the new filename. In the following example, copy file3 into the
reports directory under the new name notes. Then list the contents of the
reports directory:

$ cp file3 reports/notes
$ ls reports
file2 file3 notes
$

OSF/1 User's Guide 3-25

General User Tasks

Renaming or Moving Files (mv)

You can use the mv (move) command to perform the following actions:

• Move one or more files from one directory into another directory

• Rename files

Following is the general format of the mv command:

mv

The oldfilename entry is the name of the file you wish to move or rename.
The newfilename entry is the new name you wish to assign to the original
file. Both entries can be names of files in the current directory, or
pathnames to files in a different directory. You may also use pattern­
matching characters.

The mv command links a new name to an existing i-number and breaks the
link between the old name and that i-number. It is useful to compare the
mv command with the In and cp commands, which are explained in
"Linking Files (In)" and "Copying Files (cp)." Refer also to the
descriptions of these commands in the OSF/l Command Reference.

Renaming Files

3-26

In the following example, first list the i-number of each file in your current
directory with the ls -i command. Then, enter the mv command to change
the name of file file2x to newfile. The i-numbers displayed on your screen
will differ from the numbers in the example.

$ Is -i
1077 filel
1078 file2
$ mv file2x newfile
$

1088 file2x
1079 f ile3

1080 project
1085 reports

Managing Files

Again, list the contents of the directory:

$ ls -i
1077 filel
1078 file2
$

1079 file3x 1080 project
1088 newfile 1085 reports

Note two things in this example:

• The mv command changes the name of file file2x to newfile.

• The i-number for the original file (file2x) and newfile is the same-
1088.

The mv command removes the connection between i-number 1088 and
filename file2x, replacing it with a connection between i-number 1088 and
filename newfile. However, the command does not change the file itself.

Moving Files into a Different Directory

You can also use the mv command to move one or more files from your
current directory into a different directory.

Note: Type the target directory name carefully because the mv
command does not distinguish between filenames and
directory names. If you enter an invalid directory name, the
mv command simply takes that name as a new filename. The
result is that the file is renamed rather than moved.

In the following example, the ls command lists the contents of your login
directory. Then, the mv command moves file2 from your current directory
into the reports directory. The ls command then verifies that the file has
been removed:

$ ls
filel file2
$ mv file2 reports
$ ls
filel
$

OSF/1 User's Guide

file3

file3 newfile project reports

newfile project reports

3-27

General User Tasks

3-28

Finally, list the contents of the reports directory to verify that the
command has moved the file:

$ Is reports
file2 f ile3 notes
$

You may also use pattern-matching characters to move files. For example,
to move filel and file3 into reports, you could enter the following
command:

$ mv file* reports
$

Now list the contents of your login directory to verify that filel and file3
have been moved:

$ Is
newfile project reports
$

Now, copy filel, file2, and file3 back into your login directory. The . (dot)
in the following command line specifies the current directory, which in this
case is your login directory:

$ cp reports/file* •
$

Now, verify that the files are back in your login directory:

$ Is
filel
$

file2 file3 newfile project reports

Last, verify that filel, file2, and file3 are still in the reports directory:

$ Is reports
filel file2 file3 newfile project reports
$

Managing Files

Comparing Files (difl)

You can compare the contents of text files with the diff command. This
command compares the files and displays the differences between them.
Use the ditl' command when you wish to pinpoint the differences in the
contents of two files that are expected to be somewhat different.

The general format of the diff command is the following:

diffjilel file2

The ditl' command scans each line in both files looking for differences.
When it finds a line (or lines) that differ, it reports the following:

• Line numbers of any changes

• Whether the difference is an addition, a deletion, or a change to the line

If the change is caused by an addition, diff displays the following form:

l[,l] a r[,r]

where 1 is a line number in file 1 and r is a line number in file2. The a
indicates an addition. If the difference were a deletion, diff specifies a d,
and if it were a change to a line, ditl' specifies a c.

The actual differing lines then follow. In the leftmost column, a left angle
bracket (<) indicates lines from filel, and a right angle bracket (>)
indicates lines fromfile2.

OSF/1 User's Guide 3-29

General User Tasks

3-30

For example, suppose that you wish to quickly compare the following
meeting rosters in the files jan15mtg and jan22mtg:

jan15mtg jan22mtg

al ice al ice

colleen brent

daniel carol

david colleen

emily daniel

frank david

grace emily

helmut frank

howard grace

jack helmut

jane jack

juan jane

lawrence ju an

rusty lawrence

soshanna rusty

sue soshanna

tom sue

tom

Instead of tediously comparing the list by sight, you can use the diff
command to compare jan15mtg with jan22mtg as follows:

$ diff jan15mtg jan22mtg
2a3,4
> brent
> carol
lOdll
< howard

$

Managing Files

Here we find that brent and carol attended the meeting on January 22,
and Howard did not. We know this because the line number and text output
indicate that brent and carol are additions to file jan22mtg and that
howard is a deletion.

In cases where there are no differences between files, the system will
merely return your prompt. For more information about the diff command,
see the OSF/l Command Reference.

Sorting File Contents (sort)

You can sort the contents of text files with the sort command. You can use
this command to sort a single file or multiple files.

Following is the general format of the sort command:

sort filename

The filename entry can be simply the name of the file, the relative
pathname of the file, the full pathname of the file, or a list of filenames
separated by spaces. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

A good example of what the sort command can do for you is to sort a list
of names and put them in collated order as defined by your current locale.
For example, assume that you have lists of names that are contained in
three files, listl, list2, and list3.

list1 list2

Zenith, Andre Rocca, Carol
Dikson, Barry Shepard, Louis
D'Ambrose, Jeanette Hillary, Mimi
Julio, Annette Chung, Jean

To sort the names in all three files, enter:

$ sort list*
Anastio, William
Chung, Jean

OSF/1 User's Guide

list3

Hambro, Abe
Anastio, William
Saluccio, William
Hsaio, Peter

3-31

General User Tasks

D'Ambrose, Jeanette
Dickson, Barry
Hambro, Abe
Hillary, Mimi
Hsaio, Peter
Julio, Annette
Rocca, Carol
Saluccio, Julius
Shepard, Louis
Zenith, Andrew
$

You can also capture the sorted list by redirecting the screen output to a file
that you name by entering the following:

$ sort list* >newlist
$

For more information on redirecting output, see Chapter 7. For a detailed
description of the sort command and its many options, see the OSF/1
Command Reference.

Removing Files (rm)

3-32

When you no longer need a file, you can remove it with the rm (remove
file) command. You use this command to remove a single file or multiple
files.

Following is the general format of the rm command:

rm filename

The filename entry can be simply the name of the file, the relative
pathname of the file, the full pathname of the file, or a list of filenames.
The format you use depends on where the file is located in relation to your
current directory.

Managing Files

Removing a Single File

In the following example, you remove the file called filel from your login
directory.

First, return to your login directory with the cd (change directory)
command. Next, enter the pwd (print working directory) command to
verify that your login directory is your current directory, and then list its
contents. Remember that the system substitutes the name of your login
directory for the notation /uluname in the example.

$ cd
$ pwd
/u/uname
$ ls
filel
$

file2 file3 newfile project reports

Enter the rm command to remove newfile, and then list the contents of the
directory to verify that the system has removed the file.

$ rm newfile
$ ls
filel
$

file2 file3 project reports

You must have permission to access a directory before you can remove
files from it. For information about directory permissions, see Chapter 5.

Note: In addition to removing one or more files, rm also removes
the links between files and filenames. The rm command
actually removes the file itself only when it removes the last
link to that file. For information about using the rm
command to remove links, see "Removing Links."

OSF/1 User's Guide 3-33

General User Tasks

Removing Multiple Files-Matching Patterns

3-34

You can remove more than one file at a time with the rm command by
using pattern-matching characters. See "Specifying Files with Pattern
Matching'' in Chapter 2 for a description of pattern-matching characters.

For example, suppose your current directory contains the following files:
receivable.jun, payable.jun, payroll.jun, and expenses.jun. You can
remove all four of these files with the *.jun command.

Caution: Be certain that you understand how the * pattern­
matching character works before you use it. F~r

example, the rm * command removes every file in
your current directory. Be especially careful with *
at the beginning or end of a filename. If you
mistakenly type rm * name instead of rm *name,
you will remove all your files, rather than just those
ending with name. You may prefer to use the -i flag
with the rm command, which prompts you for
verification before deleting a file or files. See the end
of this section for details.

You can also use the pattern-matching character ? with the rm command
to remove files whose names are the same, except for a single character.
For example, if your current directory contains the files recordl, record2,
record3, and record4, you can remove all four files with the rm record?
command.

For detailed information about pattern-matching characters, see Chapter
2.

When using pattern-matching characters, you may find the -i (interactive)
flag of the rm command particularly useful. The rm -i command allows
you to selectively delete files. For each file selected by the command, you
are prompted, allowing you to delete the file, or to retain the file.

For example, suppose that your directory contains the files recordl,
record2, record3, and record4, records, and record6. Create those files
now in your login directory by using the touch command as follows:

$ touch recordl record2 record3 record4 record5 record6
$

Managing Files

The touch command is useful when you wish to create empty files, as you
are now. For complete information on the touch command, see the OSF/1
Command Reference.

For example, if you wish to remove four of the six files that begin with the
characters record, enter:

$ rm -i record?
rm: remove recordl? n
rm: remove record2? y
rm: remove record3? y
rm: remove record4? y
rm: remove recora5? y
rm: remove record6? n

$

Note that in the preceding example, you have deleted all files except for
recordl and record6.

Note: In addition to removing one or more files, the rm command
also provides an option, the -r flag, that removes files and
directories at the same time. See Chapter 4 for more
information.

Determining File Type (file)

Use the file command when you wish to see what kind of data a file
contains without having to display its contents. The file command
displays whether the file is one of the following:

• A text file

• A directory

• Input for one of the text formatting packages troff, nroff, or eqn input
text

• Source code for the C or FORTRAN programming languages

• An executable file

OSF/1 User's Guide 3-35

-
General User Tasks

3-36

The file command is especially useful when you suspect that a file
contains a compiled program. This is because displaying the contents of a
compiled program can produce disconcerting results on your screen.

Following is the general format of the file command:

file filename

The filename entry can be simply the name of the file, the relative
pathname of the file, the full pathname of the file, or a list of filenames.
The format you use depends on where the file is located in relation to your
current directory. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

For example, to determine the file type of entries in your login directory,
enter the following:

$ cd
$ pwd
/u/uname
$ file*
filel: ascii text
file2: ascii text
file3: ascii text
project: directory
recordl: empty
record6: empty
reports: directory
$

Note that the file command has identified filel, file2, and file3
as ascii text files, project and reports as directories, and
recordl and record6 as empty files.

For more information on the file command, see the OSF!l Command
Reference.

Chapter 4

Managing Directories

This chapter shows you how to manage directories on your system. After
completing this chapter, you will be able to do the following:

• Create directories

• Change directories

• Display, copy, and rename directories

• Remove directories

A good way to learn about managing directories is to try the examples in
this chapter. You should do each example in order so that the information on
your screen is consistent with the information in this guide.

Before you can work through the examples, you must be logged in and your
login directory should be in the state that you left it after doing the examples
in Chapter 3. As a result, your login directory should contain the following:

• The files filel, file2, file3, recordl, and record6

• The reports subdirectory that contains the files filel, file2, file3, and
notes

• The empty project subdirectory

OSF/1 User's Guide 4-1

General User Tasks

If you are using files with different names, make the appropriate
substitutions as you work through the examples. To produce a listing of the
files in your current directory, enter the Is command, which is explained in
Chapter 3.

Note: Your system may contain enhanced security features that may
affect how you manage directories. If so, see your system
administrator and the OSF/1 Security Features User's Guide
for details.

Creating a Directory (mkdir)

4-2

Directories allow you to organize individual files into useful groups. For
example, you could put all the sections of a report in a directory named
reports, or the data and programs you use in cost estimating in a directory
named estimate. A directory can contain files, other directories, or both.

Your login directory was created for you when your computer account was
established. However, you will probably need additional directories to
organize the files you create and edit while working with the system. You
create new directories with the mkdir (make directory) command.

The form of the mkdir command is the following:

mkdir dimame

The dirname entry is the name you wish to assign to the new directory.

The system creates dirname as a subdirectory of your working directory.
This means that the new directory is located at the next level below your
current directory.

In the following example, return to your login directory by entering the cd
command, and create a directory named project2:

$ cd
$ mkdir project2
$

Managing Directories

Now, create a subdirectory in the reports directory by entering a relative
pathname:

$ mkdir reports/status
$

Note the new file system tree structure in Figure 4-1. The project, project2,
and reports directories are located one level below your login directory,
and status is located one level below the reports directory.

Figure 4-1. Relationship Between a New Directory and the Current Directory

Login Directory

file1 record1
file2 record6
file3

reports
subdirectory 1
file1, file2, l file3, notes

I project project2

status
subdirectory subdirectory

subdirectory

Like filenames, the maximum length of a directory name depends upon the
file system used on your computer. For example, your file system may allow
a maximum directory name length of 255 bytes (the default), or it may
allow a maximum directory name length of only 14 bytes. Because
knowing the maximum directory name length is important for helping you
name directories meaningfully, see your system administrator for details.

Note that the system does not have a symbol or notation that automatically
distinguishes between a filename and a directory name, so you may find it
useful to establish your own naming conventions to designate files and
directories. However, you may use the ls -F command to distinguish
between filenames and directory names when the contents of your current
directory are displayed. For more inforniation on this command, see
"Displaying Directories (ls -F)" later in this chapter.

OSF/1 User's Guide 4-3

General User Tasks

Changing Directories (cd)

The cd (change directory) command changes your current (working)
directory. You can move to any directory in the file system from any other
directory in the file system by executing cd with the proper pathname.

Note: You must have permission to access a directory before you
can use the cd command to make that directory your current
directory. For information about directory permissions, see
Chapter 5.

The general format of the cd command is the following:

cdpathname

The pathname entry can either be the full pathname or the relative
pathname of the directory that you want to set as your current directory.

If you enter the cd command without a pathname, the system returns you to
your login directory.

To check the name of your current directory, enter the pwd (print working
directory) command. See Chapter 2 for information on the pwd command.

Changing Your Current Directory

4-4

In the following example, you first enter the pwd command to display the
name (which is also the pathname) of your working directory. You then use
the cd command to change your current directory.

First return to your login directory, if necessary, by entering the cd
command without a pathname. Next, enter the pwd command to verify that
your login directory is your current directory. Remember that the system
substitutes the name of your login directory for the notation /u/uname in the
example.

$ cd
$ pwd
/u/uname
$

Managing Directories

Now enter the cd command with the relative pathname project2 to change
to the project2 directory.

$ cd project2
$

Enter pwd again to verify that project2 is the current directory. Then, enter
cd to return to your login directory.

$ pwd
/u/uname/proj ect2
$ cd
$

To change your current directory to the status directory, a different branch
of the file system tree structure, enter the cd command with a full
pathname:

$ cd reports/status
$ pwd
/u/uname /reports/ status
$

Using Relative Pathname Notation

You can use the following relative pathname notation to change directories
quickly:

• Dot notation (.and .•)

• Tilde notation C)

This section describes both of the above notations.

Every directory contains at least two entries represented by . (dot) and ..
(dot dot). These entries refer to directories relative to the current directory:

. (dot) This entry refers to the current directory .

OSF/1 User's Guide 4-5

General User Tasks

4-6

.. (dot dot) This entry refers to the parent directory of your working
directory. The parent directory is the directory
immediately above the current directory in the file
system tree structure.

To display the . and .• entries as well as any files beginning with a period,
use the -a flag with the ls command.

In the following example, change to the reports directory by changing first
to your login directory.

$ cd
$ cd reports
$

Then, the first ls command displays the directory contents as well as the
status subdirectory you created earlier.

$ Is
filel
$

file2 file3 notes status

Now, execute the ls -a command to list all directory entries as well as those
that begin with a. (dot)-the relative directory names.

$ Is -a
. I .. I filel file2 file3 notes status
$

You can use the relative directory name .. (dot dot) to refer to files and
directories located above the current directory in the file system tree
structure. That is, if you wish to move up the directory tree one level, you
can use the relative directory name for the parent directory rather than using
the full pathname.

In the following example, the cd .• command changes the current directory
from reports to your login directory, which is the parent directory of
reports. Remember that the uname entry represents your login directory.

$ pwd
I uluname/report s
$ cd ..
$ pwd
/u/uname
$

Managing Directories

To move up the directory structure more than one level, you can use a series
of relative directory names, as shown in the following example. The
response to the following pwd command, the slash entry (/), represents the
root directory.

$ cd .. / ..
$ pwd
I
$

In the C shell and the Korn shell, you may use a tilde C) to specify a user's
login directory. For example, to specify your own login directory, use the
tilde alone as follows:

The above tilde notation does not save you keystrokes because in all OSF/1
shells you may get the same results by merely entering cd from any place in
the file system.

However, if you wish to access a directory below your login directory, tilde
notation can save you keystrokes. For example, to access the reports
directory from anywhere in the file system, enter the following:

cd -/reports

Tilde notation is also very useful when you wish to access a file or directory
either in or below another user's login directory. You may not know the
precise location of that user's login directory, but assuming you have the
appropriate permissions, you could get there with a minimum of keystrokes.

For example, from any place in the file system, you could specify the login
directory of a hypothetical user jones by entering the following:

cd -jones

OSF/1 User's Guide 4-7

General User Tasks

In addition, if user jones tells you that you can find a file in the status
directory immediately below the login directory, you can access the
directory by entering the following:

cd -jones/status

Ac~essing Directories Through Symbolic Links

4-8

When directories are connected through a symbolic link, the parent
. directory you access with the cd command differs depending upon whether
you are specifying the actual directory name or the relative directory name.
In particular, using the full pathname to find the parent of a symbolically
linked directory results in accessing the actual parent directory.

For example, suppose user2 is working on a file in the /u/user2/project
directory, which is the symbolic link to /u/userl/project. In order to
change to the actual parent directory (/u/user2), user2 types the following:

$ cd /u/user2
$ pwd
/u/user2
$

On the other hand, if user2 specified the relative directory name (..), the
parent directory of the symbolic link would be accessed. For example,
suppose user2 is working on the same file in the /u/user2/project directory,
which is the symbolic link to /u/userl/project. In order to access the parent
directory of the symbolic link, user2 enters the following:

$ cd ..
$ pwd
/u/userl
$

Instead of being in the /u/user2 directory, user2 is now in the directory
called /u/userl. 1

For background information on symbolic links, see Chapter 3.

Managing Directories

Displaying Directories (ls -F)

A directory can contain subdirectories as well as files. To display
subdirectories, use the ls -F command. This command displays the contents
of the current directory and marks each directory with a slash character (/)
so that it can be readily distinguished from a file.

The general format of the ls -F command is the following:

Is -F

In the following example, return to your login directory and enter the ls -F
command to display the directory contents. Note that the project,
proj ect2, and reports directories are marked with a slash.

$ cd
$ ls-F
filel
file2
$

file3
project/

project2/ record6
recordl reports/

Note that some C and Korn Shell users define an alias for the ls command
so that whenever they enter ls, the ls -F command is executed. For more
information on defining aliases, see Chapter 8, OSF/l Shell Features.

Copying Directories (cp)

You can use the cp command with the -r flag to copy directories and
directory trees to another part of the file system. The cp -r command has the
following format:

cp -r source destination

The source entry is the name of the directory to be copied. The destination
entry is the name of the directory location to which you want to copy
source.

OSF/1 User's Guide 4-9

General User Tasks

Figure 4-2 shows how the cp -r command in the following example copies
the directory tree reports into the directory project. It is assumed that the
command is entered from the login directory.

$ cp -r reports project
$

Figure 4-2. Copying a Directory Tree

4-10

Login Directory

file1 record1
file2 record6
file3

reports
subdirectory l
file1, file2, l file3, notes

l project project2

status subdirectory subdirectory

subdirectory

I
I
I

l ______ _l_ ______ I

, reports ,
, subdirectory ,

: file1, file2, file3, notes :
L _____________ _J

l ______ l_ ______ I

status

' subdirectory '
L _____________ _J

Note that the reports directory files, filel, file2, file3, and notes, as well as
the subdirectory status have been copied to project.

Managing Directories

Renaming Directories (mv)

You can use the mv command to rename a directory only when that
directory is contained in the same disk partition.

Following is the general format of the mv command:

mv olddirectoryname newdirectoryname

The olddirectoryname entry is the name of the directory you wish to move
or rename. The newdirectoryname entry is the new name you wish to assign
to the original directory.

In the following example, first change to the reports directory. Then, enter
ls -i -d command to list the i-number for the status directory.

$ cd reports
$ Is -i -d status
1091 status
$

Now, enter the mv command to change the name of status to newstatus.
Then, list the i-number for the newstatus directory:

$ mv status newstatus
$ Is -i -d newstatus
1091 newstatus
$

Notice that the second ls -i -d command does not list the original directory
name status. However, it does list the new directory newstatus, and it
displays the same i-number (10 91 in this example) for the new directory as
for the original status directory.

OSF/1 User's Guide 4-11

General User Tasks

Removing Directories (rmdir)

4-12

When you no longer need a particular directory, you can remove it from the
file system with the rmdir (remove directory) command. This command
removes only empty directories-those that contain no files or
subdirectories. For information about removing files from directories, see
"Removing Files and Directories Simultaneously (rm -r)" and Chapter 3.

Following is the general format of the rmdir command:

rmdir dirname

The dirname entry is the name, or pathname, of the directory you wish to
remove.

Before working through the examples in the following sections, create three
subdirectories in the directory project2.

First, use the command cd project2 to set project2 as your current
directory. Next, use the mkdir command to create the directories schedule,
tasks, and costs. Then, list the contents of the project2 directory.

$ cd project2
$ mkdir costs schedule tasks
$ Is
costs schedule tasks
$

Finally, use the cd command to return to your login directory.

$ cd
$ pwd
/u/uname
$

Managing Directories

Removing Empty Directories

The rmdir command removes only empty directories. If you try to remove
a directory that contains any files or subdirectories, the rmdir command
gives you an error message, as the following example shows:

$ rmdir project2
rmdir: project2 not empty
$

Note: You cannot remove a directory while you are positioned in it.
In order to remove a directory, you must be elsewhere in the
directory tree. See "Removing Your Current Directory" for
more information.

Before you can remove the directory project2, you must first remove the
contents of that directory. In the following example, the cd command
makes project2 your current directory, and then the ls command lists the
contents of project2:

$ cd project2
$ ls
costs schedule tasks

Now remove the directory schedule from the current directory, and then list
the remaining contents of the project2 directory:

$ rmdir schedule
$ ls
costs tasks
$

The project2 directory still contains two subdirectories: costs and
tasks. You can remove them by using pattern-matching characters, as
described in the next section. Once these subdirectories are removed, you
can delete the project2 directory, as described in ''Removing Your Current
Directory.''

OSF/1 User's Guide 4-13

General User Tasks

Removing Multiple Directories

You can remove more than one directory at a time with the rmdir
command by using pattern-matching characters. See ''Specifying Files with
Pattern Matching"in Chapter 2 for detailed information about pattern­
matching characters.

For example, suppose that you are in the project2 directory and wish to
remove two subdirectories: costs and tasks. To do so, enter the rmdir *s?s
command. Then, enter the ls command to verify that the project2 directory
contains no entries:

$ rmdir * .s?s
$ ls
$

Caution: Entering the rmdir command with the * (asterisk)
character alone (rmdir *) removes all empty
directories from your current directory. As a result, use
the* (asterisk) pattern-matching character with care.

Removing Your Current Directory

4-14

You cannot remove your current directory while you are still working in it.
You can remove it only after you move into another directory. You
generally enter the cd •• (dot dot) command to move into the parent
directory of your current directory, and then enter rmdir with the
pathname of the target directory.

The directory project2 is empty. To remove project2, first move to your
login directory, which is the parent directory of project2. Then, use the
rmdir dirname command to remove project2, and enter ls to confirm the
removal.

Managing Directories

$ cd
$ rmdir project2
$ ls
filel
$

file2 file3 project/ recordl record6 reports/

Your login directory no longer contains the project2 directory.

Removing Files and Directories Simultaneously (rm -r)

As you now know, the rmdir command removes only directories, not files.
You can, however, remove files and directories at the same time by using
the rm command with the -r (recursive) flag.

The rm -r command first deletes the files from a directory and then deletes
the directory itself. It deletes the directory you specify as well as any
subdirectories (and the files they contain) below it on the directory tree.
As a result, this command should be used with caution.

Following is the format for the rm -r command:

rm -r pathname

The pathname entry can either be the full pathname or the relative
pathname of the directory that you wish to remove. You may also use
pattern-matching characters to specify files.

Caution: Be certain that you understand how the -r flag works
before you use it. For example, entering the rm -r *
command from your login directory deletes all files
and directories to which you have access. If you have
superuser authority and are in the root directory, this
command will delete all system files. See Chapter 5
for more information on superuser authority.

OSF/1 User's Guide 4-15

General User Tasks

4-16

When using the rm -r command to remove files or directories, it is a good
idea to include the -i flag in the command line, in the following form:

rm -ri pathname

When you enter the command in this form, the system prompts you for
verification before actually removing the specified item(s). In this way, by
answering y (yes) or n (no) in response to the prompt, you control the
actual removal of a file or the directory.

Chapter 5

Controlling Access to Your Files and
Directories

This chapter shows you how to control access to your system as well as your
files and directories. After reading this chapter, you will be able to do the
following:

• Understand password, group, and system security issues

• Understand file and directory permissions

• Display and set file and directory permissions

• Change owners and groups

• Change your identity to access files

• Understand superuser concepts

• Learn where to find information about enhancements to security that
may be installed on your system

A good way to learn about the preceding topics is to try the examples in this
chapter. You should do each example in order so that the information on
your screen is consistent with the information in this guide.

OSF/1 User's Guide 5-1

General User Tasks

Before you can work through the examples, you must be logged in and your
login directory should be in the state that you left it after doing the examples
in Chapter 4. As a result, your login directory should contain the following:

• The files filel, file2, file3, recordl, and record6

• The reports subdirectory that contains the files filel, file2, file3, and
notes, and the subdirectory newstatus

• The project subdirectory that contains the files filel, file2, file3, and
notes, as well as the status subdirectory

If you are using files with different names, make the appropriate
substitutions as you work through the examples.

Understanding Password and Group Security Files

5-2

Before a user can log in successfully, he or she must be made known to the
system by the creation of a user account. Adding a user account is a routine
but critical activity that is usually performed by the system administrator.

When a user account is created, the new user is added to the following two
files:

• /etc/passwd: This file contains individual user information for all users
of the system.

• /etc/group: This file contains group information for all groups on the
system.

These files define who can use the system and each user's access rights. In
addition, all other system security controls depend upon password and group
security. The following sections describe the /etc/passwd and /etc/group
files.

Controlling Access to Your Files and Directories

The /etc/passwd File

The /etc/passwd file contains records that define login accounts and
attributes for all system users. This file can be altered only by a user with
superuser privileges. See "Superuser Concepts" later in this chapter for
more information.

Each record in the /etc/passwd file defines a login account for an individual
user. The fields are separated by colons and the last field ends with a
newline character. The following text shows the format of an /etc/passwd
file entry and describes the meaning of each field:

username: password: U/D: G/D: user _info: login_directory: login_shell

username

password

UID

GID

user_info

login_directory

login_shell

OSF/1 User's Guide

Your login name.

Your password stored in encrypted form. Encryption
prevents unauthorized users or programs from
discovering your actual password. If no password has
been specified for a user, this field will be blank.

(User ID) A unique number identifying you to the
system.

(Group ID) A number identifying your default group.
You can belong to one or more groups.

This field can contain the following:

• Your full name.

• Maximum file size-A number limiting the
maximum size of any file you create or extend.

• Site specific information-An attribute serving
various purposes for each installation. It normally
records biographical information.

Your current directory after logging in to the system. It
is usually a directory you own and use to store private
files.

The program run by the login program after you
successfully log in to the system. It is normally a shell
program used to interpret commands. For more
information on shells, see Chapter 7.

5-3

General User Tasks

A Sample Entry in the /etc/passwd File

lee:NebPsa9qxMkbD:201:20:Lee Voy,sales,x1234:/users/lee:/usr/bin/sh

The user account 1 e e has user ID 2 01 and group ID 2 0. Lee's full name is
Lee Voy, and his department and telephone are listed. The login directory is
/users /lee and the Bourne shell (/usr /bin/ sh) is defined as the
command interpreter. The password field contains Lee's password in
encrypted form.

The /etc/group File

5-4

The /etc/group file defines login accounts for all groups using the system.
This file can be altered only by a user with superuser privileges. See
"Superuser Concepts" later in this chapter for more information.

Each record in the group database defines the login account of one group.
Groups provide a convenient way to share files among users with a common
interest or who are working on the same project.

Each entry in the /etc/group file is a single line that contains four fields. The
fields are separated by colons, and the last field ends with a newline
character. The following text shows the format of each entry and describes
the meaning of each field:

groupname : password: GIDC: user 1 [, user2, ... , userN]

groupname

password

GID

usernames

A unique character string that identifies the group to the
system.

This field is left empty. Entries in this field are ignored.

(Group ID) A unique number that identifies the group to
the system.

A list of users who belong to the group.

Controlling Access to Your Files and Directories

Protecting File and Directories

The OSF/1 operating system has a number of commands that enable you to
control access to your files and directories. You can protect a file or
directory by setting or changing its permissions, which are simply codes
that determine the way in which anyone working on your system can use the
stored data.

Setting or changing permissions is also referred to as setting or changing the
protections on your files or directories. You generally protect your data for
one or both of the following reasons:

• Your files and directories contain sensitive information that should not
be available to everyone who uses your system.

• Not everyone who has access to your files and directories should have
the permission to alter them.

Caution: Your system may allow two or more users to make
changes to the same file at the same time without
informing them. If this is so, the system saves the
changes made by the last user to close the file; changes
made by the other users are lost (some text editors
warn users of this situation). It is therefore a good idea
to set file permissions to allow only authorized users to
modify files. The specified users should then
communicate about when and how they are using the
files.

Each file and each directory has nine permissions associated with it:

• Files and directories have the following three types of permissions:

- r (read)

- w (write)

- x (execute)

OSF/1 User's Guide 5-5

General User Tasks

• These three permissions occur for each of the following three classes of
users:

- u (user/owner)

- g(group)

- o (all others; also known as "world")

The r permission allows users to view or print the file. The w permission
allows users to write to (modify) the file. The x permission allows users to
execute (run) the file or to search directories.

The user/owner of a file or directory is generally the person who created it.
If you are the owner of a file, you can change the file permissions with the
chmod command, which is described in "Setting File and Directory
Permissions (chmod)."

The group specifies the group to which the file belongs. If you are the
owner of a file, you can change the group ID of the file with the chgrp
command, which is described in "Changing Owners and Groups."

Note: If you do not own a file, you cannot change its permissions or
group ID unless you have superuser authority. See
''Superuser Concepts'' for more information.

The meanings of the three types of permissions differ slightly between
ordinary files and directories. See Table 5-1 for more information.

Table 5-1. Differences Between File and Directory Permissions

Permission For a File For a Directory

r (read) Contents can be viewed or printed. Contents can be read, but not
searched. Normally r and x are
used together.

w (write) Contents can be changed or deleted. Entries can be added orremoved.

x (execute) File can be used as a program. Directory can be searched.

5-6

Controlling Access to Your Files and Directories

Displaying File and Directory Permissions (ls)

To display the current file permissions, enter the Is command with the -1
flag. To display the permissions for a single file or selected files, enter:

ls -lfilename

The filename entry can be the name of the file or a list of filenames
separated by spaces. You may also use pattern-matching characters to
specify files. See "Using Pattern-Matching Characters" later in this
chapter for more information.

To display the permissions for all of the files in your current directory, enter
the Is -1 command:

$ ls -1
total 7
-rw-r--r-- 1 larry system 101 Jun 5 10:03 filel
-rw-r--r-- 1 larry system 171 Jun 5 10:03 file2
-rw-r--r-- 1 larry system 130 Jun 5 10:06 file3
drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
-rw-r--r-- 1 larry system 0 Jun 5 11: 03 recordl
-rw-r--r-- 1 larry system 0 Jun 5 11: 03 record6
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

The first string of each entry in the directory shows the permissions for that
file or directory. For example, the fourth entry, drwxr-xr-x, shows the
following:

• That this is a directory (the d notation)

• That the owner can view it, write in it, and search it (the rwx sequence)

• That the group can view it and search it, but not write in it (the first r­
x sequence)

• That all others can view it and search it, but not write in it (the second
r-x sequence).

The third field shows the file's owner, (in this case, larry), and the fourth
field shows the group to which the file belongs, in this case system).

OSF/1 User's Guide 5-7

General User Tasks

To list the permissions for a single directory, use the Is -Id command:

$ Is -Id reports
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

Taken together, all the permissions for a file or directory are called its
permission code. As Figure 5-1 shows, a permission code consists of four
parts:

• A single character shows the file type. The dash (-) indicates an
ordinary file, d a directory, and I a symbolic link. Any other character
indicates an I/O device.

• A 3-character permission field shows user (owner) permissions, which
may be any combination of read, write, and execute.

• Another 3-character permission field shows group permissions.

• Another 3-character permission field shows permissions for all others.

Figure 5-1. File and Directory Permission Fields

5-8

Type

;- Permission

I Owner Group Others \

0 ~~~

- (file)

d (directory)

I (symbolic link)

b (block-special file)

c (character-special file)

p (named pipe-special file)

s (local socket-special file)

r read

w write

x execute

Controlling Access to Your Files and Directories

When you create a file or directory, the system automatically supplies a
predetermined permission code. A typical file permission code is

-rw-r--r--

This file perm1ss10n code specifies that the owner has read and write
permissions while the group and all others have read permission. The
dashes (-) in some positions following the file-type notation indicate that
the specified class of user does not have permission for that operation.

A typical directory permission code is

drwxr-xr-x

This directory permission code specifies that owner has read, write, and
execute permissions, while the group and all others have read and execute
permissions.

The default permission codes that your system provides relieves you from
the task of specifying them explicitly every time you create a file or
directory. If you wish to create your own default permission codes, you
must change your user mask with the umask command. For an explanation
of umask, see the description of the command in ''Setting the User Mask''
and in the OSF/l Command Reference.

Setting File and Directory Permissions (chmod)

Your ability to change permissions gives you a great deal of control over
the way your data can be used. Use the chmod (change mode) command to
set or change the permissions for your files and directories.

For example, you obviously permit yourself to read, modify, and execute a
file. You generally permit members of your group to read a file.

OSF/1 User's Guide 5-9

General User Tasks

Depending upon the nature of your work and the composition of your
group, you often allow them to modify or execute it. You generally
prohibit all other system users from having any access to a file.

Note: You must be the owner of the file or directory (or have
superuser authority) before you can change its permissions.
This means that your username must be in the third field in an
ls -I listing of that file.

It is important to realize that whatever restrictions you impose on
file/directory access, the superuser can always override them. For example,
suppose that you used the chmod command to specify that only you can
have access to the file report20. The superuser can still acess this file. For
more information on this topic, see "Superuser Concepts" later in this
chapter.

There are two ways to specify the permissions set by the chmod command:

• You can specify permissions with letters and operation symbols.

• You can specify permissions with octal numbers.

It is more difficult to learn to specify permissions with octal numbers
than it is to specify them with letters. However, once you are familiar
with the octal number system, you may find using it more efficient than
setting permissions with letters and operation symbols.

The following sections describe how to specify permissions with letters
and operation symbols, as well as with octal numbers.

Specifying Permissions with Letters and Operation Symbols

5-10

You can use letters and operation symbols to change file and directory
permissions.

Following is the format of the chmod command when using letters and
operation symbols:

chmod userclass-operation-permission filename

Controlling Access to Your Files and Directories

The userclass-operation-permission entry actually represents three codes
that specify the user class, group, operation, and permission code that you
wish to activate. The filename entry is the name of the file or files whose
permissions you want to change. You may also use pattern-matching
characters to specify files. See ''Using Pattern-Matching Characters'' later
in this chapter for more information.

User classes, operations, and permissions are defined as follows:

• Use one or more of these letters to represent the userclass:

- u for user (owner)

g for group

o for all others (besides owner and group)

- a for all (user, group, and all others)

• Use one of these symbols to represent the operation:

+ add permission

- remove permission

- = assign permission regardless of previous setting

• Use one or more of these letters to represent the type of permission:

r forread

s for set user or group ID

- wforwrite

- x for execute

Changing File Permissions

In the following example, first enter the ls -1 command to display the
permissions for the file filel:

$ Is -1 filel
-rw-r--r-- 1 larry system 101 Jun 5 10:03 filel
$

OSF/1 User's Guide 5-11

General User Tasks

5-12

Note that the owner (larry) has read/write permissions while the group and
others have only read permissions.

Now, enter the chmod command with the flags go+w. This command
expands the permissions for both the group (g) and for others (o) by giving
them write access (+w) to filel in addition to the read access they already
enjoy:

$ chmod go+w filel
$

Next, list the new permissions for the file:

$ ls -I filel
-rw-rw-rw- 1 larry system
$

101 Jun 5 10:03 filel

Note that you have given your group and all other system users write
permission to filel.

Changing Directory Permissions

The procedure for changing directory permissions is the same as that for
changing file permissions. However, to list the information about a
directory, you use the ls -Id command:

$ ls -Id project
drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
$

Now change the permissions with the chmod g+w command so that the
group (g) has write permission (+w) for th_e directory project.

$ chmod g+w project
$ ls -Id project
drwxrwxr-x 2 larry system 32 Jun 5 10:07 project
$

Controlling Access to Your Files and Directories

Using Pattern-Matching Characters

If you want to make the same change to the permissions of all entries in a
directory, you can use the pattern-matching character * (asterisk) with the
chmod command. For information on pattern-matching characters, see
Chapter 2.

In the following example, the command chmod g+x * gives execute (x)
permission to the group (g) for all files (*) in the current directory:

$ chmod g+x *
$

Now enter the ls -1 command to show that the group now has execute (x)
permission for all files in the current directory.

$ ls -I
total 7
-rw-rwxrw- 1 larry system 101 Jun 5 10:03 filel
-rw-r-xr-- 1 larry system 171 Jun 5 10:03 file2
-rw-r-xr-- 1 larry system 130 Jun 5 10:06 file3
drwxrwxr-x 2 larry system 32 Jun 5 10:07 project
-rw-r-xr-- 1 larry system 0 Jun 5 11: 03 recordl
-rw-r-xr-- 1 larry system 0 Jun 5 11: 03 record6
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

Setting Absolute Permissions

An absolute permission assignment resets all permissions for a file or files,
regardless of how the permissions were set previously.

In the following example, the ls -1 command lists the permissions for the
file3 file. Then the command chmod a=rwx gives all three permissions
(rwx) to all users (a).

OSF/1 User's Guide 5-13

General User Tasks

$ ls -1 file3
-rw-r-x-r-- 1 larry system 130 Jun 5 10:06 file3
$ chmod a=rwx file3
$ ls -1 file3
-rwxrwxrwx 1 larry system 130 Jun 5 10:06 file3
$

You can also use an absolute assignment(=) to remove permissions. In the
following example, the command chmod a=rw newfile removes the
execute permission (x) for all groups (a) from the file file3:

$ chmod a=rw file3
$ Is -1 file3
-rw-rw-rw- 1 larry system 130 Jun 5 10:06 file3
$

Specifying Permissions with Octal Numbers

5-14

You can also use octal numbers to change file and directory permissions.

To use octal number permission codes with the chmod command, enter the
command in the following form:

chmod octalnumber filename

The octalnumber entry is a 3-digit octal number that specifies the
permissions for owner, group, and others. The filename entry is the name
of the file whose permissions you want to change. It can be the name of the
file or a list of filenames separated by spaces. You may also use pattem­
matching characters to specify files. See "Using Pattern-Matching
Characters'' earlier in this chapter for more information.

An octal number corresponds to each type of permission:

4 =read
2 =write
1 =execute

Controlling Access to Your Files and Directories

To specify a group of permissions (a permissions field), add together the
appropriate octal numbers (r, w, and x denote read, write, and execute,
respectively):

3=-wx(2+1)
6 = rw- (4 + 2)
7 = rwx (4 + 2 + 1)
0 = --- (no permissions)

Table 5-2 lists the eight possible permission combinations for easy
reference.

Table 5-2. Permission Combinations

Octal Number Permissions Description

0 None No permissions granted

1 --x Execute

2 -w- Write

3 -wx Write/execute

4 r-- Read

5 r-x Read/execute

6 rw- Read/write

7 rwx Read/write/execute

The entire permission code for a file or directory is specified with a 3-digit
octal number, one digit each for owner, group, and others. Table 5-3
shows some typical permission codes and how they relate to the permission
fields.

OSF/1 User's Guide 5-15

General User Tasks

Table 5-3. How Octal Numbers Relate to Permission Fields

Octal Owner Group Others Complete
Number Field Field Field Code

777 rwx rwx rwx rwxrwxrwx

755 rwx r-x r-x rwxr-xr-x

700 rwx --- --- rwx------

666 rw- rw- rw- rw-rw-rw-

Enter the following example to change the permission of file3 using octal
numbers:

$ ls -1 file3
-rw-rw-rw- 1 larry system 130 Jun 5 10:06 file3
$ chmod 754 file3
$ Is -1 file3
-rwxr-xr-- 1 larry system 130 Jun 5 10:06 file3
$

Setting the User Mask

5-16

Every time you create a file or a directory, the program you are running
automatically establishes default permission codes for it. This relieves you
from the task of specifying permission codes explicitly every time you
create a file or directory.

If you wish to further restrict whatever permissions are established by a
program when it creates a file or directory, you must specify a user mask
with the umask command.

The user mask is a numeric value that determines the maximum access
permissions when a file or directory is created. As a result, when you
create a file or directory, its permissions are set to what the creating
program specifies, minus what the umask value forbids.

Controlling Access to Your Files and Directories

The umask command has the following format:

umask octalnumber

The octalnumber entry is a 3-digit octal number that specifies the default
maximum permissions for owner, group, and others.

Setting the user mask is very similar to setting the permission bits
discussed in "Specifying Permissions with Octal Numbers." The
permission code for a file or directory is specified with a 3-digit octal
number. Each digit represents a type of permission. The position of each
digit (first, second, or third) represents 3 bits that correspond to the
following:

• The first is for the owner of the file (you).

• The second is for the group of the file.

• The third is for the default class others.

However, when you set the user mask, you are actually specifying which
permissions are not to be granted regardless of the permissions requested
by the file creating program.

Table 5-4 lists the eight possible umask permission combinations for easy
reference. Note that the umask permission values are the The inverse of
those specified for regular permission codes. Also note that these
permission values are applied to those set by the creating program.

OSF/1 User's Guide 5-17

General User Tasks

Table 5-4. The umask Permission Combinations

5-18

Maximum
Allowed

Octal Number Permissions Description

0 rwx Read/write/execute

1 rw- Read/write

2 r-x Read/execute

3 r-- Read

4 -wx Write/execute

5 -w- Write

6 --x Execute

7 none No permissions granted

For example, if you specify a user mask of 027:

• The owner is allowed all permissions requested by the program
creating the file.

• The group is not allowed write permission.

• The others are not allowed any permissions.

A good user mask value to set for your own files and directories depends
upon how freely information resources are shared on your system. The
following guidelines may be useful:

• In a very open computing environment, you might specify 000 as a user
mask value, which allows no restrictions on file/directory access. As a
result, when a program creates a file and specifies permission codes for
it, the user mask imposes no restrictions on what the creating program
has specified.

• In a more secure computing environment, you might specify 066 as a
user mask value, which allows you total access, but prevents all others
from being able to read or write to your files. As a result, when a file is
created, its permissions are set to what the creating program specifies,
minus the user mask restrictions that prevent read/write access for
everyone but you.

Controlling Access to Your Files and Directories

• In a very secure computing environment, you might specify 077 as a
user mask value, which means that only you have access to your files.
As a result, when a file is created, its permissions are set to what the
creating program specifies, minus the user mask restrictions that
prevent anyone else from reading, writing, or executing your files.

To show you how umask would work, assume that you have entered the
following command:

umask037

This command establishes the following conditions:

• You (the owner) are allowed all permissions.

• Members of your group are not allowed write and execute permissions.

• The others are not allowed any permissions.

Further, assume that you have just created a file. By default, your editor
always assigns the following default permissions: owners are allowed all
permissions, and all others only read and execute permissions. However,
since you have previously set a user mask of 037, it further restricts the file
permissions. As a result, the owner still has all permissions, but the group
cannot execute the file, and all others have no permissions.

You may activate the umask command in two ways:

• Include it in your login script. This is the most common and efficient
way to specify your user mask because the specified value is set
automatically for you whenever you log in. For a discussion of login
scripts, see Chapter 7. For examples of umask commands in login
scripts, see Chapter 8.

• Enter it at the shell prompt during a login session. The user mask value
you set is in effect for that login session only.

For a more detailed example of how your user mask works in restricting
permissions for files you create with a text editor, you may perform the
following procedure:

1. Enter the following command to find out what the current value of
your user mask is

umask

OSF/1 User's Guide 5-19

General User Tasks

5-20

If the user mask value is 000, there are no restncttons on the
permissions established by file-creating programs. Go to step 3.

If the user mask value is set, jot it down. Then, go to step 2.

2. Set the user mask value to 000 so that that there will be no
restrictions on the permissions established by file-creating programs.
Before resetting the user mask, make sure you have written down the
current value should you need to reset it.

Enter the following:

umaskOOO

3. Create a file, save it, and then exit your editor.

4. Display the permissions of the file by using the ls -1 command. We
will assume for the sake of the example that read/write permissions
are granted for all users:

$Is -1
-rw-rw-rw- 1 user 15 Oct 27 14:42 afile
$

5. Reset the user mask to 022 by entering the following:

umask022

A user mask of 022 establishes the following maximum permission
restrictions: owners are allowed all permissions and all others only
read and execute permissions.

6. Create another file, save it, and then exit your editor.

7. Display the permissions of the file by using the ls -1 command.

$Is -1
-rw-r--r-- 1 user 15 Oct 27 14:42 afile2
$

Note that the write permissions for the group and all others have
been removed in accordance with the user mask value of 022.

Controlling Access to Your Files and Directories

8. Reset the user mask to its original value or to another value
(optional).

Note: It is important to know that whatever restrictions you impose
on file/directory access with your user mask, a user with
superuser privileges can override them. For more
information on this topic, see "Superuser Concepts" later in
this chapter.

On occasion, the results you obtain when specifying a user mask may vary
from what you intended. If so, see your system administrator.

The OSF/1 operating system provides a default user mask value of 022,
which allows the owner all permissions, but prevents members of your
group or any other users from writing to your files. However, your system's
user mask default may vary.

For further information on the umask command, see the OSF!l Command
Reference.

Changing Your Identity to Access Files (su, whoami)

The su command allows you to alter your identity during a login session. A
reason for altering your identity is to be able to access files that you do not
own. To protect system security, you should not assume another identity
without the owner's or the system administrator's permission.

The su command allows you to log in to another user's account only if you
know that user's password. The su command authenticates you and then
resets both the process's user ID and effective user ID to the value of the
newly specified user ID. The effective user ID is the user ID currently in
effect for the process, although it may not be the user ID of the person
logged in.

The format of the su command is the following:

su usemame

The username entry is the username of the person whose identity you wish
to assume.

OSF/1 User's Guide 5-21

General User Tasks

If after altering your identity, you wish to confirm what identify you have
assumed, use the whoami command. This command displays the username
of the identity you have assumed.

After completing your work under a new identity, you should return to your
own login identity. To do so, press <Ctrl-d> or enter the exit command.

The following example shows how Juan assumes Lucy's identity with the
su command, confirms it with the whoami command, removes a file, and
then returns to his own login identity with the exit command:

$ su lucy
Password:
$ whoami
lucy
$ rm file9
$ exit
$ whoami
juan
$

For more information on the su and whoami commands, see the OSF/l
Command Reference.

Superuser Concepts

5-22

Every system has a superuser who has permissions that supersede those of
ordinary users. This superuser is often referred to as root.

The root user has absolute power over the running of the system. This user
has access to all files and all devices and can make any changes to the
system. The root user is said to have superuser privileges.

The following is a list of sample tasks ordinarily performed by root users:

• Edit files not normally changeable by ordinary users (for example,
/etc/passwd).

• Be able to change ownership and permissions of all files.

Controlling Access to Your Files and Directories

• Execute restricted commands like mount or reboot.

• Kill any process running on your system.

• Add and remove users.

• Boot and shut down the system.

• Back up the system.

Many of the preceding tasks are typically performed by system
administrators, who require superuser privileges. Basically, the system
administrator's job is to manage the system by performing the preceding
tasks, installing new software, analyzing system performance, and
reporting hardware failures.

Depending upon your computing environment, you may or may not be the
system administrator for your system or have root privileges. Your site
configuration as well as your job responsibilities will determine your
privileges.

For example, if you work from a terminal that accesses a centralized
system, you will probably not be the system administrator or have root
privileges. In this situation, the system administrator, who is in charge of
maintaining, configuring, and upgrading the system, will be the person who
has root privileges.

On the other hand, if you perform your tasks from a workstation that is
either independent or networked to other workstations or systems, you may
indeed have root privileges for your own workstation, but not be the system
administrator of your site. In this situation, you would maintain your own
workstation only. However, the system administrator would still maintain
shared machines and networks.

To become a root user, use the su command. You must also know the
password for the root user. The format of the su command is the
following:

su root

OSF/1 User's Guide 5-23

General User Tasks

The following example shows how Juan becomes a root user to perform an
administrative task:

$ su root
Password:

The new prompt, a # (number sign), indicates that Juan has become a root
user and that a shell has been created for his use. The root user shell (often
the C shell) is defined in the /etc/passwd file. Juan may now perform the
administrative task. See Chapter 13, "Adding and Removing Users and
Groups," for some examples of administrative tasks that require root user
privileges.

Caution: Because the root user had absolute power over the
system, the password should be carefully protected.
Otherwise, unauthorized use of the system may result
in corruption or destruction of data.

After completing your work as the root user, you should return to your
own login identity. To do so, press <Ctrl-d> or enter the exit command.
You are then returned to the system prompt.

Changing Owners and Groups

5-24

In addition to setting permissions, you can control how a file or directory
is used by changing its owner or group. Use the chown command to
change the owner and the chgrp command to change the group.

Note: In order to use the chown command, you must have
superuser privileges. For more information on this topic, see
"Superuser Concepts" earlier in this chapter.

Enter the chown command in the following form:

chown owner filename

Controlling Access to Your Files and Directories

The owner entry is the username of the new owner of the file. The
filename entry is a list of one or more files whose ownership you want to
change. You may also use pattern-matching characters to specify files.
See "Using Pattern-Matching Characters" earlier in this chapter for more
information.

Enter the chgrp command in the following form:

chgrp group file

The group entry is the group ID or group name of the new group. Note that
to change the group ownership of a file, you must be a member of the
group to which you are changing the file. The file entry is a list of one or
more files whose ownership you want to change.

For more information about the chown and chgrp commands, see the
OSF/l Command Reference.

Additional Security Considerations

The security guidelines enforced at your site protect your files from
unauthorized access. See your system administrator for complete
information about security guidelines and follow them scrupulously.

In addition, it wise to avoid running untrusted software (software that is
from an unknown source or that has not been validated for system
security). When you run a program, that program has all of your access
rights, and nothing prevents the program from being used to illicitly
access, observe, or alter sensitive files.

You should be aware of three types of programs that compromise security:

• Trojan horse

A trojan horse is a program that performs, or appears to perform, its
defined task properly; however, it also performs hidden functions that
may be malevolent. A trojan horse program emulates the program that
you intended to run, but may perform an unwanted action. It might
vandalize your files by altering or deleting them, or compromise the
files by making illegal copies of them.

OSF/1 User's Guide 5-25

General User Tasks

A typical trojan horse is the login trojan horse, which mimics the
system's login prompt on the display and waits for you to enter a
username and password. The program mails or copies this information
to the user responsible for the trojan horse. As the trojan horse exits, it
displays Login incorrect. The real login program then runs.
Most users assume they typed the password incorrectly, and are
unaware that they were deceived.

• Computer worm

A computer worm is a program that moves around a computer
network, making copies of itself. For example, a login computer worm
can log onto a system, copy itself onto the system, start running, log
onto another system, and then continue this process indefinitely.

• Computer virus

A computer virus program is really a type of trojan horse. Normally, a
trojan horse waits passively for the right user to run it (usually a
privileged user). Viruses spread themselves by inserting themselves in
other executable files, thus increasing the threat and extent of
compromise of privacy or integrity.

Be careful of programs that were not installed by the person who
administers your system. Programs that are obtained from bulletin boards
and other unknown origins are particularly suspect. Even if the program
includes source code, it is not always possible to examine the program
carefully enough to determine if it is trustworthy.

Using Enhancements to the Security System

5-26

Your system may contain OSF/l enhanced security features that may
affect access to the overall system, files, and directories. These
enhancements result in a system that can be certified at either the B 1 or
C2 security classes defined by the U.S. Department of Defense.

Controlling Access to Your Files and Directories

OSF/1 enhanced security features expand system security in the following
areas:

• Accountability-Identification and Authentication

The system keeps track of all logins and maintains an extensive profile
of each user. As a result, an unauthorized penetration (or attempted
penetration) into an account it is extremely difficult.

• Accountability-Audit

The system maintains an audit trail that records every relevant
security event. Each file open, file creation, login, and print job is
recorded.

• Sensitivity Labels

Sensitivity labels define the level of trust. The system maintains
sensitivity labels on all users, processes, files, and directories.

The system enforces trust rules by making sure that the user (or the
process on the system doing the work for the user) is cleared to access
information. For example, you can read a document if your clearance
is equal to or higher than the document's classification.

• Mandatory/Discretionary Access Control

The system enforces its own access rules (mandatory rules) based
upon sensitivity levels, as well as allows you to grant and deny access
(discretionary rules) to files and directories.

• Data Interchange

The system ensures that classified data maintains its classification
even if it leaves the system.

• Privilege Mechanism

The privilege mechanism extends traditional root user security by
implementing the concept of least privilege. Least privilege refers to
the security doctrine that states that a program should have only
enough power to do the specific task it is assigned, and only for the
duration of that task. Therefore, if a program performs a highly
sensitive operation, it must be privileged only during that operation,
and not longer.

OSF/1 User's Guide 5-27

General User Tasks

5-28

OSF/1 enhanced security features do not completely replace the need
for a superuser, but rather they do redefine the way the operating
system checks for privilege. All privilege checks in the operating
system check for possession of a privilege rather than for a superuser.
System commands either were converted to enable an appropriate
privilege on every privileged operation, or require that a privileged
user run them.

See your system administrator, the OSF/1 Security Features User's Guide,
and the OSF/1 Command Reference for details.

Chapter 6

Using Processes

This chapter explains OSF/1 operating system processes. After completing
this chapter, you will be able to do the following:

• Understand programs and processes

• Redirect process input, output, and errors

• Run processes in the foreground and background

• Check the status of processes

• Cancel processes

• Display information about users and their processes

A good way to learn about the preceding topics is to try the examples in this
chapter. You should do each example in order so that the information on
your screen is consistent with the information in this guide.

OSF/1 User's Guide 6-1

General User Tasks

Understanding Programs and Processes

A program is a set of instructions that a computer can interpret and run.
You may think of most programs as belonging to one of two categories:

• Application programs such text editors, accounting packages, or
electronic spreadsheets

• Programs that are components of the OSF/l operating system such as
comI?ands, the shell (or shells), and your login procedure

While a program is running, it is called a process. The OSF/l operating
system assigns every process, a unique number known as a process
identifier.

The OSF/l operating system can run a number of different processes at the
same time. When more than one process is running, a scheduler built into
the operating system gives each process its fair share of the computer's time,
based on established priorities.

Understanding Standard Input, Output, and Error

6-2

When a process begins executing, the OSF/l operating system opens three
files for the process: stdio (standard input), stdout (standard output), and
stderr (standard error). Programs use these files as follows:

• Standard input is the place from which the program expects to read its
input. By default, processes read stdio from the keyboard.

• Standard ouput is the place to which the program writes its output. By
default, processes write stdout to the screen.

• Standard error is the place to which the program writes its error
messages. By default, processes write stderr to the screen.

In most cases, the default standard input, output, and error mechanisms will
serve you well. However, there are times when it is useful to redirect the
standard input, output, and error. The following sections describe these
procedures.

Using Processes

Redirecting Input and Output

A command usually reads its input from the keyboard (standard input) and
writes its output to the display (standard output). Often, though, you may
want a command to read its input from a file, write its output to a file, or
both. You can select input and output files for a command with the shell
notation shown in Table 6-1. This notation can be used in all OSF/1 shells.

Table 6-1. Shell Notation for Reading Input and Redirecting Output

Notation Action Example

< Reads standard input from a file. WC <file3

> Writes standard output to a file. Is >file3

>> Adds standard output to the end of a file. Is >>file3

The following sections explain how to read input from a file and how to
write output to a file.

Reading Input from a File-The < Symbol

All OSF/1 shells allow you to redirect the standard input of a process so that
input is read from a file, instead of from the keyboard.

You can use input redirection with any command that accepts input from
std.in (your keyboard). You cannot use input redirection with commands,
such as who, that do not accept input.

To redirect input, use the < (less-than symbol), as the following example
shows:

$ WC <file3
3

$
27 129

The wc (word count) command counts the number of lines, words, and bytes
in the named file. So file3 contains 3 lines, 2 7 words, and 12 9 bytes. If you
do not supply an argument, the wc command reads its input from the
keyboard.

OSF/1 User's Guide 6-3

General User Tasks

6-4

In this example, however, input for we comes from the file named file3.

Note that in the preceding example, you could have entered the following,
and displayed the same output:

WC file

This is because most OSF/1 commands allow the input file to be specified
without the < symbol.

However, there are a few commands like mail that require the use of the <
symbol for special functions. For example, note the following command:

mail juan <report

This command mails to the user juan the file report. For more information
about mail, see Appendix D.

Redirecting Output-The> and>> Symbols

All OSF/1 shells allow you redirect the standard output of a process from
the screen (the default) to a file. As a result, you can store the text generated
by a command into a new or existing file.

To send output to a file, use either the > (greater-than symbol) or the >>
symbol.

The > symbol causes the shell to do the following:

• Replace the contents of the file with the output of the command, if the
file exists

1 • Create the file, if the file does not exist

The>> symbol adds (appends) the output of the command to the end of a
file that exists. If you use the >> symbol to write output to a file that does
not exist, the shell creates it.

In the next example, the output of ls goes to the file named file:

$ Is >file
$

Using Processes

If the file already exists, the shell replaces its contents with the output of ls.
If file does not exist, the shell creates it.

In the following example, the shell adds the output of ls to the end of the file
named file:

$ ls >>file
$

If file does not exist, the shell creates it.

In addition to their standard output, processes often produce error or status
messages known as diagnostic output. For information about redirecting
diagnostic output, see the following section.

Redirecting Standard Error to a File

When a command executes successfully, it displays the results on the
standard output. When a command executes unsuccessfully, it displays error
messages on the default standard error file, the screen. However, the shell
allows you to redirect the standard error of a process from the screen to a
file.

Redirection symbols and syntax vary among OSF/1 shells. The following
sections describe standard error redirection for the Bourne, Korn, and C
shells.

Bourne and Korn Shell Error Redirection

The general format for Bourne and Korn shell standard error redirection is
the following:

command 2> errorfile

The command entry is an OSF/1 command. The errorfile entry is the name
of the file to which the process writes the standard error. The 2> is a file
descriptor digit combined with the output redirection symbol. The file
descriptor digit tells the shell what standard file to access so that its contents

OSF/1 User's Guide 6-5

General User Tasks

6-6

may be redirected. The file descriptor digit 2 indicates that the standard
error file is being redirected.

In fact, for the Bourne and Korn shells, a file descriptor digit is associated
with each of the files a command ordinarily uses:

• File descriptor 0 (same as<) specifies standard input (the keyboard).

• File descriptor 1 (same as>) specifies standard output (the screen).

• File descriptor 2 specifies standard error (screen).

In the following example, an error is redirected to the file error when the ls
command attempts to display the nonexistent file, reportx. The contents of
file error are then displayed:

$ ls reportx 2> error
$ cat error
reportx not found
$

Although only standard error is redirected to a file in the preceding example,
typically you would redirect both standard error and standard output. See
''Redirecting Both Standard Error and Standard Output'' for more
information.

For many commands, the difference between standard output and standard
error is difficult to see. For instance, if you use the ls command to display a
nonexistent file, an error message displays on the screen. If you redirect the
error message to a file as in the previous example, the output is identical.

C Shell Error Redirection

The general format for C shell standard error redirection is the following:

(command> out.file) >&errorfile

The command entry is an OSF/1 command. The out.file entry is the name of
the file to which the process writes the standard output. The &> symbol
redirects the standard error to a file. The errorfile entry is the name of the
file to which the process writes the standard error. Note that in this
command format, the parentheses are mandatory.

Using Processes

Redirecting Both Standard Error and Standard Output

In the preceding sections, you learned how to redirect standard output and
standard error separately. Usually, however, you would redirect both
standard output and standard error at the same time. Standard output and
standard error can be written to different files or to the same file.

For the Bourne and Korn shells, the general format for redirecting both
standard output and standard error to different files is the following:

command> out.file 2>errorfile

The command entry is an OSF/1 command. The out.file entry is the file to
which the process writes the standard output. The 2> symbol redirects the
error output. The error.file entry is the file where the process writes the
standard error.

For the C shell, the general format for redirecting both standard output and
standard error to the same file is the following:

(command> out.file) >&errorfile

Note that in this command format, the parentheses are mandatory. See "C
Shell Error Redirection'' for more information.

For the Bourne and Korn shells, the general format for redirecting both
standard output and standard error to the same file is the following:

command 1> out.file 2>&1

The command entry is an OSF/1 command. The 1> symbol redirects the
standard output. The out.file entry is the file to which the process writes the
standard output. The 2>&1 symbol tells the shell to write the standard error
(file descriptor 2) in the file associated with the standard output (>&l),
out.file.

OSF/1 User's Guide 6-7

General User Tasks

For the C shell, the general format for redirecting both standard output and
standard error to the same file is the following:

command >& outfile

The command entry is an OSF/1 command. The outfile entry is the file to
which the process writes the standard output. The >& symbol tells the shell
to write the standard output and standard error to the same file specified by
outfile.

Running Several Processes Simultaneously

The OSF/1 operating system can run a number of different processes at the
same time. This capability makes it a multitasking operating system, which
means that the processes of several users can run at the same time.

These different processes can be from one or multiple users. As a result,
you do not have to enter commands one at a time at the shell prompt.
Instead, you can run both foreground and background processes
simultaneously. The following sections describe both foreground and
background processes.

Running Foreground Processes

6-8

Normally, when you enter a command on the command line, you wait for
the results to display on your screen. Commands entered singly at the shell
prompt are called foreground processes.

Most commands take a short time to execute-perhaps a second or two.
However, some commands require longer execution times. If a long­
duration command runs as a foreground process, you cannot execute others
commands until the current one finishes. As a result, you may wish to run a
long-duration command as a background process. The following section
describes background processes.

Using Processes

Running Background Processes

Generally, background processes are most useful with commands that take a
long time to run. Instead of tying up your workstation entering a long­
duration command as a foreground process, you can execute a command as
a background process. You can then continue with other work in the
foreground.

To run a background process, you end the command with & (an ampersand).
Once a process is running in the background, you can perform additional
tasks by entering other commands at your workstation.

After you create a background process, the following takes place:

• The Process Identification Number (PID) is displayed. The OSF/l
operating system creates and assigns PIDs so that all processes currently
running on the system can be tracked. (In the Korn or the C shell, job
numbers are assigned as well.)

• The prompt returns, so that you can enter another command.

• In the C shell, a message is displayed when the background process is
complete.

When you create a background process, note its PID number. The PID
number helps you to monitor or terminate the process. See ''Monitoring and
Terminating Processes'' for more information.

Because background processes increase the total amount of work the system
is doing, they may also slow down the rest of the system. This may or may
not be a problem, depending upon how much the system slows and the
nature of the other work you or others do while background processes run.

Most processes direct their output to standard output, even when they run in
the background. Unless redirected, standard output goes to your workstation.
Because the output from a background process may interfere with your other
work on the system, it is usually good practice to redirect the output of a
background process to a file or to a printer. Then you can look at the output
whenever you are ready. For more information about redirecting output, see
the examples later in this chapter as well as ''Redirecting Input and
Output."

OSF/1 User's Guide 6-9

General User Tasks

6-10

The examples in the rest of this chapter use a command that takes more than
a few seconds to run:

find I -type f -print

This command displays the pathnames for all files on your system. You do
not need to study the find command in order to complete this chapter-it is
used here simply to demonstrate how to work with processes. However, if
you want to learn more about the find command, see Chapter 9, "Useful
Productivity Tools'' and the OSF/l Command Reference.

In the following example, the find command runs in the background (&) and
redirects its output to a file named dir.paths (with the> operator):

$ find I -type f -print >dir.paths &
24

$

When the background process starts, the system assigns it a PID number,
displays it (2 4 in this example), and then prompts you for another
command. (Your process number probably will be different from the one
shown in this and following examples.)

If you use the Korn or C shell, job numbers are assigned as well. In the C
shell, the preceding example looks like this:

% find I -type f -print >dir.paths &
[1 J 24
%

Note that the job number [1 J is displayed to the left of the PID number.

You can then check the status of the process with the ps (process status) or
the jobs command (Korn and C shell). You can also terminate a process
with the kill command. See the following section for more information on
the these commands.

Using Processes

In the C shell, when the background process is completed, a message is
displayed as in the following:

[1] 24 Done find I -type f -print >dir.paths

The completion message displays the job number and the PID, the status
Done, and the command executed.

Monitoring and Terminating Processes

Use the ps (process status) command to find out which processes are
running, and to display information about those processes. In the Korn and
C shells, you also can use the jobs command to monitor background
processes.

If you need to stop a process before it is finished, use the kill command.

The following sections describe how to monitor and terminate processes.

Checking Process Status

The ps command allows you to monitor the status of all active processes,
both foreground and background. In the Korn and C shell, you also can use
the jobs command to monitor background processes only. The following
sections describe the ps and the jobs command.

The ps Command

The ps command has the following form:

ps

OSF/1 User's Guide 6-11

General User Tasks

6-12

In the following example, the ps command displays the status of all
processes associated with your workstation:

$ ps
PID TTY TIME COMMAND

98 console 0:02 sh
113 console 0:01 ps

81 console 0:00 qdaemon
$

You interpret these entries as follows:

PID

TTY

TIME

COMMAND

Process identification. The system assigns a process
identification number (PID number) to each process when
that process starts. There is no relationship between a
process and a particular PID number; that is, if you start
the same process several times, it will have a different PID
number each time.

Workstation or terminal designation. On a system with
more than one workstation, this field tells you which
workstation started the process. On a system with only one
workstation, this field can contain the designation
console or the designation for one or more virtual
terminals.

Time devoted to this process by the computer is displayed
in minutes and seconds as of when you enter ps.

The name of the command (or program) that started the
process. In this example, sh is the shell program, ps is the
process status command that displayed this information,
and qdaemon is a program that lets you send data to the
printer.

You can also check the status of a particular process by using the -p flag and
the PID number with the ps command. The general format for checking the
status of a particular process is the following:

ps -pP!Dnumber

The ps command also displays the status of background processes. If there
are any background processes running, they will be displayed along with the
foreground processes.

Using Processes

The following example shows how to start a find background process and
then check its status:

$ find/ -type f -print >dir.paths &
25
$ ps -p25
PID TTY TIME COMMAND

25 console 0:40 find
$

You can check background process status as often as you like while the
process runs. In the following example, the ps command displays the status
of the preceding find process five times:

$ ps -p25
PID TTY TIME COMMAND

25 console 0:18 find
$ ps -p25
PID TTY TIME COMMAND

25 console 0:29 find
$ ps -p25
PID TTY TIME COMMAND

25 console 0:49 find
$ ps-p25
PID TTY TIME COMMAND

25 console 0:58 find
$ ps -p25
PID TTY TIME COMMAND

25 console 1:02 find
$ ps-p25
PID TTY TIME COMMAND
$

Notice that the sixth ps command returns no status information because the
find process ended before the last ps command was entered.

Generally, the simple ps command described here tells you all you need to
know about processes. However, you can control the type of information
that the ps command displays by using more of its flags. One of the most
useful ps flags is -e, which causes ps to return information about all
processes, not just those associated with your workstation. For an
explanation of all ps command flags, see the OSF/l Command Reference.

OSF/1 User's Guide 6-13

General User Tasks

The jobs Command

The Korn shell and the C shell display both a job and a PID when a
background process is created. The jobs command reports the status of all
background processes only, based upon the job number.

The jobs command has the following form:

jobs

Adding the -1 flag displays both the job number and the PID.

The following example shows how to start a find process and then check its
status in the C shell with the jobs -I command:

% find I -type f -print >dir.paths &
[2 J 2 6
% jobs -I
[2] +26 Running find I -type f -print >dir.paths &
%

The status message displays both the job ([2]) and the PID number (2 6),
the status Running, and the command executed.

Canceling a Foreground Process (Ctrl-c)

6-14

To cancel a foreground process (stop an executing command), press
<Ctrl-c>. The command stops executing, and the system displays the shell
prompt. Note that canceling a foreground process is the same as stopping
command execution (described in Chapter 1).

Most simple OSF/l operating system commands are not good examples for
demonstrating how to cancel a process-they run so quickly that they finish
before you have time to cancel them. However, the following find command
runs long enough for you to cancel it (after the process runs for a few
seconds, you can cancel it by pressing <Ctrllc>):

$ find I -type f -print
/usr/lib/acct/acctcms
/usr/lib/acct/acctconl

Using Processes

/usr/lib/acct/acctcon2
/usr/lib/acct/acctdisk
/usr/lib/acct/acctmerg
/usr/lib/acct/accton
/usr/lib/acct/acctprcl
/usr/lib/acct/acctprc2
/usr/lib/acct/acctwtmp
/usr/lib/acct/chargefee
/usr/lib/acct/ckpacct
/usr/lib/acct/dodisk
<Ctrl-c>
$

The system returns the shell prompt to the screen. Now you can enter
another command.

Canceling a Background Process (kill)

If you decide, after starting a background process, that you do not want the
process to finish, you can cancel the process with the kill command. Before
you can cancel a background process, however, you must know its PID
number.

If you have forgotten the PID number of that process, you can use the ps
command to list the PID numbers of all processes. Or if you are a C or Korn
Shell user, it is more efficient to use the jobs command to list background
processes only.

The general format for terminating a particular process is the following:

kill P/Dnumber

Note: If you wish to end all the processes you have started since
login, use the kill 0 command. You do not have to know the
PID numbers to use kill 0. Because this command deletes all
of your processes, use this command with care.

OSF/1 User's Guide 6-15

General User Tasks

6-16

The following example shows how to start another find process, check its
status, and then terminate it:

$ find I -type f -print >dir.paths &
38
$ ps
PID TTY TIME COMMAND

20 console 0: 11 sh
38 console 0:10 find
16 console 0:01 qdaemon
39 console 0:03 ps

$ kill 38
$ ps
38 Terminated
PID TTY TIME COMMAND

20 console 0: 11 sh
16 console 0:01 qdaemon
41 console 0:03 ps

$

The command kill 38 stops the background find process, and the second ps
command returns no status information about PID number 3 8. The system
does not display the termination message until you enter your next
command.

Note that in this example, kill 38 and kill 0 have the same effect because
only one process was started from this workstation.

In the C shell, the kill command has the following format:

kill %jobnumber

The following example uses the C shell to start another find process, to
check its status with the jobs command, and then to terminate it:

% find I -type f -print >dir.paths &
[3] 40
% jobs -I
[3] +40 Running find I -type f -print >dir.paths &
% kill %3
% jobs -I
[3] +Terminated find I -type f -print > dir.paths
%

Using Processes

Suspending and Resuming Processes (C Shell Only)

Stopping a process and resuming it can be helpful when you have a long­
duration process absorbing system resources, and you need to do something
quickly.

Rather than waiting for process completion, you can stop the process
temporarily (suspend it), perform your more critical task, and then resume
the process. Suspending a process is available for C shell users only.

To suspend a process, press <Ctrl-z>. A message will display listing the job
number, the status Suspended, and the command executed.

Once you are ready to resume the process, enter:

%n

To resume the process in the background, instead, enter:

%n&

The n entry is the number of the stopped job.

The following example starts a find process, suspends it, checks its status,
resumes it, and then terminates it:

% find I -type f -print >dir.paths &
[4 J 41
% jobs -I
[4] +41 Running find I -type f -print >dir.paths &
% <Ctrl-z>
Suspended
% jobs -I
[4] +Stopped find I -type f -print > dir.paths
% %4&
[4] find I -type f -print >dir.paths &
% kill %4
[4] +Terminated find I -type f -print > dir.paths
%

OSF/1 User's Guide 6-17

General User Tasks

Once a process is suspended, you may also resume it by entering the fg
command. Or if a currently running process is taking too long to run and is
tying up your keyboard, you can use the bg command to place the process in
the background and enter other commands.

The following example starts a find process, suspends it, puts the process in
the background, copies a file, and then resumes the process in the
foreground:

% find/ -type f -print >dir.paths
Ctrl-z
Suspended
% bg
[5] find I -type f -print > dir.paths &
% cp salaryl salary2
% fg
find I -type f -print > dir.paths
%

Displaying Information About Users and Their
Processes

6-18

The OSF/1 operating system provides the following commands that can tell
you who is using the system and what they are doing:

• who: Displays currently logged in users

• w: Displays currently logged in users and what they are currently
running on their workstations

• ps -au: Displays currently logged in users and information about
processes they are running

The who command allows you to determine who is logged into the system.
It may be especially useful, for example, when you wish to send a message
and want to know whether the person is currently available.

Using Processes

In the following example, all currently logged in users are displayed:

$ who
juan ttyOl Jan 15 08:33
chang tty05 Jan 15 08:45
larry tty07 Jan 15 08:55
tony tty09 Jan 15 07:53
lucy tty02 Jan 15 11 :24 (boston)
$

Note that the who command lists the username of each user on the system,
the workstation being used, and when the person logged in. In addition, if a
user is logged in from a remote system, the name of the system is listed (in
this case, boston). For example, lucy logged in remotely from the
system boston on Jan 15 at 11: 24.

The who -u command gives all the information of the who command, and
also displays the following information: the PID of each user, and the
number of hours and minutes since there was activity at a workstation.
Activity for less than a minute is indicated by a dot(.).

In the following example, all currently logged in users are displayed:

$ who-u
juan ttyOl Jan 15 08:33 01:02 50
chang tty05 Jan 15 08:45 52
larry tty07 Jan 15 08:55 58
tony tty09 Jan 15 07:53 01:20 60
lucy tty02 Jan 15 11 :24 65 (boston)
$

Note that in the preceding example, j uan and tony have been inactive for
over an hour, while chang, larry, and lucy have been inactive for less
than a minute.

Now that you know how to find out who is active on your system, you may
wish to find out what command each person is currently executing. The w
command, displays what command is currently running at each user's
workstation.

OSF/1 User's Guide 6-19

General User Tasks

$w
11: 02am
User
juan
chang
larry
tony
lucy
$

6-20

In the following example, all users (the User column) and their current
commands (the what column) are displayed:

up 23 days, 2:40, 5 users, load average: 0.32, 0.20, 0.00
tty login@ idle JCPU PCPU what
ttyOl 8:33am 12 54 14 -csh
tty05 8:45am 6:20 26 mail
tty07 8:55 1:58 8 -csh
tty09 7:53 3:10 22 4 mail
tty02 11 :24 1:40 18 4 -csh

In addition, the w command also displays the following information:

• The tty column: user's workstation

• The login@ column: user's login time

• The idle column: amount of time since the user entered a command

• The JCPU column: total CPU time used during the current login session

• The PCPU column: CPU time used by the command that is currently
executing

On certain occasions, you may wish to have a detailed listing of current
processes (both foreground and background) and the users who are running
them. To get such a listing, use the ps -au command. In the following
example, five users and their active processes are displayed:

$ ps-au
USER PID %CPU %MEM sz RSS TT STAT TIME COMMAND
juan 26300 16.5 0.8 4.41 327 q3 R 0:02 ps -au
chang 25821 7.0 0.2 149 64 q4 R 0:12 mail -n
larry 25121 6.1 0.2 107 83 s2 R 26:25 tip modem
tony 11240 4.5 0.6 741 225 p2 R 1:57 emacs
lucy 26287 0.5 0.1 61 28 rl s 0:00 more
$

The most important fields for the general user are the USER, PID, TIME,
and COMMAND fields. For information on the remaining fields, see the OSF/1
Command Reference.

Chapter 7

OSF/1 Shell Overview

This chapter introduces you to the OSF/l shells. After completing this
chapter, you will be able to do the following:

• Understand the purpose and general features of the Bourne, C, and Korn
shells

• Change your shell

• Use command entry aids common to all shells

• Understand your shell environment as well as the role of login scripts,
environment variables, and shell variables

• Set and clear environment and shell variables

• Understand how the shell finds commands on your system

• Write logout scripts

• Write and run shell procedures

This chapter covers features common to all OSF/l shells, with some
descriptions of shell differences. For detailed information on specific
Bourne, C, and Korn shell features, see Chapter 8.

OSF/1 User's Guide 7-1

General User Tasks

Purpose of OSF/1 Shells

The user interfaces to the OSF/l operating system are called shells. The
shells are programs that interpret the commands you enter, run the programs
you have asked for, and send the results to your screen.

The OSF/l operating system provides the following shells:

• The Bourne shell

• The C shell

• The Korn shell

Note: The Korn Shell (ksh) is available only to AT&T1 Tool Chest
Licensees.

You may access any shell, depending upon the security restrictions in effect
on your system as well as upon the licensing restrictions of the Korn shell.
In any case, all shells perform the same basic function: they allow you to
perform work on your system by executing commands.

In addition to interpreting commands, the shell can also be used as a
programming language. This is because you can create a shell procedure
that contains commands and execute the procedure like a program. Shell
procedures provide an easy means of carrying out tedious commands, large
or complicated sequences of commands, and routine or repetitive tasks.

See "Using Shell Procedures" later in this chapter for more information on
shell programming.

1. AT&T is a registered trademark of American Telephone & Telegraph Company in the U.S. and other
countries.

7-2

OSF/1 Shell Overview

Summary of Bourne, C, and Korn Shell Features

The OSF/1 operating system provides the following shells that have both
command execution and programming capabilities:

• The Bourne shell (/usr/bin/sh)

This is a simple shell that is easily used in programming. It is usually
represented by a $ (dollar sign) prompt. This shell does not provide
either the interactive features or the complex programming constructs
(arrays and integer arithmetic) of the C shell or the Korn shell.

The Bourne shell also provides a restricted shell (/usr/bin/Rsh). For
more information, see ''The Restricted Bourne Shell.''

• The C shell (/usr/bin/csh)

This shell is designed for easy interactive use. It is usually represented
by a % (percent sign) system prompt. The C shell provides some features
for entering commands interactively:

- A command history buffer

- Command aliases

- Filename completion

For more information on these features, see "More Information on C
and Korn Shell Features'' later in this chapter.

• The Korn shell (/usr/bin/ksh)

This shell combines the ease of use of the C shell and the ease of
programming of the Bourne shell. The system prompt is usually a $
(dollar sign) prompt. The Korn shell provides these features:

- The interactive features of the C shell

- The simple programming syntax of the Bourne shell

- Inline command editing

- The fastest execution time

- Upward compatibility with the Bourne shell (that is, most Bourne
shell programs will run under the Korn shell)

OSF/1 User's Guide 7-3

General User Tasks

For more information on these features, see ''More Information on C
and Korn shell Features'' later in this chapter.

More Information on C and Korn Shell Features

7-4

Both the C and the Korn shell offer the following interactive features:

• Command history

The command history buffer stores the commands you enter and allows
you to display them at any time. As a result, you can select a previous
command, or parts of previous commands, and then reexecute them.
This feature may save you time because it allows you to reuse long
commands instead of retyping them.

• Command aliases

The command aliases feature allows you to abbreviate long command
lines or rename commands. You do this by creating aliases for long
command lines that you frequently use. For example, assume that you
often need to move to the directory /usr/chang/reports/status. You
could create an alias status that could move you to that directory
whenever you enter status on the command line. In addition, aliases
allow you to make up more descriptive names for OSF/l commands. For
example, you could define an alias named rename for the mv command.

• Filename completion

The filename completion feature saves typing by allowing you to enter a
portion of the filename and the shell will complete it for you. In
addition, you may ask the shell to display a list of filenames that match
the partial name you entered. You may then choose among the displayed
filenames.

The Korn shell provides an inline editing feature that allows you to retrieve
a previously entered command and edit it. To use this feature, you must
know how to use a text editor such as vi or emacs.

For more information on all of these shell features, see Chapter 8.

OSF/1 Shell Overview

The Restricted Bourne Shell

The OSF/l operating system enhances system security by providing
specified users a limited set of functions with a restricted version of the
Bourne shell (/usr/bin/Rsh). When these specified users log into the system,
they are given access to the restricted Bourne shell only. Your system
administrator determines who has access to the restricted Bourne shell.

A restricted shell is useful for installations that require a more controlled
shell environment. As a result, the system administrator can create user
environments that have a limited set of privileges and capabilities. For
example, all users that are guests to your system might be allowed access
under the username guest. When logging in to your system, user guest
would be assigned a restricted shell.

The actions of Rsh are identical to those of sh, except that the following
actions are not allowed:

• Changing directories. The cd command is deactivated.

• Specifying pathnames or command names containing /.

• Setting the value of the PATH or the SHELL variables. For more
information on these variable, see ''Environment Variables'' later in this
chapter.

• Redirecting output (with> and>>).

For more detailed information on Rsh, see the sh entry in the OSF/l
Command Reference. For information on how system administrators create
restricted shells, see your system administrator.

Changing Your Shell

Whenever you log in, you are automatically placed in a shell specified by
your system administrator. However, depending upon the security features
in effect on your system, you can enter commands that will allow you to do
the following:

• Determine which shell you are running

OSF/1 User's Guide 7-5

General User Tasks

• Temporarily change your shell

• Permanently change your shell

The following sections describe these operations.

Determining What Shell You Are Running

To determine what shell you are currently running, enter:

echo $SHELL

The filename of the shell you are running will display.

In the following example, assume that you are running the Bourne shell
(/usr/bin/sh):

$ echo $SHELL
/usr/bin/sh
$

Table 7-1 lists the filename that displays for each shell as well as the default
system prompt (your system prompt may vary).

Table 7-1. Shell Filenames and Default Prompts

Shell Shell Filename Default Prompt

Bourne /usr/bin/sh $

Restricted Bourne /usr/bin/Rsh $

c /usr/bin/csh %

Korn /usr/bin/ksh $

7-6

OSF/1 Shell Overview

Temporarily Changing Your Shell

You may experiment with using other shells if the security features on your
system allow it.

To temporarily change your shell, enter the following command:

shellname

where shellname is the filename of the shell. See Table 7-1 for valid shell
filenames to enter on the command line. Once the shell is invoked, the
correct shell prompt is displayed.

Once you are done using the new shell, you can return to your default shell
by entering exit or by pressing <Ctrl-d>.

For example, assume that the Korn shell is your default shell. To change to
the C shell and then back to the Korn shell, perform the following steps:

$ /usr/bin/csh
% exit
$

Note: If you are using the Bourne Restricted Shell, you cannot
change to another shell.

Permanently Changing Your Shell

You may permanently change your default shell if the security features on
your system allow it. To change your default shell, use the chsh command.

Assuming that your current shell is the C shell, to change your default shell,
enter:

% chsh
Changing login shell for u&~
Old shell: /usr/bin/csh
New shell:

OSF/1 User's Guide 7-7

General User Tasks

Enter the name of the new shell. See Table 7-1 for valid shell names to enter
on the command line.

Note that after entering the chsh command, you must log out and log in
again for the change to take effect.

Command Entry Aids

The following features of all OSF/1 shells help you do your work:

• The ability to enter multiple commands and command lists

• Pipes and filters

• The ability to group commands

• Quoting

The following sections describe these features.

Using Multiple Commands and Command Lists

7-8

The shell usually takes the first word on a command line as the name of a
command, and then takes any other words as arguments to that command.
In other words, the shell usually considers each command line as a single
command. However, you can use the operators in Table 7-2 to execute
multiple commands on a single command line.

OSF/1 Shell Overview

Table 7-2. Multiple Command Operators

Operator Action Example

; (semicolon) Causes commands to run in sequence. cmdt; cmd2

&&

II

I

Runs the next command if the current cmd1&& cmd2
command succeeds.

Runs the next command if the current cmd1 II cmd2
command fails.

Creates a pipeline. Isl we

The following sections describe running commands in sequence(;), running
commands conditionally (II), and using pipelines (I).

Running Commands in Sequence with a Semicolon(;)

You can type more than one command on a line if you separate commands
with the ; (semicolon).

In the following example, the shell runs ls and waits for it to finish. When ls
is finished, the shell runs who, and so on through the last command:

$ Is ; who ; date ; pwd
change file3 newfile
amy console/1 Jun 4 14:41
Tue Jun 4 14:42:51 CDT 1991
/u/amy
$

Note that if any one command fails, the others still execute successfully.

To make the command line easier to read, you can separate commands from
the ; (semicolon) with blanks or tabs. The shell ignores blanks and tabs used
in this way.

OSF/1 User's Guide 7-9

General User Tasks

7-10

Running Commands Conditionally-The II and && Operators

When you connect commands with the && or II operators, the shell runs the
first command and then runs the remaining commands only under the
following conditions:

&& The shell runs the next command only if the current command
completes (a command indicates successful completion when it
returns a value of zero).

II The shell runs the next command only if the current command does
not complete.

In the following example, the shell runs the next command if the current
command has executed successfully:

$ cmdl && cmd2 && cmd3 && cmd4 && cmd5

If cmdl succeeds, the shell runs cmd2. If cmd2 succeeds, the shell runs
cmd3, and on through the series until a command fails or the last command
ends. (If any command fails, the shell stops executing the command line).

In the following example, the shell runs the next command only if the
current command has failed:

$ cmdl II cmd2
$

If cmdl fails, the shell runs cmd2. If cmdl succeeds, the shell stops
executing the command line.

For example, suppose that the command mysort is a sorting program that
creates a temporary file (mysort.tmp) in the course of its sorting process.
When the sorting program finishes successfully, it cleans up after itself,
deleting the temporary file. If, on the other hand, the program fails, it may
neglect to clean up. To ensure deletion of mysort.tmp, use the following
command line:

$ mysort II rm mysort.tmp
$

The second command executes only if the first fails.

OSF/1 Shell Overview

Using Pipes and Filters

A pipe is a one-way connection between two related commands. One
command writes its output to the pipe, and the other process reads its input
from the pipe. When two or more commands are connected by the I (pipe)
operator, they form a pipeline.

Figure 7-1 represents the flow of input and output through a pipeline. The
output of the first command (cmdl) is the input for the second command
(cmd2); the output of the second command is the input for the third
command (cmd3).

Figure 7-1. Flow Through a Pipeline

cmdl -----;;..
cmd2
(filter)

cmd3
(filter)

A filter is a command that reads its standard input, transforms that input,
and then writes the transformed input to standard output. Filters are
typically used as intermediate commands in pipelines-that is, they are
connected by a I (pipe) operator. For example,

ls-RI pg

causes the ls command to list recursively the contents of all directories from
the current directory to the bottom of the hierarchy, and then to display the
results. The pg command is the filter because it transforms the output from
the ls -R command and displays it one screenful at a time.

I

Certain commands that are not filtets have a flag that causes them to act like
filters. For example, the ditf (compare files) command ordinarily compares
two files and writes their differences to standard output. The usual format
for ditf follows:

diff file I file2

However, if you use the - (dash) flag in place of one of the filenames, ditf
reads standard input and compares it to the named file.

OSF/1 User's Guide 7-11

General User Tasks

7-12

In the following pipeline, ls writes the contents of the current directory to
standard output. The diff command compares the output of ls with the
contents of a file named dirfile, and writes the differences to standard
output one page at a time (with the pg command):

ls I diff - dirfile I pg

In the following example, another kind of filter program (grep) is used:

$ ls -1 I grep r-x I wc -1
12

$

In this example, the following takes place:

• The ls -I command lists in long format the contents of the current
directory.

• The output of ls -I becomes the standard input to grep r-x, a filter that
searches for the files in its standard input for patterns with permissions
of r-x, and writes all lines that contain the pattern to its standard output.

• The standard output of grep r-x becomes the standard input to wc -1,
which displays the number of files matching the grep criteria in the
standard input.

To get the same results without using a pipeline, you would have to do the
following:

1. Direct the output of ls -I /user to a file. For example:

ls -1 >filel

2. Use filel as input for grep r-x and redirect the output of grep to
another file. For example:

grep r-x filel >file2

3. Use the output file of grep as input for wc -1. For example:

WC -1 file2

As the preceding cumbersome procedure demonstrates, using a pipeline is a
much easier way to perform the same operations.

OSF/1 Shell Overview

Each command in a pipeline runs as a separate process. Pipelines operate
in one direction only (left to right), and all processes in a pipeline can run at
the same time. A process pauses when it has no input to read or when the
pipe to the next process is full.

Grouping Commands

The shell provides two ways to group commands, as shown in Table 7-3.

Table 7-3. Command Grouping Symbols

Command Grouping Symbol Action

{) (parentheses) The shell creates a subshell
to run the grouped
commands as a separate
process.

{}(braces) The shell runs the grouped
commands as a unit. Braces
can only be used in the Korn
shell.

The following sections describe the command grouping symbols of Table
7 -3 in greater detail.

Using Parentheses ()

In the following command grouping, the shell runs the commands enclosed
in ()(parentheses) as a separate process:

(cd reports;ls);ls

The shell creates a subshell (a separate shell program) that moves to
directory reports and lists the files in that directory. After the subshell
process is complete, the shell lists the files in the current directory (Is).

OSF/1 User's Guide 7-13

General User Tasks

If this command were written without the (), the original shell would move
to directory reports, list the files in that directory, and then list the files in
that directory again. There would be no subshell and no separate process for
the cd reports;ls command.

The shell recognizes the () wherever they occur in the command line. To
use parentheses literally (that is, without their command-grouping action),
quote them by placing a\ (backslash) immediately before either the ((open
parenthesis) or the) (close parenthesis), for example,\(.

For more information on quoting in the shell, see ''Quoting'' later in this
chapter.

Using Braces { }

Quoting

7-14

Using braces { } is valid only in the Korn shell.

When commands are grouped in {} (braces), the shell executes them
without creating a subshell. In the following example, the shell runs date,
writing its output to the file today.grp, and then runs who, writing its output
to today.grp:

$ {date; who }>today.grp
$

If the commands were not grouped together with braces, the shell would
write the output of date to the display and the output of who to the file.

The shell recognizes { } in pipelines and command lists, but only if the left
brace is the first character on a command line.

Reserved characters are characters such as < > I& ? and * that have a
special meaning to the shell. See Chapter 8 for lists of reserved characters
for each OSF/1 shell.

OSF/1 Shell Overview

To use a reserved character literally (that is, without its special meaning),
quote it with one of the three shell quoting conventions, as shown in Table
7-4.

Table 7-4. Shell Quoting Conventions

Quoting Convention Action

\ (Backslash) Quotes a single character.

'' (Single quotes) Quotes a string of characters
(except the single quotation marks themselves).

II II (Double quotes) Quotes a string of characters
(except$, ', and\).

The following sections describe the quoting conventions of Table 7-4 in
greater detail.

Using the Backslash

To quote a single character, place a \ (backslash) immediately before that
character, as in the following:

$ echo\?
?

$

This command displays a single ? character.

Using Single Quotes (' ')

When you enclose a string of characters in single quotes, the shell takes
every character in the string (except the 'itself) literally.

OSF/1 User's Guide 7-15

General User Tasks

7-16

Single quotes are useful when you do not wish the shell to interpret:

• Reserved characters such $, ' (grave accent), and \ keep their special
meanings

• Variable names

The following example shows how single quotes are used when you wish to
display a variable name without having it being interpreted by the shell:

$ echo 'The value of $USER is' $USER
The value of $USER is amy
$

The echo ·command displays the variable name $USER when it appears
within single quotes, but interprets the value of $USER when it appears
outside the single quotes.

For information on variable assignments, see "Setting Variables."

Using Double Quotes ('' '')

Double quotes provide a special form of quoting. Within double quotes, the
reserved characters $, ' (grave accent), and \ keep their special meanings.
The shell takes literally all other characters within the double quotes.
Double quotes are most frequently used in variable assignments.

The following example shows how double quotes are used when you wish
to display brackets (normally reserved characters) in a message containing
the value of the shell variable:

echo "<<Current shell is $SHELL>>"
<<Current shell is /usr/bin/csh>>
$

For information on variable assignments, see "Setting Variables."

OSF/1 Shell Overview

The Shell Environment

Whenever you login, your default shell defines and maintains a unique
working environment for you. Your environment defines such
characteristics as your user identity, where you are working on the system,
and what commands you are running.

Your working environment is defined by both environment variables and
shell variables. Your default login shell uses environment variables and
passes them to all processes and subshells that you create. Shell variables
are valid only for your current shell and are not passed to subshells.

The following sections discuss the shell environment, how is is configured,
and how you can tailor it.

The login Program

Whenever you log in, the program login is run. This program actually
begins your login session using data stored in the /etc/passwd file, which
contains one line of information about each system user. The /etc/password
file contains your username, your password (in encrypted form), your home
directory, and your default shell. For more information on the /etc/passwd
file, see ''The /etc/passwd File'' in Chapter 5.

The login program runs after you enter your username at the login:
prompt. It performs the following functions:

• Displays the Pas sword: prompt (if you have a password)

• Verifies the username and password you entered against what is
contained in the /etc/passwd file

• Assigns default values to the shell environment

• Starts running the shell process

• Runs system login scripts and your personal login scripts. See ''Login
Scripts and Your Environment" later in this chapter for more
information.

OSF/1 User's Guide 7-17

General User Tasks

Environment Variables

Your shell environment defines and maintains a unique working
environment for you. Most of the characteristics of your working
environment are defined by environment variables.

Environment variables consist of a name and a value. For example, the
environment variable for your login directory is named HOME, and its
value is defined automatically when you login.

Some environment variables are set by the login program, and some can be
defined in the login script that is appropriate for your shell. For example, if
you use the C shell, environment variables will typically be set in the .cshrc
login script. For more information on login scripts, see ''Login Scripts and
Your Environment'' later in this chapter.

Table 7-5 lists selected environment variables that can be used by all OSF/l
shells. Most of the values of these variables are set during the login
process, and are then passed to each process that you create during your
session.

Table 7-5. Selected Shell Environment Variables

7-18

Environment Variable Description

HOME Specifies the name of your login directory, the
directory that becomes the current directory
upon completion of a login. The cd command
uses the value of HOME as its default value.
The login program sets this variable, and it
cannot be changed by the individual user.

LOG NAME

MAIL

Specifies your login name; for example,
chang.

Specifies the pathname of the file used by the
mail system to detect the arrival of new mail.
The login program sets this variable based
upon your username.

OSF/1 Shell Overview

Environment Variable Description

PATH Specifies the directories and the directory
order that your system uses to search for, find,
and execute commands. This variable is set by
your login scripts.

SHELL Specifies your default shell. This variable is set
by login using the shell specified in your entry
in the /etc/passwd file.

TERM Specifies the type of terminal you are using.
This variable is usually set by your login script.

TZ Specifies the current time zone and difference
from Greenwich mean time. This variable is set
by the system login script.

LANG Specifies the locale of your system, which is
comprised of three parts: language, territory,
and character codeset. The default value is the
C locale, which implies English for language,
U.S. for territory, and ASCII for codeset.
However, your system may specify another
locale; for example, French Canadian. LANG
can be set in a login script. This variable is
one aspect of the internationalization features
of the system. For more information on this
variable and internationalization features, see
Appendix C, Using Internationalization
Features.

LC_COLLATE

OSF/1 User's Guide

Specifies the collating sequence to use when
sorting names and when character ranges
occur in patterns. The default value is the
ASCII collating sequence. LC_COLLATE can
be set in a login script. This variable is one
aspect of the internationalization features of
the system. For more information on this
variable and internationalization features, see
Appendix C, Using Internationalization
Features.

7-19

General User Tasks

7-20

Environment Variable Description

LC_CTYPE Specifies the character classification rules for
the current locale that are used in the ctype
functions.. The default value is the
classification for ASCII characters. LC_ TYPE
can be set in a login script. This variable is
one aspect of the internationalization features
of the system. For more information on this
variable and internationalization features, see
Appendix C, Using Internationalization
Features.

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

Specifies the language in which system
messages will appear. In addition, this variable
specifies the strings that indicate "yes" and
"nd' in yes/no prompts. The default value is
American English, but your system may
specify another language. This variable is one
aspect of the internationalization features of
the system. For more information on this
variable and internationalization features, see
Appendix C, Using Internationalization
Features.

Specifies the monetary format for your system.
The default value is the American format for
monetary figures. LC_MONETARY can be set
in a login script. This variable is one aspect of
the internationalization features of the system.
For more information on this variable and
internationalization features, see Appendix C,
Using Internationalization Features.

Specifies the numeric format for your system.
The default value is the American format for
numeric quantities. LC_NUMERIC can be set
in a login script. This variable is one aspect of
the internationalization features of the system.
For more information on this variable and
internationalization features, see Appendix C,

OSF/1 Shell Overview

Environment Variable Description

Using Internationalization Features.

LC_TIME Specifies the date and time format for your
system. The default value is the American
format for dates and times. LC_TIME can be
set in a login script. This variable is one
aspect of the internationalization features of
the system. For more information on this
variable and internationalization features, see
Appendix C, Using Internationalization
Features.

Many of these environment variables can be set during the login process by
the appropriate login script (see "Login Scripts and Your Environment"
later in this chapter). However, you may reset them as well as set those for
which no default values have been provided. See "Setting Variables" in
this chapter for more information.

You may also create your own environment variables. For example, some
systems have more than one mail program available to users. Assume that
mail, mh, and elm are available on your system and that each has its own
pathname. As a result, you could define a variable for the pathname of each
mail program.

For more information about environment variables specific to each OSF/1
shell, see Chapter 8. For a complete list of OSF/1 shell environment
variables, see the sh, csh, and ksh entries in the OSFI 1 Command
Reference.

Shell Variables

Shell variables are valid only for your current shell and are not passed to
subshells. Consequently, they can be used only in the shell in which they
are defined. In other words, they may be thought of as "local variables."

For example, the C and Korn shells allow you to store commands in a
command history buff er so that you can display and reexecute them at any
time. Thus, you can set the history variable (C shell) and the HISTSIZE
variable (Korn shell) to store any number of commands you wish.

OSF/1 User's Guide 7-21

General User Tasks

You may also create your own shell variables. For example, some mail
programs use the pager variable to define the program that displays mail.
Suppose that your mail program is mhrmail. You could define the pager
variable to use the more program to display your mail.

For all information on how to set shell variables, see "Setting Variables"
later in this chapter.

Login Scripts and Your Environment

7-22

A login script is a file that contains commands that set up your user
environment. There are two kinds of login scripts:

• System login scripts for all users of a particular shell.

These scripts create a default environment for all users and are
maintained by your system administrator. The Bourne and Korn shells
use a system login script called /etc/profile. The C shell uses a script
called /etc/csh.login. See Table 7-6 for the pathnames of system login
scripts.

When you log in, the commands in this file are executed first.

• Local login scripts in your default login directory.

These scripts allow you to tailor your environment, and you maintain
the appropriate file. For example, you could change the default search
path or shell prompt.

The Bourne shell uses a file called .profile, which sets both environment
and shell variables. The Korn shell uses two login scripts: .profile,
which sets environment variables, and .kshrc, which sets shell
variables. The C shell also uses two login scripts: .login, which sets
environment variables, and .cshrc, which sets shell variables.

The commands in this file are executed after the system login script.

Creating your own login script is not mandatory as the system login
script for your shell is sufficient for most operations. In some
installations, your system administrator may have created a local login
script that you may modify by using any editor. See Table 7-6 for the
pathnames of local login scripts.

OSF/1 Shell Overview

When you are new to the system, you may wish to use the default
environment established for you. However, as you become more familiar
with the system, you may wish to create or modify your own login script.

Table 7-6 lists the system login and local login scripts for each OSF/1 shell.
All scripts run whenever you log in to your system. In addition, the login
scripts that end in re run whenever the current shell creates a subshell. For
example, when you enter csh at any shell prompt, the .cshrc file executes
and a C shell subshell is created.

Table 7-6. System and Local Login Scripts

Shell Pathname System Login Script Local Login Script

Bourne /usr/bin/sh /etc/profile .profile

Korn /usr/bin/ksh /etc/profile .profile
.ksh

c /usr/bin/csh /etc/csh.login .cshrc
.login

To verify whether you have any local login scripts in your home directory,
use the ls -a command. This command displays all files that begin with a .
(dot) as well as all other entries.

The following customization features are commonly set in login scripts:

• Terminal characteristics

• Search path and other environment variables

• Shell variables

• Maximum permissions for new files with umask (see Chapter 5)

• Allowing or stopping messages to your workstation

• The trap command (Bourne and Korn shells only)

• Command aliases, history variables (C and Korn shells only)

• Displaying system status information and other messages

OSF/1 User's Guide 7-23

General User Tasks

·• Checking for mail

• Checking for news

It is a good idea to check the contents of your system login script so that
you can avoid duplication in your local login script. For example, if your
system login script checks for news, there is no need to do the same in your
local login script.

See Chapter 8 for specific examples of Bourne, Korn, and C login scripts.

Using Variables

7-24

All OSF/1 shells use environment and shell variables to define user
environment characteristics. As part of the set-up process, your system
administrator has provided default environment and shell variable values in
the appropriate login scipts.

For most users, the default environment and shell variable values are
sufficient. As you become more familiar with the system, however, you may
wish to modify some values. For example, you may wish to reset the
variable that defines your shell prompt so that it is more personalized. Or
you may wish to set a shell variable that specifies a very long directory
pathname so that you can save time keying commands that use the directory
(see examples in "Setting Variables" in the next section). Or you may find
setting variables useful when writing shell procedures. In short, you will
find that you may use variables creatively to enhance your work
environment.

Note that some environment variables may be reset and some are read-only
and cannot be reset. That is, these variables can be used, but not modified.
For more information on this topic, see the appropriate shell entry (sh, csh,
or ksh) in the OSF/1 Command Reference.

To reset environment variables as well as define your own shell variables,
do one of the following:

• Edit the appropriate login script if you want these values set for you
whenever you log in. For more information, see ''Login Scripts and
Your Environment" earlier in this chapter.

OSF/1 Shell Overview

• Set them on the command line if you want these values set only for the
current login session.

At any time, you may reference the value of any variable as well as display
its value. You may also clear the value of any variable. The following
sections describe how to set, reference, display, and clear variable values.

Setting Variables

Bourne and Korn Shell Variables

In the Bourne and Korn shells, you set variables with an assignment
statement. The general format for setting variables is the following:

name=value

The name entry specifies the variable name. The value entry specifies the
value assigned to the variable. Be sure you do not type spaces on the
command line.

For example, you can create a variable called place by assigning it a value
of U. S. A. with the following statement:

$ place='U. S. A.'
$

From then on, you can use the variable place just as you would use its
value.

For a more useful example, assume that you are using the Bourne shell and
that you temporarily wish to personalize your shell prompt. The default
Bourne shell prompt is a $ set by the PSl environment variable. As a result,
to set it to What Shall I Do Next? >,enter:

$ PSl=What Shall I Do Next?>
What Shall I Do Next? >

If you wish to make the shell prompt available to subshells, enter:

export PSl

OSF/1 User's Guide 7-25

General User Tasks

7-26

This What Shall I Do Next? >prompt will be in effect throughout
your session. If you wish to make the new prompt more permanent, enter
the same assignment statement and the export command in your .profile
file. When you export a shell variable, it becomes in effect an environment
variable.

For another example, assume that to save keying time, you wish to define a
variable for a long pathname that you often use. To define the variable
reports for the directory /usr/sales/shoes/women/retail/reports, enter the
following:

reports=/usr/sales/shoes/women/retail/reports

To reference the variable, type a $ before the variable name. For more
information on referencing variables, see ''Referencing Variables
(Parameter Substitution)" later in this chapter.

You can now use the variable reports in any commands you enter during
this session. If you wish to make this variable permanent, enter the same
assignment statement in your .profile file.

C Shell Variables

In the C shell, you set environment variables with the setenv command. The
general format of the setenv command is the following:

setenv name value

The name entry specifies the variable name. The value entry specifies the
value assigned to the variable.

For a good example of setting the PATH environment variable, see "How
the Shell Finds Commands'' later in this chapter.

You set shell variables with the set command. The general format of the set
command is the following:

set name=value

The name entry specifies the variable name. The value entry specifies the
value assigned to the variable.

OSF/1 Shell Overview

For example, assume that you wish to change your prompt. The default C
shell is %. As a result, to set it to Ready? >, enter the following on the
command line:

% set prompt = Ready? >
Ready? >

The Ready? > prompt will be in effect throughout your session. If you
wish to make the new prompt permanent, enter the same command in your
.cshrc file.

Setting Variables in All Shells

To set or reset environment or shell variables in any OSF/1 shell, do one of
the following:

• Edit the appropriate login script if you wish these values set for you
whenever you log in. For more information, see ''Login Scripts and
Your Environment'' earlier in this chapter.

• Set them on the command line if you wish these values set only for the
current login session.

Referencing Variables (Parameter Substitution)

To reference the value of a variable in a command line, enter a $ before the
variable name. The $ causes the shell you are using to substitute the value
of the variable for the variable name. This is known as parameter
substitution.

For example, assume that you have previously defined the variable sales for
the long pathname /user/reports/Ql/march/sales, and that you wish to use
this variable with the cd command. To do so, enter the cd command with
the sales variable:

$ cd $sales
$

OSF/1 User's Guide 7-27

General User Tasks

Then, enter the pwd command to verify that the directory has been
changed:

$ pwd
/user/reports/Ql/rnarch/sales
$

In this example, the shell substitutes the actual pathname of the directory
/user/reports/Ql/march/sales for the variable name sales.

Displaying the Values of Variables

7-28

You can display the value of any variable currently set in your shell.
Variable values can be displayed either singly or as a group.

To display the value of a single variable, use the echo command in the
following general format:

echo $variable

The variable entry specifies the variable for which you wish the value
displayed.

For example, assume that you use the Korn shell and wish to display the
value of the SHELL environment variable. To do so, enter:

$ echo $SHELL
/usr/bin/ksh
$

For the Bourne and Korn shells, to display the value of all currently set
variables, use the set command without any options. For example, the
following example lists the currently set values in the Bourne shell (your
output may vary):

$ set
EDITOR=ernacs
HOME=/users/chang
LOGNAME=chang
MAIL=/usr/rnail/chang

PATH=:/usr/bin:/usr/bin/Xll
PS1=$
SHELL=/usr/bin/sh
TERM=xterm
$

OSF/1 Shell Overview

For the C shell, to display the value of all currently set shell variables, use
the set command without any options. To display the value of all currently
set environment variables, use the setenv command or the printenv
command without any options.

Clearing the Values of Variables

You may remove the value of any current variable. Please note, however,
that the following variables cannot be cleared:

•PATH

• PSl (Bourne and Korn shell)

• PS2 (Bourne and Korn shell)

• MAILCHECK (Bourne and Korn shell)

• IFS (Bourne and Korn shell)

For more information on these variables, see the appropriate shell entry (sh,
csh, or ksh) in the OSF/1 Command Reference.

In the Bourne and Korn shells, you clear both environment and shell
variables with the unset command. The general format for the unset
command is the following:

unset name

The name entry specifies the variable name.

In the C shell, you clear environment variables with the unsetenv
command. The general format of the unsetenv command is the following:

unsetenv name

OSF/1 User's Guide 7-29

General User Tasks

The name entry specifies the variable name.

You clear shell variables with the unset command. The general format of
the unset command is the following:

unset name

The name entry specifies the variable name.

For an example, assume that you use the Korn shell and have created a
variable called place and have assigned it a value of U.S. A .. To clear the
variable, enter the following:

$ unset place
$

For more detailed information about setting and referencing variables, see
the appropriate shell entry (sh, csh, or ksh) in the OSF/1 Command
Reference.

How the Shell Finds Commands

7-30

Every time you enter a command, your shell searches through a list of
directories to find the command. This list of directories is specified by the
PATH environment variable.

At many installations, system administrators specify default PATH
directories for new users. However more experienced users may need to
change these PATH directories.

The PATH variable contains a list of directories to search, separated by
colons. The order in which the directories are listed is the search order that
the shell uses to search for the commands that you enter.

To determine the value of PATH, use the echo command. For example,
assume that you are using the C shell and have entered the following:

% echo $PATH
/usr/bin:/usr/bin/Xll
%

OSF/1 Shell Overview

This output from the echo command (your output may vary) tells you that
the search order of the preceding example is the following:

• The /usr/bin directory is searched first.

• The /usr/bin/Xll directory is searched second.

Typically, PATH is set as an environment variable in the appropriate login
script. In the Bourne and Korn shells, the PATH variable is normally set in
the .profile script. In the C shell, it is normally set in the .login script.

If you wish to change the search path, you can assign a new value to the
PATH variable. For example, assume that you use the Bourne shell and
that have you have decided to use your own versions of some OSF/1
commands. As a result, you wish to add $HOME/usr/bin/ to the search
path. To do so, enter the following on the command line if you wish the
new PATH variable value to be in effect for the current login session:

PATH=$HOME/usr/bin:/usr/bin:/usr/bin/Xll

If you wish this new PATH variable value to be in effect for all future
sessions, modify the PATH variable in your .profile script. When you next
log in, the changes you have made in your .profile script will take effect.

Using Logout Scripts

You can create a logout script that automatically runs every time you end
your session. Just like login scripts, the .logout file must reside in your
home directory.

You can use logout scripts for the following purposes:

• To clear your screen

• To display a logout message

• To run long background processes after you log out

• To run a file cleanup routine

OSF/1 User's Guide 7-31

General User Tasks

To create a logout script, do the following:

1. Create a file called .logout in your home directory with a text editor.

2. Place the commands you wish in the file. See ''A Sample .logout
File'' later in this chapter for ideas.

3. Save the text and exit the editor.

4. Enter the following command to ensure that the .logout file has the
appropriate executable permissions:

chmod +x .logout

Note that using a .logout file is not mandatory. Rather, it is a convenience
that may enhance your work environment.

Logout Scripts and the Shell

7-32

If you are using the C shell, the .logout script executes automatically when
you log out.

If you using the Bourne or the Korn shell and wish to use a logout script,
you must ensure that a special trap is set in your .profile script. A trap is
command sequence that looks for a specified signal from a terminal, and
then runs a specified command or set of commands.

If the following line is not set in your .profile script, you must add it with a
text editor:

trap $HOME/.logout 0

This statement tells your system to run the .logout script whenever it
receives a 0 (zero) signal, which occurs when you log out.

OSF/1 Shell Overview

A Sample .logout File

The following example .logout file does the following:

• Clears the screen

• Displays a logout message that provides the name of your system, your
username, and the logout time.

• Displays a parting message

• Runs a file cleanup routine in the background after you log out

Note that lines beginning with # are comment lines that describe the
commands below them.

Clear the screen
clear

Display the name of your system, your username,
and the time and date that you logged out
echo 'hostname' 'whoami' logged out on 'date'

Runs the find command in the background. This command
searches your login directory hierarchy for all
temporary files that have not been accessed in
7 days, and then deletes them.
find - -name '*.tmp' -atime +7 -exec rm {} \; &

A parting message
echo "Good Day. Come Back Soon"

Using Shell Procedures

In addition to running commands from the command line, the shell can read
and run commands contained in a file. Such a file is called a shell procedure
or shell script.

OSF/1 User's Guide 7-33

General User Tasks

Shell procedures are easy to develop, and using them can help you work
more efficiently. For example, you may find shell procedures useful because
you can place frequently used commands in one file, and then execute them
by entering only the name of the procedure. As a result, they are useful for
doing repetitious tasks that would normally require entering a number of
commands on the command line.

Last, because shell procedures are text files that do not have to be compiled,
they are easy to create and to maintain.

Note that each shell has its own native programming language. The
following are some programming language features that apply to all shells:

• Storing values in variables

• Testing for predefined conditions

• Executing commands repeatedly

• Passing arguments to a program

For more information on specific programming features of your shell, see
the OSF/l Command Reference.

Writing and Running Shell Procedures

7-34

To write and run a shell procedure, do the following:

1. Create a file of the commands you need to accomplish a task. Create
this file as you would any text file-with vi or another editing
program. The file can contain any system command (described in the
OSF/l Command Reference) or shell command (described under sh,
csh, or ksh in the OSF/l Command Reference).

2. Use the chmod +x command to give the file x (execute) status. For
example, the command chmod g+x reserve gives execute status to
the file named reserve for any user in your group (g). See Chapter 5
for information on using the chmod command.

3. Run the procedure by simply entering its name. Enter the pathname if
the procedure file is not in your current directory.

OSF/1 Shell Overview

The following is a simple shell procedure named lss that sorts Is -1
command output by file size.

! /usr/bin/csh
lss: list, sorting by size
ls -1 I sort -n +4

Table 7-7 describes each line in lss.

Table 7-7. Description of Example Shell Script

Shell Command Description

#! /usr/bin/csh Specifies the shell under which
the procedure should run. See
"Specifying a Run Shell" for
more information.

#lss: list, sorting by size Comment line describing the
purpose of the procedure.

Is -1 I sort -n +4 The commands of the shell
procedure itself. This
procedure lists the files in a
directory (Is -1). Output from the
Is -I command is then piped to
the sort command (I sort -n
+4). This command skips over
the first four columns of the Is -1
output, sorts the fifth column
(the file size column)
numerically, and writes the lines
to the standard output.

OSF/1 User's Guide 7-35

General User Tasks

To run the lss procedure, simply enter lss. Sample system output looks
similar to the following:

$ lss
-rw-rw-rw- 1 larry system 65 Mar 13 14:46 file3
-rw-rw-rw- 1 larry system 75 Mar 13 14:45 file2
-rw-rw-rw- 1 larry system 101 Mar 13 14:44 filel

Note: When you run a shell procedure, your current shell creates or
spawns a subshell. A subshell is a new shell your current shell
creates to run a program. Thus, any command the shell
procedure executes (for example, cd) leaves the invoking
shell unaffected.

Specifying a Run Shell

7-36

At times, you may wish to specify the shell under which a shell procedure
should run. This is because of possible syntactic differences between the
shells but is especially true of differences between the C shell and the other
shells.

By default, the OSF/1 operating system assumes that any shell procedure
you run should be executed in the same shell as your login shell. For
example, if your login shell is the Korn shell, by default your shell
procedures will run in that same shell.

The ability to override the default is very useful for shell procedures that
many users run because it ensures that the procedure executes in the correct
shell, regardless of the user's login shell. To change this default run shell,
include the following command as the first line of the shell procedure:

#! shell_path

The shell_path entry specifies the full pathname of shell under which you
want the procedure to run.

For example, if you wish a shell procedure to run under the C shell, the first
line of the procedure should be the following:

#! /usr/bin/csh

Chapter 8

OSF/1 Shell Features

This chapter functions as a reference source for C, Bourne, and Korn shell
features. Unlike other chapters of this guide that present conceptual and/or
tutorial information, the purpose of this chapter is to provide very brief
reference information about each shell.

To get the most out this chapter, you should already be familiar with the
introductory shell overview information in Chapter 7.

After completing this chapter, you should be able to do the following:

• Understand the main differences between OSF/1 shells

• Understand specific features of each OSF/1 shell

• Understand the specifics of login scripts for each shell

OSF/1 User's Guide 8-1

General User Tasks

Comparison of C, Bourne, and Korn Shell Features

Table 8-1 compares C, Bourne, and Korn shell selected features.

Table 8-1 . C, Bourne, and Korn Shell Features

Feature Description c Bourne Korn

Shell programming A programming language Yes Yes Yes
that includes features such
as loops, condition
statements, and variables.

Signal trapping Mechanisms for trapping Yes Yes Yes
interruptions and other
signals sent by the OSF/1
operating system.

Restricted shells A security feature that No Yes No
provides a controlled shell
environment with limited
features.

Command aliases A feature that allows you Yes No Yes
to abbreviate long
command lines or to
rename commands.

Command history A feature that stores Yes No Yes
commands and allows you
to edit and reuse them.

Filename completion A feature that allows you Yes No Yes
to enter a portion of a
filename and the system
automatically completes it
or suggests a list of
possible choices.

8-2

OSF/1 Shell Features

Feature Description c Bourne Korn

Command line editing A feature that allows you No No Yes
to edit a current or
previously entered
command line.

Array The ability to group data Yes No Yes
and call it by a name.

Integer arithmetic The ability to perform Yes No Yes
arithmetic functions within
the shell.

Job control Facilities for monitoring Yes No Yes
and accessing background
processes.

For detailed information on shell features, see the appropriate shell entry
(sh, csh, or ksh) in the OSF/1 Command Reference.

C Shell Features

This section describes the following C shell features:

• Sample .cshrc and .login scripts

• Metacharacters

• Command history and aliases

• Built-in variables and commands

Sample .cshrc and .login Scripts

The .cshrc login script sets up your C shell environment by defining
variables and operating parameters for the local shell process. The .login
script defines variables and operating parameters that you wish executed at
the beginning of your session, and that you wish to be valid for all shell
processes during the current login session.

OSF/1 User's Guide 8-3

General User Tasks

When you log in, the OSF/l operating system executes the .cshrc file in
your home directory first, and the .login file second. The .login script is
executed only when you log in. However, the .cshrc file is executed each
time you create a subshell.

In the following .cshrc script, shell variables, command aliases, and
command history variables are set. Table 8-2 explains every part of the
script.

Set shell variables
set noclobber
set ignoreeof
set notify
set autologout 600

Set command aliases
alias h 'history \ ! *
alias 1 'ls -1'
alias c clear

I

Set history variables
set history=40
set savehist=40

more'

Set prompt
setenv PROMPT II [\ !] % II

Table 8-2. Description of an Example .cshrc Script

Command Description

Shell Variables

set noclobber Stops files from being overwritten.
If set, places restrictions on output
redirection > to ensure that files

8-4

Command

set ignoreeof

set notify

set autologout 600

Command Aliases

alias h 'history\!* I more'

alias I 'Is -I'

alias c clear

History Variables

history=40

savehist=40

OSF/1 User's Guide

OSF/1 Shell Features

Description

are not accidentally destroyed, and
that >> redirections refer to
existing files.

Specifies that you cannot use
<Ctrl-d> to end your login session.
Instead, you must use either the
exit or the logout commands.

Informs you when background
processes have completed.

Logs you out automatically if you
are idle for 600 seconds (10
minutes).

Defines the h command that pipes
the contents of the command
history buffer through the more
command. The \!* string specifies
that all the history buffer should be
piped.

Defines a short name, I, for the 'Is -I'
directory files in the long format.

Defines a short name, c, for the
clear command that clears your
screen.

Instructs the shell to store the last
40 commands in the history buffer.

Instructs the shell to store the last
40 commands and use them as
the starting history for the next
login session.

8-5

General User Tasks

Command Description

Prompt Variable

setenv PROMPT="[\!]%" Changes your prompt so that it
tells you the command number of
the current command.

In the following .login script, the permissions for file creation are set, the
PATH environment variable is set, and the editor and printer are specified.
Table 8-3 explains every part of the script.

Set file creation permissions
umask 027

Set environment variables
setenv PATH=/usr/bin:/usr/local/bin:
setenv CDPATH .: .. :$HOME
setenv EDITOR emacs
setenv MAILHOST boston
setenv PRINTER sales

Table 8-3. Description of an Example .login Script

Command Description

File Permissions

umask027 Specifies the maximum
permissions for all new files
created. This command provides
all permissions for the owner,
read and execute permissions for
members of the same group, and
no permissions for all others.

8-6

OSF/1 Shell Features

Command Description

Environment Variables

setenv PATH /usr/bin:/usr/local/bin: Specifies the search path. In this
case, /usr/bin is searched first,
and /usr/local/bin is searched

setenv CDPATH .: .. :$HOME

setenv EDITOR emacs

setenv MAILHOST boston

setenv PRINTER sales

Metacharacters

second.

CDPATH is a variable that sets
the search path for the cd
command. This variable
assignment specifies that the cd
command should search for the
named directory in the current
directory (.) first, in the parent
directory (..) second, and the
home directory ($HOME) third.

Specifies the emacs editor as the
default editor when running a
program that allows you to edit a
file. For example, various mail
programs allow you to use a
editor to compose and edit
messages.

Specifies boston as your mail
handling system.

Specifies the printer sales as
your default printer.

Table 8-4 describes C shell metacharacters (characters that have special
meaning to the shell).

OSF/1 User's Guide 8-7

General User Tasks

Table 8-4. C Shell Metacharacters

Metacharacter Description

Syntactic

; Separates commands that should be executed
sequentially.

I Separates commands that are part of a pipeline.

&& Runs the next command if the current command
succeeds.

II Runs the next command if the current command
fails.

() Groups commands to run as a separate process
in a subshell.

& Runs commands in the background.

Filename

I Separates the parts of a file's pathname.

? Matches any single character except a leading
dot(.).

* Matches any sequence of characters except a
leading dot (.).

[] Matches any of the enclosed characters.

- Specifies a home directory when used at the
beginning of filenames.

Quotation

\ Specifies that the following character should be
interpreted literally; that is, without its special
meaning to the shell.

' ' Specifies that any of the enclosed characters ...
(except for the ') should be interpreted literally;
that is, without their special meaning to the
shell.

8-8

Metacharacter

Input/Output

<

>

<<

>>

>&

>>&

>!

Expansion/Substitution

$

A

OSF/1 User's Guide

OSF/1 Shell Features

Description

Provides a special form of quoting. Specifies
that the $, ' (grave accent), and \ characters
keep their special meaning, while all other
enclosed characters are interpreted literally; that
is, without their special meaning to the shell.
Double quotes are useful in making variable
assignments.

Redirects input.

Redirects output to a specified file.

Redirects input and specifies that the shell
should read input up to a specified line.

Redirects output and specifies that the shell
should add output to the end of a file.

Redirects both diagnostic and standard output
and appends them to a file.

Redirects both diagnostic and standard output
to the end of an existing file.

Redirects ouput and specifies that if the
noclobber variable is set (prevents overwriting
of files); it should be ignored so that the file can
be overwritten.

Specifies variable substitution.

Specifies history substitution.

Precedes substitution modifiers.

Used in special kinds of history substitution.

Specifies command substitution.

8-9

General User Tasks

Command History

8-10

The command history buffer stores the commands you enter and allows you
to display them at any time. As a result, you can select a previous command,
or parts of previous commands, and then reexecute them. This feature may
save you time because it allows you to reuse long commands instead of
reentering them.

You may wish to enter the following three commands in your .cshrc file:

• set history=n

Creates a history buff er that stores the command lines you enter. The n
entry specifies the number of command lines you wish to store in the
history buffer.

• set savehist=n

Saves the command lines you entered during the current login session
and makes them available for the next login session. The n entry
specifies the number of command lines you wish to store in the history
buffer when you log out.

• set prompt=[\!] %

Causes your C shell prompt to display the number of each command
line.

To see the contents of the history buffer, use the history command. The
displayed output will be similar to the following (your output will vary):

[1 8 J % history
3 set history=15
4 pwd
5
6
7

8
9

cd
ls
cp
mv
cd

/usr/sales
-1
report reports
/usr/accounts/new
/usr/accounts/new

10 mkdir june
11 cd june

12 mv /usr/accounts/new/june
13 ls -1
14 cd /usr/sales/Ql
15 Vl earnings
16 cd /usr/chang
17 vi status
18 history

[19] %

OSF/1 Shell Features

To reexecute any command in the command history buffer, use the
commands listed in Table 8-5. Note that each command starts with an !
(exclamation point), which tells the C shell that you are using commands in
the history buffer.

Table 8-5. Reexecuting History Buffer Commands

Command Description

!! Reexecutes the previous command.

!n Reexecutes the command specified by n. For example,
using the history buffer shown in the previous display, !5
reexecutes the cd /usr/sales command.

!-n Reexecutes a previous command relative to the current
command. For example, using the history buffer shown in
the previous display, !-2 invokes command number 17,
vi status.

!string Reexecutes the most recent command that has first
characters matching those specified by string. For example,
using the history buffer shown in the previous display, !cp
invokes command number 7, cp report reports.

!?string Reexecutes the most recent command line that has any
characters matching those specified by string. For example,
using the history buffer shown in the previous display, !?Q1
invokes command number 14, cd /usr/sales/Q1.

The command history buffer also allows you to reuse previous command
arguments as well as to modify previous command lines. For information on
these features, see the csh entry in the OSF/1 Command Reference.

OSF/1 User's Guide 8-11

General User Tasks

Filename Completion

Aliases

8-12

The C shell allows you to enter a portion of a filename or pathname at the
shell prompt, and the shell will automatically match and complete the name.
This feature saves you time when you are trying to display long, unique
filenames.

For example, assume that you have the file meetings_salesc....status in your
current directory. To display a long listing of the file, enter:

% Is -1 meetings<Esc>

The system displays the following on the same command line:

% Is -1 meetings_sales_status

You can now execute the command by pressing <Return>.

For more detailed information on filename completion, see the csh entry in
the OSF/1 Command Reference.

The command aliases feature allows you to abbreviate long command lines
or rename commands. You do this by creating aliases for long command
lines that you frequently use.

For example, assume that you often need to move to the directory
/usr/chang/reports/status. You can create an alias status, which will move
you to that directory whenever you enter it on the command line.

In addition, aliases allow you to make up more descriptive names for
commands. For example, you could define an alias named rename for the
mvcommand.

To create aliases, use the alias command. The general format of the alias
command is the following:

alias aliasname command

OSF/1 Shell Features

The aliasname entry specifies the name you wish to use. The command entry
specifies either the original command or a series of commands. If the
command has more than one part (has spaces), enclose the whole expression
in single quotes.

For example, to create the alias status that moves you to the directory
/usr/chang/reports/status, enter the following:

alias status 'cd /usr/chang/reports/status'

The usual way to define aliases is to make them a permanent part of your
environment by including them in your .cshrc file. As a result, you can use
the aliases whenever you log in or start a new shell. See ''Sample .cshrc and
.login Scripts'' earlier in this chapter for an example.

To display all alias definitions, enter:

alias

To display the definition of a particular alias, enter:

alias aliasname

The aliasname entry specifies the particular alias for which you are
requesting a definition.

To remove an alias for the current login session, use the unalias command.
The general format of the unalias command is the following:

unalias aliasname

The aliasname entry specifies the alias you wish to remove.

To remove an alias for the current and all future login sessions, do the
following:

1. Enter the following command:

unalias aliasname

The aliasname entry specifies the alias you wish to remove.

OSF/1 User's Guide 8-13

General User Tasks

2. Edit the .cshrc file and remove the alias definition. Then, save the file.

3. Enter the following command to reexecute the .cshrc file:

source .cshrc

For complete information on using aliases with the C shell, see the csh entry
in the OSF/l Command Reference.

Built-In Variables

The C shell provides variables that can be assigned values. These variables
can be very useful for storing values that can be later used in commands. In
addition, you can directly affect shell behavior by setting those variables to
which the shell itself refers.

Table 8-6 describes selected C shell built-in variables that are of the most
interest to general users. For a complete list of C shell built-in variables, see
the csh entry in the OSF/l Command Reference.

Table 8-6. Built-In C Shell Variables

Variable Description

argv Contains a value or values that can be used by the shell or
shell scripts.

autologout Logs you off the system automatically if you are idle for a
specified time. This variable is usually set in the .cshrc file.
If you wish to disable autologout, specify the following:
set autologout = 0.

cwd Contains the pathname to your current directory. The value
of this variable changes every time you use the cd
command.

home Contains the pathname of your home directory. The default
value for this variable is specified in the /etc/passwd file.

8-14

Variable

ignoreeof

cdpath

noclobber

notify

path

prompt

shell

status

OSF/1 Shell Features

Description

Specifies whether <Ctrl-d> can be used to log out from the
system. If set, you must use either logout or exit to log out.
If unset, you may use <Ctrl-d> to log out. This variable is
usually set in the .cshrc file.

Specifies alternative directories to be searched by the
system when locating subdirectories with the cd, chdir, or
pushd commands. This variable is usually set in the .login
file.

Specifies whether a file can be overwritten. If set, places
restrictions on output redirection > to ensure that files are
not accidentally destroyed, and that >> redirections refer to
existing files. If set, a file cannot be overwritten. This
variable is usually set in the .cshrc file.

Specifies whether you wish to be notified when a
background process has completed. If set, you are notified;
if unset, you are not notified. This variable is usually set in
the .cshrc file.

Specifies the search path that the shell uses to find
commands. This variable is usually set in the .login file.

Can be used to customize your C shell prompt. This variable
is usually set in the .cshrc file.

Specifies the shell to create when a program creates a
subshell. This variable is usually set in the .login file.

Specifies whether the most recently executed command
completed without error (a value of zero is returned) or with
an error (a nonzero value is returned).

Built-In Commands

Table 8-7 describes selected C shell commands that are of the most interest
to general users. For a complete list of C shell built-in commands, see the
csh entry in the OSF/l Command Reference.

OSF/1 User's Guide 8-15

General User Tasks

Table 8-7. Built-In C Shell Commands

8-16

Command Description

alias Assigns and displays alias definitions. For more information
and the command format, see the "Aliases" section earlier in
this chapter.

bg Puts a suspended process in the background. For more
information and the command format, see Chapter 6.

echo Writes arguments to the shell's standard output. For more
information and the command format, see the csh entry in
the OSF/1 Command Reference.

fg Puts a currently running background process in the
foreground. For more information and the command format,
see Chapter 6.

history Displays the contents of the command history buffer. For
more information and the command format, see the
"Command History" section earlier in this chapter.

jobs Displays the job number and the PIO number of current
background processes. For more information and the
command format, see Chapter 6.

logout Terminates the login session.

rehash Tells the shell to recompute the hash table of command
locations. Use this command if you add a command to a
directory in the shell's search path and wish the shell to be
able to find it. If you do not use rehash, the command
cannot be executed because it was not in the directory when
the hash table was originally created.

repeat Repeats a command a specified number of times. For more
information and the command format, see the csh entry in
the OSF/1 Command Reference.

set Assigns and displays shell variable values. For more
information and the command format, see "Setting
Variables" in Chapter 7.

OSF/1 Shell Features

Command Description

setenv Assigns environment variable values. For more information
and the command format, see "Setting Variables" in Chapter
7.

source Executes commands in a file. This can be used to update
the current shell environment. For more information and the
command format, see the "Aliases" section earlier in this
chapter, and the csh entry in the OSF/1 Command
Reference.

time

unalias

unset

unsetenv

Displays the execution time of a specified command. For
more information, see the csh entry in the OSF/1 Command
Reference.

Removes alias definitions. For more information and the
command format, see the "Aliases" section earlier in this
chapter.

Removes values that have been assigned to variables. For
more information and the command format, see "Setting
Variables" in Chapter 7.

Removes values that have been assigned to environment
variables. For more information and the command format,
see "Setting Variables" in Chapter 7.

Bourne Shell Features

This section describes the following Bourne shell features:

• A sample .profile login script

• Metacharacters

• Built-in variables and commands

OSF/1 User's Guide 8-17

General User Tasks

Sample .profile Login Script

8-18

If your login shell is the Bourne shell, the OSF/l operating system executes
the .profile login script to set up your environment.

The .profile login script variables that are exported are passed to any
subshells and subprocesses that are created. Variables that are not exported
are used only by the login shell.

In the following .profile login script, shell variables are set and exported, a
trap is set for the logout script, and the system is instructed to display
information. Table 8-8 explains every part of the script.

Set PATH
PATH=/usr/bin:/usr/local/bin:

Export global variables
export PATH

Set shell variables
PS1='$LOGNAME $ '
CDPATH=.:: .:$HOME

Set up for logout script
trap "echo logout; $HOME/.logout" 0

Display status information
date
echo "Currently logged in users:" users

OSF/1 Shell Features

Table 8-8. Description of an Example Bourne Shell .profile Script

Command Description

Set Search Path

PATH::/usr/bin:/usr/local/bin: Specifies the search path. In this case,
/usr/bin is searched first and
/usr/local/bin searched second.

Export Search Path

export PATH Specifies that the search path is to be
passed to all commands that you
execute.

Set Shell Variables

PS1 ='$LOGNAME $ ' PS1 is the variable that specifies the
Bourne shell prompt, and its default value
is $. However, this variable assignment
specifies that your prompt should be
changed to the following: username $.
For example, if your username were
amy, your prompt would be the following:
amy $.

CDPATH=.: .. :$HOME CDPATH is a variable that sets the
search path for the cd command. This
variable assignment specifies that the cd
command should search for the named
directory in the current directory (.) first,
in the parent directory (..) second, and
the home directory ($HOME) third.

Set Up Logout Script

trap "echo logout; $HOME/.logout" 0 Specifies that your shell should display
logout and execute your .logout script
when the trap command captures the exit
signal (0). For more information on the
trap command, see "Logout Scripts and
the Shell" in Chapter 7.

OSF/1 User's Guide 8-19

General User Tasks

Command Description

Display Status Information

date Displays the date and time.

echo "Currently logged in users:";
users Specifies that the shell display the users

who are currently logged in.

Metacharacters

Table 8-9 describes Bourne shell metacharacters (characters that have
special meaning to the shell).

Table 8-9. Bourne Shell Metacharacters

Metacharacter Description

Syntactic

I Separates commands that are part of a pipeline.

&& Runs the next command if current command succeeds.

II Runs the next command if the current command fails.

; Separates commands that should be executed
sequentially.

"
Separates elements of a case construct.

& Runs commands in the background.

{) Groups commands to run as a separate process in a
subshell.

Filename

I Separates the parts of a file's pathname.

8-20

OSF/1 Shell Features

Metacharacter Description

? Matches any single character except a leading dot(.).

* Matches any sequencEJ of characters except a leading
dot (.).

[] Matches any of the enclosed characters.

Quotation

\ Specifies that the following character should be
interpreted literally; that is, without its special meaning to
the shell.

' ' Specifies that any of the enclosed characters (except for ...
the &') should be interpreted literally; that is, without
their special meaning to the shell.

" " Provides a special form of quoting. Specifies that the $, ...
(grave accent), and \ characters keep their special
meaning, while all other enclosed characters are
interpreted literally; that is, without their special meaning
to the shell. Double quotes are useful in making
variable assignments.

Input/Output

< Redirects input.

> Redirects output to a specified file.

<< Redirects input and specifies that the shell should read
input up to a specified line.

>> Redirects output and specifies that the shell should add
output to the end of a file.

2> Redirects diagnostic output to a specified file.

Substitution

${ ... } Specifies variable substitution.
' ' Specifies command output substitution

OSF/1 User's Guide 8-21

General User Tasks

Built-In Variables

The Bourne shell provides variables that can be assigned values. The shell
sets some of these variables, and you can set or reset all of them.

Table 8-10 describes selected Bourne shell built-in variables that are of most
interest to general users. For complete information on all Bourne Shell
built-in variables, see the sh entry in the OSF/1 Command Reference.

Table 8-10. Built-In Bourne Shell Variables

8-22

Variable

HOME

PATH

Description

Specifies the name of your login directory, the directory
that becomes the current directory upon completion of a
login. The cd command uses the value of HOME as its
default value. HOME is set by the login command.

Specifies the directories through which your system
should search to find and execute commands. The shell
searches these directories in the order specified here.
Usually, PATH is set in the .profile file.

CDPATH Specifies the directories that the cd command will
search to find the specified argument to ed. If cd's
argument is null, or if it begins with a slash (/), dot (.), or
dot dot (..), then CDPATH is ignored. Usually, CDPATH
is set in your .profile file.

MAIL The pathname of the file where your mail is deposited.
You must set MAIL, and this is usually done in your
.profile file.

MAILCHECK Specifies in seconds how often the shell checks for mail
(600 seconds is the default). If the value of this variable
is set to 0, the shell checks for mail before displaying
each prompt. MAILCHECK is usually set in your .profile
file.

SHELL Specifies your default shell. This variable should be set
and exported by your .profile file.

OSF/1 Shell Features

Variable Description

PS1 Specifies the default Bourne shell prompt, and its default
value is $. PS1 is usually set in your .profile file. If PS1
is not set, the shell uses the standard primary prompt
string.

PS2 Specifies the secondary prompt string-the string that
the shell displays when it requires more input after you
enter a command line. The standard secondary prompt
string is > (a > symbol followed by a space). PS2 is
usually set in your .profile file. If PS2 is not set, the shell
uses the standard secondary prompt string.

Built-In Commands

Table 8-11 describes selected Bourne shell commands that are of the most
interest to general users. For a complete list of Bourne shell built-in
commands, see the sh entry in the OSF/l Command Reference.

Table 8-11. Built-In Bourne Shell Commands

Command Description

cd Allows you to change directories. If no directory is specified,
the value of the HOME shell variable is used. The CDPATH
shell variable defines the search path for this command. For
more information and the command format, see "Changing
Directories (cd)" in Chapter 4, and the sh entry in the OSF/1
Command Reference.

echo Writes arguments to the standard output. For more
information and the command format, see "Sample .profile
Login Script" earlier in this chapter and the sh entry in the
OSF/1 Command Reference.

OSF/1 User's Guide 8-23

General User Tasks

Command Description

export Marks the specified variable for automatic export to the
environments of subsequently executed commands. For
more information and the command format, see "Sample
.profile Login Script" earlier in this chapter and the sh entry
in the OSF/1 Command Reference.

pwd Displays the current directory. For more information and the
command format, see "Displaying the Name of Your Current
Directory (pwd)" in Chapter 2.

set Assigns and displays variable values. For more information
and the command format, see "Setting Variables" in Chapter
7.

times . Displays the accumulated user and system times for
processes run from the shell.

trap Runs a specified command when the shell receives a
specified signal. For more information and the command
format, see "Logout Scripts and the Shell" in Chapter 7.

umask Specifies the maximum permissions for all new files created.
For more information and the command format, see "Setting
the User Mask" in Chapter 5 and "Sample .cshrc and .login
Scripts" earlier in this chapter.

unset Removes values that have been assigned to variables. For
more information and the command format, see "Setting
Variables" in Chapter 7.

Korn Shell Features

This section describes the following Korn shell features:

• Sample .profile and .kshrc login scripts

• l\1etacharacters

• Command history

8-24

OSF/1 Shell Features

• Editing command lines

• Filename completion

• Aliases

• Built-in variables and commands

Sample .profile and .kshrc Login Scripts

If your login shell is the Korn shell, the OSF/l operating system processes
the .profile login script in your home directory. The .profile login script
defines environment variables. These variables are used by your login shell
as well as any subshells and subproceess that are created. The .profile login
script is executed only when you log in.

The .kshrc login script sets up your Korn shell environment by defining
variables and operating parameters for the local shell process. It is executed
each time you create a subshell.

In the following .profile login script, global environment variables are set
and exported, and shell variables are set. Table 8-12 explains every part of
the script.

Set environment variables
PATH=/usr/bin:/usr/local/bin:
ENV=$HOME/.kshrc
EDITOR=vi
FCEDIT=vi
PSl=" 'hostname' [! J $ "

Export global variables
export PATH ENV EDITOR FCEDIT PSl

Set mail variables
MAIL=/usr/spool/mail/$LOGNAME
MAILCHECK=300

OSF/1 User's Guide 8-25

General User Tasks

Table 8-12. Description of an Example Korn Shell .profile Script

Command

Set Environment Variables

PATH::/usr/bin:/usr/local/bin:

ENV=$HOME/.kshrc

EDITOR=vi

FCEDIT=vi

PS1 ='"hostname' [!] $ "

Export Global Variables

export PATH ENV PS1

8-26

Description

Specifies the search path. In this case,
/usr/bin is searched first and
/usr/local/bin searched second.

Specifies $HOME/.kshrc as the login
script.

Specifies vi as the default editor for
command line editing at the shell
prompt and for filename completion.

Specifies vi as the default editor for the
fc command. For information on the fc
command, see "Editing Command
Lines" later in this chapter.

PS1 is the variable that specifies the
Korn shell prompt, and its default value
is $. However, this variable assignment
specifies that your prompt should be
changed to the following: the output of
the hostname command, followed by
the command number of the current
command, followed by the dollar sign
($). For example, if the name of your
system is boston, and the current
command is numbered 30, your prompt
would be the following:
boston[30] $.

Specifies that the values of the PATH,
ENV, and PS1 variables should be
exported to all subshells.

OSF/1 Shell Features

Command Description

Set Mail Variables

MAIL::/usr/spool/mail/$LOGNAME Specifies the pathname of the file used
by the mail system to detect the arrival
of new mail. In this case, the mail
system would look in your username
subdirectory under the /usr/spool/mail
directory.

MAILCHECK=300 Specifies that the shell should check for
mail every 300 seconds (5 minutes).

In the following .kshrc login script, shell variables, command aliases, and
command history variables are set, as well as the permissions for file
creation. Table 8-13 explains every part of the script.

Set shell variables
set -o monitor
set -o trackall

Set command aliases
alias rm='rm -l '
alias rename='mv '
alias h 'history \!*
alias 1 'ls -1'
alias c clear

I

Set history variables
HISTSIZE=40

more'

Set file creation permissions
umask 027

OSF/1 User's Guide 8-27

General User Tasks

Table 8-13. Description of an Example .kshrc Script

Command Description

Shell Variables

set -o monitor Specifies that the shell should monitor
all background processes and display a
completion message when the process
finishes.

set -o trackall Specifies that the shell should track all
commands that you execute. Once a
command is tracked, the shell stores the
location of the comma:hd and finds the
command more quickly the next time
you enter it.

Command Aliases

alias rm='rm -i' Specifies the use of the -i option (which
prompts you for file deletion) with the rm
command.

alias rename='mv ' Specifies rename as a new name for
the mv command.

alias h 'history\!* I more' Defines a command that pipes the
contents of the command history buffer
through the more command. The \!*
string specifies that all of the history
buffer should be piped.

alias I 'Is -I' Defines a short name for the Is -1
command that lists directory files in the
long format.

alias c clear Defines a short name for the clear
command that clears your screen.

History Variables

HISTSIZE=40 Instructs the shell to store the last 40
commands in the history buffer.

8-28

OSF/1 Shell Features

Command Description

Set File Creation Permissions

umask027 Specifies the maximum permissions for
all new files created. This command
provides all permissions for the owner,
read and write permissions for members
of the same group, and no permissions
for all others.

Meta characters

Table 8-14 describes Korn shell metacharacters (characters that have special
meaning to the shell).

Note: Before creating a .kshrc file in your home directory, make
sure that the ENV=$HOME/.kshrc environment variable is
set and exported in your .profile. Once this is done, the .kshrc
login script will execute each time you log in and each time
you create a subshell.

Table 8-14. Korn Shell Metacharacters

Metacharacter Description

Syntactic

I Separates commands that are part of a pipeline.

&& Runs the next command if the current command
succeeds.

II Runs the next command if the current command
fails.

; Separates commands that should be executed
sequentially.

OSF/1 User's Guide 8-29

General User Tasks

Metacharacter Description

"
Separates elements of a case construct.

& Runs commands in the background.

() Groups commands to run as a separate process
in a subshell.

{} Groups commands without creating a subshell.

Filename

I Separates the parts of a file's pathname.

? Matches any single character except a leading
dot (.).

* Matches any sequence of characters except a
leading dot (.).

[] Matches any of the enclosed characters.

- Specifies a home directory when used at the
beginning of filenames.

Quotation

\ Specifies that the following character should be
interpreted literally; that is, without its special
meaning to the shell.

' ' Specifies that any of the enclosed characters ...
(except for the ') should be interpreted literally;
that is, without their special meaning to the shell.

" " Provides a special form of quoting. Specifies that ...
the $, ' (grave accent), and \ characters keep
their special meaning, while all other enclosed
characters are interpreted literally; that is, without
their special meaning to the shell. Double quotes
are useful in making variable assignments.

Input/Output

< Redirects input.

8-30

OSF/1 Shell Features

Metacharacter Description

> Redirects output to a specified file.

<< Redirects input and specifies that the shell should
read input up to a specified line.

>> Redirects output and specifies that the shell
should add output to the end of a file.

>& Redirects both diagnostic and standard output
and appends them to a file.

Expansion/Substitution

${ ... } Specifies variable substitution.

% Specifies job number substitution.
' Specifies command output substitution

Command History

The command history buffer stores the commands you enter and allows you
to display them at any time. As a result, you can select a previous command,
or parts of previous commands, and then reexecute them. This feature may
save you time because it allows you to reuse long commands instead of
reentering them.

To see the contents of the history buff er, use the history command. The
displayed output will be similar to the following (your output will vary):

[1 8 J $ history
3 ls -1
4 pwd
5 cd /usr/sales
6 ls -1
7 cp report reports
8 mv /usr/accounts/new
9 cd /usr/accounts/new

10 mkdir june
11 cd june
12 mv /usr/accounts/new/june

OSF/1 User's Guide 8-31

General User Tasks

13 ls -1
14 cd /usr/sales/Ql
15 vi earnings
16 cd /usr/chang
17 Vl status

[19] $

To reexecute any command in the command history buffer, use the
commands listed in Table 8-15. Note that each command starts with the
letter r.

Table 8-15. Reexecuting History Buffer Commands

8-32

Command Description

r Reexecutes the previous command

rn Reexecutes the command specified by n. For example,
using the history buffer shown in the previous display, r 5
reexecutes the cd /usr/sales command.

r-n

r string

Reexecutes a previous command relative to the current
command. For example, using the history buffer shown in
the previous display, r-2 invokes command number 16, cd
/usr/chang.

Reexecutes the most recent command that has first
characters matching those specified by string. For example,
using the history buffer shown in the previous display, r cp
invokes command number 7, cp report reports.

For more information on reexecuting history buffer commands, see the ksh
entry in the OSF/1 Command Reference.

If you wish to increase or decrease the number of commands stored in your
history buffer, set the HISTSIZE variable in your .profile file. This
variable has the following format:

HISTSIZE=n

The n entry specifies the number of command lines you wish to store in the
history buffer.

OSF/1 Shell Features

For example, to store 15 commands in the history buffer, use the following
command:

HISTSIZE=15

The Korn shell also allows you to edit current command lines as well as
reuse those already entered in the command history buffer. To use this
feature, you must know how to use a text editor such as vi or emacs. For
information on these features, see the following section.

Editing Command Lines

The Korn shell allows you to list and/or edit the command lines in your
command history buffer. As a result, you may modify any element of a
previous command line and then reexecute the command line.

The command line editing functions for the Korn shell are extensive. This
section covers only the most basic functions. For more detailed information,
see the ksh entry in the OSF/1 Command Reference.

To display the command history buffer and/or to edit its contents, use the
built-in command fc (fix command). The fc command has the following
two formats:

1. fc [-e editor] [-nlr] [first] [last]

This command format allows you to display and/or edit any number of
command lines in your buffer.

• The -e editor entry specifies the editor (usually vi or emacs) you
wish to use in editing the command line. If you do not specify -e,
the fc command displays the lines, but does not allow you to edit
them.

• The -n flag specifies that you wish to list the command lines in the
buffer without numbers. The -I flag specifies that you wish to list
the command lines in the buffer with numbers. If you do not
specify a line number or a range of line numbers, the last 16 lines
you entered will be listed.

OSF/1 User's Guide 8-33

General User Tasks

8-34

• The -r flag specifies that you wish to list the command in the
buffer in reverse order.

• The first and last entries specify a range of command lines in the
buffer. You may specify them either with numbers or with strings.

If you wish to specify a default editor for the -e flag, define the
FCEDIT variable in your .profile script. For example, if you wish to
make emacs your default ~ditor, enter the following variable
definition:

FCEDIT=emacs

2. fc -e • [old=new] [string]

This command allows you to immediately replace an old string with a
new string within any previous command line.

• The -e • entry specifies that you wish make a replacement.

• The old=new specifies that you wish to replace the old string with
the new string.

• The string entry specifies that the Korn shell should make the edit
to the most recent command line in the buffer containing the
string.

The following section contains some examples of fc use.

Note that the Korn shell also allows you to edit individual command lines at
the shell prompt by using a command set similar to the vi or the emacs
editors. For more information on this feature, see the ksh entry in the OSF/1
Command Reference.

OSF/1 Shell Features

Examples of Command Line Editing

Example 1: Displaying Command Lines in the Command History
Buffer

To display command lines 15 to 18, enter:

$ fc -11518
15 ls -la
16 pwd
17 cd /u/ben/reports
18 more sales
$

You may also list the same command lines by specifying command strings
instead of line numbers, as in the following example:

$ fc -I ls more
15 ls -la
16 pwd
17 cd /u/ben/reports
18 more sales
$

Example 2: Editing and Executing Command Lines

To display and edit command lines 15 to 18 with the vi editor, enter:

$ fc -e vi 15 18
ls -la
pwd
cd /u/ben/reports
more sales

"/tmp/sh10268.3" 4 lines 40 characters

OSF/1 User's Guide 8-35

General User Tasks

After making your edits, write and exit the file with the :wq! command.
The command lines in the file are then reexecuted.

Example 3: Replacing and Reexecuting Command Lines

Assume that you have just entered the echo hello command, and now wish
to replace hello with goodbye. To do the replacement and reexecute the
command line, enter:

$echo hello
hello
$ fc -e - hello=goodbye echo
echo goodbye
goodbye

For more detailed information on the fc command and command line
editing, see the ksh entry in the OSF/1 Command Reference.

Filename Completion

8-36

The Korn shell allows you to enter a portion of a filename or pathname at
the shell prompt and the shell will automatically match and complete the
name. If there is more than one filename or pathname that matches the
criterion, the shell will provide you with a list of possible matches.

To activate the filename completion mechanism, define the EDITOR
variable in your .profile file. For example, if you wish to use the vi editor,
enter the following variable definition in your .profile file:

EDITOR=vi

To demonstrate how filename completion works, assume that your editor is
vi and that you have the following three files in your current directory:
salesreportl, salesreport2, salesreport3. To display a long listing and to
activate filename completion, enter:

$ ls -1 salesreport<Esc>=
1) salesreportfeb
2) salesreportjan
3) salesreportmar
$ ls -1 salesreport

Aliases

OSF/1 Shell Features

The system redisplays your command, and your cursor is now at the end of
salesreport. Assume that you wish to choose salesreportjan. Type a (the vi
append command) followed by jan. Then press <Return>. The listing for
salesreportjan will be displayed.

For more detailed information on filename completion, see the ksh entry in
the OSF/l Command Reference.

The command aliases feature allows you to abbreviate long command lines
or rename commands. You do this by creating aliases for long command
lines that you frequently use.

For example, assume that you often need to move to the directory
/usr/chang/reports/status. You can create an alias status, which will move
you to that directory whenever you enter it on the command line.

In addition, aliases allow you to make up more descriptive names for
commands. For example, you could define an alias named rename for the
mvcommand.

To create aliases, use the alias command. The general format of the alias
command is the following:

alias aliasname=command

The aliasname entry specifies the name you wish to use. The command
entry specifies either the original command or a series of commands. If the
command has more than one part (has spaces), enclose the whole expression
in single quotes.

For example, to create the alias status that moves you to the directory
/usr/chang/reports/status, enter:

alias status='cd /usr/chang/reports/status'

The usual way to define aliases is to place them in your .kshrc file so that
you can use them whenever you log in or start a new shell. See "Sample
.profile and .kshrc Login Scripts" earlier in this chapter for an example.

OSF/1 User's Guide 8-37

General User Tasks

8-38

To display all alias definitions, enter:

alias

To display the definition of a particular alias, enter:

alias aliasname

The aliasname entry specifies the particular alias for which you are
requesting a definition.

The Korn shell allows you to export the aliases you create. Variables that
are exported are passed to any subshells that are created so that when you
execute a shell procedure or new shell, the alias remains defined. (Variables
that are not exported are used only by the login shell.)

To export an alias, use the following form of the alias command:

alias -x aliasname=command

The -x flag specifies that you wish to export the alias. The aliasname entry
specifies the name you wish to use. The command entry specifies either the
original command or a series of commands. If the command has more than
one part, enclose the whole expression in single quotes.

For example, to export an alias definition for the rm command, enter:

alias -x rm='rm -i '

You can enter the preceding command in one of two ways:

• Edit the .kshrc or .profile file if you wish an alias exported whenever
you log in

• Export an alias on the command line if you wish the alias exported only
for the current login session.

To remove an alias for the current login session, use the unalias command.
The general format of the unalias command is the following:

unalias aliasname

The aliasname entry specifies the alias you wish to remove.

OSF/1 Shell Features

To remove an alias for the current and all future login sessions, do the
following:

1. Enter the following command:

unalias aliasname

The aliasname entry specifies the alias you wish to remove.

2. Edit the .kshrc file (or the file on your system that contains alias
definitions) and remove the alias definition. Then, save the file.

3. Enter the following command to reexecute the .kshrc file:

.. kshrc

The Korn shell provides additional aliasing features that may be of interest
to you. For complete information on using aliases with the Korn shell, see
the ksh entry in the OSF/l Command Reference.

Built-In Variables

The Korn shell provides variables that can be assigned values. The shell sets
some of these variables, and you can set or reset all of them.

Table 8-16 describes selected Korn shell built-in variables that are of the
most interest to general users. For complete information on all Korn shell
built-in variables, see the ksh entry in the OSF/l Command Reference.

OSF/1 User's Guide 8-39

General User Tasks

Table 8-16. Built-In Korn Shell Variables

8-40

Variable

HOME

Description

Specifies the name of your login directory. The cd
command uses the value of HOME as its default value.
In Korn shell procedures, you can use HOME to avoid
having to use full pathnames-something that is
especially helpful if the pathname of your login directory
changes. HOME is set by the login command.

PATH Specifies the directories through which your system
should search to find and execute commands. The shell
searches these directories in the order specified here.
Usually, PATH Is set in the .profile file.

CDPATH Specifies the directories that the cd command will
search to find the specified argument to ed. If cd's
argument is null, or if it begins with a slash (/), dot (.), or
dot dot (..), then CDPATH is ignored. Usually, CDPATH
is set in your .profile file.

MAIL The pathname of the file where your mail is deposited.
MAIL is usually set in your .profile file.

MAILCHECK Specifies in seconds how often the shell checks for mail
(600 seconds is the default). If the value of this variable
is set to 0, the shell checks for mail before displaying
each prompt. MAILCHECK is usually set in your .profile
file.

SHELL Specifies your default shell. This variable should be set
and exported by your .profile file.

PS1 Specifies the default Bourne shell prompt, and its default
value is $. PS1 is usually set in your .profile file. If PS1
is not set, the shell uses the standard primary prompt
string.

PS2 Specifies the secondary prompt string-the string that
the shell displays when it requires more input after
entering a command line. The standard secondary

OSF/1 Shell Features

Variable Description

prompt string is> (a> symbol followed by a space). PS2
is usually set in your .profile file. If PS2 is not set, the
shell uses the standard secondary prompt string.

HISTFILE Specifies the pathname of the file that will be used to
store the command history. This variable is usually set in
your .profile file.

EDITOR Specifies the default editor for command line editing at
the shell prompt and for filename completion. This
variable is usually set in your .profile file.

FCEDIT Specifies the default editor for the fc command. This
variable is usually set in your .profile file.

HISTSIZE Specifies the number of previously entered commands
that are accessible by this shell. The default is 128. This
variable is usually set in your .kshrc file.

Built-In Commands

Table 8-17 describes selected Korn shell commands that are of the most
interest to general users. For a complete list of Korn shell built-in
commands, see the ksh entry in the OSF/l Command Reference.

Table 8-17. Built-In Korn Shell Commands

Command Description

alias Assigns and displays alias definitions. For more information
and the command format, see "Aliases" earlier in this
chapter.

cd Allows you to change directories. If no directory is specified,
the value of the HOME shell variable is used. The CDPATH
shell variable defines the search path for this command. For
more information and the command format, see "Changing
Directories (cd)" in Chapter 4 and the ksh entry in the

OSF/1 User's Guide 8-41

General User Tasks

8-42

Command Description

OSF/1 Command Reference.

echo Writes arguments to the standard output. For more
information and the command format, see the OSF/1
Command Reference.

export Marks the specified variable for automatic export to the
environments of subsequently executed commands. For
more information and the command format, see "Sample
.profile and .kshrc Login Scripts" earlier in this chapter and
the ksh entry in the OSF/1 Command Reference.

fc Allows you to display, edit, and reexecute the contents of the
command history buffer. For more information and the
command format, see "Editing Command Lines" earlier in
this chapter.

history Displays the contents of the command history buffer. For
more information and the command format, see "Command
History'' earlier in this chapter.

jobs Displays the job number and the PIO number of current
background processes.

pwd Displays the current directory. For more information and the
command format, see "Displaying the Name of Your Current
Directory (pwd)" in Chapter 2.

set Assigns and displays variable values. For more information
and the command format, see "Setting Variables" in Chapter
7.

times Displays the accumulated user and system times for
processes run from the shell.

trap Runs a specified command when the shell receives a
specified signal. For more information and the command
format, see "Logout Scripts and the Shell" in Chapter 7.

umask Specifies the maximum permissions for all new files created.
For more information and the command format, see
"Setting the User Mask" in Chapter 5 and "Sample .profile
and .kshrc Login Scripts" earlier in this chapter.

OSF/1 Shell Features

Command Description

unalias Removes alias definitions. For more information and the
command format, see "Aliases" earlier in this chapter.

unset Removes values that have been assigned to variables. For
more information and the command format, see "Setting
Variables" in Chapter 7.

OSF/1 User's Guide 8-43

Chapter 9

Useful Productivity Tools

This chapter describes two productivity tools that may enhance your work.
After completing this chapter, you will be able to do the following:

• Use the grep command to search files

• Use the find command to locate files

Both the grep and the find commands provide extensive functions. As a
result, this chapter does not provide detailed discussions of these commands.
Instead, it provides a few simple examples that are likely to assist general
users.

Searching Files for Text Patterns (grep)

The grep command allows you to search files for text patterns. You may
use the command to search for the following kinds of text patterns:

• Specific text patterns, such "John Smith"

OSF/1 User's Guide 9-1

General User Tasks

9-2

• All kinds of regular expressions such as the following samples:

all lines ending in "1989"

all words beginning with ''reports''

all names of employees whose last names are "Smith"

The grep command is very useful when you are trying to locate information
that you know is in a file somewhere on your system.

The general format of the grep command is the following:

grep [flag] expression file

The flag entry specifies an option that modifies the operation of the
command. Table 9-1 describes selected flags. The expression entry specifies
the text for which you are looking. You may use pattern-matching characters
to specify the expression. If the text is more than one word, enclose it it in
(double quotes). The file entry can be the name of the file, the relative
pathname of the file, the full pathname of the file, or a list of files separated
by spaces. You may also use pattern-matching characters to specify files.

As an example of using the grep command, suppose that you maintain the
following employee telephone list files for your company:

• empsales (sales)

• empmarket (marketing)

• empaccount (accounting)

• emphr (human resources)

• empad (advertising)

To find the phone number of Mario Garcia, enter the following command:

$ grep "Mario Garcia" emp*
empad: Mario Garcia X3871
$

As a result of the preceding command, you have learned that Mario
Garcia is in the Advertising Department (empad), and that he can be
reached at extension 3 8 71.

You may also use a number of flags in the grep command format to specify
additional features. Table 9-1 explains several of these flags.

Useful Productivity Tools

Table 9-1. The grep Command Flags

Flag Action

-c Displays the filename and the number of matching lines.

-i Ignores the case of letters in searching for the specified test.
That is, uppercase and lowercase characters in the input are
considered to be identical (see Example 1 later in this
chapter).

-I Displays only the filenames that contain the specified text.

-n Displays the filenames and line numbers of matching lines.

-v Displays all lines except those that match the specified
pattern. Useful for filtering unwanted lines out of a file if you
redirect the output to another file (see Example 3 later in this
chapter).

Because grep functions are so extensive, we can only provide a few
examples of its usage. However, the following examples will give you some
idea of how to use the grep command.

Example 1: Using the -i Option

Suppose that you wish to search for all files that contain any information
about a client of your company, a Mr. DeSantis. You realize that you have
seen Mr. Desantis' name spelled two ways: as "Desantis" and "Desantis."
Because the grep command is by default case-sensitive, you enter the
following command so that the system can find any spelling of the name:

$ grep -i "Desantis" *
filel: Desantis Enterprises
file2: Mr. Desantis
file3: In response to your letter, Mr. Desantis
file4: Thank for your talk, Mr. Desantis
$

OSF/1 User's Guide 9-3

General User Tasks

9-4

Example 2: Extracting Lines and Saving Them in Another File

Suppose that you maintain a file that lists everyone in your company by
department. You have been asked to produce a list of everyone in your
company that works in the Accounting Department. Instead of visually
scanning the personnel file and then creating another file, you can enter the
following command sequence to sort and display employees in the
Accounting Department:

$ grep "Accounting" employees I sort >acctlist
$ more acctlist
Alicia Herstring
Bob Beenie
Sophire Smith
$ lpr acctlist
$

Accounting
Accounting
Accounting

Example 3: Deleting Lines and Saving the Output in Another File

Suppose that you maintain a file that lists everyone in your company by
medical insurance carrier. You have been asked to produce a list of
everyone not insured by Acme Insurance. Instead of visually scanning the
medical file and then creating another file, you can enter the following
command sequence to sort and print employees:

$ grep -v "Acme Insurance" medlist I sort >list2
$ more medlist2
Alice Herstring
Bernard Smith
Bob Beenie
Connie Brown
Cranston Applewood
Randy Sparks
$ lpr medlist
$

Great Insurance
ABC Insurance
ABC Insurance
Best Insurance
Best Insurance
Great Insurance

Useful Productivity Tools

Example 4:

Suppose that you maintain a file that lists everyone in your company by hire
date. You have been asked to produce a list of everyone who was hired at
your firm between January 1983 and December 1989. Instead of visually
scanning the employee file and then creating another file, you can enter the
following command sequence to sort and print employees:

$ grep "198[3-9]" employees I sort >emp80s
$ more emp80s
Alice Herstring
Bernard Smith
Bob Beenie
Connie Brown
Cranston Applewood
Randy Sparks
$ lpr emp80s
$

September 1984
March 1988
July 1987
February 1983
August 1989
October 1986

Note the use of the bracketed range [3-9] in the preceding command line.
This expression matches any single character that meets the qualifications
expressed by the range.

The grep command has many more features. For complete information on
the grep command and its options, see the OSF/l Command Reference.

Finding Files (find)

The find command allows you to locate files by searching a specified
directory and any subdirectories beneath it. You will discover that this
command is useful for finding information that might be in any of a number
of subdirectories on your system, especially when your filenames are a good
indication of file contents.

The general format of the find command when attempting to locate a file
and display its location is the following:

find pathname -name filename -print

OSF/1 User's Guide 9-5

General User Tasks

9-6

The pathname entry specifies the directories you wish to search. The -name
entry specifies that you wish to specify a filename. The filename entry can
specify either a single file or can specify a number of files with the use of
pattern-matching characters. If you wish to search for a number of files with
pattern-matching characters, you must enclose the filename in 11 11 (double
quotes). The -print entry specifies that you wish to display the location of
the file or files.

As an example of using the find command, suppose that you are user chang
and wish to locate all the report files in your directory hierarchy. To do so,
enter the following:

$ find /usr/chang -name "report*" -print
/usr/chang/reports88
/usr/chang/reports88/reportjan
/usr/chang/reports88/reportjan.tmp
/usr/chang/reports88/reportmay
/usr/chang/reports88/reportmay.tmp
/usr/chang/reports88/reportsept
/usr/chang/reports88/reportdec
/usr/chang/reports89
/usr/chang/reports89/reportjan
/usr/chang/reports89/reportmay
/usr/chang/reports89/reportsept
/usr/chang/reports89/reportsept.tmp
/usr/chang/reports89/reportdec
/usr/chang/reports90
/usr/chang/reports90/reportjan
/usr/chang/reports90/reportmay
/usr/chang/reports90/reportmay.tmp
/usr/chang/reports90/reportsept
$

You can also use the find command to search for files and then have a
command executed on the files selected. The general format for this
function is the following:

find pathname -name filename -print -exec command {} \;

Useful Productivity Tools

The pathname entry specifies the directories you wish to search. The -name
entry specifies that you wish to specify a filename. The filename entry can
specify either a single file or can specify a number of files with the use of
pattern-matching characters. If you wish to search for a number of files with
pattern-matching characters, you must enclose the filename in (double
quotes). The -print entry specifies that you wish to display the pathnames
of the files acted on by the command. The -exec entry specifies that you
wish to execute a command upon the selected files. The command entry
specifies the command you wish to execute upon the selected files. The {}
(braces) indicate that the output of the find command should be a command
line argument for command. The\; (backslash and semicolon) are an escape
sequence. The semicolon specifies the end of the command, and the
backslash prevents the shell from interpreting the semicolon.

For example, suppose that you are user chang and wish to delete all the
temporary files shown in the preceding example. Those files begin with the
word report and end with .tmp. To do so, enter the following:

$ find /usr/chang -name "report* .tmp" -print -exec rm {} \;
/usr/chang/reports88/reportjan.tmp
/usr/chang/reports88/reportmay.tmp
/usr/chang/reports89/reportsept.tmp
/usr/chang/reports90/reportmay.tmp
$

There are many more functions that the find command provides. For more
information, see the OSF/1 Command Reference.

OSF/1 User's Guide 9-7

Part 2
Communications Tasks

Chapter 10

Using Simple Communications
Facilities

This chapter shows you how use a simple facilities to communicate with
users on your system or on remote systems.

After completing this chapter, you will be able to do the following:

• Determine who can currently receive messages or participate in online
talk sessions

• Send messages to users logged in on the system

• Conduct online conversations with users on local or remote systems

• Control messages and online talk sessions for your display station

Sending Messages (write)

You can send a message to anyone currently logged in on the local system.
To find out who is currently logged in, use the who command. For
information about this command, see "Displaying Information About Users
and Their Processes'' in Chapter 6.

OSF/1 User's Guide 10-1

Communications Tasks

10-2

Once you know that the intended recipient of your message is logged in, use
the write command to send the message. The write command is most useful
for sending short messages that need immediate attention. For those
messages that are longer, not as pressing, or need to be distributed to more
than one user, use the mail command. For more information on the mail
command, see Appendix D.

The write command has the following general format:

write username

The following procedure shows you how to send a message, using me as the
sender and chang as the recipient:

1. Enter the write command as follows:

write chang

This command sends an alerting sound and the following notice to
Chang's screen:

message from me tty04 Feb 8 10:32:45

You may also receive an alerting sound, indicating that the connection
is established and that you can enter your message.

2. Type the message. If your message is more than one line, every time
you press <Return> a line will be sent to Chang's screen.

A typical message on Chang's screen might be the following:

Our presentation this afternoon will be at 2:00.
See you in the conference room at 1:55 to discuss
our strategy.

3. When you have finished typing your message, press <Ctrl-d> to tell
Chang that your message is complete and that you are ending the
connection. The text EOF displays on Chang's screen, and your
system prompt returns.

Refer to the information you received with your system if pressing
<Ctrl-d> does not produce the EOF text on the recipient's screen.

Using Simple Communications Facilities

If the person to whom you sent the message is not currently logged in to the
system, the following message is displayed on the screen:

user is not logged on

If you receive this message, you can still communicate with the individual
by sending a note with the mail command. This command sends a note to
the recipient's mail box and it can be read upon demand. See Appendix D
for information about sending mail messages.

Note: At some sites, you may be able to use the write command to
send a message to users on remote systems. Ask your system
administrator whether the write command runs on remote as
well as local systems.

Having a Conversation

The write command allows you to have a conversation (sending messages
back and forth) with another user. If you expect to have a conversation, both
of you should agree on a symbol that indicates your message is completed.
For example, you might both end your messages with the letter o for
"over." (You cannot press <Ctrl-d> to denote "over" because it will
terminate the connection.)

You should also agree on a different symbol, such as oo for "over and out,"
to identify the end of the conversation.

When the conversation is over, press <Ctrl-d> to break the connection. If
you inadvertently press <Ctrl-d> at any other time during the conversation,
you or the user with whom you are conversing must reestablish the
connection by again issuing the write command.

The following procedure shows you how to have a conversation, using me
as the sender and lucy as the recipient:

1. Enter the write command as follows:

write lucy

OSF/1 User's Guide 10-3

Communications Tasks

10-4

This command sends an alerting sound and the following notice to
Lucy's screen:

message from me tty04 Feb 8 11:20:45

You may also receive an alerting sound, indicating that the
connection is established and that you can enter your message. A
common convention is for Lucy to indicate that she is ready to
receive your message by entering write me. This will produce the
following message on your screen:

message from lucy tty02 Feb 8 11:21:30

However, if Lucy does not respond, you can still send your message.

2. Type the message. If your message is more than one line, every time
you press <Return> a line will be sent to Lucy's screen.

3. When you have finished typing your message, use the (o) signal to tell
Lucy that you are ready for her reply. A typical message on Lucy's
screen might be the following:

Ready to go to lunch? (o)

4. If she has not already done so, Lucy enters the following command to
establish a connection:

write me

This will produce the following message on your screen:

message from lucy tty02 Feb 8 11:22:23

When Lucy has finished her message, she ends it with the (o) signal.

Conversation can then continue as previously described until you or
Lucy decides to end the conversation by using the oo signal.

5. Press <Ctrl-d> to tell Lucy that you are ending the connection. The
text EOF displays on Lucy's screen, and your system prompt returns.
Lucy also presses <Ctrl-d> and the conversation is over.

Using Simple Communications Facilities

There may be times when you may wish not to receive messages. For
information on how to halt being interrupted by messages, see "Controlling
Messages and Online Talk Sessions (mesg)" later in this chapter.

For more information on the write command, see the OSF/1 Command
Reference.

Retaining a Local Connection

After opening a connection to a specified user, you can continue to send
messages to that user until you press <Ctrl-d>. In between messages to the
original recipient, you can also send messages to other users on the system
by prefixing the write command with an exclamation point (!), like this:

!write usemame

The exclamation point is the shell escape symbol. If you are already running
one process started by a specific command, prefixing an exclamation point
to a second command tells the shell to execute that second process while the
first process continues to run. For example, entering !write user2 instructs
the shell to send a message to user2 even though you are still conversing
with userl.

Note: After you use the !write command and have finished entering
your message, you must end the message to the second user
with <Ctrl-d>. This is because you cannot connect with two
users simultaneously.

You can execute any OSF/l operating system command from this shell by
preceding the command with an exclamation point. For example, if you are
communicating with another user and need to look at a file mentioned in the
conversation, you can enter the following to display the contents of that file:

!more filename

The following procedure shows you how to retain a connection with Amy
while writing a message to another user, Tony:

1. Contact Amy with the following command:

write amy

OSF/1 User's Guide 10-5

Comm1.mications Tasks

2. After receiving the alerting sounds indicating that the connection is
established, enter your message. You can continue to communicate
with Amy simply by continuing to type your messages and pressing
<Return>. Do not press <Ctrl-d> until you wish to break the
connection.

3. While conversing with Amy, you can also send a message to Tony
with the following command:

!write tony

Type your message to Tony, press <Return>, and then press <Ctrl-d>
to break the connection.

4. You can now continue your conversation with Amy simply by typing
the text of the message and pressing <Return>. (You do not have to
issue the write command again because the connection established in
step 1 is still open.)

5. When you are ready to break the connection to Amy, press <Ctrl-d>.

Sending a Long Message

10-6

If you wish to send a long message, we recommend that you use the mail
command because it is most efficient. See Appendix D, "Using Mail."
However, should you wish to, you can create a file to contain the text and
then send that file with the write command. The following procedure
shows you how to send a message contained in a file with the write
command:

1. Create a file, using the text editor of your choice.

2. Write the text.

3. Use the write command to send the message, and enter the usemame
of the recipient, a < (less-than symbol), and the name of the file. For
example, to send a message file named letter in your current
directory to tony, enter:

write tony < letter

Using Simple Communications Facilities

System Errors

Sometimes the system cannot send a message. For example, if the recipient
is not logged in, the message cannot be delivered.

If, however, the failure is the result of a system error, the following message
appears on your screen:

cannot write to usernameonsystemname

If this message is displayed, see your system administrator.

Conducting an Online Talk Session (talk)

The talk command allows two users on the same system or on different
systems to have an interactive conversation. During an online talk session,
a send window and a receive window are opened on each user's display
station. Each user is then able to type into the send window while the talk
command displays what the other user is typing.

If you wish talk to a user on your local system, enter:

talk username

If you wish talk to a user on a remote system, enter:

talk username@systemname

If you wish to talk to a user who is logged in more than once, the ttyname
may be used to indicate the specific terminal name, as in the following:

talk username ttyname

When you initiate the conversation, a message is sent to the second user,
inviting a conversation. If you have also specified a ttyname, the invitation
message is sent only to the specified terminal. Otherwise, the invitation is
sent to the login terminal of the second user.

OSF/1 User's Guide 10-7

Communications Tasks

10-8

If a conversation is desired, the second user enters the talk command and
specifies the first user's account name and system name (if a remote
system).

Once an invitation is accepted, the two windows are displayed on each
user's terminal. One window displays what is typed by the first user; the
other window displays what is typed by the second user.

To end the conversation, either user can press <Ctrl-c> and the connection
is closed.

In the following example, user juan (on system concord) wishes to have a
conversation with lucy (on remote system boston):

1. Juan enters the following command to talk with Lucy:

talk lucy@boston

The following message is displayed on Lucy's display station:

Message from TalkDaemon@concord at 14:25
talk: connection requested by juan@concord
talk: respond with: talk juan@concord

2. To accept the invitation, Lucy enters the following command to talk
with Juan:

talk juan@concord

The talk command displays two windows (a split screen) on Juan's
and Lucy's display stations so that they are now able to have an
interactive conversation. One window displays Juan's text while the
other window displays Lucy's text.

3. When Juan and Lucy wish to end the conversation, they both press
<Ctrl-c> to return to the shell prompt.

There may be times when you may not wish to be involved in online
conversations. For information on how to halt online talk sessions, see
"Controlling Messages and Online Talk Sessions (mesg)" next in this
chapter.

For more information on the talk command, see the OSF/l Command
Reference.

Using Simple Communications Facilities

Controlling Messages and Online Talk Sessions (mesg)

Unless you specify otherwise, the system automatically sends you all the
messages and enables all online talk sessions.

Sometimes, however, receiving a message or an online talk request on your
display can interrupt your current work, so you may occasionally prefer not
to receive them. You use the mesg command to tum off the message and
online talk facilities, to tum them back on again, and to check the current
status of your display station. For more information, see "Using the mesg
Command" next in this chapter.

The procedure that starts up the message and the talk facilities is included
as part of the OSF/l operating system. This start-up procedure contains a
default value that lets you receive messages and invitations to online talk
sessions. If you prefer not to do so, you can change this default. For more
information, see "Changing the mesg Start-Up Procedure" later in this
chapter.

Using the mesg Command

You can use the mesg command in the following ways:

• To check the current status of the message and talk facilities for your
account

• To tum off the message and talk facilities, thereby rejecting them

• To tum the message and talk facilities back on, thereby again receiving
messages

To check your current status, enter the mesg command by itself, without
any options. To tum off the message and talk facilities for your account,
enter the command with the n option. (There is no dash before the n.) To
tum the message and talk facilities back on for your account, enter the
command with the y option.

OSF/1 User's Guide 10-9

Communications Tasks

To check and/or change your message and talk facility status, perform the
following procedure:

1. Check your message status by entering:

mesg

The system will notify you, as defined by locale, whether you can or
cannot receive messages. In the United States, for example, the
system displays the following message indicating that message and
talk sessions are enabled for your account:

is y

2. To change the setting, enter mesg y (for affirmative) or mesgn (for
negative). For example, to reject messages and online talk sessions,
enter:

mesgn

When you change the setting to mesg n, someone attempting to
contact you through the message and talk facilities receives the
message Permission denied.

However, to enhance system security and efficiency, a person with
superuser authority can still send you messages.

For more information on the mesg command, see the OSF/1 Command
Reference.

Changing the mesg Start-Up Procedure

10-10

The shell start-up procedures for the Korn, Bourne, and C shells included
with the OSF/l operating system contain a default value that lets you
receive messages and conduct online talk sessions. If you prefer not to do
so, you can change this default.

To change the default value so that you cannot receive any messages or
online talk requests, add a mesg n notation to the login script that activates
the shell you use. You can find your login script in your login directory.

Using Simple Communications Facilities

For detailed information about login scripts, see Chapter 8. In the
meantime, see Table 10-1 for information about login scripts. To find out
what shell you are using, match the prompt on your screen with the default
prompt in the table. Then, look in your login directory to find the correct
login script to edit.

Note: The shell prompt on your screen may vary from the ones
listed in Table 10-1. If so, see your system administrator to
find out your default shell. Then, you can edit the appropriate
file.

For example, assume that your shell prompt is a dollar sign ($). In Table
10-1, both the Bourne and the Korn shells display the dollar sign. To find
out what login script to edit, look in your login directory. Assume that you
find .kshrc in your login directory. You now know that you should edit this
file to inhibit receiving message or online talk session requests.

Table 10-1. Login Script Information

Shell Prompt Shell Name Login Script to Edit

% C Shell .cshrc

$ Bourne Shell .profile

$ Korn Shell .kshrc

To modify your message and online talk start-up procedure, perform the
following:

1. Enter the following command to move to your login directory:

cd

2. Use any editor to display the appropriate login script. If you wish to
use the vi editor, see Appendix A.

The system will display the contents of your login script.

3. If necessary, move the cursor to the end of the file. On a separate
line, enter:

mesgn

OSF/1 User's Guide 10-11

Communications Tasks

10-12

4. Save the file and exit the editor.

Adding mesg n to your login script overrides the default value in the shell
start-up procedure so that you no longer automatically receive messages.

Once you have turned the message and talk facilities off in your login
script, they will remain off every time you log in. If you choose to turn them
back on temporarily, you can do so by entering the mesg y command.
When you log out, however, they are both turned off, and they remain off
until you enter mesg y again.

Chapter 11

Using the UUCP Networking Utilities

This chapter shows you how use the UUCP networking utilities. You use
these utilities to communicate with systems other than your own.

After completing this chapter, you will be able to do the following:

• Identify and connect to remote systems

• Communicate with a remote system

• Run commands on a remote system

• Transmit files between the local system and remote systems

• Get status information about the remote connection or the file transfer

Note: Any UUCP networking utilities operation you perform is
subject to the security features in effect on both the local and
remote systems. In addition, your system may contain
enhanced security features that may affect whether you can
connect with other systems. If so, see your system
administrator and the OSF/l Security Features User's Guide
for details.

OSF/1 User's Guide 11-1

Communications Tasks

Introduction to the UUCP Networking Utilities

The UUCP networking utilities (UUCP) include a set of directories, files,
programs, and commands that let you communicate with remote systems.

UUCP enables two computer systems to communicate in three different
ways:

• Over hardwired lines

• Over telephone lines using modems

• Over networks

UUCP enables you to perform tasks as background processes. This means
that once a UUCP task is running, you can use your workstation for other
jobs. For example, you can send a file to a remote system for printing and,
while it prints, edit another document stored on the same remote computer.

UUCP commands are also used to manage network-related tasks such as
installing and maintaining the uucp software. For information about these
operations, see your system administrator.

Identifying Compatible Systems (uuname)

11-2

In order for a local system to communicate with a remote system using
UUCP, the remote system must be connected to your local system.
Additionally, the remote system must support UUCP. Systems that are
based on the UNIX operating system normally have UUCP available.
Communications via UUCP with a system not based on the UNIX operating
system may require additional hardware or software. Once UUCP has been
installed on your system, the Systems file (normally stored in the /etc/uucp
directory) contains the list of remote sites you can access through UUCP
commands.

Use the uuname command to identify compatible remote systems with
which you can communicate using the UUCP networking utilities. The
uuname command has the following general format:

uuname

Using the UUCP Networking Utilities

The entries your local system (the computer at which you are currently
working) displays in response to the uuname command are the names your
system manager has assigned to the computers linked by UUCP. For
example, if you enter the uuname command, the names of compatible
remote systems will appear in a list like the following (your output will
vary):

$ uuname
venus
merlin
hera
zeus
research
cad
archives
$

You can use one option, the -I flag, which displays the name of your local
system only. For example, the following comand displays the name of a
local system (your output will vary):

$ uuname -I
lowell

For additional information about the uuname command, see the OSF/1
Command Reference.

Pathnames Used with UUCP Commands

Pathnames used with UUCP commands are essentially the same as
pathnames used with OSF/1 operating system commands. However, UUCP
pathnames often include the name of the remote system.

OSF/1 User's Guide 11-3

Communications Tasks

11-4

Keep the following conventions in mind as you specify pathnames when
using UUCP:

• Full pathname. A full pathname lists all the directories along the route
from the root directory to a specific directory or file, ending with the
name of the final directory or file. By convention, the elements in a
pathname are separated by slashes (/).

• Relative pathname. A relative (or partial) pathname lists the route to a
specific directory or file relative to the current directory.

Relative pathnames may not always work with all UUCP commands. If
you are having trouble accessing a file with a relative pathname, reenter
the command using the full pathname to the file.

• -user pathname. The tilde C) is a shorthand way of identifying part of a
pathname. In this case, -user pathname refers to the login directory of
the person identified as user.

• -uucp/filename. In this case, the entries preceding the filename refer to
the public directory on the designated system. UUCP uses this
directory, named /var/spool/uucppublic, for sending and receiving
information. The -uucp entry is a shorthand way of specifying the
public directory.

• System_ name !pathname. This is the syntax UUCP uses to identify the
path to a file on another system. The following example identifies the
file new in the directory /research on a system named merlin:

merlin!/research/new

• System_ name !system_ name !pathname. This is the pathname to a file on
another system that goes through one or more other intermediate
systems. You may think of the exclamation point character (!) as
specifying the pathnames for nodes, very much as the slash character (/)
specifies the pathnames for files.

In the following example, the pathname specifies the file cells in
directory /research on system merlin, which is reached first through
system zeus and then through system venus.

zeus!venus!merlin!/research/cells

Using the UUCP Networking Utilities

In the C shell, the ! character has a special meaning. As a result, when
specifying system names, you must type the name of the system, a
backslash (\),an exclamation point(!), and the pathname as follows:

zeus\!venus\!merlin\!/research/cells

Communicating with a Remote System

UUCP has several commands that enable you to communicate with
computers other than your own. Using these commands, you can do the
following:

• Connect, over a hardwired asynchronous line, to

- Another workstation

- Another computer running an operating system that (like OSF/l) is
based on the UNIX operating system

- A computer running a system not based on the UNIX operating
system, given proper hardware and software

• Connect, over a telephone line, to a remote system, or to a remote
workstation, using modems at both ends of the connection

• Connect over a network to

- Another workstation

- Another computer running an operating system that (like OSF/l) is
based on the UNIX operating system

- A computer running a system not based on the UNIX operating
system, given proper hardware and software

You can make remote connections over both a hardwired line, a telephone
line, or a network using either the cu command or the tip command. Both
cu and tip provide very similar functions, so it is a matter of choice which
command you use.

OSF/1 User's Guide 11-5

Communications Tasks

The ct command, on the other hand, is used only to connect to a remote
terminal over a telephone line, by using a modem.

The following sections describe the cu, tip, and the ct commands,
respectively

Note: Any connection operation you perform is subject to the
security features in effect on both the local and remote
systems. In addition, your system may contain enhanced
security features that may affect whether you can connect
with other systems. If so, see your system administrator and
the OSF/l Security Features User's Guide for details.

Connecting to a Remote Computer with the cu Command

11-6

The cu command enables you to connect with a specified remote computer,
log in to it, and then perform tasks on it while you remain physically
working at your local computer. You are thus logged in on both systems at
the same time, and you can switch back and forth between the two
computers, performing tasks on both concurrently.

If the remote system is running under the OSF/l operating system, you can
enter regular OSF/1 commands on the remote computer to change
directories, list directory contents, view files, send files to the print queue,
and so on. You can also use special local commands with cu, both to enter
OSF/l commands on your local system and to perform tasks such as
transferring files between the two systems. You preface these commands
with a tilde C). For more information, see "Using the cu Local Commands"
later in this chapter.

For example, suppose you want to transfer a copy of a file from your local
system to a remote system for printing. While the first file is printing, you
want to edit a second file on the remote system and then send a copy of that
file over to your local computer. Following is an overview of the steps you
would perform in an operation of this kind:

1. While logged in to your own workstation, connect with the cu
command to a specific remote system and then log in to that system.

2. Enter the appropriate local tilde C) command to transfer the file from
the local to the remote system for printing.

Using the UUCP Networking Utilities

3. Enter the OSF/1 more command on the remote system to display the
file on the screen, or lpr to print the file. You can also enter any other
OSF/1 command on the remote computer, such as cd to change to a
different directory, or ls to list the contents of a directory.

4. Now you can edit another file on the remote computer while the first
file is printing. Because the communications link remains open, you
can also move easily between the local and the remote systems,
checking the status of a job in progress on your local system,
monitoring the printing job on the remote system, and so on.

5. When you have finished editing the second file on the remote system,
use the appropriate local command to send a copy of the updated file
back to your local computer. You can then continue with other tasks
on both your local computer and the remote system.

To connect to a remote computer, enter the cu command in the following
format:

cu [flag] system_ name

The flag entry specifies an option that modifies the operation of the
command. The system_ name specifies the system to which you wish to be
connected. Table 11-1 describes cu command flags and entries.

This form of the command enables you to connect to a remote system over a
hardwired line. If your system manager has set up UUCP so that you can
communicate with remote systems over a telephone line, this version of the
cu command also enables you to connect to a remote system using a
modem.

Note: For two systems to be connected over a telephone line using
the cu [flag] system_ name form of the command, both systems
must be attached to modems, and both systems must be set up
for this type of communication. For information about
customizing the files in the UUCP supporting database for
remote communications, see your system administrator.

Most of the time you will connect to a remote system using the
system_ name, as shown previously. However, you may occasionally need to
connect to a remote system whose name you do not know.

OSF/1 User's Guide 11-7

Communications Tasks

11-8

In that case, you can enter the cu command and connect with a remote
system by specifying the name of the device (the hardwired line that
actually connects your computer with the specified remote computer). The
standard device name is prefixed by tty. Most hardwired communication
lines have names that are variations of the tty device name, such as ttyO,
ttyl, and so on.

When you enter cu with the name of a device, you must include the name of
the device, or line, preceded by the -I flag. Use the following format:

cu -lline

The -lline flag specifies the device to which you wish to be connected.

Occasionally, you may need to communicate with a remote computer that
does not support UUCP. You can use a version of the cu command to
establish such a connection under the following conditions:

• The remote computer must run under an operating system (such as
OSF/1) that is based on the UNIX operating system.

• Both the local and the remote system must be connected to working
modems.

• You must know the telephone number of the remote modem and have a
valid login on that system.

Under these circumstances, you can connect to the remote computer using
the following form of the cu command:

cu [flag] telno

The flag entry specifies an option that modifies the operation of the
command. The telno entry is the telephone number of the remote modem.

Table 11-1 describes cu command flags and the telno entry. For examples of
cu command use, see ''The cu Examples'' later in this chapter.

Using the UUCP Networking Utilities

Table 11-1 . The cu Command Flags and Entries

Flag/Entry

-sspeed

-1/ine

OSF/1 User's Guide

Description

Specify Transmission Speed

Specifies the rate at which data is transmitted to the
remote system. The default transmission speed is
generally "Any," which instructs cu to use the rate
appropriate for the default (or specified) transmission
line.

Most modems operate at 300, 1200, or 2400 baud,
while most hardwired lines are set to 1200 baud or
higher. When transferring data (such as a file) between
a local and a remote computer, you may occasionally
need to specify a 300-baud transmission speed (the
lower baud rate results in less interference on the line).

Note that you should not have to set the transmission
rate as an ordinary practice. The default rate, set
when UUCP is installed and customized for your site,
should be sufficient for most of your work.

Specify Transmission Line or Device

Specifies the name of a device to be used as the line
of communication between the local and the remote
system. The default device is generally a hardwired
asynchronous line, or a telephone line associated with
an automatic dialer such as a modem. If your site has
a number of lines of communication between local and
remote computers, you may occasionally want to
specify a particular device, or line, for your cu link.

Note that under ordinary circumstances you should not
have to specify a line or device. The default device
established when UUCP is installed should be
sufficient.

However, if you want to connect to a remote computer
and are not certain of the system name, you can enter
the cu command with the -I flag and a variation of the
standard device name tty (for example, -ltty1 or

11-9

Communications Tasks

11-10

Flag/Entry Description

-lttyab). Check with your system administrator for the
device names used at your site.

Because you use the -1/ine flag when you do not know
a system name, do not use the system_ name entry in
conjunction with the -1/ine flag. If you do, cu connects
to the first available line for the requested system
name, ignoring the specified line.

system_ name Remote System Name (for Hardwired or Modem
Connections)

tel no

Specifies the name of the remote system, recognized
by UUCP, with which you want to establish a
connection. This is the assigned name of the system,
such as gumby, homer, phoebus, and so on. UUCP
establishes this connection either over a hardwired
line, or over a telephone line using a modem,
depending on how your system administrator has set
up communications between your local system and the
specified remote system.

UUCP Number of Modem on an Unrecognized
System

Specifies the telephone number you want to use to
establish a remote connection using a modem. In this
case, the remote computer uses OSF/1 (or another
operating system based on the UNIX operating
system), but it was not set up to communicate with
your local system through UUCP. The telno entry can
be either a local or a long-distance telephone number.

For detailed information about the cu command, see the OSF/1 Command
Reference.

Using the UUCP Networking Utilities

The cu Examples

Example 1: Connecting to a System with a Known Name

To connect to the remote system hera, log in, and then display the contents
of directory called /user/sales/reports, do the following:

1. Enter the following:

cu hera

The system displays the following message:

Connected

and the screen displays the login prompt for the remote system.

When connecting to some remote systems, you may need to press
<Return> one or more times before the remote system displays its
login prompt.

2. Log in on the remote system.

You are now logged in to and ready to work concurrently on both
your local system and the remote system hera. You can enter any
OSF/1 command on the remote system simply by entering that
command following the prompt.

3. To display the contents of a directory called /user/sales/reports on
system hera, enter:

Is /user/sales/reports

If you also wish to enter a command on your local system, type a tilde
() followed by an exclamation point (!) before the command. See
"Using the cu Local Commands" later in this chapter for more
information.

OSF/1 User's Guide 11-11

Communications Tasks

11-12

Example 2: Connecting to a System with an Unknown Name

Assume that you wish to connect to a remote system using hardwired
device tty2:

1. To connect with the remote system, enter:

cu -ltty2

The system displays the Connected message.

When connecting to some remote systems, you may need to press
<Return> one or more times before the remote system displays its
login prompt.

2. When the remote system displays its login prompt, log in and begin
your work. Remember that the connection to your local system is still
open, so you can perform tasks on both systems concurrently.

Example 3: Connecting to a non-UUCP System

Assume that you wish to connect to a remote system with a local telephone
number:

1. To connect to a remote system whose telephone number is 461-1492,
enter the following:

cu4611492

2. After the system displays the Connected message, press
<Return>.

When connecting to some remote systems, you may need to press
<Return> one or more times before the remote system displays its
login prompt.

3. When the remote system displays its login prompt, log in and begin
your work.

Using the UUCP Networking Utilities

In the following example, assume that you wish to connect to a remote
system with a long-distance telephone number:

1. To connect to a remote system whose telephone number is 1-612-
223-1612, where dialing 9 is required to get an outside dial tone, and
you want to transmit data at 300 baud, enter:

cu -s300 9=16122231612

2. After the system displays the Connected message, press
<Return> until the login prompt appears, and log in on the remote
system.

Using the cu Local Commands

Once you have entered cu, connected to the remote system, and logged in to
it, you can enter regular OSF/1 commands on either the remote system or
the local system. You can also enter special cu commands on the local
system to transmit files between the two computers.

When you are logged in to a remote computer using a cu link, enter OSF/l
commands on the remote computer simply by entering the command at the
prompt. For example, to list the contents of a directory on the remote
system, you would use the ls command.

However, suppose you want to display the contents of a directory on your
local computer while linked to a remote system through the cu command.
In that case, you must type a tilde C) and an exclamation point (!) preceding
ls to indicate that cu should execute the command on your local system.
You would therefore enter the ls command like this:

Another way to perform the same operation is to enter the - and ! (or % ,
which is used with three local commands), as in the following:

OSF/1 User's Guide 11-13

Communications Tasks

The system displays the name of your local computer in this form:

- [system_ name]!

You then enter the ls command.

The complete entry, requesting a list of the contents of your current
working directory on local system hera, would therefore look like this:

- [hera] !Is

Table 11-2 lists some of the local commands you may use with the cu
command.

Table 11-2. The cu Local Commands

Command

11-14

Description

Terminate Remote Connection

The -. (tilde and dot) characters log you out of the
r~mote computer and then terminate the remote
connection.

Entering the -. characters always terminates the cu
process. However, in some cases where you are
connected to the remote system over a telephone
line using a modem, -. does not always successfully
log you out of the remote system. For this reason, it
is generally a good idea to press <Ctrl-d> to log out.
Then enter -. at the prompt and press <Return> to
terminate the remote connection.

Escape to Local System

The -1 (tilde and exclamation point) sequence
returns you to the local system after you have been
working on the remote system. Type -1 at the prompt
and then enter any command you wish. Then, when
you want to return to the remote system, press
<Ctrl-d> to leave the local computer and work on
the remote system. Once you have established the
cu connection, toggle back and forth between the

Command

Using the UUCP Networking Utilities

Description

two computers by entering -, (to go from remote to
local) and <Ctrl-d> (to go from local to remote).

Execute cmd Locally

The -!cmd sequence tells cu to execute the
command on the local system. Once you have
established the cu link, you can run commands on
your local computer only by typing a tilde and an
exclamation point before the name of the command.

-%cd directory_ name Change Local Directory

The -%cd directory_name command changes your
local working directory from the current directory to
the directory specified with the directory_ name
entry. If you do not specify a directory, cu changes
to your home directory.

-%take from [to] Copy from Remote to Local

The -%take from [to] command "takes" a specified
file, copying it from the remote system to a specified
file on the local system. If you do not type a name
for the file on the local system (the to entry), the
command copies the specified file from the remote
to the local system under the same filename.

-%put from [to] Copy from Local to Remote

The -%put from [to] command "puts" a specified file,
copying it from the local system to the remote
system. If you do not enter a target filename, the
command copies the file to the remote system under
the same filename. Note that in the case of the
-%put command, the source file is on the local
computer.

Note: You can transfer only ASCII files with the -%take and
-%put commands. To transfer other types of files, use the
uucp command, discussed in "Sending and Receiving Files
(uucp)" later in this chapter.

OSF/1 User's Guide 11-15

Communications Tasks

11-16

Note: In addition, neither -%take nor -%put checks to ensure that
the system transfers the file(s) without errors. As a result, for
the most reliable file transfers, we recommend that you use
the uucp command.

For detailed information about the cu local commands, see the OSF/1
Command Reference.

The cu Local Commands Examples

Example Set 1: Running Commands on Your Local System

Suppose that you wish to view a file on your local system. To do so,
perform the following procedure:

1. Enter cu and log in on the remote system.

2. To display the contents of the file statuslO in the directory
/usr/msg/memos/ on your local computer venus, enter:

The system responds with the following prompt:

[venus] !

3. Enter the more command and the name of the file (in this case, the
complete pathname of the file):

- [venus J ! more /usr/msg/memos/statuslO

For another example, assume that you wish to change from one directory to
another directory on your local computer. To do so, perform the following
procedure:

1. Enter cu and log in on the remote system.

2. Now change from your current local working directory /usr/msg to
directory /adm/msg, also on your local system zeus. Enter the
following:

Using the UUCP Networking Utilities

The system responds with the name of your local system, prompting
you to enter the command:

[zeus] %

3. Enter the cd command and the name of the directory following the

[zeus] % prompt:

- [zeus J %cd /adm/msg

Example Set 2: Copying Files from Remote to Local Systems

To copy the file testl from a remote system to your local system, perform
the following procedure:

1. Enter the cu command and then log in on the remote system.

2. To transfer a copy of the file /u/amy/testl from the remote system to
your local system, enter:

%take /u/amy/testl

where /u/amy is also the name of an existing directory on your local
system. This command copies the file to the local system under the
same filename, testl.

If you wish to copy the same file but call it tmptest in a different
directory on your local system, enter the following instead:

- %take /u/amy/testl /usr/dev/amy/tmptest

Example Set 3: Copying Files from Local to Remote Systems

To copy the file /usr/pubs/geo/ch2a from your local system to a remote
system, do the following:

1. Enter the cu command, and then log in on the remote system.

2. To copy the file /usr/pubs/geo/ch2a from the local system to the
remote system to which you are connected, enter:

- %put /usr/pubs/geo/ch2a

OSF/1 User's Guide 11-17

Communications Tasks

11-18

where /usr/pubs/geo is also the name of an existing directory on the
remote system. This command copies the file to the remote system
under the same filename, ch2a.

If you wish to copy the same file, but call it part2 in a different
directory on your local system, enter the following instead:

- % put /usr/pubs/geo/ch2a /u/geo/part2

Note: When you use the -%put and -%take commands to transfer
files, make sure that the target directory (the one to which
you are copying the source files) already exists on the
specified system. Unlike the uucp command, these cu local
commands do not create intermediate directories during file
transfers.

Additional Information About the cu Command

The following are some examples of cu features that. you may find helpful:

• Do not to use the system_ name entry in conjunction with the -lline flag.
On the other hand, you can use the -sspeed flag with either the -1 flag or
the system_name entry, but not with both.

If you do use the -sspeed flag with both the -I flag and the system_ name
entry, cu connects to the first available line for the requested system
name, and ignores the specified line and speed.

• You can enter cu to connect system X to system Y, log in to system Y,
and then enter cu again on system Y to connect to system Z. You then
have one local computer, system X, and two remote computers, systems
Y andZ.

You can run OSF/l commands on system Z simply by logging in and
entering the command. You can run commands on system X by
prefixing the command with a single tilde C cmd). You can also run
commands on system Y by prefixing the command with two tildes
Ccmd).

Using the UUCP Networking Utilities

In general, a single tilde causes the specified command to be executed
on the original local computer, and two tildes cause the command to be
executed on the next system on which you executed cu.

• Remember that the -! sequence takes you from the remote system to the
local system. To return to the remote system from the local computer,
press <Ctrl-d>.

For more information about the cu command, see the OSF/1 Command
Reference.

Connecting to a Remote Computer with the tip Command

The tip command enables you to connect with a specified remote
computer, log in to it, and then perform tasks on it while you remain
physically working at your local computer. You are thus logged in on both
systems at the same time, and you can switch back and forth between the
two computers, performing tasks on both concurrently.

If the remote system is running under the OSF/1 operating system, you can
enter regular OSF/l commands on the remote computer to change
directories, list directory contents, view files, send files to the print queue,
and so on. You can also use special tip "local commands" both to enter
OSF/1 commands on your local system and to perform tasks such as
transferring files between the two systems. You preface these commands
with a tilde C). For more information, see "Using the tip Local
Commands'' later in this chapter.

For example, suppose you want to transfer a copy of a file from your local
system to a remote system for printing. While the first file is printing, you
want to edit a second file on the remote system and then send a copy of that
file over to your local computer. Following is an overview of the steps you
would perform in an operation of this kind:

1. While logged in to your own workstation, connect to a specific
remote system and then log in to that system.

2. Enter the appropriate local tilde C) command to transfer the file from
the local to the remote system for printing.

OSF/1 User's Guide 11-19

Communications Tasks

11-20

3. Enter the OSF/1 more command on the remote system to display the
file on the screen, or lpr to print the file. You can also enter any
other OSF/l command on the remote computer, such as cd to change
to a different directory, or ls to list the contents of a directory.

4. Now you can edit another file on the remote computer while the first
file is printing. Because the communications link remains open, you
can also move easily between the local and the remote systems,
checking the status of a job in progress on your local system,
monitoring the printing job on the remote system, and so on.

5. When you have finished editing the second file on the remote system,
use the appropriate local command to send a copy of the updated file
back to your local computer. You can then continue with other tasks
on both your local computer and the remote system.

To connect to a remote computer, enter the tip command in the following
format:

tip [flag] system_ name

The flag entry specifies an option that modifies the operation of the
command. The system_ name specifies the system to which you wish to be
connected. Table 11-3 describes tip command line entries.

This form of the command enables you to connect to a remote system over
a hardwired line. If your system manager has set up UUCP so that you can
communicate with remote systems over a telephone line, this version of the
tip command also enables you to connect to a remote system using a
modem.

Note: For two systems to be connected over a telephone line using
the tip [flag] system name form of the command, both
systems must be attached to modems, and both systems must
be set up for this type of communication. For information
about customizing the files in the UUCP supporting database
for remote communications, see your system administrator.

Occasionally, you may need to communicate with a remote computer that
does not support UUCP. You can use a version of the tip command to
establish such a connection under the following conditions:

• The remote computer must run under an operating system based on the
UNIX operating system, such as OSF/1.

Using the UUCP Networking Utilities

• Both the local and the remote system must be connected to working
modems.

• You must know the telephone number of the remote modem and have a
valid login on that system.

Under these circumstances, you can connect to the remote computer using
the following form of the tip command:

tip [flag] telno

The flag entry specifies an option that modifies the operation of the
command. The telno entry is the telephone number of the remote modem.
Table 11-3 describes tip command flags and the telno entry.

In general, however, you will probably find that the form of the tip
command that connects you to a specified system is sufficient for your
work.

Table 11-3. The tip Command Flags and Entries

Flag/Entry

-baud_rate

OSF/1 User's Guide

Description

Specify Transmission Speed

Specifies the rate at which data is transmitted to the
remote system. The default transmission speed is
generally "Any," which instructs tip to use the rate
appropriate for the default (or specified)
transmission line.

Most modems operate at 300, 1200, or 2400 baud,
while most hardwired lines are set to 1200 baud or
higher. When transferring data (such as a file)
between a local and a remote computer, you may
occasionally need to specify a 300-baud
transmission speed (the lower baud rate results in
less interference on the line).

Note that you should not have to set the
transmission rate as an ordinary practice. The
default rate, set when UUCP is installed and

11-21

Communications Tasks

11-22

Flag/Entry Description

customized for your site, should be sufficient for
most of your work.

system_ name Remote System Name (for Hardwired or Modem
Connections)

tel no

Specifies the name of the remote system,
recognized by UUCP, with which you want to
establish a connection. This is the assigned name of
the system, such as gumby, homer, phoebus, and
so on. UUCP establishes this connection either over
a hardwired line, or over a telephone line using a
modem, depending on how your system
administrator has set up communications between
your local system and the specified remote system.

UUCP Number of Modem on an Unrecognized
System

Specifies the telephone number you want to use to
establish a remote connection using a modem. In
this case, the remote computer uses OSF/1 (or
another operating system based on the UNIX
operating system), but it was not set up to
communicate with your local system through UUCP.
The telno entry can be either a local or a long­
distance telephone number.

For detailed information about the tip command, see the OSF/1 Command
Reference.

The tip Examples

Example 1: Connecting to a System with a Known Name

To connect to the remote system ames, log in, and then display the
contents of directory called /user/car/sales, do the following:

1. Enter the following:

tip ames

Using the UUCP Networking Utilities

The system displays the following message:

Connected

and the screen displays the login prompt for the remote system.

When connecting to some remote systems, you may need to press
<Return> one or more times before the remote system displays its
login prompt.

2. Log in on the remote system.

You are now logged in to and ready to work concurrently on both
your local system and the remote system ames. You can enter any
OSF/1 command on the remote system simply by entering that
command following the prompt.

3. To display the contents of a directory called /user/car/sales on
system ames, enter:

ls /user/car/sales

If you also wish to enter a command on your local system, type a
tilde C) followed by an exclamation point (!) before the command.
See "Using the tip Local Commands" later in this chapter for more
information.

Example 2: Connecting to a non-UUCP System

Assume that you wish to connect to a remote system with a local telephone
number:

1. To connect to a remote system whose telephone number is 543-4592,
enter the following:

tip 5434592

2. After the system displays the Connected message, press
<Return>.

OSF/1 User's Guide 11-23

Communications Tasks

When connecting to some remote systems, you may need to press
<Return> one or more times before the remote system displays its
login prompt.

3. When the remote system displays its login prompt, log in and begin
your work.

In the following example, assume that you wish to connect to a remote
system with a long-distance telephone number:

1. To connect to a remote system whose telephone number is 1-512-
360-1522, where dialing 9 is required to get an outside dial tone, and
you want to transmit data at 300 baud, enter:

tip -s300 9,15123601522

2. After the system displays the Connected message, press
<Return> until the login prompt appears, and log in on the remote
system.

Using the tip Local Commands

11-24

Once you have entered tip, connected to the remote system, and logged in
to it, you can enter regular OSF/1 commands on either the remote system
or the local system. You can also enter special tip commands on the local
system to transmit files between the two computers.

When you are logged in to a remote computer using a tip link, you enter
OSF/1 commands on the remote computer simply by entering the
command at the prompt. For example, to list the contents of a directory on
the remote system, you would use the ls command.

However, suppose you want to display the contents of a directory on your
local computer while linked to a remote system through the tip command.
In that case, you must type a tilde C) and an exclamation point (!)
preceding ls to indicate that UUCP should execute the command on your
local system. You would therefore enter the ls command like this:

Using the UUCP Networking Utilities

Another way to perform the same operation is to enter the - and ! as in the
following:

The system displays the name of your local computer in this form:

- [system_ name]!

You then enter the Is command.

The complete entry, requesting a list of the contents of your current
working directory on local system ames, would therefore look like this:

- [ames] !ls

Table 11-4 lists some of the local commands you may use with the tip
command.

Table 11-4. The tip Local Commands

Command

- <Ctrl-d>

OSF/1 User's Guide

Description

Terminate Remote Connection

The - <Ctrl-d> sequence (tilde and control-d) logs you
out of the remote computer and then terminates the
remote connection.

Entering the - <Ctrl-d> sequence always terminates
the tip process. However, in some cases where you
are connected to the remote system over a telephone
line using a modem, - <Ctrl-d> does not .always
successfully log you out of the remote system. For this
reason, it is generally a good idea to press <Ctrl-d> to
log out. Then, enter - <Ctrl-d> at the prompt and press
<Return> to terminate the remote connection.

Escape to Local System

The -1 (tilde and exclamation point) sequence returns
you to the local system after you have been working on
the remote system. Enter -1 at the prompt and then

11-25

Communications Tasks

Command Description

enter any command you wish. Then, when you wish to
return to the remote system, press <Ctrl-d> to leave
the local computer and work on the remote system.
Once you have established the tip connection, toggle
back and forth between the two computers by entering
-, (to go from remote to local) and <Ctrl-d> (to go from
local to remote).

Execute cmd Locally

The -1 cmd sequence tells tip to execute the command
on the local system. Once you have established the tip
link, you can run commands on your local computer
only by typing a tilde and an exclamation point before
the name of the command.

-c [directory_ name] Change Local Directory

<

>

-t from [to]

11-26

The -c command changes your local working directory
from the current directory to the directory specified with
the directory_name entry. If you do not specify a
directory, tip changes to your home directory.

Copy from Remote to Local

The -< command copies the specified file from the
remote system to the local system. The tip command
prompts you for name of the local file.

Copy from Local to Remote

The -> command copies the specified file from the local
system to the remote system. The tip command
prompts you for name of the remote file.

Copy from Remote to Local

The -t from [to] command "takes" a specified file,
copying it from the remote system to a specified file on
the local system. If you do not type a name for the file
on the local system (the to entry), the command copies
the specified file from the remote to the local system
under the same filename.

Using the UUCP Networking Utilities

Command Description

-p from [to] Copy from Local to Remote

The -p from [to] command "puts" a specified file,
copying it from the local system to the remote system.
If you do not enter a target filename, the command
copies the file to the remote system under the same
filename.

Note: You can transfer only ASCII files with the -t and -p
commands. To transfer other types of files, use the uucp
command, discussed later in this chapter in "Sending and
Receiving Files (uucp)". In addition, neither -t nor -p
checks to ensure that the system transfers the file(s) without
errors. As a result, for the most reliable file transfers, use the
uucp command.

For detailed information about the tip local commands, see the OSF/1
Command Reference.

The tip Local Commands Examples

Example Set 1: Running Commands on Your Local System

Suppose that you wish to view a file on your local system. To do so,
perform the following procedure:

1. Enter tip and log in on the remote system.

2. To display the contents of the file statuslO in the /usr/msg/memos/
directory on your local computer venus, enter:

The system responds with the following prompt:

[venus] !

OSF/1 User's Guide 11-27

Communications Tasks

11-28

3. Enter the more command and the name of the file (in this case, the
complete pathname of the file):

- [venus J ! more /usr/msg/memos/statuslO

For another example, assume that you wish to change from one directory
to another directory on your local computer. To do so, perform the
following procedure:

1. Enter tip and log in on the remote system.

2. Now change from your current local working directory /usr/msg to
directory /adm/msg, also on your local system zeus. Enter the
following:

The system responds with the name of your local system, prompting
you to enter the command:

[zeus] !

3. Enter the c command and the name of the directory following the

[zeus J ! prompt:

- [zeus] !c/adm/msg

Example Set 2: Copying Files from Remote to Local Systems

To copy the file testl from a remote system to your local system, perform
the following procedure:

1. Enter tip and log in on the remote system.

2. To transfer a copy of the file /u/amy/testl from the remote system to
your local system, enter:

- t /u/amy/testl

where /u/amy is also the name of an existing directory on your local
system. This command copies the file to the local system under the
same, testl.

Using the UUCP Networking Utilities

If you wish to copy the same file but call it tmptest in a different
directory on your local system, enter the following instead:

- t /u/amy/testl /usr/dev/amy/tmptest

Example Set 3: Copying Files from Local to Remote Systems

To copy the file /usr/pubs/geo/ch2a from your local system to a remote
system, do the following:

1. Enter tip and log in on the remote system.

2. To copy the file /usr/pubs/geo/ch2a from the local system to the
remote system to which you are connected, enter:

- p /usr/pubs/geo/ch2a

where /usr/pubs/geo is also the name of an existing directory on the
remote system. This command copies the file to the remote system
under the same filename, ch2a.

If you wish to copy the same file but call it part2 in a different
directory on on your local system, enter the following instead:

- p /usr/pubs/geo/ch2a /u/geo/part2

Note: When you use the -p and -t commands to transfer files, make
sure that the target directory (the one to which you are
copying the source files) already exists on the specified
system. Unlike the uucp command, these tip local
commands do not create intermediate directories during file
transfers.

OSF/1 User's Guide 11-29

Communications Tasks

Additional Information About the tip Command

The following are some examples of tip features that you may find helpful:

• You can enter tip to connect system X to system Y, log in to system Y,
and then enter tip again on system Y to connect to system Z. You then
have one local computer, system X, and two remote computers,
systems Y and Z.

You can run OSF/1 commands on system Z simply by logging in and
entering the command. You can run commands on system X by
prefixing the command with a single tilde Ccmd). You can also run
commands on system Y by prefixing the command with two tildes
Ccmd).

In general, a single tilde causes the specified command to be executed
on the original local computer, and two tildes cause the command to be
executed on the next system on which you executed tip.

• Remember that the -! sequence takes you from the remote system to
the local system. To return to the remote system from the local
computer, press <Ctrl-d>.

For more information about the tip command, see the OSF/l Command
Reference.

Connecting a Remote Terminal to Your System Using a Modem (ct)

11-30

The ct command enables a user on a remote ASCII terminal to
communicate with your system over a telephone line attached to a modem
at each end of the connection. The user on the remote terminal can then
log in and work on your system.

The following is a brief overview of ct command operations:

1. The user on the remote terminal generally contacts a user on your
system (with a regular phone call) and asks that user to enter the ct
command.

2. The user on the local system enters ct with the appropriate telephone
number to call the modem attached to the remote terminal.

Using the UUCP Networking Utilities

3. When the connection is established, ct enters an OSF/1 login prompt
that is displayed on the remote terminal screen.

4. The user on the remote terminal enters his or her OSF/1 login name
at the prompt, and OSF/l opens a new shell. The user at the remote
terminal then works on your system just like a local user.

Note: Normally, a user on the remote terminal calls the user on the
local system to request a ct session. However, if such
connections occur regularly at your site, your system
manager may prefer to set up UUCP in such a way that a
specified local system automatically enters ct to one or more
specified terminals at certain designated times. For
information about customizing UUCP for use at your site,
see your system administrator.

The ct command is useful in the following situations:

• When a user working off site needs to communicate with your system
under strictly supervised conditions. Because the local system contacts
the remote terminal, the user on that terminal does not need to know
the telephone number of the local system. Additionally, the local user
entering ct can monitor the work of the remote user.

• When the cost for the telephone connection should be charged either to
the local site, or to a specific account on the remote terminal.

For example, assume that the user on the remote terminal has the
appropriate access permissions and can make outgoing calls on the
attached modem. That user can call the specified system, log in, and
enter the ct command with the phone number of the remote terminal,
but without the -h flag (see Table 11-5). The local system hangs up the
initial link so that the remote terminal is free for an incoming call, and
then calls back to the terminal. This process is similar to making a
collect call.

When you enter ct to connect to a remote terminal, you will find the
following features of the command useful under certain circumstances:

• You can instruct ct to continue dialing the number until the connection
is established or a set amount of time has elapsed.

• You can specify more than one telephone number at a time to instruct
ct to continue dialing each modem until a connection is established
over one of the lines.

OSF/1 User's Guide 11-31

Communications Tasks

Normally, ct dials the number specified in the command line, reaches the
modem attached to the remote terminal, and displays the OSF/1 login
prompt. If there are no free lines, however, ct displays a message to that
effect and asks if you want to wait for one.

If you reply no, ct hangs up. If you reply that you do want to wait for a free
line, ct prompts for the number of minutes to wait. The command
continues to dial the remote system at I-minute intervals until the
connection is established or the specified amount of time has elapsed.

To connect to a remote terminal, enter the ct command in the following
format:

ct [flags] telno

The flags entry specifies options that modify the operation of the
command. The telno entry is the telephone number of the remote modem.
Table 11-5 describes ct command line entries.

Table 11-5. The ct Command Flags and Entries

11-32

Flag/Entry Description

-wminutes Specify Wait Time

Specifies the maximum amount of time that ct waits for
a line. You enter the command and then the -w flag,
followed immediately by the amount of time, which you
enter as minutes. For example, to specify a wait time of
5 minutes, you enter:

-w5

The ct command then dials the remote modem at 1-
minute intervals until either the connection is
established, or the specified number of minutes has
passed.

Entering this flag on the command line suppresses the
messages that ct normally displays if it cannot make
the connection. Instead of asking whether to wait for a

Using the UUCP Networking Utilities

Flag/Entry Description

free line and then prompting for the wait time, ct
continues to dial for the specified amount of time.

-h No Hangup

-sspeed

Normally, ct hangs up on the current call in order to
respond to a call coming in to your modem from
another modem. The -h flag instructs ct not to break
the current connection in order to answer an incoming
call.

Specify Transmission Rate

Specifies the rate at which ct transmits data. The
default speed is 1200 baud. Enter this flag when you
want to connect to a remote terminal using a modem
set to another baud rate, such as 300 baud (often used
to transfer files) or 2400 baud (for high-speed
transmissions).

telno Specify Telephone Number

Specifies the phone number of the remote modem.
You can enter a local or a long-distance number, and
you can specify secondary dial tones such as 9 for an
outside line, or an access code.

Use an equal sign (=) following a secondary dial tone
(9=), and an appropriately placed dash (-) for delays
(687-5092). Telephone numbers may contain up to 31
characters, and may include digits from 0 to 9, and any
of the characters - (dash), = (equal sign), * (asterisk)
and # (number sign).

For a complete description of the ct command, see the OSF/l Command
Reference.

OSF/1 User's Guide 11-33

Communications Tasks

11-34

The ct Examples

Example 1: Dialing an Internal Number

Suppose that you wish to connect to a remote terminal modem within your
company with the internal telephone number 7-6092. To do so, perform the
following procedure:

1. Enter the following:

ct 76092

The system displays:

Allocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

2. Press y to hang up any other phone lines currently in use and
establish your ct connection. Press n to cancel the command.

Example 2: Dialing an External Local Number

Suppose that you wish to connect to a remote terminal modem with a local
telephone number, specifying 9 for an outside line and a 2-minute wait for
the modem line. To do so, perform the following procedure:

1. Enter the following:

ct -w2 9=6340043

The system displays:

Allocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

2. Press y to hang up any other phone lines currently in use and
establish your ct connection. Press n to cancel the command.

Using the UUCP Networking Utilities

Example 3: Dialing a Long-Distance Number

Suppose that you wish to connect to a remote terminal with a long­
distance number, specifying 9 for an outside line and a 5-minute wait. To
do so, perform the following procedure:

1. Enter the following:

ct -w5 9=15023597824

The system displays:

Allocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

2. Press y to hang up any other phone lines currently in use and
establish your ct connection. Press n to cancel the command.

For additional information about the ct command, see the OSF/1
Command Reference.

Running Remote Commands (uux)

The uux command allows you to run a command on a designated remote
system while continuing with other work on your local system.

The command first gathers various files from the designated systems, if
necessary. It then runs a specified OSF/1 command on a designated
system. (If the specified command does not exist on the designated
system, the uux command will not execute.) If the command you enter on
the designated system produces some type of output, such as the cat or diff
command, you can instruct uux to place that output in a specified file on
any specified OSF/1 system.

Note: You can use the uux command on any OSF/1 system
configured to run the specified command. For security
reasons, however, certain sites may restrict the use of
particular commands. Some systems, for example, may
permit access only to the mail command.

OSF/1 User's Guide 11-35

Communications Tasks

Note: In addition, your system may contain enhanced security
features that may affect whether you can run commands on
other systems. If so, see your system administrator and the
OSF/l Security Features User's Guide for details.

You can enter the uux command in either of the following formats:

• uux [flags] "commandstring >destination_ name"

• uux [flags] commandstring {destination name}

The flags entry specifies options that modify the operation of the
command. The commandstring entry specifies the name of the command
you wish to run on the remote system. The destination_ name specifies the
system and file in which you wish to store the output of the remote
command.

In the first format, notice the set of double quotes (" .. ")when you use the
> (greater than) symbol to direct the output of the remote command to the
destination name.

In the second format, you must type a backslash, a left brace, the
destination name followed by a second backslash, and a right brace \ {. .
.\}.You need to include the backslashes because the left and right braces
are special characters to the shell command interpreter. For examples of
these forms, see "Additional Information About the uux Command" later
in this chapter.

Table 11-6 describes uux command line entries.

Table 11-6. The uux Command Flags and Entries

Flag/Entry Description

-n No Notification Message

Normally, the uux command notifies you through the
mail system about whether the command executed
successfully on the designated system. The -n flag
instructs uux not to send you this notification.

11-36

Flag/Entry

-z

-j

commandstring

OSF/1 User's Guide

Using the UUCP Networking Utilities

Description

The -n flag and the -z flag are mutually exclusive. You
may use one or the other with uux, but not both.

Failure Message Only

Instructs uux to notify you only if the command fails to
execute successfully on the designated system. In that
case, uux sends you notification about the failure
through the mail.

The -n flag and the -z flag are mutually exclusive. You
may use one or the other with uux, but not both.

Display Job ID

Displays the job identification number of the process
that is running the remote command. You can use this
job ID with the uustat command to check the status of
the remote command, or use it with the uustat -k
("kill") flag to terminate the remote command before it
finishes executing.

For information about the uustat command, see
"Getting Status Information about uucp Jobs (uustat)"
later in this chapter.

Name of Remote Command and System It Runs On

Specifies any OSF/1 command accepted by the
designated system.

In the Bourne and Korn shells, to specify the command
and the system on which you want to run the
command, type the name of the system, an
exclamation point (!), and the command name as
follows:

system _name!commandstring

For C shell users, to specify the command and the
system on which you want to run the command, type
the name of the system, a backslash (\), an
exclamation point (!), and the command name as
follows:

system_ name\!commandstring

11-37

Communications Tasks

Flag/Entry Description

For more information on these formats, see "The uux
Examples" and "Additional Information About the uux
Command" later in this chapter.

destination name Name of Destination System and File

11-38

Specifies the system and file in which you want to store
the output of the remote command.

Suppose, for example, that you want a listing of all the
files in a certain directory on a remote system. Rather
than having the OSF/1 Is command simply display the
filenames on the remote system, you can specify that
you want the uux command to place the directory
listing in a file on your own system by entering the
appropriate destination name.

In the Bourne and Korn shells, to specify the system
and the file in which you wish to store the output, type
the name of the system, an exclamation point (!), and
the pathname as follows:

system_ name!pathname

In the C shell, to specify the system and the file in
which you wish to store the output, type the name of
the system, a backslash (\), an exclamation point (!),
and the pathname as follows:

system_ name\!pathname

For more information on these formats, see "The uux
Examples" and "Additional Information About the uux
Command" later in this chapter.

When specifying the pathname, you may use a full
name, or a pathname preceded by-user. In this case,
replace the user entry with a login name that refers to
the user's login directory.

Note that when specifying an output file, it must be
writable. This means that the permission for the file
should allow you to place data in it. If you are uncertain
about the permission status of a specific target output
file, direct the results of the command to the

Using the UUCP Networking Utilities

Flag/Entry Description

/var/spool/uucppublic public directory. Remember
that -uucp/ is a shorthand way of specifying the
/var/spool/uucppublic public directory.

For a complete description of the uux command, see the OSF/l Command
Reference.

The uux Examples

Example 1: Concatenating Two Files and Storing the Output in a
Third File

Suppose that you wish to concatenate two files (one on system zeus and
one on system hera) and then direct the output to a third file on system
zeus. Also assume that you are using the Bourne or the Korn shell.

To do so, enter the following command in either of the following forms:

uux "zeus!cat zeus!/u/amy/fl hera!/usr/amy/f2 > zeus!/u/amy/catout"

or

uux zeus!cat zeus!/u/amy/fl hera!/usr/amy/f2 \{zeus!/u/amy/catout\}

Either form of uux executes the cat command, which is stored on system
zeus. The cat command combines the file fl, located in the directory
/u/amy on zeus, with the file f2, located in /usr/amy on system hera. The
command then places the new file on system zeus under the filename
catout in the directory /u/amy.

To perform the same operation in the C shell, enter either one of the
following forms:

uux "zeus\!cat zeus\!/u/amy/fl hera\!/usr/amy/f2 > zeus\!/u/amy/catout"

or

uux zeus\!cat zeus\!/u/amy/fl hera\!/usr/amy/f2 \{zeus\!/u/amy/catout\}

OSF/1 User's Guide 11-39

Communications Tasks

Note that if you request a command that the remote system cannot run,
you will receive a mail message to that effect from the remote system.

Example 2: Copying a File from a Remote System

Assume that you are using the C shell. To copy the file report6 on remote
system boston and place the output in the file report6 in the public
directory on your local system, enter either of the following forms:

uux "cp boston\!/reports/report6 > -uucp/report6"

or

uux cp boston\!/reports/report6 \ruucp/report6\}

Additional Information About the uux Command

11-40

The following are some examples of uux features that you may find
helpful:

• To run commands on more than one system, enter the information on
separate command lines as follows:

$ uux merlin!print /reports/memos/charles
$ uux zeus!print /test/examples/exampl
$

• In addition to the two forms of the destination name that you can use
with the uux command (see Table 11-6), you can also represent your
local system in several different ways. The uux command assumes
your local system is the default, so the easiest way to represent the
local system is not to specify it in the command line.

For example, assume that you wish to run the ditl' command, which is
on your local system hera. You wish to compare the file /u/fl on
system venus with the file /u/f2 on system merlin. Last you wish to
specify that the output of the ditl' command should be placed in the
file /u/f3 on your local computer. To accomplish this, you enter:

uux "diff venus!/u/fl merlin!/u/f2 > /u/f3"

Using the UUCP Networking Utilities

Note that because your local system is the default, you need not enter
both the system name and the exclamation point.

However, if you wish to specify your local system, you could enter it
this way:

uux "hera!diff venus!/u/O merlin!/u/f2 > hera!/u/f3"

You can also enter the destination name in the following form:

uux hera!diff venus!/u/O merlin!/u/f2 \e{hera!/u/f3\}

You can also represent the local system using just an exclamation
point, as in the following example:

uux "!diff venus!/u/O merlin!/u/f2 > !/u/f3"

• When specifying the pathname for a file you wish to use as the source
in running commands such as diff or cat, you may include the
following shell pattern-matching characters, which the remote system
can interpret:

?

*
[(left bracket)
] (right bracket)

Enclose these characters either between two slashes (\ .. \),or between
a pair of quotes (" .. "), so that the local shell cannot interpret the
characters before uux sends the command to the remote system.

Do not use pattern-matching characters in destination names.

• If you use the following shell characters, place either \ .. \ or "
around the individual character or the entire command string:

< (less than)
>(greater than)

"

Do not use the shell redirection characters (<< and >>) because they
do not work in the UUCP program.

OSF/1 User's Guide 11-41

Communications Tasks

For additional information about the uux command, see the OSF/l
Command Reference.

Sending and Receiving Files (uucp)

11-42

In general, you will probably use the UUCP networking utilities primarily
to send and receive files. The uucp command and its options enable you
to copy one or more source files from one computer running under the
OSF/l operating system (or some other system based on the UNIX
operating system) to one or more destination files on a system similarly
based on the UNIX operating system that supports UUCP.

You can use uucp to copy files between and among systems in the
following ways:

• Between a local system and a remote system

• Between two remote systems

• Between two systems through an intermediate system

• Within your local system

Note: Any sending and receiving operation you perform is subject
to the security features in effect on both the local and
remote systems. In addition, your system may contain
enhanced security features that may affect whether you can
send and receive files. If so, see your system administrator
and the OSF/l Security Features User's Guide for details.

The uucp command has the following format:

uucp [flags J source_ name(s) destination_ name

The flags entry specifies options that modify the operation of the
command. The source_ name entry specifies the system and the pathname
of the file you wish to copy to the remote system. The destination_ name
specifies the system, directory, and file in which you wish to copy the
source file.

Table 11-7 describes uucp command line entries.

Using the UUCP Networking Utilities

Table 11-7. The uucp Command Flags and Entries

Flag/Entry

-d

-f

-j

-m

-nusername

OSF/1 User's Guide

Description

Copy Files and Create Intermediate Directories

Creates any intermediate directories needed to copy a
source file to a destination file on a remote system. For
example, instead of first creating a directory and then
copying a file to it, you can simply enter uucp with the
destination pathname, and the required directory will
be created.

The -d flag is the default.

Copy File Without Creating Intermediate Directories

Instructs uucp not to create any intermediate
directories during the file transfer. Use this flag if the
destination directory already exists and you do not
want uucp to write over it.

Display Job ID

Displays the job identification number of the transfer
operation. You can use this job ID with the uustat
command to check the status of the transfer, or use it
with uustat -k ("kill") to terminate the transfer before it
is completed. See "Getting Status Information about
uucp Jobs (uustat)" later in this chapter for information
about the uustat command.

Mail Message to Sender

Specifies that a mail message should be sent to you
when the source file is successfully copied to the
destination file on a remote system. The message
goes to your mail box, /usr/mail/usemame. The mail
command does not send a message for a local
transfer.

Notify Recipient

Notifies the recipient on the remote system identified
by the username entry that a file has been sent. The

11-43

Communications Tasks

Flag/Entry

source name

Description

mail system does not send a message for a local
transfer.

Pathname of Source File

Specifies the pathname of the file that you want to
send or receive. For detailed information about
pathnames used with the UUCP Networking Utilities,
see "Pathnames Used with UUCP Commands".

In the Bourne and Korn shells, to specify the
source_ name, type the name of the system, an
exclamation point(!), and the pathname as follows:

system_ name!pathname

In the C shell, to specify the source_name, type the
name of the system, a backslash (\), an exclamation
point (!), and the pathname as follows:

system_ name\!pathname

For all shell users, if the pathname of the source file is
on your local system, you do not have to specify
system_ name.

destination name Pathname of Destination File

11-44

Specifies the pathname of the file (or directory) to
which the copy is being sent.

In the Bourne and Korn shells, to specify the
destination_name, type the name of the system, an
exclamation point(!), and the pathname as follows:

system_ name!pathname

In the C shell, to specify the destination_ name, type
the name of the system, a backslash (\), an
exclamation point (!), and the pathname as follows:

system_ name\!pathname

For all shell users, if the pathname of the source file is
on your local system, you do not have to specify
system_ name.

Using the UUCP Networking Utilities

Flag/Entry Description

For detailed information about pathnames used with
the UUCP Networking Utilities, see "Pathnames Used
with UUCP Commands" earlier in this chapter.

For information about other uucp options, see the OSF/1 Command
Reference.

Note: You may find that file transfers may fail because of security
restrictions. Because the uucp command does not display
error messages for file transfers that fail because of security
restrictions, you must use the uustat or uulog commands to
check on the status of uucp jobs. See the appropriate
sections later in this chapter for information about uustat
and uulog commands. Also see ''The uucp Command and
System Security'' next in this chapter for information on
system security.

The uucp Command and System Security

You can always transfer your own protected files as well as files in
protected directories that you own. However, you may have problems
sending and receiving files that you do not own because of system
security restrictions. For example, after attempting to copy a file from
your local directory to a remote system directory, you may find that the
file has not been copied because the remote file system is protected.

Security restrictions are defined by the system administrator in a special
file to prevent unwarranted use by remote users. As a result, you may find
that only certain parts of the local or remote file system are accessible.

To minimize problems with file transfers, many sites make the public
uucp directory usr/spool/uucppublic available for receiving and sending
files. This directory gives everyone read and write access, thereby
bypassing potential security restrictions. You can use a tilde (1 and the
name of the command Cuucp) as a shorthand way of specifying this
directory.

OSF/1 User's Guide 11-45

Communications Tasks

In addition, your system may contain enhanced security features that may
affect whether files can be transferred. If so, see your system
administrator and the OSF/l Security Features User's Guide for details.

The uucp Examples (Bourne and Korn Shells)

11-46

Example 1: Copying a File from a Local to a Remote System

Assume that you wish to copy a local file called /meteors to the file
/solar/stats in the public directory on the remote system galaxy. To copy
this file directly, enter:

uucp /meteors galaxyr-uucp/solar/stats

Note that the -uucp entry preceding the name /solar/stats is a shorthand
method of specifying the public directory. You can also enter the full
destination pathname:

galaxy!/var/spool/uucppublic/solar/stats

Example 2: Copying a File Through an Intermediate System

Assume that you wish to send a copy of /meteors to the file /solar/stats
on system galaxy! by way of the intermediate system milkyway!. To do
so, enter:

uucp /meteors milkyway!galaxy!-uucp/solar/stats

UUCP routes the transfer from your system through system milkyway!
and then to the public directory on system galaxy!.

Example 3: Copying a File from a Remote System

Assume that you wish to get the file /cells/typel from system biochem!
and store it in a file called /drmsg/research on your local system. To do
so, enter:

uucp biochem!/cells/typel /drmsg/research

Using the UUCP Networking Utilities

Example 4: Copying Multiple Files from a Remote System

Assume that you wish to copy multiple files from the remote system zeus
to your local public directory. To do so, enter:

uucp zeus/u/amy/report* -uucp

The uucp Examples (C Shell)

Example 1: Copying a File from a Local to a Remote System

To copy marchsales on your local system to the public directory on
remote system hera, enter:

uucp marchsales hera\!-uucp

Example 2: Copying a File from a Remote to a Local System

To copy report3 from the /usr/reports directory on system hera to the
public directory on your own system, enter:

uucp hera\!/usr/reports/report3 -uucp

Example 3: Copying Multiple Files from a Remote to a Local System

Assume that the /user/amy/reports directory on the remote system zeus
contains a number of files with names beginning with the character string
report. To copy all these files to your local public directory, enter either
of the following forms:

uucp zeus\!/user/amy/report'*' -uucp

or

uucp "zeus\!/user/amy/report*" -uucp

In the first format, the pattern-matching character * in the pathname of
the source files is enclosed in single quotes. In the second format, the
entire pathname of the source files is enclosed in double quotes. In both
examples, the multiple source files are copied to the public directory on
the local system.

OSF/1 User's Guide 11-47

Communications Tasks

Another Method for Transferring and Handling Files
(uuto, unpick)

11-48

In addition to the uucp command, the UUCP networking utilities
provides another command that enables you to copy files from one OSF/l
system to another OSF/l system. The uuto command actually uses uucp
to transfer the specified file(s), but uuto makes the whole process easier
for both the sender and the recipient.

The uuto command sends a specified file or files from one system to a
specific user on another system. The command places the copied file(s) in
the public directory on the recipient's system, and the system notifies the
recipient that a file has arrived.

Once the file is in the UUCP public directory, the user enters the uupick
command, which displays a message that file name has arrived from
system name. The user then enters one of the uupick options for handling
the file, such as deleting it or moving it to another directory.

Following is an overview of the way in which you can use the uuto and
uupick commands to send and receive a file:

1. The sender enters the uuto command to copy one or more files to a
specific username on another system.

2. The uucp command then sends the file(s) to
/var/spool/uucppublic, the UUCP public directory. In this case,
uucp also creates (if it does not already exist) an additional
directory called receive, plus the directory /username/system. The
full pathname to the copied file is therefore:

/var/spool/uucppublic/receive/usemame/system/file

The rmail command then notifies the recipient that a file (or files)
has arrived.

3. The recipient enters the uupick command.

Using the UUCP Networking Utilities

4. The unpick command searches the public directory for files sent to
the recipient and notifies the recipient about each file it locates.

5. Using a series of unpick options, the recipient saves or deletes each
file.

You can also use the uuto and unpick commands to transfer files to a
specific ID within the local system. Again, uuto places the copied file(s)
in the UUCP public directory on the local system.

More information on uuto and unpick follows. Refer also to the OSF/l
Command Reference.

Note: Any transfer operation you perform is subject to the
security features in effect on both the local and remote
systems. In addition, your system may contain enhanced
security features that may affect whether you can transfer
files. If so, see your system administrator and the OSF/l
Security Features User's Guide for details.

Sending Files to a Specific ID (unto)

The uuto command copies one or more source files from one OSF/1
system to a specific user on another OSF/1 system. The command stores
the file in the public directory on the destination system until the
specified user enters the unpick command to locate and handle the file.

The uuto command has the following general format:

uuto [flags] file_ name destination_ name

The flags entry specifies options that modify the operation of the
command. The file_ name entry specifies the pathname of the source file.
The destination_ name specifies the system, directory, and file in which
you wish to copy the source file.

Table 11-8 describes uuto command line entries.

OSF/1 User's Guide 11-49

Communications Tasks

Table 11-8. The uuto Command Flags and Entries

Flag/Entry

-m

-p

file name

destination name

Description

Mail Message to Sender
Notifies you, the sender, when the uuto command
has successfully copied the source file(s) to the
specified username on the specified system.

Copy File to Spool Directory

Sends the source file(s) to the spool directory on
your local system before actually transferring the
copy of the file(s) to the public directory on the
specified system. Without this flag, uuto copies
the source file(s) to the following directory:

/var/spool/uucppublic/receive/usemame/system/fi/e(s).

Pathname of Source File

Specifies the pathname of the source file. This
may be a simple filename if the file you are
sending is in the directory from which you are
entering the uuto command. Otherwise, enter the
complete pathname of the file.

Pathname of Destination

The destination name is the pathname to the
specific location to which you want to copy the
source file. This pathname must include the
username of the person to whom you are sending
the file.

The destination_ name has the following form:

system!usemame

where system is the name of the remote computer
and username is the username of the recipient.
When copying a file from one location to another
location on your local system, the
destination_ name can be simply the name of the
user to whom you are sending the file.

For more information about uuto, see the OSF/l Command Reference.

11-50

Using the UUCP Networking Utilities

The uuto Examples

Example 1: Sending a File to a Remote System

To send the file /usr/bin/data/private to a user with the ID monique on
remote system venus, enter:

uuto /usr/bin/data/private venus!monique

The uuto command copies the file and sends it to the public directory on
system venus. The rmail command then sends user monique a mail
message that the file has arrived. Monique enters the unpick command
to locate and handle the transferred file.

For more information about using unpick, see ''Locating Files for a
Specific ID (unpick)" next in this chapter.

Example 2: Sending a File Within Your System

To send the file /usr/research/filel to user amy, enter:

uuto /usr/research/filel amy

Note that no mail message is sent to Amy or any recipient in a local
transfer of this kind.

Locating Files for a Specific ID (uupick)

When uuto copies a file or files to your user ID, UUCP places the file(s)
in the /var/spool/uucppublic/receive/username/ system/file(s) public
directory on your local system, and rmail notifies you that the file has
arrived. When you receive this message, enter the unpick command to
complete the transfer and handle the file(s).

Following is the general format of the unpick command:

uupick

As you can see, unpick does not have command flags. It does, however,
have options that enable you to handle the file(s) sent to you with uuto.

OSF/1 User's Guide 11-51

Communications Tasks

Following is a list of the unpick user options (note that the option is not
preceded by a dash):

* (asterisk)
new line (<Return>)
a [dir]
d
m[dir]
p
q or <Ctrl-d>
!command

After notifying you that a file has been sent from system, the unpick
command displays a question mark (?) as a prompt. This indicates that
you can now enter one of the file-handling options shown previously.
Table 11-9 describes these unpick command options.

Table 11-9. The uupick Command Options

Options

*

<Return>

a [dir]

d

11-52

Description

Display uupick Options

Instructs uupick to display all uupick file-handling
options.

Next File

Pressing <Return> signals uupick to move on to the next
file in the directory.

Move All Files

Enables you to move all your uuto files currently in the
public directory into a specified directory on your local
system or a remote system. The default is your current
directory (that is, the directory you were in when you
entered the uupick command). You can use either a full
pathname or a relative pathname to specify the directory.

Delete File

The d option enables you to delete the specified file.

Using the UUCP Networking Utilities

Options Description

m [ditj Move Specified File

Enables you to move a specified file to a specified
directory. Again, the default is your current directory, and
you may use either full or relative pathnames.

p Display File

Enables you to display the file on your workstation.

q or <Ctrl-d> Quit uupick

The q option enables you to leave the uupick command
without actually doing anything about the file(s) in the
public directory. You can also press <Ctrl-d> to quit the
command.

!command Run Specified Command

Enables you to leave the uupick command and return to
the OSF/1 prompt to run a specified OSF/1 command.
After the command executes, the system automatically
returns to uupick so you can continue handling the uuto
files in the public directory.

For more information about uupick, see the OSF/l Command Reference.

A uupick Example

Assume that a mail message informs you a file has been sent. A user on
system boston has sent you the file sales. To retrieve the file, do the
following:

1. Enter the uupick command:

uupick

The following message is displayed:

from system boston: file sales
?

OSF/1 User's Guide 11-53

Communications Tasks

2. At the ? prompt, enter a unpick user option indicating how you
want to handle the file. For now, you wish to move the file to your
current directory. As a result, you enter:

?m

3. Enter q at the ? prompt to stop reviewing files.

Displaying the Status of UUCP Jobs

UUCP has two commands that enable you to get information about the
status of a particular operation: uustat and uulog.

The uustat command reports the status of various UUCP networking
utilities operations, including the following:

• File transfers initiated with the uucp command, discussed earlier in
this chapter in "Sending and Receiving Files (uucp)."

• Commands invoked with the uux command that are running on
designated systems, discussed earlier in this chapter in "Running
Remote Commands (uux)."

• Files copied with the uuto command, discussed earlier in this chapter
in "Another Method for Transferring and Handling Files (uuto,
unpick)."

For more information on the uustat command, see the following section.

Getting Status Information about UUCP Jobs (uustat)

11-54

The uustat command displays information about the progress of various
jobs initiated with UUCP networking utilities commands. This command
is particularly useful in monitoring file transfers requested with the uucp
and uuto commands, and command executions requested with the uux
command.

Using the UUCP Networking Utilities

In addition, uustat gives you limited control over jobs that you have
queued to run on a remote computer. Not only can you check the general
status of UUCP connections to other systems and the progress of UUCP
file transfers and command executions, but you can also use uustat to
cancel copy requests invoked with the uucp command.

The status reports generated by uustat are displayed on your workstation
screen in this basic form:

jobid date/time status system_ name username size file

For more information on status reports, see "Additional Information
About the uustat Command" later in this chapter.

Note: Any status display operation you perform is subject to the
security features in effect on both the local and remote
systems. In addition, your system may contain enhanced
security features that may affect whether you can display
status information. If so, see your system administrator and
the OSF/l Security Features User's Guide for details.

The uustat command has the following general format:

uustat [flags]

The flags entry specifies options that modify the operation of the
command.

You may enter uustat with one or more flags. Following are some of the
available flags, which are mutually exclusive:

-a
-kjobid
-m
-q
-r jobid

You can also use either or both of the following flags with uustat:

-uuser
-sfile

Table 11-10 describes the uustat command flags.

OSF/1 User's Guide 11-55

Communications Tasks

Table 11-10. The uustat Command Flags

Flags

-a

-kjobid

-m

-q

11-56

Description

Display All Jobs in Queue (-a)

Displays information about all the jobs in the "holding"
queue, regardless of the user who entered the original
UUCP command. The holding queue lists those jobs that
have not executed or are not scheduled for execution.

The holding queue lists all jobs that have not executed
during a set period of time. For information about the
UUCP queues, refer to "Additional Information about the
uustat Command" next in this chapter.

Cancel Job

Cancels (kills) the UUCP process specified by the jobid.
This is useful, for example, when you want to cancel a file
transfer or copy request, a remote printing job, and so on.

You can cancel a job only if you are the user who entered
the original UUCP command specified by the jobid. (A
system administrator with superuser authority can also
cancel UUCP requests.)

For additional information about canceling a UUCP job,
see the OSF/1 Command Reference.

Most Recent Attempt

Reports on the status of your most recent attempt to
communicate with another computer through the UUCP
facility.

For example, the status is reported as successful if the
UUCP request executed. If the job was not completed,
UUCP reports an error message, such as Login
failed.

Jobs Currently in Queue

Lists the jobs currently queued for each computer. These
jobs are either waiting to execute, or in the process of
executing. If a status file exists for the computer, UUCP
reports its date, time, and the status information. Once

Flags

-r jobid

Using the UUCP Networking Utilities

Description

the process is completed, UUCP removes the job listing
from the current queue.

Rejuvenate Specified Job

Rejuvenates the UUCP process specified by the job
identification number. This flag enables you to mark files
in the holding queue with the current date and time, thus
ensuring that the cleanup operation does not delete these
files until the job's modification time reaches the end of
the allotted period.

For information about the UUCP queues, refer to
"Additional Information About the uustat Command" next
in this chapter. For information about cleaning up UUCP
queues, see your system administrator as well as the
discussions of the uucleanup command in the OSF/1
Command Reference.

-ssystem Jobs on Specified System

Reports the status of all UUCP requests that users have
entered to run on the computer specified by the system
entry.

-u username Jobs Requested by Specified User

Reports the status of all UUCP requests entered to run
that were specified by the user named in the username
entry.

You can use both the -ssystem and the -uusername flags
with the uustat command to get a status report on all
UUCP requests entered by a specified user on a
specified system.

For detailed information about the flags available with the uustat
command, see the OSF/1 Command Reference.

OSF/1 User's Guide 11-57

Communications Tasks

The uustat Examples

Example 1: Displaying All Jobs in the Holding Queue

To display the status of all UUCP jobs in the holding queue, enter the
following:

uustat -a

Refer to "Additional Information About the uustat Command" next in
this chapter for a sample of the output generated by this command.

Example 2: Displaying All Jobs in the Current Queue

To report the status of all the UUCP jobs either currently executing or
queued to run on each system, enter:

uustat -q

11-58

Sample output for this example is shown in ''Additional Information
About the uustat Command.''

Example 3: Displaying All Jobs in the Holding Queue for a Specific
System

To report the status of all jobs in the holding queue for system venus,
enter:

uustat -s venus

See "Additional Information About the uustat Command" for the
sample output for this command.

Example 4: Displaying All Jobs Requested by a Specific User

To report the status of jobs requested by user amy, enter:

uustat -u amy

Using the UUCP Networking Utilities

Additional Information About the uustat Command

The uustat command produces information about the status of various
requests that users have entered with one of the UUCP commands. The
type of information that uustat displays depends on the flag you enter
with it.

Because the -q and -a flags produce different types of listings, this
section distinguishes between the following types of output information:

• The output of the uustat -q command is called the the current queue.
The current queue lists the UUCP jobs either queued to run or
currently executing on one or more remote systems.

• The output of the uustat -a command is called the holding queue. The
holding queue lists all jobs that have not executed during a set period
of time.

Note: After the set time period has elapsed, the entries in the
holding queue can be deleted with the UUCP uucleanup
command. For detailed information about cleaning up
UUCP queues, see your system administrator as well as the
uucleanup entry in the OSF/l Command Reference.

The following list describes the kind of output displayed when using
selected uustat flags:

• When you enter the uustat -a command to examine the status of all
UUCP jobs in the holding queue, the system displays the following
type of output:

heraC3113
zeusN3130

11/06-17:47
11/06-09:14

s
R

hera lorenzo 289
zeus chang 338

merlinC3120 11/05-16:02
merlinC3119 11/05-12:32

s
s

merlin
merlin

amy
msg

828
rmail

D.venus471afd8
D.venus471bc0a
/u/amy/tt
amy

The first field is the job ID of the operation, which is followed in the
second field by the date and time that the UUCP command was
entered. The third field is either an S or an R, depending on whether
the job is to send or receive a file.

OSF/1 User's Guide 11-59

Communications Tasks

11-60

The fourth field is the name of the system on which the command was
entered, followed by the username of the person who entered the
command in the fifth field.

The sixth field is the size of the file, or, in the case of a remote
execution like the last entry in the example, the name of the remote
command. When the size is given, as in the first three lines of the
example output, the filename is also displayed.

The filename can be either the name given by the user, as in the
/u/amy/tt entry, or a name that UUCP assigns internally to data files
associated with remote executions, such as D.venus471afd8.

• When you enter the uustat -q command to report the status of all the
UUCP jobs either currently executing or queued to ,un on each
system, the following type of output is displayed:

merlin
hera
zeus

2C
4C
lC (2)

OS /12-09: 14
09/12-10:02
09/12-10:12

SUCCESSFUL
NO DEVICES AVAILABLE
CAN'T ACCESS DEVICE

This output tells how many command (C.) files are waiting for each
system. The date and time refer to the last time UUCP tried to
communicate with that system, and the message at the end of the line
reports the status of each interaction. The number in parentheses (2)
in the third line of this example indicates that the file has been in the
queue for 2 days.

• When you enter the uustat -ssystem command, UUCP displays the
following type of output for the specified system:

arthurC3114 11/06-16:50 S arthur
arthurN3219 11/05-10:12 S arthur

daemon 427 D.venus471994d
msg 278 D.hera471eac5

• The uustat -uuser command produces output similar to that produced
by the -s flag.

• In a status report, a number in parentheses next to the number of a
command file (a C. file) or an execute file (an X. file) represents the
age in days of the oldest C. or X. file for that system.

Using the UUCP Networking Utilities

The ''retry'' field indicates how many times the local system has
tried to communicate with a specified remote system since the last
successful UUCP connection.

The following list provides additional information about uustat flags:

• The -k jobid flag cancels a process only when that job is still on the
local computer. Once the UUCP facility has moved the request to a
remote computer for execution, you cannot use this flag to kill the
remote job.

• Entering uustat without any flags displays the status information for
your personal UUCP jobs (that is, for all the UUCP commands that
you have entered since the last time the holding queue was cleaned
up).

For more information about the uustat command, see your system
administrator and the OSF/l Command Reference.

OSF/1 User's Guide 11-61

Chapter 12

Using TCP/IP Commands

This chapter shows you how to use TCP/IP (Transmission Control
Protocol/Internet Protocol) on a network, such as Ethemet1. You use TCP/IP
to communicate with systems other than your own.

After completing this chapter, you will be able to do the following:

• Display information about users

• Display information about remote systems

• Transfer files between systems

• Copy files between systems

• Log in to remote systems

• Run commands on remote systems

• Display who is on remote systems

1. Ethernet is registered trademark of Xerox Corporation.

OSF/1 User's Guide 12-1

Communications Tasks

This chapter discusses a few of the basic commands you need to perform the
tasks previously listed. For more information on commands, file formats,
and network management tasks that are not discussed here, see the OSF/l
Network and Communications Administrator's Guide.

Note: Any TCP/IP operation you perform is subject to the security
features in effect on both the local and remote systems. In
addition, your system may contain enhanced security features
that may affect your TCP/IP operation. If so, see your system
administrator and the OSF/l Security Features User's Guide
for details.

Requesting Information About Users (finger)

12-2

To request information about current users on a specified system, use the
finger command.

The finger command has the following general format:

finger [user]@system_name

The user entry specifies the user about whom you wish to obtain
information. The @system_name entry species the system on which the user
resides. If you do not provide a username, the finger command provides a
list of all the current users.

If you do not specify a username, the system displays the following
information:

• Login name

• Full name

• Terminal name and write status (an * indicates that write status is
denied)

• Idle time

• Login time

• User's office location

Using TCP/IP Commands

If you specify a user or a list of users, finger displays the preceding
information as well as the following:

• User's home directory and login shell

• Any plan that the user has placed in the file .plan in their home
directory, and the project on which they are working from the file
.project in the home directory.

For example, assume that you wish to display information about users on
remote system boston. To do so, enter:

$ finger @boston

Information similar to the following is displayed:

[boston]
Login Name TTY Idle When
amy Amy Wilson pO 4 Thu 10:00
chang Peter Chang pl 2:58 Thu 10: 16

Office
345
103

For another example, assume that you wish to display information about
user geo on system zeus. To do so, enter:

$ finger geo@zeus

Information similar to the following is displayed:

Login name: geo In real life: George Garcia
Directory: /users/geo Shell: /usr/bin/csh
On since May 24 10:16:07 on ttyp4 from :0.0
58 minutes Idle Time
No Plan.

Note: If you do not specify a system_name, finger displays
information for users on your local system.

For more information on the finger command, see the OSF/1 Command
Reference.

OSF/1 User's Guide 12-3

Communications Tasks

Requesting Information About Remote Systems
(ruptime)

12-4

To use the ruptime command, your system must be running the rwhod
daemon.

To determine the status of the network and various remote systems, you can
use the ruptime command. The ruptime command displays the
operational systems on your network, as well as providing system statistics.
In other words, it displays the status of each host on a local network.

The ruptime command displays the following information:

• System name and status (up or down)

• The length of time the system has been up

• The number of users currently on the system

• Load average statistics

The general format of the ruptime command is the following:

ruptime

For example, to get a status report on the hosts on the local network, enter
the following:

$ ruptime

Information similar to the following is displayed:

hostl up 5:15, 4 users, load 0.09, 0.04, 0.04
host2 up 7:45, 3 users, load 0.08, 0.07, 0.04
host3 up 2:28, 0 users, load 0.01, 0.02, 0.03
host4 up 3+01:44, 1 user, load 0.01, 0.02, 0.03
host7 up 7: 43' 1 user, load 0.06, 0.12, 0.11

The ruptime command has flags that determine the kind and order of
information that is displayed. For more information on this command and
its flags, see the OSF/I Command Reference.

Using TCP/IP Commands

Transferring Files with ftp

You can transfer files between two OSF/1 systems or between an OSF/1
system and any system supporting the ftp command. This transfer
operation includes the following steps:

1. The ftp command makes a connection to the other system.

2. Once the connection is made, you issue subcommands that instruct
the system to transfer the file or files.

See "Using ftp Subcommands" next in this chapter for information
about these subcommands.

The ftp command has the following general format:

ftp system_ name

The system_ name entry is the name of the system you want to reach. This
may be another OSF/1 system, or another type of system to which you have
a connection. (A remote system is sometimes called the host computer.) If
you do not specify a system_ name on the command line, you must use the
open subcommand (see Table 12-1) inside the ftp program to make a
connection with a remote system.

When you see the ftp> prompt, enter the subcommands that you need to
make the file transfer. See "Using ftp Subcommands" for information
about these subcommands.

The ftp command has flags that can be specified on the command line for
more complex operations. For full details on those flags, see the OSF/l
Command Reference.

Note: Any transfer operation you perform is subject to the security
features in effect on both the local and remote systems. In
addition, your system may contain enhanced security features
that may affect whether files can be transferred. If so, see
your system administrator and the OSF/l Security Features
User's Guide for details.

OSF/1 User's Guide 12-5

Communications Tasks

12-6

As an overview of ftp operations, assume that you wish to reach system
host2 and log in. To do so, perform the following:

1. Enter the following:

$ ftp host2

When the connection is made, the system displays the following:

Connected to host2.

and prompts for a login name:

Name (host2: local user_name)

2. To log in to the remote system with your local usemame, press
<Return>. For example, if you used smith on the local system, press
<Return> when you see the following:

Name(host2:smith)

To log in to the remote system with a different usemame, type the
name after the displayed information and press <Return>. To log in
as sam, add the name as shown:

Name(host2:smith) sam

3. When prompted, enter a valid password. The prompt for this example
is

Password(host2:sam)

4. The prompt changes to the following:

ftp>

You now may enter any ftp subcommand. See the list of
subcommands and the steps for transferring files that follow.

Using TCP/IP Commands

Using ftp Subcommands

Once you log in to the remote system, you can transfer files or do other
tasks related to file transfer at the ftp> prompt.

The following is the procedure for using ftp subcommands:

1. Enter the subcommand for file transfer or a related task, adding any
required filename or pathname.

2. Continue entering subcommands until all the work is finished.

3. To exit ftp, enter the quit subcommand.

Table 12-1 describes the ftp subcommands that let you transfer files and
perform related tasks, such as changing the type of file transfer, displaying
information, and changing directory and filenames.

Table 12-1. The ftp Subcommands

Subcommand

![command [parameters]]

? [subcommand]

account [password]

ascii

OSF/1 User's Guide

Description

Invokes an interactive shell on the local host. An
optional command, with one or more optional
parameters, can be given with the shell
command.

Displays a message describing the
subcommand. If you do not specify
subcommand, ftp displays a list of known
subcommands.

Sends a supplemental password that a remote
host other than an OSF/1 system may require
before granting access to its resources. If the
password is not supplied with the command, the
user is prompted for the password. The
password does not appear on the screen.

Sets the file transfer type to network ASCII. This
is the default.

12-7

11·
I
~
I

Communications Tasks

Subcommand Description

binary Sets the file transfer type to binary image. This
may be more efficient when transferring non­
ASCII files.

bye Ends the file transfer session and exits ftp.
Same as quit.

cd remotedirectory Changes the working directory on the remote
host to the specified directory.

cdup Changes the working directory on the remote
host to the parent of the current directory.

delete remotefile Deletes the specified remote file.

dir [remotedirectory][loca/fi/e] Writes a listing of the contents of the
remotedirectory to the file /oca/fi/e. If directory is
not specified, dir lists the contents of the current
remote directory. If loca/file is not specified or is
a - (dash), dir displays the listing on the local
terminal.

get remotefile [localfile] Copies the remote file to the local host. If
localfile is not specified, the remote filename is
used locally.

help [subcommand] Displays help information. Refer to the ?
subcommand.

led [directory] Changes the working directory on the local host.
If you do not specify a directory, ftp uses your
home directory.

12-8

Is [remotedirectory] [localfile] Writes an abbreviated file listing of a remote
directory to a local file. If remotedirectory is not
specified, ftp lists the current remote directory.
If /ocalfile is not specified or is a - (dash), ftp
displays the listing on the local terminal.

mget remotefile [localfile] Copies the remote file to the local host. If
localfile is not specified, the remote filename is
used locally. The mget command allows you to
use pattern-matching characters to specify files.

Subcommand

mkdir [remotedirectory]

mput /ocalfile [remotefile]

open host [port]

put localfile [remotefile]

pwd

recv remotefile [localfile]

rename source destination

rmdir remotedirectory

runique

OSF/1 User's Guide

Using TCP/IP Commands

Description

Creates the directory remotedirectory on the
foreign host.

Stores a local file on the remote host. If you do
not specify remotefile, ftp uses the local
filename to name the remote file. The mput
command allows you to use pattern-matching
characters to specify files.

Establishes a connection with the remote
system, if you have not specified it on the
command line. If the optional port number is
specified, ftp will attempt to connect to a server
at that port. If the autologin feature is set (the
default), ftp will attempt to automatically log the
user in to the remote system.

Stores a local file on the remote host. If you do
not specify remotefile, ftp uses the local
filename to name the remote file.

Displays the name of the current directory on
the foreign host.

Copies the remote file to the local host. A
synonym for get.

Renames a file on the foreign host.

Removes the directory remotedirectory at the
foreign host.

Toggles, creating unique filenames for local
destination files during get operations. If unique
local filenames is off (the default), ftp overwrites
local files. Otherwise, if a local file has the same
name as specified for a local destination file, ftp
modifies the specified name of the local
destination file with a .1 extension. If a local file
is already using the new name, ftp appends the
extension .2 to the specified name, and so on.

12-9

Communications Tasks

Subcommand

quit

send loca/file [remotefile]

status

sunique

verbose

Description

If ftp cannot find a unique name, ftp reports an
error and the transfer does not take place. Note
that runique does not affect local filenames
generated from a shell command.

Ends the file transfer session and exits ftp. A
synonym for bye.

Stores a local file on the remote host. A
synonym for put.

Displays the current status of ftp, including the
current transfer mode (ascii or binary),
connection status, time-out value, and so on.

Toggles, creating unique filenames for remote
destination files during put operations. If unique
remote filenames is off (the default), ftp
overwrites remote files. Otherwise, if a remote
file has the same name as specified for a
remote destination file, the remote FTP server
modifies the name of the remote destination file.
This renaming mechanism is the same as the
runique command and must be supported on
the remote system.

Toggles verbose mode. When verbose mode is
on (the default), ftp displays all responses from
the remote FTP server. Additionally, ftp displays
statistics on all file transfers when the transfers
complete.

The following example shows how you can log in to a remote system, check
the current working directory, list its contents, transfer a file, and then end
the session. Assume that you are user tony on hostl and that you wish to
work on remote system host2.

1. Enter the following command:

$ ftp host2

12-10

Using TCP/IP Commands

If the connection to host2 is successful, information similar to the
following is displayed on the local system:

Connected to host2.
220 host2 FTP Server systemnameready.
Name (host2:tony): tony
Password:

2. Enter your name and password when prompted by the system. A
message similar to the following is then displayed on your local
system:

230 User tony logged in
ftp>

3. To set the file transfer type to binary, enter the binary subcommand
after the ftp> prompt:

ftp> binary

A message similar to the following is displayed on your local system:

200 Type set to I

4. To check the current working directory, enter the pwd command after
the ftp> prompt:

ftp> pwd

A message similar to the following is displayed on your local system:

257 "u/tony" is current directory

5. To list the contents of the current working directory, enter the ls
command after the ftp> prompt:

ftp> Is -I

OSF/1 User's Guide 12-11

Communications Tasks

A message similar to the following is displayed on your local system,
along with the output of the ls -1 command:

200 PORT command successful.
150 Opening data connection for /usr/bin/ls (192.9.200.1,1026) (0 bytes)
total 2
-rw-r--r-- 1 tony system 101 Jun 5 10:03 filel
-rw-r--r-- 1 tony system 171 Jun 5 10:03 file2
226 Transfer complete.

6. To transfer the file sales from the remote host to the local host, enter
the get subcommand. Note the file is being renamed newsales on
your local system:

ftp> get sales newsales

A message similar to the following is displayed on your local system:

200 PORT command successful.
150 Opening data connection for testfile (192.9.200.1,1029) (1201 bytes)
226 Transfer complete.
local:tmp.testfile remote:testfile

7. To end the ftp session, enter the quit subcommand:

ftp> quit
221 Goodbye.

$

Transferring Files with tftp

12-12

In addition to the ftp command, the OSF/l operating system provides
another way to transfer files. With the tftp command, you can transfer files
between two OSF/l systems or between an OSF/l system and a UNIX
based system.

Using TCP/IP Commands

Both ftp and tftp perform similar functions. However, tftp performs those
functions without logging you in to the remote system.

The tftp command has two general forms:

• Interactive form

• Command line form

The following sections describe both the interactive and the command line
forms of the tftp command.

Note: Any transfer operation you perform is subject to the security
features in effect on both the local and remote systems. In
addition, your system may contain enhanced security features
that may affect whether files can be transferred. If so, see
your system administrator and the OSF/l Security Features
User's Guide for details.

Interactive tftp

With interactive tftp, the file transfer operation includes the following
steps:

1. The tftp command makes a connection to the other system.

2. Once the connection is made, you issue subcommands that instruct
the system to transfer the file or files.

See "Using tftp Subcommands'' next in this chapter for information
about these subcommands.

The interactive tftp command has the following general format:

tftp system_ name

The system_ name entry is the name of the system you want to reach. This
may be another OSF/1 system, or another type of system to which you have
a connection. (A remote system is sometimes called the host computer.) If
you do not specify a system_ name on the command line, you must use
either the get or the put subcommands to make a connection with a remote
system.

OSF/1 User's Guide 12-13

Communications Tasks

When you see the tftp> prompt, enter the subcommands that you need to
make the file transfer. See "Using tftp Subcommands" next in this chapter
for information about these subcommands.

Assume that you wish to reach system host3. To do so, perform the
following:

1. Enter the following:

$ tftp host3

When the connection is made, the system displays the following
prompt:

tftp >

2. You now may enter any tftp subcommand. See the list of
subcommands in Table 12-2.

Using tftp Subcommands

12-14

When the t ftp> prompt appears, you can transfer files or do other tasks
related to file transfer.

The following is the procedure for using tftp subcommands:

1. Enter the subcommand for file transfer or a related task, adding any
required filename or pathname.

2. Continue entering subcommands until all the work is finished.

3. To exit tftp, enter the quit subcommand.

Table 12-2 describes the tftp subcommands that let you transfer files and
perform related tasks, such as changing the type of file transfer.

Using TCP/IP Commands

Table 12-2. The tftp Subcommands

Subcommand Description

? [subcommand] Displays help information. If a subcommand is
specified, only information about that subcommand
is displayed.

ascii Sets the file transfer type to network ASCII. This is
the default.

binary Sets the file transfer type to binary image. This
may be more efficient when transferring non-ASCII
files.

get remotefile [localfile] Transfers a file or set of files from the remote host
to the local host. The remotefile argument can be
specified in one of the following two ways:

• As a file that exists on the remote host if a
default host was already specified.

• As hostfile, where host is the remote host and
file is the name of the file to copy to the local
system. If this form of the argument is used, the
last host specified becomes the default host for
later transfers in this tftp session.

mode type Sets the type of transfer mode to that specified,
either ascii or binary. A transfer mode of ascii is
the default.

put /oca/file [remotefile] Transfers a file or set of files from the local host on
to the remote host. The remotefile argument can
be specified in one of the following two ways:

OSF/1 User's Guide

• As a file or directory that exists on the remote
host if a default host was already specified.

• As hostremotefile, where host is the remote
host and remotefile is the name of the file or
directory on the remote system. If this form of
the argument is used, the last host specified

12-15

Communications Tasks

12-16

Subcommand Description

quit

status

verbose

becomes the default host for later transfers in
this tftp session.

In either of these cases, the remote filename or
directory name must be a fully specified pathname,
even if the local and remote directories have the
same name. If a remote directory is specified, the
remote host is assumed to be a UNIX machine.

Exits tftp.

Shows the current status of tftp, including the
current transfer mode (ascii or binary), connection
status, time-out value, and so on.

Turns verbose mode, which displays additional
information during file transfer, on or off.

The following example shows how you can connect to a remote system,
host4, and then transfer a remote file to your local system:

1. Enter the following command:

$ tftp host4

If the connection to host4 is successful, the tftp> prompt is
displayed:

tftp>

2. To transfer a file memo6 from the remote host to the current
directory on your system, enter the get subcommand. Note the file is
being renamed newmemo on your local system.

t ftp> get /user/chang/memo6 newmemo
Received 7212 bytes in 9.4 seconds

3. To end the tftp session, enter the quit subcommand:

tftp> quit
$

Using TC:P/IP Commands

For more information on the tftp command, see the OSF/l Command
Reference.

Command Line tftp

With the command line form of tftp, you use flags instead of subcommands
to specify file transfer operations. There are two kinds of commands flags
you may use:

• Those that put (or write) a local file on to a remote system: -p or -w.

Because the -p or the -w flag can be used interchangeably, this section
discusses the -p flag only.

• Those that get (or read) remote files on to a local system: -g or -r.

Because the -g or the -r flag can be used interchangeably, this section
discusses the -g flag only.

If you wish to perform a local to remote file transfer, the general form of the
command line is the following:

tftp -p local.file remotehost remote/lie [mode]

The -p flag specifies that you wish to transfer a local file to a remote
system. The localfile entry specifies the local file you wish to transfer. The
remotehost entry is the name of the remote system to which you wish to
transfer the file. This may be another OSF/1 system, or another type of
system to which you have a connection. The remotefile entry specifies the
name of the file on the remote system. The mode entry specifies whether the
file transfer is netascii (ASCII) or image (binary).

If you wish to perform a remote to local file transfer, the general form of the
command line is the following:

tftp -g remote/Ile remotehost local.file [mode]

OSF/1 User's Guide 12-17

Communications Tasks

The -g flag specifies that you wish to transfer a remote file to a local
system. The remotefile entry specifies the file on the remote system that you
wish to transfer to the local system. The remotehost entry is the name of
the remote system from which you wish to transfer the file. This may be
another OSF/1 system, or another type of system to which you have a
connection. The localfile entry specifies the name of the file on the local
system. The mode entry specifies whether the file transfer is netascii
(ASCII) or image (binary).

The following example shows how you can transfer a binary file. To
transfer the file core in the current directory to the /tmp directory on
system host3, enter:

$ tftp -p core host3 /tmp/core image
Sent 309295 bytes in 15 seconds
$

For more information on the tftp command, see the OSF/l Command
Reference.

Copying Files (rep)

12-18

You can copy files or directories between two OSF/1 systems or an OSF/1
system and a UNIX based system with the rep command.

To copy a file from a local to a remote system, use the following general
format:

rep localfile hostname:jile

The localfile entry specifies the local file you wish to copy. The
hostname:file entry is the name of the remote system, as well as the name
you wish to give the copied file.

To copy a file from a remote system to your local system, use the following
general format:

rep hostname:jile local.file

Using TCP/IP Commands

The hostname:file entry is the name of the remote system as well as the
name of the file you wish to copy. The local.file entry specifies the name
the file will have on the local system.

The rep command also allows you to copy directory trees by specifying the
-r flag on the command line.

To copy a directory tree from a local system to a remote system, use the
following general format:

rep -r localdirectory hostname:directory

The -r flag specifies that you wish to copy a directory and all its
subdirectories. The localdirectory specifies the directory tree on your local
system that you wish to copy. The hostname:directory specifies the
directory name on the remote system to which you wish to copy the
directory tree.

To copy a directory tree from a remote system to your local system, use the
following general format:

rep -r hostname:directory localdirectory

The -r flag specifies that you wish to copy a directory and all its
subdirectories. The hostname:directory specifies the remote system as well
as the directory tree you wish to copy. The localdirectory specifies the
name of the directory on your local system to which you wish to copy the
directory tree.

Note: Any copy operation you perform is subject to the security
features in effect on both the local and remote systems. In
addition, your system may contain enhanced security features
that may affect whether files can be copied. If so, see your
system administrator and the OSF/l Security Features User's
Guide for details.

To use rep , one of the following must be true:

• Your local system is listed in the /etc/hosts.equiv file on the remote
system. As a result, your local system is considered as trusted. The
/etc/host.equiv file is maintained by the system administrator.

• Your system is listed in the .rhosts file in your home directory on the
remote system.

OSF/1 User's Guide 12-19

Communications Tasks

The following example copies the file newreport from the local directory
/usr/reports/newreport to the file /usr/amy/newreport on the remote
system host7:

$ rep /usr/reports/newreport host7:/usr/amy/newreport
$

This example copies the directory /usr/reports from the local host to the
directory user/status/newreports on remote system host2:

$ rep -r /usr/reports host2:/user/status/newreports
$

Logging In to Remote Systems

12-20

The OSF/1 operating system provides the following two commands that
allow you to log in to remote systems:

• The rlogin command: allows you to log in to an OSF/1 or OSF/1
compatible system.

• The telnet command: allows you to log in to an OSF/1 system or any
system supporting telnet.

The following sections describe the preceding commands.

Note: Any login operation you perform is subject to the security
features in effect on the remote systems. In addition, your
system may contain enhanced security features that may
affect your ability to haye a login session. If so, see your
system administrator and the OSF/1 Security Features User's
Guide for details.

Using TCP/IP Commands

Logging In with rlogin

You can log in to another system with the rlogin command. Once logged
in, you may enter any commands you wish, subject to security restraints.

The rlogin command has the following basic format:

rlogin [-I user] system_ name

The -1 user flag changes the remote usemame to the one you specify. This
practice is useful when you have permission to access files that belong to
another user. If you do not specify the -1 flag, your usemame is used by
default. The system_ name entry specifies that system with which you wish
to establish a login session.

Assume that you wish to reach system boston and log in as yourself. To do
so, perform the following:

1. Enter the following:

$ rlogin boston
Password:

2. Enter your password.

When the system prompt appears, you are logged in to the remote
system and can perform any tasks you wish, subject to security
restraints.

3. To close the connection and exit from the program, press <Ctrl-d>.

Assume that you wish to reach system ames and log in as another user,
chang. To do so, perform the following:

1. Enter the following:

$ rlogin -I chang ames
Password:

OSF/1 User's Guide 12-21

Communications Tasks

2. Enter your Chang's password.

When the system prompt appears, you are logged in to the remote
system and can perform any tasks you wish, subject to security
restraints.

3. To close the connection and exit from the program, press <Ctrl-d>.

When using rlogin, there are times when you may not be prompted for a
password during the login sequence.

• If your local system is listed in the /etc/hosts.equiv file on the remote
system, then your local system is regarded as a trusted system, and you
will not need to supply a password. The /etc/host.equiv file is
maintained by the system administrator.

• If the name of your system (and optionally, your usemame) are listed in
the .rhosts file in your home directory on the remote system, then you
will not need to supply a password.

For more information on rlogin, see the OSF/I Command Reference.

Logging In with telnet

12-22

You can log in to another system with the telnet command. The telnet
command implements the TELNET protocol, which opens a connection to
the system.

A telnet remote login sessions consists of the following:

1. The telnet command, which logs in to a remote system.

2. Once logged in, you may enter any commands you wish, subject to
security restraints.

3. You may also enter telnet subcommands that allow you to manage
the remote session.

The telnet command has the following basic format:

telnet system_ name

Using TCP/IP Commands

The system_ name entry specifies that system with which you wish to
establish a login session. If you omit the system_ name, you can use the
open subcommand (see Table 12-3) to create a connection after you enter
the telnet program.

Assume that you wish to reach system syst2 and log in. To do so, perform
the following:

1. Enter the following:

$ telnet syst2

When the command is accepted, several lines of message text
appear on the display, ending with the login prompt.

2. When prompted, enter your login name.

3. When prompted again, enter your password.

When the system prompt appears, you are logged in to the remote
system and can perform any tasks you wish, subject to security
features, or use telnet subcommands. For information on telnet
subcommands, see "Using telnet Subcommands" next in this
chapter.

4. To close the connection and exit from the program, press <Ctrl-]>,
and then enter q at the telnet prompt. If you are at the telnet>
prompt or at the system prompt, you can also press <Ctrl-d> to close
the connection and exit.

Using telnet Subcommands

Table 12-3 contains a partial list of telnet subcommands. Before entering
each subcommand, press <Ctrl-t>. The <Ctrl-t> escape sequence tells
the program that subsequent information is not text. Otherwise, the
program would interpret subcommands as text.

For each of the subcommands, you only need to type enough letters to
uniquely identify the command. (For example, q is sufficient for the quit
command.) For a complete list of telnet subcommands, see the OSF/1
Command Reference.

OSF/1 User's Guide 12-23

Communications Tasks

Table 12-3. The telnet Subcommands

12-24

Subcommand

? [subcommand]

close

Description

Displays help information. If a subcommand is
specified, only information about that
subcommand is displayed.

Closes the connection and returns to telnet
command mode.

display [argumen~ Displays all of the set and toggle values if no
argument is specified; otherwise, lists only those
values that match argument. For information on
the set and toggle commands, see the OSF/1
Command Reference.

open host [po~ Opens a connection to the specified host. The
host specification can be either a hostname or an
Internet address in dotted-decimal form. If no port
is given, telnet attempts to contact a TELNET
server at the default port.

quit Closes a connection and exits the telnet program.

status

z

A <Ctrl-d> in command mode also closes the
connection and exits.

Shows the status of telnet, including the current
mode and the currently connected remote host.

Opens a shell on the local host. The shell started
is the one specified by the SHELL environment
variable. When you exit the shell using <Ctrl-d>,
telnet returns to the remote session.

Using TCP/IP Commands

The following example shows you how to log in to remote system host3,
check the status of the telnet program with the status subcommand, and
then quit the program:

1. Enter the following:

$ telnet host3
Trying ...
Connected to host3
Escape character is 'Al'.
host3 TCP Telnet service.
login:
$

2. Enter your login ID and password.

3. Press <Ctrl-t> to receive the telnet> prompt.

4. Enter the status subcommand at the prompt:

telnet >status

Information similar to the following is then displayed on your
screen:

Connected to host3.
Operating in character-at-a-time mode.
Escape character is 'AT'.

To enter another subcommand, press <Ctrl-t>. To display the remote
prompt, press <Return>.

5. To quit the telnet session from the system prompt, press <Ctrl-d>.

To quit the telnet session from the telnet subcommand prompt,
enter q, or press <Ctrl-d>.

OSF/1 User's Guide 12-25

Communications Tasks

Executing Commands Remotely (rsh)

12-26

The rsh command allows you to run a command on a designated remote
system. Use rsh when you wish to run a single noninteractive command on
a UNIX based remote system. If you wish to run an interactive command
or a series of commands, use the rlogin command instead.

The rsh command has the following general format:

rsh [-I user] system_ name command

The -I user flag changes the remote usemame to the one you specify. This
practice is useful when you wish to perform operations that are accessible
to the specified user. If you do not specify the -1 flag, your usemame is
used by default. The system_ name entry specifies that system on which
you wish to run the command. The command entry specifies the command
you wish to run.

Note that if you do not specify the command entry, rsh prompts you for
login information.

To use rsh , one of the following must be true:

• Your local system is listed in the /etc/hosts.equiv file on the remote
system. As a result, your local system is considered as trusted. The
/etc/host.equiv file is maintained by the system administrator.

• Your system is listed in the .rhosts file in your home directory on the
remote system.

Assume that you wish to append the remote file test2 on remote system
host2 to the local file test3. To do so, enter the following:

$ rsh host2 cat test2 >> test3
$

Using TCP/IP Commands

Displaying Who Is on Remote Systems (rwho)

To use the rwho command, your system must be running the rwhod
daemon.

The rwho command displays the users logged in to hosts on the local
network. This command displays the following information:

• Usemame

• Remote system name

• Start date and time for all currently active users (those that have been
active during the last hour)

• Number of minutes currently active users have been idle (if they have
been inactive for more than 3 minutes but less than an hour)

The rwho command has the following general format:

rwho [-a]

The -a flag specifies that you wish to display all users, including those who
have been idle for an hour or more.

Assume that you wish to display all users currently logged in to systems on
the local network. To do so, enter the following:

$ rwho
sue syst2:pts5 Jan 17 06:30 :20
sue syst7:console Jan 17 06:25 :25
lorenzo systl:ptsO Jan 17 11 :20 :51
st eve systl:pts8 Jan 16 15:33 :42
helmut syst4:console Jan 17 16:32
tom systl:console Jan 17 13:14 :31
ling systl:pts7 Jan 17 13:15 :47
server syst2:console Jan 17 06:58 :20
al ice syst2:pts6 Jan 17 09:22
$

For more information on the rwho command, see the OSF/l Command
Reference.

OSF/1 User's Guide 12-27

System Administration
Tasks for the User

Part 3

Chapter 13

Adding and Removing Users and
Groups

This chapter shows you how to add and remove users and groups. Before
new users can log in successfully, they must be made known to the system.
Likewise, when users or groups no longer have privileges on the system, you
must remove their identity from the system.

Adding and removing individual users and groups is a routine but critical
activity that is usually performed by the system administrator. However,
there may be times when you will be required to perform such activities.

Because adding and removing users requires a higher familiarity with the
system than is expected from most general users, we urge you to see your
system administrator before attempting any operation in this chapter. Your
system administrator can provide you with essential information needed for
certain procedures and perhaps step you through the appropriate procedures.

You must have superuser privileges to add and remove users from the
system. To become a superuser, you must be logged in as root. To obtain
the password for root, see your system administrator. For more information
on superuser privileges and logging in as a superuser, see "Superuser
Concepts" in Chapter 5.

OSF/1 User's Guide 13-1

System Administration Tasks for the User

After completing this chapter, you will be able to do the following:

• Add new users to the system (interactively and manually)

• Create an environment for new users

• Add groups to the system

• Remove users and their environments from the system

• Become familiar with the files that are affected by adding and removing
users

Note: Your system may contain enhanced security features that may
affect how you add and remove users. If so, see your system
administrator and the OSF/1 Security Features
Administrator's Guide for details.

Adding Users

13-2

You may add a user to your system either interactively or manually. In most
cases, you will wish to add a new user interactively because it automates
many of the tasks involved in adding a new user to your system. However,
for those times that you wish to control the process more closely, you may
wish to add a user manually. See your system administrator for information
on which procedure to use.

Before adding a new user account, perform the following tasks:

• Verify the existence of the file system where the user's login directory
will reside. If the file system does not exist, see your system
administrator.

• Verify the existence of the group that the new user will join. If the
group does not exist, create the group now following the instructions in
"Adding a New Group to the /etc/group File" later in this chapter.

Once the file system and user's group exist, you can add a new user to your
system. The following sections describe both the interactive and manual
procedures.

Adding and Removing Users and Groups

Adding a New User Interactively

To add a new user interactively, use the adduser command, which
automates many of the tasks involved in adding a new user to your system.
The adduser command performs the following tasks:

• Adds a new user account to the system password file (/etc/passwd)

• Creates a login directory for the user

• Creates .cshrc, .login, and .profile files in the user's login directory

• Adds the user to a specific group in the system group file (/etc/group)

• Allows you to create a password for the user (optional) and places that
password in encrypted form in the /etc/passwd file

To access and use the adduser program, follow these steps:

1. As root, enter the following command:

add user

2. Respond to the prompts that the program displays. The program is
simple to use, and the prompts are self-explanatory. You will be
prompted for the following information:

• User's login name

• User's full name

• User's group

• User's login directory

• User's password (optional)

By default, the adduser command allows you to set up the account with a
user password. However, if you do not specify a password with the adduser
command, we recommend that you use the passwd command to create a
password for the new user. For information on the passwd command, see
"Assigning an Initial Password" later in this chapter.

For more information, see the adduser entry in the OSF/l System and
Network Administrator's Reference.

OSF/1 User's Guide 13-3

System Administration Tasks for the User

If your system has enhanced security features, see the OSF/l Security
Features Administrator's Guide for instructions on how to use the adduser
command.

Adding a New User Manually

To add a new user manually, perform the following tasks:

1. Add an entry in the /etc/passwd file for the new user.

2. Modify entries in the /etc/group file or add a new entry for the new
user.

3. Create the user's login directory and supply the default shell scripts
for the user's working environment.

4. Create the user's mail file.

5. Protect the user account by assigning a password.

The following sections describe these tasks and provide instructions for
editing the files manually.

Adding a User Account to the /etdpasswd File

13-4

For every new user, you must add a line to the /etc/passwd file. This file is a
very important component of your system because it identifies each user
(including root). If /etc/passwd is inaccessible or if it gets corrupted, you
risk disabling root and other users from logging in.

Use the vipw command to modify the /etc/passwd file. The vipw command
ensures that no other user or process can access the /etc/passwd file while
you are editing it. Before writing your changes back to the disk, vipw
performs several consistency checks. By default, vipw invokes the vi
editor. If you prefer to use another editor, assign the name of that editor to
the environment variable EDITOR in your .login (or .profile) file. For
additional information, see the vipw entry in the OSF/1 System and Network
Administrator's Reference.

Adding and Removing Users and Groups

The following section describes /etc/passwd file entries.

The /etc/passwd File Entries

Each entry in the /etc/passwd file is a single line that contains seven fields
per line. The fields are separated by colons and the last field ends with a
newline character. The following text shows the format of each entry and
describes the meaning of each field:

username:password: UID:GID:user _info:login_directory:login_shell

username

password

UID

GID

OSF/1 User's Guide

The name for the new user account. The username must
be unique and consist of from 1 to 8 bytes. Digits and
letters of your alphabet are allowed.

You cannot enter a password directly. Leave the
password field empty, or enter an asterisk (*). If the
password field contains an * (asterisk), a login to that
account is disabled. An empty password field allows
anyone who knows the login name to log in to your
system as that user. See ''Assigning an Initial Password''
later in this chapter for instructions on assigning a user
password with the passwd command. The passwd
command encrypts the specified password and inserts it
in the user's password field. Never try to edit in a
password.

The user ID for this account. This is an integer between 0
(zero) and 32,767 and must be unique for your system.
The user ID 0 (zero) is reserved for root. We recommend
that you assign user IDs in ascending order beginning
with I 00. Lower numbers are used for pseudo-users like
bin or daemon.

The group ID for this account. This is also an integer
between 0 (zero) and 32,767. The group ID 0 (zero) is
reserved for the group root. We recommend that you
assign group IDs in ascending order beginning with 100.

13-5

System Administration Tasks for the User

user_info This field contains additional user information such as the
full username, office address, telephone extension, and
private phone number. The finger command displays the
information contained in the user _info field. For
additional information about the finger command, refer
to the OSF/1 Command Reference. Users can change the
contents of their user _irifo field with the chfn command.
For additional information about the chfn command, see
the OSF/1 Command Reference.

login_directory The absolute pathname of the directory where the user is
located immediately after logging in. The login
command assigns this pathname to the shell variable
$HOME; users, however, can change the value of
$HOME. If a user changes the value, then the home
directory and the login directory are two different
directories.

login_shell

You create the login directory after adding a new user
account to the /etc/passwd file. Typically, the username is
used as the name of the login directory. For additional
information on creating a login directory, refer to the
chown command in the OSF/1 System and Network
Administrator's Reference, and to the mkdir, chmod, and
chgrp commands in the OSF/1 Command Reference.

The absolute pathname of the program that gets started
after the user has logged in. Normally, a shell is started.
If you leave this field empty, the Bourne shell /usr/bin/sh
is started. For information on the Bourne shell, refer to sh
in the OSF/1 Command Reference. Users can change
their login shell with the chsh command. For additional
information about the chsh command, refer to the OSF/1
Command Reference.

A Sample Entry in the /etc/passwd File

smith:*:201:20:Harold Smith,dev,x1234:/users/smith:/usr/bin/sh

13-6

The user account smith has user ID 201 and group ID 2 0. The login
directory is /users I smith and the Bourne shell (/usr /bin/ sh) is
defined as the command interpreter. Since the password field contains an *
(asterisk), the user smith cannot log in to the system.

Adding and Removing Users and Groups

See "Assigning an Initial Password" later in this chapter for instructions on
how to add a useable password to the /etc/passwd file with the passwd
command.

Adding a User Account to the /etdgroup File

The /etc/group file serves two purposes:

1. It assigns a name to a group ID defined in the /etc/passwd file.

2. It allows users to be members of more than one group by simply
adding the usemames to the corresponding group entries.

Before adding a user account to the /etc/group file, examine the file to
verify that the group to which you intend to add the new account exists:

• If the group already exists (there is a line entry in the file for that group),
then simply add the new user's name to the user field within the group's
line entry.

• If the group does not exist (there is no line entry in the file for that
group), then create a new entry for the group and include the new user's
name within that entry in the /etc/group file.

To add or edit an /etc/group file entry, open and edit the file manually. As a
precaution, before you modify the /etc/group file, copy it to a file called
/etc/group.old. As a result, if there are problems with the edited file, you
have the reliable older version ready for use. The following section
describes /etc/group file entries.

The /etc/group File Entries

Each entry in the /etc/group file is a single line that contains four fields. The
fields are separated by colons, and the last field ends with a newline
character.

OSF/1 User's Guide 13-7

System Administration Tasks for the User

13-8

The following text shows the format of each entry and describes the
meaning of each field:

groupname:password:GID:user 1 [,user2, ... ,userN]

groupname

password

GID

usernames

The name of the group defined by this entry. The
groupname consists of from 1 to 8 bytes. Digits and the
letters of your alphabet are allowed.

Leave the password field empty. Entries in this field are
ignored.

The group ID for this group. This is an integer between 0
(zero) and 32,767. The group ID 0 (zero) is reserved for
root. The group ID must be unique.

The usernames belonging to this group as defined in the
/etc/passwd file. If more than one user belongs to the
group, the user accounts are separated by commas. The
last user account ends with a newline character. The user
list is often so long that it extends over several screen
lines.

A user can be a member of more than one group.

Sample Entries in the /etc/group File

If you add a user account to an existing group, specify the username in the
user field of that group's line entry. The following two line entries in the
/etc/group file specify that user jerry is a member of two groups: tools
and depll:

tools::20:rosy,peter,harold,maude,jerry
depl1::21:bill,mary,ann,peter,dave,jerry

If the group does not already exist, add a new entry for the group in the
/etc/group file. For example, to create a new entry for a group called
software with the user jerry as a member, you would add this line to the
/etc/group file:

software: :22:jerry

Adding and Removing Users and Groups

Creating the Login ($HOME) Directory

Each user on your system needs a login ($HOME) directory. Use the
following steps to create this directory manually:

1. Verify that the file system intended for user directories already exists
before creating any login directories. If the file system does not exist,
see your system administrator.

2. Change your working directory to the target location in the file
system. For example, enter:

cd /users

3. Make a directory for the user. For example, enter:

mkdir jerry

4. Change ownership of the directory to the user. For example, enter:

chown jerry jerry

5. Change membership of the user to the desired group. For example,
enter:

chgrp tools jerry

6. Request a listing of the directory attributes. For example, enter:

ls -lgd jerry

7. Read the listing and confirm that the attributes correspond to the
user's needs. For example, here is output from the previous command:

drwxr-xr-x 2 jerry tools 24 Jan 9 10:48 jerry

OSF/1 User's Guide 13-9

System Administration Tasks for the User

Providing the Default Shell Scripts

Users can customize their working environment by modifying their login
scripts. When a user logs in to the system, the invoked login shell looks for
start-up files in the login directory. If the shell finds a login script, it reads
the file and executes the commands.

With the exception of the /etc/profile file, each login script begins with a .
(dot). Table 13-1 displays each shell, the corresponding login script, and
command control.

Table 13-1. Shells and Their Login Scripts

13-10

Shell Login Script Command Control

/usr/bin/csh .login Login shell
.chsrc Login shell and subshells

/usr/bin/ksh .profile Login shell
.kshrc Login shell and subshells

/usr/bin/sh /etc/profile Login shell
.profile Login shell

The system uses these login scripts · to initialize local and global
environment variables, shell variables and the terminal type. The distributed
software sometimes provides a set of default start-up files for your use. See
your system administrator for information about where to find the directory
containing these files.

If your distribution software does not contain these files, see your system
administrator. Once these files are available, you need only to copy them to
the login directory of each new user account.

To copy the login scripts for a new user to the user's login directory, follow
these steps:

1. Copy the login scripts for each shell to the new user's login directory
by entering the cp command. Assume that the /usr/skel contains the
default login scripts. As a result, to copy the Bourne Shell's .profile
login script to user jerry's directory, enter:

cp /usr/skeV.profile /users/jerry

Adding and Removing Users and Groups

2. Change directory to the new user's login directory and change file
ownership and access permissions from root to the new user. For
example, to make these changes to the .login file for user jerry, enter
this sequence of commands:

cd /users/jerry
chmod 644 .profile
chown jerry .profile

3. To confirm that the changes were made, get a long listing of the user
jerry files. For example, enter:

Is .-al /users/jerry

Creating a Mail File

The mail file must be created in the /usr/spool/mail directory. The
username must be used as the filename for the mail file. The mail command
writes all mail arriving for the specified username in the corresponding mail
file. When a user wants to read mail, the mail command opens and reads
from that user's mail file.

The following example illustrates the sequence of commands and output for
creating a mail file for user jerry:

cd /usr/spool/mail
touch jerry
chown jerry jerry
chgrp tools jerry
chmod 600 jerry
Is -lg jerry
-rw------- 1 jerry tools 0 Jan 11 17:54 jerry

The last line in the previous example specifies that user jerry owns the
mail file, he has read/write (-rw) permission for it, he belongs to the
tools group, and the file was created on Jan 11. Once the file exists,
Jerry can read incoming mail messages and delete the ones that he does not
want to keep. With the exception of root, only Jerry has access to this file.

OSF/1 User's Guide 13-11

System Administration Tasks for the User

Assigning an Initial Password

Use the passwd command to assign an initial password for a new user
account. When you enter the command, the program prompts for the
password. Each password should have at least 6 bytes, and can include
digits, symbols, and the letters of the alphabet. After you enter the
password, the program prompts you to retype it. The second entry serves as
verification.

To assign an initial password, follow these steps:

1. Enter the passwd command using this syntax:

passwd usemame

2. In response to the program's prompt, enter the new password for the
user. For example, the program displays these prompts:

New password:
Retype new password:

The echo is disabled while you enter the password, thus ensuring
password confidentiality. Be sure to tell the user what the password
is.

Refer to the OSF/1 Command Reference for a description of the passwd
command. If your system contains enhanced security features, refer to the
OSF/1 Security Features Administrator's Guide for information about
passwords on trusted systems.

Removing a User

13-12

There are several tasks that you perform and several files that you edit when
you remove a user from your system. You must do the following:

• Remove the user's files and directories

• Remove the user's entry from the /etc/group file

• Remove the user's entry from the /etc/passwd file

Adding and Removing Users and Groups

The following sections describe each task and provide instructions for
editing the files manually.

Removing the User's Files and Directories

Before removing anything that belongs to the user, follow these steps:

1. Make sure that the associated files and directories are no longer being
used by other users on your system.

2. Make sure that the user's login directory, and if necessary, other
directories are backed up to diskette or tape. See your system
administrator for details.

To remove the user's login directory with all of its files and subdirectories,
use the rm -r login_dir command. For example, to remove the login
directory and its entire tree substructure for user mary, enter:

rm -r /users/mary

To remove the user's mail file, use the rm mail_dir command. For example,
to remove user mary's mail file, enter:

rm /usr/spool/mail/mary

Make sure that there are no files left that were owned by the user. To check
this, use the find command. The find command locates user files that are
either links (identified by a notation of >l), user files within directories
(identified by a notation of 1), or user directories (identified by a notation of
2).

If your search locates any user files or directories, use the chown command
to change the file or directory ownership to a different user (one who still
needs to access the file). If you have no reason to save or maintain these
files, then remove them.

OSF/1 User's Guide 13-13

System Administration Tasks for the User

Removing the User's Account from the /etc/group File

Because users can be members of more than one group, you must modify all
line entries in the /etc/group file that contain the usemame within the user
field. However, you should always create a copy of the /etc/group file
before you modify it.

Removing the User's Account from the /etc/passwd File

After you remove the user's account from the /etc/passwd file, the user
account vanishes and the system no longer has a means of identifying the
user.

To remove the user's account, simply delete the line entry in the
/etc/passwd file that identifies the user. Use the vipw command to edit the
/etc/passwd file.

Check with the system administrator before attempting to remove a user's
account to verify whether your site maintains monthly system accounting.
If so, do not do not remove the user's line entry from the /etc/passwd file
until the monthly accounting has been done. Since the accounting
commands access the /etc/passwd file, removing the user entry would create
inaccuracies in your accounting.

However, since your primary goal is to restrict the user from gaining access
to the system, you can immediately suspend the user from logging in. To do
this, edit the /etc/passwd file and substitute an * (asterisk) for the encrypted
user password.

Adding and Removing Groups

13-14

Whenever you add or remove a group, you must modify the /etc/group file.
There are two primary reasons for grouping user accounts:

1. Several users work together on the same files and directories;
grouping these users together simplifies file and directory access.

Adding and Removing Users and Groups

2. Only certain users are allowed access to system files or directories;
grouping these users together simplifies the identification of those
privileged users.

The following sections tell you how to add and remove groups and which
commands to use.

Adding a New Group to the /etc/group File

When you want to add a new group, you must add a new entry within the
/etc/group file. You have two options for adding the entry:

1. Use the addgroup command to perform the work interactively.

2. Use an editor (vi, for example) to perform the work manually.

Before adding a new group manually, you need to make some decisions.
For example, you must have answers to the following questions:

• What will you name the group? The group name must be un~que.

• What number will you assign as the group ID (GID)? The number must
be unique within the /etc/group file.

• When can you include this information within the /etc/passwd file?

When you have answers to these questions (see your system administrator,
if necessary), you can proceed with the actual task. The following sections
describe how to do this.

Adding a New Group Interactively with the addgroup Program

To add a new group to the /etc/group file interactively, follow these steps:

1. As root, enter the following command:

addgroup

OSF/1 User's Guide 13-15

System Administration Tasks for the User

The program immediately displays its first prompt:

Enter name for new group:

2. Enter the name of the group. For example, enter:

Enter name for new group: doc

The program next prompts you for a group ID:

Enter group number for new group [84]:

3. Enter the group ID or accept the default value by pressing <Return>.

Adding a New Group Manually

13-16

To add a new group to the /etc/group file manually, follow these steps:

1. Change the directory to the /etc directory.

2. As root, copy the /etc/group file with the cp command. For example,
enter:

cp /etc/group /etc/group.new

3. Open the new file and add the required line entry. See "The
/etc/group File Entries'' in this chapter for a listing of required fields
within each line entry in the /etc/group file.

4. Close the new file and copy it by overwriting the original /etc/group
file. For example, enter:

cp /etc/group.new /etc/group

5. Edit the /etc/passwd file to include the new group identification
number within the G/D field of each user who is a member of the
group. See ''The /etc/passwd File Entries'' in this chapter for a
description of the /etc/passwd fields.

Adding and Removing Users and Groups

A Sample Entry in the /etc/group File

To add a new group called editors to your system, add the following line to
the /etc/group file:

editors: :50:

This entry is valid if the group name editors does not already exist (and is
therefore unique within the file), and if the group ID (50) is unique and is
the next ascending number available for an entry in the /etc/group file.

Removing a Group

To remove a group that no longer has any members, delete the
corresponding line from the /etc/group file.

To remove a group that still has members, follow these steps:

1. Edit the /etc/passwd file line entry for each member of the group. You
can either assign a new group number or delete the current group
number. If you assign a new group number, make sure that it
corresponds to a current (or new) group entry in the /etc/group file.

2. Remove the original group line entry from the /etc/group file.

OSF/1 User's Guide 13-17

Chapter 14

Shutting Down and Rebooting Your
System

This chapter describes the process of shutting down and automatically
rebooting your system. When you reboot the operating system, you are
initiating a set of critical tasks that the system must perform in order to
operate successfully.

Shutting down and rebooting the system is a critical task usually performed
by the system administrator. However, there may be times when you will be
required to perform such an activity.

Because shutting down and rebooting the system requires a higher
familiarity with the system than is expected from most general users, we
urge you to see your system administrator before attempting any operation
in this chapter. Your system administrator can provide you with the essential
information needed for performing the procedures correctly, and perhaps
step you through the process.

You must have superuser privileges to shutdown and reboot the system. To
become a superuser, you must be logged in as root. To obtain the password
for root, see your system administrator. For more information on superuser
privileges and logging in as a superuser, see "Superuser Concepts" in
Chapter 5.

OSF/1 User's Guide 14-1

System Administration Tasks for the User

After completing this chapter, you will be able to do the following:

• Understand the basic concepts necessary to shutting down and rebooting
the system

• Stop and automatically reboot your system using a simplified procedure

This chapter does not contain information about installing the system or
performing an initial boot. In addition, it does not attempt to discuss the
options for shutdown and rebooting that are available to you depending
upon your system configuration. Instead, the chapter presents introductory
concepts, and provides a simplified procedure for shutdown and automatic
reboot. For detailed information about installation, initial boot, and options
for rebooting, see your system administrator.

Shutdown and Reboot Concepts

14-2

Shutting down and rebooting the system are critical activities that you may
be required to perform. This section covers the concepts that will help you
understand what happens during shutdown and rebooting.

In most circumstances, you can shut down the system easily and with
minimal disruption to other system users. This is called a controlled
shutdown.

There are several good reasons for performing a controlled shutdown,
namely:

• New software or hardware needs to be added to your configuration. The
system is shut down so that additions can be made.

• The system may be on the brink of failure. The system is shut down to
examine the problem.

• System performance is degrading rapidly. The system is shut down so
that the appropriate changes can be made.

• The file system is possibly corrupt. The system is shut down so that the
problems can be fixed.

In each of these and similar situations, consult your system administrator.

Shutting Down and Rebooting Your System

Similarly, there are circumstances that are out of your control whereby the
system shuts itself down suddenly, causing substantial disruption to users.
This is called an unexpected shutdown. For information on unexpected
shutdowns and the procedures necessary for rebooting, see your system
administrator.

For controlled shutdowns, there are practical and reasonable ways to shut
down your system from either single-user or multiuser mode. Single-user
mode is usually used for system maintenance. Under most circumstances,
the operating system runs in multiuser mode.

After a controlled shutdown, the system will either be automatically
rebooted or manually rebooted. The procedure described next in ''Shutdown
and Automatic Reboot Procedure'' performs a controlled shutdown from
multiuser mode, and then automatically reboots the system to multiuser
mode. See your system administrator for information on manual reboots.

When your system is automatically rebooted, a number of operations are
performed. Although certain boot operations are hardware dependent, there
are some features that typically apply to all systems. For example:

1. The system boots automatically or manually.

In an automatic boot, the system controls the entire operation. With
an automatic boot, the system begins the initialization process and
continues until completion or failure. See ''Shutdown and Automatic
Reboot Procedure'' for an example of automatic rebooting.

In a manual boot, the system controls the initial operation, turns
control of the procedure over to you, then reinstates control in order to
complete the operation. See your system administrator for
information on manual booting.

In an automatic or a manual boot, the operation either succeeds or
fails:

a. If the boot operation succeeds, the system initializes. In
single-user mode, the system displays the root prompt (#) on
the console or on the workstation screen. In a multiuser mode,
the system displays the login prompt or a start-up display. The
prompt or start-up display differs according to the hardware
capability and the available start-up software.

OSF/1 User's Guide 14-3

System Administration Tasks for the User

14-4

b. If the boot operation fails, the system displays an error message
followed by a prompt on the console or terminal. In the worst
case, the system hangs.

2. The user mode that you boot to or that the system boot software
defaults to determines who has access to the system, when access is
available, what is accessible, and how initialization tasks are handled.

a. In a boot to a multiuser mode, the system loads the kernel and
moves through various phases such as hardware and virtual
memory initialization, resource allocation, configuration,
module loading, and so on. At the conclusion of these
activities, the system is fully enabled and accessible to users.

b. In a boot to single-user mode, the software loads the kernel and
proceeds through the initialization tasks and creates a Bourne
shell (sh), turns control over to you, and waits for you to exit the
shell with the exit command or <Ctrl-d> before continuing
with its start-up tasks.

Normally, you boot to single-user mode in order to perform
specific administrative tasks that are best accomplished without
the threat of parallel activity by other users. You perform these
tasks manually before exiting the Bourne shell. When you
finish your work, you return control to the system, start-up tasks
are continued, and mulituser mode is enabled.

Under the best of circumstances, the boot operation succeeds and you move
on to other tasks. Under less favorable circumstances, the boot operation
flounders or fails completely. In that case, see your system administrator.

The following section describes a straightforward procedure for shutting
down and automatically rebooting your system.

Shutting Down and Rebooting Your System

Shutdown and Automatic Reboot Procedure

To shut down the system from a multiuser run level, warn all users, and
automatically reboot the system to a multiuser run level, follow these steps:

1. Log on as root.

2. Change the directory to the root directory:

cd/

3. Enter the shutdown command using this syntax:

/etc/shutdown -r +Time Message

For example, to shut down the system in 15 minutes and automatically
reboot, with a warning to users that the system is going down for a
reboot, enter this command:

/etc/shutdown -r + 15 Rebooting the system

In this case, the system begins to notify users of the impending
shutdown, disables logins, and proceeds with the standard shutdown
activities involved in bringing the system to the single-user run level.
When it completes these activities, shutdown automatically reboots
the system to a multiuser run level. As part of the reboot operation,
fsck runs a consistency check on all mounted file systems. If
problems are not encountered, the system reboots to a multiuser run
level.

Note: If the fsck command finds file system inconsistencies, it
displays a warning message, recommending that you run
fsck again from the single-user run level before
operating the system in a multiuser run level. If this
occurs, see your system administrator.

OSF/1 User's Guide 14-5

Chapter 15

Backing Up the System

This chapter describes the importance of performing system backups.
Performing a system backup is the process of copying files onto a removable
backup medium, such as cartridge tape. In case of data loss, you can copy
these files back onto your system.

Performing system backups is a routine but critical activity that is usually
performed by system administrators or computer facilities personnel. At
some sites, however, individual users may be responsible for their own
backups.

After completing this chapter, you will be able to do the following:

• Know why backups are important

• Have an introductory understanding of backup concepts and media

• Be able to perform a backup of multiple files and directories

• Be able to perform a restore of multiple directories

For detailed information on system backups at your site, see your system
administrator.

OSF/1 User's Guide 15-1

System Administration Tasks for the User

Why Backups are Essential

15-2

The hard work that you and others perform on the system is stored in files
and directories. These represent a very significant investment of time and
effort. At the same time, all computer files are potentially easy to change or
erase, either intentionally or by accident. Even if all users on your system
are scrupulous, there will be times when files will be inadvertently deleted,
or when a file system will be destroyed by an unforeseen hardware failure or
a system crash.

To protect against these problems, your system administrator should
regularly perform backups by copying files onto a removable medium.
Common backup mediums are the following: cartridge tape, 9-track tape,
optical disks, and floppy disks. This medium is stored at a remote location
for safekeeping.

Should data be lost, the removable medium is brought back from the remote
location and mounted on the system so that the data can be copied back onto
the system. This process of copying lost data back onto the system is called
restoring.

Backups are also useful for preserving data that is no longer current. For
example, suppose that you have just completed a large project. After the
files from the old project are backed up, you can delete them to make room
on the system for new project files. In addition, at a later date, should you
need the old project files, you can have them restored.

There are two kinds of backups:

• Full (archive) backup

This is a backup of all files on your system.

• Incremental backup

This is a backup of only those files that have been modified since the last
archive backup.

At some companies, performing backups is the responsibility of the system
administrator or a computer facilities team. At other companies, an
individual user may back up files in addition to the regularly scheduled
system backups.

Backing Up the System

Your system's backup schedule depends upon the volume of use. For
example, on a small system that has only one user, a weekly archival backup
might be adequate. For large installations with heavy volume, a weekly
archival backup and a daily incremental backup might be adequate. See
your system administrator about the backup schedule.

To show you how a weekly archive backup and a daily incremental backup
helps preserve data, assume the following about your site: weekly archival
backups are done on Fridays and incremental backups are performed daily.
Also assume that your file system was destroyed on Tuesday. To restore the
file system, your system administrator would do the following:

• Restore Friday's archive backup

• Restore Monday's incremental backup

Work done after Monday's incremental backup would be lost, but would
only represent at most one day's work.

The following section describes how to backup and restore multiple files
and directories. It is assumed that your system has regularly scheduled
archival backups, but that you may perform individual backups for your own
personal use.

Sample Backup Procedures

This section shows you how to back up and restore multiple files and
directories with the tar command. The aim of this section is to provide you
with a simple backup and restore procedure that is not hardware or site
dependent.

We strongly recommend that you check with your system administrator
before performing any backup or restore procedures. This is because your
site may have its own shell procedures for the purpose, or may be using
other OSF/l commands such as cpio, dump or restore. Your system
administrator can provide you with the essential information needed, and
perhaps step you through the process.

Note that this section does not provide you with a procedure for
backup/restore of file systems or for performing a complete backup/restore.
For those procedures, see your system administrator.

OSF/1 User's Guide 15-3

System Administration Tasks for the User

15-4

Before you perform a backup, see your system administrator for some vital
information. Specifically, you must:

• Know the device name of the backup medium. Typical names might be
similar to the following: /dev/mtl (tape drive) and /dev/rzOa (disk
drive). Be aware that device names are all unique to your site.

• If the device medium is a cartridge tape or 9-track tape, know whether it
is a high-density, medium-density, or low-density tape.

• Ensure that you have write permission for the backup medium.

• Ensure that the backup medium is loaded and properly formatted prior to
its use.

Backing Up Multiple Files

To back up multiple files, use the following command:

tar cvf devicename filenames

The c flag specifies that you wish to write to the beginning of the medium.
The v flag specifies that tar display information about each file it archives.
The f flag specifies that the next argument in the command line is the name
of the medium upon which you wish to back up your file. The devicename
entry is the device name of the medium. If the device is a tape, you can
specify one of the following density levels immediately after the device
name: h (high), m (medium), or I (low). The filenames entry can .be a list of
filenames in the current directory, a list of absolute pathnames, or a
combination of both. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

The following example backs up all files in the current directory that begin
with the name report to a high~density tape medium named /dev/mtl:

$ tar cvf /dev/mtlh report*
a reportjan
a reportfeb
a reportmar
a reportapr

5 blocks
4 blocks

6 blocks
8 blocks

a reportmay 4 blocks
a reportjun 5 blocks
a reportjuly 6 blocks
a reportaug 5 blocks

Backing Up the System

a reportsept 4 blocks
$

The following example backs up all files beginning with the name memo in
the directory /user/chang/status to the floppy disk /dev/rz2:

$ tar cvf /dev/rz2 /user/chang/status/memo*
a /user/chang/status/memol 2 blocks
a /user/chang/status/memo2 5 blocks
a /user/chang/status/memo3 9 blocks
a /user/chang/status/memo4 8 blocks
a /user/chang/status/memo5 3 blocks
a /user/chang/status/memo6 7 blocks
$

Backing Up Directories

Note: The tar command backs up the specified directories as well as
any subdirectories below them.

To back up directories, use the following command:

tar cvf devicename directorynames

The c flag specifies that you wish to write to the beginning of the medium.
The v flag specifies that tar display information about each file it archives.
The f flag specifies that the next argument in the command line is the name
of the medium upon which you wish to back up your file. The devicename
entry is the device name of the medium. If the device is a tape, you can
specify one of the following density levels immediately after the device
name: h (high), m (medium), or I (low). The directorynames entry specifies
the absolute pathname of one or more directories.

The following example backs up the directory /usr/soshanna to a medium­
density tape named /dev/mt2:

$ tar cvf /dev/mt2m /usr/soshanna
a /usr/soshanna/reportjan 5 blocks
a /usr/soshanna/reportfeb 4 blocks
a /usr/soshanna/reportmar 3 blocks
a /usr/soshanna/reportapr 6 blocks
a /usr/soshanna/reportmay 4 blocks
a /usr/soshanna/reportjun 5 blocks

OSF/1 User's Guide 15-5

System Administration Tasks for the User

15-6

a /usr/soshanna/reportjuly 6 blocks
a /usr/soshanna/reportaug 5 blocks
a /usr/soshanna/reportsept 4 blocks
a /usr/soshanna/plans 5 blocks
a /usr/soshanna/designs 9 blocks
a /usr/soshanna/status 7 blocks
$

The following example backs up the directories /user/alice and /user/juan
and all subdirectories beneath them to the high-density tape medium named
/dev/mt3:

$ tar cvf /dev/mt3h /user/juan /user/alice
a /user/alice
a /user/alice/memol 3 blocks
a /user/alice/memo2 4 blocks
a /user/alice/schedule 2 blocks
a /user/alice/sales
a /user/alice/sales/estimates 3 blocks
a /user/alice/sales/yearlytotals 3 blocks
a /user/alice/sales/cars
a /user/alice/cars/Ql 4 blocks
a /user/alice/cars/Q2 3 blocks
a /user/alice/cars/Q3 3 blocks
a /user/alice/cars/Q4 5 blocks
a /user/juan
a /user/juan/memojan 2 blocks
a /user/juan/memofeb 3 blocks
a /user/juan/memomar 4 blocks
a /user/juan/reports
a /user/juan/reportsl 5 blocks
a /user/juan/reports2 3 blocks
a /user/juan/reports3 2 blocks
a /user/juan/reports4 6 blocks
$

Listing the Contents of a Backup Medium

To list the contents of a backup medium, use the followin:g command:

tar tvf devicename [directorynames]

Backing Up the System

The t flag specifies that you wish to list the files on the backup medium. The
v flag specifies that in addition to filenames, you wish to display complete
information about each file on the medium. The f flag specifies that the next
argument in the command line is the name of the medium upon which the
files reside. The devicename entry is the device name of the medium. If the
device is a tape, you can specify one of the following density levels
immediately after the device name: h (high), m (medium), or I (low). The
directorynames entry is optional and specifies the absolute pathname of one
or more directories. If you wish to display information about the entire
contents of the tape, do not specify a directory name.

Assume that you wish to list the contents of the medium you just backed up
in the previous example. Before doing so, ensure that the tape (/dev/mt3)
upon which you backed up the directories is mounted and accessible. Then,
enter the following command:

$ tar tvf /dev/mt3h
drwxrwxr-x9236/1000 4 Sep 24 14:41:57 1991 /user/alice
-rw-rw-r--9236/1000 3 Sep 06 11:52:02 1991 /user/alice/memol
-rw-rw-r--9236/1000 4 Sep 09 10:43:06 1991 /user/alice/memo2

-rw-rw-r--9236/1000 2 Aug 14 08:22:01 1991 /.user I al ice/ schedule
drwxrwxr-x9236/1000 3 Jan 02. 09:22:01 1991 /user/alice/sales

-rw-rw-r--9236/1000 3 Feb 04 14:52:02 1991 /user/alice/sales/estimates

-rw-rw-r--9236/1000 3 Dec 16 10:33:44 1991 /user/alice/sales/yearlytotals

drwxrwxr-x9236/1000 5 Jan 02 12:22:45 1991 /user/alice/sales/cars

-rw-rw-r--9236/1000 4 Mar 29 16:33:44 1991 /user/alice/cars/Ql

-rw-rw-r--9236/1000 3 Jun 28 17:14:18 1991 /user/alice/cars/Q2

-rw-rw-r--9236/1000 3 Sep 30 18:45:03 1991 /user/alice/cars/Q3

-rw-rw-r--9236/1000 5 Dec 30 17:01:49 1991 /user/alice/cars/Q4

drwxrwxr-x9236/1000 4 Jan 05 10:18:45 1990 /user/juan

-rw-rw-r--9236/1000 2 Jan 31 09:06:24 1990 /user/juan/memojan

-rw-rw-r--9236/1000 3 Feb 28 16:10:58 1990 /user/juan/memofeb

-rw-rw-r--9236/1000 4 Mar 30 09:29:12 1990 /user/juan/memomar
drwxrwxr-x9236/1000 4 Jan 30 11:56:45 1990 /user/juan/reports

-rw-rw-r--9236/1000 5 Mar 07 09:35:16 1990 /user/juan/reportsl

-rw-rw-r--9236/1000 3 May 23 13:31:34 1990 /user/juan/reports2

-rw-rw-r--9236/1000 2 Aug 15 07:50:21 1990 /user/juan/reports3

-rw-rw-r--9236/1000 6 Jan 23 08:55:18 1991 /user/juan/reports4

$

OSF/1 User's Guide 15-7

System Administration Tasks for the User

15-8

Restoring Multiple Directories

To restore directories, use the following command:

tar xvf devicename [directorynames]

The x flag specifies that you wish to restore files from the specified medium.
The v flag specifies that tar display information about each file it archives.
The f flag specifies that the next argument in the command line is the name
of the medium upon which you wish to back up your file. The devicename
entry is the device name of the medium. If the device is a tape, you can
specify one of the following density levels immediately after the device
name: h (high), m (medium), or I (low). The directorynames entry is
optional and specifies the absolute pathname of one or more directories. If
you wish to restore the entire contents of the tape, do not specify a directory
name.

Assume that the directories you backed up in a previous example
(/user/alice and /user/juan and all subdirectories beneath them) have been
inadvertently deleted and that it is your job to restore them.

Before performing the restore procedure, ensure that the tape (/dev/mt3)
upon which you backed up the directories is mounted and accessible. Then;
enter the following command:

$ tar xvf /dev/mt4h
a /user/alice
/user/alice/memol 3 blocks
/user/alice/memo2 4 blocks
/user/alice/schedule 2 blocks
/user/alice/sales
/user/alice/sales/estimates 3 blocks
/user/alice/sales/yearlytotals 3 blocks
/user/alice/sales/cars
/user/alice/cars/Ql 4 blocks
/user/alice/cars/Q2 3 blocks
/user/alice/cars/Q3 3 blocks
/user/alice/cars/Q4 5 blocks
/user/juan
/user/juan/memojan 2 blocks
/user/juan/memofeb 3 blocks
/user/juan/memomar 4 blocks
/user/juan/reports

Backing Up the System

/user/juan/reportsl 5 blocks
/user/juan/reports2 3 blocks
/user/juan/reports3 2 blocks
/user/juan/reports4 6 blocks
$

For more information, on performing backups and restores, see the tar entry
in the OSF/1 Command Reference.

OSF/1 User's Guide 15-9

Appendix A

A Beginner's Guide to Using vi

From writing memos to modifying C programs, editing text files is one of
the most common uses of any computer system, and vi is particularly well­
suited for the day-to-day tasks of most computer users. Using vi you can
quickly and easily open a file, edit it, and save the results. The vi editor
operates basically the same way on all UNIX based systems, so learning it
will allow you to edit on any system.

While vi does not have some of the features of proprietary text editors and
word processors, it is a full-featured text editor with the following major
features:

• Fast processing, especially on startup and global operations

• Full screen editing and scrolling capability unlike the line editors ed and
ex, on which vi is based

• Separate text entry and edit modes

• Global substitution and complex editing commands using the underlying
ex commands

• Access to operating system level commands

• Customability of system parameters and keyboard mappings

OSF/1 User's Guide A-1

A-2

The vi editor works in two modes: command mode and input mode.
Command mode is the mode vi starts in, and the normal mode for vi. In
command mode, the characters you type are treated as commands for
manipulating the text. In input mode, the characters you type are actually
placed into the text.

This appendix shows you how to use the basic features of vi. When you
finish reading it, you will understand the basic editing models used by vi and
be able to do the following:

• Open or create a file for editing

• Move the cursor within the file

• Enter new text into the file

• Change existing text within the file

• Search for simple strings within the file

• Move and copy text

• Make simple global substitutions in the file

• Write out all or part of the text to a file

• Delete, move, or copy blocks of text

• Customize your editing environment

This appendix provides only an introduction to the features of vi. If you
want to learn more, see the vi entry in the OSF/1 Command Reference. You
may also read one of the many books that describe its advanced features.

This appendix is divided into three sections. The first section gets you
started using vi. The second section shows you some advanced techniques
for speeding up your work. The third section shows you how to take
advantage of the power of the underlying ex commands.

A Beginner's Guide to Using vi

Getting Started

This section will show you how to open a file with vi, move around within
it, create some text, change that text, and save your changes. When you are
done reading this section, you will be able to use vi to create any text file or
make simple changes to any existing file.

Before you get started, you will create a file to edit. Create that file using
the cat command as follows:

$ cat > my .file
You can use this text file
to experiment with vi.
<Ctrl-d>
$

We will use your newly created file in the examples that follow.

Opening a File

Whether creating a new file or opening an existing file, the syntax for using
vi is the same:

vi [file]

To open the file my.file, enter the vi command as follows:

$vi my.file

OSF/1 User's Guide A-3

Your screen should look like the following:

You can use this text file
to experiment with vi.

"my.file" 2 lines, 46 characters

You should see the text of your sample file at the top of the screen, and a
number of lines following it that begin with a tilde C). The lines beginning
with tildes are the remaining blank lines on your screen. The line at the
very bottom of the screen shows the name of the file, the number of lines in
the file, and the number of characters.

To quit vi at this point, enter:

:q

Exiting vi is described in more detail later in this appendix.

Moving Within the File

A-4

If you have closed my.file, reopen it as described in the previous section.
The text cursor should be on the first character of the file: the Y in You.

When you start up vi, it is in command mode. In command mode, the
characters you enter are treated as commands rather than text input to the
file. You can use the keys <h>, <j>, <k>, and <I> to move the cursor one
character at a time to the left, down, up, and right, respectively. Try moving
the cursor to the first letter of the word experiment by typing:

lllj

A Beginner's Guide to Using vi

Note that if your keyboard is equipped with arrow keys, you may be able to
use them to move left, right, up, or down. However, using the <h>, <j>,
<k>, and <I> keys allows you to keep your fingers on the main section of the
keyboard for faster typing. Also note that there is no need to press
<Return> after most vi commands. In fact, when you are in command
mode, pressing <Return> moves the cursor to the first character of the next
line.

You can also move the cursor by whole word boundaries. The <w>
command moves to the beginning of the next word. Move the cursor to the
beginning of the word with by typing:

w

You can also use the <h> command to move back to the next beginning of a
word. For example, move to the beginning of the word exp er irnen t again
by typing:

b

Now see what happens when you do not use the <h> command from the
beginning of a word by typing:

llllb

The cursor returns to the beginning of the word exp er irnent.

The word motion commands will wrap to the next or previous text line when
appropriate. Try moving the cursor to the beginning of the word text by
typing:

bbb

There are a few other interesting movement commands you should know
about at this point. The <0> and <$> commands move to the beginning and
end of the current text lines. The <)> and <(> commands move to the
beginning of the next and previous sentences. And the <}> and <{>
commands move to the beginning of the next and previous paragraphs.

In larger files, you can move the cursor by whole screenfuls and scroll the
screen at the same time using the <Ctrl-f> and <Ctrl-b> commands. The
<Ctrl-f> command moves the cursor to scroll the text one screen forward,
and <Ctrl-b> moves the cursor one screen backward.

OSF/1 User's Guide A-5

The vi editor has many more movement commands. When you have learned
the basics, you should look at a more advanced book, or read the vi entry in
the OSF/l Command Reference for a full list.

Entering New Text

A-6

To enter new text into a file, you must change to input mode. In input mode,
the characters you type are added directly to the text of the file. You can
always get back from input mode to command mode by pressing <Esc>. If
you ever lose track of which mode you are in, press <Esc> a couple of times
to get back into command mode. If your system is so configured, you will
hear a bell when you press <Esc> while in command mode.

Add the word new just before text in the file. First, move the cursor to the
tin text. Then, enter input mode by typing:

Next, enter the word new, plus a space character:

new<Space>

Now exit input mode by pressing:

<Esc>

The cursor should now be on the space between the words new and text.

The <i> command starts inserting text before the character with the cursor.
To insert text after the character with the cursor, use the <a> command.
You need the <a> command to add text to the end of a line.

The <o> command creates a new line below the line with the cursor and
allows you to insert text at the start of that new line. To add a sentence to
the end of this file, first move the cursor to the next line by typing:

j

A Beginner's Guide to Using vi

The cursor should be on the i in vi. Then, enter input mode by typing:

0

Enter the new sentence, which can include return characters as follows, and
press <Esc> to return to command mode when you are finished. If you make
a mistake, you can use <Backspace> to correct it.

New text can be easily entered<Return>
while in input mode.< Esc>

Your screen should now look like the following:

You can use this new text file
to experiment with vi.
New text can be easily entered
while in input mode.

"my.file" 4 lines, 102 characters

There is also an <0> command, which creates a new line above the current
line and starts inserting text at the start of the new line. This is most useful
for adding new text to the top of the file, but can be used anywhere.

There are two other commands that start input mode: <I> and <A>. The
<I> command starts inserting text before the first character of the current
line. The <A> command starts inserting text after the last character of the
current line.

OSF/1 User's Guide A-7

Editing Text

A-8

Up to this point you have only learned how to add new text to the file, but
what if you need to change some text? The vi editor provides commands for
both deleting and changing blocks of text. For example, to remove the word
easily, move the cursor to the first character of the word and type:

dw

This is a combination of the delete command <d>, and the motion command
<w>. In fact, many vi commands can be combined with motion commands
to specify the duration of the action. The general form of a vi command
follows:

[number] [commandJmotion

The command entry represents an action command, motion represents a
motion command, and number optionally represents the number of times to
perform the command. You also can use this general form to move the
cursor in larger steps. For example, to move the cursor forward five words,
enter:

5w

Deleting Multiple Words

Using the general form of commands, you can delete the last five words of
this text file by moving to the beginning of the last line and entering:

5dw

Note that it takes five words to delete the whole line, rather than four. This
is because the trailing period counts as a word.

There is a special shortcut for deleting whole lines at a time. It is the dd
command. The dd command can also be used with a number to delete
multiple lines.

A Beginner's Guide to Using vi

Changing Text

The command for changing text, <c>, can be used to combine the actions of
deleting and returning to input mode. It follows the same general form as
the <d> command. To change the text new text to almost new
demo, you can move the cursor to the first character in the word new. Then,
enter the command:

2cw

The text will not immediately disappear. Instead, a dollar sign($) is placed
at the end of the change range (the last t in text), and you are placed in
input mode. The text you type will overwrite the existing text up to the
dollar sign and then extend the text as needed. Enter the new text by typing:

almost new demo<Esc>

Both the <c> and <d> commands can be used together with any of the
motion commands to give you more editing power.

Undoing a Command

If you make a change and then realize it was in error, you may still be able
to correct it. The <u> command undoes the last command entered. Try
undoing the last command by typing:

u

The string almost new demo will be changed back to new text.

Finishing Your Edit. Session

After you finish making changes, you need to save those changes and quit
vi. To save your changes and quit vi, enter:

:wq<Return>

OSF/1 User's Guide A-9

Note that the format of this command is much different than other vi
commands. That is because it is not a vi command. It is an ex command.
When you press <:>, you should note that it appears at the bottom of the
screen. The <:> command begins all ex commands from within vi. The wq
command writes the file and quits the editing session. You need to press
<Return> after the command to signify to ex that you are finished entering
the command. You will learn more about ex commands later in this
appendix.

If you want to quit vi without saving your changes, you can do so by
entering:

: q!<Return>

Now you have learned enough about vi to edit any file. The following
sections show you some advanced techniques that can improve your
productivity, and allow you to customize your environment.

Using Advanced Techniques

This section wifl show you how to search for strings, move text, and copy
and paste text. As you deal with larger documents, all these tasks increase
your ability to work efficiently. At the end of this section is a short list of
some other useful advanced features of vi.

Searching for Strings

A-10

In a large document, searching for a particular text string can be very time
consuming. The <I> command prompts for a string to search for in the file.
When you press <Return>, vi searches the file for the next occurrence of
the string you entered.

To try searching for a string, first move to the top of the document. If you do
not have it open, reopen the file my.file. Then, type <I> followed by the
string th and press <Return> as follows:

/th<Return>

A Beginner's Guide to Using vi

As soon as you enter <I>, it will be displayed on the bottom of the screen.
As you type the string th, it will be echoed at the bottom of the screen. You
can use <Backspace> to fix mistakes as you type the search string. After
pressing <Return>, the cursor is moved to the first occurrence of the string.

The <n> command searches for the next occurrence of the last string you
searched for. Try it now by entering:

n

The cursor should move to the next occurrence of the string, which is the th
in the word with. You can also use <N> like <n> to search the other
direction through the file.

The <?> command can be used in the same way as <I> to specify a search
string for a backward search through the file. When you search backward,
the <n> command moves the cursor backward to the next occurrence of the
string, and the <N> command moves the cursor forward.

Moving Text

The first step to moving a block of text is to select text for moving. In fact,
you already know how to do this. The <d> command not only deletes a
block of text but also copies it to a paste buffer. Once in the paste buffer, the
text can be moved by repositioning the cursor and then using the <p>
command to place the text after the current cursor position.

To delete the first line of the file, move there and type:

dd

The line is deleted and copied into the paste buffer, and the cursor is moved
to the next line in the file. To paste the line following the current line, type:

p

The <P> command can be used to paste text before the cursor rather than
after it.

OSF/1 User's Guide A-11

If you delete a letter or word size block, it will be pasted into the new
position within the current line. For example, to move the word can to just
before the word with, you could use the following command sequence:

/can<Return>
dw
/with<Return>
p

Copying Text

You copy text in the same manner as you move it, except that instead of
using the delete text command <d>, you use the yank text command, <y>.
The <y> command copies the specified text into the paste buffer without
deleting it from the text. It follows the same syntax as the <d> command.
You can also use the shortcut yy to copy an entire text line into the paste
buffer, in the same way as dd.

For example, you can copy the first two lines of the file to a position
immediately underneath them. To do so, enter the following command
sequence from the first line of the file:

2yy
j
p

Note that you must move down one line using <j> or the two lines will be
pasted after the first line rather than after the second.

Other vi Features

A-12

You may want to try some of the other features of vi. The entry for vi in the
OSF/l Command Reference lists its available commands. You may want to
pay particular attention to the following:

J

s

x

A Beginner's Guide to Using vi

Joins the following line to the current line.

Repeats the last command.

Substitutes the current character with the following entered
text.

Deletes the current character.

Changes the alphabetic case of the current character.

!! Executes an OSF/1 command on the current line of text and
replaces the text with the output.

<Ctrl-1> Refreshes the screen when problems with the screen display
features of vi occur. Anytime your screen is displaying
confusing output, press <Ctrl-1>.

Using the Underlying ex Commands

The vi screen editor is based upon the ex line editor. The underlying ex line
editor can bring the power of global changes to your entire text file or any
large piece of it. Commands from ex can be accessed within vi by using the
vi command <:>. You were introduced to ex commands earlier in this
appendix with the :wq and :q! commands for writing and quitting an editing
session.

The <:> command causes ex to prompt for a single command line at the
bottom of the editor screen with a colon (:). Each ex command is ended by
pressing <Return>. You can also enter ex more permanently with the vi
command <Q>. This command turns processing over to ex until you
explicitly return to vi. This often happens accidentally. If it should' happen
to you, you can return to vi by typing vi at the colon (:) prompt followed by
<Return> as follows:

: vi<Return>

An ex command acts on a block of lines in your text file according to the
following general syntax:

: [address[,address]]command

OSF/1 User's Guide A-13

The command, along with any of its arguments, acts on the lines between
and including the first and second address. If only one address is specified,
the command acts only on the specified line. If no address is specified, the
command acts only on the current line. Addresses can be specified in a
number of ways. Some of the more common address specifications are the
following:

line number

/pattern/

Specifies an address by absolute line number.

Specifies the next line that contains the pattern.

Specifies the line that the cursor is on.

$ Specifies the last line of the file.

address±lines Specifies a relative offset from the addressed line.

% Specifies all the lines in the file, and is used once in place
of both addresses.

The following sections show some of the most generally useful ex
commands, and some of the customization features offered by ex. You
should read the entry for ex in the OSF/l Command Reference for a more
detailed list of commands.

Making Substitutions

A-14

The most common substitution task, possibly the most common ex task, is a
global substitution of one word or phrase for another. You can do this with
the <s> command. If you have closed the file my.file, reopen it at this point.
To change every occurrence of is to was, use the following command:

: %s/is/was/g<Return>

The vi command <:> prompts for an ex command. This substitution
command is applied to all lines in the file by the % address. The I (slash) is
used as a separator. (Any other character can be used.) The g argument at
the end of the command causes the substitution to occur on each instance of
the pattern within each line. Without the g argument, substitution occurs
only once on each line.

A Beginner's Guide to Using vi

You should be careful when making substitutions to ensure that you get
what you want. Note that in the previous command line, the word this has
changed to thwas because every occurrence of is was changed to was.

You can add a c argument along with the g argument to prompt for
confirmation before each substitution. The format of the confirmation is a
bit complex; however, it is well worth using when you wish to be scrupulous
about making global changes.

As an example of confirming a substitution, change the word thwas back
to this by issuing the following command:

: %s/thwas/was/gc<Return>

The following prompt appears at the bottom of the screen:

You can use thwas text file

Note that the was of thwas is emphasized as the text to substitute. As
shown in the following example, type y and press <Return>. You are then
prompted for the second substitution:

You can use thwas text file
"A Ay<Return>

You can use thwas text file

Type y and press <Return>, and in response to the Hit return to
continue prompt, press <Return> once again as follows:

You can use thwas text file
4- AAAY

You can use thwas text file
4- "A Ay<Return>
[Hit return to continue J <Return>

You will find that the two occurrences of the word thwas have been
changed back to this. In addition, you will also be back in command mode
with your cursor at the place of the last substitution.

OSF/1 User's Guide A-15

Now try another substitution on our example file. Then, add three lines of
new text to the file by using the <$> (go to beginning of last line), <o>
(create new line), <yy> (yank), and <p> (paste) commands as follows:

:$<Return>
0

Some new text with a mispelling. <Esc>
yy
p
p
p

You now should have four lines of new text, all containing the incorrectly
spelled mi spel 1 ing.

To fix the spelling error, enter the following command:

:$-3,$s/mispelling/misspelling/<Return>

The address $-3 indicates the line that is three lines above the last line, and
the second address $s indicates the last line. You do not need to use the g
operator in this case, since the change is only necessary once on each line.

Writing a Whole File or Parts of a File

A-16

The :wq command is a special ex command that writes the whole file. It
combines the features of the write command w and the quit command q.
The only argument that the quit command can take is the exclamation point
(!). It forces the session to quit even if changes made to the file would be
lost by quitting.

The w command can also take addresses and a filename argument, which
allows you to save part of your text to another file. For example, to save the
first three lines of your text to the new file my.new.file, use the following
command:

:1,3w my.new.file<Return>

A Beginner's Guide to Using vi

Deleting a Block of Text

The delete command in ex is d, just as in vi. To delete from the current line
to the end of the file, use the following command:

:.,$d<Return>

Moving and Copying Blocks of Text

The ex command d saves the deleted text to the same paste buffer as the vi
command. You can also use the ex copy command ya (for yank), and the
paste command pu (for put) to copy and paste text.

Customizing Your Environment

The ex editor provides two mechanisms for custom1zmg your vi
environment. You can use the :set command to set environment variables,
and the :map command to map a key sequence to a vi command key.

Environment variables are set either by assigning them as option or
nooption for Boolean variables, or by assigning them as option=value. The
full set of environment variables is described in the ex entry in the OSF/1
Command Reference. Table A-1 lists some of the more common variables.

Table A-1 . Selected vi Environment Variables

Variable Description

errorbells Specifies that when an error is made, a bell sounds.
This is the default setting.

ignorecase Specifies that when performing searches, the case of
characters should be ignored. The default variable
setting is noignorecase.

OSF/1 User's Guide A-17

A-18

Variable Description

number Specifies that line numbers are to be displayed at the
left margin. The default variable setting is nonumber.

showmatch Specifies that when you type a matching parenthesis
or brace, the cursor moves to the matching character
and then returns. The default variable setting is
noshowmatch.

tabstop Specifies the amount of space between tab stops.
The default setting is 8.

wrapscan Specifies that searches should wrap around the
beginning or end of the file. This is the default
variable setting.

wrapmargin Creates an automatic right margin located a specified
number of characters from the right-hand side of your
workstation screen. Whenever your cursor reaches
the specified right-hand margin, an automatic new
line is generated, and the word you are keying is
brought to the next line.

We recommend that you set the wrapmargin variable
to a value with which you are comfortable. Otherwise,
vi will use the default setting of 0. Using the default
setting means that your cursor jumps to the next line
when it reaches the end of your workstation screen;
however, parts of the word you are keying may be on
separate lines.

Try displaying the line numbers of your example file by entering the
following command:

:set number<Return>

Remove the line numbers by entering:

:set nonumber<Return>

A Beginner's Guide to Using vi

The :map command sets a single vi command key to a vi command
sequence. The syntax for the :map command follows:

:map key sequence

This command sequence replaces any existing command for that key. The
command sequence should be identical to the keystrokes you want to map,
except that special keys such as <Return> <Esc> and keys modified with
<Ctrl> must be quoted first with <Ctrl-V>. Since the <q> and <v> keys do
not have commands associated with them, they are good keys to map.

For example, to map a key sequence that inserts a line into your text that
says This space held for new text, you could use the following command:

:map q oThis space held for new text<Ctrl-V><Esc><Return>

Note the use of <Ctrl-V> to quote the <Esc> character.

Saving Your Customizations

You can make your environment customizations permanent by placing the
appropriate ex commands in a file named .exrc in your home directory.
Commands placed in this file will take effect every time you enter vi or ex.
In this file, you do not need to use the vi command <:>, since these
commands are read directly by the underlying ex editor.

For example, to customize your environment to always display line numbers
for your files, to use the map sequence shown in the previous section, and to
set an automatic right margin of five spaces, you would first open the .exrc
file with vi in your home directory, and add the following lines of text:

set number
map q oThis space held for new text<Ctrl-V><Esc>
set wrapmargin=5

After you write this file, open your example file by reinvoking vi to verify
that it works.

OSF/1 User's Guide A-19

Appendix B

Creating and Editing Files with ed

This appendix explains how to create, edit (modify), display, and save text
files with ed, a line editing program. If your system has another editing
program, you may wish to learn how to do these tasks with that program.

A good way to learn how ed works is to try the examples in this appendix on
your system. Since the examples build upon each other, it is important for
you to work through them in sequence. Also, to make what you see on the
screen consistent with what you see in this guide, it is important to do the
examples just as they are given.

In the examples, everything you should type is printed in boldface. When
you are told in the text to enter something, you should type all of the
information for that line and then press <Return>.

Because ed is a line editor, you can work with the contents of a file only one
line at a time. Regardless of what text is on the screen, you can edit only the
current line. If you have experience with a screen editing program, you
should pay careful attention to the differences between that program and ed.
For example, with the ed program, you cannot use the Cursor Up and
Cursor Down keys to change your current line.

OSF/1 User's Guide B-1

Understanding Text Files and the Edit Buffer

A file is a collection of data stored together in the computer under an
assigned name. You can think of a file as the computer equivalent of an
ordinary file folder-it may contain the text of a letter, a report, or some
other document, or the source code for a computer program.

The edit buff er is a temporary storage area that holds a file while you work
with it-the computer equivalent of the top of your desk. When you work
with a text file, you place it in the edit buffer, make your changes to the file
(edit it), and then transfer (copy) the contents of the buffer to a permanent
storage area.

The rest of this appendix explains how to create, display, save, and edit
(modify) text files.

Creating and Saving Text Files

8-2

To create and save a text file, perform the following steps:

1. At the shell prompt, enter:

edfilename

where filename is the name of the file you want to create or edit.

2. When you receive the ?filename message, enter:

a

3. Enter your text.

4. To stop adding text, enter a • (period) at the start of a new line.

5. Enter:

w

to copy the contents of the edit buffer into the file filename.

Creating and Editing Files with ed

6. Enter:

q

to end the ed program.

Starting the ed Program

To start the ed program, enter a command of the form ed filename after the $
(shell) prompt.

In the following example, the ed afile command starts the ed program and
indicates that you want to work with a file named afile:

$ ed afile
?af ile

The ed program responds with the message ? a f i 1 e, which means that the
file does not now exist. You can now use the a (append) subcommand
(described in the next section) to create afile and put text into it.

Entering Text-The a (Append) Subcommand

To put text into your file, enter a. The a subcommand tells ed to add, or
append, the text you type to the edit buffer. Note that if your file had already
contained text, the a subcommand would add the new text to the end of the
file.

OSF/1 User's Guide B-3

Type your text, pressing <Return> at the end of each line. When you have
entered all of your text, enter a . (period) at the start of a new line.

Note: If you do not press <Return> at the end of each line, the ed
program automatically moves your cursor to the next line after
you fill a line with characters. However, ed treats everything
you type before you press <Return> as one line, regardless of
how many lines it takes up on the screen; that is, the line
wraps around to the beginning of the next line (based upon
your workstation display settings).

The following example shows how to enter text into the file afile:

a
The only way to stop
appending is to type a
line that contains only
a period.

If you stop adding text to the buffer and then decide you want to add some
more, enter another a subcommand. Type the text and then enter a period at
the start of a new line to stop adding text to the buffer.

If you make errors as you type your text, you can correct them before you
press <Return>. Use the Backspace key to erase the incorrect character(s).
Then type the correct characters in their place.

Displaying Text-The p (Print) Subcommand

B-4

Use the p (print) subcommand to display the contents of the edit buffer.

To display a single line, use the subcommand np (where n is the number of
the line):

2p
appending is to type a

Creating and Editing Files with ed

To display a series of lines, use the n,mp subcommand, where n is the
starting line number and m is the ending line number:

1,3p
The only way to stop
appending is to type a
line that contains only

To display everything from a specific line to the end of the buffer, use the
n,$p subcommand, where n is the starting line number and $ stands for the
last line of the buffer. In the following example, 1,$p displays everything in
the buffer:

1,$p
The only way to stop
appending is to type a
line that contains only
a period.

Note: Many examples in the rest of this appendix use 1,$p to display
the buffer's contents. In these examples, the 1,$p
subcommand is optional and convenient-it lets you verify
that the subcommands in examples work as they should.
Another convenient ed convention is ,p, which is equivalent
to 1,$p--that is, it displays the contents of the buffer.

Saving Text-The w (Write) Subcommand

Thew (write) subcommand writes, or copies, the contents of the buffer into
a file. You can save all or part of a file under its original name or under a
different name. In either case, ed replaces the original contents of the file
you specify with the data copied from the buffer.

OSF/1 User's Guide B-5

8--,6

Saving Text Under the Same Filename

To save the contents of the buffer under the original name for the file, enter
w:

w
78

The ed program copies the contents of the buffer into the file named afile
and displays the number of characters copied into the file (7 8). This
number includes blanks and characters such as <Return> (sometimes
called newline), which are not visible on the screen.

Thew subcommand does not affect the contents of the edit buffer. You can
save a copy of the file and then continue to work with the contents of the
buffer.

The stored file is not changed until the next time you use w to copy the
contents of the buffer into it. As a safeguard, it is a good practice to save a
file periodically while you work on it. Then, if you make changes (or
mistakes) that you do not want to save, you can start over with the most
recently saved version of the file.

Note: The u (undo) subcommand restores the buffer to the state it
was in before it was last modified by an ed subcommand. The
subcommands that u can reverse are a, c, d, g, G, i, j, m, r, s,
t, V, and V.

Saving Text Under a Different Filename

Often, you may need more than one copy of the same file. For example,
you could have the original text of a letter in two files-one to keep as it is,
and the other to be revised.

Creating and Editing Files with ed

If you have followed the previous examples, you have a file named afile
that contains the original text of your document. To create another copy of
the file (while its contents are still in the buffer), use a subcommand of the
form w filename, as the following example shows:

w bfile
78

At this point, afile and bfile have the same contents, since each is a copy of
the same buffer contents. However, because afile and bfile are separate
files, you can change the contents of one without affecting the contents of
the other.

Saving Part of a File

To save part of a file, use a subcommand of the form n,mw filename, where:

n

m

filename

is the beginning line number of the part of the file you
want to save.

is the ending line number of the part of the file you want to
save (or the number of a single line, if that is all you want
to save).

is the name of a different file (optional).

In the following example, the w subcommand copies lines 1 and 2 from the
buffer into a new file named cfile:

1,2w cfile
44

Then ed displays the number of characters written into cfile (4 4).

OSF/1 User's Guide B-7

Leaving theed Program-The q (Quit) Subcommand

Caution: You lose the contents of the buffer when you leave the
ed program. To save a copy of the data in the buffer,
use the w subcommand to copy the buffer into a file
before you leave the ed program.

To leave theed program, enter the q (quit) subcommand:

q
$

The q subcommand returns you to the $ (shell) prompt.

If you have changed the buff er but have not saved a copy of its contents,
the q subcommand responds with ? , an error message. At that point, you
can either save a copy of the buffer with the w subcommand, or enter q
again, which lets you leave the ed program without saving a copy of the
buffer.

Loading Files into the Edit Buff er

B-8

Before you can edit a file, you must load it into the edit buffer. You can
load a file either at the time you start the ed program or while the program
is running.

To load a file into the edit buffer at the time you start the ed program, enter
the following:

edfilename

This starts ed and loads the file filename into the edit buffer.

To load a file into the edit buffer while ed is running, you can enter one of
the following:

• efilename

This loads the file filename into the buffer, erasing any previous
contents of the buffer.

Creating and Editing Files with ed

• nr filename

This reads the named file into the buffer after line n. If you do not
specify n, ed adds the file to the end of the buff er.

Using theed (Edit) Command

To load a file into the edit buffer when you start the ed program, simply
type the name of the file after the ed command. The ed command in the
following example invokes the ed program and loads the file afile into the
edit buff er:

$ ed afile
78

The ed program displays the number of characters that it read into the edit
buffer (7 8).

If ed cannot find the file, it displays ?filename. To create that file, use the a
(append) subcommand (described earlier in "Entering Text-The a
(Append) Subcommand") and the w (write) subcommand (described
earlier in "Saving Text-Thew (Write) Subcommand").

Using thee (Edit) Subcommand

Once you start the ed program, you can use the e (edit) subcommand to
load a file into the buffer. The e subcommand replaces the contents of the
buffer with the new file. (Compare the e subcommand with the r ·
subcommand, described next in "Using the r (Read) Subcommand,"
which adds the new file to the buffer.)

Caution: When you load a new file into the buffer, the new file
replaces the buffer's previous contents. Save a copy
of the buffer with the w subcommand before you read
a new file into the buffer.

OSF/1 User's Guide B-9

In the following example, the subcommand e cfile reads the file cfile into
the edit buffer, replacing afile. The e afile subcommand then loads afile
back into the buffer, deleting cfile. The ed program returns the number of
characters read into the buffer after each e subcommand (4 4 and 7 8):

e cfile
44
e afile
78

If ed cannot find the file, it returns ?.filename. To create that file, use the a
(append) subcommand, described earlier in "Entering Text-The a
(Append) Subcommand," and the w (write) subcommand, described
earlier in "Saving Text-Thew (Write) Subcommand."

You can edit any number of files, one at a time, without leaving the ed
program. Use the e subcommand to load a file into the buffer. After
making your changes to the file, use the w subcommand to save a copy of
the revised file. (See "Saving Text-The w (Write) Subcommand" for
information about the w subcommand.) Then use the e subcommand
again to load another file into the buffer.

Using the r (Read) Subcommand

B-10

Once you have started the ed program, you can use the r (read)
subcommand to read a file into the buffer. The r subcommand adds the
contents of the file to the contents of the buffer. The r subcommand does
not delete the buffer. (Compare the r subcommand with the e
subcommand, described earlier in "Using the e (Edit) Subcommand,"
which deletes the buffer before it reads in another file.)

With the r subcommand, you can read a file into the buffer at a particular
place. For example, the 4r cfile subcommand reads the file cfile into the
buffer following line 4. The ed program then renumbers all of the lines in
the buffer. If you do not use a line number, the r subcommand adds the
new file to the end of the buffer's contents.

Creating and Editing Files with ed

The following example shows how to use the r subcommand with a line
number:

1,$p
The only way to stop
appending is to type a
line that contains only
a period.
3 r cfile
44
1,$p
The only way to stop
appending is to type a
line that contains only
The only way to stop
appending is to type a
a period.

The 1,$p subcommand displays the four lines of afile. Next, the 3 r cfile
subcommand loads the contents of cfile into the buffer, following line 3,
and shows that it read 44 characters into the buff er. The next 1,$p
subcommand displays the buffer's contents again, letting you verify that
the r subcommand read cfile into the buffer after line 3.

If you are working the examples on your system, do the following before
you go to the next section:

1. Save the contents of the buffer in the file cfile:

w cfile

2. Load afile into the buffer:

e afile

OSF/1 User's Guide B-11

Displaying and Changing the Current Line

B-12

The ed program is a line editor. This means that ed lets you work with
the contents of the buff er one line at a time. The line you can work with at
any given time is called the current line, and it is represented by the .
(period). To work with different parts of a file, you must change the
current line.

To display the current line, enter:

p

To display the line number of the current line, enter:

Note: You cannot use the Cursor Up and Cursor Down keys to
change the current line. To change the current line, use the
ed subcommands described in the following sections.

To change your position in the buffer, do one of the following:

1. To set your current line to line number n, enter:

n

2. To move the current line forward through the buffer one line at a
time press <Return>.

3. To move the current line backward through the buffer one line at a
time, enter:

4. To move the current line n lines forward through the buffer, enter:

.+n

5. To move the current line n lines backward through the buffer, enter:

.-n

Creating and Editing Files with ed

Finding Your Position in the Buffer

When you first load a file into the buffer, the last line of the file is the
current line. As you work with the file, you usually change the current
line many times. You can display the current line or its line number at any
time.

To display the current line, enter p:

p
a period.

The p subcommand displays the current line (a period.). Because the
current line has not been changed since you read afile into the buffer, the
current line is the last line of the buffer.

Enter .= to display the line number of the current line:

4

Since afile has four lines, and the current line is the last line in the buffer,
the .= subcommand displays 4.

You also can use the $ (the symbol that stands for the last line in the
buffer) with the= subcommand to determine the number of the last line in
the buffer:

$=
4

The $= subcommand is an easy way to find out how many lines are in the
buffer. Note that the ed $ symbol has no relationship to the $ shell
prompt.

OSF/1 User's Guide B-13

Changing Your Position in the Buffer

B-14

You can change your position in the buffer (change your current line) in
one of two ways:

• Specify a line number (an absolute position).

• Move forward or backward relative to your current line.

To move the current line to a specific line, enter the line number; ed
displays the new current line. In the following example, the first line of
afile becomes the current line:

1
The only way to stop

Pressing <Return> advances one line through the buffer and displays the
new current line, as the following example shows:

appending is to type a

line that contains only

a period.

?

Note that when you try to move beyond the last line of the buffer, ed
returns ? , an error message. You cannot move beyond the end of the
buffer.

To set the current line to the last line of the buffer, enter $.

Creating and Editing Files with ed

To move the current line backward through the buffer one line at a time,
enter - (dashes) one after the other, as the following example shows:

line that contains only

appending is to type a

The only way to stop

?

When you try to move beyond the first line in the buffer, you receive the ?
message. You cannot move beyond the top of the buffer.

To move the current line forward through the buffer more than one line at
a time, enter .n (where n is the number of lines you want to move):

.2
line that contains only

To move the current line backward through the buffer more than one line
at a time, enter: .-n (where n is the number of lines you want to move):

.-2
The only way to stop

Locating Text

If you do not know the number of the line that contains a particular word
or another string of characters, you can locate the line with a context
search.

OSF/1 User's Guide B-15

To make a context search, do one of the following:

• To search forward, enter:

/string to find/

• To search backward, enter:

?string to find?

Searching Forward Through the Buff er

B-16

To search forward through the buffer, enter the string enclosed in II
(slashes):

/only/
line that contains only

The context search (/only/) begins on the first line after the current line,
then locates and displays the next line that contains the string only. That
line becomes the current line.

If ed does not find the string between the first line of the search and the
last line of the buffer, then it continues the search at line 1 and searches to
the current line. If ed searches the entire buff er without finding the string,
it displays the ? error message:

/random/
?

Once you have searched for a string, you can search for the same string
again by entering //. The following example shows one search for the
string only, and then a second search for the same string:

/only/
The only way to stop
II
line that contains only

Searching Backward Through the Buffer

Creating and Editing Files with ed

Searching backward through the buffer is much like searching forward,
except that you enclose the string in question marks (??):

?appending?
appending is to type a

The context search begins on the first line before the current line, and
locates the first line that contains the string appending. That line
becomes the current line. If ed searches the entire buffer without finding
the string, it stops the search at the current line and displays the message
?.

Once you have searched backward for a string, you can search backward
for the same string again by entering ?? . This is because ed remembers
search strings.

Changing the Direction of a Search

You can change the direction of a search for a particular string by using
the I (slash) and? (question mark) search characters alternately:

/only/
line that contains only
??
The only way to stop

OSF/1 User's Guide B-17

If you go too far while searching for a character string, it is convenient to
be able to change the direction of your search.

Making Substitutions-The s (Substitute)
Subcommand

Use the s (substitute) subcommand to replace a character string (a group
of one or more characters) with another. The s subcommand works with
one or more lines at a time, and is especially useful for correcting typing
or spelling errors.

To make substitutions, do one of the following:

• To substitute newstring for oldstring at the first occurrence of
oldstring in the current line, enter:

s/oldstringlnewstringl

• To substitute newstring for oldstring at the first occurrence of
oldstring on line number n, enter:

ns/oldstring/newstringl

• To substitute newstring for oldstring at the first occurrence of
oldstring in each of the lines n through m, enter:

n,ms/oldstringlnewstringl

Substituting on the Current Line

B-18

To make a substitution on the current line, first make sure that the line you
want to change is the current line. In the following example, the
/appending/ (search) subcommand locates the line to be changed. Then
the s/appending/adding text/p (substitute) subcommand substitutes the
string adding text for the string appending on the current line. The print
(p) subcommand displays the changed line.

Creating and Editing Files with ed

/appending/
appending is to type a
s/appending/adding text/
p
adding text is to type a

Note: For convenience, you can add the p (print) subcommand to
the s subcommand (for example, s/appending/adding
text/p). This saves you from having to type a separate p
subcommand to see the result of the substitution.

A simple s subcommand changes only the first occurrence of the string on
a given line. To learn how to change all occurrences of a string on the
line, see "Changing Every Occurrence of a String."

Substituting on a Specific Line

To make a substitution on a specific line, use a subcommand of the
following form:

nsloldstringlnewstring/

where n is the number of the line on which the substitution is to be made.
In the following example, the s subcommand moves to line number 1 and
replaces the string stop with the string quit and displays the new line:

ls/stop/quit/p
The only way to quit

The s subcommand changes only the first occurrence of the string on a
given line. To learn how to change all occurrences of a string on the line,
see ''Changing Every Occurrence of a String.''

OSF/1 User's Guide B-19

Substituting on Multiple Lines

To make a substitution on multiple lines, use a subcommand of the
following form:

n,msloldstringlnewstringl

where n is the first line of the group and m is the last. In the following
example, the s subcommand replaces the first occurrence of the string to
with the string TO on every line in the buffer.

1,$s/toff0/
1,$p
The only way TO quit
adding text is TO type a
line that contains only
a period.

The 1,$p subcommand displays the contents of the buffer, which lets you
verify that the substitutions were made.

Changing Every Occurrence of a String

B-20

Ordinarily, the s (substitute) subcommand changes only the first
occurrence of a string on a given line. However, the g (global) operator
lets you change every occurrence of a string on a line or in a group of
lines.

To make a global substitution on a single line, use a subcommand of the
following form:

nsloldstringlnewstringl

In the following example, 3s/on/ON/gp changes each occurrence of the
string on to ON in line 3 and displays the new line:

Creating and Editing Files with ed

3s/on/ON/gp
line that cONtains ONly

To make a global substitution on multiple lines, specify the group of lines
with a subcommand of the form:

n,msloldstringlnewstringlg

In the following example, 1,$s/TO/to/g changes the string TO into the
string to in every line in the buff er:

1,$s/TO/to/g
1,$p
The only way to quit
adding text is to type a
line that cONtains ONly
a period.

Removing Characters

You can use the s (substitute) subcommand to remove a string of
characters (that is, to replace the string with nothing). To remove
characters, use a subcommand of the form s/oldstring// (with no space
between the last two I characters).

In the following example, ed removes the string adding from line number
2 and then displays the changed line:

2s/adding//
text is to type a

OSF/1 User's Guide B-21

Substituting at Line Beginnings and Ends

Two special characters let you make substitutions at the beginning or end
of a line:

11.(circumflex)

$ (dollar sign)

Makes a substitution at the beginning of the line.

Makes a substitution at the end of the line. (In this
context, the $ character does not stand for the last line
in the buffer.)

To make a substitution at the beginning of a line, use the srtnewstring
subcommand. In the following example, one s subcommand adds the
string Remember, to the start of line number 1. Another s subcommand
adds the string adding to the start of line 2:

lsrtRemember, /p
Remember, The only way to quit
2srtadding/p
adding text is to type a

To make a substitution at the end of a line, use a subcommand of the form
s/$/newstring. In the following example, the s subcommand adds the
string Then press Enter. to the end of line number 4:

4s/$/ Then press Enter Jp
a period. Then press Enter.

Notice that the substituted string includes two blanks before the word
Then to separate the two sentences.

Using a Context Search

B-22

If you do not know the number of the line you want to change, you can
locate it with a context search. See ''Locating Text'' for more
information on context searches.

Creating and Editing Files with ed

For convenience, you can combine a context search and a substitution into
a single subcommand: /string to .find/s/oldstringlnewstringl.

In the following example, ed locates the line that contains the string , The
and replaces that string with ,the:

I, Theis!, The/, the/p
Remember, the only way to quit

Also, you can use the search string as the string to be replaced with a
subcommand of the form /string to .findlsl/newstringl. In the following
example, ed locates the line that contains the string cONtains ONiy,
replaces that string with containsonly, and prints the changed line:

/cONtains ONiy/sf/contains only/p
line that contains only

Deleting Lines-The d (Delete) Subcommand

Use the d (delete) subcommand to remove one or more lines from the
buffer. The general form of the d subcommand is the following:

starting line,ending lined

After you delete lines, ed sets the current line to the first line following
the lines that were deleted. If you delete the last line from the buffer, the
last remaining line in the buffer becomes the current line. After a
deletion, ed renumbers the remaining lines in the buffer.

OSF/1 User's Guide B-23

To delete lines from the buffer, do the following:

• To delete the current line, enter:

d

• To delete line number n from the buffer, enter:

nd

• To delete lines numbered n through m from the buffer, enter:

n,md

Deleting the Current Line

B-24

If you want to delete the current line, simply enter d. In the following
example, the 1,$p subcommand displays the entire contents of the buffer,
and the $ subcommand makes the last line of the buffer the current line:

1,$p
Remember, the only way to quit
adding is to type a
line that contains only
a period. Then press Enter.
$
a period. Then press Enter
d

The d subcommand then deletes the current line (in this case, the last line
in the buffer).

Creating and Editing Files with ed

Deleting a Specific Line

If you know the number of the line you want to delete, use a subcommand
of the form nd to make the deletion. In the following example, the 2d
subcommand deletes line 2 from the buffer:

2d
1,$p
Remember, the only way to quit
line that contains only

The 1,$p subcommand displays the contents of the buffer, showing that
the line was deleted.

Deleting Multiple Lines

To delete a group of lines from the buffer, use a subcommand of the form
n,md, where n is the starting line number and mis the ending line number
of the group to be deleted.

In the following example, the 1,2d subcommand deletes lines 1 and 2:

l,2d
1,$p
?

The 1,$p subcommand displays the ? message, indicating that the buff er
is empty.

If you are following the examples on your system, you should restore the
contents of the buffer before you move on to the next section.

OSF/1 User's Guide B-25

The following example shows you how to restore the contents of the
buffer:

e afile
?

e afile
78

This command sequence reads a copy of the original file afile into the
buffer.

Moving Text-Them (Move) Subcommand

B-26

Use them (move) subcommand to move a group of lines from one place
to another in the buffer. After a move, the last line moved becomes the
current line.

To move text, enter a subcommand of the form x,ymz where:

x is the first line of the group to be moved.
y is the last line of the group to be moved.
z is the line the moved lines are to follow.

In the following example, the 1,2m4 subcommand moves the first two
lines of the buffer to the position following line 4:

1,2m4
1,$p
line that contains only
a period.
The only way to stop
appending is to type a

The 1,$p subcommand displays the contents of the buffer, showing that
the move is complete.

Creating and Editing Files with ed

To move a group of lines to the top of the buffer, use 0 (zero) as the line
number for the moved lines to follow. In the next example, the 3,4m0
subcommand moves lines 3 and 4 to the top of the buffer:

3,4m0
1,$p
The only way to stop
appending is to type a
line that contains only
a period.

The 1,$p subcommand displays the contents of the buffer, showing that
the move was made.

To move a group of lines to the end of the buffer, use $ as the line number
for the moved lines to follow:

1,2m$
1,$p
line that contains only
a period.
The only way to stop
appending is to type a

Changing Lines of Text-The c (Change)
Subcommand

Use the c (change) subcommand to replace one or more lines with one or
more new lines. The c subcommand first deletes the line(s) you want to
replace and then lets you enter the new lines, just as if you were using the
a (append) subcommand. When you have entered all of the new text, type
a • (period) on a line by itself. The general form of the c subcommand is
the following:

starting line,ending linec

OSF/1 User's Guide B-27

To change lines of text, do the following:

1. Enter a subcommand of the form:

n,mc

where:

n is the number of the first line of the group to be deleted.
m is the number of the last line of the group (or the only line) to be
deleted.

2. Type the new line(s), pressing <Return> at the end of each line.

3. Enter a period on a line by itself.

Changing a Single Line

8-28

To change a single line of text, use only one line number with the c
(change) subcommand. You can replace the single line with as many new
lines as you like.

In the following example, the 2c subcommand deletes line 2 from the
buffer, and then you can enter new text:

2c
appending new material is to
use the proper keys to create a

1,$p
The only way to stop
appending new material is to
use the proper keys to create a
line that contains only
a period.

The period on a line by itself stops ed from adding text to the buffer. The
1,$p subcommand displays the entire contents of the buffer, showing that
the change was made.

Creating and Editing Files with ed

Changing Multiple Lines

To change more than one line of text, give the starting and ending line
numbers of the group of lines to be with the c subcommand. You can
replace the group of lines with one or more new lines.

In the following example, the 2,3c subcommand deletes lines 2 and 3 from
the buffer, and then you can enter new text:

2,3c
adding text is to type a

1,$p
The only way to stop
adding text is to type a
line that contains only
a period.

The period on a line by itself stops ed from adding text to the buff er. The
1,$p subcommand displays the entire contents of the buffer, showing that
the change was made.

Inserting Text-The i (Insert) Subcommand

Use the i (insert) subcommand to insert one or more new lines into the
buffer. To locate the place in the buffer for the lines to be inserted, you
can use either a line number or a context search. The i subcommand
inserts new lines before the specified line. (Compare the i subcommand
with the a subcommand, explained earlier in ''Entering Text-The a
(Append) Subcommand," which inserts new lines after the specified line.)

OSF/1 User's Guide B-29

To insert text, do the following:

1. Enter a subcommand of one of the following types:

ni

where n is the number of the line the new lines will be inserted
above.

/string/i

where string is a group of characters contained in the line the new
lines will be inserted above.

2. Enter the new lines.

3. Enter a period at the start of a new line.

Using Line Numbers

B-30

If you know the number of the line where you want to insert new lines,
you can use an insert subcommand of the form ni (where n is a line
number). The new lines you type go into the buffer before line number n.
To end the i subcommand, type a . (period) on a line by itself.

In the following example, the 1,$p subcommand prints the contents of the
buffer. Then the 4i subcommand inserts new lines before line number 4.

1,$p
The only way to stop
adding text is to type a
line that contains only
a period.
4i
--repeat, only--

1,$p
The only way to stop
adding text is to type a
line that contains only

--repeat, only-­
a period.

Creating and Editing Files with ed

After 4i, you enter the new line of text and type a period on the next line
to end the i subcommand. A second 1,$p subcommand displays the
contents of the buff er again, showing that the new text was inserted.

Using a Context Search

Another way to specify where the i subcommand inserts new lines is to
use a context search. With a subcommand of the form /string/i, you can
locate the line that contains string and insert new lines before that line.
When you finish inserting new lines, type a period on a line by itself.

In the following example, the /period/i subcommand inserts new text
before the line that contains the string period:

/period/i
and in the first position--

1,$p
The only way to stop
adding text is to type a
line that contains only
--repeat, only--
and in the first position-­
a period.

The 1,$p subcommand displays the entire contents of the buffer, showing
that the i subcommand has inserted the new text.

OSF/1 User's Guide B-31

Copying Lines-The t (Transfer) Subcommand

B-32

With the t (transfer) subcommand, you can copy lines from one place in
the buff er and insert the copies elsewhere. The t subcommand does not
affect the original lines. The general form of the t subcommand is the
following:

starting line,ending linetline to follow

To copy lines, enter a subcommand of the form:

n,mtx

where:

n is the first line of the group to be copied.
m is the last line of the group to be copied.
x is the line the copied lines are to follow.

To copy lines to the top of the buffer, use 0 (zero) as the line number for
the copied lines to follow. To copy lines to the bottom of the buffer, use$
as the line number for the copied lines to follow.

In the following example, the 1,3t4 subcommand copies lines 1 through 3,
and inserts the copies after line 4:

1,3t4
1,$p
The only way to stop
adding text is to type a
line that contains only
--repeat, only--
The only way to stop
adding text is to type a
line that contains only
and in the first position-­
a period.

Creating and Editing Files with ed

The 1,$p subcommand displays the entire contents of the buffer, showing
that ed has made and inserted the copies, and that the original lines are
not affected.

Using System Commands from ed

Sometimes you may find it convenient to use a system command without
leaving the ed program. Use the ! (exclamation point) character to leave
theed program temporarily.

To use a system command from ed, enter the following:

!command

In the following example, the !ls command temporarily suspends the ed
program and runs the ls (list) system command (a command that lists the
files in the current directory):

!ls
a file
bfile
cfile

The ls command displays the names of the files in the current directory
(afile, bfile, and cfile), and then displays another ! character. The ls
command is finished, and you can continue to use ed.

You can use any system command from within theed program. You can
even run another ed program, edit a file, and then return to the original ed
program. From the second ed program, you can run a third ed program,
use a system command, and so forth.

OSF/1 User's Guide B-33

Ending the ed Program

B-34

This completes the introduction to the ed program. To save your file and
end the ed program, do the following steps:

1. Enter:

w

2. Enter:

q

For a full discussion of thew and q subcommands, see "Saving Text­
The w (Write) Subcommand" and "Leaving the ed Program-The q
(Quit) Subcommand," respectively.

For information about other features of ed, see ed in the OSF/I Command
Reference.

For information about printing the files you create with ed, see ''Printing
Files (lpr, lpq, lprm)" in Chapter 3.

Appendix C

Using Internationalization Features

This chapter describes the internationalization features of the OSF/l
operating system. These features mean that users can process data and
interact with the system in a manner appropriate to their native language,
customs, and geographic region (their locale).

After completing this chapter, you will be able to do the following:

• Understand the concept of locale

• Understand what functions are affected by locale

• Determine whether a locale has been set (if necessary)

• Set your locale (if necessary)

• Change your locale or aspects of your locale (if necessary)

If your site is in the United States and you plan to use American English
language and its conventions, there is no need to set a locale because the
system default is American English.

If your site is outside the United States, the locale will most likely have
already been specified by the system administrator. If the locale has already
been set, you may wish to only skim this chapter for background
information on internationalization. On the other hand, if the locale has not
been specified, you will find this chapter to be essential.

OSF/1 User's Guide C-1

Understanding Locale

C-2

Because OSF/l is an internationalized operating system, it is capable of
presenting information in a variety of ways. Users tell OSF/l how to
process and present information in a way appropriate to their language,
country, and cultural customs by specifying a locale. See "Setting Locale"
later in this chapter for information about how to specify locale.

A locale generally consists of three parts: language, territory, and codeset.
All three are important for specifying how information is to be processed
and displayed:

• Language-Specifies the language (for example, German, French,
English).

• Territory-Specifies the geographic area (for example, Germany,
France, Great Britain).

• Codeset-Specifies the coded character set that is used for this locale.

Language, territory, and codeset are all important in defining a locale. The
language tells the system to display the messages in the appropriate
language and to define the appropriate collating sequence. The territory
defines the date and time conventions as well as the numeric and monetary
formats. The codeset defines how your system displays and processes the
language character set.

You may find some background information on codesets useful here.

The ASCII codeset has traditionally been used on UNIX based systems to
express American English. Each letter of the alphabet (A to Z, a to z) as
well as any symbolic characters are uniquely expressed by 7 of the 8 bits of
a standard byte.

However, one of the most sweeping changes for internationalization support
is the addition of new codesets, or the expansion old ones, to include non­
English characters. Because so many programs rely on ASCII in one way or
another, all commonly used sets begin with ASCII and then build from
there.

Using Internationalization Features

The 8-bit codesets (those that use all 8 bits of a byte) can support European,
Middle Eastern, and other alphabetic languages. The most popular standard
sets are a series called ISO 8859. The first in the series is called ISO 8859/1,
the second is ISO 8859/2, and so on through ISO 8859/9. The ISO 8859/l
codeset is often called Latin-1.

Asian codesets can support ideographic languages such as Japanese and
Chinese. In these languages, each word is written using one or more unique
ideographic symbols. There are thousands of such symbols in these
languages and most characters require 2 or more bytes.

When you specify a locale, you specify a locale name that defines the
language, territory, and codeset of the locale. The following is the general
format of the locale name:

lang_terr.codeset

where:

Zang A 2-letter, lowercase abbreviation for the language name. The
abbreviations come from ISO 639 Codeset for the Representation
of Names of Languages. Examples:

en English

fr French

ja Japanese

de German (from Deutsch)

terr A 2-letter, uppercase abbreviation for the territory name. The
abbreviations come from ISO 3116 Codeset for the Representation
of Names of Countries. Examples:

OSF/1 User's Guide

us
JP

NL

ES

United States

Japan

The Netherlands

Spain (from Espana)

C-3

codeset The name of the codeset. Examples:

ASCII

88591 ISO 8859/1

SJIS Shift Japanese Information Standard

UJIS Japanese limited EUC

Here are examples of full locale names:

fr_FR.88591 (French, France)
ja_JP.SJIS (Japanese, Japan)

To set a locale, you define an environment variable that uses the locale
name. For information on how to set locale, as well as a complete list of
locale names, see "Setting Locale."

The following section describes how the locale specification affects the way
data is processed and displayed.

How Locale Affects Processing and Display of Data

C-4

As previously mentioned, the locale specified on your system influences
how information is processed and displayed in a locale. The following
functions are affected by locale:

• Collation

• Date and time conventions

• Numeric and monetary formats

• Program messages

• Yes/No prompts

The following sections describe these functions.

Collation

Using Internationalization Features

Collation, or sorting, is the action of arranging the elements of a set into a
particular order. Collation always follows a set of rules. The rules for
sorting English words are few and simple: each letter sorts to one, and only
one, place, and uppercase and lowercase letters are not distinguished. The
ASCII collating sequence for the letters A to Z is the same as the English
collating sequence, except that ASCII distinguishes between uppercase and
lowercase characters.

Other languages include a variety of collation methods. For example:

• Primary/Secondary. In this system, a group of characters all sort to the
same primary location. If there is a tie, a secondary sort is applied.

For example, in French, a, a, a,collate to the same primary location, the
secondary sort goes into effect. These words are in correct French order:

a
a
abord
a pre
apres
aprete
azur

• One-to-Two Character Mappings. This system requires that certain
single characters be treated as if they were two characters. For example,
in German, B (scharfes-S) is collated as if it were ss.

• N-to-One Character Mappings. Some languages treat a string of
characters as if it were one single collating element. For example, in
Spanish, the ch and ll sequences are treated as their own elements within
the alphabet. Dictionaries have separate sections for them (that is, there
are entries for a, b, c, ch, d, and so on). The following words are in
correct Spanish order:

canto
construir
curioso
chapa
chocolate
dama

OSF/1 User's Guide C-5

• Don't-Care Character Mappings. In some cases, certain characters
may be ignored in collation. For example, if a dash (-) were defined as a
don't-care character, the strings re-locate and relocate would sort to the
same place.

In addition to these collation rules, some languages use basically the same
rules as English, but still need more than a plain ASCII sort. For example, in
Danish, there are three characters that appear after z in the alphabet: re, !I),

and a. This means that you cannot assume that the range [A to Z, a to z]
includes every letter.

Date and Time Conventions

C-6

Users around the world express dates and times with different formatting
conventions. When specifying day and month names, Americans generally
express using this format:

Tuesday, May 22, 1990

while the French would use this format:

mardi, 22 mai 1990

The following examples show common methods for formatting the date,
March 22, 1990. These formats, however, are not the only way to write the
date in the listed country:

3120190
2013190
20.3.90
20-III-90

9013120
213120

American: month/day/year order
British: day/month/year order
French: day.month.year order
Italian: day-month-year order; uses the Roman numeral for
the month
Japanese: year/month/day order
Japanese Emperor: same order, but the year is the number
of years the current emperor has been reigning, rather than
the Gregorian calendar year

As with dates, there are many conventions for expressing the time of day.
Americans use the 12-hour clock with its a.m. and p.m. designations, while
most other people in Europe and Asia use the 24-hour clock for written
times.

Using Internationalization Features

In addition to the 12-hour/24-hour clock differences, punctuation for written
times can vary. For example:

3:20 p.m.
15h20
15.20
15:20

American
French
German
Japanese

Numeric and Monetary Formatting

The characters used to format numeric and monetary values vary from place
to place. For example, Americans use a period (.) as the radix character
(that is, the character that separates whole and fractional quantities), and a
comma (,) as a thousands separator. In many European countries, these
definitions are reversed.

For example, here are sample numeric formats:

1,234.56

1.234,56

American; comma as thousands separator; period as
radix character
French: period as thousands separator; comma as radix
character

And here are sample monetary formats:

$1,234.56
krl.234,56
SFrs.1,234.56

American: dollars
Norwegian: krona
Swiss: Swiss francs

In addition, users sometimes need more than two places for fractional digits
with monetary amounts.

OSF/1 User's Guide C-7

Program Messages

One of the most basic user needs is the ability to interact with the system in
the local language. This means that it must be possible to see all program
messages in the local language and for the program to accept input in that
language. Often, programs are written with the English messages hardcoded
into the program. In an internationalized system, the messages are put in a
separate module and replaced with calls to a messaging system.

Yes/No Prompts

Many programs ask questions that need a positive or negative response.
Those programs typically look for the English string literals y or yes, n or
no.

An internationalized program lets users enter the characters or words that
are appropriate to their language. For example, in France, an affirmative
response for a prompt could be o for oui.

Determining Whether a Locale Has Been Set

C-8

If your system is functioning in accordance with the language and
conventions of your country, you can assume that the locale has been set
correctly.

On the other hand, if you are not sure whether your locale has been set, enter
one of the following commands to display active environment variables:

• The set command if in the Bourne or the Korn shells

• The setenv command if in the C shell

For information on the set and the setenv commands, see Chapter 7.

Using Internationalization Features

The following variables specify the locale:

LANG
LC_COLLATE
LC_TYPE
LC_NUMERIC
LC_MONETARY
LC_TIME
LC_MESSAGES

These variables define language, collation, codeset, language of prompt and
system messages, as well as the numeric, monetary, and time formats for the
locale. In most cases, only the LANG variable will have been set. For more
information on these variables, see "Setting Locale" and "Locale
Functions."

Setting Locale

A locale can be set either by an individual user or by a system administrator.
If your system administrator sets the locale at your site, it is likely that a
default locale has been specified for your system, as well as for all systems
at your site. Depending on the implementation, users may or may not have
the freedom to override the default. The rest of this section assumes that you
have the authority to set the locale.

To set a locale, you must assign a locale name to one or more environment
variables. The simplest case is to assign a value to a variable called LANG
because this variable covers all the pieces of a locale.

Table C-1 lists the locale names provided by OSF/1. Every locale name
(except for the C locale) specifies language, territory, and codeset. For
information on the locale name format, see "Understanding Locale."

OSF/1 User's Guide C-9

Table C-1. OSF/1 Locale Names

C-10

Language

c
Danish

Dutch

Dutch_Belgium

English_U.K.

English_ U.S.A.

Finnish

French_Belgium

French_ Canada

French_France

French_ Switzerland

German_Belgium

German_ Germany

German_ Switzerland

Italian

Japanese

Norwegian

Portuguese

Spanish

Swedish

Locale Name

c
da_DK.88591

nl_NL.88591

nl_BE.88591

en_GB.88591

en_US.88591

fi_Fl.88591

fr_BE.88591

fr_CA.88591

fr _FR.88591

fr_CH.88591

de_BE.88591

de_DE.88591

de_CH.88591

it_IT.88591

ja_JJ?.SJIS

no_N0.88591

pt_PT.88591

es_ES.88591

sv_SE.88591

Note: The C locale mentioned in Table C-1 is the system default if
no locales are set on your system. The C locale specifies
American English with unintemationalized ASCII-based
behavior. The main difference between the C locale and the
American English locale (en_US.88591) is that the latter has
enhanced error messages.

The following example sets the locale to French for the C shell in which it
is invoked and all child processes of that shell:

% setenv LANG fr_FR.88591

Using Internationalization Features

If you want another shell to have a different locale, you can reset LANG in
that particular shell. Here is an example of setting the locale to French in
the Korn shell:

$ LANG=fr_FR.88591

Note that setting the LANG variable on the command line sets the locale
only for the current login session.

To set your locale whenever you log in, edit the appropriate login script for
your shell. For the the C shell, set the LANG variable in the .login file. For
the Bourne or the Korn shells, set the LANG variable in the .profile file.

In most cases, assigning a value to the LANG variable is the only variable
you must specify to set the locale. This is because when you set the locale
with the LANG variable, the appropriate defaults are automatically set for
the following functions:

• Collation

• Date and time conventions

• Numeric and monetary formats

• Program messages

• Yes/No prompts

However, to change the default behavior of any of the preceding func.tions
within a locale, you can do so by setting the variables that are associated
with these functions. See the following section for more information.

Locale Functions

When you set the locale with the LANG variable, defaults are
automatically set for the collation sequence, date and time conventions,
numeric and monetary formats, program messages, and the yes/no prompts
appropriate for your locale. If you need to change any of the default
functions, you can do so by setting the variables that are associated with
these functions.

OSF/1 User's Guide C-11

Table C-2 describes the environment variables that influence locale
functions.

Table C-2. Environment Variables That Influence Locale Functions

C-12

Environment Variable Description

LC_COLLATE Specifies the collating sequence to use when
sorting strings and when character ranges occur in
patterns.

LC_CTYPE Specifies the character classification information to
use.

LC_NUMERIC

LC_MONETARY

LC_TIME

LC_MESSAGES

Specifies the numeric format.

Specifies the monetary format.

Specifies the date and time format.

Specifies the language in which system messages
will appear. In addition, this variable specifies the
strings that indicate yes and no in yes/no prompts.

As with the LANG variable, all of the environment variables can be
assigned locale names. For example, suppose that your company is in the
southern United States, but your company's prevalent language is Spanish.
As a result, you can set the locale with the LANG variable for Spanish, but
set the numeric and monetary format for American English. To do this, you
would would make the following variable assignments for the C shell:

setenv LANG es_ES.88591
setenv LC_NUMERIC en_US.88591
setenv LC_MONETARY en_US.88591

In addition, you can also add a field (@modifier) to a locale name to select a
specific version of locale-speci fie data. For example, a locale might sort
data two ways: in dictionary order and in telephone-book order. Suppose
your site is in France and the standard setup for this locale uses dictionary
order, but you need to use a telephone-book order defined by your site. You
might set your environment variables this way in the C shell:

setenv LC_COLLATE fr_FR.88591@phone
setenv LANG fr_FR.88591

Using Internationalization Features

The collating sequence specified by @phone is defined by your site. For
information on how to provide site-specific locale functions, see the OSF/1
System Programmer's Reference Volume 1.

The explicit setting of LC_COLLATE overrides LANG's implicit setting
of that portion of the locale.

Limitations of Locale Variables

The ability to set locale allows you to tailor your environment, but it does
not protect you from making mistakes.

For example, there is nothing to protect you from setting the LANG
variable to a Swedish locale, and the LC_CTYPE variable to a Japanese
locale. It is likely, though, that the results would not be what you intend.

Likewise, there currently is no way to tie locale information to data. This
means that the system has no way of knowing what locale you had set when
you created a file, and so it will not prevent you from processing that data in
inappropriate ways later. For example, suppos.e LANG was set to a German
locale when you created file foo. Now suppose you have reset LANG to a
French locale and then use the grep command to search for a text string in
file foo. The grep command will use French rules on the German data in the
file. There is nothing to prevent you from doing this, or even to warn you
that this probably is not what you intend.

As a result, if you set the locale, be sure your variable settings are consistent
with each other.

OSF/1 User's Guide C-13

Appendix D

Sending and Receiving Mail

This appendix tells you how to use the electronic mail system. It provides
an overview of the operation of the mail system and how to address
messages for local or remote delivery. It also gives instructions to help you:

• Compose and send messages to other users

• Receive and read messages from other users

• Organize the messages that you receive

• Change the mail program to your preferences

Before you can use the mail system, it must be installed and running on your
operating system.

OSF/1 User's Guide D-1

Understanding the Mail System

The OSF/l operating system mail system is a series of programs that allows
you to create, send, and receive messages to and from other people on your
computer or on other computers connected to your computer. It is similar in
concept (although not in how it works) to delivery of letters through a
national postal system. The following sections use that similarity to help
you become familiar with the parts of the mail system and how you can use
them in your daily communications.

Parts of the Mail System

D-2

The following sections describe the operation of the mail system as it is
initially installed. Both you and the person responsible for the operation of
the mail system can change the operation of the mail system. See
"Changing Mail to Meet Your Needs" later in this appendix for changes
that you can make to the operation of the mail system.

Figure D-1 shows the major parts of the mail system. These parts work
together to help you write, send, receive, and organize your daily
correspondence. Understanding the role of each of these parts will help you
use the mail system to handle your correspondence most effectively.

Sending and Receiving Mail

Figure D-1. Parts of the Mail System

You have
new mail.

Network Connected Users
From To

>--------~ FroT~ I Other Local Users

Mail Delivery

System

Dead Letter File

(/u/<userid>/dead.letter)
Your

System Mailbox Mail Program

Personal Choices

(/usr/mail/<userid>)
(/u/<userid>/.mailrc)

Delivery System

Your Personal

Mailbox

Folders

(/u/<userid>/<fdir>/<fname>)

Notes

<userid> = The name of your $HOME directory
<fdir> = The name of your folder's directory

(defined in .mailrc)
<fname> = A particular folder name

The delivery system is a set of programs that routes mail to the correct
system mailbox. You can send and receive system mail without knowing
how to use the delivery system programs.

For example, imagine an ordinary letter being sent from one person to
another through a post office. In this case, the sender and receiver of the
letter do not worry about details like which trucks carry the mail, or which
personnel sort the mail. All the sender has to do is address the letter
correctly, and the letter will be delivered. If the letter cannot be delivered,
the sender will be notified of that fact.

OSF/1 User's Guide D-3

D-4

Likewise, to use the OSF/1 operating system mail system, you do not need
to know all the details about how the mail is delivered. You need only be
concerned about writing, sending, and receiving messages. If you provide
the proper address, as described later in "Addressing Mail," the delivery
system either delivers your message or notifies you if the message cannot be
delivered.

The dead.letter File

When the delivery system cannot deliver a message that you sent, it places
the message in the dead.letter file in your $HOME directory. If
dead.letter does not exist, the delivery system creates the file; otherwise, it
adds the message to the file. In addition, the delivery system displays a
message to indicate that the message could not be delivered. Reasons for
delivery failure include:

• User unknown

The usemame specified in the address of the message is not a defined
usemame or alias on the specified system.

• Host unknown

The host and/or domain portion of the address of the message is not
correct. This can be either a syntax error, or a bad host or domain name.

The system also uses dead.letter to save partially completed messages
when you exit the mail editor with the -q command. In this case, the
previous content of dead.letter is replaced with the partially completed
message.

Note: Do not use the dead.letter file to store messages. The content
of this file changes frequently. Use the mail editor -d
command (see "Resending Undelivered Messages") to
retrieve the contents of dead.letter.

Sending and Receiving Mail

System Mailbox

The system mailbox is similar in concept to the postal mailbox into which
the post office delivers letters addressed to a particular person. In the OSF/1
operating system mail system, the system mailbox is a file assigned to a
particular user. The file is created when mail arrives for a usemame; it is
deleted when all messages have been removed from the file. However, you
can specify that the file not be deleted (see "Changing Mail to Meet Your
Needs"). A separate system mailbox can exist for each usemame defined in
/etc/passwd. The mail system keeps all system mailboxes in the directory
/usr/spool/mail. Each system mailbox is named by the usemame associated
with it. For example, if your usemame is mark, then your system mailbox
is /usr/spool/mail/mark.

When mail arrives for your usetname, the mail system puts the mail in your
system mailbox. If you are logged in when the mail arrives, the mail system
writes a message to your terminal. If you are not logged in, the mail system
writes the message to your terminal when you next log in. If you do not
change it, the message is the following:

[YOU HAVE NEW MAIL]

Use the mail command (see "Receiving Mail") to read and remove
messages from your system mailbox. Do not use the system mailbox to
store messages. Instead, store messages in your personal mailbox and in
folders.

Personal Mailbox

The personal mailbox is similar in concept to an in-basket in an office. You
put mail in the in-basket after you have received it but before you have filed
it. The personal mailbox is a working storage place for mail that still
requires action.

OSF/1 User's Guide D-5

D-6

In the mail system, the personal mailbox is a file assigned to a particular
user. The mail system creates the file with the name $HOME/mbox (where
$HOME is the user's login directory) when the user receives mail from his
or her system mailbox. For example, if your home directory is /u/george,
the mail system creates the file /u/george/mbox as your personal mailbox.
The system deletes this file when all messages are removed from the
personal mailbox.

When you use the mail program to view mail in your system mailbox (see
"Receiving Mail"), mail automatically puts all messages that you have
read but did not delete into your personal mailbox. The messages remain in
your personal mailbox until you move them to a folder or delete them. See
"Receiving Mail" for information about handling the contents of your
personal mailbox.

Folders

Folders provide a way to save messages in an organized fashion. You can
create as many folders as you need. Name each folder with a name that
pertains to the subject matter of the messages that it contains, similar to file
folders in an office. Using the mail program, you can put a message into a
folder from

• Your system mailbox

• Your personal mailbox

• The dead.letter file

• Another folder

Like the mailboxes, each folder is a text file. The mail system puts each
folder in the directory that you specify in your .mailrc file (see "Creating
and Using Folders" for information about creating and using folders). You
must create this directory before using folders to store messages. Once the
directory exists, mail creates the folders in that directory as needed.

Sending and Receiving Mail

Personal Choices

The mail system allows you to modify the way it operates to suit your
needs. These choices include:

• What information to include in message headings

• Whether to forward incoming mail to another usemame

• How you want the messages handled

• Other characteristics pertaining to your terminal.

Refer to "Changing Mail to Meet Your Needs" and to "Forwarding Your
Mail'' for information about specifying these, and other personal choices.

The mail Program

The mail program allows you to create, send, and receive messages to
communicate with other users connected to your system (either directly or
through a network). It includes a line-oriented editor (described in "Using
the Mail Editor") for creating messages and provides a command-oriented
interface for processing the contents of your system mailbox, your personal
mailbox, any folders you may have, and dead.letter. "Sending Mail"
describes how you use mail to create and send a message. ''Receiving
Mail" describes how to use mail to process the contents of any mailbox or
folder.

Addressing Mail

Using mail, you can send messages and files to another user on your local
system, on another system connected to your system in a network, or on
another system connected to another network that has a connection to your
network. The command always has the following form to start composing a
message to another user:

$mail address

OSF/1 User's Guide D-7

However, you must supply a different form of the address parameter,
depending upon where the person receiving the message is located. The
concept is similar to how you might address a note to a fellow worker in an
office.

For example, to send a note to someone in your department (a small
department of six to eight people), you might simply write his or her name
on the envelope and put it in the mail system:

Hal

However, if Hal is in another department, you may have to provide more
information on the envelope:

Hal
Payroll

If Hal is in another plant, you may need even more information to ensure
that the message gets to him:

Hal
Payroll
Gaithersburg

Addressing of messages with mail operates in a similar fashion, as the next
few sections show.

Addressing for Users on Your Local System

D-8

To send a message to a user on your local system (that is, to someone whose
usemame appears in /etc/passwd on your system), specify the usemame for
the address:

$ mail login JD

For example, if user hal is on your system, enter the following command to
create and send a message to hal:

$mail hal

Sending and Receiving Mail

This command activates mail, allows you to create a message to hal, and
then tries to send the message to the local username hal. If the message is
delivered successfully, you receive no notification. If hal is not on your
system, the mail system returns an error message, and puts the unsent
message in your system mailbox.

Addressing for Users on Your Network

To send a message to a user on another system connected to your system
through a network, you must know the name of the other system in addition
to the username (on the other system) of the person to whom you are
sending the message. Refer to "Determining the Name of Another System"
to find out the name of the other system and whether you can directly
address the other system. If you can directly address the other system, use
the username of the recipient, followed by the @ (at sign), followed by the
name of the remote system as the address for sending the message:

$mail username@system_name

For example, if user hal is on system zeus, enter the following command to
create and send a message to hal:

$ mail hal@zeus

This command activates mail, allows you to create a message to hal, and
then tries to send the message to username hal on system zeus. If the
message is delivered successfully, you receive no notification. If hal is not
a user on zeus, you receive no error message; however, the mail system
returns the undelivered message to your system mailbox, together with an
explanation of why it could not be delivered.

OSF/1 User's Guide D-9

D-10

Determining the Name of Another System

The name of the system for mail routing is determined by a configuration
file on that system. By convention, the name is often set to the node name
of that system; however, it may be defined differently in the configuration
file. To find out the node name of another system, use the uname -a
command on the other system. Contact the person responsible for the mail
system on the other system to find out the name defined in the configuration
file on that system.

In addition, your local system must have access to information that defines
the other system on the network. To determine if your local system has this
information, use the host command. For example, to find out if your system
has routing information for system zeus, enter:

$host zeus

If your system responds with a message like the following, it has the proper
information and you can send a message to that system:

zeus is 192.9.200.4 (300,11,310,4)

If your system does not have information about the requested system, it
responds with the following message:

zeus: unknown host

If you receive this message, the requested system name:

• May not be correct (check your typing)

• May be on your network, but not defined to your system (contact the
person responsible for setting up your network)

• May be on another network and require more detailed addressing to
define it (see "Addressing for Users on a Different Network")

• May not be connected to a network that is connected to your network

You may also receive that message if the network is not operating and your
local system depends on a remote system to supply network addresses.

Sending and Receiving Mail

Addressing for Users on a Different Network

If the network to which your system is connected is also connected to other
networks, you can send mail to users on those networks. If the networks use
a central database of names, you do not need any additional information to
send mail to users on the connected networks. Use the same addressing as
for users on your local network:

$mail username@system_name

This type of addressing works well when the nature of the network allows a
central database of names to be maintained. However, for networks that
span large, unrelated local networks in widespread locations, a central
database of names is not possible. To send mail to someone in such a
network, more addressing information is needed. The address must be in
the following format:

$mail username@system_name.domain_name

The additional information in this format is the domain_name. This
information defines the remote network, relative to your local network,
within the defined structure for the larger group of interconnected networks.

This information may be as simple as an added network name. For
example, if your local network (named olympus for this example) is
connected to a second network (named valhalla), you could enter the
following command to send a note to user kelley at system odin on the
second network:

$mail kelley@odin.valhalla

Similarly, user kelley could respond to user halon zeus by entering:

$ mail hal@zeus.olympus

Frequently, however, the domain name is more than another network name.
It becomes the path through the logical arrangement of domains in the
network through which your message must travel. It does not represent the
actual route that the message travels, only the position of the destination
network in the interconnected network structure.

OSF/1 User's Guide D-11

The largest and most common example of this type of interconnection is a
network of business, government, and educational institutions called the
Internet. At the highest structural level of this network, it divides into
several large domains, including:

• COM for commercial entities

• EDU for educational institutions

• GOV for government agencies

• BITNET for connection to the BITNET network

• CSNET for connection to the CSNET network

Figure D-2 shows a high-level view of some parts of the Internet network,
showing detail for some imaginary branches to illustrate the domain naming
concept.

Figure D-2. General Domain Naming Structure with Example Connections

Internet

GOV COM ARPA

ABC DEF XYZ

COMP SCI
_J _L

olympus valhalla pubs

zeus Odin d998

D-12

Sending and Receiving Mail

In this example, the domain pubs is connected to the larger domain XYZ
and is not directly connected to olympus as was valhalla in the previous
example. Therefore, enter the following command to send a note to user ed
at system odin from system d998:

$mail ed@odin.valhalla.DEF

Similarly, user ed responds to user ca th on d998 by entering:

$ mail cath@d998.pubs.XYZ

Each of these addresses specifies only that part of the address needed to
reach the destination from the domain COM. The routing programs at that
domain recognize the domains DEF and XYZ. However, someone at
COMPSCI sending a message to cath must enter the following command:

$ mail cath@d998.pubs.XYZ.COM

This example shows the complete address for user cath in the example
network.

Addressing for Users Connected with a UUCP Link

To send a message to a user on another system connected to your system by
UUCP, you must know the name of the other system and the physical route
to that other system in addition to the usemame (on the other system) of the
person to whom you are sending the message. The person responsible for
connecting your system to the other system should be able to provide the
proper routing information to address the other system.

Addressing When Your Computer Has a UUCP Link

If your local computer has a UUCP connection that can be used to reach the
remote site, use the following format to address a message:

$mail uucp_route!usemame

OSF/1 User's Guide D-13

D-14

The variable parameter username is the username on the remote system of
the person that is to receive the message. The variable parameter
uucp _route describes the physical route that the message must follow along
the UUCP network to reach the remote system. If your system is connected
to the remote system without any intermediate UUCP systems between,
then this parameter is just the name of the remote system. If your message
must travel through one or more intermediate UUCP systems before
reaching the desired. remote system, this parameter is a list of each of the
intermediate systems, starting with the nearest system and proceeding to the
farthest system, separated by an! (exclamation point).

For example, if your local system has a UUCP link to a system called
merlin and there are no other UUCP systems between your system and
merlin, enter the following command to send a message to ken on that
system:

$ mail merlin!ken

However, if the message must travel through systems arthur and lancelot
(in that order) before reaching merlin, enter the following command to send
the message:

$ mail arthur!lancelot!merlin!ken

Addressing When the UUCP Link is on Another Computer

In a local area or wide area network environment, one of the systems on the
network may have a UUCP connection to a remote UUCP system. You can
use that UUCP connection to send a message to a user on that remote UUCP
system. Use the following command format to send a message:

$ mail@systemA:@systemB.VVCP:username@systemC

This format sends mail first to systemA, then to systemB, which routes it on a
UUCP link to systemC. The .UUCP addition to the address for systemB
indicates that the UUCP mailer at that system handles the routing of the
message to systemC.

Sending and Receiving Mail

The system addresses in this format are in the addressing format described
in "Addressing for Users on Your Network" and "Addressing for Users on
a Different Network." Notice that in this format, you are not sending mail
to a user at any of the intermediate systems, so no usemame precedes the @

in the domain address.

Figure D-3 shows an example network that uses domain addressing for
much of the mail, but has a UUCP link that routes mail to systems depta
and depth. The system depth is connected to another system; that is, deptc
by a local area network. The following commands illustrate addressing
using this example network.

For ed at odin to send messages to fred at depta, dick at depth and bill at
deptc, he would enter the following commands:

$mail @odin.UUCP:fred@depta
$mail @odin.UUCP:@depta.UUCP:dick@deptb
$mail @odin.UUCP:@depta.UUCP:@deptb:bill@deptc

These people respond with the following commands:

$mail @depta.UUCP:ed@odin
$ mail @deptb.UUCP:@depta.UUCP:ed@odin
$mail @deptb.UUCP:@depta.UUCP:ed@odin

Similarly, cath at d998 can send mail to the same people by entering the
following commands:

$mail @odin.UUCP.valhalla.IBM:fred@depta
$mail @odin.UUCP.valhalla.IBM:@depta.UUCP:dick@deptb
$ mail @odin.UUCP.valhalla.IBM:@depta.UUCP:@deptb: bill@deptc

These people respond with the following commands:

$mail @depta.UUCP:@odin:cath@d998.pubs.XYZ
$ mail @deptb.UUCP:@depta.UUCP:@odin:cath@d998.pubs.XYZ
$ mail @deptb.UUCP:@depta.UUCP:@odin:cath@d998.pubs.XYZ

OSF/1 User's Guide D-15

Figure D-3. Example of UUCP Connection on a Network

pubs olympus valhalla

d998 zeus odin - - depta - - - depth

I
deptc

Creating Aliases and Distribution Lists

D-16

If you send mail on a large network or often send the same message to a
large number of people, entering long addresses for each receiver can
become tedious. To simplify this process you can create an alias or a
distribution list:

Alias

Distribution list

A name that you define that can be used in place of
a user address when addressing mail.

A name that you define that can be used in place of
a group of user addresses when addressing mail.

Aliases and distribution lists are used the same way and defined in similar
ways; the only difference is the number of addresses defined for an alias
(one address) and a distribution list (more than one address).

Defining an Alias or Distribution List

To define an alias or a distribution list that you can use when sending mail,
edit the file .mailrc in your home (login) directory. This file contains many
commands that mail reads when you start it from the command line. These
commands are discussed in ''Changing Mail to Meet Your Needs.''

Sending and Receiving Mail

To define an alias, add a line in the following format to .mailrc:

alias name user addr

To define a distribution list, add a line in the following format to .mailrc:

alias name user addrl user addr2 ... user addrn - - -

In this format the variable parameter name can be any alphanumeric string
that you choose. It should be short and easy to remember, but it cannot be
the same as any of the other defined aliases in this file. Duplicate names are
redefined to match the last definition in this file.

Note: If you define a name that is the same as a usemame on your
system (as listed in /etc/passwd), you will not be able to send
mail to that usemame. The alias name takes precedence over
any defined usemames.

The variable parameters user_ addrx can be any address that can be used
with the mail command as defined in "Addressing Mail." For example, to
define an alias for user ca th using the alias name catherine, you might
enter the following command in .mailrc:

alias catherine @deptb.UUCP:@depta.UUCP:@odin:cath@d998.pubs.XYZ

With this line in .mailrc, you can send mail to user cath by entering the
command:

$ mail catherine

Similarly, to define a distribution list that sends a common message to a
group of people, you might enter the following command in .mailrc:

alias dept geo anne mel@gtwn mark@mark.austin

With this line in .mailrc, you can enter the following command:

$mail dept

This command sends the same message to users geo and anne on the local
system, to mel on system gtwn, and to mark on system mark in subdomain
austin.

OSF/1 User's Guide 0-17

In addition, you can use a previously defined alias in a distribution list.
Therefore, you could add the first alias above to the distribution list to
include user cath in the distribution list:

alias dept geo anne mel@gtwn mark@mark.austin catherine

You can also define aliases that are longer than one line by adding another
line that defines the same alias. The second definition is added to the first;
it does not replace the first definition. For example, the following entries
define the same distribution list dept as in the previous example:

alias dept geo anne mel@gtwn
alias dept mark@mark.austin catherine

Sending Mail

Use the mail system to send information to another user. The other user
need not be logged in to the system when you send the information. You
can use the mail command in one of two ways to send information. For
short messages or letters that do not require a lot of formatting and editing,
use the mail command's built~in editor to both compose and send the
message. For larger letters, use your favorite editor to create the letter and
then send the resulting file using the mail command.

Composing and Sending a Message

D-18

The mail command provides a simple, line-oriented editor for entering
messages. See "Using the Mail Editor" for information about using this
editor. Use the following procedure to use this editor to compose and send a
message:

1. Enter the mail command on the command line followed by the
address of the person or persons who will receive the message.

mail address

Sending and Receiving Mail

The system places the cursor on a new line and waits for input from
the keyboard.

2. Type the message (see "Using the Mail Editor" for information about
using the built-in editor).

3. When you are finished with the message, press <Return> and then
<Ctrl-d>. The system adds appropriate header information and sends
the message. The command line prompt appears again.

For example, enter the following command to compose and send a message
to user amy on system zeus on a local network:

mail amy@zeus

Sending a File

Use the mail command to send any text file to another user. The file may be
a letter you have written using your favorite editor, a source file for a
program you have written, or any other file in text format. Use the following
procedure to send a text file to another user.

To send a text file to another user, enter the following mail command:

mail address <filename

The system reads the input file, filename, adds appropriate header
information, and sends the message. The command line prompt appears
again.

For example, enter the following command to send the file letter to user
amy on your local system:

mail amy < letter

OSF/1 User's Guide D-19

Receiving Mail

D-20

When mail arrives for you from another user, the mail system puts the mail
in your system mailbox. If you are logged in, it also sends a message to
your terminal periodically to tell you that new mail has arrived. If you are
not logged in, a message is sent to your terininal the next time that you log
in. If you do not change it, the message is

[YOU HAVE NEW MAIL]

To receive mail, do the following:

1. Enter the mail command without parameters:

$mail

The system displays a listing of the messages in your system mailbox.

2. Enter the t command to display the text of a particular message.

3. Enter the q command to exit the mailbox and return to the command
line. The mail program saves the messages that you read in your
personal mailbox if you did not delete them.

Use the mail command without parameters to view the contents of your
system mailbox. If no mail is in your system mailbox, the mail system
responds with the message:

No mail for usemame

For example, if your username is carol, the following message displays if
no mail is in your system mailbox.

$mail
No mail for carol
$

Sending and Receiving Mail

If there is mail in your mailbox when you enter the mail command, the mail
system displays a listing of the messages in your system mailbox. The
listing shows information about who sent the message, when it was
received, how large the message is, and what the subject is (if included in
the message).

For example, user geo enters the mail command and receives the following
display:

Mail Type ? for help.
"/usr/mail/geo": 2 messages 2 new
>N 1 amy Mon Sep 17 14:36 13/359 "Dept Meeting"

N 2 amy Mon Sep 17 16:28 13/416 "Meeting Delayed"
&

The first line is the Mail program banner. It indicates that you can enter a
? (question mark) to get the help screen. The second line indicates the
name of the mailbox file being used (/usr /mai 1 I geo is the system
mailbox for user geo), the number of messages in the mailbox and their
status. The following lines list information for each message in the
mailbox. One line describes one message. The information about each
message is arranged in fields, as shown in Table D-1.

From this listing you can look at, save, reply to, or delete any of the
messages. Refer to ''Processing Messages in a Mailbox'' for a description
of what you can do while in the mailbox.

Type q at the & prompt to exit the mailbox.

Table D-1. Mailbox Information

Field Description

Pointer The > (redirection symbol) in this field for a particular
message indicates that the message is the current
message in the mailbox. The current message is the
default message for mailbox commands if no other
message number is specified (see "Processing Messages
in a Mailbox'').

OSF/1 User's Guide D-21

Field

Status

Description

A one-letter indicator of the status of the message:

M

N
p

u

R
*

Indicates that the message will be stored in your
personal mailbox.
Indicates that the message is a new message.
Indicates that the message will be held (preserved) in
your system mailbox.
Indicates that the message is an unread message.
The message has been listed in the mailbox before,
but you have not looked at the contents of the
message.
Indicates that you have read the message.
Indicates that you have saved or written the message
to a file or folder.
No indicator indicates that the message is unresolved.

Message Number An integer that mailbox commands use to refer to the
message (see "Processing Messages in a Mailbox'').

Address The address of the person that sent the message.

Date The date the message was received, including day of the
week, month, date, and time.

Size Size of the message in number of lines and number of
characters, including heading information.

Subject The contents of the subject field of the message (if the
message has one).

Forwarding Your Mail

D-22

If you are going to be away from your normal network address for an
extended period of time, you may want to have your network mail sent to
another network address while you are away. Sending your incoming mail
to a different address (or addresses) is called forwarding. The new address
may be the address of a co-worker who will handle your messages while
you are away, or it may be the network address where you will be working
while away from your normal address.

Sending and Receiving Mail

When you choose to forward your network mail, you do not receive a copy
of any incoming mail in your mailbox. All mail goes directly to the address
or addresses that you indicate.

Use the following procedure to forward your incoming network mail to
another address.

1. Ensure that you are in your home directory:

$ cd

2. Create a file called .forward that contains the network address or
addresses (one address per line) to which you want to forward your
incoming mail.

You tell the mail system to forward your incoming mail by creating a file in
your home directory called .forward. This file must contain the network
address or addresses to which you want to forward your incoming mail. If
the file contains more than one address, each address must be on a line by
itself. The following procedure explains how to create the .forward file:

1. Use the cd command with no parameters to ensure that you are in
your home directory. The following command sequence illustrates
that action for the usemame geo:

$ cd
$ pwd
/u/geo

$

2. While in your home directory, create a file called .forward that
contains the network address or addresses that are to receive your
forwarded network mail. This file must contain valid addresses. If it
is a null file (zero length), your mail is not forwarded and is stored in
your mailbox. If it contains addresses that are not valid, you do not
receive the mail, but the sender receives an error message and the
mail is put in dead.letter in the sender's home directory.

As an example of creating a .forward file, the following command
sequence uses the cat command to create that file. (Note that the
entry EOF indicates the End-of-File character, frequently <Ctrl-d>,
entered on a line by itself.) In this case, incoming mail will be
forwarded to user mark on the local system and to user amy on
system zeus.

OSF/1 User's Guide D-23

$ cat > .forward
mark
amy@zeus
EOF
$

Once this file exists, you will receive no more mail. All mail is sent to the
addresses in .forward. When you return to your normal network address,
remove this file to resume receiving mail:

$ rm .forward

Note: The file .forward does not appear in a simple listing of the
files in your home directory. Use the ls -a command to see all
files that begin with a dot(.).

Looking at Your Personal Mailbox

D-24

Messages that you have read but do not delete are saved in your personal
mailbox. Use the mail -f command to view the contents of your personal
mailbox as follows:

1. Enter the mail command with the -f flag:

$mail -f

The syst~m displays a listing of the messages in your personal
mailbox.

2. Enter the t command to display the text of a particular message.

3. Enter the q command to exit the mailbox and return to the command
line.

Use the mail -f command to view the contents of your personal mailbox. If
the personal mailbox does not yet exist, the system responds with an error
message:

/u/userid!mbox: No such file or directory

Sending and Receiving Mail

If the personal mailbox exists but is empty, the mailbox handler becomes
active, and displays a mailbox header similar to the following:

Mail Type ? for help.
"/u/geo/rnbox": 0 messages
&

Enter the q command to return to the command line.

If there is mail in your personal mailbox when you enter the mail -f
command, the mail system displays a listing of the messages in your
personal mailbox. The listing shows information similar to that shown
when you look at your system mailbox (see "Receiving Mail").

From this listing you can look at, save, reply to, or delete any of the
messages. Refer to ''Processing Messages in a Mailbox'' for a description
of what you can do while in the mailbox.

Enter q at the & prompt to exit the mailbox.

Looking at a Mail Folder

Use the mail -f command to view the contents of a defined mail folder. See
"Creating and Using Folders" for information on how to create a folder.

To look at a mail folder, perform the following:

1. Enter the mail command with the -f flag and the name of the folder
using a + (plus sign) to indicate the folder name:

$ mail -f +folder

The system displays a listing of the messages in the indicated folder.

2. Enter the t command to display the text of a particular message.

3. Enter the q command to exit the folder and return to the command
line.

OSF/1 User's Guide D-25

Use the mail -f command to view the contents of a mail folder. For
example, to view the contents of the defined folder status in your folder
directory (defined in .mailrc), enter the following command:

$ mail -f +status

If the folder does not yet exist, the system responds with an error message:

/u/userid!letters/folder: No such file or directory

If the folder exists but is empty or contains information that is not in the
correct format, the mailbox handler becomes active, and displays a mailbox
header similar to the following:

Mail Type ? for help.
"/u/geo/letters/reports": 0 messages
&

Enter the q command to return to the command line.

If there is mail in the folder when you enter the mail -f command, the mail
system displays a listing of the messages in the folder. The listing shows
information similar to that shown when you look at your system mailbox
(see "Receiving Mail").

From this listing you can look at, save, reply to, or delete any of the
messages. Refer to ''Processing Messages in a Mailbox'' for a description
of what you can do while in the mailbox.

Enter q at the & prompt to exit the mailbox.

Processing Messages in a Mailbox

You can use the mail command to process the contents of

• Your system mailbox

• Your personal mailbox

• Any mail folder that you have created

D-26

Sending and Receiving Mail

Using this program you can read, delete, store, and respond to messages you
receive through the mail system. The following sections explain how to
perform these tasks.

Using Mailbox Commands

When the mail program is processing a mailbox, it displays the mailbox
prompt to indicate that it is waiting for input. The mailbox prompt is the &

(ampersand) that appears at the beginning of a new line. When this prompt
appears, you can enter any of the mailbox commands described in this
appendix or in the OSF/1 Command Reference.

Specifying Groups of Messages

Many mailbox commands operate on a message or group of messages. You
can specify the message(s) using information displayed in the listing of the
contents of the mailbox, such as message number or sender. Enter the h
command (see "Displaying the Contents of a Mailbox") to display the
listing. Commands that allow groups of messages use the parameter
message _list in the command format in this appendix. For example, the
format of the f command (display information about messages) appears as:

& f message _list

In this format, message _list can be one of the following:

• One or more message numbers separated by spaces

&f1247

OSF/1 User's Guide D-27

D-28

• A range of message numbers indicated by the first and last numbers in
the range separated by a - (dash):

& f2-5

is the same as:

&f2345

• One or more addresses separated by spaces to apply the command to
messages received from those addresses:

& f amy geo@zeus

The characters entered for an address do not need to exactly match the
address. They must only be contained in the address field of the
messages in either uppercase or lowercase characters. Therefore, the
request for address amy matches all of the following addresses (and
many others):

amy
AmY
amy@zeus
hamy

• A string, preceded by a I (slash), to match against the Subject: field
of the messages,

& f /meet

applies the command to all messages whose subject field contains the
letters meet in uppercase or lowercase characters. The characters
entered for a match pattern do not need to exactly match the subject
field. They must only be contained in the subject field of the messages
in either uppercase or lowercase characters. Therefore, the request for
subject meet matches all of the following subjects (and many others):

Meeting on Thursday
Come to meeting tomorrow
MEET ME IN ST. LOUIS

Sending and Receiving Mail

Specifying File or Folder Names

Many mailbox commands allow you to specify a file or folder name to be
used with the command. Commands that allow a file or folder name use the
parameter fname in the command format in this appendix. For example, the
format of the file command (change mailbox files) appears as:

& filefname

In this format, fname can be one of the following:

• The pathname of the new mailbox relative to the current directory. For
example, if the current directory is your home directory, enter the
following command to change to your personal mailbox:

file mbox

The program changes to that mailbox and displays a list of the contents
of that mailbox.

• The absolute pathname of the new mailbox. For example, if your
usemame is george, enter the following command to change to your
system mailbox:

file /usr/mail/george

• The shorthand form of a folder name in your directory defined for
folders (see "Creating and Using Folders" for information about using
folders). For example, if you define your folder directory as letters,
enter the following command to change to the folder reports:

file +reports

The + (plus sign) is a shorthand form for the full pathname of the folder
directory. Therefore, this command performs the same function as if it
had been entered as:

file /u/george/letters/reports

OSF/1 User's Guide D-29

Looking at a Mailbox

To start the mail program with one of the main types of mailboxes, see the
following procedures:

• For system mailbox information, see "Receiving Mail."

• For personal mailbox information, see ''Looking at Your Personal
Mailbox.''

• For folders information, see "Looking at a Mail Folder."

Leaving the Mailbox

D-30

You can leave the mailbox and return to the operating system using one of
two commands:

• Enter the q command to leave the mailbox and return to the operating
system. When you leave the mailbox, all messages that you marked to
be deleted are removed from the mailbox and cannot be recovered. For
example, the following command processes the mailbox commands and
returns you to the operating system:

&q

• Enter the x command to leave the mailbox and return to the operating
system without changing the original contents of the mailbox. The
program ignores any requests to delete messages. For example, the
following command returns you to the operating system without
changing the content of the mailbox:

&x

Sending and Receiving Mail

Getting Help

While using mail to look at a mailbox, display a summary of many mailbox
commands by entering the ? command:

&?

You can also display a list of all mailbox commands (with no explanation of
what they do) by entering the I (list) command:

&I

Finding the Name of the Current Mailbox

Although the mail command displays the name of the current mailbox
when it is started, you may lose track of what the current mailbox is. Use
the file command without parameters to find out the name of the current
mailbox. When you enter this command, it responds with the name of the
current mailbox, the number of messages, and whether any messages have
been marked to be deleted.

For example, if the current mailbox is /u/george/mbox, the system displays
the following when you enter the file command:

& file
/u/george/mbox: 2 messages 1 deleted
&

This message indicates that /u/george/mbox contains two messages and
that one of those messages will be deleted when you finish with this
mailbox.

OSF/1 User's Guide D-31

Changing Mailboxes

Once the program is started with one mailbox, use the file command to
change to another mailbox. The format of this command is as follows:

filefname

Refer to "Specifying File or Folder Names" for an explanation of the
fname parameter.

Note: When you change mailboxes, any messages that you marked
to be deleted are deleted when you leave that mailbox. If you
return to that mailbox, the deleted messages cannot be
recovered.

Reading a Message from a Mailbox

D-32

To look at a message, enter the number of that message at the mailbox
prompt (&). Pressing <Return> only at the mailbox prompt displays the
current message. If the mailbox listing is

Mail Type ? for help.
"/usr/mail/geo": 2 messages 2 new
>N 1 amy Thu Sep 17 14:36 13/359 "Dept Meeting"

N 2 amy Thu Sep 17 16:28 13/416 "Meeting Delayed"
&

pressing <Return> displays the message "Dept Meeting" because
message number 1 is the current message (indicated by the > in the first
column). Entering the number 2 displays the message "Meeting
Delayed":

&2
Message 2:
From geo Mon Sep 17 14:38 CDT 1990
Received: by zeus

id AA00716; Mon, 17 Sep 90 14:38:53 CDT

Sending and Receiving Mail

Date: Mon, 17 Sep 90 14:38:53 CDT
From: amy
Message-Id: <8709171938.AA00716@zeus>
To: geo
Subject: Meeting Delayed
Status: R

The department meeting scheduled for 1:30 PM tomorrow
has been postponed to 3:30 PM. It will still be held
in the planning conference room.

EOF:

The EOF : prompt indicates that pg is being used to display the message.
See "Controlling the Display Scroll" to change this option. Press
<Return> to return to the mailbox prompt.

Looking at the Next Message

Enter the n command to look at the next message in the mailbox. The next
message then becomes the current message. For example, if the current
message is message number 6, then the following command displays
message number 7 and makes message number 7 the current message:

&n

Looking at More Than One Message

To display more than one message in succession, enter the t command with
a list or range of message numbers. The format for this command is as
follows:

& t message _list

OSF/1 User's Guide D-33

Refer to "Specifying Groups of Messages" for an explanation of the
message _list parameter.

Note: When displaying more than one message at a time, be sure to
include the set crt command in your .mailrc file (see
"Changing Mail to Meet Your Needs"). You can also enter
this command at the mailbox prompt. If you do not use this
command, the displayed messages scroll up and off the screen
without pausing for you to read them.

Displaying the Contents of a Mailbox

D-34

When the mail program starts, it lists what is currently in the mailbox that
it is using (as described in "Receiving Mail"). You can see this list again
by entering the h command. This command is useful to help you keep track
of messages in the mailbox as you perform actions on them. Messages that
you delete are not shown in the listing.

Only a certain number (about 20) of messages can be listed at a time. The
actual number is determined by the terminal type being used, and by the set
screen command (see "Controlling the Display Scroll"). If the mailbox
contains more than that number of messages, information about only the
first group of messages will be displayed. To see information about the rest
of the messages, enter the h command with a number that is in the next
range of message numbers (21 to 40 in this case).

For example, suppose the mailbox contains 25 messages and the current list
shows messages numbered 1 to 20. The following command displays
information about messages numbered 21 to 25:

& h21

To return to the first group of messages, enter the following command:

&hl

You can also change the group of messages by displaying any of the
messages in the desired group.

Sending and Receiving Mail

For example, if you display message number 5, then the first group of
messages becomes the current group of messages. Entering the h command
shows information about messages 1 to 20.

Displaying Information About Selected Messages

If you have a large number of messages in your mailbox, you may want to
display the heading information only about groups of messages. Enter the f
command with a list or range of message numbers. The format for this
command is as follows:

& f message _list

Refer to "Specifying Groups of Messages" for an explanation of the
message _list parameter.

Deleting and Recalling Messages

Enter the d command to delete messages from a mailbox. The format of
this command is as follows:

& d message _list

Note: If you delete a message and either change to another mailbox
or quit the mailbox (with the q command), the deleted
message cannot be recalled.

Once a message is deleted, but before leaving the current mailbox, you can
recall that message and undelete it with the u command. The format of this
command is as follows:

& u message _list

Refer to "Specifying Groups of Messages" for an explanation of the
message _list parameter.

OSF/1 User's Guide D-35

Entering d without a message list deletes the current message. Entering u
without a message list recalls the last deleted message. You can also enter
the dt command to delete the current message and automatically display
the next message. For example, if the current message is message number
4, then the following command deletes message 4 and displays message 5:

& dt

Saving Messages in a File or Folder

D-36

You can add the contents of a message to a file or folder using one of two
commands. One command includes the message headings in the file or
folder; the other command adds only the text of the message to the file or
folder. Both of these commands add information to the end of an existing
file, or create a new file. They do not destroy information currently in the
file.

Enter the s command to save a message including header information to a
file or folder. The format of this command is as follows:

& s message _list fname

Use thew command to save a message without header information (text of
the message only) to a file or folder. The format of this command is as
follows:

& w message _list fname

Refer to "Specifying Groups of Messages" for an explanation of the
message _list parameter. Refer to "Specifying File or Folder Names" for
an explanation of the fname parameter.

For example, the following command saves messages 1, 2, 3, and 4 with
their header information to a file called notes in the current directory:

& s 1-4 notes
"notes" [Appended] 62/1610

Sending and Receiving Mail

As an additional example, if message number 6 contains the following
information, perform the next instruction:

From root Fri Sep 11 12:55 CDT 1990
Received: by zeus

id AA00549; Fri, 11 Sep 90 12:55:25 CDT
Received: by thor

id AA00178; Fri, 11 Sep 90 12:57:15 CDT
Date: Fri, 11 Sep 90 12:57:15 CDT
From: su@thor.8d33
Message-Id: <8709111757.AA00178@thor>
To: geo@zeus
Status: RO

Please change your password.

Enter the following command to save the entire message to a folder called
admin in your folder directory (defined as /u/george/letters in
your .mailrc file):

& s6 +admin
"/u/george/letters/admin" [New file] 14/321

Enter the following command to save the text only to a file called text in
the current directory:

&w6text
"text" [New file] 12/30

The text file contains the following:

Please change your password.

OSF/1 User's Guide D-37

Editing a Message

You can use your favorite editor to add information to a note in your
mailbox. When you leave the editor, you return to the mailbox prompt to
continue processing the messages in the mailbox.

Two mailbox commands, e and v, allow you to activate one of two editors
to edit the text of a message.

The e command activates the ex editor, or other editor that you define (see
"Changing Mail to Meet Your Needs"). This command has the following
format:

e [message_number]

The v command activates the vi editor, or other editor that you define (see
"Changing Mail to Meet Your Needs"). This command has the following
format:

v [message_number]

For each of these commands, message_ number is the number of the
message that you want to edit. If you do not specify a message number,
mail activates the editor using the current message.

Creating a Message

D-38

While using the mail command to process a mailbox, you can create a new
message by activating the mail editor (see "Using the Mail Editor" for
information about using the editor). Use one of the following three
commands to activate the editor from the mailbox prompt depending upon
the purpose of the message:

R Responds to the sender of a message

r Responds to the sender and all others who received copies of a
message

m Creates a new message independent from any received
messages

Sending and Receiving Mail

Responding to the Sender Only

Enter the R command to send a response message to the originator of a
message. This command creates a new message addressed to the sender of
the selected message and with a Subject: field that refers to the selected
message. Then it activates the mail editor to allow you to enter text into
the new message. The format of this command is as follows:

& R [message_ number]

The message_ number parameter is the message number of the message to
which you want to reply. If you do not specify a message number, mail
creates a reply to the current message.

For example, suppose message number 4 is as follows:

From root Thu Sep 17 14:45 CDT 1990
Received: by zeus

id AA00731; Thu, 17 Sep 90 14:44:59 CDT
Received: by thor

id AA00614; Thu, 17 Sep 90 14:47:53 CDT
Date: Thu, 17 Sep 90 14:47:53 CDT
From: amy@thor
Message-Id: <8709171947.AA00614@thor>
To: geo@zeus
Subject: Department Meeting
Cc: mark@zeus, mel@gtwn
Status: RO

Please plan to attend a department meeting tomorrow
at 1:30 PM in the planning conference room.

In this case, you would enter the following as a reply message to
amy@thor:

&R4
To: amy@thor
Subject: Re: Department Meeting

I'll be there.
EOF

OSF/1 User's Guide D-39

D-40

When you enter the EOF (<Ctrl-d> on many terminals), the program sends
the message to amy@thor and returns you to the mailbox prompt.

Responding to the Sender and Recipients

Enter the r command to respond to the originator of a message, and send a
copy of your response to everyone on the Cc: list. The r command creates
a new message that is addressed to the sender of the selected message and
copied to the people on the Cc: list. The Subject: field of the new
message refers to the selected message. The r command also activates the
mail editor so you can enter text into the new message. The format of this
command is as follows:

& r [message_ number]

The message_ number parameter is the number of the message to which you
want to reply. If you do not specify a message number, mail creates a
reply to the current message.

For example, using message number 4 in the previous example, the
following sequence generates a reply message to amy@thor as well as to
mark@zeus and mel@gtwn:

&r4
To: amy@thor
Cc: mark@zeus mel@gtwn
Subject: Re: Department Meeting

I'll be there.
EOF

When you enter the EOF (<Ctrl-d> on many terminals), the program sends
a copy of the message to all addressees and returns you to the mailbox
prompt.

Sending and Receiving Mail

Creating a New Message

Enter the m command to create a new message while processing a
mailbox. The format for this command is as follows:

& maddress

The address parameter is any proper user address as described in
"Addressing Mail." This command starts the mail editor to create a new
message as described in "Sending Mail."

Listing Defined Aliases

While processing a mailbox you can get a listing of the aliases that are
defined for this mail session by entering the a command. The format for
this command is as follows:

&a

This command displays all aliases and their corresponding addresses, one
alias per line. Refer to "Addressing Mail" for information about defining
an alias to be used as an address.

Using the Mail Editor

The mail command provides a line-oriented editor for composing
messages. This editor allows you to enter each line of the message and
then press <Return> to get a new line to enter more text. You cannot
change a line once you have entered it. However, before pressing
<Return>, you can change information on that one line by using the
Backspace and Delete keys to erase the information, and then enter the
correct information.

OSF/1 User's Guide 0-41

Starting the Mail Editor

You can start the mail editor in one of two ways. From the command line
you can start the editor to compose and send a message to another user as
described in ''Composing and Sending a Message.'' The format of this
command is as follows:

mail address

You can also use the mail editor to compose a reply to mail that you
receive using the R, r, or m commands, as described in "Creating a
Message.''

Sending a Message

When the editor is active and it contains some message text that you have
entered, you can send that message and quit the editor with the following
procedure:

1. Press <Return> to get the cursor at the beginning of a new line.

2. Enter an EOF character (<Ctrl-d> on many terminals). The system
sends the message and returns you to either the mailbox handling
program or to the operating system command line, depending upon
where you were when you started the editor.

You can change the editor to allow a. (dot) to be used as an additional EOF
character in the preceding procedure as described in ''Changing Mail to
Meet Your Needs."

Quitting Without Sending the Message

D-42

When the editor is active, you can use the following procedure to quit the
editor without sending the message:

Sending and Receiving Mail

1. Press <Enter> to get the cursor at the beginning of a new line.

2. Enter the -q command. The system saves the message in the
dead.letter file and returns you to the operating system command
line.

Getting Help

While using the mail editor to create a message, you can display a
summary of the editor commands by entering the following command on a
line by itself:

Using the Escape Character

The editor includes many control commands that allow you to perform
other operations on the message. Each of these commands must be entered
on a new line, and each begins with the special escape character - (tilde).
You can change this escape character to any other character by including
the set escape command in your .mailrc file (see ''Changing Mail to Meet
Your Needs"). To start a new line in your message with the escape
character, use two escape characters together.

For example, the following text:

This is a tilde (-) and this is two tildes (--). However,
-- results in sending only one tilde.

would be received as the following message:

This is a tilde (-) and this is two tildes (--). However,
results in sending only one tilde.

OSF/1 User's Guide D-43

Displaying a Message

To look at lines of the message that you have entered (or that have been
read from another file), use the -p command. When you enter this
command on a line by itself in the mail editor, the editor displays the
contents of the message including the header information for the message.
The text scrolls up from the bottom of the display.

If the message is larger than one screen and you have not set the page size
for your terminal, the text scrolls off the top of the screen until it displays
the last screen of the message, followed by the mail editor's
(Continue) prompt. To look at the content of large messages, enter the

mail editor commands to view the message with your favorite editor as
described in ''Changing a Message.''

Changing a Message

D-44

You cannot change information on a line once you have pressed <Return>
and gone on to the next line. You can, however, change the content of your
message before sending it by editing the message with another editor. The
following sections describe how to activate different editors from the mail
editor.

Using a Different Editor

To change information that you have already entered, you can activate a
different editor without leaving the mail editor. Once you have activated a
different editor, you can use it to change the message or add new
information to the message. When you leave the different editor, you
return to the mail editor to continue composing, or to send, your message.

Enter the following commands on a new line in the mail editor to activate
one of the different editors to edit the text of the current message:

Sending and Receiving Mail

e This command activates the ex editor, or other editor that you
define.

-v This command activates the vi editor, or other editor that you
define.

When you save the message and quit the different editor, you return to the
mail editor. You can then continue to compose the message, or enter one
of the other mail editor commands to process the message.

Defining a Different Editor

The mail editor allows you to define two different editors to use when
changing a message from within the mail program. You define either or
both editors with the set command in your .mailrc file as follows. If you
do not define these editors in .mailrc, mail tries to use the editors shown as
the default in the following list:

set EDITOR=pathname This command in your .mailrc file defines the
editor that you activate with the -e command.
The value of pathname must be the full
pathname to the editor program that you want
to use.
Default: /usr/bin/ex

set VISUAL=pathname This command in your .mailrc file defines the
editor that you activate with the -v command.
The value of pathname must be the full
pathname to the editor program that you want
to use.
Default: /usr/bin/vi

For example, the following entry in your .mailrc file defines the ed editor
for use with the -e command:

set EDITOR=/usr/bin/ed

OSF/1 User's Guide D-45

Reformatting a Message

After you have entered a message and before sending it, you may want to
reformat the message to improve its appearance. Use the - I command
along with the fmt shell program to reformat the message. Enter the
following command on a new line to reformat the message:

-lfmt

This command uses the fmt command to change the appearance of the
message by reflowing the information for each paragraph within defined
margins (a blank line must separate each paragraph).

Note: Do not use the fmt command if a message contains imbedded
messages or preformatted information from external files
(see "Including Another Message"). This command
reformats the heading information in imbedded messages and
may change the format of preformatted information.

Checking for Misspelling

D-46

If you have the text formatting set of programs installed on your system,
you can use the spell program to check your message for misspelled words
with the following procedure:

1. Write the message to a temporary file. For example, to write the
message to the spellchk file, use the following command:

-w spellchk

2. Run the spell program using the temporary file as input. For
example, the following command uses the temporary file spellchk as
input to the spell program:

- ! spell spellchk

The spell program responds with a list of words that are not in its list
of known words, followed by an ! (exclamation point) to indicate
that you have returned to the mail program.

Sending and Receiving Mail

3. Examine the list of words to determine if you need to use an editor to
correct any of them (see "Changing a Message").

4. Erase the temporary file. The following command erases the
temporary file in the preceding example:

- ! rm spellchk

Changing the Header

The header of the message contains routing information and a short
statement of the subject. You must specify at least one recipient of the
message, but the other information is not required. The information in the
header may include the following:

To:

Subject:

Cc:

Bee:

This field contains the address or addresses to which
the message is to be sent.

This field contains a short summary of the topic of
the message.

This field contains the address or addresses of
persons that are to receive copies of the message.
This field is included as part of the message sent to
all who receive the message.

This field contains the address or addresses of
persons that are to receive ''blind'' copies of the
message. This field is not included as part of the
message sent to all who receive the message.

You can set up mail to automatically ask you for the information for these
fields by entering commands in your .mailrc file (see ''Changing Mail to
Meet Your Needs"). If you have not changed .mailrc or if you need to
change the information that you entered in these fields, use the commands
described in the following sections to change the information in these
fields.

OSF/1 User's Guide D-47

D-48

Editing the Header Information

To add to or change information in more than one of the header fields, enter
the -h command. When you enter this command on a new line, the system
displays each of the four header fields, one at a time. You can view the
contents of each field, delete information from that field (using the
Backspace key) or add information to that field when the field and its
contents are displayed. Pressing <Return> saves any changes to that field
and displays the next field and its contents. When you press <Return> for
the last field (Be c :), you return to the editor.

For example, when composing a message, enter the -h command to change
the Subject: and Cc: fields:

-h
To: mark@austin

The system responds with the contents of the To: field (mark@austin)
and places the cursor at the end of that field. You could edit or add to this
field at this time, but this information is correct. Press <Return>. The
system responds with the contents of the Subj e'ct: field:

Subject: Fishng Trip_

Note: If you have changed this field before, the cursor may not be
at the end of the field.

In this case, we want to correct the misspelling in the indicated subject.
The cursor is at the end of the Subject: field. Position the cursor under
then in Fishng. Reenter the rest of the subject to correct it to Fishing
Trip. Press <Return>. The system responds with the contents of the
Cc: field:

Cc: mel@gtwn_

To add another person to the copy list, ensure that the cursor is at the end
of the list, enter a space, and then enter the address of the new person. For
example:

Cc: mel@gtwn geo@austin

Sending and Receiving Mail

This entry expands the copy list to two persons. When you have
completed the copy list, press <Return>. The system responds with the
contents of the Bee: field. Press <Return>. The system responds with
the (Continue) prompt and returns you to the mail editor at the current
end of the message.

Adding to the To: List

Enter the -t command to add one or more addresses to the To : list. For
example, the To : list for a message may contain the following address:

To: mark@austin

To add to this list, enter the following command:

-t geo@austin mel@gtwn

This command changes the To : list as follows:

To: mark@austin geo@austin mel@gtwn

You cannot use the -t command to change or delete the contents of the
To: list.

Setting the Subject: Field

Enter the -s command to set the Subj eet: field to a particular phrase or
sentence. Entering this command replaces the previous contents (if any) of
the Subj eet: field. For example, the Subj eet: field for a message
may contain the following phrase:

Subject: Vacation

To change the Subject: field, enter the following command:

- s Fishing Trip

OSF/1 User's Guide D-49

D-50

This command changes the Subject: field to the following:

Subject: Fishing Trip

You cannot append to the Subject: field with this command.

Adding to the Cc: List

Enter the -c command to add one or more addresses to the Cc: list. For
example, the Cc: list for a message may contain the following addresses:

Cc: mark@austin amy

To add to this list, enter the following command:

- c geo@austin mel@gtwn

This command changes the Cc: list to the following:

Cc: mark@austin amy geo@austin mel@gtwn

You cannot use the -c command to change or delete the contents of the
Cc: list.

Adding to the Bee: List

Enter the -b command to add one or more addresses to the Bee: list. For
example, the Bee: list for a message may contain the following address:

Bee: mark@austin

To add to this list, enter the following command:

-b geo@austin mel@gtwn

Sending and Receiving Mail

This command changes the Bee: list to the following:

Bee: mark@austin geo@austin mel@gtwn

You cannot use the -b command to change or delete the contents of the
Bee: list.

Including Information from Another File

You can include information from other files in the message you are
currently writing. This allows you to include data, such as a schedule,
from another file. Enter the -r command to read the contents of a file into
the current message. The format of this command is as follows:

-rfilename

For example, to read the contents of the schedule file and append that
information to the current end of the message, enter the following
command:

-r schedule

Including Another Message

You can include another message within the current message for reference
purposes, or to forward the other message to another user.

Enter the -m command to include another message in the current message
for reference purposes. This command reads the indicated message and
appends it to the current end of the message. The included message is
indented one tab character from the normal left margin of the message.
The format of this command is as follows:

-m numlist

Enter the -r command to include another message in the current message to
forward the message to another user.

OSF/1 User's Guide D-51

This command reads the indicated message and appends it to the current
end of the message, but does not indent the appended message. Also enter
this command to append messages for reference whose margins are too
wide to imbed with the -m command. The format of this command is as
follows:

-f numlist

Note: To use the commands -m and -r that include other messages
within your message, you must enter the editor from the
mailbox (using either the r, R or m mailbox commands).
See ''Creating a Message'' for information about using the
mailbox commands.

In the preceding formats, the numlist parameter is a list of integers that
refer to valid message numbers in the mailbox or folder currently being
handled by mail. You can enter simple ranges of numbers also. For
example, the following commands imbed the indicated messages if those
message numbers exist in the current mailbox or folder:

- m 1 Appends message number 1 to the current end of the
message being written. Message number 1 is indented one
tab from the left margin.

- m 1 3 Appends message number 1 and then message number 3 to
the current end of the message being written. Both messages
are indented one tab from the left margin.

-f 1-4 Appends message numbers 1 to 4 to the current end of the
message being written. These messages are aligned with the
left margin (not indented).

Resending Undelivered Messages

D-52

When mail cannot deliver a message that you send, it places that message
in a file named dead.letter in your home (login) directory. This file can
also contain a partial letter that was saved when you quit by entering the
-qcommand from the mail editor. To read the contents of the dead.letter
file into the current message, enter the -d command.

Sending and Receiving Mail

This command appends the contents of dead.letter to the current end of
the message and responds with the (Continue) prompt. You can then
continue to add to, or send, the message.

Changing Mail to Meet Your Needs

The person responsible for managing your system defines the initial
configuration of the mail program. You may alter the way the mail
program operates to meet your personal requirements. The characteristics
of a mail session that you can change include:

• Whether mail prompts for the subject of a message

• Whether mail prompts for users to get a copy of a message

• If any aliases or distribution lists are defined

• How many lines are displayed when reading messages

• What information is listed in messages

• Whether a folder directory is selected in which to store messages

• Whether a log file is set up to record outgoing messages

• Whether different editors can be used for entering messages

• How to exit the mail editor

• How mail stores messages

The system manager uses the /usr/lib/Mail.rc file to define the initial
configuration. This file contains mail commands that perform the tasks
mentioned in the previous list. Although the initial configuration can meet
the needs of most users, you can easily alter it by creating a file in your
home (login) directory with the name .mailrc. Commands in this file
override similar commands in /usr/lib/Mail.rc when you run mail.

OSF/1 User's Guide D-53

Another way of executing mail commands that are stored in a file is by
using the source command. When reading mail, you can issue this
command from the mail command line as follows:

& source pathname

where pathname is the path and file contammg the mail commands.
Commands in this file override the previous settings of any similar
commands for the duration of the current session. You may also alter the
characteristics of the current mail session by entering commands at the
mailbox prompt(&).

Commands for Customizing Mail

0-54

There are four mail commands that alter the characteristics of the mail
session. These are set, unset, alias, and ignore.

The set and unset Commands

The set command and its inverse, the unset command, are used in
conjunction with options. Enter the set command to enable options, and
the unset command to disable options. You can also use the set command
to assign a value to an option.

The format for using the set command to enable options is as follows:

set [option_list]

The option _list may be one or more options that you want to enable.
Entering set without the option _list shows what options are already
enabled. Refer to the section ''Checking Mail Characteristics'' to see
when to enter set with no option_list.

Sending and Receiving Mail

The format for the unset command is as follows:

unset option _list

You must include the option_list with the unset command.

For example, to cause mail to prompt for a Subject: field, enter the
following command:

set ask

To also cause mail to prompt for a Cc: field, enter the following
command:

set ask askcc

To suppress both of these prompts, enter the following command:

unset ask askcc

The format for entering the set command to assign a value to an option is
as follows:

set option=value

An example of a valued option is shown in the following entry:

set toplines=lO

With this entry in your .mailrc file, the top command displays only the
first 10 lines of a message. (See "Controlling the Display Scroll.")

The alias Command

Enter the alias command in your .mailrc file to define alias names and
distribution lists. The alias command allows you to send messages
without entering long addresses or long lists of addresses. The section
''Creating Aliases and Distribution Lists'' describes how to use the alias
command.

OSF/1 User's Guide D-55

You can define a distribution list with the alias command that includes
your own address. If you send a message using the distribution list,
however, the mail system does not normally send a copy to your mailbox.
Enter the following set command to enable sending a copy to yourself
also:

set metoo

With this entry in .mailrc, anytime you send a message using an alias
name that includes you, a copy of the message will be put in your mailbox.

The ignore Command

Enter the ignore command to define what information is listed in message
headers. The message headers are the fields like To: and From: at the
tops of messages. Refer to ''Controlling What Information is Displayed''
to see how to use the ignore command.

Checking Mail Characteristics

D-56

The characteristics of a mail session are determined by many commands
and options. Commands in .mailrc and /usrnib/Mail.rc affect each mail
session; so do any commands you entered during the current session. You
can avoid confusion by reviewing the characteristics of a mail session as
described in this section.

Before running mail, you can enter the pg command to view
/usr/lib/Mail.rc and see what mail commands are in it. You can also look
at your .mailrc file.

When reading your mail, enter the set command without any arguments to
list all of the options that are currently enabled. From this list you can also
see if a folder directory is selected, and if a log file is set up to record
outgoing messages.

Sending and Receiving Mail

For example, entering the set command from the mailbox prompt (&)
could produce a display as follows:

& set
ask
metoo
toplines 10
&

You can see from this list that two options are enabled: ask and metoo.
Notice that there is no askcc entry in the list. This indicates that the
askcc option is not enabled. You can also see that the toplines
option has been assigned the value 10.

Two other commands from the mail command line provide current
command settings. The ignore command with no arguments lists all
header fields that are not included when you enter a t or p command to
display a message. The alias command without any arguments lists all
alias names that are currently defined.

The information listed by the set, ignore, and alias commands includes
system default settings, settings from the /usrnib/Mail.rc file, settings
from your .mailrc file, and any settings you made during the current mail
session.

Prompting for a Subject: Field

When you start mail to begin wntmg a message to another user, the
program may or may not ask you for a Subject: field with a prompt
similar to the following:

Subject:

If this prompt appears you can fill in a summary of the subject matter of
the message, and that summary is included at the start of the message that
you send. Whether this prompt appears or not is determined by the
presence of the ask option. To enable the subject prompt, enter the
following line in your .mailrc file:

set ask

OSF/1 User's Guide 0-57

To prevent mail from displaying this prompt, either delete the set ask
statement from .mailrc, or enter the following line in .mailrc:

unset ask

Prompting for a Cc: Field

You can set up mail so that when you send a message, mail prompts you
for the names of other users whom you want to receive copies of the
message. This prompt is similar to the following:

Cc:

This prompt appears if the askcc option is set in the system file
/usr/lib/Mail.rc or in your .mailrc file as shown:

set askcc

To suppress this prompt, either delete the set askcc entry from your
.mailrc file, or include the following entry in .mailrc:

unset askcc

Changing How Mail Displays a Message

D-58

You can set several options from your .mailrc file to control how much
information mail displays at different times. You can also enter the
ignore command in your .mailrc file to keep header fields from being
displayed.

The following sections show you how to use mail commands to control
display functions.

Sending and Receiving Mail

Controlling the Display Scroll

Each message in your mailbox has a one-line heading in the message list.
If you have more than 24 messages, the first headings from the message
list scroll past the top of your screen whenever you display the message
list. The set screen command controls how many lines of the list are
displayed at a time. For example, with the following entry in .mailrc:

set screen=20

the h command displays 20 message headers, then waits for you to press
<Return> before displaying the next 20 headers.

A similar situation occurs when you display a long message. If you
display a message with more than 24 lines, then the first lines of the
message scroll past the top of the screen. You can enter the pg program
from within mail to browse through long messages if you include the set
crt command in .mailrc.

The set crt command has the following form:

set crt=n

The value for n determines how many lines a message must be before the
pg program is started. The pg program is invoked whenever you read
messages with more than this many lines.

For example, if you enter the t command to read a long message, only one
screen (or page) is displayed. The page is followed by a colon prompt to
let you know that there are more pages. Press <Return> to display the
next page of the message. After the last page of the message is displayed,
there is a prompt similar to the following:

EOF:

At this prompt, or the colon prompt, you can enter any valid pg command.
You can display previous pages, search the message for character strings,
or quit reading the message and return to the mailbox prompt(&). Refer to
the OSF/l Command Reference for more information about the pg
program.

OSF/1 User's Guide D-59

D-60

The top command lets you scan through messages to get more information
without reading entire messages. You control how many lines of a
message are displayed with the top command by setting the toplines
option as follows:

set toplines=n

In this command, n is number of lines, starting from the top and including
all header fields that are displayed with the top command.

For example, if user amy has the following line in her .mailrc file:

set toplines=lO

When Amy runs mail to read her new messages, she receives the
following display:

Mail Type ? for help.
"/usr/mail/amy": 2 messages 2 new
>N 1 george Wed Jan 6 9:47 11/257 "Dept Meeting"

N 2 mark Wed Jan 6 12:59 17/445 "Project Planner"
&

Now Amy uses the top command to browse through her messages as
shown in the following dialog:

& top 10
Message 1:
From george Wed Jan 9 9:47 CST 1990
Received: by zeus

id AA00549; Wed, 9 Jan 90 9:47:46 CST
Date: Wed, 9 Jan 90 9:47:46 CST
From: george@zeus
Message-Id: <8709111757.AA00178>
To: amy@zeus
Subject: Dept Meeting

Please plan to attend the department meeting on Friday
at 1:30 in the planning conference room. We will be

&

Sending and Receiving Mail

The message was not displayed completely because toplines was set to
ten, so only lines 1 (the Received: field) through 10 (the second line of
the message body) were displayed. The first line, From george Wed
Jan 9 9: 4 7CST 1990, is always present and does not count in the
toplines option.

Controlling What Information is Displayed

Every message has several header fields at the top. These header fields are
normally displayed when you read a message. However, you can enter the
ignore command to suppress the display of header fields when a message
is read with a t or p command. The format for the ignore command is as
follows:

ignore [field _list]

The optional field _list can consist of one or more field names that you
want to ignore when you display a message. For example, if Amy includes
the following line in her .mailrc file:

ignore date from to

and the /usrnib/Mail.rc file has the line:

ignore received message-id

the result of using the t command is as follows:

& t 10
Message 1:
From george Wed Jan 9 9:47 CST 1990
Subject: Dept Meeting

Please plan to attend the department meeting on Friday
at 1:30 in the planning conference room. We will be
discussing the new procedures for using the project
planning program developed by our department.

&

OSF/1 User's Guide D-61

D-62

Many fields do not appear in the display. To display these fields, use a T
or P command or the top command. You can enter the ignore command
without any arguments at the mail command line to get a list of the
currently ignored header fields.

You can set the quiet option so that when you display a message, the
message number is not displayed first. To do this, enter the following
command in .mailrc:

set quiet

With the quiet option in .mailrc, the mail banner is not displayed when
you start mail. The banner is the line that shows the name of the mail
program.

Another option that suppresses the mail banner is the following:

set noheader

If you enter this command in .mailrc, the list of messages in your mailbox
is not displayed when you start mail. The only response you will get is the
mailbox prompt (&). You can get a list of messages by entering the h
command.

Combining the delete and print Commands

After you read a message you can delete it by entering the d command.
You can then display the next message by entering the p command. You
can combine these commands by entering the following line in your
.mailrc file:

set autoprint

This causes the d command to delete the current message and display the
next one.

Sending and Receiving Mail

Creating and Using Folders

As you read mail messages pertaining to different subjects, you can store
them in appropriate folders (mail system files) and read them again during
later mail sessions. You can create new folders during a mail session as
necessary, but a directory for storing them must exist before defining any
new folders. Since a folder directory is just a normal directory used for
storing folders, you can create a new folder directory from within mail by
entering the mkdir shell command as follows:

& !mkdir pathname

You must select a folder directory before storing any messages in it. To
select a folder directory, set the folder option from the mail command line
as follows:

& set folder=pathname

You can also include the set folder command in .mailrc so that when you
invoke mail, the folder directory is already selected.

As you read messages, you can append them to any folder or place them
into new folders within the selected folder directory. In this manner, you
can sort your new messages into folders like in a file cabinet. For
example, upon logging in, user george sees that he has new mail. He
enters the mail command and receives the following display:

Mail Type ? for help.
"/usr/mail/george": 2 messages 2 new
>N 1 amy Tue Dec 4 13:24 32/947 "New Utilities"

N 2 mark Wed Dec 5 15:47 16/417 "Project Schedule"
&

After reading the first message, george sees that it documents some
fancy new shell procedures that arny has written. He decides that it should
go into a special folder he uses to collect such things. User george has
the following set folder command in his .mailrc file so that the
folder directory where that folder is kept is &}ready selected:

set folder=/u/george/doc

OSF/1 User's Guide D-63

User george uses the save command to append the new message to the
special folder procedures by entering a + symbol to indicate the folder
name as follows:

& save 1 +procedures

He receives the message:

"/u/george/doc/procedures" [Appended] 32 /94 7

He can access all messages saved in the procedures folder as described
in "Looking at a Mail Folder."

The second message is a project schedule. There is no folder yet for
keeping project schedules, so george decides to create one. He also wants
to put the folder into a directory where he has other files concerning the
project. User george selects this directory by entering the following
command:

& set folder=/u/george/projectX

and the new folder can be created with the save command as follows:

& save 2 +schedules

The message:

"/u/george/projectX/schedules" [New File] 16/417

indicates that a new folder has been created.

Keeping a Record of Messages Sent

D-64

The mail command can automatically make a copy of any messages you
send and store them in a specified file that can be read later. Since the
header information is also stored, recording outgoing messages is a useful
way of logging when important information was sent to others. Normally
mail does not keep any record of messages sent.

Sending and Receiving Mail

To enable this option, enter a set record command in .mailrc as follows:

set record=pathname

Here the pathname indicates the file relative to your home (login)
directory. The mail commands do not create directories, so any
directories included in the pathname must already exist before using this
command. Entering this command in your .mailrc file guarantees that
copies of all of your messages will go to the same place.

If amy has the following lines in her .mailrc file:

set record=letters/mailout
set folder=letters

a copy of the messages she sends out is entered into the file
/u/amy/letters/mailout.

She can read the recorded messages by entering mail as follows:

$ mail -f +mailout

because the folder mailout is in the folder directory selected by the set
folder=letters command in her .mailrc file.

If you set up a file to record outgoing messages, you should read the file
periodically with mail and delete all of the unnecessary messages.
Otherwise, the file will grow and eventually use up all of your storage
space.

Selecting a Different Editor

The standard mail editor is good for entering short messages, but it does
not allow you to alter text after you press <Return>. An alternative is to
use another editor to create a file and use mail to send the file. However,
the file will still exist after it has been sent. You can set up mail so that
you can use any editor on your system to enter a message from within
mail, and the message will not be left in a file when you exit mail.

OSF/1 User's Guide D-65

Enter the set command with the following valued options to define two
different editors:

set EDITOR=e _pathname
set VISUAL=v _pathname

In the first entry, e _yathname is the full pathname of the editor you want to
activate with the -e escape sequence or the e command. In the second
entry, v _yathname is the full pathname of the editor you want to activate
with the -v escape sequence or the v command.

If Amy includes the following line in her .mailrc file:

set EDITOR=/usr/bin/ed

she can call up her favorite editor (from /usr/bin/ed) by using the -e
escape sequence from within the standard mail editor.

When Amy is finished entering her message, she exits from her favorite
editor and returns to the standard mail editor. She can then press <Ctrl­
d> to exit mail and send the message.

As Amy reads her mail she can edit messages to add information to them.
Entering the e command from the mailbox prompt (&) also invokes the
editor specified in the set editor command. After she exits the editor,
Amy returns to the mail command line where she can save the message to
a folder.

Defining How to Exit the Mail Editor

D-66

When you enter the mail command to send a message, you invoke the
mail editor. From the mail editor you can compose your message. You
can exit from the mail editor in one of two ways. One method is to press
<Ctrl-d>.

Another method is to enter a. (dot) on a line by itself. This . (dot) does not
appear in the message. To enable this method, enter the following line in
.mailrc:

set dot

Sending and Receiving Mail

After you quit the mail editor, the message is sent and you return to the
system prompt.

If you reply to a message when reading your mail, you also invoke the
mail editor. The set dot command allows you to exit from the mail editor,
but you return to the mailbox prompt (&). From there you can exit mail
with a quit command, an exit command, or by pressing <Ctrl-d>.

Defining How Mail Stores Messages

The mail program has several defaults for how messages are stored when
you exit. You can set three options in .mailrc to change how mail stores
messages. These options are the append option, the hold option, and the
keepsave option. This section describes how these options change the
way mail stores messages.

Normally, mail adds messages to a mailbox at the top of the mailbox. You
can cause mail to append messages to the end of the mailbox by entering
the following in .mailrc:

set append

Messages are stored in different places when you exit mail, depending on
how you exit. You can exit mail in three ways. One way to exit mail is to
enter the exit command. Enter the exit command to return all messages to
the mailbox you are reading. The mailbox will have the same messages
the next time you read it. Another way to exit is to enter the quit
command. Enter the quit command to dispose of files as described in the
following paragraphs. The third way to exit mail is to press <Ctrl-d>.
Using <Ctrl-d> is the same as using the quit command.

As you read messages from a mailbox, you can delete them, save them, or
leave them unresolved. If you do not read a message, it remains in the
mailbox, no matter how you exit mail.

Messages that are deleted are not saved anywhere if you exit mail with a
quit command. However, if you exit with an exit command, deleted
messages remain in the mailbox.

OSF/1 User's Guide D-67

0-68

An unresolved message is one that you have read, but did not delete or
save. If you exit mail with a quit command, any unresolved messages are
stored in a file called mbox in your home (login) directory. You can cause
mail to leave unresolved messages in the mailbox you are reading, instead
of storing them in mbox, by entering the following in .mailrc:

set hold

The hold option has no effect on deleted messages.

Instead of using the set hold option, you can use the hold command to
specify that a message remains in the mailbox when you exit with the quit
command. For example, if you read message 3, but you are not sure if you
want to delete it, mark it with the hold command:

& hold 3

The message remains in the mailbox instead of going to mbox. You can
wait until the next time you read the mailbox to decide how to dispose of
it.

If you set the hold option in .mailrc, you can use the mbox command to
mark messages so that they are stored in mbox when you exit with the
quit command. For example, if you are reading new mail, you can mark
messages that you read, but not disposed of, by entering the mbox
command:

& mbox 135-7

This example marks messages 1, 3 and 5 to 7 so that they are stored in
mbox instead of remaining in the system mailbox with any unread
messages or other unresolved messages.

If you save a message with a save or write command, mail deletes the
message from the mailbox when you exit with the quit command. To keep
the saved message in the mailbox, enter the following:

set keepsave

Sending and Receiving Mail

Now mail handles messages that you save just like unresolved messages.
The set hold option causes them to be held in the mailbox. Without the
set hold option, they are stored in mbox.

If you exit mail with the exit command, all messages remain in the
mailbox, no matter what options are set. Also, if you save any messages,
the messages remain in the files where you saved them, even if you use the
exit command.

OSF/1 User's Guide D-69

Glossary

access permission

alphabetic

A group of designations that determine who can access a
particular file and how the user can access the file. See also ·
permission.

Pertaining to the set of letters and symbols, excluding digits,
used in a language. This set usually consists of the uppercase
and lowercase letters plus special symbols (such as $ and _)
allowed by a particular language. See also alphanumeric.

GL-1

GL-2

American National Standard Code for Information Interchange

(ASCII) The code developed by ANSI for information
interchange among data processing systems, data
communications systems, and associated equipment. The
ASCII character set consists of 7-bit control characters and
symbolic characters.

append

The action that causes data to be added to the end of existing
data.

application program

archive

argument

array

A program used to perform an application or part of an
application.

1. To store programs and data for safekeeping.

2. A copy of one or more files or a copy of a database that
is saved in case the original data is damaged or lost.

Numbers, letters, or words that expand or change the way a
command works.

A variable that contains an ordered group of data objects. All
objects in an array have the same data type.

background process

backup

A mode of program execution in which the shell does not wait
for program completion before prompting the user for another
command.

To copy information, usually onto diskette or tape, for
safekeeping.

backup copy

baud

binary file

Glossary

A copy, usually of a file or group of files, that is kept in case
the original file or files are unintentionally changed or
destroyed.

The number of changes in signal levels, frequency, or phase
per second on a communications channel. If each represents 1
bit of data, baud is the same as bits per second. However, it is
possible for one signal change (1 baud) to equal more than 1
bit of data.

A file that contains codes that are not part of the character set.
Binary files utilize all 256 possible values for each byte in the
file.

block special file

Bourne shell

buffer

C shell

cancel

A special file that provides access to an input or output device
and is capable of supporting a file system:

See shell.

An area of storage, temporarily reserved for performing input
or output, into which data is read or from which data is
written.

See shell.

To end a task before it is completed.

case sensitive

Able to distinguish between uppercase and lowercase letters.

GL-3

GL-4

character special file

codeset

A special file that provides access to an input or output device.
The character interface is used for devices that do not use
block I/O.

Specifies the processing and display of the current locale's
coded character set.

collating sequence

command

The sequence in which characters are ordered within the
computer for sorting, combining, or comparing.

A request to perform an operation or run a program. When
parameters, arguments, flags, or other operands are associated
with a command, the resulting character string is a single
command.

command alias

A feature that allows you to abbreviate long command lines
or to rename commands.

command history

A feature that stores commands and allows you to edit and
reuse them.

command interpreter

A program that sends instructions to the kernel; also called an
interface. See also shell.

command search path

A list of directories searched in order for an executable image.

communications

See data communications.

Glossary

computer virus

A program or routine that inserts itself in another executable
file. A virus once installed is executed by trigger mechanisms
of which users are unaware.

computer worm

A program that copies itself across a computer network.

configuration

The group of machines, devices, and programs that make up a
data processing system or network.

configuration file

A file that specifies the characteristics of a system or
subsystem.

context search

A search through a file for a character string.

control character

1. A character, occurring in a particular context, that
initiates, modifies, or stops any operation that affects the
recording, processing, transmission, or interpretation of
data (such as carriage return, font change, and end of
transmission).

2. A nonprinting character that performs formatting
functions in a text file.

control statement

1. A language statement that changes the normal path of
execution.

2. In programming languages, a statement that is used to
alter the continuous sequential execution of statements.
A control statement can be a conditional statement or an
imperative statement.

GL-5

GL-6

copy

The action by which the user makes a whole or partial
duplicate of an already existing data object.

current directory

The directory that is active and can be displayed with the pwd
command. Synonymous with current working directory.

current working directory

cursor

Synonym for current directory.

A movable symbol (such as an underline) on a display that
indicates to the user where the next typed character will be
placed or where the next action will be directed.

cursor movement keys

The directional keys used to move the cursor without altering
text.

data communications

default

The transmission of data according to a protocol between
computers or remote devices, usually over a long distance.

A value, attribute, or option that is assumed when no
alternative is specified by the user.

delete character (DEL)

directory

A control character used primarily to obliterate an erroneous
or unwanted character.

A type of file contammg the names and controlling
information for other files or other directories.

dot

dot dot

editor

Glossary

A symbol (.) that indicates the current directory in a relative
pathname.

A symbol (..) in a relative pathname that indicates the parent
directory.

A program used to enter and modify programs, text, and other
types of documents and data.

effective group ID

The current group ID, but not necessarily the user's own ID.
For example, a user logged in under a particular group ID may
be able to change to another group ID. The ID to which the
user changes becomes the effective group ID.

effective root directory

The point where a system starts when searching for a file. Its
pathname begins with a I (slash).

effective user ID

environment

The current user ID, but not necessarily the user's login ID.
For example, a user logged in under a login ID may change to
another user's ID. The ID to which the user changes becomes
the effective user ID until the user switches back to the
original login ID.

The settings for shell variables and paths set when the user
logs in. These variables can be modified later by the user.

GL-7

GL-8

environment variable

A variable that describes the operating environment of the
process and typically includes information about the home
directory, command search path, the terminal in use, and the
current time zone (the HOME, PATH, TERM, and TZ
variables, respectively).

equivalence class

A grouping of characters or character strings that are
considered equal for purposes of collation. For example, many
languages place an uppercase character in the same
equivalence class as its lowercase form, but some languages
distinguish between accented and unaccented character forms
for the purpose of collation.

extended character

file

A character other than a 7-bit ASCII character. An extended
character can be a 1-byte code point with the eighth bit set
(ordinal 128-255).

A collection of related data that is stored and retrieved by an
assigned name.

file descriptor

file owner

file system

A small positive integer that the system uses instead of the
filename to identify the file.

The user who has the highest level of access authority to a file,
as defined by the file.

The collection of files and file management structures on a
physical or logical mass storage device, such as a diskette or
mini disk.

file type

Glossary

One of the five possible types of files: ordinary file, directory,
block device, character device, and first-in, first-out (FIFO or
named pipe).

filename completion

filter

flag

foreground

A feature that allows you to enter only a portion of a filename
and the system automatically completes it or suggests a list of
possible choices.

A command that reads standard input data, modifies the data,
and sends it to standard output.

A modifier that appears on a command line with the command
name that defines the action of the command.

A mode of program execution in which the shell waits for the
program specified on the command line to complete before
responding to user input.

foreground process

full backup

A process that must run to completion before another
command is issued to the shell.

Backup copies of all the files on the system. Contrast with
incremental backups.

full pathname

The name of any directory or file expressed as a string of
directories and files beginning with the root directory. See
also pathname, relative pathname.

GL-9

GL-10

full-screen editor

global

An editor that displays an entire screen at a time, and that
allows data to be accessed and modified only by entering
commands.

In programming languages, pertammg to the relationship
between a language object and a block in which the language
object has a scope extending beyond that block but contained
within an encompassing block.

global character

The * and ? special characters that can be used in a file
specification to match one or more characters. For example,
placing ? in a file specification means any character can be in
that position.

global search

group

hard link

header

In word processing, the process of having the system look
through a document for specific characters, words, or groups of
characters.

A collection of users who can share access authorities for
protected resources.

A mechanism that allows the In command to assign more than
one name to a file. Both the new name and the file being
linked must be in the same file system.

1. Constant text that is formatted to be in the top margin of
printed pages in a document.

2. System-defined control information that precedes user
data.

Glossary

home directory

i-node

1. A directory associated with an individual user.

2. The user's current directory on login or after issuing the
cd command with no argument.

The internal structure that describes the individual files in the
operating system; there is one i-node for each file. An i-node
contains the node, type, owner, and location of a file. A table
of i-nodes is stored near the beginning of a file system.

i-node number

i-number

include file

A number specifying a particular i-node file in the file system.
See also i-node.

See i-node number.

A text file that contains declarations used by a group of
functions, programs, or users. Synonymous with header file.

incremental backup

The process of copying files that have been opened for reasons
other than read-only access since the last backup was created
and that meet the backup frequency criteria.

inline editing

A feature of some shells that allows you to edit a current or
previously entered command line.

input redirection

install

The specification of an input source other than standard
input/output.

To copy a software product from a distribution medium and
configure it for use.

GL-11

GL-12

integer

A positive or negative whole number or zero.

Internet Protocol (IP)

IP

job

job control

job number

keyboard

kill

Korn shell

The protocol that provides the interface from the higher level
host-to-host protocols to the local network protocols.
Addressing at this level is usually from host to host.

See Internet Protocol.

A unit of work defined by a user to be done by a system. The
term job sometimes refers to a representation of the job, such
as a set of programs, files, and control statements to the
operating system.

Facilities for monitoring and accessing background processes.

A number assigned to a job as it enters the system to
distinguish the job from other jobs.

An input device consisting of various keys that allows the user
to input data, control cursor and pointer locations, and to
control the dialogue with the workstation.

An operating system command that stops a process.

See shell.

language

line editor

link

local

local host

locale

log in

log out

Glossary

In internationalization contexts, the choice of language
specifies the language (for example, German, French, English)
and the display format for messages and the appropriate
collating sequence.

An editor that displays data one line at a time and that allows
data to be accessed and modified only by entering commands.

In the file system, a connection between an i-node and one or
more filenames associated with it.

Pertaining to a device, file, or system that is accessed directly
from your system, without the use of a communications line.

The host on the network at which a particular operator is
working.

A combination of language, territory, and codeset
specification used in internationalization configuration.

To begin a session at a display station.

To end a session with a computer system at a display station.

login directory

The directory you access when you log in to the system. See
also home directory.

GL-13

GL-14

login shell

mail

mail box

message

The program, or command interpreter, started for a user when
that user logs in to the computer system.

Correspondence in the form of messages transmitted between
workstations over a network.

A storage location in a network to which messages for a user
are sent.

Information from the system that informs the user of a
condition that may affect further processing of a current
program.

metacharacter

mode

mode word

modem

mount

A character used to specify another character or series of
characters.

A method of operation, frequently used in UNIX based
software systems to refer to read, write, run, or search
permissions of a file or directory.

An i-node field that describes the type and state of the i-node.

A device that converts digital data from a computer to an
analog signal that can be transmitted on a telecommunications
line, and converts the analog signal received to data for the
computer.

To make a file system accessible.

multitasking

network

octal

Glossary

A mode of operation that provides for concurrent performance
or interleaved execution of two or more tasks.

A collection of data processing products that are connected by
communications lines for information exchange between
locations.

A base-eight numbering system.

operating system (OS)

Software that controls the running of programs and that also
can provide such services as resource allocation, scheduling,
input and output control, and data management.

output redirection

owner

The specification of an output destination other than the
standard one.

The user who has the highest level of access authority to a
data object or action, as defined by the object or action.

parent directory

password

pathname

The directory that is one level above the current directory.

In computer security, a string of characters known to the
computer system and a user. The user must specify it to gain
access to a system and the data stored with it.

A filename specifying all directories leading to the file. See
also full pathname, relative pathname.

GL-15

GL-16

pattern matching

Specifying a pattern of characters that the system should find.

permission code

A 3-digit octal code or a 9-letter alphabetic code that indicates
access permissions. The access permissions are read, write,
and execute. See also access permission.

permission field

permissions

pipe

printer

priority

One of the 3-character fields within the permissions column of
a directory list. The permission field indicates the read, write,
and run permissions for the file or directory owner, for the
group, and for all others.

Codes that determine how the file can be used by any users
who work on the system.

1. To direct the data so that the output from one process
becomes the input to another process.

2. The standard output of one command may be connected
to the standard input of another command with the pipe
operator. Two commands connected in this way
constitute a pipeline. Pipes are unidirectional;
synchronization is provided by the operating system.

A device externally attached to the system unit, used to print
system output on paper.

A rank assigned to a task that determines its precedence in
receiving system resources, the CPU in particular.

procedure

process

Glossary

A set of related control statements that cause one or more
programs to be executed.

In the operating system, the current state of a program that is
running. This includes a memory image, the program data,
variables used, general register values, the status of opened
files used, and the current directory. Programs running in a
process must be either operating system programs or user
programs.

process ID (PID)

program

prompt

queue

quote

record

redirect

A unique number assigned to a process that is running.

A sequence of instructions suitable for processing by a
computer. Processing can include the use of an assembler,
compiler, interpreter, or translator to prepare the program for
execution, and to execute it.

A displayed symbol or message that requests information or
operator action.

A line or list formed by items waiting to be processed.

To mask the special meaning of certain characters, causing
them to be taken literally.

A collection of fields treated as a unit.

To divert data from a process to a file or device to which it
would not normally go.

GL-17

GL-18

relative pathname

remote

remote host

The name of a directory or file expressed as a sequence of
directories followed by a filename, beginning from the current
directory. Relative pathnames do not begin with a I (slash),
but are relative to the current directory.

Pertaining to a system or device that is accessed through a
communications line.

Any host on the network except the one at which a particular
operator is working.

remote system

A system that is connected to your system through a
communications line.

restricted shell

security

session

shell

A security feature that provides a controlled shell environment
with limited features.

The protection of data, system operations, and devices from
accidental or intentional ruin, damage, or exposure.

The period of time during which the user of a terminal can
communicate with an interactive system, usually elapsed time
between login and logout.

A software interface between a user and the operating system
of a computer. Shell programs interpret commands and user
interactions on devices such as keyboards, pointing devices,
and touch-sensitive screens and communicate them to the
operating system. OSF/l provides three shells: the Bourne,
Korn., and C shell.

shell prompt

shell script

Glossary

The character string on the command line indicating that the
system can accept a command.

A series of commands, combined in a file, that carry out a
particular function when the file is run or when the file is
specified as an argument to the sh command.

shell variables

Facilities of the shell program for assigning variable values to
constant names.

Shift-Japanese Industrial Standard (SJIS)

shutdown

spooling

An encoding scheme consisting of single-bytes and double­
bytes used for character encoding. Because of the large
number of characters in the Japanese and other Asian
languages, the 8-bit byte is not sufficient for character
encoding.

The process of ending operation of a system or a subsystem by
following a defined procedure.

Reading and wntmg input and output streams on an
intermediate device in a format convenient for later
processing.

standard error (STDERR)

The place where many programs place error messages.

standard input (STDIN)

The primary source of data going into a command. Standard
input comes from the keyboard, unless redirection or piping is
used, in which case standard input can be from a file or the
output from another command.

GL-19

GL-20

standard output (STDOUT)

subdirectory

The primary destination of data coming from a command.
Standard output goes to the display, unless redirection or
piping is used, in which case standard output can be to a file or
another command.

In the file system hierarchy, a directory contained within
another directory.

superuser (su)

A system user who operates without restrictions.

superuser authority

The unrestricted ability to access and modify any part of the
operating system, usually associated with the user who
manages the system.

symbolic link

territory

A type of file system entry that contains the pathname of and
acts as a pointer to another file or directory.

Specifies the geographic area (for example, Germany, France,
Great Britain) as well as date/time conventions and numeric
and monetary formats.

text editing program

See editor.

transfer

To send data to one place and to receive data at another place.

Transmission Control Protocol (TCP)

The Internet transport-layer protocol that provides a reliable,
full-duplex, connection-oriented sevice for applications. TCP
uses the IP protocol to transmit information through the
network. See also TCP.

trap

Glossary

A special statement used to catch signals in a C shell script
and transfer control to a handler routine within the script.

tree structure

A hierarchical calling sequence that consists of both a root
segment and one or more levels of the segments called by way
of the root segment.

Unix-to-Unix Copy Program (UUCP)

1. A group of programs and files that function as a
background process. It includes a set of directories, files,
programs, and commands that allow the user to
communicate with a remote system over a dedicated
line or a telephone line.

2. The command uucp that starts file copying from one or
more sources to a single destination.

user identification (user ID)

username

UUCP

1. A unique string of characters that identifies an operator
to the system. This string of characters limits the
functions and information the operator can use. Often,
the user ID can be substituted in commands that take a
user's login name as an argument.

2. A parameter that specifies the user ID under which the
application or transaction program runs.

A string of characters that uniquely identifies a user to the
system.

See Unix-to-Unix Copy Program.

GL-21

GL-22

variable

1. A name used to represent a data item whose value can
change while the program is running.

2. In programming languages, a language object that can
take different values at different times.

3. A quantity that can assume any of a given set of values.

working directory

workstation

Synonym for current directory.

A device that enables users to transmit information to or
receive information from a computer; for example, a display
station or printer.

Index

8-bit codesets, C-3

A
absolute pathname, 2-11
account subcommand (ftp), 12-7
add (a) command (vi editor), A-6
addgroup command, 13-15
adding groups, 13-14
adding users, 13-2
adduser command, 13-3
alias command (C shell), 8-16
alias command (Korn shell), 8-41
aliases, 8-12, 8-37
aliases for mail, D-16
ampersand(&) operator, 6-9
append subcommand (ed editor),

B-3
apropos command, 1-14
arguments, command, 1-6
ascii subcommand (ftp), 12-7
ascii subcommand (tftp), 12-15
Asian codesets, C-3
autologin, 1-2
automatic reboot procedure, 14-5

B
background processes, 11-2, 6-9
backing up

directories, 15-5

listing contents of a backup
medium, 15-6

multiple files, 15-4
backup copies of files, 15-1
backup procedures, sample, 15-4
bg command (C shell), 8-16
binary subcommand (ftp), 12-7
binary subcommand (tftp), 12-15
Bourne shell, 8-1, 8-17

built-in commands, 8-23
built-in variables, 8-22
login script, 8-18
.logout script, 7-32
metacharacters, 8-20

lndex-1

.profile login script, 7-22,
8-18

breaking remote cu connection
(UUCP), 11-14

breaking remote tip connection
(UUCP), 11-25

built-in commands, 8-15, 8-23,
8-41

built-in variables, 8-14, 8-22, 8-39
bye subcommand (ftp), 12-8

c
cancelling commands, 1-7
cat command, 3-7, A-3
cd (change directory) command,

4-4
cd command (Bourne shell), 8-23
cd command (Korn shell), 8-41
cd subcommand (ftp), 12-8
cdup subcommand (ftp), 12-8
change (c) command (vi editor),

A-9
change (c)subcommand(ed

editor), B-27
change word (cw) command (vi

editor), A-9
chgrp (change group) command,

5-25
chmod (change mode) command,

5-5,5-9,5-10,5-12,5-16
chown (change owner) command,

5-24
close subcommand (telnet), 12-24

lndex-2

codeset, C-2
collation, C-5
command documentation, 1-12
command flags, 1-6
command history

C shell, 8-10
Korn shell, 8-31

command mode (vi editor), A-4
command options, 1-6
commands

addgroup, 13-15
adduser, 13-3
alias, 8-16, 8-41
apropos, 1-14
bg,8-16
cd, 3-33, 4-4, 8-23, 8-41
chgrp, 5-6, 5-24
chmod, 5-6, 5-9
chown, 5-24
cp,3-22,3-23,3-26
date, 1-6
df, 3-17
diff, 3-29
echo, 8-16,8-23,8-41
exit (logout), 5-22
export, 8-23, 8-41
fc, 8-41
fg, 6-18, 8-16
file, 3-35
find, 6-9, 9-5
grep, 2-16, 9-1
history, 8-16, 8-41
jobs, 6-11, 6-14, 8-16, 8-41
kill, 6-15
learn, 1-11
ln,3-16,3-18,3-19,3-26
login, 1-2
logout, 8-16
lpq, 3-14, 3-15

lpr, 3-13
lprm (remove from print

queue), 3-15
lpstat, 3-15
ls, 2-14, 3-2, 3-3, 3-4, 3-5,

3-6, 3-19, 3-21, 3-22,
3-27,4-1,4-3,5-7,
5-8, 5-11

man, 1-6, 1-12, 1-13
mkdir, 4-2, 4-12
more, 3-9, 3-18
mv,3-26,3-27,4-11
passwd, 1-7, 1-9, 13-12
pg, 3-7
pr,3-9
ps, 6-11
pwd, 2-9, 3-33, 4-4, 8-23,

8-41
rehash, 8-16
repeat, 8-16
rm, 3-20, 3-22, 3-32, 3-33,

3-34, 4-15
rmdir, 4-12, 4-14
set, 8-16, 8-23, 8-41
setenv, 8-16
sort, 3-31
source, 8-16
su,5-21
time, 8-16
times, 8-23, 8-41
touch, 3-34
trap, 8-23, 8-41
umask, 8-23, 8-41
unalias, 8-16, 8-41
unset, 8-16, 8-23, 8-41
unsetenv, 8-16
w, 6-19
we, 6-3
who, 6-18

Index

whoami, 5-22
commands, shell built-in, 8-15,

8-23, 8-41
communicating with remote

system (UUCP), 11-5
compatible communications

systems, identifying
(UUCP), 11-2

conditional command, running,
7-10

connecting to an unknown remote
system via modem (UUCP),
11-12, 11-23

context searching
ed editor, B-15
vi editor, A-10

controlled shutdown,' 14-2
conversation, ending with symbol,

10-3
copying files, 3-22, 3-23, 3-24
copying files, local system control

(UUCP), 11-48, 11-49
copying lines, ed editor, B-32
correcting mistakes

in commands, 1-6
when logging in, 1-3

correcting typing errors
ed editor, B-4
vi editor, A-7

C programming tutorial, 1-11
creating a directory, 4-2
creating a login directory, 13-9
creating shell procedures, example,

7-34
creating text files

ed editor, B-2
vi editor, A-3

C shell, 8-1, 8-3
aliases, 8-12

lndex-3

built-in commands, 8-15
built-in variables, 8-14
command history, 8-10
.cshrc login script, 7-22, 8-4
filename completion, 8-12
.login login script, 7-22, 8-6
login script, 8-3, 8-6
.logout script, 7-32
metacharacters, 8-8

.cshrc login script, 7-22, 8-4
ct command (UUCP), flags,

connecting to remote system
via modem, 11-30

Ctrl-d, 5-22, 5-24
cu command (UUCP)

flags, connecting to a remote
computer, 11-6, 11-8

using local commands, 11-6,
11-13

current directory, 2-9
customizing mail, D-53

D
database security, 5-2

group, 5-4
date and time conventions, C-6
date command, 1-6
dead.letter file, D-4
default shell script, 13-10
Delete key, 1-6
delete line (dd) command (vi

editor), A-8
delete subcommand (ftp), 12-8

lndex-4

delete (t) subcommand (ed editor),
B-23

delete word (dw) command (vi
editor), A-8

deleting a specific line
ed editor, B-25
vi editor, A-8

deleting current line, ed editor,
B-24

deleting files, 3-34
deleting multiple lines

ed editor, B-25
vi editor, A-8

determining file type, 3-35
device name, specifying with cu

command (UUCP), 11-9
diff (show differences) command,

3-29
directories, 2-8
dir subcommand (ftp), 12-8
displaying current (current)

directory name, 2-9
displaying directory permissions,

5-7
displaying file permissions, 5-7
displaying files with formatting,

3-9
displaying files without formatting,

3-7
displaying permissions, 5-7
displaying the print queue, 3-14
display subcommand (telnet),

12-24
distribution lists for mail, D-16
documents about OSF/1, xix
dot notation, 2-12

E
echo command (Bourne shell),

8-23
echo command (C shell), 8-16
echo command (Korn shell), 8-41
ed editor

append subcommand, B-3
change (c) subcommand,

B-27
context searching, B-15
copying lines, B-32
correcting typing errors, B-4
creating and saving text

files, B-2
delete (t) subcommand,

B-23
deleting a specific line, B-25
deleting current line, B-24
deleting multiple lines, B-25
displaying the current line,

B-12
edit buffer, B-2
edit (ed) command, B-9
edit (e) subcommand, B-8,

B-9
global (g) operator, B-20,

B-21
insert (i) subcommand, B-29
locating text, B-15
move (m) subcommand,

B-26
moving text, B-26
print (p) subcommand, B-4
quit (q) subcommand, B-8
read (r) subcommand, B-9,

B-10
removing characters, B-21
replacing character strings,

B-18

Index

saving part of a file, B-7
saving text, B-6
starting the editor, B-3
substitute (s) subcommand,

B-18
substitutions on multiple

lines, B-20
transfer (t) subcommand,

B-32
using system commands,

B-33
write (w) subcommand, B-5,
B-8

edit (ed) command (ed editor), B-9
edit (e) subcommand (ed editor),

B-8, B-9
editing of command lines, 8-33
editor for mail, D-41
editor tutorial, 1-11
ending a local message, 10-2, 10-4
end of message/conversation (local

communications), 10-2, 10-4
enhanced security features, 5-26
entering local command during

remote connection (UUCP),
11-25

environment variables, locale
LANG, C-9, C-11
LC_COLLATE, C-12
LC_CTYPE, C-12
LC_MESSAGES, C-12
LC_MONETARY, C-12
LC_NUMERIC, C-12
LC_TIME, C-12

errorbells environment variable,
A-17

/etc/csh.login system login script,
7-22

lndex-5

/etc/group file, 13-7
/etc/passwd file, 13-4, 5-3
/etc/profile system login script,

7-22
/etc/uucp file (UUCP), 11-3
execute permission, 5-11
exit command, 5-22, 5-24
ex line editor, A-13
export command (Bourne shell),

8-23
export command (Korn shell), 8-41

F
fc command (Korn shell), 8-41
fg command (C shell), 8-16
file, 2-1, 2-6
file (determine file type) command,

3-35
file management, 3-1
filename, 2-6, 2-7
filename completion, 8-12, 8-36
file specifying by pattern matching,

2-14
files tutorial, 1-11
file system, 2-1, 2-6
filters, definition, 7-11
find command, 9-5
finding files, 9-5
finger command (TCP/IP), 12-2
flags, 1-6
foreground processes, 6-8
forgotten command names, 1-14
formatting a file, 3-9

lndex-6

forwarding files (UUCP), 11-46
forwarding mail, D-22
ftp command (TCP/IP), 12-5

subcommands, 12-7
ftp subcommands, 12-7
full pathname, defined, 2-11

G
get subcommand (ftp), 12-8
get subcommand (tftp), 12-15
getting mail, D-20
global (g) operator (ed editor),

B-20, B-21
grep command, 9-1
groups, adding and removing,

13-14
guide, other related OSF

documents, xix

H
handling copied files (UUCP),

11-48
hard links, 3-16
help, 1-12
help subcommand (ftp), 12-8
history command (C shell), 8-16

history command (Korn shell),
8-41

history of recently used commands,
8-10, 8-31

HOME environment variable, 7-18

I
identifying compatible systems

(UUCP), 11-2
ignorecase environment variable,

A-17
input (i) command (vi editor), A-6
input mode (vi editor), A-6
insert (i) subcommand (ed editor),

B-29
insert text (A) command (vi

editor), A-7
insert text (I) command (vi editor),

A-7
intermediate systems used in file

transfers (UUCP), 11-46
internationalization, C-1

8-bit codesets, C-3
Asian codesets, C-3
codeset, C-2
collation, C-5
date and time conventions,

C-6
LANG environment

variable, 7-19, C-9,
C-11

language, C-2
LC_COLLATE environment

variable, 7-19, C-12

Index

LC_CTYPE environment
variable, 7-20, C-12

LC_MESSAGES
environment
variable, 7-20, C-12

LC_MONETARY
environment
variable, 7-20, C-12

LC_NUMERIC
environment
variable, 7-20, C-12

LC_ TIME environment
variable, 7-21, C-12

locale, C-2, C-4
numeric and monetary

formatting, C-7
program messages, C-8
territory, C-2

Internet, D-12
i-number, 3-19

J
jobs command, 6-11
jobs command (C shell), 8-16
jobs command (Korn shell), 8-41

K
kill command, 6-15
Korn shell, 8-1, 8-24

aliases, 8-37
built-in commands, 8-41

lndex-7

built-in variables, 8-39
command history, 8-31
editing command lines, 8-33
filename completion, 8-36
.kshrc login script, 7-22,

8-27
login script, 8-25, 8-27
.logout script, 7-32
metacharacters, 8-29
.profile login script, 7-22,
8-25

.kshrc login script, 7-22, 8-27

L
LANG environment variable, 7-19,

C-9, C-11
language, C-2
LC_ COLLATE environment

variable, 7-19, C-12
LC_CTYPE environment variable,

7-20, C-12
led subcommand (ftp), 12-8
LC_MESSAGES environment

variable, 7-20, C-12
LC_MONETARY environment

variable, 7-20, C-12
LC_NUMERIC environment

variable, 7-20, C-12
LC_ TIME environment variable,

7-21, C-12
learn command, 1-11
linking files, 3-19
listing contents of a backup

lndex-8

medium, 15-6
listing directory contents, 3-2, 3-3,

3-4
lists of users to send mail to, D-16
ln (link) command, 3-18, 3-19
local commands (UUCP), 11-6,

11-13, 11-19, 11-24
local communications facility,

retaining the connection,
10-5

local communications facility,
messages, sending, write
command, 10-1

locale, C-2, C-4
local system control of file access

(UUCP)
uupick command, 11-51,

11-53
uuto command, 11-49
uuto command, uupick

command, 11-48
locating text

ed editor, B-15
vi editor, A-10

logging in, 1-2
login directory, 2-8
.login login script, 7-22, 8-6
login script

Bourne shell, 8-18
C shell, 8-3, 8-6
.cshrc script, 7-22, 8-4
/etc/csh.login system script,

7-22
/etc/profile system script,

7-22
Korn shell, 8-25, 8-27
.kshrc script, 7-22, 8-27
.login script, 7-22, 8-6

. profile script, 7-22, 8-18,
8-25

LOGNAME environment variable,
7-18

logout command (C shell), 8-16
.logout script, 7-33
lpq (display print queue) command,

3-14
lpr command, 3-12
lprm (remove from print queue)

command, 3-15
ls (list directory) command, 3-2,

3-3,3-4,3-6,3-21,5-7,5-8
ls subcommand (ftp), 12-8

M
MAIL environment variable, 7-18
mail file, 13-11
man command, 1-12
map command (vi editor), A-19
mathematical typesetting tutorial,

1-11
mesg, editing profile, changing

default, 10-10
mesg (receive local

communication), mesg y,
mesg n, 10-9

messages
superuser override, 10-10
superuser override,

receiving, changing
start-up procedure,

10-10
messages (local communications)

ending, end-of-file symbol
(EOF), 10-2, 10-4

Index

long, in files, 10-6
receiving, rejecting, status,

10-9
sending, write command,
10-1

metacharacters
Bourne shell, 8-20
C shell, 8-8
Korn shell, 8-29

mget subcommand (ftp), 12-8
mkdir (make directory) command,

4-2
mkdir subcommand (ftp), 12-9
mode subcommand (tftp), 12-15
more command, 3-7
move (m) subcommand (ed editor),

B-26
moving directories, 4-11
moving files, 3-26, 3-27
moving text

ed editor, B-26
vi editor, A-11

mput subcommand (ftp), 12-9
mv (move) command, 3-26, 3-27,

4-11

N
noignore environment variable,

A-17
nonumber environment variable,

A-17
noshowmatch environment

variable, A-17

lndex-9

number environment variable,
A-17

numeric and monetary formatting,
C-7

0
octal numbers, in setting

permissions, 5-14
open line (o) command (vi editor),

A-6
open previous line (0) command

(vi editor), A-7
open subcommand (ftp), 12-9
& operator, 6-9
&& operator, 7-10
II operator, 7-10
options, 1-6
OSF/1

p

documents about, xix
to report problems about,

xxi

parent directory, 2-11
passwd (password) command, 1-7,

13-12
password

lndex-10

forgotten, 1-10
for logging in, 1-2
restrictions, 1-9

selecting new, 1-8
password file, 5-3
password, security, restrictions, 1-9
PATH environment variable, 7-19
pathname, 2-9

absolute, 2-11
dot notation, 2-12
full, 2-11
relative, 2-11
tilde notation, 2-13

pattern matching, file specifying,
2-14

permissions, specifying, umask,
file, 5-19

pg (page) command, 3-7
PID number, 6-9
pipeline, 7-11
pipes, 7-11
pr (format) command, 3-9
printing a file, 3-12
printing multiple files, 3-12
print (p) subcommand (ed editor),

B-4
problems with guide, to report

about, xxi
problems with OSF/1, to report

about, xxi
Process Identification Number

(PID), 6-9
profile login script, 7-22, 8-18,

8-25
program messages, C-8
$ prompt, 1-3
% prompt, 1-3
ps command, 6-11
public directory (UUCP), 11-4
put subcommand (ftp), 12-9

put subcommand (tftp), 12-15
pwd command (Bourne shell), 8-23
pwd command (Korn shell), 8-41
pwd (print current directory)

command, 2-9
pwd subcommand (ftp), 12-9

Q
queues, printer, 3-12
quit (q) command (vi editor), A-4,

A-9
quit (q) subcommand (ed editor),

B-8
quit subcommand (ftp), 12-10
quit subcommand (telnet), 12-24
quit subcommand (tftp), 12-16
quoting, 7 -14

R

backslash, , 7 -15
double quotes (" "), 7-16
single quotes(' '), 7-15

rep command (TCP/IP), 12-18
read permission, 5-11
read (r) subcommand (ed editor),

B-9, B-10
rebooting the system, 14-1
reboot procedure, automatic, 14-5
receiving mail, D-20

Index

recv subcommand (ftp), 12-9
reexecuting commands, 8-11, 8-32
rehash command (C shell), 8-16
relative pathnames, 2-11
remote commands, running

(UUCP), 11-35
remote file transfers (UUCP),

11-46
remote login (TCP/IP), 12-21
remote login (telnet), 12-22
remote system names (UUCP),

11-2
removing absolute permissions,

5-14
removing a user, 13-12
removing characters

ed editor, B-21
vi editor, A-8

removing directories, 4-12, 4-13
removing file links, 3-20
removing files, 3-32, 3-34
removing files from the print

queue,3-15
removing groups, 13-14
removing multiple directories, 4-14
removing your current directory,

4-14
rename subcommand (ftp), 12-9
renaming directories, 4-11
renaming files and directories, 3-26
repeat command (C shell), 8-16
replacing character strings

ed editor, B-18
vi editor, A-14

restoring a damaged file system,
15-3

restoring multiple directories, 15-8

lndex-11

restrictions, password, 1-9
retaining connection (local

communications), 10-5
returning to local system during

remote connection (UUCP),
11-14, 11-25

rlogin command (TCP/IP), 12-21
rmdir (remove directory)

command,4-12,4-13,4-14
rmdir subcommand (ftp), 12-9
rm (remove file) command, 3-20,

3-32, 3-34
root directory, 2-10
r (read) permission, 5-11
rsh command (TCP/IP), 12-26
runique subcommand (ftp), 12-9
running background processes, 6-9
running foreground processes, 6-8
running shell procedures, 7 -34
ruptime command (TCP/IP), 12-4
rwho command (TCP/IP), 12-27

s
sample files, creating, 2-2
saving part of a file

ed editor, B-7
vi editor, A-16

saving text
ed editor, B-6
vi editor, A-9

saving text files, ed editor, B-2
searching for text patterns, 9-1
security

group, 5-2

lndex-12

user,5-2
sending a file (mail), D-19
sending a long message, 10-6
sending files to a specific username

(UUCP), 11-49
sending files to remote systems,

11-46
sending local messages, 10-1
sending mail, D-18, D-42
send subcommand (ftp), 12-10
set command (Bourne shell), 8-23
set command (C shell), 8-16
set command (Korn shell), 8-41
setenv command (C shell), 8-16
setting file/directory permissions,

5-9
setting the user mask, 5-16
set user/group ID permission, 5-11
shell

aliases, 8-12, 8-37
built-in commands, 8-15,

8-23, 8-41
built-in variables, 8-14,

8-22, 8-39
command history, 8-10, 8-31
editing command lines, 8-33
filename completion, 8-12,

8-36
login script, 8-3, 8-6, 8-18,

8-25, 8-27
metacharacters, 8-8, ~-20,
8-29

SHELL environment variable, 7-19
shell environment variables

HOME, 7-18
LANG, 7-19
LC_COLLATE, 7-19
LC_CTYPE, 7-20
LC_MESSAGES, 7-20

LC_MONETARY, 7-20
LC_NUMERIC, 7-20
LC_TIME, 7-21
LOGNAME, 7-18
MAIL, 7-18
PATH, 7-19
SHELL, 7-19
TERM, 7-19
TZ, 7-19

shell features, 8-1
showing differences between files,

3-29
showmatch environment variable,

A-17
shutting down the system, 14-1
soft links, 3-16
sorting file contents, 3-31
sort (sort file contents) command,

3-31
source command (C shell), 8-16
specifying files, 2-14
s (set) permission, 5-11
standard error, 6-5
standard input, 6-3
standard output, 6-3
starting the ed editor, B-3
starting the vi editor, A-3
status information (UUCP), 11-54
status subcommand (ftp), 12-10
status subcommand (telnet), 12-24
status subcommand (tftp), 12-16
stopping commands, 1-7
! subcommand (ftp), 12-7
$subcommand (ftp), 12-7
subcommands (ftp), 12-7
subcommands (tftp), 12-14
? subcommand (telnet), 12-24

! subcommand (tftp), 12-14
subdirectories, 2-8
subshells, 7-13

Index

substitute (s) subcommand (ed
editor), B-18

su command, 5-21
sunique subcommand (ftp), 12-10
superuser privileges, 14-1
symbolic links, 3-16

T
tabstop environment variable, A-17
tar command, 15-4
telephone number, specifying with

cu command (UUCP), 11-9
telnet command (TCP/IP), 12-22

how to use, 12-23
subcommands, 12-23

telnet protocol subcommands,
12-24

TERM environment variable, 7-19
terminating a connection (local

communications), 10-2, 10-4
terminating a UUCP job with the

uustat command, 11-54
terminating remote cu connection

(UUCP), 11-14
terminating remote tip connection

(UUCP), 11-25
territory, C-2
text editor, 2-1
text formatting tutorial, 1-11

lndex-13

tftp command (TCP/IP), 12-13
subco1I11I1ands, 12-14

tftp subcommands, 12-14
tilde notation, 2-13
tiIIle co1I11I1and (C shell), 8-16
tiIIles co1I11I1and (Bourne shell),

8-23
ti1I1es command (Korn shell), 8-41
tip co1I11I1and (UUCP)

flags, connecting to a reIIlote
co1I1puter, 11-19,
11-21

using local co1I11I1ands,
11-19, 11-24

transfer-status infomation
(UUCP), 11-54

transfer (t) subcommand (ed
editor), B-32

trap COIIlIIland (Bourne shell), 8-23
trap command (Korn shell), 8-41
tree structure (file systeIIl), 2-7
tutorials, 1-11
typing errors, correcting

ed editor, B-4
vi editor, A-7

TZ environ1I1ent variable, 7-19

u
u1I1ask co1I11I1and, 5-16
u1I1ask co1I11I1and (Bourne shell),

8-23
u1I1ask command (Korn shell), 8-41
unalias co1I11I1and (C shell), 8-16

lndex-14

unalias co1I11I1and (Korn shell),
8-41

undo (u) co1I11I1and (vi editor), A-9
unset co1I11I1and (Bourne shell),

8-23
unset co1I11I1and (C shell), 8-16
unset co1I11I1and (Korn shell), 8-41
unsetenv command (C shell), 8-16
usernaIIle, 1-2
uunaIIle co1I11I1and (UUCP),

identifying co1I1patible
re1I1ote syste1I1s, identifying
the local, 11-2

uupick co1I11I1and (UUCP),
handling uuto files, user
responses, 11-48, 11-51,
11-53

uuto COIIlIIland (UUCP), copying
files, local systeIIl control,
flags, 11-48, 11-49

uux command, flags, used to run
re1I1ote commands, 11-35

v
/var/adIIlluucp/SysteIIl file (UUCP),

11-2
variables, shell built-in, 8-14, 8-22,

8-39
/var/spool/uucppublic file (UUCP),

11-4, 11-48
verbose subco1I11I1and (ftp), 12-10
verbose subcommand (tftp), 12-16
vi co1I11I1and, 2-3, A-3
vi editor

0 cursor 1I1ove1I1ent
co1I11I1and, A~5

add (a) command, A-6
b cursor movement

command, A-5
change (c) command, A-9
change word (cw)

command, A-9
command mode, A-4
context searching, A-10
copying blocks of text, A-17
copying text, A-12
correcting typing errors, A-7
Ctrl-b cursor movement

command, A-5
Ctrl-f cursor movement

command, A-5
cursor movement

command, A-5
cursor movement

command, A-5
$ cursor movement

command, A-5
(cursor movement

command, A-5
) cursor movement

command, A-5
customizing your

environment, A-17
delete line (dd) command,

A-8
delete word (dw) command,

A-8
deleting a block of text,

A-17
environment variables, A-17
Esc command, A-6
ex line editor commands,

A-13
getting started, A-3

Index

h cursor movement
command, A-4

input (i) command, A-6
insert text (A) command,

A-7
insert text (I) command, A-7
j cursor movement

command, A-4
k cursor movement

command, A-4
1 cursor movement

command, A-4
locating text, A-10
map command, A-19
moving blocks of text, A-17
moving text, A-11
moving within a file, A-4
next (n) search command,

A-11
opening text files, A-3
open line (o) command, A-6
open previous line (0)

command, A-7
paste (p) command, A-11
quit (q) command, A-4, A-9
saving part of a file, A-16
saving text files, A-9
saving your customizations,

A-19
I search command, A-10
searching for text, A-10
starting the editor, A-3
substituting text, A-14
undo (u) command, A-9
using advanced techniques,

A-10
w cursor movement

command, A-5

lndex-15

write (w}command, A-9
vi environment variables

erromame, A-17
ignorecase, A-17
noignorecase, A-17
nonumber, A-17
noshowmatch, A-17
number, A-17
showmatch, A-17
tabstop, A-17
wrapmargin, A-17
wrapscan, A-17

w
w command, 6-19
whoami command, 5-22
who command, 6-18
working directory, 2-9
wrapmargin environment variable,

A-17
wrapscan environment variable,

A-17
write command (local

communications), 1o~1
write permission, 5-11
write (w) command (vi editor), A-9
write (w) subcommand (ed editor),

B-5, B-8
writing shell procedures, 7-34
w (write) permission, 5-11

lndex-16

x
x (execute) permission, 5-11

z
z subcommand (telnet), 12-24

Notes

Notes

OPEN SOFfWARE FOUNDATION™

INFORMATION REQUEST FORM

Please send to me the following:

() OSF™ Membership Infonnation

() OSF/l™ License Materials

() OSF/l Training Information

Contact Name

Company Name

Street Address

Mail Stop

City

Phone

Electtonic Mail

MAIL TO:

Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

Attn: OSF/l

For more information about OSF/1 call OSF Direct Channels at 617 621 7300.

OSF/l'M
Operating
System

·user's Guide

Titles in the OSF /1 Operating System Series

• OSF /1 User's Guide

• OSF I 1 Command Reference

• OSF I 1 Programmer's Reference

• OSF /1 System and Network Administrator's Reference

• Application Environment Specification (AES)
-Operating System Programming Interfaces Yolume

AA-PJU1A - T E

Open Software Foundation
11 Cambridge Center
Cambridge, Massachusetts 02142

Prentice-Hall, Inc. 11 111111
<i 780136 435945 11

