AN
'ENGINEER’S GUIDE
TO THE

AN ENGINEER'S GUIDE
To The

PDS 1020 COMPUTER

PACIFIC DATA SYSTEMS
Publications Dept.
April, 1964

Copyright 1964

PACIFIC DATA SYSTEMS, INC.
A Subsidiary of Electronic Associates, Inc.
1058 East First Street
Santa Ana, California

EG 2-3M

TABLE OF
CONTENTS

INTRODUCTION
GENERAL DESCRIPTION

Use of the Engineering Interpreter
Description of the PDS 1020

STEP-BY-STEP PROCEDURE
Input
Compute

Output

RETAINED OPERATIONS

General Format of RETAIN Command

Entering Data

Comparison to Step-by-Step Procedure

Storage Capacity
TESTING, JUMPING AND LOOPING

Transfers
Unconditional
Conditional

Sub-Programs
Example 2

Loops
Example 3
Example 4

Address Modification
Example 5

PAPER TAPE EQUIPMENT

Paper Tape Reader
Paper Tape Punch

MACHINE OPERATING PROCEDURE

Starting the Computer

Switch Settings
Trouble-Shooting

Loading the Paper Tape Reader
Loading the Paper Tape Punch

AND WHERE DO WE GO FROM HERE?
What Is An Interpreter?
Interpreter Advantages
Added Capabilities
What Next?

APPENDIX

Page 5

11

11
11

13

13
14
18

21

21
21
23
23

24

24
24
24
25
26
27
27
28
29
29

31

31
31

33

33
33
33
36
37

38
38
38
39
39

41

NOTE TO THE READER

The PDS 1020 Computer is a problem-solving tool, designed to provide

the engineer with a high-powered computing capability, directly acces-
sible, easy to understand and simple to operate. This computer is de-
signed to be used in the department, in the lab, in the office, just as a
slide rule is used: to obtain instantaneous answers to day-to-day problems
— but at an increase in speed of several orders of magnitude.

This guide is written to give you, the reader, an understanding of the
PDS 1020, and its built-in engineering interpreter, which permits exten-
sive use of the machine without learning machine language. It may be
used by anyone who needs a quick answer to a problem, not just by the
professional programmer.

The interpreter is a computer program which allows simplified operation
of the PDS 1020. Many design features have been incorporated into the
hardware of the PDS 1020, to simplify the operation of the computer in the
interpretive mode, and to make the interpreter more flexible and power-
ful.

Nevertheless, the interpreter should not be mistaken for the computer it-
self. The PDS 1020 is a full-scale digital computer, with a machine lang-
uage of over 40 commands and extensive computing capabilities.

The interpreter, since it is a program, is flexible. Its capabilities and
performance may be changed to suit individual applications.

The guide is divided into several sections. The first section deals with
computers generally, explaining some of the fundamentals of what com-
puters are, how they operate and what they can do.

The second section deals with the step-by-step method of operating the
PDS 1020. When this section has been mastered, you are ready to oper-
ate the computer.

Section three discusses further capabilities of the machine, and the next
section describes some fairly sophisticated uses. There is a separate
section on how to use the paper tape reader and punch units. Finally, in
the appendix, we included a summary of the information for quick refer-
ence.

Each of the sections is independent of the others, as far as operating the
computer is concerned. It should be emphasized that this is a user's
guide, designed to be a permanent reference, as well as learning text.

The real simplicity of operating the PDS 1020 Computer, and the ex-
tensive computing power at the engineer's disposal at the touch of a but-
ton, cannot be fully appreciated by reading this guide, or any other docu-
ment. Only by sitting at the keyboard, entering a problem for solution,
and getting an immediate result back, can these points be adequately
realized.

Fast Calculator or
Thinking Machine?

o

1. INTRODUCTION

In the dozen or so years since the first computer was commercially in-
stalled (and, incidentally, obsoleted) computers have entered almost
every business and industry, revolutionized areas of technology and con-
tributed scores of new words to the language. But while computers have
multiplied like breeding rabbits, and every school child has heard of
them, if not actually seen and touched one, the fact remains that few
people know what they really are. In fact a computer myth has grown up,
which holds computers to be omnipotent, diabolically clever and true
thinking machines. A second view, held by the skeptics, considers the
computer nothing more than a fast calculator with a fancy price tag.

Both views have a grain of truth in them, but both are inaccurate in that,
like the blind men and the elephant, they consider only a single aspect of
the whole. It is true that computers are capable of certain feats that
humans can't perform. But there are many more areas where computers
are helpless entirely, and certainly they can do nothing at all except for
what they are told to do. On the other hand, comparing a computer to a
fast calculator is like saying that a jet plane is nothing more than a fast
ox cart — a device for transportation.

Essentially, the computer is a fast calculating machine - with two impor-
tant differences: it has a memory, and is capable of making some logical
decisions. These faculties enable the computer to do an enormous amount
of numerical work, or solve any kind of problem that can be represented
numerically, with great speed and efficiency.

The many diversified applications to which computers have been assigned

Computer Hardware

can be generally classed into three categories: data processing, process
control, and scientific and engineering calculations.

In the area of data processing computers have taken over the function
formerly performed by their elder cousins, the data processors or 'tab'
machines, which utilized wired boards to instruct the machine in what it
must do. The stored program computer merely substituted its flexible
memory for the wires and boards, thereby increasing both its capacity
and its ability to handle many diversified tasks.

The process control machine is a data processor of sorts, used to con~
trol and direct a set pattern of activities. These may range in complex-
ity and scope from a relatively simple paint mixing operation to complete
control of all activities within an oil refinery. In each case the computer
is connected to a variety of instruments from which it receives informa-
tion regarding the process in progress. This information is examined in
accordance with pre-established instructions in the machine's memory,
and decisions are made on the basis of the results of this evaluation.
Finally, as a result of these decisions, signals are sent to control de-
vices which make whatever changes are needed in the process in progress.
All this is repeated at great speeds, so that the process is continuously
monitored and controlled.

The engineering and scientific computer is the most recent arrival and
the fastest growing among the three computer types mentioned. Its basic
function is the solution of mathematical problems (or any problems for
which mathematical equivalents or models can be found) in science, en-
gineering, management, and almost every other field of human activity.
Many of the technological achievements of the past few years are directly
traceable to the computer and its ability to do in hours and days what may
have taken months and years to do manually.

As computers grew larger, faster, and more expensive, the task of com-
municating with them became more complex and difficult. The reason is
inherent in the basic concept of how computers work.

Basically, all computers of whatever size and price tag, have four func-
tional parts: input/output devices, a memory, an arithmetic section, and
a control section.

The input and output devices are the links between the machine and the
outside world. Through them the computer receives instructions and data
for its work, and through them it provides the answers which it produces.

The memory is used by the computer to store the instructions it receives,
as well as the data on which it must operate. There are several types of
computer memories, varying in speed, in size and in cost. All computer
memories, however, have this in common: the ability to store informa-
tion in some predetermined and organized manner so that it may be re-
trieved at will.

The arithmetic section consists of hardware which allows the computer to
perform calculations. Like a calculator a computer has several registers
which are used to hold the operators, the operands and the computed re-
sults. The most important of these registers is the accumulator, which
usually holds one of the values used in a computation, and the result when
the computation is done.

Computer Software

5 Milliseconds and

24 Hours Later

Finally, the control section, or, as it is sometimes called, the logic of
the computer, coordinates the activities of the other components. Acting
as a traffic cop, it directs information received from input devices to
storage locations, retrieves it as needed, performs whatever operations
are called for, and stores the results or communicates them to the user
through the output devices.

All computers, the largest and the smallest, have these elements, and
differ only in complexity, size, the number of input/output devices, the
speed of computation, and, of course, in the price tag they bear.

To solve a given problem, the computer is given a series of instructions
which are stored in its memory. These instructions, called a program,
form the blueprint for solving a problem, much as an algebraic formula
does: they can be used over and over, with different sets of numbers or
data. To calculate X = 2a-b, for example, we must first give specific
values to a and to b. Similarly, the computer could be given instruc-
tions to take the variable value, a, multiply it by two, subtract the value
of the variable, b, and print on the typewriter the result, X. This pro-
gram would be stored in memory; in a different section of memory we
could store a hundred values of a and a hundred values of b, and add
instructions to the program to tell the computer to evaluate each set in
turn and print 100 X values on the typewriter. The many values of a and
b are known as the data with which the program works, and are usually
separate from the program itself. On the other hand, the number 2 by
which a is multiplied remains constant, and is normally included in the
program itself,

Programs are known generally as software, to distinguish between ma-
chine functions which are built into the machine hardware, and functions
which the machine performs by using special purpose programs and which
can be changed at will.

The main problem of communicating with a computer, is in stating the
problem to be solved in some form which can be communicated to the
machine. Since most computers use a language which is composed of
special symbols, this is a task requiring some specialization and is fre-
quently left in the hands of the programmers. Programmers normally
have a good mathematical background, plus some specialized knowledge
of the machines which they program. They are skilled and high price
personnel. This is where the economics of computer utilization begin to
play a part.

Consider, for example, the data processing computer, which handles as
one of its routine tasks the preparation of the company payroll. Once the
program for doing this has been written, it can be used over and over
again, for years to come, with few, if any, changes. No matter how
complex the program, or how much it costs to prepare, the effort is well
worth while: the time expended can be saved many times over, and the
cost can be amortized over a long period of time.

Or, consider the process control machine, in charge of some chemical
process. Once set up, the machine can operate for years without a
change in program. Only when the process changes does it require new
software.

But the engineering and scientific machine has to solve a wide variety of
problems, some of which are unique and are never repeated. An engineer

Languages Berlitz
Never Heard Of

wants to examine the properties of a new wing design for a supersonic
aircraft, for example. Once the answer is given, it is likely that the pro-
gram for its solution will become totally useless. True, certain general
programs may be written to evaluate some properties of all wings, but
nevertheless many problems call for unique solutions, and unique pro-
grams to solve them.

Some computer manufacturers have attempted to solve the problem by
offering extensive software libraries for use with their machine. This
pre-packaged programming approach is not only costly but often futile.
While solutions for a general problem area can be developed, the unique
problem cannot be solved until the engineer is ready to place it in the
computer. And when he is ready it is likely that none of the library pro-
grams will suit his exact needs.

In reality, many large companies employ a staff of programmers to do
the translation job required to state engineering problems in computer
language, despite the high cost of such a method. The fact is that many
of the engineering and scientific tasks in today's technology can be solved
only by computers, in the time span allowed for their solution.

In a typical installation, the engineer (or chemist,or statistician, or
human factors researcher) goes to see the programmer, and explains to
him the nature of his problem. The programmer proceeds to '"code' the
problem into the computer language. The coded program is then punched
on cards or tape, media which can be rapidly communicated to the com-
puter, and sent to the scheduler, who estimates the amount of time neces-
sary to execute the program, and assigns an appropriate amount of ma-
chine time. Finally, the program is executed by the machine and the re-
sults are sent back to the engineer, or whoever originated the problem in
the first place.

To anyone familiar with the complexities of the modern company, it is
readily evident how long and tedious such a procedure can be, and how
easily a minor mistake can slip by unnoticed, or creep in accidentally.
When this happens, the procedure must start all over again. Even if the
program already exists and does not have to be written especially, and
top priorities are assigned to the program all along the way, twenty-four
hours is the very least amount of time in which the engineer can expect an
answer to his problem. Ironically, it may have taken the modern, second-
generation, computer just a few milliseconds to do the actual computa-
tions, and less than a second to do the entire program, including all in-
put and output.

It soon becomes evident that the problem of communications between de -
partments is sometimes worse than the problem of talking to the machine.
Many computer manufacturers, at the demand of computer users, set out
to simplify the programming operations to the point where most of the
users could do their own programming, leaving programmers only the
more complex and sophisticated tasks. Out of these efforts came a vari-
ety of artificial computer languages such as FORTRAN (Formula Trans-
lator) ALGOL (Algebraic Oriented Language) COBOL (Common Business
Oriented Language) PINT (Purdue Interpreter), and several others.

These languages are problem oriented, meaning that they are intended for
problems within certain fields, such as scientific calculation, and base
their terminology on the terms and symbols common to that field.” Thus,
they are relatively easy to master for anyone who has the necessary back-
ground.

Instant Answers

These languages, known as interpreters and compilers, serve the pur-
pose of eliminating one step of the procedure enumerated above: instead
of going to a programmer, explaining to him the problem to be solved,
and having him write a program, the engineer writes his own program in
FORTRAN and sends it to the computing center for execution. Nothing
else changes, for the program must still be punched, scheduled, run and
returned to the originator. Still, the saving in time is considerable, and
more important, the engineer, or the specialist within the field, provides
his own methods of solving the problem, without having to rely on a pro-
grammer who may be proficient in mathematics and ignorant in the par-
ticular field of specialization to which the problem relates.

Compilers and interpreters have extended the range of problems to which
it is practical to apply a computer, but for many problems the computer
is still out of reach. It is impractical to write a program even in FOR-
TRAN, and wait a day or two for an answer, if a slide rule and calculator
will provide the solution in two or three hours. Ideally, if the engineer-
user had direct access to a computer, these problems could be solved in
minutes or seconds.

Up to now it has generally not been economical to supply engineers with a
computer to which access is directly available. The main reasons for
this are both the high price tag of computers and the difficulty of commun-
icating with them directly. It is usually cheaper to prepare the program
on punched cards or tape, employing special personnel and equipment to
do so, than it is to communicate directly with the computer through a
typewriter or keyboard, taking up its valuable calculating time. To go
through such a procedure for a relatively simple problem is like flying

a jet plane across town - the speed of the jet is more than offset by the
long trip to and from the airport, take-off and landing time, etc. Thus, a
gap exists between those problems which can be readily solved by manual
means, using a calculator, a slide rule or merely pencil and paper, and
those problems for which computer solutions become efficient and econo-
mically feasible.

The PDS 1020 Computer is designed to bridge this gap, and to provide a
problem solving tool, which may be used directly in the engineering de-
partment, in the lab, at the drawing board, or even on location. Simple
to understand and to operate, the 1020 computer is simpler than a slide
rule to learn, yet is a real computer with extensive powers, capable of
problem solving at electronic speeds.

The 1020 computer is equipped with a built-in, custom-made interpreter.
Custom-made in the sense that the functions performed by the interpreter
can be adapted to the individual needs of the user. Built-in in the sense
that it operates through a push-button keyboard, clearly labeled with the
function of each key. The combination of these two features permits the
user to perform highly complicated calculations at the push of a button.

A paper tape punch is provided for permanent storage of programs and
data. A paper tape-reader is also included and may be used as an input
device as well as a fast keyboard, where desired, feeding instructions to
the computer.

A typewriter is used to furnish the results of computations.

Finally, the 1020 computer bears a price tag which makes it practical and
economical to use within the confines of the department, so that the user

can directly approach it, enter his problem and receive an instant answer.

This guide describes the capabilities of the 1020 computer and how to use
its built-in interpreter. Since the computer is easy to operate, the guide
should be easy to read; formal language, technical vocabulary and elegant
phrasing have been sacrificed for the sake of simplicity and clarity.

10

What Can it Do

The Equipment

2. GENERAL DESCRIPTION

The 1020 Engineering Interpreter is a program written for the 1020 com-
puter and its function is to allow the engineer or scientist to operate the
1020 computer without having to learn machine language.

There are three ways to operate the 1020 computer, using the Engineer-
ing Interpreter:

1. Operating the computer one step at a time. The user enters
data through the keyboard or tape reader and performs desired
calculation on this data. The interpretive keyboard of the 1020
allows a variety of multistep algebraic functions to be perform-
ed at the touch of a button. Square root, exponentiation, sine,
cosine and arctangent values, and the natural logarithm of a
number may be arrived at in this way. It should be emphasized
that these functions are part of the interpreter program, and
may be replaced by others, if other functions are desired by
the user. Thus, any mathematical evaluation which is frequent-
ly performed in a given application, may be included in the in-
terpretive keyboard functions, and executed by pushing a but-
ton. The procedure for solving complicated problems by this
method is fully described in the following pages, under the
heading ''Step-by-Step Operation."

2. Operating the computer by program. Essentially this proced-
ure is no different than the step-by-step operation, but the com-
puter is instructed to retain, or remember, the steps for solv-
ing a given problem. Thus the problem is solved again and
again, automatically, using new data for each solution. The
procedure for retaining the problem solving steps is shown
under the heading '"Retained Operations."

3. The paper tape reader can be used to enter instructions or
data, and to operate the computer as a fast keyboard. This
operation can be independent or in conjunction with a retained
program or keyboard instructions.

You can operate the computer, using any of these methods to solve a
great variety of problems, quickly and efficiently, without having to learn
machine language. In fact, the operation of the computer can be learned
in a matter of an hour or two.

The 1020 computer is compact in structure, occupying no more space
than an office desk. No installation is required beyond plugging it into an
ordinary household outlet.

The cperator, sitting at the computer, has within easy reach all three
elements used to communicate with the machine: to his left is a type-
writer used by the computer to print out answers; to his right is a tape
reader and tape punch, which are used for fast input and output, and for
making a permanent record of a problem solving sequence; to the left of
the tape equipment is the keyboard, which is used by the operator to
enter data and perform calculations.

The keyboard itself contains a variety of controls, indicators and push-
buttons. Some of these are essential to the operation of the computer in

the interpretive mode, some are used only in the machine language mode,
and some should only be used as trouble shooting devices. The functions

of these controls and indicators will be described along with the operating
procedure; those controls not described are not essential to the operation.

In summary, the 1020 computer is suited to applications which are time
consuming to handle manually yet not complicated enough to justify the
use of a large computer. By using the 1020 Engineering Interpreter, the
user can learn in a short time to solve his own problems on the computer,
without resorting to programmers, keypunch operators, or other middle-
men. The computer is desk size, and plugs into an ordinary outlet, per-
mitting its use within the engineering department, or any other location
which is convenient to the user.

The actual operation of the computer is described on the following pages.

12

3. STEP - BY - STEP PROCEDURE

The operation of the computer may be broken down into three basic

stages:

1. INPUT - This consists of entering all the data to be
used in a particular calculation, and storing
it in memory.

2, COMPUTE - The computer uses instructions to operate on
the data and compute results.

3. OUTPUT - The results are typed on the typewriter or
punched on tape.

STAGE 1. INPUT All numbers are entered in floating point format, meaning as a multiple

of a power of ten. This form of notation, common in many engineering
applications, was chosen to simplify the manipulation of large numbers.

A floating point number can be written in many different ways, since the
decimal point may be placed at will, and the exponent adjusted according-
ly. As an example, the number

123. 45

may be written in floating point notation as any of the following combina-
tions:

1.2345 % 102

. 12345 x 103

-2
12345 x 10
The value of the number remains unchanged, since the exponent is ad-
justed to suit the decimal point (hence the term floating point).

All numbers used as input to the 1020 computer should be adjusted to re-
flect a fraction and a power of ten only. Thus, in the above example,
only the format 3
. 12345 x 10
is acceptable for input. The number 10 is assumed and does not have
to be entered, and only its power is necessary. Thus, the number would
be entered as

. 12345 + 3+

The general format of numbers used as input to the 1020, is
. ddddd+ n+
Where ddddd are any decimal digits, and n is a power of 10,

The sign of the fraction and the sign of the exponent, both must be entered
following their magnitudes.

Up to 8 digits may be entered as the fractional part of the number, not

counting the decimal point or the sign. The exponent must be in the
range -99 to +99.

13

STAGE 2.

COMPUTE

If more than 8 digits are entered, only the last 8 will be used. This af-
fords a quick method of correcting errors in entering numbers. For ex-
ample, we want to enter the number

. 123 + 3+

but instead we enter

. 124

This may be rectified by continuing to enter sufficient zeros to discount
this number, and following these with the corrected entry:

0000012343+
The entire number entered is, therefore
. 12400000123+3+

Only the last 8 digits are effective, so that the number remaining in the
accumulator is

. 12343+

since the computer ignores leading zeros. Note that this is always the
case and that the number .00000123 must be entered as . 123 + 5~-, to ob-
tain correct results.

Numbers entered from the keyboard are automatically placed in the accu-
mulator, and the computer awaits further instructions. A storage in-
struction may now be executed, placing the number in one of the 100 loca-
tions in memory reserved for that purpose.

To store a number, the following sequence of keys is used:

1. Depress the key marked CPY.
Depress the numbers keys for the desired location.
For example, key 2 and key 3 for location 23.

3. Depress the key marked GO.

The number will be stored in location 23, where it will remain until a
new number is placed in that location. Note, however, that until the next
number is entered from the keyboard, the number still resides in the ac-
cumulator as well. It was merely copied by the storage operation, not
destroyed.

When the number has been stored, a second number may be entered
through the keyboard, following the same procedure. All numbers neces-
sary to perform a given operation must be entered in the same way, and
stored in selected memory locations,

Arithmetic operations call for at least two values: a number is added to
another number, subtracted from another number, multiplied or divided
by another number. In the computer one of these values is in the accu-
mulator and the other is in a data storage location. There are 100 such
locations numbered 0 - 99, and they are referred to as scratchpad memo-
ry or scratchpad locations, since they serve the same purpose as the en-
gineer's scratchpad, where he may note the values he is working on,

14

write down the intermediate results, etc.
The value in the accumulator got there in one of three ways:

1. It was input from the keyboard (or tape)
It was recalled from scratchpad storage

3. It was already in the accumulator as a result of a
previous computation.

Note that when a computation is completed, the result is always in the
accumulator, and may be used as a value in the next operation. For ex-
ample, if we calculated A + B in one operation, we may now divide by C
to arrive at A + B.

C
Figure 1 shows the flow of data into and out of the accumulator.

FIGURE 1.

Scratchpad Memory

0-99
Paper
Tane o-1DA _ __GPY___
Punch ! !
S l
! ‘ Input Paper
Output ACCUMULATOR Bl Tape
<——{——— | Reader
i |
1 |
Typewriter | !
S — Data | Input _ _ _ _ __ _ J
| r
| |
] 1
|
L C 7 8 9 -
GO
A S 4 5 6
+
M D 1 2 3
0
KEYBOARD

Data Flow In The PDS 1020 Computer

Note that input and LDA change the contents of the accumulator; Output and CPY

do not change the contents of the accumulator.

15

The four basic arithmetic operations are performed by depressing the
key marked with the function to be performed, the memory location where
one of the two data values operated on is stored, and the GO key.

To simplify notation, the procedure will from now on be written as
OPR XX GO

Where OPR represents the key of the particular function (ADD, SUB,
MPY, DIV), XX represents the memory location number, and GO repre-
sents the GO key.

The accumulator must always contain one of the numbers being used in
any arithmetic operation. If the number .is not already there, as a result
of keyboard entry or a previous calculation, the accumulator has to be
loaded with the desired number, from its storage location in memory.

The procedure is
LDA XX GO
where XX is the memory location containing the number to be loaded.

To add or multiply, the same procedure is used:

ADD XX GO
MPY XX GO

The number in XX will be added to or multiplied by the number in the ac-
cumulator. The result will remain in the accumulator. The values in
memory locations XX, remain unchanged.

FIGURE 2.
Addition
‘Scratchgad Memory Cell XX Scratchgad Memozry Cell XX
DATA A 2. DATA A
ADD XX GO
i
DATA B DATA A+ B
Accumulator Accumulator
Multiplication
Scratchpad Memory Cell XX . Scratchpad Memory Cell XX
DATA A 2. DATA A
MPY XX GO
[
DATA B DATA AB
Accumulator Accumulator

16

The same procedure is also followed for subtraction and division, but it
should be remembered that the sequence

SUB XX GO
means subtract the number in XX from the number in the accumulator.
Similarly the sequence

DIV XX GO
means divide the number in the accumulator by the value contained in XX.
The value in XX remains unchanged, and the result of the computation is
in the accumulator.

FIGURE 3.
Subtraction
Scratchpad Memory Cell XX - Scrg.tchpad Memory Cell XX
DATA A 2. DATA A
SUB XX GO
DATA B DATA B - A
Accumulator Accumulator
Division
Scratchpad Memory Cell XX Scratchpad Memory Cell XX
DATA A 2. DATA A
DIV XX GO
B
DATA B DATA 2
Accumulator Accumulator

In addition to the four basic arithmetic operations it is possible to perform
any of the special functions included in the engineering interpreter. The
standard functions in the 1020 engineering interpreter are sine, cosine,
exponential, logarithm, square root, and arctangent. Any or all of these
functions may be replaced with others, more suitable to a particular ap-
plication, if the user so desires. The standard functions are discussed

here; special functions, if used, would conform to the same general pro-
cedures,

All functions use the value in the accumulator only - a second value is not
necessary. To perform a particular function, the value to be operated on
is loaded into the accumulator, and the function key corresponding to the
desired operation is depressed. The results of all functions replace the
previous contents of the accumulator.

SINE: The value in the accumulator is assumed to be in radians,

and must be less than 30, 000 radians. This value is considered the
argument and its sine is calculated. The result, in radians, re-

17

STAGE 3.

OUTPUT.

places the original value of the accumulator.

COSINE: The cosine of the value in the accumulator replaces the
contents of the accumulator.

EXPONENTIAL: e is raised to the power contained in the accumu-
lator. This power should be less than 9.2, so that the result will
be less than 10, 000.

LOGARITHM: The natural logarithm (base e) of the absolute value
in the accumulator is calculated and replaces the contents of the
accumulator. If the accumulator contains zero before the LOG key
is pushed, the computer will halt, (See Trouble Shooting Proce-
dure.) The accumulator should contain a value less than 10, 000.

SQUARE ROOT: The square root of the absolute value of the num-
ber in the accumulator is calculated. The result is placed in the
accumulator, replacing the previous contents.

ARCTANGENT: The arctangent of the value in the accumulator is
calculated; if the value equals x then -

if x 2 100, ARCTAN x = [n/z -]./X.l with the proper sign.
The result is in the accumulator, when the function is done.

Note that these functions do not require the use of the GO key. The oper-
ation is executed as soon as the function key is depressed.

So far, numbers have been entered and stored in memory, and arithmetic
and mathematical operations have been performed, using them. But the
results, final or intermediate, are still in-the computer, and must be
typed out on the typewriter to become meaningful to the user.

Output is from the accumulator. As in the case of numbers entered into
the machine, which go to the accumulator from the keyboard and are then
transferred to specified memory locations, so in output the values must
be loaded into the accumulator and then typed out. In most cases, how-
ever, this does not require any special operations, since the results of
arithmetic operations and special functions are automatically placed in
the accumulator. All that is required to type out these answers is the
instruction

CPY +

Note that depressing the + key rather than the GO key after pushing CPY,
gives the CPY key an entirely new meaning: Copy a value from the accu-
mulator on the typewriter.

The value is typed out as an eight digit fraction followed by a sign, and a
two digit exponent, followed by a sign. The general format is

. xxxxxxxx + (or =) YY + (or -)
where X is any decimal digit, and YY represents a power of ten. The
number

123,45
would be typed as

. 12345000+ 03+

18

A carriage return may be initiated from the keyboard by the sequence

DIV +

This is convenient during step-by-step operations, eliminating the need
to work the typewriter keyboard, but is absolutely essential in program-
med operations.

The instruction

SUB +
will punch the contents of the accumulator on paper tape. The uses of
this instruction and of paper tape equipment will be shown later in this
guide.

The step-by-step procedure is sufficient for the solution of any one time
calculation for which an answer is desired in a hurry.

The following example shows the use of the step-by-step technique and its
flexibility.

Where the problem must be solved more than once, however, or for com-
putations involving iteration of several steps, the retained approach should
be used. Nevertheless, the computer can be used economically for solu-
tion of problems at this stage. The main point to remember is that the
solution is arrived at by calculating it step-by-step in much the same way
as if pencil and paper or a slide rule were used. When you have mastered
this concept and understand the following example, you are ready to use
the 1020 computer.

19

EXAMPLE 1 Problem: Calculate X where
X = A+B \} 1
~ C+D F
Method: Assume that the five values listed below are given and that
nothing else has been stored in memory, so that the locations
1 - 5 may be used for storing these values.
To avoid confusion it is desirable to list the scratchpad loca-
tions which will be used in the solution prior to actually solving
the problem. In this way the user knows where his data is lo-
cated, and can easily use it when needed.
Assume then the following values and storage assignments:
A = 173.86 and will be stored in location number 1.
B = 13.281 and will be stored in location number 2
C = 15.95 and will be stored in location number 3
D = 10.953 and will be stored in location number 4.
F = 25.971 and will be stored in location number 5
In addition, locations numbers 6 and 7 will be used for temporary storage
of intermediate results.
The solution is arrived at through the three stages as described above.
STAGE 1. . 17386+ 3+
CPY 1 GO A is entered and stored in location 1.
. 13281+ 2+
CPY 2 GO B is entered and stored in location 2.
INPUT . 1595+ 2+
CPY 3 GO C is entered and stored in location 3.
. 10953+ 2+
CPY 4 GO D is entered and stored in location 4.
. 25971+ 2+
CPY 5 GO F is entered and placed in location 5.
All values are now in their assigned places.
e A 1 is placed in the accumulator.
STAGE 2. DIV 5 GO The value 1/F is now in the accumulatox.
SQUARE ROOT The root is extracted and placed in the
accumulator.
CPY 6 GO The root is temporarily stored.
LDA 4 GO Load accumulator with D,
COMPUTE ADD 3 GO Add C.
CPY 7 GO Store (C+D) temporarily.
LDA 1 GO Load accumulator with A,
ADD 2 GO Add B. (A+B) is now in the accumulator,
DIV 7 GO Divide (A+B).
MPY 6 GO Multiply by the root of 1/F.
STAGE 3. CPY + Type the answer on the typewriter.
OUTPUT

20

RETAIN:

EXECUTE:

4. RETAINED OPERATIONS

The step-by-step procedure is a convenient and fast way to get answers
to some problems which cannot be readily solved manually or with the aid
of a calculator. Still, there are problems which require additional capa-
bilities, and for which solution by the step-by-step method becomes tedi-
ous and uneconomical. Such problems may be solved through retained
operations. Furthermore, where the problem is not unique, even the
problems described above can benefit from the capability of the computer
to retain the steps involved in the solution so that they may be solved over
and over, using new sets of data each time.

A program is merely a sequence of steps involved in solving a problem.
It corresponds to the second and third problem solving stages described
above, namely the computing stage and the output stage, and makes cer-
tain provisions for the first stage to input data.

In a sense a program is like an algebraic formula: It establishes a gene-
ral method for solving a given problem, without being concerned with the
actual data values involved. The program, like the formula, does not
produce a solution until the general values are replaced with specific
numeric values. Thus, once a program is stored in memory, it serves
to solve the problem as many times and with as many sets of data as the
user desires.

If the program is one which is used often, it may be punched on paper
tape, and then entered through the paper tape reader, eliminating the
need for entering it manually through the keyboard.

The program is entered through the keyboard, just as in the step-by-step
procedure. There are some new commands and functions which may be
used in programmed operation.

This command sets up the programmed operation: It instructs the com-
puter to store all succeeding commands in its memory, until it receives
a second RETAIN command.

Six different programs, or sets of instructions, may be retained by the
computer at any one time. These may be entirely independent or may
interconnect, as will be seen later. To identify programs they are num-
bered from one to six, and the number is entered along with the command
to retain. The general format of the RETAIN command is therefore:

RETAIN N +
The RETAIN button is pushed, then a number key, from one to six, then
the + key. To terminate the Retain mode, the RETAIN key is depressed
a second time.

In this way the instructions

RETAINN+ it RETAIN
serve as brackets, enclosing the instructions to be stored in memory.

The execute command causes the computer to perform the operations in
the retained program. Like the RETAIN command, EXECUTE must be

21

INPUT VARIABLE

followed by the number of the program to be executed since there may be
up to six programs stored in memory. The general form is

EXECUTE N +
where N is any number from one to six.

It is permissible to include an EXECUTE command within the retained
program, provided that it refers to a different program. For example,
in program number 1 an EXECUTE 2 may be given. When program 1 is
executed it will go on to execute program number 2 at the point where the
command was given. This capability is very important, and adds a great
deal of flexibility to the computer. Examples of the usefulness of this
feature will be shown later.

Since the retained program may contain many steps, the user may wish to
see it typed out and make sure that no errors in entry occurred. This
can be done by means of the command

EXECUTE N GO
Which will then type out program N on the typewriter. The typeout will
be in abbreviated format, and will include each step number and the com-
mand. Commands are abbreviated so that ADD becomes A, SUB becomes
S, MPY becomes M and DIV becomes D. In addition, the special keyboard
functions are shown in special codes (see table in appendix). The memory
location involved is also typed out so that the typed instruction may look
like

001 A025 -
meaning at step number 1 add the contents of memory cell 25 to the con-
tents of the accumulator.

The retained program contains only instructions for solving a problem.
Data must be entered separately. This is, of course, the main advantage
of the retained program, since it allows the same instructions to be used
with many different sets of data. A special instruction is used within the
retained program to prepare the computer for receiving data inputs. This
instruction is entered through the interpretive keyboard by depressing the
INPUT VAR key.

During execution of the retained program, when the computer reaches the
input instruction, it will stop and allow the user to input a data value. The
value is loaded into the accumulator, as in the step-by-step procedure,
and may then be stored by means of a CPY instruction. The CPY instruc-
tion, however, should be part of the retained program, since the computer
will not accept any instructions from the keyboard while executing a re-
tained program.

To input the values of the variables in Example 1, the following sequence
of instructions could be executed in the retain mode:

INPUT VAR
CPY 1 GO
INPUT VAR
CPY 2 GO
INPUT VAR
CPY 3 GO
INPUT VAR
CPY 4 GO
INPUT VAR
CPY 5 GO

22

This sequence in the retained program takes the place of Stage 1 of the
step-by-step procedure. Note that even though provisions have been
made for entering data, no actual data has as yet been entered. When the
retained program is executed, the computer will reach the first INPUT
VAR instruction and stop. The data will be entered at that time. No
storage instructions will be required, since these already appear in the
program. The user can enter five data values in succession, and these
will be stored in the specified locations. As soon as the last value is en-
tered the computer will go on to calculate and print out the solution, fol-
lowing the steps in stages two and three of the example. When the pro-
gram is done and the solution printed out, the user need only to depress
the EXECUTE button, along with the number of the program and the +
key and he is ready to enter five new values, and calculate the problem
over again.

Operating the computer in the Retain mode is thus similar to using the
step-by-step procedure with this difference: instead of executing each
instruction as it is received from the keyboard, the computer retains all
instructions in memory, and executes them only after receiving an
EXECUTE command.

Six different programs may be retained in memory at any one time, con-
taining a total of over 450 instructions. This figure does not include the
100 scratchpad locations used for data storage and is based on a 1020
computer with a 2048 word memory. If additional memory is installed,
the number of instructions is increased by the number of added memory
locations.

The instructions may be arbitrarily divided among the six retained pro-
grams to suit the user. Thus, one program could contain 400 instruc-
tions and the other five the balance, or just a single program may be
used, utilizing all available instructions.

At this point you have sufficient information to use the computer either in
the step-by-step procedure, or in the Retain mode, for all applications
requiring linear solutions: i.e., computations which proceed from be-
ginning to end in a sequential order and which do not require sequences
of instructions to be repeated.

More sophisticated use of the computer is possible, using its capabilities

for making logical decisions to repeat segments of the program. These
capabilities are discussed in the following chapter.

23

5. TESTING, JUMPING AND LOOPING

The computer normally executes instructions in the order in which they
are received. In the Retain mode the instructions are stored sequentially
and when the time to execute them comes they are performed in the same
order in which they were entered. Frequently, however, it is advan-
tageous to disrupt this orderly procedure and to execute a different se-
guence of instructions. This may be accomplished by means of a trans-
fer to the desired sequence.

Transfers are of two kinds: an unconditional transfer is an instruction to
perform a different sequence of instructions, located at some other loca-
tion in memory. This transfer is not concerned with the instruction just
performed or its results. A conditional transfer, on the other hand, pro-
vides for a test of a value in the accumulator: if the value corresponds to
a given condition (i.e., it is negative or positive, or smaller, greater or
equal to some other value), then the transfer occurs. Otherwise the com-
puter continues in its sequential executions. Both types of transfer are
extremely useful and provide many shortcuts in problem solving. Some
uses are shown below.

When a transfer is used in a program, it is important to number each of
the problem solving steps sequentially, so that the transfer may refer to
the new instructions to be executed by step number.

For example, suppose that in a given program ten instructions are to be
executed in order and then a jump is required to do the last five instruc-
tions over again. The steps should be numbered from one to ten and a
jump instruction to step five should then be given.

In the 1020 engineering interpreter, the unconditional jump instruction
consists of depressing the following sequence of keys:

7 XXX GO
where XXX is the step number to which the transfer is required. In the
example above the jump instruction

75 GO
would effect a transfer to the fifth step. Note that the step number may
be entered without leading zeros.

The conditional transfer is effected by depressing the TEST JUMP key on
the interpretive keyboard. The general sequence is

TEST JUMP N +
where N is the step number to which transfer will occur. The condition
set by this instruction is that if the number in the accumulator is negative,
the transfer will take place; if not, the transfer will not be effective and
the computer will proceed with its sequential execution.

This instruction can easily be used to set up other conditions as well.
Suppose that at step 25 in our program it is desired to jump to step 40 if
the number in the accumulator is positive or zero and to continue sequen-
tially if the number is negative. The sequence

STEP 25 TEST JUMP 27+

STEP 26 740 +
STEP 27 Continuation

24

SUB-PROGRAMS

will accomplish this purpose. If the accumulator holds a positive number,
the test will fail and the computer will execute step 26, jumping to step
40. If the accumulator contains a negative number, the jump to location
27 will continue the sequential execution,

EXAMPLE 5, on page 29, illustrates the use of jump and test jump in-
structions to calculate y = AX + B where X is automatically incremented
several times until an upper limit is reached.

There are two common ways to use transfer instructions: one is in writ-
ing sub-programs, and the other is in constructing program loops. A
third way, also commonly used, is often overlooked since it is an implied
transfer. The EXECUTE command is in essence a transfer to the begin-
ning of a retained program.

Frequently it is necessary to use a given sequence of instructions many
times throughout a program. For example, assume that the program re-
quires a certain value X to be evaluated according to the formula

X=2Y R .

It is easy enough to write a sequence of instructions to solve this formula,
but if the formula is frequently used by the program, using different
values of R, then it is more economical to write a sub-program to solve
the formula, and transfer to it whenever X must be calculated. At the
end of the sub-program another transfer instruction is given, returning
to the main program.

The main program can be set up to place the current R value in the accu-
mulator prior to the transfer. The sub-program then calculates X, leav-
ing the X value in the accumulator and returning to the main program.
The main program now goes through whatever calculations are necessary,
using X, then places another R value in the accumulator, transfers to
the sub-program, and gets a new X wvalue to work with.

The sub-program can be relatively simple, as shown above, or very com-
plicated. The main criterion for writing a sub-program is the number of
times the particular sequence is used by the program.

A simple way to write a sub-program is to use the capability, mentioned
previously, of cross referencing retained programs. Assume that the
main program is number one, and the sub-program is number two. The
following sequence illustrates how these programs interact. All instruc-
tions except retain and execute are represented by dots, to simplify the
example.

The sub-program is executed three times in this example. Each time it
is executed one instruction is issued (EXECUTE 2 +). The program it-
self, as shown by the dots, occupies five instructions. To write it three
times would require 15 instructions. Thus, a considerable saving in
memory space is effected as well as a saving in the user's time required
to enter the separate instructions. Normally, sub-programs would oc-
cupy many more than five instructions, and the saving can be even more
significant.

25

EXAMPLE 2 RETAIN 1 + Beginning of Main Program

EXECUTE 2 + The entire sub-program is executed

EXE‘CUTE 2+ The entire sub-program is executed
EXE.CUTE 2 + The entire sub-program is executed
RET;‘XIN End of Main Program

RETAIN 2 + Beginning of sub-program

RETAIN End of sub-program

EXECUTE 1 +

Note that the instruction EXECUTE 2 +is issued before program number
2 is entered in memory. This is permissible in this instance, since the
instruction EXECUTE 1 +is given after the sub-program has been enter-
ed and stored. Consequently, by the time the computer is ready to exe-
cute the instruction EXECUTE 2 +, program number 2 is already in mem-
ory.

A sub-program which is separately stored under a new RETAIN command
is entirely independent of the original program. It may be used by more
than one program if desired. Assume, for example, that a particular
engineering application needs a tangent of a number calculated for use in
various problems and formulas. The program for calculating the tangent
could be written as a separate program, (say program number 6), and be
used by five other programs in the machine by using the EXECUTE 6 +
command,

When the sub-program is through, it will automatically return to the main
program and resume further execution there. In the illustration, the
number 2 program is executed and the computer then returns to the number
1 program, executes it until it comes to the next EXECUTE 2 + instruc-
tion, etc.

A second type of sub-program may be written simply by issuing a jump
instruction, either conditional or unconditional, which transfers to the
first location of the sub-program. This type of sub-program is essen-
tially part of the main program, but may be executed many times at dif-

26

ferent points in the program. The return to the main program from a
sub-program of this nature is not automatic, and must be provided for by
writing special transfer instructions.

LOOPS A loop is a sequence of instructions executed repeatedly a given number
of times or until a certain condition is met. To terminate a loop by means
of a condition is a simple matter of setting up the condition and issuing a
conditional jump instruction. To terminate the loop after a given number
of times, a counter must be set up internally to monitor the number of
times a loop has been executed.

Looping is one of the most useful of computer functions since it allows
iterations such as calculating a function for various automatically incre-
mented values, repeating a calculation a specified number of times, etc.

Example 3 shows a program segment where you want to repeat steps 50 -
55 a given number of times, say N.

Set up a counter in any convenient scratchpad locations, say 0 and 1. Into
cell 0 copy N-1 and into cell 1 copy a 1. Beginning with step 56 load the
counter into the accumulator, subtract 1 from it, copy it back for future
use and test it by means of a TEST JUMP instruction., If the number is
positive, instruction 60 is executed, transferring to step 50 to do the

loop again. When the counter is decremented after the Nth execution it
will have the value -1, and the test jump will transfer to the continuation

at step 61.
EXAMPLE 3 Step Number Instruction
RETAIN 1 +

1..

50 . Beginning of loop

51

52

53

54

55 . End of loop instructions

56 LDA 0 GO The counter is loaded into the
accumulator

57 SUB 1 GO 1 is subtracted from the counter

58 CPY 0 GO The decremented counter is stored

59 TEST JUMP A jump to the continuation

60 750 An unconditional jump to the loop
starting location

61 PROGRAM CONTINUATION .

EXAMPLE 4 shows the other instance of a loop application, where the
loop is executed repeatedly until a condition is met. Suppose you want to
compute y, where y = ax +b, and x is incremented by a constant until
an upper limit is reached. The upper limit of x therefore constitutes
the condition: if this limit has not been reached, the loop is executed
again, using a new x value. If the limit has been reached, the program
is through.

Assume that a and b are constant, and that their values are 5 and 67. 139
respectively. y is computed for x values starting at .1 and up to 1.0,

27

EXAMPLE 4

in increments of . 1. The values are entered into the computer using the
step-by-step technique, and are stored in memory in storage location 1 -
5 as shown in the table below:

Loc.
No. Symbol Value

xl = x initial value 1 a .54+ 1+
6x = x increment 2 b L 6713942+
XL = X final value 3 X, .1+ 0+
4 ox 1+ 0+
L1+ 1+
5 XF

When these values have been entered, the Retained program computes vy
for the various x values and types out x and a corresponding y value.

Step Operation Comment
.5+ 1+ a is entered into Accumulator
CPY 1 GO a is stored in location 1
.67139 + 2+ b is entered
CPY 2 GO b is stored
.1 +0+ x. is entered
CPY 3 GO x. is stored
CPY 4 GO TLe same value is used as 6x and stored in
location 4
L1+ 14 x_. is entered
CPY 5 GO Xp is stored in location 5
RETAIN 1+ The first RETAIN is not a numbered step
01 LDA 3 GO Accumulator is loaded with x
02 DIV + Typewriter carriage return
03 CPY + X 1is typed out
04 MPY 1 GO x is multiplied by a = ax
05 ADD 2 GO b is added, yielding y(y = ax +b)
06 CPY + y 1is printed out
07 LDA 3 GO x 1is reloaded into the accumulator
08 SUB 5 GO x-x_ If x < x_the result is negative
09 TEST JUMP 11+ If x <x_ step 11 is executed next
10 715 GO If x >x_ the Test Jump will not be executed,
and this instruction will transfer uncondition-
ally to 15, and terminate the program
11 LDA 3 GO x is reloaded into Accumulator
12 ADD 4 GO 6x is added to x
13 CPY 3 GO The result is stored as the new x value
14 72 GO Jump to step 2 and repeat
15 RETAIN When x >x_, step 10 is executed jumping to

this instruction and terminating the program
EXECUTE 1+ This instruction will execute the program

It is frequently desirable to execute loops using new sets of data for each
execution. This may be done by including INPUT VAR instructions at the
beginning of the loop. Data can then be entered through the keyboard for
each successive iteration. Sometimes it is desirable however, to enter
all data at the beginning and let the machine seek it in successive storage
locations. To accomplish this it is necessary to change the storage loca-
tion from which the accumulator is loaded at the beginning of the loop.

28

ADDRESS MODIFICA-
TION

A special instruction is used for this purpose.

The instruction

8 XXX GO
is used to modify an address of an operand.

Memory storage locations, or cells, are numbered consecutively for
identification purposes, as explained earlier. The number of a memory
location is referred to as its address, since it serves to locate that par-
ticular cell. An address carried by an instruction, such as ADD 25 GO,
is called an operand address, since it refers to a number which will be
used by the computer: added, subtracted, copied into memory, loaded
into the accumulator, etc.

Suppose you have 50 numbers stored in consecutive scratchpad locations,
starting at location 50, and that you want the sum of all these numbers.
You can do this by entering 50 instructions: ADD 50 GO, ADD 51 GO ...
ADD 99 GO. This would do the job but it is obviously time consuming and
tedious.

By modifying the address of the instruction ADD 50 GO, you can do the
entire operation in 5 instructions:

EXAMPLE 5
RETAIN 1 +

ADD 50 GO
84 GO

71 GO

0101 +
RETAIN

N R W N -

Instruction number 2 means '"modify an operand address according to
step 4.'" Step 4 means ''add 1 to the operand address in step 1."

Instruction 1 will initially add the number in cell 50 to the accumulator.
Instruction 2 will now change the operand address to 51, so that when in-
struction 3 is executed, transferring back to 1, the instruction reads
ADD 51 GO. This process is repeated until ADD 99 GO is reached,.
Since this is the last scratchpad location the computer will stop.

The savings in time and effort, using this procedure, are evident.
The general form of the instruction to modify is

8 XXX GO

XXX . SS1II +
where XXX is the step number containing the information SS II, meaning
add II to the operand address in step SS. Note that step XXX should be in
an area of program which is never reached, as for example, following an
unconditional jump. SS II is coded information, not an instruction. If it

29

is reached by the computer in its sequential execution, the computer will
halt. The modification instruction is very useful where you work with
tables stored in the computer (see example in appendix).

Note that when the program in Example 5 is done the instruction at step 1
reads ADD 99 GO. If the program is to be executed again, this should be
changed again to read ADD 50 GO. A special instruction is provided for
this function, which is called initializing the address.

Initializing the address is simply setting it to a specified value during the
operation of the program. In the example it is necessary to set the ad-
dress of the ADD instruction to 50, before new data is entered, so that it
may be accurately modified by the address modifier.

Initializing and modifying the address durinhg the program allows you to
execute the program with many sets of data, so long as the data is stored
in the same locations.

This instruction operates very much like the modification instruction:

9 XXX GO
is the general format, where XXX is the step number containing special
information. This information should be in the format

SSAA +
where SS is the step number to be modified, and the AA stands for the
initial value of the operand address.

In the program listed above the iﬁitializing information would be

0150 +
meaning set the address of step 01 to 50. This information, like the modi-’
fication information, should not appear anywhere where it might be read by
the interpreter. Most likely, it would appear in step 5 right after the
modifier.

30

Paper Tape Reader

Paper Tape Punch

6. PAPER TAPE EQUIPMENT

In addition to the keyboard and the typewriter, the PDS 1020 Computer is
equipped with a paper tape reader and paper tape punch for input and out-
put purposes. The punch is used to store programs and data permanently
on tape. The paper tape reader is used to enter such programs or data
rapidly and accurately into the computer.

The paper tape reader is normally used in one of three ways. It may be
used to enter programs for storage in memory; such programs normally
consist of instructions and constant data but do not include variables.

For example, assume that the program entered from tape includes a
series of steps for solving y = 2x. Since 2 is a constant it may be entered
along with the instructions and stored in memory permanently. The value
of x is likely to change, however, and an INPUT VAR instruction is en-
tered in its place. Once the program has been stored in memory and is
in the process of being executed, the computer will come to the INPUT
VAR instruction and halt; at that point the current value for x may be
entered either from the keyboard or through the paper tape reader.

The second use of the paper tape reader is for entering data during exe-
cution, Using the same examples, let's assume that 100 values of x will
be used by the program. These values may be input during the execution
of the program from paper tape rather than entering each data value from
the keyboard.

The PDS 1020 Computer has also a unique application for paper tape not
usually found in stored-program computers. The paper tape reader may
be used as a fast keyboard to enter instructions which are directly exe-
cuted and data which is directly operated on. Thus instead of entering a
program and storing it in memory and then executing it, the program can
be read from paper tape and executed directly by the PDS 1020 Computer.

The paper tape punch is similarly used to prepare tape for the paper tape
reader. The punch may be used to output the contents of the accumulator
on paper tape. Thus the results of computations of one program may be
punched out on paper tape and used as input for another program. The
100 y values computed by the program cited above, for example, could
be punched out on paper tape and used by another program to compute Z
where Z = fy.

One of the main applications of the paper tape punch is to provide perma-
nent storage for use of programs retained in memory. A retained pro-
gram stays in memory only until it is replaced by another program or
until memory is cleared. Since with the PDS computer memory is auto-
matically cleared every time power is turned off, retained programs
should be punched out on paper tape if they are to be used repeatedly.
Once the retained program is punched on paper tape it may then be re-
entered through the reader quickly and accurately.

Finally, in the PDS computer, the capability is provided to punch key-
board entries made during the step-by-step procedure, punching out oper-
ations and constant data values as a solution progresses. The tape arrived
at in this manner can then be used as described previously to operate the
computer and execute the program a second time, using the paper tape
reader as a fast keyboard. It is again advisable to enter only constant

31

Keyboard-Tape
Combinations

Switch Settings

Reading Program

Reading Data

Punching Accumulator

Punching Retained
Program

values into such a program and to leave the variables out. Before the
tape is executed the user may enter and store his data values as he would
if he were operating the computer through the keyboard.

These various modes of operation of the paper tape equipment may be
combined to arrive at the most efficient and satisfactory problem-solving
combination. For example, if the programs to be executed are very long
and take up more than the memory space provided, it is possible to use
the paper tape reader to enter instructions for the linear portions of the
program, that is, the steps that progress sequentially from one operation
to another, and to reserve the memory space for those operations which
must be repeated in program loops or which require the logical decision-
making capability of the computer.

The computer control panel has four switches marked 1 through 4, located
directly above the special function keys marked A through D. These
switches are set ON by depressing them once and are turned OFF by de-
pressing them a second time.

When switch number 1 is ON, the computer will accept instructions and
data from the paper tape reader. If the program contains a RETAIN code,
that is, if it is a retained program and previously punched out on paper
tape, it will automatically be stored in memory. If the paper tape does
not contain a RETAIN code it will be executed as it is entered with the
computer handling each instruction as though it were receiving it from the
keyboard.

When switch number 4 is turned on the computer will accept variable data
from the paper tape reader during the execution of the stored program.
The data is automatically entered into the accumulator and the stored pro-
gram must then operate on it as desired by the user.

Needless to say, when reading tape the reader power switch must be turn-
ed on (see chapter on computer operating instructions).

The contents of the accumulator may be punched on paper tape by using
the instruction SUB+. This instruction is similar to the CPY+ instruction
which types the contents of the accumulator on the typewriter. Like the
CPY+ instruction, SUB+ may be used either during the step-by-step pro-
cedure or as part of the retained program. The contents of the accumu-
lator is not erased by execution of this instruction.

The instruction RETAIN N- will punch out the entire retained program
number N. N must be a number from 1 to 6 and must refer to a program
previously entered into memory in the RETAIN mode. The RETAIN com-
mand is punched on the paper tape along with the program itself, so that
when the paper tape is read through the paper tape reader it will automa-
tically be retained in memory. In common usage it is good practice to
type out the program retained in memory before punching it on tape. Thus
an EXECUTE N- instruction should be issued first to print out the retained
program. Once the program has been typed out and checked by the user it
may then be punched on paper tape for permanent use and storage.

During step-by-step operations, each keyboard entry can be punched on
paper tape as the program is entered and executed, by turning on switch
number 2. At the risk of over-stressing the obvious, the Punch power
should be turned on before any punching instructions are executed.

32

Starting the Computer

Switch Settings

Trouble-Shooting

7. MACHINE OPERATING PROCEDURE

In preceding chapters we have described how data and instructions may be
entered into the computer through the keyboard, or through the paper tape
reader, and how the computer is operated to solve problems and execute
programs. So far, however, we have always assumed that the computer
power has already been turned on and that the interpreter program itself
had previously been entered into the computer. In this chapter we will
show you how to start the computer, set the switches, load the paper tape
reader and punch units, and how to get out of trouble if trouble develops.

To operate in the manner described in this guide the computer must first
be loaded with the interpreter program itself. This program is supplied
on a reel of tape and must be loaded through the paper tape reader. Re-
member that the PDS 1020 Computer clears all memory whenever power
is turned off. When power is turned back on again the following procedure
must be followed to load the interpreter:

1. Turn computer power switch ON.
Place the interpreter program tape in the paper tape reader
as described below under the procedure for loading tape.
3. Turn reader switch power ON,
4. The START button light should be on by this time; depress
the START button.
The interpreter will be read into the computer. When the entire tape has
been read,

5. Depress reader EJECT button to feed through the tail leader.
6. Turn reader power switch OFF.
7. Depress START switch.

Rewind the tape and store for future use. The INPUT DATA light should
now be on, signifying that the interpreter has been loaded and the com-
puter is ready to accept data and instructions through the keyboard or
through the paper tape reader.

The four numbered switches may be set by the operator as follows:

SWITCH No. 1 ON - the computer will read instructions and
constant data from paper tape.

SWITCH No. 2 ON - the computer will punch keyboard entries on
paper tape.

SWITCH No. 3 ON - the computer will type out the contents of
the accumulator after each operation in the
program, and return the typewriter carriage.

SWITCH No. 4 ON - the computer will read data trom paper tape
during the execution of the program.

To enter a program from paper tape after the interpreter has been loaded,
place the tape in the tape reader as described in the section on loading
paper tape, turn reader power ON and depress switch number 1. Since
the computer is in an idle state it will not start reading the tape until af-
ter it has executed an instruction. To start the tape reading process,
enter any meaningless instruction from the keyboard such as DIV+ to re-
turn typewriter carriage. This instruction will return the typewriter
carriage and the computer will then start reading the tape.

Human fallability being what it is, it is likely that some errors will creep

33

Display Lights

Error Stops

into the operation of the PDS 1020 Computer. Some of these errors can be
detected by the computer and some cannot. If you meant to enter the num-
ber 12 for example and entered 21 instead, or if you meant to push the
ADD button and hit the MPY button instead, you will simply get the wrong
answer to your problem. The computer has no means of detecting such
errors. On the other hand the computer can detect such errors as divid-
ing by 0, taking the log of 0, an instruction to execute a program not in
memory, and the like. When the computer detects an error it will halt
and must be re-started manually. The procedure for re-starting will de-
pend on the type of error discovered by the computer.

Note the group of 17 lights on top of the computer panel. These are regis-
ter display lights which are used to display the contents of the various
registers in the computer. Directly beneath the register display lights
you will find the register display switch which can be set to any number
from O through 9. When this switch is set to 6 the contents of the accu-
mulator is displayed in the lights. The register lights are divided into
four groups with four lights in each group marked 1, 2, 4 and 8 from right
to left. In addition the 17th light is marked with a minus sign. When a
light is on, it has the value of the digit inscribed on it; when a light is off
its value is 0. When the minus light is on the contents of the accumulator
is negative.

When the computer stops due to an error which it discovered, the number
in the accumulator will often reveal the nature of the error and what steps
should be taken to correct it. The descriptions below indicate the nature

of the errors represented by given numbers in the accumulator.

Number in Accumulator Error and Remedy

0000 0000 0000 0001 You entered an instruction or data value in
the wrong form from the keyboard. For ex-
ample, ADD 100 GO, 1., etc. Depress START
and enter correct instruction or data.

0000 0000 0000 0020 You are trying to take the log of zero. Depress
START, enter new instruction.

0000 0000 0000 0021 You are trying to divide by zero. Depress
START and enter new instruction.

0000 0000 0001 0401 You tried to execute a program not in memory.
Depress START, EXECUTE, the corrected pro-
gram number, and the + key.

0000 0000 0000 8401 You have reached the end of scratchpad memory
during your modification of an operand address
(see Example 5). Depress START.

0000 0000 0000 8021 You have reached the limit of instructions
which can be retained by the machine. Depress
START to terminate the retain mode.

0000 0000 0000 8000 You have entered a wrong instruction in the re-
tain mode. Depress START, enter correction.
0000 0000 0000 0421 You depressed RETAIN followed by a 0 or an

8. These are illegal entries. Depress START,
the correct program number (1 - 6), and the +
key.

Note that RETAIN 7 has a special meaning, as

34

Step-by-Step Typeout

Error Correction

Override

Reset

noted below, and RETAIN 9+ will be interpreted
by the machine as RETAIN 1+

0000 0000 0001 0420 You called for your program to be punched on
tape but entered the wrong program number.
Depress START followed by correct program
number.

0000 0000 0000 8421 You called for your program to be typed out
but used the wrong program number. Depress
START, EXECUTE, the correct number and
the GO key.

Errors which cannot be caught by the computer can sometimes be detected
by typing out the contents of the accumulator after each operation in the
retained program. To do this execute the program with SWITCH No. 3
ON. The contents of the accumulator will be typed out after each opera-
tion and the typewriter carriage will be returned automatically.

In the step-by-step procedure it is simple to rectify an error: you simply
enter the correct instruction or the correct data value and ignore the re-
sult that was produced by the erroneous instruction or data value. To
change an instruction in a retained program is likewise a simple matter.
You must give the computer some information, however, regarding which
instruction in which program it must change and what the new instruction
is. For example, in program number 5, step 27, you entered an instruc-
tion MPY 10 GO; this instruction should have been DIV 10 GO. To change
the instruction, the following procedure is necessary:

RETAIN 7+ initiates the correction procedure. This instruction tells the
computer that you wish to change an instruction in a retained program.
It is followed by the program number and the step number, each of them
terminated with a plus, and then the correct instruction.

Thus the sequence

RETAIN 7+

5+

27+

DIV 10 GO
would alter the 27th step of program number 5 to the corrected instruc-
tion DIV 10GO. If the wrong program number is given to the computer
during this sequence, that is the number of a program not in memory,
the computer will halt and the number 0000 0000 8000 0000 will be in the
accumulator. Depress the START button and begin the procedure all
over again.

Occasionally the computer will get into an endless loop and will refuse to
stop altogether. If this happens depress the OVERRIDE button, (the light
will come on) release OVERRIDE by depressing the button again, enter
through the keyboard 2000+. The INPUT DATA light will come on and the
computer will be ready to accept new instructions.

If the computer halts for reasons other than these mentioned above, and
will not accept instructions from the keyboard, use the following proced-
ure as a remedy:

1. Depress the OVERRIDE button.

Keyboard Clear

Error Clear

Loading
the
Paper
Tape
Reader

Depress the RESET button.

Depress START (the OVERRIDE light should come on).
Release OVERRIDE by depressing the button a second time.
Enter through the keyboard 2000+.

[S NN

The INPUT DATA light will come on and you may proceed to enter instruc-
tions.

Occasionally you may hit the key on the keyboard when the computer is not
ready to accept a keyboard entry. In such a case the key will remain
locked in the down position and may be released from this position by de-
pressing the KEYBOARD CLEAR button at the lower right hand of the con-
trol panel.

If the ERROR CLEAR light comes on any time during the operation, this
is an indication of an error made by the computer. The light can be turn-
ed off by depressing the button. Then turn Power off, wait 30 seconds,
turn Power on and re-enter the interpreter and your program. If the
error light comes on again and persists, this may be an indication of a
machine malfunction and the computer may have to be serviced before it
can operate correctly again.

In addition to the indicators and keys described, you will find a key marked
SINGLE CYCLE to the left of the START button and an indicator marked
OVERFLOW. These have no meaning when operating in the interpretive
mode, and are used during machine language operations only. They need
not concern you here.

1. Open the spring-loaded switch and pull
tape through.

2. Push tape into tape-guide as shown in
Photo A.

3. Turn POWER switch ON.

4. Depress spring-loaded switch with your

thumb as shown in Photo B. Reader will
thread automatically.

When loading a program, with the interpreter
already loaded, the following steps should be
added:

Depress sense switch no. 1 to read tape.

wm

6. Depress DIV +.

7. When tape is about half done, depress
sense switch no. 1 a second time to re-
lease it.

8. When tape has been read, depress EJECT
switch to release the tape.

9. Turn reader POWER switch off.

36

Loading the Paper Tape 1.

Punch

10.

Photo C

Photo D

37

Open service door on right side of com-
puter.

Unscrew and remove front plate from paper
tape reel.

Position tape on hub and pull a length of
tape through pivot bar. Thread as shown
in Photo C.

Replace front plate on reel.

Pull tape through opening to top of com-
puter and close the service door.

Thread tape under spring-loaded switch,
and through tape-guide.

Turn POWER switch ON,

Depress spring-loaded switch with your
thumb.

Depress PUNCH FEED switch to thread
tape and punch a length of leader as shown
in Photo D.

To punch data or instructions use switches
and commands described under Paper Tape
Equipment.

&
51
w
k-

What Is An Interpreter?

Interpreter Advan-
tages

8. AND WHERE DO WE GO FROM HERE?

You have now learned to operate the PDS 1020 Computer in the interpret-
ive mode. You may not feel completely confident at this point of your
abilities but remember that programming like golf cannot be learned sim-
ply by reading a book or a guide. The theoretical concepts which we have
discussed in this guide can only become really meaningful when you have
applied them to problems of your own and have actually sat down and
solved them on the computer. -You now have sufficient information for
this purpose. When you get more familiar with the system, you may find
that certain problems which are common in your application could be
solved more conveniently if the computer had a special function key which
would evaluate the factorial of the number in the accumulator, rather than
a trigonometric function. Or you may find that your problem solving steps
rarely run to more than 100 steps, but on the other hand you would like to
store 200 data values. It may be possible to change the interpreter to in-
clude provisions for such requirements, since the interpreter itself is
nothing more than a stored program in the machine's memory.

The interpreter is a machine language program written with a special
purpose in mind: instead of processing data the interpreter program ac-
cepts information from tape or keyboard or the special function switches;
it interprets this information and determines its purpose and then trans-
fers control to an appropriate sequence of machine language instructions
which execute the operation called for by the interpretive command. The
interpreter program must be entered into the computer and stored in
memory before the computer can operate in the interpretive mode as de-
scribed in this guide. This is the reason for the limiation on storage of
instructions and data: the PDS 1020 is standardly equipped with 2048
words of memory, 450 of which you may use for storing interpretive in-
structions. 100 scratchpad locations are provided for data storage. The
balance of memory is occupied by the interpreter program itself and its
subroutines.

The interpretive mode of operation offers many advantages. To begin
with it is very simple to learn and to use. It offers you a convenient way
of getting acquainted with computer programming and with computer oper-
ations, while doing useful work and solving problems on the machine. It
introduces you painlessly to some of the more sophisticated concepts of
programming such as looping, address modification and the like. It al-
lows you to enter numbers in scientific notation (floating point) and adjusts
the decimal point automatically. In machine language this function must
be performed by the programmer. There is a price however to be paid
for this convenience and ease of operation: the interpreter is slower than
machine language, since it must first interpret the command it receives
then transfer to a subroutine to execute it. Furthermore, the interpreter
and its subroutines take up a considerable amount of memory space. It
follows that the capabilities of the interpreter are proportionate to this
price; if you want the interpreter to evaluate the factorial of the number
automatically for example, this can be easily done by adding a routine in
machine language to do this. However, you will be trading some addition-
al storage space for this capability and you will have to decide whether
this is to be at the expense of another function performed by the inter-
preter, such as a trigonometric function, or whether this capability
should reduce the number of program steps which you may use for solving
your problems.

38

Added Capabilities

What Next?

The capabilities of the interpreter can also be expanded from a hardware
point of view. For example, you may add additional memory modules to
the 2048 word capability of the computer. Additional memory may be di-
vided, in any proportion you see fit, between additional data storage and
additional storage for instructions. You may even want to vary this pro-
portion from program to program and to set the limits on scratchpad lo-
cations and instruction storage yourself each time you enter a new pro-
gram into memory. If your computer is equipped with the optional type-
writer input capability, the interpreter can also be expanded to include
alphanumeric capabilities: you may wish to type in headings which the
computer will then type back out again as part of the solution of your prob-
lem.

The important point we are trying to make is that the interpreter is en-
tirely flexible, since it is a program and not a piece of electronic hard-
ware. Its capabilities and limitations can be expanded or contracted to
suit individual applications.

Once you learn to operate the PDS computer in the interpretive mode you
have learned all the basic principles of programming a computer. As you
grow more proficient with practice, you will be able to enter problems

and solve them almost as fast as it would take you just to write the expres-
sion. If you use the computer extensively you may eventually want to
master yet more sophisticated uses of the machine. You may wish to
make your own modifications in the interpreter to suit your individual
needs.

The PDS 1020 is a computer you can operate now. You can start solving
problems on this machine as soon as it is installed. But more than that,
the PDS 1020 Computer gives you the assurance that you will not outgrow
its capabilities. It is a full-scale digital computer with a flexible and
powerful wired-in command list, and may be used at any level of sophis-
tication at which you want it to operate. When you are ready for the next
step so is the computer.

The PDS Programmer's Handbook describes the machine language of the
PDS 1020 and how it may be used. We recommend, however, that you be-
come thoroughly familiar with the interpretive mode and actually operate
the computer, using the interpreter, before you attempt to familiarize
yourself with the machine language.

We believe that once you have learned to operate the PDS 1020 and when
you fully appreciate the power and convenience that it places at your fing-
ertips, you will use it as you use your slide rule: as a basic tool for solv-
ing engineering problems.

39

Table of Printout
Abbreviations

APPENDIX

Table of Printout Abbreviations

Summary of PDS 1020 Interpreter Instructions

Additional Examples

PRINTOUT
Lxxx - .
Cxxx - .
Axxx - .
Sxxx -
Mxxx - .
Dxxx - .
Dnnn +.
3007 -
3008 - .
3009 - .
300L - .
300C - .
300A - .
3005 - .
30NM
6000 - .

41

COMMAND

LDS XX GO
CPY XX GO
ADD XX GO
SUB XX GO
MPY XX GO
DIV XX GO
TEST-JUMP N+
INPUT VARIABLE
SINE

COSINE
SQUARE ROOT
EXP

ATN

LOG

EXECUTE N +
RETAIN

SUMMARY OF PDS 1020 INTERPRETER INSTRUCTIONS

A stands for Accumulator. (} stands for the value contained in

COMMAND OPERATION
ARITHMETIC AND LDA XX GO Load A with (XX)
STORAGE CPY XX GO Copy (A) to xx.
ADD XX GO Add (XX) to {A). Resultin A
SUB XX GO Subtract (XX) from (A). Resultin A
MPY XX GO Multiply (XX) by (A). Result in A
DIV XX GO Divide (A) by {XX). Result in A
SPECIAL FUNCTIONS SINE Sine (A) in radians < 30, 000.
COSINE Cosine (A) in radians < 30,000.

SQUARE ROOT V(A) absolute value.
ARCTANGENT Arctangent (A).
EXPONENTIAL e(A). (A) 9.2

LOGARITHM Log (A) absolute value. (A) <10, 000.
RETAINED OPERA- RETAIN N + Store program N. N =1 - 6.
TIONS = RETAIN End Retain mode.

INPUT VARIABLE Input data value from keyboard or tape.
TEST/JUMP N + If (A) negative, jump to N.

7 XXX GO Jump to XXX.

8 XXX GO Modify address per XXX.

9 XXX GO Initialize address per XXX.

SSII Modify or initialize step SS by or to II.

EXECUTE N + Execute program N.

TYPEWRITER CPY + Type (A).

FUNCTIONS DIV + Carriage return.
EXECUTE N - Type program N.

PUNCH FUNCTIONS SUB + Punch (A).
RETAIN N - Punch program N.

Can be executed only in Retain mode.

42

ADDITIONAL The following two examples show some typical applications in providing
EXAMPLES quick answers to common engineering problems.

One example shows how you may compute the mean and standard devia-
tion for a set of numbers. The other shows a table lookup function —
using the initializing and modifying instructions to look up the appropriate
data to be used in the calculation.

In the examples the following abbreviations are used:

L = LDA C = CPY
A = ADD S = SUB
M = MPY D = DIV
Compute: , = % I X,
1
- L
° =l:“ Y ’:Xi]
Input: N, x,
RETAIN 1+ RETAIN 2+
1. INP VAR Enter N 1. L5GO zxiz
2. Cl1 GO Save 2. D1 GO N
3. D1 GO 3. CGO
4. C2 GO] 4. L4 GO I,
5. S2 GO 5. D1 GO N
6. C4 GO Zero 6. C+ Print
7. C5GO 7. Cl0 GO
8. L1 GO N 8. M10 GO 2
9. 82 GO 9. S GO
10. C8 GO N -1 10. SQ ROOT Form square root
11. INP VAR x, 11. C + Print 4
12. C7 GO 12. D + Carriage Return
13. A4 GO 13. RETAIN END
14. C4 GO S
15. L7 GO x
16. M7 GO x%
17. A5 GO
18. C5 GO Ix 2
19. L8 GO Test
20. S2 GO If
21. C8 GO Done
22. T/J 24 + Yes
23. 711 GO No
24. EXECUTE 2+ To subroutine
25. RETAIN END

43

Compute: f(x) = f(xi) + = - x
i
<X <Xi
Input: Table of Values:
2 %
3 f(x l)
4 X,
*N
f(xN
X in accumulator on entry
Output: f(x) in accumulator on exit
RETAIN 3+
1. CGO Save Input 20.
2. 927 GO 21.
3. 928 GO Set 22.
4. 929 GO Table 23.
5. 930 GO Entries 24.
6. 931 GO 25.
7. LGO X 26.
8. S() GO Xi 27,
9. T/J 16 + 28.
10. 832 GO 29 29.
11. 833 GO Modify 30.
12. 834 GO Table 31.
13. 835 GO Entries 32.
14. 836 GO 33.
15. 77 GO Try Again 34.
16. C97 GO (x-xi) 35.
17. L{) GO X, 36.
18. S() GO X, 37.
19. C99 GO X, -X

44

£x,) - £x,)

(x - x,)

L() GO
C98 GO
S() GO
M97 GO
D99 GO
A98 GO
737 GO
802 +
1702 +
1800 +
2003 +
2201 +
802 +
1702 +
1802 +
2002 +

.2202 +

RETAIN

Save

(X-Xi)
(x. - x.)
i i-1

f(xi)
Skip to END

Step number

and modifiers

END

