Pacif

o

PROGRAMMER'’S
" HANDBOOK

PROGRAMMERS' HANDBOOK

Preliminary Edition

PACIFIC DATA SYSTEMS
PUBLICATIONS DEPT.
MARCH 1964

Copyright 1964

PACIFIC DATA SYSTEMS, INC.
A Subsidiary of Electronic Associates, Inc.
1058 East First Street
Santa Ana, California
PR 1-10

I.

II.

III.

Iv.

VI.

VI

I.

TABLE OF CONTENTS

GENERAL DESCRIPTION

PDS 1020
PDS 1068

Comparison

COMPUTER ORGANIZATION

Memory

Hexadecimal Numbering
Word Contents

Data and Instruction Modes
Machine Registers
Input/Output Equipment
Control Console

ARITHMETIC OPERATIONS

Decimal Arithmetic
Variable Word Length
Retrieval and Storage
Arithmetic Operations:
ADD
SUBTRACT
MULTIPLY
DIVIDE
Accumulator Shifts
Binary Arithmetic
Set-Up Instructions

CONTROL OPERATIONS

Unconditional Transfers
Conditional Transfers
Indexing

Register Exchanges
Sense Switches

INPUT AND OUTPUT

Paper Tape I/O
Typewriter I/O
Keyboard Input
Parallel I/O

MACHINE OPERATING PROCEDURE

Loading the Program
Troubleshooting

APPENDIX

Alphanumeric Codes
List of Instructions
Bootstrap Routine

Hexadecimal Conversion Table

—
O O O 0 o

10
11

12

12
13
15
16
16
17
17
18
20
21
24

25

25
28
28
33
34

35

36
38
39
40

41

41
42

44

44
45
46
48

- 11

- 24

- 34

- 40

- 43

- 48

GENERAL DESCRIPTION

The recent trend in computer development has been almost entirely toward
bigger and faster machines. Computer manufacturers, pressured on the

one hand by the military with requirements for faster computers to be used
in real time applications, and on the other hand by industry and business with
ever increasing work loads for computers, have pushed the computer speed
from the millisecond to the microsecond range and are now talking about

the nano-second computer. The penalty for this increase in speed and size
has been in complexity and cost. It is true that the computer today repre-
sents a better bargain than it did ten years ago in terms of the amount of
computations per dollar, but it is equally true that the computer still

represents a sizeable investment which few companies can easily afford.

Furthermore, the cost of this equipment and its speed of operation, make

it almost prohibitive to use as an open shop device. It becomes mandatory
to employ the computer in the most efficient manner possible, and conse-
quently any proposed use made of it must be carefully planned and scheduled.
The net result is that in certain areas of potential computer applications,

computers have made relatively few inroads. Open shop usage in large

companies, full time use of the computer within a small or medium company,
automatic checkout and quality control applications for non-military goods,
to mention only a few examples, are some of the areas where the use of the

computer has been impractical and too expensive up to now.

Pacific Data Systems has developed a general purpose, digital, stored pro-
gram computer specifically designed to be used in such applications. The

computer is offered in two basic configurations, the PDS 1020 and the PDS 1068.

The PDS 1020 is a desk mounted computer designed mainly for engineering
and scientific computations. The PDS 1068 is a rack mountable unit, designed
essentially to fit as a control logic module within a larger system. From a
point of view of programming the two machines are identical, and this hand-
book is designed to serve both. It might be useful, however, to look at

these machines separately for a moment, from the point of view of the user:
at the advantages which each machine offers and the applications for which

it was designed.

PDS 1020

PDS 1068

The PDS 1020 is designed principally as a calculating tool for use by

engineers scientists, researchers, and other technical personnel,

whose work includes a great deal of numerical data manipulation. Since

it is primarily designed for the engineering department, the computer can

be used at many levels of sophistication. To the non-professional program-
mer it offers a powerful interpreter, simplified keyboard entry of instructions
and data, special functions which can be used to perform a variety of complica-
ted routines at the push of a button, and most important the ability to perform
at more sophisticated levels as the user improves his understanding of com-
puter programming techniques. To the sophisticated programmer the PDS 1020
offers a powerful machine language, paper tape input and output, a hardware
index register, automatic word lergth control, capabilities for doing both decimal
and binary arithmetic, a numeric register display, and many other important
features. To any user, regardless of how much or how little he knows about
computers, the PDS 1020 offers a convenient means of solving problems which
can not be readily solved manually, yet cannot economically be solved on a
large scale system. In a word it offers fast direct answers to immediate engin-

eering and scientific problems.

The PDS 1068 is designed primarily for systems applications. It pro-
vides the user with a complete general purpose cormputer control capabil-
ity, at a price normally associated with limited special purpose equip-
ment, Among the many features that make the 1068 particularly useful

for such applications, are the parallel input and output capabilities,
multiple input and output channels, all the programming features

already enumerated above and external as well as program interruption
capabilities. Most important, the 1068 allows the inclusion of an oper-
ator in the control system, to any degree desired by the user. By employ-
ing the sense switches, the special function switches, the override feature,
etc., the operator can exercise as much or as little influence on the process
under control as is required by the particular application. The PDS 1068
can be used effectively for process control, data logging, automatic check-

out operations, on line quality control, and many, many others.

THE PDS 1020
AND PDS 1068
COMPARED

There are three basic differences between the PDS 1020 and the PDS
1068 units. The principal difference is mechanical - - the PDS 1020
is a desk mounted computer easily portable and convenient for office
installation. The PDS 1068 is rack mountable, so that it may be in-
stalled as a module within a larger system in a minimum amount of
space. Both computers use ordinary household current and require no

special installation or environmental control.

Internally the two machines are identical, using the same command
language, the same logic, and identical input and output channels. The
only difference here is in basic memory size: the PDS 1020 is equipped
with 2048 words of memory in its basic configuration, whereas the PDS
1068 is equipped with 1024 words of memory. In either case memory is

expandable in modules of 1024 wor ds.

Finally, the PDS 1020 includes a paper tape reader and punch, a type-
writer, and a numeric keyboard, for input and output. The PDS 1068 in-

cludes channels for communicating with these devices, but the actual units

are not included in the basic configuration. Thus, the systems designer
has leeway to include whatever communications equipment he chooses for

input and output in the 1068 system.

With these exceptions, the two machines are identical. All references in
this handbook, to commands, logic, execution, input and output character-
istics, and the like, can be understood to apply equally well to both

machines.

COMPUTER
MEMORY

HEXADECIMAL

NUMBERING

COMPUTER ORGANIZATION

The PDS computer is equipped with a magnetostrictive delay line memory.
The principal of such a memory consists of introducing a time delay into
the transmission of electrical signals representing binary information. In-
formation is stored in the delay line by coding it into a series of electrical
pulses which are transmitted along the delay line to a receiving station at
the other end. There the signals are received, amplified, and recirculated.
By synchronizing this activity with a pulsating clock, it is possible to

retrieve any segment of information desired.

From the point of view of programming, the mechanics of this operation are
immaterial. The important thing to remember is that information is sequen-
tially stored in the delay line, much as it would be in any other storage

medium.

Memory is divided into words, and each word in the PDS computer consists
of 16 bits, a sign bit, and a marker bit. The basic memory capacity of the
1068 is 1024 words; the basic capacity of the 1020 computer is 2048 words.
Memory is expandable in units of 1024 words. Memory addresses begin
with zero and end with either 1023, 2047, or 4095, in a 1024 word machine,
a 2048 word machine, or a 4096 word machine respectively. Addressing
is modulo the memory size of the particular computer. Thus, the address
1024 in a computer which has a 1024 word memory, would be interpreted by
the computer as an address of zero, an address of 1025 would result in an

effective address of 1, etc.

Memory locations are addressed in binary format. These locations are ref-
ferred to, for convenience sake, in hexadecimal notation. The hexadecimal
system, as the octal system, bears a direct relationship to binary in that

4 binary bits represent one hexadecimal digit. This representation was chosen
in preference to octal, because normal machine arithmetic in the PDS com-
puter is performed in decimal. Thus, the machine looks at 4 bits at a time

to arrive at a decimal or hexadecimal equivalent. The relationship of decimal,
hexadecimal, and binary numbers are shown in Table A. Note that the digits
corresponding to the decimal values 10 through 15 are L, C,A,S,M, and D

respectively.

TABLE A DECIMAL HEXADECIMAL BINARY

0 0 0

1 1 1

2 2 10

3 3 11

4 4 100

5 5 101

6 6 110

7 7 111

8 8 1000

9 9 1001

10 L 1010
11 C 1011
12 A 1100
13 S 1101
14 M 1110
15 D 1111
16 10 10000
1023 3DD 001111111111
1024 400 010000000000
2047 7DD 011111111111
2048 800 100000000000
4095 DDD 111111111111
4096 1000 1000000000000

To avoid confusion and distinguish between the various representations, the
nomenclature in this handbook will be as follows: a bit will always refer to
a binary digit; a digit will always refer to a decimal digit which is equivalent

to 4 binary digits; a character will be any specified number of bits which is

interpreted by the computer as a single item of information. For example,
a hex character of 4 bits, an alphanumeric character of 6 bits, an alpha-

numeric character of 8 bits, etc.

WORD A word in the PDS computer consists of 4 digits plus sign and a marker bit,
CONTENTS

or 18 bits. The 17 bits are accessible to the program and can assume mean-
ing according to the following formats:

1. A word may contain 4 signed digits of data.

2. A word may contain a partial data value of 4 decimal digits
within a larger data field.

3. A word may contain an instruction. The instruction may con-
sist of 4 digits and sign, or may consist of a signed hexa-
decimal character plus a 3 hexadecimal character operand

address.
DATA AND The PDS computer operates in one of two modes: the data mode and the in-
INSTRUCTION
MODES struction mode. In the data mode,information (data or instructions) is placed

in the accumulator and is manipulated by the instructions. In the instruction

mode information is placed in the instruction register and executed as an

MACHINE
REGISTERS

INPUT/OUTPUT
EQUIPMENT

instruction. The information, in either mode of operation, may come from
memory, from the keyboard, from the paper tape reader, or from a device

connected to the parallel input channel.

Note that it is thus possible to execute instructions either from memory, or
directly as they are entered from an input device, or in any combination of

memory and external devices.

There are 7 machine registers which are of interest to the programmer.

A brief description of each follows, to acquaint the programmer with their
general functions. More detailed explanations of how each register works,
how it may be accessed by the program, etc., are reserved and will be dis-
cussed in context with the functions which they perform and the instructions

which relate to them.

The registers are numbered G 0 through G 6, and may be displayed in the

register display light by setting the display switch to the appropriate setting.

G 0 Next Instruction Register. This register holds the
address of the next instruction to be accessed by the
program for execution.

G1 Instruction Register. This register holds the in-
struction currently being executed by the computer.

G2 Word Length Register. The word length register
controls the number of machine words which are con-
sidered by the computer as a single data word.

G3 Index Register. This is a hardware index register
which can be used to index arithmetic and storage
instructions or any other instructions which require
sequential memory access.

G4 Link Address Register. The contents of this
register are inierchangeable with the contents of
the GO, next instruction, register. Ii is used to
hold the return address when the program exits to
a sub-routine.

G5 Sign Register. This register holds the sign of the
accumulator, which is treated separately from the
value of the accumulator.

G6 Accumulator. The machine accumulator is 25
decimal digits long, and is used with the arithmetic
register as well as for most input and output operations.

The PDS 1020 is equipped with a numeric keyboard, a paper tape reader and
punch and a typewriter. Additionally a parallel input channel and a parallel
ouiput channel are provided, and may be connected to devices of the user's

choosing.

- 10 -

The PDS 1068 is equipped with input and output channels, the characteristics
of which are identical to those of the 1020 although the devices are not in-

cluded in the standard configuration.

CONTROL The PDS computer console contains a variety of push buttons, switches,
CONSOLE
and indicators, which are used to initiate the operations of the equipment,

for program checkout purposes, or, where desired, for operator control

of machine operations.

Functionally speaking the console controls and indicators fall into four
classifications:

1. Control Switches and Indicators. These include controls
for turning power on and off, starting the computer, put-
ting the computer in a single cycle mode, a parity error
clear buiton, an override button for manual interruption
of machine operations, a reset button, an input data
indicator, and other indicators associated with the above
switches.

2. Special Function Switches. These switches can be used by
the operator to transfer control to a selected subroutine.

The operator can therefore perform ten different functions,
of any desired complexity, by merely pushing a button.

3. Sense Switches. A group of four sense switches is provided,
along with four external sense lines. These may be tested
under program control to determine their present state. The

computer may be programmed to take appropriate action
whenever one or more of these switches is turned on.

4. Register Display. A group of 17 display lights and an
associated switch are provided to display the contents of
machine registers. By setting the register display switch
to a selected position number 0 through 6, the contents of
the register correspondingly numbered will be displayed in
the lights.

More detailed descriptions of these controls, indicators, and special function
switches will be discussed in the following chapters when their functions and

manner of operating can be more readily understood.

- 11 -

DECIMAL
ARITHMETIC

ARITHMETIC OPERATIONS

The normal arithmetic operations of the PDS computer are decimal.
A capability for performing binary arithmetic is provided, as will
be seen at the end of this chapter. The basic arithmetic commands
however, ADD, SUBTRACT, MULTIPLY, and DIVIDE, do their

arithmetic operations in decimal.

A data value is therefore represented in the machine as a series of
decimal digits, each digit consisting of four bits. The sign of the value

is separately handled and separately treated during the arithmetic oper-
ations, so that the actual calculations are performed on the absolute values

of the data.

Arithmetic operations are performed serially. In an ADDITION operation

for example, where two values A & B are to be added together, each digit

of A is separately added to the corresponding digit of B until all digits have
been added. Since 16 possible digits rather than ten can be represented in
four bits, a direct binary addition of the digits would not yield decimal

results. The hardware is so constructed, however, as to compensate for

this difference between the decimal and hexadecimal system, as will be

seen.

Arithmetic operations are performed on two values at a time, one of
which is always in the accumulator. - The accumulator may be loaded
from memory or directly from an input device. A special register, the
G5 register, houses the sign of the value currently in the accumulator.
A second data value is retrieved from a memory cell specified by the
operand address of the arithmetic instruction. This value is loaded into
a separate register, not accessible by programming, which we will

call the B accumulator. The sign of the second data value is also loaded
into the G5 register. After the specified arithmetic operation has been

performed, the result replaces the originkl contents of the accumulator.

The accumulator is 25 digits long, and may therefore contain up to 6
machine words or a total of 24 decimal digits. The 24 digit length of the
accumulator, can be regarded as a single data field for certain arithmetic
operations, if desired. The 25th digit is used to hold overflow in such

cases and is also used by two of the output commands. The number of

- 12 -

VARIABLE WORD
LENGTH

digits which are affected by the arithmetic operations is determined by the
word length register, which provides automatic control of the nunber of

machine words which are treated as a single data field.

The word length register, G2, is used to specify the number of machine
words which make up a single data word. Since the accumulator length

is six machine word lengths (24 digits not counting overflow), up to six
words may be used as a single data field for arithmetic operations. In the
case of ADD & SUBTRACT 24 decimal digits may be added or subtracted
from an equal or smaller length value. In the case of MULTIPLY &
DIVIDE the data word rﬁay be up to three machine words, 12 decimal

digits,in length, yielding a 24 digit product in the case of DIVIDE.

The G2 register is 17 bits long, but only the least significant three bits

are used in controlling the word length operations. The three least
significant bits of the G2 register are loaded with the desired word length,
by executing an SWL (Set Word Length) or an EWL (Exchange Word Length)

command. This instruction will be further discussed under Indexing, in the

chapter on Control Operations.

When the word length register is loaded with a desired field length,

from 1 to 6 words, this field length is treated as though it were a

single data word. This means that all arithmetic commands, as well

as the load and storage commands,are automatically applied to as

many machine words as make up the selected data field. For example,
if a field length of 2 has been selected, a copy command would copy

8 digits from the accumulator into two consecutive memory cells. Only
one operand address is required for the instruction, regardless of the
word length used. To illustrate, C100+ if executed in double word
length mode, would copy 8 digits from the accumulator to memory cells
100 and 101. The most significant 4 digits would reside in memory

cell 100. The least significant 4 digits would reside in memory cell 101.
The same situation, in reverse, exists when a load command is executed.
The contents of 2 consecutive memory cells is loaded into the 8 least
significant digits of the accumulator, with the digits which occupy the
memory cell with the lower address loaded into the most significant digit

position. Thus the command L100+, if executed in double length mode,

-13 -

would cause the contents of memory cell 100 to be loaded into digit
positions 5, 6, 7, and 8 of the accumulator, and the contents of
memory cell 101 to be loaded into digit positions 1, 2, 3, and 4 of the

accumulator,

The sign of the accumulator is copied into the sign position of every
word within a data field when a storage instruction is executed. During
a load operation, the sign of the word with the greatest memory address
in the data field is loaded into the sign position of the accumulator; the

signs of other words in the data field are ignored.

In the case of multiply and divide a double length accumulator is used.
That is to say, if the data field length is two word lengths, 8 digits, the
product of a multiplication will be 16 digits. Division also yields a 16
digit answer, the least significant 8 digits being the quotient of the
division and the most significant 8 digits being the remainder (see below
under DIVIDE). It therefore follows that the maximum word length

allowable in MULTIPLY and DIVIDE operations is three word lengths,

12 decimal digits, yielding a 24 digit result,

The word length register also affects indexing operations, automatically
adjusting address increments to correspond to the data field length chosen.
This feature will be discussed under indexing in the chapter on control

operations.

- 14 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1. COPY CPY Cnnn+t+
Gl Contains the instruction CPX Cnnn-
G2 Determines field length LOAD LDA Lnnn+
G3 Indexing where specified LDX Lnnn-

G4 Not affected
G5 Sign loaded or copied
G6 Value loaded or copied

RETRIEVAL & . The COPY instruction {Cnnn+) copies the contents of the accumulator intc location
STORAGE
nnn. When multiple word length is specified by the word length register, the
instruction will copy the contents of the data field specified from the accumulator
into successive memory cells starting with memory cell nnn. The most significant
4 digits of the data field specified, will be copied into location nnn, successive
digits will be copied into memory locations nnn+l, nnnt+2, etc. The sign of the
accumulator will be copied into each memory location affected by the instruction.
COPY
The instruction may be indexed by terminating it with a negative sign (Cnnn-).

When indexed the operand address will be modified by the index register, as des-

cribed under Indexing in the chapter on control operations.

The contents of the accumulator is not destroyed by the COPY instruction.

The LOAD command (Lnnn+) clears the accumulator and replaces the contents
of the 4 least significant digits of the accumulator with the contents of memory
cell nnn. When multiple word length operations are performed, the load
command accesses as many memory cells as are specified by the word length
register. For example, if the specified word length is 3, the load command
would replace the contents of the 12 least significant digits of the accumulator
LOAD with the contents of memory cell nnn, nnn+l, and nnn+2. The contents of
location nnn is always copied into the most significant 4 digits of the data
field specified. The sign of the accumulator is replaced with the sign of the

last memory cell accessed. The LOAD command does not destroy the contents

of the memory cells.

The LOAD command may be indexed by terminating it with a negative sign
(Lnnn-). When indexed, the operand address of the command will be modified
according to the information contained in the index register as described under

Indexing, in the chapter on control operations.

- 15 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1 ADD ADD Annn+
G1 Contains the instruction ADX Annn-
G2 Determines data field length
G3 Indexing affected where specified SUBTRACT SUB Snnn+
G4 Not affected SUX Snnn-
G5 Sign algebraically determined
G6 Holds one of the operators before MULTIPLY MPY Mnnn+
execution and the result after MPX Mnnn-
execution.
DIVIDE DVP Dnnn+
DVX Dnnn-
ARITHMETIC The ADD command (Annn+) decimally adds the contents of memory cell nnn to the
OPERATIONS

contents of the accumulator and leaves the result in the accumulator. Example 1
shows two adding operations, to illustrate how the computer arrives at decimal
answers. The decimal numbers are of course coded in binary (8, 4, 2, 1 BCD Code)

and the example shows three columns: In the first column the true decimal

ADD
calculation is shown, in the second column the binary coded decimal operation
as it is performed by the computer, and in the third column the true binary calcu-
lation. To simplify the example a 2 digit calculation is shown; the same principle
however applies to the entire length of the accumulator.
EXAMPLE 1. Decimal Binary Coded Decimal True Binary
DECIMAL ADD
A, 07 0000 0111 0000 0111
+ 08 + 0000 1000 0000 1000
=15 110 0000 1111
0001 0101
B. 05 0000 0101 0000 0101
+ 04 + 0000 0100 + 0000 0100
=09 110 0000 1001
0000 1111
- 110
0000 1001

To compensate for the difference between the binary representation and

the binary coded decimal, the machine automatically adds 6 to the digits
added since 6 is the difference between the maximum decimal value which
can be represented in 4 bits, and the maximum binary value which can be
represented in 4 bits. If a carry into the next digit is generated by adding
the 6, then the machine leaves the value untouched as can be seen in
Example A: The most significant digit of the answer is 1 and the least
significant digit is 5 which represents the decimal value 15 in BCD coding.
In a binary machine this answer would be 1111, which is a binary represen-

tation of 15. In Example B a carry has not been generated into the next digit.

- 16 -

The machine therefore knows that the results can be represented

correctly in 4 bits and subtracts the 6 to arrive at the correct answer.

Variable field length arithmetic may be performed by the ADD
instruction, as specified by the word length register. The permissible
data field for addition is from 1 to 6 words, or up to 24 decimal digits.
During variable field operations the operand address is interpreted as
nnn, nnn+tl, nnn+2, etc. up to the specified number of memory cells
which make up the single data field. The ADD command may be in-
dexed by terminating it with a negative sign (Annn-). When indexed the
operand address will be modified by the index register. If the result of
the addition exceeds the field length specified by the word register, the

overflow indicator will be turned on.

The SUBTRACT command (Snnnt) decimally subtracts the contents of
location nnn, and subsequent memory locations where multiple word
SUBTRACT length is specified, from the contents of the accumulator. The result
replaces the contents off the accumulator. The difference between the
numbers is algebraic, and where numbers with different signs are sub-
tracted from each other the difference may exceed the word length speci-
fied in which case an overflow condition will result. The numeric repre-
sentation is binary coded decimal, and the machine compensates for the
difference between binary and decimal numbers in much the same way as

described under the ADD command.

The SUBTRACT command may be indexed by terminating it with a negative
sign (Snnn-). When indexed the operand address will be modified by the
index register. Up to six machine words, 24 decimal digits, may make

up the data field for a SUBTRACT operation.

The MULTIPLY command (Mnnn-) multiplies the contents of the accumula-
tor by the contents of memory location nnn. If multiple word length arith-
MULTIPLY metic is specified, the specified data f1e1d of the accumulator will be mul-
tiplied by the contents of memory locations nnn, nnn+l, and nnn+2. The
result of the computation replaces the previous contents of the accumulator,

and is always double the field length called for by the word length register.

- 17 -

DIVIDE

Thus a single field length multiplication, 4 digits by 4 digits, will
yield a double field product of 8 decimal digits. For this reason, a
maximum of 3 word lengths can be used as a data field for a multiply
operation, yielding a 6 word product of 24 digits. Digits outside the

double data field length are set to 0 by the MULTIPLY command.

The MULTIPLY instruction may be indexed by terminating it with a
negative sign (Mnnn-) in which case the operand address will be

modified by the index register.

The DIVIDE command (Dnnn+) decimally divides the value in the

accumulator by the value contained in memory location nnn. The
value in the accumulator which is contained in twice the data field
specified is decimally divided by the contents of memory location

nnn and subsequent memory locations.

The results of the division are left in the accumulator in the follow-

ing format: The quotient is in the least significant field length

specified and the remainder is in the next significant field length
specified. For example, if double length arithmetic is being per-
formed, the value in the 16 least significant digits of the accumulator
will be divided by the contents of memory locations nnn and nnn+l;

when the division has been executed, an 8 digit quotient will be found in
the least significant 8 digits of the accumulator and an 8 digit remainder
will be found in digits 9 through 16 of the accumulator. Thus, the result
is always double the field length specified by the word length reigster
For this reason a maximum data field of 3 words, 12 decimal digits, may

be used in division, yielding a 24 digit result.

Two precautions must be taken when executing a divide operation. First,
the accumulator must not contain any non zero information outside twice
the data field specified. If any such information is present in the accumu-
lator while a division is being executed, even if this information is outside
the double field length specified, the DIVIDE command cannot be correctly
executed; the overflow indicator is turned on, and the accumulator is

shifted one digit to the left.

- 18 -

Additionally, the denominator must be great enough, so that the resulting
quotient will fit in the specified field length. If the denominator is too
small, a quotient which is larger than the field length specified would
result. Under such conditions however, the computer will not execute
the division but will instead shift the contents of the accumulator one
digit (4 bits) to the left, and turn on the overflow indicator. The follow-

ing formula shows the conditions under which the command will not

operate:
IF IN| == 10™ xD
Where N is the numerator (the value in the accumulator)
m is the number of digits in the data field specified
D is the denominator (the value retrieved from memory)
THEN overflow is turned on, and N is shifted left one digit (4 bits)

Note that the machine does not stop after it has turned on the ove rflow
indicator and shifted the accumulator left, but continues on computing. It is
therefore good practice where any doubt exists as to whether the denominator
is large enough, to precede and follow the DIVIDE instruction with a test of
the overflow indicator and a transfer to a corrective routine where necessary.
The Transfer on Overflow instruction is discussed in the chapter on Control

Operations.

The DIVIDE command may be indexed by terminating it with a negative sign
(Dnnn-) in which case the operand address will be modified by the index

register.

- 19 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO0 Incremented by 1 ACCUMULATOR - ALS 40X X+
Gl Holds the instruction LEFT SHIFT

being executed ACCUMULATOR ARS 50XX+

G2 Not affected
G3 Not affected RIGHT SHIFT

G4 Not affected BINARY LEFT BLS 4100+
G5 Not affected SHIFT

G6 Shifted i
iited as directed by BINARY RIGHT SHIFT BRS 5100+
the instruction

ACCUMULATOR All shifts in the PDS computer are open shifts; bit positions vacated by the shifts
SHIFTS are zeroed and bits shifted out of the accumulator, at either the high or low end,

are lost. Left shifts into the 25th digit of the accumulator will turn on the overflow
indicator. The word length register, however, is not effective during shift opera-
tions; a shift outside of the specified data field will not turn on the overflow indicator,

unless the data is shifted into digit 25 of the accumulator. Shifts may be in binary

or decimal units, and may be right or left shifts as specified by the command used.

LEFT Accumulator Left Shift (40XX+) causes the contents of the accumulator to be
SHIFTS shifted left XX decimal digits. XX are hexadecimal characters in the range 00
through DD. Note that the instruction must contain the correct hexadecimal repre-
sentation of the number of decimal digits to be shifted. For example, if a left shift
of 12 decimal digits is desired, the instruction should read 400A+, NOT 4012+. The
latter instruction would cause a left shift of 18 decimal digits. It is possible to shift

the accumulator left a total of 255 digits (DD). Needless to say, after a shift of a
maximum of 25 digits to the left, the accumulator will contain nothing but zeros,

and the overflow indicator will be on if a digit had been in the accumulator. This
command may therefore prove useful in applications where desirable to have the

computer wait a specified period of time before it continues in its execution.

The command 4000+, will be interpreted by the computer as a left shift of zero
digits. This instruction disturbs none of the registers, and may be considered a

"NO-OP" instruction.

RIGHT The Accumulator Right Shift (50XX+) operates exactly as described for the left

SHIFT shift, in the oﬂpposite direction. XX are hexadecimal characters, which determine
the number of decimal digits to be shifted right. Vacated positions will be zeroed,
and data shifted out of the accumulator is lost. A maximum of DD (255) digits may
be shifted, and a right shift of zero digits constitutes a "NO-OP'" instruction. An

Accumulator Right Shift instruction will not turn on overflow.

BINARY Binary Left Shift (4100+) shifts the value in the accumulator one bit position to the
SHIFT left. The vacated bit position is zeroed one bit. A shifted into the 25th digit of

the accumulator will turn on the overflow indicator.

Binary Right Shift (5100+) shifts the contents of the accumulator one bit position

to the right. The vacated bit position is zeroed.

Note that the binary shift commands, unlike the decimal shift, are not flexible as

to the number of bit positions shifted. A separate instruction must be issued for
each bit position to be shifted. By combining the decimal and binary shifts, however,
it is possible to shift any number of desired bit positions with maximum of 3 instruc-
tions. For example, a left shift of 3 bits, could be executed by using a decimal left
shift of 1 digit (4 bits) and a binary fight shift of 1 bit, resulting in a net shift of

3 bits to the left.
- 20 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1 LOAD MEMORY WORD LMW 8nnn+
Gl Contains the instruction
O ADDRESS STA 1 -
G2 Effective only for AND & ANX STORE non
G3 Effective only for ANX BINARY ADD BAD 8nnn-
G4 Not affected.
COMPLEMENT COM 7000+
G5 Affected only by AND & ANX 7001+
G6 Affected as specifically described.
EXTRACT & COMPARE AND 9nnn+
ANX 9nnn-

BINARY
ARITHMETIC

LOAD

STORE

ADD

COMPLEMENT

While the normal arithmetic operations of the PDS computer are decimal, the

instructions discussed here provide the capability for performing binary arithmetic
where desired. This capability is particularly useful in performing address arith-
metic, so that an address may be loaded, modified and stored during the execution

of the program.

LOAD MEMORY WORD (8nnn+) loads the contents of memory location nnn into the
least significant 16 bit positions of the accumulator. The sign of memory word nnn
is not loaded, so that the sign of the accumulator remains unchanged and other bit
positions of the accumulator remain undisturbed. The Load Memory Word instruc-
tion cannot be indexed, nor is it affected by the contents of the word length register,

so that only one memory location may be accessed by the instruction.

The STORE ADDRESS command (lnnn-) copies the contents of the 12 least signifi-
cant bits of the accumulator into the 12 least significant bit positions of memory cell
nnn. The 5 high order bits of memory cell nnn are undisturbed by this instruc-
tion, so that it is possible to change the operand address of an instruction re-
siding in nnn without disturbing the instruction itself. The contents of the

accumulator is undisturbed by this instruction.

BINARY ADD (8nnn-) adds the contents of memory location nnn to the least
significant 16 bits of the accumulator. The sign of the accumulator remains
unchanged and the sign of the memory location is ignored by this instruction.
The adding process is binary, not decimal, as in the normal ADD instruction

of the computer.

This instruction operates over a single word length only, 16 bits, and does

not disturb any of the other digits in the accumulator.

The Binary Add instruction will not set ove rflow under any conditions, and if
the result of the addition exceeds the maximum value which can be expressed
in 16 bits (65, 535) the accumulator at the end of the computation will contain
the results as an excess of 65, 536. 65,536 will be expressed as a zero,

65,537 will be expressed as a 1, etc.

The COMPLEMENT command provides further binary capabilities, allowing
subtraction and other binary arithmetic operations. 7000+ forms the 1's
complement of the value contained in the least significant 16 bits of the

accumulator. 7001+ forms the 2's complement of the value in the least signi-

- 21 -

AND

EXAMPLE 2.

ficant 16 bits of the accumulator. These instructions do not require an
operand address since no memory cell is accessed. They do not change
the sign of the accumulator or any of the information contained in other
data fields of the accumulator. The Complement commands cannot be
indexed, and are not affected by the contents of the word length register,
so that they are operative only over a single data field, one word length,

of the accumulator.

COMPARE & EXTRACT is by rights a logic command, rather than an
arithmetic command, and should properly be discussed in the chapter on
control operations. Its usefulness, however, is mainly in manipulating
binary data, and for this reason it is described here. This command per-
forms two separate functions. It tests a data value contained in the
accumulator against a test word in memory; if a match is found the over-
flow indicator is turned on; if no match is found the instruction performs an

extract operation.

As a first step in execution, the overflow indicator is turned off. Next,

the instruction, 9nnn+, examines the contents of memory cell nnn and com-
pares it to the contents of the accumulator. The sign of memory cell nnn is
compared to the sign of the accumulator. If an exact match is found, over
the entire accumulator length including sign, the overflow indicator is turned
on and the instruction is terminated. If an exact match is not found, an
Extract operation, a logical And is performed. That is to say, the memory
word is compared bit by bit to the word in the accumulator; matching bits
are left the same, non-matching bits are zeroed. Example 2 shows three

instances where the accumulator is compared to a memory word.

COMPARE & EXTRACT

A. Memory Cell 1111+
Accumulator 00...001111+
Result: Accumulator unchanged: Overflow indicator on.

B. Memory Cell 1111+
Accumulator 00 111111+
Result in Accumulator 00 001111+

C. Memory Cell 1111+
Accumulator 00 . 001001 -
Result in Accumulator 00. 001001

Note that the Compare and Extract instruction works over the entire length

of the accumulator regardless of the data field length specified. In instance A,
Example 2, the accumulator contains the identical word as contained in the
memory cell and the high order digits of the accumulator contain zeros; in
this instance a complete match is found, the accumulator is left unchanged and
the overflow indicator is turned on. In instance B, the accumulator contains an
identical word to the test word in the specified word length, but the high order
digits contain non zero information; since the entire accumulator is compared
to the memory cell, an exact match is not found and an extract is performed,
leaving the matching bit unaltered but zeroing the extraneous bits since there is

no match for them in memory. Note that this is a convenient way of assuring

- 22 -

that the accumulator contains no information outside of the specified data
field: an extract using a test word of all one bits, will always result in

the specified data field of the accumulator remaining unchanged and of
accumulator digits outside of the specified data field being zeroed. In
instance C a simple extract operation is performed leaving the data word in
the accumulator much as it was; note however that the sign of the accumula-
tor has changed from a minus to plus by this operation, since a positive sign

is represented by a zero and a negative sign is represented by a 1.

The Compare and Extract instruction may operate over a variable data field.
As many as six words in memory may be compared simultaneously to the
contents of the entire accumulator. Where multiple word length is specified by
the word length register, memory cell nnn is compared to the most significant
digits of the data field in the accumulator, and subsequent memory locations
are compared to the least significant digits in the accumulator. The Compare
and Extract instruction may also be indexed, by terminating it with a negative
sign (Innn-), causing the operand address of the instruction to be modified by

the contents of the index register.

- 23 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1 SET WORD LENGTH SWL 600X+
Gl Contains the instruction

G2 Set by SWL SET SIGN POSITIVE SSP 7002+
G3 Not directly affected SET SIGN NEGATIVE SSN 7003+

G4 Not affected
G5 Affected by SSP and SSN only
Gb Not affected

SET UP These are not arithmetic instructions but instructions which are used in setting
INSTRUCTIONS . . - . .
up arithmetic operations, as well as for other programming and housekeeping
SET SIGN chores. SET SIGN POSITIVE (7002+) and SET SIGN NEGATIVE (7003+) set the
accumulator sign either positive or negative regardless of its previous condition.

Note that the accumulator sign is contained in register G5 and that the contents

of the G6 register, the accumulator proper, is not affected.

SET SET WORD LENGTH (600X+) is an instruction used to note the word length
WORD register with the desired word length which will be used by the computer in
LENGTH arithmetic operations as a single data field. X is a number from 1 to 6, which

will be loaded by this instruction into the 3 least significant bits of the word length
register, G2. This instruction must be executed prior to any multiple word
length arithmetic; the 3 least significant bits of the G2 register normally contain

a 1, so that single length arithmetic will be performed unless otherwise specified.

The SET WORD LENGTH command is executed only once for a given data word

length. To change the data field length with which the computer is working, a
second SET WORD LENGTH instruction may be used, resetting the word

length register as desired. The command which can make use of the variable

data field are LOAD, COPY, ADD, SUBTRACT, MULTIPLY, DIVIDE, and
COMPARE & EXTRACT.

The SET WORD LENGTH command, and the word length register, are also

used in index operations as will be described in the chapter on Control

Operations.

- 24 -

CONTROL OPERATIONS

So far we have discussed only those commands which manipulate data,
operate on data, or set up conditions for arithmetic operations. This
chapter will be concerned with instructions per forming control operations -
that is to say those instructions which change the sequence of execution,

and which give the machine the ability to perform logical decisions based on
previous results of computations, external conditions or a variety of other

conditions set by the programmer.

Generally speaking control operations can be classified into four broad areas:
unconditional transfers change the sequence of execution without regard to

any conditions which may exist, either externally or internally in the machine;
conditional transfers test for the presence of a condition and change the
sequence of execution only where such a condition is present; indexing in-
structions permit the machine to perform the same sequence of instructions
over and over again, using different data for each execution; finally, some
instructions fall into the housekeeping category, and are used mainly in setting

up necessary conditions for the operating program.

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Loaded with Jump Address JUMP JIMP 2nnn+

Gl Contains the instruction HALT HLT 2nnn-

G2 Not affected

G3 Not affected JUMP-LINK JPL 3nnn-

G4 Af'fected b}r JPL, RTN, & ELA RETURN RTN 3007+
instructions

G5 Not affected EXCHANGE LINK ELA 3004+

Gb6 Affected only by ELA ADDRESS

UNCONDITIONAL The unconditional jump instruction (2nnn+) disrupts the sequential execution of
TRANSFERS instructions and executes the instruction contained in memory cell nnn. When
this instruction is executed, the contents of the Gl register, the instruction
register, is copied into the GO, next instruction register. The computer then
looks at the GO register to see where it is to go for its next instruction, finds
there the address nnn, and loads the contents of that memory cell into the Gl
JUMP register to be executed. The GO register is then incremented in the normal
manner so that its address is now nnn+l, and after the instruction from memory
cell nnn has been executed, the computer will proceed to nnn+1 to get the next
instruction. The Jump instruction makes no provision for preserving the address
in the program from which it has transferred. If a return is desired to the point

of the program where the transfer occurred, the Jump-Link instruction should be

used.

Note that the computer has no means of identifying whether a given memory cell
contains data or an instruction. Care must therefore be exercised in transferring

control, to avoid picking up a data word by mistake and loading it into the instruction

- 25 -

HALT

JUMP-LINK

RETURN

register can be interpreted as an instruction. For example, if a Jump
instruction were given to a memory location which contained nothing, this
would be interpreted by the instruction register as being an Input Instruc-
tion from Tape command. Careful attention must therefore be given to
Jump addresses to assure that the memory cells referred to contain in-

structions, not data.

The Halt instruction (2nnn-) is essentially a Halt and Transfer instruction.
When this instruction is executed the computer will stop, and when the

start button is depressed, the instruction in location nnn will be executed.
Note that this instruction stops the computer after it has accomplished the
transfer of the instruction from the instruction register and into the GO,

next instruction, register. If the registers are displayed during this Halt,
the instruction 2nnn- will be seen both in the GO and the Gl registers. When
the start button is depressed the machine will look at the GO register to
determine where it is to take its next instruction and proceeds to read the

next instruction from location nnn.

The Jump Link instruction (3nnn-) operates in much the same way as the
Jump instruction with one important difference. This instruction preserves
the previous contents of the GO register after incrementing it by 1, and stores
it for future use in the G4 register. Thus a return address to a program is
automatically provided by this instruction. As an example, suppose that at

location 100 a transfer to a subroutine is desired, located in memory cell 500.

The instruction 3500- would accom plish the transfer to location 500, and
store the address 101 in the G4 register. By using the return instruction
described below, it is then possible for the programmer to return to

location 101 and resume the sequential execution of his program when the

subroutine is terminated.

Return (3007+) is the instruction used to transfer back from the subroutine
into the main program. This instruction exchanges the contents of the G4
register with the contents of the next instruction register. If the subroutine
was entered with a Jump-Link instruction, the G4 register contains the
address of transfer +1, as described above. This address is now transferred
back into the GO, next instruction register, and the computer then resumes
the normal execution of the main program. Note that the Jump-Link and
Return instructions provide the programmer with a convenient means of
entering and returning from a subroutine regardless of where in the main pro-

gram transfer instructions occur.

In the example above, if the subroutine at location 500 is frequently used,
transfers to it could occur in locations 25, 45, 93, and 100 in the main
program. In each case these locations will contain a Jump-Link instruction

to location 500 (3500-). In each case the G4 register would be loaded with

the address following the jump instruction, i. e. 26, 46, 94, or 10l. The sub-

routine itself is terminated with a Return instruction (3007+) which in each case

- 26 -

EXCHANGE
LINK
ADDRESS

would load the appropriate address into the GO register and return control to

the point in the program where execution is to be resumed.

To add one more level of complexity, assume that the subroutine itself must
transfer to another subroutine as part of its execution. For example, assume
this to be an exponential subroutine which refers back to a log subroutine. In
this case the subroutine must contain provisions for saving the address in the
main program to which it is to return control when it is through. The instruc-
tion EXCHANGE LINK ADDRESS (3004+) accomplishes this purpose. This
instruction exchanges the contents of the Link Address register with the contents
of the least significant field of the accumulator. Thus a return address to the
main program is transferred to the accumulator where it may be stored in

memory by the subroutine.

-27 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1 TRANSFER ON TOV 4nnn-
Gl Contains the instruction OVERFLOW
Gz Used by TXH TRANSFER ON ZERO TZE S5non-
G3 Used by TXH
G4 Not affected TRANSFER ON MINUS TMI 6nnn -
Gs Examined by TMI TRANSFER INDEX TXH 7nnn-
G6 Examined by TZE HIGH
CONDITIONAL Conditional transfers are those transfers which test for the presence of a specified
TRANSFERS condition. If such a condition is present at the time the instruction is executed, then
the transfer takes place. If the condition is not present when the instruction is
executed, then no transfer takes place and the computer goes on with its sequential
execution.
Transfer on Overflow (4nnn-) will test the overflow indicator to determine whether
IF OVERFLOW it is on, If the overflow indicator is on then a transfer to location nnn takes place.
If the overflow indicator is on and the transfer is executed, the instruction will turn
the overflow indicator off. The following instructions can, in course of their execu-
tion, turn on the overflow indicator:
ADD
SUBTRACT
DIVIDE
COMPARE AND EXTRACT
TEST SENSE SWITCH
ACCUMULATOR LEFT SHIFT
BINARY LEFT SHIFT
Transfer on Zero (5nnn-) examines the contents of the entire accumulator
including the 25th, overflow digit. If any one bits are contained in the
IF ZERO accumulator the next sequential instruction is executed. If the entire

accumulator contains zeros only,then the next instruction is executed
from location nnn. Note that the sign of the accumulator is not examined

by this instruction and can be either positive or negative,

Transfer on Minus (énnn-) examines the sign of the accumulator. If the
IF NEGATIVE sign is positive the next sequential instruction is executed. If the sign

is negative the next instruction is sought at location nnn.

Transfer Index High (7nnn-) serves as the index testing instruction of the
computer and merits discussion under a separate paragraph along with

the other aspects of manipulating the index register.

INDEXING Frequently it is desirable to perform a given sequence of instructions several
times using different sets of data each time. For example it may be desir-
able to add 100 data values to a cumulative sum; this could be done by storing
the data in 100 memory locations and then issuing 100 ADD instructions such
as A000+, A0O01+, A002+, . . . etc. By using the index register only two
instructions (ADX and TXH) would be necessary to perform this adding oper -~
ation instead of 100 instructions. The indexed ADD instruction, Annn-, would
be modified by the index register to pick up consecutively, first memory
location 000 and, on the next execution, 001 and so on for each execution until

all data values are added together in the accumulator.

-~ 28 -

Thus the purpose of the index register is to modify an operand address
during the execution of the program (the address in memory is unchanged,

it is modified during the execution of the command only). Two factors enter
into the indexing operation: (1) The value by which the operand address is
modified; (2) The number of times the indexed instruction will be executed.
The first of these factors is controlled by the word length register G2. The
second, the number of times the index instruction will be executed, is
controlled by the initial value loaded into the index register, and by the TXH
instruction. The TXH instruction serves a triple purpose. It decrements the
contents of the index register, it tests the index register to see if the specified
number of executions have been performed, and if the specified number has

not been reached it transfers control to a specified location.

The operation of the index register is best illustrated by example. In
Example 3, it is assumed that 4 data values have been stored in memory
locations 000 through 003. The instruction sequence located in memory cells
500 and up, must load the value in memory cell 000 into the accumulator and
add the values in cells 1, 2, and 3 to it, storing the accumulated result in
memory cell 100. In instance A of Example 3, this operation is executed
without the benefit of an indexed instruction; in instance B the index register

is used. Note that only one instruction has been saved in this example, since
oniy three data values must be added. In fact, the saving is illusory because

a number of instructions are necessary to set up the index register. Itis easy
to see, however, that if 100 values were to be added, the saving could be
considerable since the instruction sequence could add 3 numbers, 100 numbers,
300 numbers or any other number of data values. Only 3 are shown in the

example for the sake of simplicity.

In preparation for executing these instructions, two things must be done: the
word length must be set to the desired data field length, in this instance 1; the
index register itself must be loaded with the value 2 for reasons which will
be explained shortly.

EXAMPLE 3. INDEXING OPERATIONS

A. Location Instruction Op. Address
500 LDA 000
501 ADD 001
502 ADD 002
503 ADD 003
504 CPY 100
505 Continuation

B. 500 LDA 000
501 ADX 003
502 TXH 501
503 CPY 100
504 Continuation

C. Contents of Word Length and Index Registers

W. L. Index
Initially 0001 0002
After TXH executed once 0001 0001
After TXH executed 2nd time 0001 0000
After TXH executed 3rd time 0001 0DDD

- 29 -

TRANSFER
INDEX
HIGH

Let us see now what happens when the instructions in sequence B are exe-
cuted. At location 500 the computer reads the LOAD command and loads

the value contained in memory cell 0 into the accumulator. It then proceeds

to cell 501 and finds there the indexed ADD command with an operand address
of 003. The computer then subtracts the current contents of the index register
from the operand address. The index register was loaded with the value 2 and
this value is subtracted from the operand address, yielding an effective address
of 001, The computer therefore executes the ADD command, by adding the

contents of memory cell 001 to the contents of the accumulator.

Example 3 C shows the contents of the word length and of the index registers

initially and after each pass of execution.

The computer now gets to memory cell 502 and reads there the TXH instruc-
tion. This instruction does two things at this point: First, it compares the
value currently in the index register with the value in the word length register;
if the value in the index register is either larger than or equal to the value in
the word length register then a jump is executed. Simultaneously with this
comparison the TXH instruction subtracts the word length register from the
index register and the result becomes the new contents of the index register.
As can be seen in Paragraph C of Example 3, the index register contains a 1
after the TXH instruction has been executed the first time. In the meantime
the jump has been executed to location 501 as specified by the TXH operand

address. In location 501 the computer finds the indexed ADD instruction once

again, and again subtracts the current contents of the index register which

is now 1, from the operand address. The effective address is therefore 002
and the computer adds the value in location 002 to the contents of the accumu-
lator. The TXH instruction is now executed a second time; once again a com-
parison is made between the contents of the index register and the contents of
the word length register. At this point both registers contain an equal value
(1001) and the instruction transfers again to location 501. At the same time

a subtraction is also performed, setting the contents of the index register to 0.
At location 501 the ADX instruction is executed and the contents of the index
register is subtracted from the operand address; since the index register now
contains a zero the operand address cited in the instruction, 003, will remain
the effective address and the computer will add the contents of memory cell 3
to the contents of the accumulator. The TXH instruction is now executed a
third time, but this time it finds that the contents of the index register (0000)
is smaller than the contents of the word length register (1). The jump is
therefore not executed. Instead the computer then goes on to the next sequen-
tial instruction, 504, and executes the copy command storing the result of the

addition in memory cell 100,

- 30 -

The contents of G2 is subtracted from the index register, even though the
jump is not executed. Since the subtraction is binary, not decimal, it is
executed without a sign, by adding the 2's complement of G2 to G3. Since

at this point G2 contains 1 and G3 contains 0, the final contents of G3 is

Initial contents of G3 (12 bits only) 0000 0000 0000
2's complement of G3 (12 bits only) + 1111 1111 1111
Final contents of G3 (12 bits only) 1111 1111 1111

Note that the subtraction takes place over the least significant 3 digits (12 bits)

of the registers. The final contents of the index register is, therefore, ODDD,

To summarize, the TXH instruction when executed, compares the contents of
the index register and the contents of the word length register; if the index
register contains a value that is equal to or greater than the value contained in
the word length register, a jump is executed to the location specified in the

TXH instruction. If the value in the index register is smaller than that contained
in the word length register the next sequential instruction is executed. Regard-
less of the result of the comparison, the index register is decremented by the
value contained in the word length register. The current value of the index
register is subtracted from the operand address of any instruction which is

indexed.

The word length register is loaded by the SET WORD LENGTH instruction (SWL)

EXCHANGE already discussed. The index register is loaded by using an Exchange Index
INDEX Register instruction (EIR, 3002+). This instruction exchanges the contents of
REGISTER the index register with the contents of the least significant field of the accumu-

lator. Thus the value to be loaded into the index register must first be loaded
into the accumulator either from memory or directly from the input device. In
single word length operations, the index register must be loaded with the number
of times that the instruction is to be executed, less 1. The reason is, that the
index commmand will be executed one more time after the contents of the index

register has reached zero, as seen in Example 3.

Note that when operating with multiple word lengths, the indéxed instructions
will automatically compensate for the word length used, since the index
register is always decremented by the contents of the word length register.
When executing multiple word length operations, however, the index register
must be loaded with a value according to the following formula:

X = WL (N -1)
where X is the value to be loaded into the index register, WL is the current
value of the word length register, and N is the number of times the instruc-
tion is to be executed. To illustrate, suppose that the ADD instruction is to
be executed 4 times, double precision. Using the formula, the index register
must be loaded with the value 8 -2 = 6. When writing the operand address for
the index instruction, it is necessary to adjust its value to the field length and

to the value contained in the index register. For example, suppose that the

- 31 -

indexed ADD instruction in the illustration cited, must first add the contents
of memory cells 1 and 2 to the accumulator, and then 3 and 4, then 5 and 6,
and finally 7 and 8. If the instruction is written as A008- (ADD index modified)
the contents of the index register which we have set at 6, will be subtracted

from this number yielding an effective address of 002.

Since double length arithmetic is specified, the instruction would then access
cells 002 and 003 which is the wrong set. It is necessary, therefore, to write
- the instruction as A007-; in this case the contents of the index register would
be subtracted from 7 yielding an effective address of 001 and cells 1 and 2 in
memory would be accessed, as is the intention of the program. The rule
therefore is, when writing an index instruction, the éddress of the instruction
less the contents of the index register should yield the first memory address

to be accessed by that instruction.

Note that all addresses, and the values loaded into the index register must be

in hexadecimal notation.

Seven commands may be indexed, and will be affected by the index register

when terminated with a negative sign. These commands are:

LOAD LDX Lnnn-

COPY CPX Cnnn-

ADD ADX Annn-

SUBTRACT SUX Snnn-

MULTIPLY MPX Mnnn -

DIVIDE DVX Dnnn-

COMPARE & ANX 9nnn -
EXTRACT

- 32 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODE

G0 Incremented by 1 and exchanges with EXCHANGE WORD
G4 by RTN LENGTH EWL 3000+
Gl Contains instruction

G2 Exchanged with G6 by EWL

EXCHANGE INDEX

E 3002+
G3 Exchanged with Gé by EIR REGISTER IR 00
G4 Exchanged with G6 by ELA - RTN EXCHANGE LINK

G5 Not affected ADDRESS ELA 3004+
Gb Exchanged with G2, G3, G3, or RETURN RTN 3007+

G4, as described.

REGISTER
EXCHANGES

EXCHANGE
WORD
LENGTH

The register exchange commands are used mainly in setting up the registers to
perform the programming functions already described. The EIR instruction is
used to load the index register, the ELA instruction is used to save the contents
of the G4 register whenever it is desired to store the return address from a sub-~-
routine; the RTN instruction is used to return to the main program from a sub-

routine, to the point where the sequential execution had been interrupted.

Exchange word length exchanges the contents of the word length register, G2, with
the least significant 16 bits of the accumulator. The instruction may be used
whenever it is desired to save the contents of the word length register for future
use. For example, suppose that the subroutine makes use of the index register,
using single length data. The program might be using multiple word length arith-
metic and it is necessary to reset the word length register to single length. Before
this is done it might be advisable to save the contents of the word length register so
that when the subroutine returns to the main program it can reset the data word

length to whatever it was before the subroutine was entered.

- 33 -

REGISTERS AFFECTED: INSTRUCTION MNEMONIC MACHINE CODE

GO0 Incremented by 1 TEST SENSE SWITCH TSW 0YX0-
Gl Contains the instruction

G2 Not affected

G3 Not affected

G4 Not affected

G5 Not affected

G6é Not affected

SENSE Four sense switches are provided in the control panel of the PDS computer.

SWITCHES Additionally 4 sense lines are provided in the output channels of the computer,
and may be connected to external devices. These sense switches and/or sense
lines may be tested by programming to determine their condition at any given
time. When a tested sense switch is on, or when a sense line under test is true,

the overflow indicator will be turned on. The test instruction may be then

followed by a Transfer on Overflow to transfer to the appropriate subroutine.

The instruction OYX0-, tests a sense switch, a sense line, or any combination
of switches or lines as specified by the hexadecimal characters YX. FEach bit
position in the least significant hexadecimal character (X) corresponds to a sense
switch, and the corresponding sense switch will be tested when this bit is a 1.
The most significant hexadecimal character (Y) represents the 4 sense lines and
a 1 in any of the bit positions will cause one of the sense lines to be tested.

Table A shows the test instruction as written to test the various sense switches

and lines as well as the binary representation of the hexadecimal characters.

TABLE A

HEXADECIMAL
INSTRUCTION CHARACTERS OPERATION
0010~ 0000 0001 Test Switch 1
0020- 0000 0010 Test Switch 2
0040- 0000 0100 Test Switch 3
0080- 0000 1000 Test Switch 4
0100~ 0001 0000 Test Line 1
0200- 0010 0000 Test Line 2
0400- 0100 0000 Test Line 3
0800- 1000 0000 Test Line 4
00DO0- 0000 1111 Test All Switches
0D00- 1111 0000 Test All Lines
0DDO- 1111 1111 Test All Switches and

All Lines

Note that a single instruction can test more than one switch or line; in fact
the last instruction in the table, 0DDO0-,will test all the sense switches and all
the sense lines, since all eight bits of the hexadecimal characters are 1's.
Table A shows 11 possible test instructions; actually it is possible to test all
switches and all lines in various combinations for a total of 256 conditions, by

using various combinations of sense switches and sense lines.

The overflow indicator is turned off as a first step in executing the test instruc-
tion; the instruction then proceeds to test the specified switches or lines, and if
any of the switches is on or any of the lines is true when tested, the overflow indi-
cator is turned on. If more than one switch or sense line is tested, overflow will

be turned on if either switch or line is on or true.

The instruction 0000- will merely turn off the overflow light and cause no further

action.
ction C 34 -

INPUT AND OUTPUT

A computer is nothing more than a mass of useless wires and electrical
components unless it has a means of communicating with the outside
world. To do useful work, the computer must have input: Programs to
instruct it what to do, and data with which it must work. It must then

communicate the results of its computations through output devices.

The PDS 1020 computer includes a numeric keyboard for manual input,
a paper tape reader, and a Selectric typewriter which may be optionally
activated for input. The paper tape punch, and the Selectric typewriter
are the standard output devices for the PDS 1020. Additionally, the
computer features parallel input and output channels, which may be

connected to any input or output device selected by the user.

The PDS 1068 offers these same devices as optional equipment; the basic
configuration, however, includes only channels for communicating with

these or like devices.

From a programming point of view, there is no difference between the
PDS 1020 and the 1068; the programmer is merely concerned with the
format of information input and output through the various channels,
without regards to what devices originate these signals or will ultimately

receive them.

The commands described here, even though discussed in terms of the
PDS 1020 equipment, are therefore applicable to the PDS 1020 or 1068

input or output channels.

The major feature which characterizes the PDS computers'output and input
structure, is the fact that it may operate in one of two modes. Instruc-
tions and data may be input to the accumulator, as with any other computer,
to be stored in memory and executed at a future time. Instructions may
however, also be input directly into the instruction register for immediate
execution. Likewise, certain parts of the instruction may be output from

the instruction register as a special purpose code to a typewriter or a punch.

- 35 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1 INPUT INSTRUCTION
Gl Serves as I/O register for IIT and OUT FROM TAPE T 0000+
G2 Not affected

G3 Not affected

INPUT DATA FROM

TAPE IPT 0001+
G4 Not affected
G5 1I/O register for sign of accumulator INPUT DATA BINARY IDB 0007+
Gb 1/O register for IDP, IDB, OPU, OPB OUTPUT OUT 10XX+
OUTPUT TO PUNCH OPU 1200+
OUTPUT BINARY OPB 1L00+

PAPER TAPE
INPUT/OUTPUT

INPUT
INSTRUCTION

INPUT
DATA

The input from paper tape instructions specify one of three modes of operation:
1. Characters from paper tape are read, placed in the instruc-

tion register and executed.

2. Characters are read from paper tape and placed in the least
significant digit of the accumulator.

3. Characters are read from paper tape and placed in the two
least significant digits of the accumulator.

The output instructions similarly specify one of three modes of operation:

1. The least significant 8 bits of the instruction register are
output to the punch.

2. The most significant digit of the accumulator is output to the
punch.
3. The least significant 2 digits of the accumulator are output

to the punch.

During input in modes 1 and 2, the 8 level input goes through an automatic
conversion process and is entered as a single 4 bit digit. Similarly a
single digit is output to the punch as an 8 level code when output mode 2 is
used. This conversion is accomplished by hardware, and no programming
conversion is necessary in these modes. The character formats are shown

in Table B.

Input Instruction from Tape (0000+) reads 8 level tape from the paper tape
reader 1 character at a time, until a sign character, either plus or minus,
is read. When the sign character is read the input is terminated and the
last 5 characters read, including the sine, are placed into the instruction
register and executed as an instruction. The 8 level input is converted to
a single hexadecimal character as shown in Table B. Eight level codes not
shown in Table B should not be used; they will either be ignored or cause

wrong input.

Input Data From Tape. (0001+) reads 8 level tape, 1 character at a time,
until a sign character is read. Eight level code is converted into hexa-
decimal characters, as shown in Table B, and each character entered is
placed in the least significant digit of the accumulator; preceding characters
are shifted 1 digit left. A sign character, when read, terminates the input
and is placed in the sign position of the accumulator in register G5. This
instruction will read correctly only the characters shown in Table B; illegal

characters are ignored, or result on wrong input to the computer.

- 36 -

INPUT
BINARY

OUTPUT
TO
PUNCH

OUTPUT
BINARY

Input conversion

only

Input Data Binary (007+) will read a single 8 level character without decoding
it, and place it in the least significant 2 digits (8 bits) of the accumulator. The
previous contents of the accumulator is shifted 4 digits to the left. This in-
struction reads only a single character; no decoding is done and all codes are

legal.

The output instruction (10XX+) will output the least significant 8 bits of the
instruction register and punch them as an 8 level code on the paper tape punch.
XX are hexadecimal characters which will be output to the punch. No decoding

of any sort is done and all codes are legal. Output to Punch (1200+) will output

the most significant digit of the accumulator, digits 25, to the punch. The single
digit, 4 bit, hexadecimal character will be encoded and output to the punch as

an 8 level code. The conversion is as shown in Table B. Note that only the

16 hexadecimal characters may be output by this command. The signs of the
data, plus or minus, must be output from the instruction register using the 10XX+

command (10LC+ as +, 10LS+ as -).

Output binary (11L.00+) will output the least significant 8 bits of the accumulator

to the punch. These bits are punched exactly as output.

TABLE B

HEXADECIMAL - 8 LEVEL CONVERSION

HEXADECIMAL BINARY

CHARACTER (4 BIT) 8 LEVEL
0 0000 1011 0000

1 0001 1011 0001

2 0010 1011 0010

3 0011 1011 0011

4 0100 1011 0100

5 0101 1011 0101

6 0110 1011 0110

7 0111 1011 0111

8 1000 1011 1000

9 1001 1011 1001

L 1010 1100 1100

C 1011 1100 1011

A 1100 1100 0001

S 1101 1101 0011

M 1110 1100 1101

D 1111 1100 0100

(+ + 1010 1011} Input conversion only
(- - 1010 1101)

- 37 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1 INPUT FROM
G1 8 least significant bits output by OouT TYPEWRITER ITY 0006+

G2 Not affected

OUTPUT TO
G3 Not affected
E TER TY 1630+
G4 Not affected TYPEWRI o
G5 Contains parity check bit after ITY OUTPUT ouT 14X+

G6 25th digit output by OTY; least
significant field loaded by ITY

TYPEWRITER
INPUT/OUTPUT

INPUT

OouTPUT

The typewriter input channel may be enabled at the users' option by adding a
special logic board. When this channel is activated the Input from Typewriter
instruction (0006+) will cause a character from the typewriter to be entered
and placed in the least significant field of the accumulator. Two types of in-
formation may be transmitted from the typewriter: An alphanumeric character
or a machine function. An alphanumeric character is entered as a 6 bit code,
and placed in the least significant 6 bit positions of the accumulator. Table C
in the Appendix shows the hexadecimal equivalents of the 6 bit codes input

for alphanumeric characters. Parity of the alphanumeric characters is
checked and the 7th bit position of the accumulator will be set as an odd parity
bit by a separate data line. If parity is correct, a check bit will be placed in
the sign position of the accumulator. During typewriter input, therefore, the
sign of the accumulator is not a mathematical signbut rather aparity check. It
may be checked for correct parity, after each instruction by executing a Transfer
on Minus instruction. If parity is correct the sign position will contain a 1

and the transfer will occur.

In addition to alphanumeric characters, machine function codes may be
entered by executing the proper function of the typewriter. For each
machine function entered, a corresponding bit position in the first data
field of the accumulator is set to 1. Thus the space function will enter a
1 into the 9th bit position, carriage return into the 10th bit position,

tab into the 1lth bit position, backspace into bit 12, index into bit 13,
upper case into bit 14, lower case into bit 15. In addition a mode code
is also used during typewriter input. The 8th bit position of the accumu-
lator is set to 1 if the character entered is upper case, and is left zero
if the character is lower case. Finally, an End of Line code is entered
as a 1 bit into the 16th bit position of the accumulator, if the typewriter

carriage has reached the end of the line.

Output to Typewriter (1630+) will output the most significant digit of the
accumulator, digit 25, to the typewriter. The 4 bits of the 25th digit

will be output as the appropriate hexadecimal character 0 through D on
the typewriter. The conversion is done by hardware, and is automatic.

Only the hexadecimal characters 0 through D may be output by this command.

Output (14XX+) will output the hexadecimal digits XX from the instruction
register to the typewriter. Any alphanumeric character, or machine
function may be output by this instruction. XX are hexadecimal characters
and will print on the typewriter the appropriate letter, or cause the approp-

riate function, as shown in Table C in the Appendix.

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODE

GO Incremented by 1 INPUT INSTRUCTION
Gl Loaded by IIK FROM KEYBOARD K 0002+

G2 Not affected
G3 Not affected
G4 Not affected

INPUT DATA FROM
KEYBOARD IDK 0003+

G5 Sign loaded by IDK
Gé6 Loaded by IDK

KEYBOARD
INPUT

DATA
INPUT

SPECIAL
FUNCTION
SWITCHES

Input Instruction from Keyboard (0002+) will cause the computer to accept serial
input of hexadecimal characters from the numeric keyboard channel. When a
sign character is read, either a plus or minus, the input is terminated and the

5 characters last entered, including the sign, are placed in the instruction

register and executed.

Input Data from Keyboard (0003+) causes the computer to accept hexadecimal
characters serially from the keyboard input channel. Characters are placed
in the least significant digit of the accumulator, and as new characters are
entered are shifted left 1 digit at a time. A sign character, either plus or
minus, when entered, terminates the input. The sign character is not placed

in the accumulator but in the sign position of the accumulator in Register G5.

The execution of either of the keyboard input instructions enables the 10
special purpose switches on the control keyboard. The operator at his option,
may input hexadecimal characters through the numeric keyboard or depress
one of the special purpose switches, when an input from keyboard instruction
is executed. Each of these special purpose switches, when depressed, will
enter a Jump-Link instruction either to the instruction register or to the
accumulator, depending on whether the input instruction is 0002+, or 0003+,
Each of these Jump-Link commands has its own unique address as follows:
the special function key marked A generates a Jump-Link instruction to
location 6, the key marked B to location 7, C to location 8, D to location 9,
E to location L, F to location C, G to location A, H to locatign S, I to
location M, and J to location D. These locations may then contain the trans-
fer instruction to an appropriate subroutine which will execute the special
purpose function for which the switch was intended. The nature of such a
subroutine, and thus the function of each switch, are entirely up to the pro-

grammer and can be determined to suit his particular application.

-39 -

REGISTERS AFFECTED: INSTRUCTIONS MNEMONIC MACHINE CODES

GO Incremented by 1 INPUT INSTRUCTION

Gl Contains the instruction PARALLEL IIP 0004+
G2 Not affected

G3 Not affected

INPUT DATA

G4 Not affected PARALLEL IDP 0005+
G5 Sign bit loaded by IDP, Output by OPP OUTPUT PARALLEL OPP 1800+
Gb6 Loaded by IDP, Output by OPP TEST SENSE SWITCH TSW Y0~

PARALLEL
INPUT/OUTPUT

INPUT

OuUTPUT

The Parallel Input and Output channels may be used to input or output 17 bits
simultaneously to or from the accumulator, or to and from the instruction
register. Additionally both the input and the output channel contain the 4
external sense lines already mentioned under control operations, which may

be tested by the TSW instruction to determine their condition at a given time.

Input Instruction Parallel (0004+) will input 17 bits simultaneously to the
instruction register. This information will then be interpreted as an instruc-

tion and executed.

Input Data in Parallel (0005+) shifts the contents of the accumulator 4 digits
to the left and enters 16 bits of information from the parallel data lines into
the 16 least significant bit positions of the accumulator. The 17th data line
is connected to the sign position of the accumulator and register G5 and is

used to input the sign of the entering character.

The Output in Parallel instruction (1800+) transmits the contents of the
least significant 16 bits of the accumulator and the contents of the sign

bit of the accumulator in register G5, over the parallel output channel.

There are 4 sense lines in the parallel input channel and 4 sense lines in
the parallel output channel. These are identical lines and are physically
inter-connected so that either input or output devices may be tested by the
program. Care should be taken however, that the same pair of lines not
be connected both to an input and an output device since the Test Sense
Switch instruction would then turn on the overflow if either of the lines
was on, without any means of determining whether the true signal came

from the input or from the output channel.

- 40 -

MACHINE OPERATING PROCEDURE

The operating procedure described here is intended for the PDS 1020 com-
puter. It includes descriptions and operating procedures for the PDS 1020
input and output equipment. The PDS 1068 control panel, operates in the
same way as described here except of course that the input and output
equipment may be different than that which is standardly supplied with the
PDS 1020 computer.

The computer control panel, exclusive of the numeric keyboard, contains

4 groups of indicators and switches:

1. The special function keys, already described under input/
output.

2., The branch switches described under Control Operations.

3. Register display lights and an associated display switch.

4. The operating controls and indicators, which are used to

control and monitor the computer operations.

LOADING To operate the computer, first turn machine POWER on by pushing the POWER
THE button. This button contains an indicator and will light up when on; if pushed
PROGRAM a second time, the machine power will be turned off. Load the program tape

into the tape reader and turn the tape reader power on. When the START button

light comes on, push the START button and the tape will be read into the machine.

Internally, when power is first applied to the machine, the computer goes
through an initializing cycle, setting up ceitain markers in memory and
in the registers in preparation for machine operations. At the end of the
initialize cycle, all the registers contain zeros, except for the G2, word
length, register which contains a 1. Thus the machine is ready to operate
on single word length data. When the initialize cycle is over,the START
button indicator will be turned on, and the machine will be in a HALT or

idle position.

When the START button is pushed, the computer starts execution in the

normal manner. The GO register is examined for the next instruction

address; this register contains 0, so the computer proceeds to load the
contents of cell 0 into the instruction register. Cell 0, of course, contains

a 0, and this is loaded into the instruction register and interpreted as a
command to input from tape (0000+). An instruction will now be read from
tape, placed in the instruction register and executed. Suppose this instruc-
tion is 0001+. A second instruction will now be read from tape and placed

in the accumulator. In the meantime the GO register has been incremented by 1,
and the computer will seek the next instruction from memory cell 1. Since
nothing has as yet been copied into memory, cell 1 contains a 0. The instruc-
tion register will therefore again be loaded with an Input Instruction from Tape
command, and will proceed to read another instruction from the tape. This
instruction may now be a COPY instruction which will store the instruction

previously read into the accumulator.

- 4] -

TROUBLE-
SHOTTING

REGISTER
DISPLAY

SINGLE CYCLE

OVERRIDE

The program will normally be ended by a HALT instruction, with a trans-
fer address to the first location in which the program has been stored. When
the entire tape has been read, the computer will then halt and the operator
may now take any other preparatory action that may be necessary. Sense
switches may be set as called for in the program, the data tape may be
loaded into the tape reader. Leader may be punched on the paper tape

punch, data may be inserted into the typewriter, tab stops on the typewriter
may be set, etc. etc. When the START button is depressed the computer

will start the execution of the program read into memory.

Several controls and aids are provided in the PDS computer, to help the
programmer check out his program and correct any errors incorporated in
it. These checkout and correction aids consist mainly of the register display,
the SINGLE CYCLE button, the OVERRIDE button, the RESET button, and the
ERROR CLEAR button.

17 lights are provided in the register display, and may be used to display the
contents of machine registers GO through G6. An associated register display
switch may be set to any number O through 6, and will cause the corresponding

register to be displayed in the display lights.

The registers can only be displayed when the machine is in a halt condition,
when the SINGLE CYCLE mode is used, or when the INPUT DATA light is on.
The entire length of the GO, Gl1, G2, G3, G4, and G5 registers is displayed.

The G6 register which is the accumulator and contains 25 digits, cannot be
displayed in its entirety. The least significant data field of the accumulator,

4 decimal digits or 16 bits, is displayed in the display lights when the dis-

play switch is set to 6, 7, 8, or 9. The sign of the accumulator is not displayed
from bit position 17, but from the G5 register which contains the sign of the
accumulator in its 10th bit position. When G5 is displayed, the 10th bit contains

the sign of the accumulator.

The SINGLE CYCLE button may be used to stop the computer during the
normal execution of the program. When the button is depressed the computer
will finish executing the current instruction and will then halt. The SINGLE
CYCLE light will come on and the computer will continue to operate in the
SING LE CYCLE mode, until the button is depressed a second time. While

in the SINGLE CYCLE mode, the computer will execute one instruction each
time the START button is depressed. After each instruction has been executed
the computer will halt, allowing the programmer to check the results of the

instruction by displaying the contents of the accumulator or of other registers.

The OVERRIDE button is.provided to allow the programmer to make the
corrections or additions to the program manually, through the keyboard,
whenever desired. When the OVERRIDE button is pushed a 0002+ command

(Input Instructipn from Keyboard) is forced into the instruction register. The

- 42 -

RESET

ERROR CLEAR

OVERFLOW
AND
INPUT DATA

programmer may now enter an instruction through the keyboard; the in-
struction will be executed and the computer will return to await further
instructions from the keyboard. This condition will persist as long as
the computer is in the OVERRIDE mode, and the OVERRIDE light is

on. When the OVERRIDE button is pushed a second time the mode is

terminated and the computer will resume execution of the stored program.

The RESET button is provided mainly for maintenance purposes, and
should not be used during the normal operation of the computer. The
RESET button will reset some of the machine registers and may destroy
parts of the program. The only condition under which it might be useful
to the programmer, is when the computer is unable to execute an input
or output instruction. For example, an input instruction may be given
such as 0005+ which calls for input from the parallel data lines. If the
input device has been turned off, the computer is unable to execute the
instruction, nor is it able to proceed to the next instruction. Under
these circumstances the RESET button may be used to free the computer

from this condition.

The ERROR CLEAR light will come on whenever the computer detects
a memory parity error. When the ERROR CLEAR button is pushed, the
light will be turned off, and the programmer can proceed to search for

and correct the parity error.

In addition to the controls and indicators described, two other indicators
are provided on the computer control panel: the OVERFLOW indicator and
the INPUT DATA light. OVERFLOW is turned on whenever an overflow
condition is discovered by the computer. Testing the sense switches and
the sense lines can also turn on the overflow indicator as previously shown.
The overflow indicator cannot be turned off from the control panel. It can
only be turned off by an instruction, such as TOV or TSW as shown in the
preceding chapters. The INPUT DATA light will come on whenever the
computer has executed an 0003+ command (Input Data from Keyboard), to
inform the operator that the computer is ready to accept data from the

keyboard.

- 43 -

APPENDIX

HEX CODE
19
20
29
2S
2A
ocC
oD
24
18
oM
28
25
1D
2L
15
0A
08

1S
14

2M
2C
1C
10
2D

o4

TABLE C

HEX CODE

u.c. L.C.
A A 3M
8 B 3D
c c 3L
D D 3C
E E 35
F F 3A
G G 38
H H 3s
I I 39
J J 30
K K 34
L L 00
M M oL
N N 1M
0 0 05
P P 1L
Q Q 09
R R 13
s S 02
T T 03
U u 06
Vv \ 07
W W 23
X X 17
Y Y 0s

ALPHANUMERIC CODES

- 44 -

[

I R

’
SPACE

INDEX

CAR RTN

BACK SP,

..

COMMAND LIST

STORAGE

DECIMAL

ARITHMETIC

SHIFTS

BINARY
ARITHMETIC

SET-UP

TRANSFERS

EXCHANGES

INPUT
AND
OUTPUT

MACHINE PAGE

INSTRUCTION MNEMONIC CODE NO.
Copy CPYi Cnnnt 15
Load Accumulator LDA Lnnn+ 15
Add ADD'* Annn+ 16
Subtract SUB™ Snnn+ 17
Multiply MPY: Mnnn+ 17
Divide DVP Dnnn+ 18
Accumulator Left Shift ALS 40XX+ 20
Accumulator Right Shift ARS 50XX+ 20
Binary Left Shift BLS 4100+ 20
Binary Right Shift BRS 5100+ 20
Load Memory Word LMW 8nnn+t 21
Store Address STA Innn- 21
Binary Add BAD 8nnn- 21
Complement COM 7000+ 21
Two's Complement COoM, 7001+ 21
Compare & Extract AND™ 9nnn+ 22
Set Word Length SwWL 600X+ 24,31
Set Sign Positive SSP 7002+ 24
Set Sign Negative SSN 7003+ 24
Jump JIMP 2nnn+ 25
Halt HLT 2nnn- 26
Jump-~Link JPL 3nnn- 26
Return RTN 3007+ 26
Transfer on Overflow TOV 4nnn- 28
Transfer on Zero TZE 5nnn- 28
Transfer on Minus TMI 6nnn- 28
Transfer Index High TXH Tnnn- 28
Exchange Link Address ELA 3004+ 27
Exchange Word Length EwWL 3000+ 33
Exchange Index Register EIR 3002+ 33
Test Sense Switch TSW 0YX0- 34
Input Instruction from Tape IIT 0000+ 36
Input Data from Tape IDT 0001+ 36
Input Data Binary IDB 0007+ 37
Output (to typewriter) ouT 14XX+ 38
Output (to punch) ouT 10XX+ 37
Output to Punch OPU 1200+ 37
Output Binary OPB ILOO0+ 37
Input from Typewriter ITY 0006+ 38
Output to Typewriter OoTY 1630+ 38
Input Instruction from Keyboard IIK 0002+ 39
Input Data from Keyboard IDK 0003+ 39
Input Instruction Parallel IIp 0004+ 40
Input Data Parallel IDP 0005+ 40
Output Parallel OPP 1800+ 40

“These operations may be indexed.

- 45 -

APPENDIX

BOOTSTRAP ROUTINE

The bootstrap routine appears on tape as follows: (the instruction numbers

are only for reference, and do not appear on tape)

1. 0001+ *
27D8+
3 27D8+ *
4 C7D9+ *
5. 0001+ *
6. L7D8+
7 C7DL+ *
8. L7D8+ *
9. 0001+ *
10. 0001+
11. C7DC+ *
12. 0001+ *
13. COLS-
14. C7DA+ *
15, 0001+ *
16. 77DL-
17. C7DS+ *®
18. 0001+ *
19. 2000-
20. C7DM+ *
21. L7D8+ *
22, 0001+ *
23. LS+
24, 3002+ *
25. 27DL+ *

The bootstrap routine takes advantage of the unique ability of the PDS computer
to execute instructions directly as they are input, as well as from a stored
program.Instructions marked with an asterisk are executed as they are read
from paper tape;instructions 2, 6, 10, 13, 16, 19 and the data value at Step 23,

are stored in memory and used by the computer to load the user's program.

Briefly, the operation of the program is as follows:

When power is turned on, the initialize cycle completed, and the start button
depressed, the computer looks at GO for the address of an instruction. GO
contains 0, and the computer loads the contents of Cell 0, which is 0, into GIl.
This is interpreted as an instruction (0000+, ITT), and the computer reads
instruction 1 from paper tape, and executes it. This instruction (00014, IDT)
causes the next instruction to be read from tape and placed in the accumulator.
This is a jump to location 7D8, which we will call A for convenience. In the
meantime GO is incremented and the computer now reads the instruction in
Cell 1. This is again 0, and instruction 3 is executed from tape. This is a
jump to A. GO now contains A, and the computer seeks the next instruction
there. A contains 0, and instruction 4 is executed, copying the "Jump to A"
instruction into cell A+l. Prior to each of the asterisked instructions the
computer goes to A+l (since GO is always incremented) jumps to A, finds a

0, and executes the IIT instruction, taking the next instruction from tape and

executing it.

- 46 -

When the program as punched is finished, memory contains the following:

Location A contains 0

Location A +1 contains Jump to A

Location A +.2 contains Load Accumulator
with A (Clear Accumulator)

Location A + 3 contains Input Data from Tape (reads
an instruction into the
Accumulator)

Location A + 4 contains Copy Indexed to B

Location A + 5 contains Transfer Index High to A + 2

Location A + 6 contains Halt at C

Index Register contains N

This sequence will ciear the accumulator, read information from tape and store
it, indexed, starting at C, where C=B-N, until N instructions have been read
from tape and stored. The computer will then halt and, when START is pushed,
start execution at location C. The jump at A+l allows the bootstrap to be used

as a loader, with other programs present in memory. All that is necessary is

to set A and A+l to zero. Every loader or bootstrap written as /the one shown can
be entered with the following sequence.

PUSH OVERRIDE

Enter From Keyboard: 6001+ (Sets G2 to 1)
0003+ (Input Data From
Keyboard)
0000+
C7D8+ (Sets A to 0)
C7D9+ (Sets A+l to 0)
27D8- (Halt and go to A)

Push OVERRIDE
Push START

The machine can now execute the bootstrap, or any similarly written

loader.

- 47 -

HEXIDECIMAL CONVERSION TABLE

HEX. DEC HEX. DEC. HEX. DEC.
0 0 0 0 0 0
1 1 10 16 100 256
2 2 20 32 200 512
3 3 30 48 300 768
4 4 40 64 400 1024
5 5 50 80 500 1280
6 6 60 96 600 1536
7 7 70 112 700 1792
8 8 80 128 800 2048
9 9 90 144 900 2304
L 10 L0 160 L.00 2560
C 11 Co 176 C00 2816
A 12 A0 192 A00 3072
S 13 S0 208 S00 3328
M 14 MO 224 MO0 3584
D 15 DO 240 D00 3840
10 16 100 256 1000 4096

EXAMPLES:
Decimal Hex
APPENDIX 198 = 192 = AQ
+ 6 + 6
- A6
1246 =1024 = 400
+ 16 + 10
6 _6
416
Hex Decimal
MSA=MO0O = 3584
+ SO + 208
A 12
3804

- 48 -

