Technical Manual PBC 1000 Revision 4 # pb Packard Bell Computer A SUBSIDIARY OF PACKARD BELL ELECTRONICS 1905 ARMACOST AVENUE . LOS ANGELES 25, CALIFORNIA July 15, 1961 #### PREFACE The PB250 Computer Technical Manual is presented in two volumes, and is designed for the use of technical personnel engaged in computer checkout, modification, and field service. It is assumed that such technical personnel are familiar with basic computer technology. Volume I contains a general description of the computer, together with a detailed description of PB250 Computer logic. Volume II contains detailed descriptions of installation, operation, power supply, Flexowriter, test points, and maintenance procedures. The appendices contain logic layout, applicable schematics, Flexowriter specifications, and material lists. The logic equations and logic summary in this manual have been revised to include the "P" change. | · | | | | | | |---|--|--|--|--|--| ## CONTENTS | _ | |--------| | | | 1-1 | | 1-1 | | 1-2 | | 1-4 | | 2 - 1 | | 2 - 1 | | 2 - 1 | | 2-6 | | 2 - 10 | | 2-26 | | 2 - 32 | | 2 - 35 | | 2-41 | | 2-48 | | 2-55 | | 2-58 | | 2-63 | | 2-69 | | 2-74 | | | # CONTENTS (continued) ## Section Appendix A Description of Notation Appendix B Glossary of Terms Appendix C Complete Logical Equations Appendix D Input Output Connectors Appendix E Indicator Panel Appendix F PB 250 Logic Summary # **FIGURES** | No. | Title | Page | |--------|---|--------| | 2 - 1 | Command Codes in Operation Code Register | 2-5 | | 2-2 | Pulse Counter Timing Logic Diagram | 2-7 | | 2-3 | Pulse Counts | 2-8 | | 2-4 | Sector Counter Logic Diagram | 2-9 | | 2-5 | Pulse Time Format Timing Diagram | 2 - 11 | | 2-6 | Sector Format Timing Diagram | 2 - 12 | | 2-7 | Simplified Phase Chart | 2 - 14 | | 2-8 | Phase Control (Ph 1 to Ph 2) Logic Diagram | 2 - 16 | | 2-9 | Operand Line Selection Logic Diagram | 2-18 | | 2-10 | Command and Address Advance Logic Diagram | 2 - 19 | | 2-11 | Phase 4 Termination Logic Diagram | 2-21 | | 2-12 | "I" and "C" Key Control Logic Diagram | 2-25 | | 2-13 | Parity Block, Modulo 16 Operation Logic Diagram | 2-27 | | 2-14 | Data Transfer "Stores" Logic Diagram | 2-28 | | 2-15 | "Fetch" Data Transfer Logic Diagram | 2-31 | | 2 - 16 | Addition and Subtraction Logic Diagram | 2-33 | | 2-17 | Multiplication Block Diagram | 2 - 34 | | 2-18 | Multiplication Logic Diagram | 2 - 36 | | 2-19 | Division Block Diagram | 2-40 | | 2-20 | Division Logic Diagram | 2-43 | | 2-21 | Square Root Block Diagram | 2-49 | | 2-22 | Square Root Logic Diagram | 2-53 | | 2-23 | Square Root Timing Diagram | 2-54 | | 2-24 | AB Shift Left Logic Diagram | 2 - 56 | | 2-25 | AB Shift Right Logic Diagram | 2-57 | | 2-26 | Incrementing C Register Logic Diagram | 2-59 | | 2-27 | Buffer Input | 2-64 | | 2-28 | Character Output Operation | 2-67 | | 2-29 | Bootstrap Input | 2-70 | ## TABLES | No. | Title | Page | |-----|----------------------------------|------| | 1-1 | Leading Particulars | 1-3 | | 2-1 | Command Classifications | 2-2 | | 2-2 | Square Root Operation | 2-50 | | 2-3 | Magnetic Tape Input Command List | 2-75 | | | · | | | | | |--|---|--|--|--|--| #### I. DESCRIPTION #### A. GENERAL The Packard Bell PB 250 is a high-speed, completely solid-state general purpose digital computer in which both the data and the commands required for computations are stored in an internal memory. The storage medium is a group of magnetostrictive delay lines along which acoustical pulses are propagated. At one end of each of these lines a "writing" device converts electrical pulses into acoustical energy. At the other end of each delay line a "reading" device converts acoustical energy back into electrical pulses. The PB 250 provides more than 50 commands to permit coding of a broad range of scientific and engineering problems. Double precision commands are provided for operating upon large numbers. Commands for scaling and normalizing numbers permit floating point operation. In addition, square root, and variable length multiplication and division operations are available. Other features include input-output buffering, and a large variety of external optional units such as punched card equipment, paper tape photoreaders, magnetic tape handlers, analog-to-digital and digital-to-analog converters, and magnetic core storage. The memory of the basic PB 250 contains 10 magnetostrictive delay lines numbered octally from 00 through 11. These delay lines store both data and commands. Each long line, 01 through 11, contains 256 decimal or 400 octal locations. These locations, also called sectors, are numbered 000 through 377. Line 00 is a 16-word fast access line. Since line 00 is 1/16 the length of a long line, any unit of information contained in it is available 16 times during each complete circulation of the 256-word long lines. Fifty-three additional delay lines may be added, each of which may have a total of from 1 to 256 words. These additional lines are numbered from 10 through 36, and 40 through 77. If all of the additional lines are used, and if all lines hold 256 words, the memory capacity of the PB 250 is extended to 15,888 words. Since the PB 250 memory stores either data or commands, the generic term "word" is used to cover both types of information. Every word stored in the internal memory is in binary form (negative numbers are stored in complementary form). Words stored in the PB 250 memory are represented by a series of pulses which correspond to the digits of a binary number. Three arithmetic registers, A, B, and C, are provided for arithmetic operations and information manipulation. Each register has the same format as a memory location. Information may be interchanged between the three registers. The contents of a register may be tested for nonpositive values, or compared against the contents of any memory location. A record may be kept in one register of operations performed in the other registers. ## B. LEADING PARTICULARS Two models of the PB 250 Computer are available: the rack-mounted PB 250 R, and the table-mounted PB 250 T. Both models are identical except for height requirements. Modular construction is used throughout the computer for ease of accessibility and maintenance. All electrical connections are made to a row of connectors at the back of the computer. Additional leading particulars are shown in Table 1-1. # Table 1-1. # LEADING PARTICULARS | Туре | Serial, binary, internal program | | | | | |------------------------------------|--|--|--|--|--| | Command structure | Single address with index register | | | | | | Number of commands | 59 | | | | | | Operation times: | | | | | | | ${f Add/subtract}$ | 12 µsec | | | | | | Multiply | 276 µsec (max.) | | | | | | Divide | 252 μsec (max.) | | | | | | Square root | 252 μsec (max.) | | | | | | Average access time | 1536 µsec | | | | | | Average access time to fast memory | 96.µsec | | | | | | Maximum operational rate | 40,000 instructions per second | | | | | | Memory capacity | 2320 words (Up to 15,888 words internal storage available) | | | | | | Dimensions: | | | | | | | PB 250 R (rack-mounted) | 78 in. high, 19 in. wide, 24 in. deep | | | | | | PB 250 T (table-mounted) | 63 in. high, 19 in. wide, 24 in. deep | | | | | | Power requirements | ll5 v, 60 cps, single phase, ll0 watts | | | | | | Weight | 110 pounds (approx.) | | | | | ## C. STANDARD EQUIPMENT #### 1-1. CONTROL UNIT A Model FX-1 Flexowriter is supplied as standard equipment, and is used as the control unit for the PB250 Computer. The Flexowriter is also used to prepare, duplicate, and read paper tapes. The Flexowriter can be used on-line (under control of the computer), or off-line (under control of the operator). The general appearance and operation of the Flexowriter are similar to a standard electric typewriter. #### 1-2. BASIC MODULES The majority of the logic used in the PB 250 is constructed from four types of plug-in transistorized modules, three of which are diode modules, while the fourth is a high-frequency flip-flop module. Logic for the PB 250 uses low-leakage, high-frequency diodes to permit two-level gating. All logic is of the "true-negative" (PNP) type, in which a -12 v level represents a "true" condition, and a 0 v level represents a "false" condition. In addition to the logic circuits, plug-in transistorized modular construction is used for the magnetostrictive registers, and the various amplifiers, emitter followers, clock drivers, etc., required for computer operation. Description and schematics of the basic modules are contained in PB 250 Technical Manual, Volume 2. #### II. PB 250 LOGIC #### A. GENERAL This section contains a description of the functional logic of the PB 250. The logic is defined by Appendix A, Description of Notation; Appendix B, Glossary of Terms; Appendix C, Complete Logical Equations; and Appendix F, Logic Summary. The logic equations are presented term-by-term, together with block diagrams which illustrate the application of gating terms. ## B. COMMAND LIST The list of commands for the PB 250 is given in Table 2-1. These commands are numbered octally from 00 to 77. The six binary digits (bits) of the command number are stored in pulse positions 9 through 14 of the command. These bits are stored in the operation code register flip-flops and may be defined octally (see Figure 2-1). #### Example: State $$O6$$ $\overline{O5}$ $\overline{O4}$ $O3$ $O2$ $\overline{O1}$ reads 1 0 0 1 1 0 in binary in octal Combinations of signals from the operation code register flip-flops are used to # Table 2-1. (Sheet lof 3) # COMMAND CLASSIFICATIONS Class 1: Executed Between Command Location and Address Sector Number. | Sector Number. | | |
|---------------------------|-----|-------| | NORMALIZE AND DECREMENT | NAD | (20)* | | NORMALIZE | NOR | (20)* | | LEFT SHIFT AND DECREMENT | LSD | (21)* | | AB LEFT | SLT | (21)* | | RIGHT SHIFT AND INCREMENT | RSI | (22)* | | AB RIGHT | SRT | (22)* | | SCALE RIGHT AND INCREMENT | SAI | (23) | | NO OPERATION | NOP | (24) | | INTERCHANGE A AND M | IAM | (25) | | MOVE LINE X TO LINE 7 | MLX | (26) | | SQUARE ROOT | SQR | (30) | | DIVIDE | DIV | (31)* | | DIVIDE REMAINDER | DVR | (31)* | | MULTIPLY | MUP | (32) | | SHIFT B RIGHT | SBR | (33)* | | LOGICAL RIGHT SHIFT | LRS | (33)* | | WRITE OUTPUT CHARACTER | woc | (6X) | | PULSE TO SPECIFIED UNIT | PTU | (70) | | MOVE COMMAND LINE BLOCK | MCL | (71) | | BLOCK SERIAL OUTPUT | BSO | (72) | | BLOCK SERIAL INPUT | BSI | (73) | ^{*}Asterisk indicates that the op code has at least two meanings, depending on the address used with the command. Table 2-1. (Sheet 2 of 3) | Class 2: Executed in Address Sector Number | | | | | | | |--|-----|--------|--|--|--|--| | INTERCHANGE A AND C | IAC | (01) | | | | | | INTERCHANGE B AND C | IBC | (02) | | | | | | LOAD A | LDA | (05) | | | | | | LOAD B | LDB | (06) | | | | | | LOAD C | LDC | (04) | | | | | | STORE A | STA | (11) | | | | | | STORE B | STB | (12) | | | | | | STORE C | STC | (10) | | | | | | ADD | ADD | (14) | | | | | | SUBTRACT | SUB | (15) | | | | | | EXTEND BIT PATTERN | EBP | (40) | | | | | | GRAY TO BINARY | GTB | (41) | | | | | | AND M & C | AMC | (42) | | | | | | CLEAR A | CLA | (45) | | | | | | CLEAR B | CLB | (43) | | | | | | CLEAR C | CLC | (44) | | | | | | AND OR COMBINED | AOC | (46) | | | | | | EXTRACT FIELD | EXF | (47) | | | | | | DISCONNECT INPUT UNIT | DIU | (50) | | | | | | READ TYPEWRITER KEYBOARD | RTK | (51) | | | | | | READ PAPER TAPE | RPT | (52) | | | | | | READ FAST UNIT | RFU | . (53) | | | | | | LOAD A FROM INPUT BUFFER | LAI | (55) | | | | | | COMPARE A AND M | CAM | (56) | | | | | | CLEAR INPUT BUFFER | CIB | (57) | | | | | | HALT | HLT | (00)* | | | | | | MERGE A INTO C | MAC | (00)* | | | | | ^{*}Asterisk indicates that the op code has at least two meanings, depending on the address used with the command. Table 2-1. (Sheet 3 of 3) | Class 3: Executed In Address Sector Number And Following Sector. | | | | | | | | | |--|-----|------|--|--|--|--|--|--| | ROTATE | ROT | (03) | | | | | | | | LOAD DOUBLE PRECISION | LDP | (07) | | | | | | | | STORE DOUBLE PRECISION | STD | (13) | | | | | | | | DOUBLE PRECISION ADD | DPA | (16) | | | | | | | | DOUBLE PRECISION SUBTRACT | DPS | (17) | | | | | | | | Address Sector No | TRU | (37) | | | | | | | | TRANSFER IF A NEGATIVE | TAN | (35) | | | | | | | | TRANSFER IF B NEGATIVE | TBN | (36) | | | | | | | | TRANSFER IF C NEGATIVE | TCN | (34) | | | | | | | | TRANSFER ON OVERFLOW | TOF | (75) | | | | | | | | TRANSFER ON EXTERNAL SIGNAL | TES | (77) | | | | | | | | | | | | | | | | | | | Op | Code | Regist | er Fl | ip-Flo | ps | | Op | Code | Regist | er Fl | p-Flo | рв | |-----------------|----------|--|----------|-------------|--------|--------------|----------|----------|------------|------------|----------|---------|-------------| | | 06 | O5 | 04 | О3 | O2 | Q1 | | 06 | O 5 | 04 | 03 | 02 | 01 | | Op | | | Flop B | | Weigh | ts | Op | Ţ | lip-F | lop Bi | nary 1 | Weight | 8 | | Code | 40 | 20 | 10 | 4 | 2 | 1 | Code | 40 | 20 | 10 | 4 | 2 | 1 | | 00 | | | | | | | 40 | | | | | | | | 01 | | | | | | | 41 | | | | | | | | 02 | | | | | | | 42 | | | | | | | | 03 | | | , | | | | 43 | | | | | | | | 04 | | | | | | | 44 | | | | | | | | 05 | | | | | | | 45 | | | | | | | | 06 | | | | | | | 46 | | | | | | *********** | | 07 | <u></u> | | | | | | 47 | | | | | | | | 10 | | | | | | | 50 | | | | | | *********** | | 11 | | | <u></u> | | | | 51 | | | | | | | | 12 | | | | | | | 52 | | | | | | | | 13 | | | | | | | 53 | | | | | | | | 14 | | | | | | | 54 | | | | | | | | 15 | | ļ | | | | | 55 | | | | . | | | | 16 | | ļ | | | | | 56 | | | | | | | | 17 | | | | | | | 57 | | | | | | | | 20 | | | | | | ************ | 60 | | | | - | ļ | | | 21 | | | | | | | 61 | | | | | | | | 22 | | | | | | ********** | 62 | | | | | | | | 23 | | | | | | | 63 | | | | | | | | 24 | | | | | | | 64 | | | | | | | | 25 | | | | | | | 65 | | | | | | | | 26 | | | | | | | 66 | | | | | | | | 27 | | | | | | | 67 | | | | | | | | 30 | | | | | | | 70 | | | | | | | | 31 | <u> </u> | | | | | | 71 | | | | | | | | 32 | ļ | | | | | | 72 | | | | | | | | 33 | ļ | | | | | | 73 | | | | | | | | 34 | | | | | | | 74 | | | | | | | | 35 | | | | | | | 75
76 | | | | | | | | $\frac{36}{37}$ | | | | | | | 77 | | | | | | | | 31 | | | <u>l</u> | 1 4 | | D: -:- | ' ' | 2-3 | Matal | l
Di~÷∸ | 104 6 | lotal T | liait | | l | 2nd (| Octal 1 | Jigit | ıst | Octal | Digit | | 2nd | Octal | Digit | 1st C | octal I | ugit | condition. Figure 2-1. Command Codes In Operation Code Register condition many of the logic gates. ## C. TIMING #### 2-1. PULSE COUNTER Basic pulse timing is provided by a binary five stage counter that serves as the pulse counter (see Figure 2-2). This counter consists of five flip-flops whose states define the pulse counts as shown in Figure 2-3. The pulse counter is similar to a regular 32-pulse counter, except that F5 is reset at the end of P23 and F4 is set only at the end of P7. #### 2-2. SECTOR COUNTER For sector number information, a one-word (24-pulse) register is provided as a sector counter (see Figure 2-4). Serial sector numbers are obtained in the pulse intervals (P8-P15) and (P16-P23) by setting carry flip-flop, Sc, at P7 and P15 (see Figure 2-5). $$sSc = \overline{F5} F3 F2 F1$$ $rSc = P23 + \overline{Sr} (\overline{F3} + \overline{F2} + \overline{F1})$ $sSw = Sc \overline{Sr} \overline{Qg} + \overline{Sc} Sr \overline{Qg} + - - -$ $rSw = Sc Sr + \overline{Sc} \overline{Sr} () + Qg ()$ $sSr = (Sw \text{ delayed by 22 pulse times})$ $rSr = (\overline{Sw} \text{ delayed by 22 pulse times})$ The sector counter clear term, Qg, is described in paragraph 2-3. The use of the interval (P24 - P7) as an input buffer is described in paragraph 2-9. This interval is protected by resetting the sector counter carry flip-flop, Sc, at P23. The sector counter numbers in (P8 - P15) and (P16 - P23) advance from | Maintenance
Timing | F 5 | F4 | F3 | F2 | F1 | Programming
Timing | |-----------------------|------------|----|----|----|----|-----------------------| | Pl | | | | | | * | | P2 | | | | | | T 1 | | P3 | | | | | | T2 | | P4 | | | | | | Т3 | | P5 | | | | | | T4 | | P6 | | | | | | T 5 | | P7 | | | | | | Т6 | | P8 | | | | | | Т7 | | P9 | | | | | | Т8 | | P10 | | | | | | Т9 | | P11 | | | | | | T10 | | P12 | | | | | | T11 | | P13 | | | | | | T 12 | | P14 | į | | | | | T13 | | P15 | | | | | | T 14 | | P16 | | | | | | T15 | | P17 | | | | | | T 16 | | P18 | | | | | | T17 | | P19 | | | | | | T18 | | P20 | | | | | | T19 | | P2 1 | | | | | | T20 | | P22 | | | | | | T21 | | P23 | | | | | | T22 | | P24 | 1 | | | | | * | *P1 and P24 are not accessible to the programmer and are not numbered. Figure 2-3. Pulse Counts Figure 2-4. Sector Counter Timing Logic Diagram 000 to 255 for each machine cycle. These numbers are used in comparison with the one-word instruction register to define the numbers of the sectors which follow. An example of the numbers presented by the sector counter in memory is shown in Figure 2-6. #### 2-3. MULTIPLE COMPUTER OPERATION To synchronize the pulse counters of two computers, the F5 signal from the master computer enters the slave computer and is designated <u>F5</u>. With the clock generators operating from a single crystal oscillator, the first stage of the slave computer's pulse counter is controlled by <u>F5</u>. $$sF1 = \overline{F1} (\underline{F5} \ F5 + \overline{F5} \ \overline{F5}).$$ This prevents counting in the slave computer when the most significant stages of the two pulse counters are different, which synchronizes the counters. To synchronize the sector counter of the slave computer, the master computer executes a command 70 having a line number 37₈ during sector 255 (377₈). This command is detected in the Qg gate of the slave computer and serves to zero the sector counter. $$Qg = - - + Cpg M3g N7g + - - -$$ ## D. OPERATION PHASES The operation phases are controlled with the Ec and Rc flip-flops, based on the successive commands read into the instruction register and into the operation code register flip-flops. The basic timing of the operation phases is provided by comparing sector numbers in the instruction register with the sector counter using the comparison flip-flop, Is. Figure 2-5. Pulse Time Format Timing Diagram Figure 2-6. Sector Format Timing Diagram The four operation phases are: | Phase I | Ec Rc | Wait to read next command | |---------|-------|---------------------------| | Phase 2 | Ec Rc | Read command | | Phase 3 | Ec Rc | Wait to execute command | | Phase 4 | Ec Rc | Execute command | Depending on the timing, phases 1 or 3 may be skipped if there is no requirement to wait for a command or an execution. When the computer is stopped, it idles in phase 1. The operation code register flip-flops exert some control over the operation phases. For commands 20 through 37, and 60 through 77 (characterized by the O5 flip-flop being "true"), the computer automatically skips from phase 2 to phase 4, and phase 4 is terminated by the address sector number. For all other commands, phase 4 terminates automatically after one or two sectors. In any command, when the operation code flip-flop, Oc, is set, the computer will skip phase 1 at the end of phase 4. In the case of branch commands, 34, 35, 36, 37, 75 and 77, the Oc flip-flop is used to
detect the branch control condition. If Oc is set, the computer goes to phase 4. If Oc is reset, the computer skips from phase 2 to phase 4 for one pulse time (P1) and then returns to phase 2 so that the next command in sequence will be read. Indication of the phase changes is presented in Figure 2-7. #### 2-4. PHASE 1: WAIT TO READ COMMAND During each sector of phase 1, the Is flip-flop compares the next command sector number in the instruction register with the sector counter to determine when to read the next command. sIs = P24 rIs = $$(\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[\overline{Ec} \overline{Rc} (P8-P15) + - - - \right]$$ Figure 2-7. Simplified Phase Chart #### 2-5. PHASE 2: READ COMMAND When the command sector number agrees with the sector counter, the Is flip-flop will still be set at the end of the sector, and phase 2 will be initiated (Rc set). $$sRc = P24 \overline{Ec} \overline{Rc} Is \left(\overline{En} + - - -\right) \overline{(Fi)} + - - -$$ Phase 2 is conditioned by depressing the ENABLE switch, which qualifies all sRc terms as a computation interrupt $\left(\widehat{En}\right)$ Raising the FILL switch also interrupts computation (see Figure 2-8). During the single sector of phase 2 the bits of the next command to be executed are read into the proper storage locations. The bit in bit position 2 of each command is temporarily stored in operation code register flip-flop, O2. $$sO2 = \overline{Ec} Rc P2 Vg + - - -$$ $rO2 = \overline{Ec} Rc P2 \overline{Vg} + - - -$ This bit is then used to select the operand line number from either the index portion of the instruction register if the O2 flip-flop is set, or from the line number portion of the command itself if the O2 flip-flop is reset, during bit positions 4 through 8 (see Figure 2-9). $$sL5 = Lg \overline{O2} Vg + Lg O2 Iw + - - - - rL5 = Lg \overline{O2} \overline{Vg} + Lg O2 \overline{Iw}$$ $sL4 = Lg L5 + - - - - rL4 = Lg \overline{L5} + - - - - - rL3 = Lg \overline{L4} + - - - - rL3 = Lg \overline{L4} + - - - rL2 = Lg \overline{L3} + - - - rL2 = Lg \overline{L3} + - - - rL2 = Lg \overline{L3} + - - - rL3$ Figure 2-8. Phase Control (Ph 1 to Ph 2) Logic Diagram $$sL1 = Lg L2 + - -$$ $$rL1 = Lg \overline{L2} + - -$$ $$Lg = \overline{Ec} Rc \overline{F5} (\overline{F4} + \overline{F3} \overline{F2} \overline{F1}) \overline{P24}$$ The bits in bit positions 9 through 15 are shifted into the operation code register flip-flops. $$sOc$$ = $Og Vg + - - sO3$ = $Og O4 + - - rOg$ = $Og Vg + - - rO3$ = $Og O4$ $sO6$ = $Og Oc + - - sO2$ = $Og O3 + - rO6$ = $Og Oc + - - rO2$ = $Og O3 + - sO5$ = $Og O6 + - - rO2$ = $Og O2 + - rO5$ = $Og O6 + - - rO1$ = $Og O2 + - rO6$ = $Og O70 + - rO1$ = $Og O70 + rO4$ = $Og O70 + Og$ = $Og O70 + rO4$ = $Og O70 + Og$ = $Og O70 + -$ During the shift into the operation code register flip-flops, the next command sector number is advanced by writing the new number in the sector counter into the instruction register (see Figure 2-10). $$sIw = \overline{Ec} Rc (P8-P15) Sr + - -$$ The address sector number of the command is written into the instruction register following the next command location sector number. $$sIw = + \overline{Ec} Rc (P16 - P23) Vg + - - -$$ This address sector number of the command is also compared with the sector counter to determine if phase 4 should follow phase 2. rIs = $$(\overline{Sr} \text{ sIw} + Sr \text{ rIw})[---+\overline{O5} \text{ Rc} (P16-P23) + ---]$$ Phase 2 is always changed to phase 3 or 4 after one sector. $$sEc = P24 \overline{Ec} Rc$$ Figure 2-9. Operand Line Selection Logic Diagram Figure 2-10. Command and Address Advance Logic Diagram At the end of the read command sector, the flip-flop Is will be set and phase 4 will follow phase 2 directly if the command includes O5 (O5 in its "true" condition), or if the address sector number agreed with the sector counter in phase 2. $$rRc = P24 Rc Is + - -$$ #### 2-6. PHASE 3: WAIT TO EXECUTE COMMAND If phase 3 is allowed to occur, the address sector number continues to be compared with the sector counter until these two numbers agree, causing phase 4 to be set. #### 2-7. PHASE 4: EXECUTE COMMAND During phase 4 the command is executed. The end of the execute phase for commands 00, 01, 02, 04, 05, 06, 10, 11, 12, 14, 15, and 40 through 57, occurs after one sector (see Sheet 1, Figure 2-11). $$Eg = P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} \overline{O6} + \overline{O5} \overline{O3} \overline{O1} + \overline{O5} \overline{O4} \overline{O1} + - - -$$ $$rEc = Eg + - - -$$ Commands 03, 07, 13, 16, and 17 are effectively changed to commands 01, 05, 11, 14, and 15, respectively, after one sector of execution and, after two sectors, execution is terminated by the P24 Ec Rc O5 O2 term of Eg. rO2 = - - + P24 Ec Rc O6 O5 O1 + P24 Ec Rc O6 O5 O4 O3 For commands 20 through 37, and 60 through 77, phase 4 is terminated by matching the address sector number and the sector number and the sector counter (see Sheet 1, Figure 2-11). rIs = $$(\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[- - - + \text{Ec O5 (P16-P23)} + - - - \right]$$ Eg = P24 Ec \overline{Rc} - - + O5 Is If the Oc flip-flop is set during phase 4, the next command number in the Figure 2-11. Phase 4 Termination Logic Diagram (Sheet 1 of 2) Figure 2-11. Phase 4 Termination Logic Diagram (Sheet 2 of 2) instruction register is advanced by writing the number in the sector counter into the instruction register. $$sIw = - - + Ec Oc (P8-P15) Sr + - - -$$ This next command number is used only if computation is interrupted and then restarted, since Oc in its "true" condition normally causes phase 2 at the end of phase 4 (see paragraph D). $$sRc = \overline{En} \overline{\overline{Ei}} Eg Oc + - - -$$ During phase 4 of commands 00 through 17, and 40 through 57, the next command sector number is compared with the sector counter to determine whether phase 2 should be entered when phase 4 is terminated (see Sheet 2, Figure 2-11). rIs = $$(\overline{S_r} \text{ sIw} + Sr \text{ rIw}) \left[- - - + \overline{Rc} \overline{O5} (P8-P15) \right]$$ sRc = - - $\left(\overline{E_n}\right) \left(\overline{F_i}\right) Eg \overline{O5} Is + - - -$ rRc = P24 Rc Is + - - - Commands 34, 35, 36, 37, 75, and 77 operate somewhat differently. At the end of reading one of these commands, Oc will be set if the branch condition being tested is set (see Sheet 2, Figure 2-11). $$sOc = - - + P23 \overline{E}c Rc O5 O4 O3 (\overline{O6} Ig + O6 \overline{O2} O1 Of + O6 O2 O1 Jg + \overline{O2} \overline{O1} Cr)$$ These terms include Ig for the signs of the A and B registers; Cr for the sign of the C register; Of for overflow; and Jg for a selected branch control input line (see paragraph K for the construction of Jg). Phase 4 will immediately follow phase 2 because of the P24 Rc Is term of rRc but, if Oc is not set, phase 4 will immediately be changed to phase 2. rEc = - - + Ec O5 O4 O3 $$\overline{\text{Oc}}$$ + - - - sRc = - - + Ec O5 O4 O3 $\overline{\text{Oc}}$ If Oc was set, phase 4 will extend until the address sector number agrees with the sector counter, and phase 2 will follow phase 4. When commands 34, 35, 36, 37, and 75 enter phase 4 due to Oc being set, the command line selector flip-flops are changed by the contents of the operand line selector flip-flops. $$sK4 = Kg L4$$ $$rK4 = Kg \overline{L4} + - - -$$ $$rK2 = Kg \overline{L2} + - - -$$ $$sK3 = Kg L3$$ $$rK4 = Kg L1 + - - -$$ $$rK3 = Kg \overline{L3} + - - -$$ $$rK1 = Kg \overline{L1}$$ $$Kg = Ec O5 O4 O3 F4 (\overline{O6} + \overline{O2})$$ ### 2-8. MANUAL CONTROLS A minimum of manual control is included. Depressing the ENABLE switch holds the computer in phase 1 by blocking the sRc terms. If the γI key is depressed while the ENABLE switch is closed, the command line selector register is set to line 01 and the next command sector is reset to zero (see Figure 2-12). rKs = ---+ En T6 T5 T4 T1 (P23) rK3 = ---+ En T6 T5 T4 T1 (P23) rK2 = ---+ En T6 T5 T4 T1 (P23) sK1 = ---+ En T6 T5 T4 T1 (P23) sIw = $$\frac{---+}{+---}$$ Ir $\frac{1}{---+}$ En T6 T5 T4 T1 (P8-P15) If the "C" key is depressed while the ENABLE switch is closed, the computer will read and execute one command. The Oc flip-flop provides the enabling conditions for this one cycle operation. $$sOc = - - - + \underbrace{En} \quad P24 \text{ Is } \overline{Ec} \, \overline{Rc} \quad T6 \quad T5 \quad T2 \quad T1 + - - -$$ $$rOc = - - - + Eg$$ $$sRc = - - - + P24 \, \overline{Ec} \, \overline{Rc} \, Is \quad (En) + Oc \quad T6 \quad T5 \quad T2 \quad T1) F$$ Figure 2-12. "I" and "C" Key Control Logic Diagram The storage of a line number in the index register is achieved by sending it to line (37)₈. The useful portion of this number (bit positions 3 through 7) is entered into the instruction register. $$sIw = - - + \overline{P24} (P24-P7) M3g N7g Wg Ig + - - -$$ When transferred to the operand line selector register, the number in the instruction register (bit positions 4 through 8) is taken from the instruction register write flip-flop, Iw, rather than from the instruction register read flip-flop, Ir. Phase 2 or phase 4 can be immediately changed to phase 1 if a parity error is indicated by the Pc flip-flop (see Figure 2-13). $$rEc = - - + Ec \overline{Rc} Pc Pl$$ $rRc = - - + \overline{Ec} Rc Pc Pl$ A parity error will halt computation until the Pc flip-flop is cleared by depressing the ENABLE switch and the BREAK POINT switch. $$rPc = --+ (En) (Bp) + ---$$ To provide modulo 16 operation of the command sequence, when line 00 is the source of commands, pulse positions 12 through 15 are blocked from the comparison in the Is flip-flop (see Figure 2-13). rIs = $$(\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[- - - \right] \left[\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F3} \right]$$ #### E. DATA TRANSFER The basic data transfers are "fetches" from the memory lines to the registers, and "stores" from the registers to the
memory lines. The data stored is formed by the Ig gate (see Figure 2-14). This gate presents the contents of the C register for command 10, the contents of the A register for commands 01, 11, 41, 25, and 35, and the contents of the B register Figure 2-13. Parity Block, Modulo 16 Operation Logic Diagram Figure 2-14. Data Transfer-"Stores" Logic Diagram for commands 02, 03, 12, 13, and 36. Ig = $$\overline{P24} \overline{O5} \overline{O2} \overline{O1} Cr + \overline{P24} \overline{O6} \overline{O2} O1 Ar + \overline{P24} \overline{O6} O2 Br$$ + $\overline{P24} \overline{O4} \overline{O2} Ar + - - -$ For command 71, the stored data comes from the command line. Ig = $$- - + \overline{P24} O6 O5 \overline{O2} Vg + - - -$$ For command 73, the stored data comes from an input signal, Hdg, gated by ۷g. Ig = $$- - + \overline{P24} O6 O5 O2 Vg Hdg + - - -$$ The last bit of each stored word is a parity bit to produce an even number of "l's" in each word (excluding Pl). Ig = $$--+P24 Pc$$ sPc = $Ec \overline{Rc} \overline{P1} \overline{\overline{O5}} \overline{O3} Ig \overline{Pc} + ---$ rPc = $Ec \overline{Rc} \overline{P1} \overline{\overline{O5}} \overline{O3} Ig Pc + ---$ Writing into a memory line is conditioned by phase 4 and commands 10, 11, 12, 13, 71, or 25. $$Wg = \left(\overline{06}\ \overline{05}\ 04\ \overline{03} + 06\ 05\ 04\ \overline{03}\ 01\ + \overline{06}\ 05\ \overline{04}\ 03\ \overline{02}\ 01\ \right) \ Ec\ \overline{R}c$$ Writing into a particular memory line is conditioned by the operand line selector. For example, to write in memory line 02 $$sM2w = M0g N2g Wg Ig + M0g N2g Wg M2r$$ $$rM2w = M0g N2g Wg Ig + M0g N2g Wg M2r$$ where $$\begin{bmatrix} M0g &= \overline{L0}\,\overline{L5}\,\overline{L4} \\ M1g &= \overline{L0}\,\overline{L5}\,L4 \\ M2g &= \overline{L0}\,L5\,\overline{L4} \\ etc. \end{bmatrix} \text{ and } \begin{bmatrix} N0g &= \overline{L3}\,\overline{L2}\,\overline{L1} \\ N1g &= \overline{L3}\,\overline{L2}\,L1 \\ N2g &= \overline{L3}\,L2\,\overline{L1} \\ etc. \end{bmatrix}$$ To make "fetches" from the memory, the line is selected by the address line selector (see Figure 2-15). $$Fg = M0g N0g M0r + M0g N1g M1r + - - + M1g N7g M15r + M3g N7g Ir + Nxg$$ Parity is checked for commands 04, 05, 06, and 07, during phase 4 as well as during phase 2. sPc = $$- - + \overline{P1}$$ Ec Rc $\overline{O6}$ $\overline{O5}$ O3 Fg Pc + $\overline{P1}$ Ec Rc Vg Pc + $- - + \overline{P1}$ Ec Rc $\overline{O6}$ $\overline{O5}$ O3 Fg Pc + $\overline{P1}$ Ec Rc Vg Pc + $- - + \overline{P1}$ Ec Rc $\overline{O6}$ $\overline{O5}$ O3 Fg Pc + $\overline{P1}$ Ec Rc Vg Pc + $- - + \overline{P1}$ If the parity is odd, the Pc flip-flop will block computation. The data selected by the "fetch" command is sent to the proper register. For commands 05 and 25, data is sent to A, for O6 and O7 to B, and for O4 to C. ``` sAw = Ec Rc O6 O4 O3 O2 O1 Fg + - - - sBw = Ec Rc O6 O5 O4 O3 O2 Fg + - - sCw = Ec Rc O6 O5 O4 O3 O2 O1 Fg + - - - ``` Command 01 provides an interchange between the A and C registers, and command 02 provides an interchange between the B and C registers. ``` sCw = - - + Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} Ig + - - sAw = - - + Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{O2} O1 Cr + - - - sBw = - - + Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} O2 Cr + - - - ``` Command 03 provides a rotation (interchange) of information between the A, B and C registers. During the first sector of execution of the 03 command the B and C registers interchange. At the end of the first sector of execution, the 03 command is changed to a 01 command by resetting the O2 flip-flop. During the second sector of execution the A and C registers interchange. The results of this command is that the C register is copied into the B register, the Figure 2-15. "Fetch" Data Transfer Logic Diagram B register is copied into the A register, and the A register is copied into the C register. # F. ADDITION AND SUBTRACTION Commands 14, 15, 16, and 17 provide addition and subtraction into the A register and AB register pair (see Figure 2-16). The sum entered into these registers is formed in the adder. $$Zg = \overline{(Zg)}$$ $\overline{Zg} = Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ The input term from the memory is entered in "true" form for addition (commands 14 and 16) and inverted for subtraction (commands 15 and 17). $$Xg = - - + \overline{O5} \, \overline{O1} \, Fg + \overline{O5} \, O1 \, \overline{Fg} + - - -$$ The input term from the registers is taken from the B register for commands 16 and 17, and from the A register for commands 14 and 15. For the double precision commands 16 and 17, O2 is reset at the end of the first sector of execution which changes the commands from 16 to 14 and from 17 to 15. $$Yg = - - + \overline{O6} O4 \overline{O2} Ar + \overline{O5} O2 Br + - - -$$ The adder carry flip-flop, Ca, is cleared before any execution and set at the start of execution of commands 15 and 17 to add the "true" complement of the input term from the memory. $$sCa = \overline{P1} \overline{P24} \overline{Ca} Ec \overline{Rc} Xg Yg + P24 Rc Is \overline{O6} \overline{O5} O4 O3 O1 + - - - rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg} + Ca Rc + - - -$$ The resulting sum is entered into the B and A registers. $$sBw = - - + Ec Rc O6 O5 O4 O3 O2 Zg + - - -$$ $sAw = - - + Ec Rc O6 O5 O4 O3 O2 Zg + - - -$ Overflow at the sign position is used to set the Of flip-flop. An overflow occurs when the two adder inputs have the same sign and the result has Figure 2-16. Addition and Subtraction Logic Diagram a different sign. $$sOf = P23 Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 \overline{O2} (\overline{Xg} \overline{Yg} Ca + Xg Yg \overline{Ca}) + - - -$$ Of is reset by the execution of command 75 that tests for overflow. $$rOf = P23 Ec O6 O5 O4 O3 \overline{O2} O1 + - - -$$ For commands 14, 15, 16, and 17, the parity of the information taken from the memory is checked through the Pc flip-flop. ### G. MULTIPLICATION During the execution of command 32, the contents of the C register are multiplied by the contents of the B register (see Figure 2-17). The contents of the AB register pair are shifted to the right by one bit position for each sector of the multiplication operation, which placed the multiplier bits at the right end of the B register. Based on these multiplier bits, the A register has the contents of the C register added to it, subtracted from it, or a zero added to it. By this process the most significant bits of the product appear in the A register, and the least significant bits of the product appear in the B register. The first sector of multiplication operation is marked by L5. At the end of the first sector, L5 is set (see Sheet 1, Figure 2-18). $$sL5 = - - + \overline{06} O 5 \overline{O3} P24 Ec$$ The multiplier bit code to add (C) is detected by L2. $$sL2 = - - + \overline{06} O5 O4 \overline{O3} O2 \overline{O1} \overline{Be} Br P1 + - - - rL2 = - - + \overline{06} O5 O4 \overline{O3} O2 \overline{O1} P24$$ The multiplier bit code to subtract (C) is detected by L4. $$sL4 = - - + \overline{06} O5 O4 \overline{O3} O2 \overline{O1} P1 Be \overline{Br}$$ $rL4 = - - + \overline{06} O5 O4 \overline{O3} O2 \overline{O1} P24$ Figure 2-18. Multiplication Logic Diagram (Sheet 1 of 2) Figure 2-18. Multiplication Logic Diagram (Sheet 2 of 2) The adder inputs, with the A register shifted to the right through Ae, and the entry of the C register controlled by L2 and L4, are as follows (see Sheet 1, Figure 2-18): $$Xg = - - + \overline{06} O5 O4 \overline{O3} O2 \overline{O1} (L2 Cr + L4 \overline{Cr}) + - - - \overline{O6} O5 O4 \overline{O3} O2 L5 (\overline{P24} Ae + P24 Ar) + - - - \overline{O6} O5 O4 \overline{O3} O2 \overline{O1} P1 Be \overline{Br}$$ $$rCa = - - + \overline{O6} O5 P24$$ Qualifying Yg by L5 clears the A register during the first sector of operation. When subtracting, the adder carry flip-flop, Ca, is set to obtain the "true" complements of the C register. The output of the adder, Zg, is recorded in the A register (see Sheet 2, Figure 2-18). $$sAw = - - + Ec \overline{Rc} \overline{O6} O5 O4 \overline{O3} O2 Zg + - - -$$ To start the multiplier bit code properly, the Pl bit position of the B register is kept clear during all recirculation. During multiplication, the B register is shifted to the right, by the B register early flip-flop, Be; and the bits from the A register enter the left end of the B register through the operand line selector register flip-flop, L3. $$sBw = - + Ec \overline{Rc} \overline{O6} O5 \overline{O3} O2 (\overline{P23} Be + P23L3) + \overline{P1} Br (\overline{}) + - - -$$ The bits shifted from the right end of the A register are detected and stored in L3 for entry into the left end of the B register. $$sL3 = - - + \overline{06} O5 \overline{O3} (- - - + P2 Ar) + - - - rL3 = - - + \overline{06} O5 \overline{O3} (- - - + P2 \overline{Ar}) + - - -$$ During the first sector of multiplication, the sign of the B register is retained in P23 of the B register so that the last sector of multiplication will operate correctly. The $\overline{L5}$ signal is used to repeat the sign. sL3 = $$- - + \overline{06}$$ O5 O4 $\overline{03}$ O2 $\overline{01}$ Ec $\overline{L5}$ Be rL3 = $- - + \overline{06}$ O5 O4 $\overline{03}$ O2 $\overline{01}$ Ec $\overline{L5}$ Be For proper operation of the sign of the product in the A register, the sign bit of the C register is extended into P24. $$sCw = - - + P24Cw + \overline{P24}Cr$$ + - - - The following timing chart indicates that process of multiplication for a shortened set of registers. The multiplier has four bits, a sign, and the sign repeated during the first sector of multiplication. The bit pair at the right end of the B register controls the arithmetic
operation as follows: - 00 add zero - 01 add + (C) - 10 add (C) - 11 add zero Figure 2-19. Division Block Diagram For the sixth (last) sector, the sign and the repeated sign are used to provide a shift only, and produce 1/2 (C) (B) in AB. This last step is to ensure the correct product when B and C start as -1, as shown in the following timing chart. | | | (C | ;) = | = - | 1 | | | | | | | | |---|---|-----|------|-----|---|---|-----|------------|-----|---|---|---| | | 1 | 1. | 0 | 0 | 0 | 0 | X | | | | | | | | | (A | .) | | | | (B) | Lan
Son | - 1 | | | | | | X | _ | | _ | - | _ | Х | X | 1.0 | 0 | 0 | 0 | | | 0 | 0 - | 0 | 0 | 0 | 0 | x | X | l l | 0 | 0 | 0 | | | 0 | 0 . | 0 | 0 | 0 | 0 | X | x | 0.1 | 1 | 0 | 0 | | | 0 | 0. | 0 | 0 | 0 | 0 | X | X | 0.0 | 1 | 1 | 0 | | | 0 | 0. | 0 | 0 | 0 | 0 | X | X | 0.0 | 0 | 1 | 1 | | | 0 | 1. | 0 | 0 | 0 | 0 | X | X | 0,0 | 0 | 0 | 1 | | I | 0 | 0 - | . 1 | 0 | 0 | 0 | Х | X | 0.0 | 0 | 0 | 0 | ### H. <u>DIVISION</u> During the execution of command 31, the contents of the AB register pair are divided by the contents of the C register (see Figure 2-19). During each sector of the division operation, the divisor is added to or subtracted from the remainder, depending on whether the sign of the divisor matches the sign of the remainder. For each sector of operation, the remainder is doubled by shifting the sum of the A and C registers (A \pm C) to the left one bit position in the A register, and shifting the B register to the left one bit position. The bits of the quotient are entered into the right end of the B register as a function of the sign of each remainder. The first sector of division operation is marked by $\overline{\text{L5}}$. At the end of the first sector, L5 is set by the same term used for multiplication. The signs of the A and C registers are compared and, if the signs are the same, L4 is set to indicate that subtraction of the C register is required (see Sheet 1, Figure 2-20). This comparison is made while the division command is being read as well as during execution of the division command. The adder inputs for division are (see Sheet 2, Figure 2-20): $$Xg = \overline{O6} O5 O4 \overline{O3} \overline{O2} (\overline{L4} Dg + L4 \overline{Dg}) + - - Yg = - - + \overline{O6} O4 \overline{O2} Ar + - - Dg = O1 Cr + - - SCa = - - + \overline{O6} O5 O4 \overline{O3} \overline{O2} P1 L4$$ $rCa = - - + O5 P24$ When subtracting, the adder carry flip-flop, Ca, is set to obtain the "true" complement of the C register. The output of the adder, Zg, is delayed through L1 and recorded into the A register (see Sheet 1, Figure 2-20). $$sL1 = - - + \overline{O6} O5 O4 \overline{O3} \overline{O2} Ec(Zg O4 + Ar \overline{O4}) + - - -$$ $$rL1 = - - + \overline{O6} O5 O4 \overline{O3} \overline{O2} Ec(\overline{Zg} O4 + \overline{Ar} \overline{O4}) + - - -$$ $$sAw = - - + Ec \overline{Rc} \overline{O6} O5 \overline{O3} \overline{O2} (\overline{P23} \overline{P2} L1 + P2 L3 + P2 3 O4 L1)$$ $$+ - - -$$ The storage of bits shifted from the left end of the B register for entry into the right end of the A register is handled by L3. $$sL3 = - - + \overline{06} O5 \overline{O3} (P24 Bw + - - -) + - - -$$ $rL3 = - - + \overline{06} O5 \overline{O3} (P24 \overline{Bw} + - - -) + - - -$ The shifting of the contents of the B register is handled through L2. Figure 2-20. Division Logic Diagram (Sheet 1 of 2) Figure 2-20. Division Logic Diagram (Sheet 2 of 2) $$sL2 = - - + \overline{O6} O5 \overline{O3} \overline{O2} Ec Br + - - -$$ $$rL2 = - - + \overline{O6} O5 \overline{O3} \overline{O2} Ec \overline{Br} + - - -$$ $$sBw = - - + \overline{O6} O5 O4 \overline{O3} \overline{O2} [Ec \overline{P2} \overline{P3} L2 + - - -]$$ During the division operation, the bits of the quotient are entered into the B register at pulse position P3. $$sBw = - - + \overline{O6} O5 O4 \overline{O3} \overline{O2} \left[Ec P3 (\overline{L5} \overline{L4} + L5 L4) + - - - \right]$$ Each quotient bit is a "1" when the remainder and divisor have like signs, except for the first sector of operation, when the sign of the quotient is formed. During the first sector, indicated by $\overline{L5}$, unlike signs produce a "1" for a negative quotient. Immediately after the last sector of division, the last bit of the quotient is entered into bit position P2 of the B register. $$sBw = - - + \overline{O6} O5 O4 \overline{O3} \overline{O2} \overline{Ec} P2 L4 + - - -$$ The L4 flip-flop compares the sign of the remainder in the A register with the sign of the divisor in the C register at P24. $$sL4 = - - \overline{06} O5 O4 \overline{03} \overline{02} P24 Ec (L1 Cr + \overline{L1} \overline{Cr}) + - - - rL4 = - - \overline{06} O5 O4 \overline{03} \overline{02} P23 L4$$ The new sign of the register A is taken from the L1 flip-flop. The first comparison is made as the division command is read. For normal division, the first signs are taken at P23. For division of a remainder, the first signs are taken at P24 under the control of the code bit in the L1 flip-flop. $$sL4 = - - + \overline{O6} O5 O4 \overline{O3} \overline{O2} \left[- - -P23 Rc \overline{L1} \overline{Zg} + P24 Rc L1 \overline{Zg} \right]$$ When the division command is read at P23 and P24, with Ca = 0 and L4 = 0, $\overline{Zg} = Ar Cr + \overline{Ar} \overline{Cr}$. The following timing charts show some short register division operations: $$(C) = 1/2$$ $$0 0.1 0 0 0 X$$ $$(AB) = -1$$ $$1$$ $$X 1.0 0 0 0 X X 0.0 0 0 0 0$$ $$1 1.0 0 0 0 X X 0.0 0 1 0 0$$ $$1 1.0 0 0 0 X X 0.0 1 0 0 0$$ $$1 1.0 0 0 0 X X 0.1 0 0 0 0$$ $$1 1.0 0 0 0 X X 1.0 0 0 0 0$$ $$(A) = -1$$ $$(B) = -1$$ With four-bit plus sign registers, $1/2 \, \frac{(AB)}{(C)}$ is formed in the B register in four sectors of operation. The operation may be programmed for five sectors to give $\frac{(AB)}{(C)}$ if the quotient is less than one in magnitude. When dividing the non-restored remainder by the C register, the operation should be performed for five sectors to eliminate the quotient's sign. A negative divisor results in a quotient that is a "l's" complement of the desired quotient (see example 4 below). The relationship between the uncorrected remainder in A and the true remainder, R, can be defined as follows: $$R = 1/2$$ (A) if the sign of (A) is the same as the sign of (C) $$R = 1/2 (A) + (C) \text{ if the sign of (A) differs from the sign}$$ of (C) The fractional remainders for the four examples are as follows: I. $$\frac{R}{C} = \frac{1/2 (-1) + (1/2)}{(1/2)} = 0$$ II. $$\frac{R}{(C)} = \frac{1/2 (-11/16) + (11/16)}{(11/16)} = 1/2$$ III. $$\frac{R}{(C)} = \frac{1/2(-6/4) + (3/4)}{(3/4)} = 0$$ IV. $$\frac{R}{(C)} = \frac{1/2 (-1)}{(-1/2)} = 1$$ This fractional remainder, $\frac{R}{(C)}$, represents the correction which must be made to the least significant bit position in the B register. For example, in equation IV above; (3/4)(-1/2) = 2(-13/16 + 1/16) = 2(-12/16) = 1/2 # I. SQUARE ROOT During the execution of command 30, the square root of the contents of the AB register pair is extracted (see Figure 2-21). In the first sector of operation, a trial subtraction of $(0.1)^2$ is made into the A register. In the second sector, the $(0.1)^2$ is added back into the A register and, either $(0.11)^2$ is trial subtracted, if the $(0.1)^2$ will go (remainder in A register positive), or $(0.01)^2$ is trial subtracted, if the $(0.1)^2$ will not go (remainder in A register negative). For example, in the fifth sector, $(0.pqr 1)^2$ is on whether the "1" in $(0.pqr 1)^2$ goes or not. The value of p is a "1" if the first remainder is Figure 2-21. Square Root Block Diagram positive; q is a "l" if the second remainder is positive; etc. Table 2-2 shows the values added into the A register for successive sectors. Table 2-2. SQUARE ROOT OPERATION | Sector No. | If Remainder in A Positive | If Remainder in A Negative | |------------|----------------------------|---| | 1 | -0.01 - | | | 2 | -0.0 1 0 1 p = 1 | p = 0 + 0.0 0 1 1 | | 3 | -0.00 p 1 0 1 q = 1 | q = 0 + 0.0 0 p 0 1 1 | | 4 | -0.000 p q 101 r = 1 | $r = 0 + 0.0 \ 0 \ 0 \ p \ q \ 0 \ 1 \ 1$ | | 5 | -0.0000pqr101s=1 | s = 0 + 0.0 0 0 0 p q r 0 1 1 | These values follow from the arithmetic, since Rule $$(A): (0.pq1)^{2} - (0.pq11)^{2} = -(0.000pq101),$$ $$(B): (0.pq1)^{2} - (0.pq01)^{2} = +(0.000pq01), \text{ etc.}$$ The data handling procedure is similar to that of division; the remainder in the AB register pair is shifted to the left by one position for each sector of operation and the sign of each remainder is used to enter each bit of the answer into the right end of the B register. This allows the bits of the root, p, q, r, etc., to be inserted and retained in bit positions 22, 21, 20, etc., of the C register as they are determined during the basic division process. The information of the new C register number is synchronized by the parity flip-flop, Pc, and the overflow flip-flop, Of, (see Figures 2-22 and 2-23). $$sPc = - - + P24 Ec \overline{O6} O5 O4 \overline{O3} \overline{O2} \overline{O1} \overline{Of} Dg + - - - rPc = - - + Ec \overline{O6} O5 O4 \overline{O3} \overline{O2} \overline{O1} Of Pc$$ $$sOf = - - + \overline{Of} Ec \overline{O6} O5 O4 \overline{O3} \overline{O2} \overline{O1} Pc + - - - rOf = - - + \overline{P23} \overline{O6} O5 O4 \overline{O3} \overline{O2} \overline{O1} + - - -$$ The new value for the C register is formed as Dg = - - + $$\overline{O1}$$ L5 (Of \overline{Pc} Cr + Of \overline{Pc} L4 + \overline{Of} \overline{Pc} Ce) # $\overline{O1}$ L5 F5 F3 $\overline{F2}$ F1 sCw = - - + \overline{Ec} \overline{Rc} $\overline{O6}$ O5 O4 $\overline{O3}$ $\overline{O2}$ $\overline{O1}$ Dg + - -- The L5 flip-flop in its "false" condition $(\overline{L5})$ blocks the normal terms and enters a "1" bit in P21, permitting the starting value of $(0.01)^2$ to be entered in the C register during the first sector of operation. This bit is shifted by the \overline{Of} Pc Ce term
in each succeeding sector. After the bit has been shifted, the sign of each previous remainder and its inverse are entered in the C register by the L4 flip-flop. The balance of the C register is retained after the inverted sign. The new value for the C register is added to, or subtracted from, the A register as described on page 2-48. An example is shown in the following chart, using a set of shortened registers. A minor error is produced in the last sector since the "1" shifted into Pl of the C register is not used to compute the final remainder. The A register should have been zero and the answer in the B register should have been 13/16. Figure 2-22. Square Root, Logic Diagram Figure 2-23. Square Root, Timing Diagram ### J. SHIFT COMMANDS Commands 20 and 21 initiate a shift left of the AB register pair (see Figure 2-24). The A register is shifted left through L1, $$sL1 = - - + \overline{O6} O5 \overline{O3} \overline{O2} Ec (Zg O4 + Ar \overline{O4}) + - - rL1 = - + \overline{O6} O5 \overline{O3} \overline{O2} Ec (\overline{Zg} O4 + \overline{Ar} \overline{O4}) + - - sAw = - - + Ec \overline{Rc} \overline{O6} O5 \overline{O3} \overline{O2} (\overline{P23} \overline{P2} L1 + - - -) + - - + \overline{O6} O5 \overline{O4} \overline{O3} P23 Ar + - - -$$ the B register is shifted left through L2, $$sL2 = - - + \overline{06} O5 \overline{O3} \overline{O2} Ec Br + - - -$$ $$rL2 = - - + \overline{O6} O5 \overline{O3} \overline{O2} Ec \overline{Br} + - - -$$ $$sBw = - - + Ec \overline{Rc} \overline{O6} O5 \overline{O4} \overline{O3} \overline{O2} \overline{P2} L2 + - - -$$ while the shift left from B to A is handled through L3. $$sL3 = - - + \overline{O6} O5 \overline{O3} (P24Bw + - - -) + - - rL3 = - - + \overline{O6} O5 \overline{O3} (P24\overline{Bw} + - - -) + - - sAw = - - + Ec \overline{Rc} \overline{O6} O5 \overline{O3} \overline{O2} (- - - + P2L3 + - - -) + - - -$$ Commands 22 and 23 initiate a shift right of the AB register pair (see Figure 2-25). The A register is shifted right through Ae, $$sAw = - - + Ec \overline{Rc} \overline{O6} O5 \overline{O4} \overline{O3} O2 \overline{P23} Ae + \overline{O6} O5 \overline{O4} \overline{O3} P23 Ar$$ $$+ - - -$$ the B register is shifted right through Be, $$sBw = - - + Ec \overline{Rc} \overline{O6} O5 \overline{O3} O2 (\overline{P23} Be + - - -) + - - -$$ while the shift right from A to B is handled through L3, $$sL3 = - - + \overline{06} O5 \overline{O3} (- - + P2 Ar) + - - rL3 = - - + \overline{06} O5 \overline{O3} (- - + P2 \overline{Ar}) + - - sBw = - - + Ec \overline{Rc} \overline{O6} O5 \overline{O3} O2 (- - + P23 L3) + - - -$$ Figure 2-24. AB Shift Left Logic Diagram Figure 2-25. AB Shift Right Logic Diagram During left shifts the C register is incremented by "-l's," while during right shifts, the C register is incremented by "+l's" (see Figure 2-26). $$sCw = -- + Ec \overline{Rc} O5 \overline{O4} Zg + -- -$$ $$Xg = -- + O5 \overline{O4} \overline{O3} \overline{L4} (\overline{O2} + P2)$$ $$Yg = -- + O5 \overline{O4} Cr$$ $$rCa = -- + O5 P24$$ All shift commands are terminated by the sector number of the command, except that shifting stops when the sign and most significant digit of A become different (command 20 is changed to 24), or when C becomes positive (command 23 is changed to 27). $$sO3 = - - + P2 3 \overline{O6} O5 \overline{O4} \overline{O3} \overline{O2} \overline{O1} (Aw \overline{Ar} + \overline{Aw} Ar)$$ $$+ P24 \overline{O6} O5 \overline{O4} \overline{O3} O2 O1 \overline{Cw} + - - -$$ ### K. <u>MISCELLANEOUS COMMANDS</u> The halt command, 00, is used to set the parity flip-flop, Pc, during phase 3 (wait to execute). $$sPc = - - + EcRc \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{O2} \overline{O1}$$ This locks the computer in phase I (wait to read next command), until the parity flip-flop is cleared with the BREAK POINT switch. Command 26 is used to transfer data from the memory line to line 7. $$sM7w = - - + \boxed{M0g N7g Wg} \boxed{M7r (\overline{06} O5 \overline{04} O3 O2 \overline{01} Ec)}$$ $$+ (\overline{06} O5 \overline{04} O3 O2 \overline{01} Ec) Fg \boxed{}$$ $$rM7w = - - + \boxed{M0g N7g Wg} \boxed{\overline{M7r} (\overline{06} O5 \overline{04} O3 O2 \overline{01} Ec)}$$ $$+ (\overline{06} O5 \overline{04} O3 O2 \overline{01} Ec) \overline{Fg} \boxed{}$$ Command 40 extends the bit pattern in the A register where there are Figure 2-26. Incrementing C Register Logic Diagram corresponding "l's" in memory. $$sAw = -- + Ec \overline{Rc} O6 \overline{O5} \overline{O4} \overline{O3} \overline{O2} \overline{O1} Fg Aw + -- -$$ $$+ Ar \left[Ec \overline{Rc} (O6 \overline{O5} \overline{O4} \overline{O3} \overline{O2} \overline{O1} Fg + -- -) \right]$$ Command 41 records the signal from the parity flip-flop, Pc, into the A register while Pc is generating the parity signal for the data in the A register. $$Ig = --+ \overline{P24} \overline{O6} \overline{O2} O1 Ar + ---$$ $$sPc = Ec \overline{Rc} \overline{P1} \overline{O5} \overline{O3} Ig \overline{Pc} + ---$$ $$rPc = Ec \overline{Rc} \overline{P1} \overline{O5} \overline{O3} Ig Pc + ---$$ $$sAw = ---+ Ec \overline{Rc} \overline{C} \overline{O6} \overline{O4} \overline{O3} \overline{O2} O1 Pc + ---$$ Commands 42, 46, and 47 perform logical operations on the contents of the B register. For both command 42 and 46, the contents of the C register are gated into the B register where there are corresponding "1" bits in memory. $$sBw = --+Ec \overline{Rc} O6 \overline{O5} \overline{O4} O2 \overline{O1} Fg Cr +---$$ For both commands 46 and 47, each B register bit is cleared where there is a corresponding "1" bit in memory. sBw = $$- - + \overline{P1} Br \left[\overline{Ec} \, \overline{Rc} \, \left(\overline{O6} \, \overline{O5} \, \overline{O4} \, \overline{O3} \, \overline{O2} \, Fg + - - - \overline{D} \right) \right]$$ The remaining clearing terms for B are interpreted as follows: The clearing terms for the A register are as follows: The clearing terms for the C register are as follows: The justification for clearing the contents of these registers for the indicated commands can be found by referring to the command list in Table 2-1. In the case of the C register, the indicated clearing for commands 24, 25, 26, and 27 is prevented by recirculation through the adder. $$sCw = - - + Ec \overline{Rc} O 5 \overline{O4} Zg + - - Xg = - - + O6 O 5 \overline{O4} + O5 \overline{O4} \overline{O3} \overline{L4} (\overline{O2} + P2)$$ $Yg = - - + O5 \overline{O4} Cr$ Command 56 is used to set the overflow flip-flop, Of, and then reset it if there is any difference between the A register and memory. $$sOf = - - + P24 Rc O6 \overline{O5} O4 O3 O2 \overline{O1}$$ $$rOf = - - + \overline{P1} \overline{P24} Ec \overline{Rc} O6 \overline{O5} O4 O3 O2 \overline{O1} (Fg \overline{Ar} + \overline{Fg} Ar)$$ Command 70 generates a signal to pulse a unit external to the computer. The control pulse execution signal is as follows: Cpg = Ec O6 O5 O4 $$\overline{O3}$$ $\overline{O2}$ $\overline{O1}$ The transmitted output code is taken from L1, L2, L3, L4, and L5. Command 72 generates a serial output from the memory line. The format mask is taken from the same command line from which command 72 is read. $$Gsg = Ec O6 O5 O4 \overline{O3} O2 \overline{O1} Vg \overline{P1} \overline{P24}$$ $$Gdg = Fg$$ Command 73 provides a serial input to the memory line. The format mask is taken from the same command line from which command 73 is read. $$Hsg = Ec O6 O5 O4 \overline{O3} O2 O1 Vg \overline{P1} \overline{P24}$$ $Ig = --+\overline{P24} O6 O5 O2 Vg Hdg + ---$ Command 77 is used for testing a number of external signals. The memory line number of the command is used to select 1 of 32 inputs. The \$\overline{\text{T27}}\$ signal is connected to the magnetic tape clock signal, \$\overline{\text{Uc}}\$ and the \$\overline{\text{T28}}\$ signal is jumpered to the photo tape reader sprocket signal, \$\overline{\text{Sc}}\$. ### L. INPUT AND OUTPUT The input operation on the PB 250 is shown in Figure 2-27. Input and output is handled on an individual character basis. Each 8-bit input character is entered into the buffer section of the sector counter. Each 8-bit output character is transmitted by a character output command and is presented by the operand line selector register flip-flops, L5, L4, L3, L2, and L1, and the operation code register flip-flops, O3, O2, and O1. For character input control, the Rf and Tf flip-flops are controlled by commands 50, 51, 52, and 53. $sRf = Ec O6 \overline{O5} O4 \overline{O3} O2 + - - -$ $rRf = Ec O6 \overline{O5} O4 \overline{O3} \overline{O2} + - - -$ $sTf = Ec O6 \overline{O5} O4 \overline{O3} O1$ $rTf = Ec O6 \overline{O5} O4 \overline{O3} \overline{O1} + - - -$ The function of these flip-flops is to control the input devices. The condition Rf \overline{Tf} is used to energize the reader release magnet, LR, and to energize the reader contacts return. The condition \overline{Rf} Tf is used to energize the "type light" and the typewriter contacts return. A gate line for the fast readers is energized by the condition Rf Tf. The signals from the reader common, Rf and the signals from the typewriter common, Rf Tf are used to reset Rf and Tf, respectively. $$rRf = ---+$$ Fi Mr $(P8-P15)+$ Rc Ec $rTf = ---+$ Tc Ec r Fi $(P8-P15)$ Figure 2-27. Buffer Input The input code signals are (R1), (R2), (R3), (R4), (R5), (R6), (R7), and (R8) from the mechanical tape reader, (T1), (T2), (T3), (T4), (T5), and (T6), from the typewriter. (\$1), (\$2), (\$3), (\$4), (\$5), (\$6), (\$7), and (\$8) from the photo tape reader. (U1), (U2), (U3), (U4), (U5), (U6), (U7), and (U8) from the magnetic tape reader. These parallel codes are serialized in pulse positions P24, P1, P2 - - - P6, and P7, and entered into the buffer section of the sector counter. Bg = P24 (R1 + S1 + T1 + U1) + P1 (R2 + S2 + T2 + U2) + P2 (R3 + S3 + T3 + U3) + P3 (R4 + S4 + T4 + U4) + (P24-P7) F3
$$\overline{F2}$$ $\overline{F1}$ (R5 + S5 + T5 + U5) + (P24-P7) F3 $\overline{F2}$ F1 (R6 + S6 + T6 + U6) + (P24-P7) F3 F2 $\overline{F1}$ (R7 + S7 + U7) + (P24-P7) F3 F2 F1 (R8 + S8 + U8) $$sSw = - - + Bg \overline{Qg}$$ $rSw = - - + \overline{Sc} \overline{Sr} \overline{Bg} + Qg \overline{Bg}$ Each eight-bit code from the mechanical tape reader and from the type-writer is entered into the buffer before the corresponding common signal sets the condition \overline{Rf} \overline{Tf} . This entry is made for the "l's" of the code to prevent dropouts due to contact chatter. When the state \overline{Rf} \overline{Tf} is set, the reader and typewriter contact returns are deenergized to terminate the input signals to the buffer. The code is then cleared from the buffer and loaded into the A register with command 55. #### 2-9. BUFFER CLEARING The bits from the buffer are delayed through Sw and L1 flip-flops to place the first code bit in P2 of the A register. The number of code bits entered into the A register is controlled by a format word in the command line and by the L1 Vg term. The Ar $\overline{\text{Vg}}$ term preserves the balance of the A register. For the buffer clearing term, Qg, the P24 position is cleared as the command is executed, while positions P1 through P7 are cleared in the first sector after execution. This first sector after execution may be phase 1 or phase 2; therefore O2 which changes at P2 of phase 2, must be omitted from the clearing term. This requirement results in command 57 being a buffer clearing command also. If commands 51 or 52 are repeated while the input contacts are still closed, the same input code will be entered into the buffer and the same common contact signal will again reset the condition \overline{Rf} \overline{Tf} . In the case of fast tape readers, the computer program must phase the use of commands 55 and 57, based on sensing an input clock signal with command 77. The output operation of the PB 250 is shown in Figure 2-28. An 8-bit character output code is presented by O3, O2, O1, L5, L4, L3, L2, and L1 when commands 60 through 67 are executed. The destination is coded by Figure 2-28. Character Output Operation the command line selector register flip-flops, K3, K2, K1. The output character execute signal is Cog. $$Cog = Ec O6 O5 \overline{O4}$$ The duration of execution of a character output command is controlled by decreasing a control number in the C register by one count for each sector of execution. $$Xg = ---+O6 O5 \overline{O4} + ---$$ $$Yg = ---+O5 \overline{O4} Cr$$ $$sCw = ---+Ec \overline{Rc} O5 \overline{O4} Zg + ---$$ While the register remains positive, the Is flip-flop is prevented from indicating a sector comparison to terminate phase 4. rIs = $$--+P23$$ Ec Rc O6 O5 $\overline{O4}$ \overline{Cr} If the C register starts with a large positive number, the execution phase may extend to 25 seconds. If the C register is zero or negative, the execution duration will be controlled entirely by the memory sector number of the command. The "type output character" and "punch output character" execute signals are provided as follows: $$Tg = Ec O6 O5 \overline{O4} K3 \overline{K2} K1$$ $$Pg = Ec O6 O5 \overline{O4} K3 K2 \overline{K1}$$ The code selector signals are also provided for the typewriter and punch. | LTl | = | LlTg | LPl | = | LlPg | |-----|-----|-------|-----|---|-------| | LT2 | = | L2 Tg | LP2 | = | L2 Pg | | LT3 | = | L3Tg | LP3 | = | L3Pg | | LT4 | . = | L4 Tg | LP4 | = | L4 Pg | | LT5 | = | L5Tg | LP5 | = | L5 Pg | | LT6 | = 1 | OlTg | LP6 | = | OlPg | | | | | LP7 | = | O2 Pg | | | | | LP8 | = | O3 Pg | # M. BOOTSTRAP INPUT Figure 2-29 illustrates the bootstrap input. Bootstrap is an input means for loading line 01 from a special tape without the use of a program in the computer. The special tape format is indicated as follows: | | 35) | (B4) | (B3) | (B2) | (B1) | | |------|-----|------|------|------|------|-----------------| |]. 1 | 0 | ` 1 | 1 | 1 | 0 | Carriage Return | | 1 0 | 0 | 0 | 0 | 0 | 0 | Zero for 0's | | 1 0 | 0 | 1 | 0 | 0 | 0 | H for l's | | 0 | 1 | 0 | 0 | 0 | 0 | Space Code | | 0 (| 0 | 1 | 0 | 1 | 1 | Stop Code | | 0 (| 0 | 0 | 0 | 0 | 0 | Feed Code | | | | | | | | | | C | С | "1" | | | S | | | 0 | 0 | | | | Т | | | M | M | | | | Ο | | | M | M | | | | P | | | 0 | 0 | | | | | | | N I | N | | | | | | Figure 2-29. Bootstrap Input Channel 4 provides the binary input data, while channel 1 provides the stop code. In the case of a photo tape reader or a magnetic tape reader, channel 6 provides an input common signal and channel 5 provides an input common signal. These signals are provided by Rc and Rc in the case of a mechanical reader. The input is started by closing the FILL switch and resetting the parity flip-flop if it is set. If a mechanical reader is used, Mr is "true" and Rf \overline{Tf} is set to release the reader. Otherwise, Rf \overline{Tf} is set. $$sRf = ---+ Fi$$ \overline{Pc} (P8-P15) Mr $rRf = ---+ Fi$ Mr (P8-P15) + Rc \overline{Ec} $rTf = ---+ Fi$ (P8-P15) To start a photo tape reader or a magnetic tape reader, start and stop signals are generated from the parity flip-flop. Bootstrap Start = $$\overline{\text{Fi}}$$ $\overline{\text{Pc}}$ Bootstrap Stop = $\overline{\text{Fi}}$ $\overline{\text{Pc}}$ The input process is stopped by setting the parity flip-flop as soon as the first "1" bit in channel 1 is detected. While the FILL switch is depressed, computation is blocked by the Fi term in sRc. When the FILL switch is released, computation will still be blocked by the EcRcPcPl term of rRc. If it is necessary to put a new tape in the reader, the "I" key of the typewriter must be depressed while the ENABLE switch is depressed, to allow computation to start at memory word zero. At this time the BREAK POINT switch can be depressed to reset the Pc flip-flop. While the bootstrap input is in operation, each "common" signal is detected by the O3 flip-flop. The "common" signal that follows is then detected by the O4 flip-flop. $$sO3 = - - + \overrightarrow{Fi}$$ $B6$ $sO4 = - - + \overrightarrow{Fi}$ $B5$ $\overline{O4}O3$ After O4 is set, O5 is set for one machine cycle, synchronized by O6; then O3, O4, and O5 are reset simultaneously. $$sO5 = - - + Fi$$ $P23 O6 \overline{O5} O4$ $rO5 = - - + Fi$ $P23 O6 O5$ $rO4 = - - + Fi$ $P23 O6 O5 + - - -$ $rO3 = - - + Fi$ $P23 O6 O5$ $sO6 = - - - + Fi$ $P23 O6 O5$ $sO6 = - - - + Fi$ $F4 F3 F2 F1 Sr Sc$ $rO6 = Fi$ $P23 + - - -$ While the "common" signals are detected by O3, the "l" bits in channel 4 are entered into the Ol flip-flop. Before each input character, Ol is cleared by the (Fi) 03 term. With the FILL switch depressed, O6 is set once per machine cycle when all "l's" are read in Sr during the interval (P8-P15). This marks each machine cycle and serves to synchronize the second number in the sector counter. $$Qg = ---+ (Fi) O6 + ---$$ While O5 is set, the contents of line 01 are shifted by one bit through the O1 flip-flop. This enters each bit from the O1 flip-flop into line 01. $$sOl = - - + \underbrace{Fi} O5 Mlr$$ $$rOl = - - + \underbrace{Fi} O5 \overline{Mlr}$$ $$sMlw = - - + \underbrace{M0g Nlg Wg} \underbrace{Mlr} \underbrace{\underbrace{Fi} O5} + \underbrace{Fi} O5 O1$$ $$rMlw = - - + \underbrace{M0g Nlg Wg} \underbrace{\overline{Mlr}} \underbrace{(Fi) O5} + \underbrace{Fi} O5 \overline{O1}$$ The following chart indicates signal sources for various readers. | | B 6 | B 5 | B4) | B l) | Mr | |-------------------|-------------|------------|----------------------------|---------------------------|----| | Mechanical Reader | Rc | Rc | \mathbb{R}^4 | \mathbb{R} 1) | 1 | | Photo Reader | (S6) | (S5) | $\overline{(\mathbf{S4})}$ | $\widetilde{\mathbb{S}1}$ | 0 | | Mag. Tape Reader | <u>U6</u>) | U5 | $\boxed{04}$ | \bigcirc 1 | 0 | The Bootstrap input connector selects the source of (B6), (B5), (B4), (B1), and (Mr). The input bits are entered at P24 of word (376)₈ of line 01 and precess into words (377)₈, 00, 01, 02, 03, etc. The input rate is limited by the rate of precessing bits into line 01. A tape for use with the mechanical reader should be prepared as follows: A tape for use with the photo reader should be prepared as in the preceding example, but with two-space codes before each code shown. A magnetic tape for use as a bootstrap should have 14-space codes between each code shown. These space codes are to allow two machine cycles between input characters. ### N. MAGNETIC TAPE With six bits per character and three or four characters per word, a 2 kc input rate can result in an input rate as high as 667 words per second, or two words per machine cycle. The program presented here allows for this rate, with blocks of up to 272 words or 816 characters. The end-of-block will be detected by the tape handler, using either code or gap detection. The program assembles words in the A register with LSD commands, assembles 16-word groups in L0 with IAM commands, and precesses the 16-word groups into L4 through a 16-word buffer register, L15, with DUMP operations. The first group is precessed into memory locations 04-255 through 04-014, then into memory locations 04-015 through 04-030, etc. The input program is a cyclic set of 16 commands in one line. The tape reader is started by a PTU command and control is immediately switched to the input program. While waiting for input characters, the program tests the input clock every 192 μ sec. When a character is detected, it is transferred to the A register and shifted left. If the character completes a word in the A register, the shift is replaced by an IAM transfer to L0. When a clock signal is detected, the input clock is tested after 384 μ sec rather than 192 μ sec. This limits the signal width between 232 μ sec and 384 μ sec, and the peak input rate is limited to 2600 characters per second. The detailed commands are listed in Table 2-3. Table 2-3.
MAGNETIC TAPE INPUT COMMAND LIST | Word | Command | Function | |------|---------|---| | 0 | TES | Tests input clock. "No" equals an input signal. | | 1 | CIB | Clears input buffer immediately before each character is accepted. | | 3 | LAI | Loads input character. | | 5 | (M) | Input mask for LAI. | | 6 | TBN | Tests for a "one-bit" shifted into sign of B register ter to indicate completed word in A register. | | 7 | EBP | Stretches bit into sign position of A register. | | 11 | (M) | Mask for EBP. | | 10 | LDB | Restores B register after each word is formed in A register. | | 14 | (B) | Marker bit for B register. | | 15 | IAM | Precesses A register into L0 for 16 sectors. | | 12 | TCN | Tests for completion of 16 new words in L0. C register starts out negative and counts down to positive with LSD commands. | | 13 | DUMP | Starts transfer of 16 words in L0 to long line 04. | | 2 | LDC | Restores count to C register after each 16 words in L0. | | 8 | (C) | Number for LDC. | | 9 | LSD | Shifts A register left. The LSD command may be placed in position 10 and LDB in position 9 for 5-bit input. | The program exit is not indicated. The tape handler detects its own end-of-block and signals the computer with a dc level. One 16-word program block can branch out to another command line to test for the stop signal. For example: ### 2-10. SIGNAL TOLERANCES The input signals are accepted following the detection of a clock signal. This allows a tape skew of up to 36 $\mu\,sec$, i.e., a signal need not occur until 36 $\mu\,sec$ following the clock. The minimum duration of signals is also influenced by this 38 $\mu\,sec$, i.e., each signal must be present from 36 $\mu\,sec$ following the clock to 232 $\mu\,sec$ following the clock. The DUMP command is a PTU command with an assigned line number. It sets in motion a sequence of data handling operations. The phases of operation are controlled by flip-flops. | Phase 2 | Phase 1 | | |---------|---------|---| | 0 | 0 | Idle, wait for DUMP command. | | 0 | 1 | During IAM to L0, send shifted data from L0 \longrightarrow L15 and | | | | send data from L15 — L0. | | 1 | 1 | Idle and wait for start of machine cycle. | | 1 | 0 | Precess L4 through L15 for one machine cycle. | The DUMP command is useful for taking data from L4 for recording on magnetic tape as well as storing data in L4 when reading from magnetic tape. ### 2-11. ALTERNATE PROGRAMS If the input signals are different, the input program may require some alteration. Two other possible input signals are shown below. For the two types of signals shown above, the following program can be used. The LAI command clears the buffer. The timing of the preceding program is as follows: # A. DESCRIPTION OF NOTATION $$\begin{array}{ccc} & \text{sF2} & = \overline{\text{F2}} & \text{F1} \\ & \text{F2} & & \\ & \text{rF2} & = \text{F2} & \text{F1} \end{array}$$ This notation signifies a high frequency flip-flop, F2, with its set input identified by sF2 and its reset input identified by rF2. The set and reset inputs have clock input signals implied. $$Lg = Ec + Rc + F5 + F4 F3 + F4 F2 + F4 F1 + P24_3 + P1$$ This notation signifies a high frequency gate signal generated through an inverter for flip-flop input gates. No clock input signal is involved. $$\boxed{\text{Nog}} = \overline{\text{L3}} \ \overline{\text{L2}} \ \overline{\text{L1}}$$ This notation signifies a low frequency gate signal generated with emitter followers. No clock input signal is involved. $$\begin{bmatrix} Vg & = \overline{K4} \overline{K3} \overline{K2} \overline{K1} M0r + \overline{K4} \overline{K3} \overline{K2} K1 M1r + --- \\ \overline{Vg} & = (\overline{Vg}) \end{bmatrix}$$ This notation signifies a high frequency gate signal pair generated through a double inverter. slw = $$\overline{\text{Ec}}$$ Rc (P16-P23) Vg + - - + Ir $\left[\overline{\text{Ec}}$ Rc (P16-P23) + - - $\right]$ Iw rlw = $\overline{\text{(sIw)}}$ These notations signify a flip-flop, Ir, that receives set and reset inputs from another flip-flop, Iw, through a 22 pulse-time delay time. The clock, as shown before, is implied for these high frequency flip-flops. These notations signify power driver output stages which operate magnet coils that are returned to -48v. No clock is used. These notations signify, respectively, the contents of the A Register, the contents of the B Register, and the contents of the C Register. ### B. GLOSSARY OF TERMS A register flip-flops, early, read, write. Ae, Ar, Aw: Bootstrap input character signals. (в5 B register flip-flops, early, read, write. Be, Br, Bw: BREAK POINT switch. (Bp)Eight-bit character scanning buffer gate. Bg: C register flip-flops, early, read, write. Ce, Cr, Cw: Adder carry flip-flop. Ca: Output character gate signal (Commands Cog: 60-67). Control pulse output signal for command 70. Cpg: Denominator gate signal. Dg: Control flip-flop indicating waiting to Ec: execute or execute command. End of execute gate. Eg: ENABLE switch signal. $E\eta$ Pulse-time counter flip-flops. F5, F4, F3, F2, F1: "Fetch" gate information from line selected Fg: by L5, L4, L3, L2, L1. FILL switch signal. "Fetch" gate information, from lines 16 Fxg: and higher in accessory memory expansion. Output data signal for command 72. Gdg: Output shift signal for command 72. Gsg: Hdg: Input data signal for command 73. Hsg: Input shift signal for command 73. Ig: Information gate signal from (A), (B), (C), Vg, Hdg, and parity. Ir. Iw: Instruction register flip-flops, read, write. Is: Instruction and sector registers comparison flip-flop. Branch control input signals. Jg: Branch control input selector gate signal. Command line selector register flip-flops. K3, K2, K1: Kg: Command line register gate signal. L5, L4, L3, L2, L1: Operand line selector register flip-flops. Lg: Operand line selector register shift signal. LP1, LP2, --- LP8: Punch code magnet signals. LPC: Punch clutch magnet signal. LR: Reader release magnet. LT1, LT2, ---LT6: Typewriter translator code magnet signals. LTC: Typewriter translator clutch magnet signal. M3g, M2g, M1g, M0g: Line selector signals decoded from L5 and L4. M0r, M1r ---: Memory line read flip-flops. M0w, M1w, ---: Memory line write flip-flops. Mechanical reader bootstrap input control levels. N7g, -- N0g: Line selector signals decoded from L3, L2 and Ll. Oc, O6, O5, O4, O3, O2, O1: Operation code register flip-flops. Overflow flip-flop. Operation code register shift signal. Pulse times decoded from F5, F4, F3, F2, F1. Of: Og: P1, P2, P3, P23, P24: | (P24-P7) (P8-P15)
(P16-P23): | Pulse time intervals decoded from F5, F4, F3, F2, F1. | |---------------------------------|---| | Pc: | Parity check flip-flop. | | Pg: | Punch gate signal (commands 60-67 command line 6). | | Qg: | Clear signal for input character buffer. | | R8 R1: | Eight-bit character signals from mechanical reader. | | Rc): | Reader common signal. | | Rc: | Control flip-flop indicating read command or wait to execute. | | Rf: | Input control flip-flop, indicates reader input. | | S8 S1: | Eight-bit character input signals (photo reader). | | Sc: | Carry flip-flop for sector counter register. | | Sr, Sw: | Sector counter register flip-flops, read, write. | | (T6) (T1): | Six-bit typewriter character signals. | | Tb: | Typewriter busy signal. | | (Tc): | Typewriter common signal. | | Tf: | Input control flip-flop, indicating type-writer input or fast reader input. | | Tg: | Typewriter gate signal (Commands 60-67 command line 5). | | (U8) (U1): | Eight-bit character input signals (magnetic tape reader). | | Vg: | Next command gate signal, selected by K3, K2, K1. | | Wg: | Gate signal for the control of writing into the memory. | | Xg: | Input term for adder (addend). | | | | | Yg: | Input term for adder (augend) | |-----|-------------------------------| | Zg: | Adder output signal. | ### C. COMPLETE LOGICAL EQUATIONS ## C-1. PULSE AND SECTOR COUNTERS $$Sw = Sc \overline{Sr} \overline{Qg} + \overline{Sc} Sr \overline{Qg} + Bg \overline{Qg}$$ $$rSw = Sc Sr + \overline{Sc} \overline{Sr} \overline{Bg} + Qg \overline{Bg}$$ $$Sr = (Sw \text{ delayed by 22 pulse times})$$ $$rSr = (\overline{Sw} \text{ delayed by 22 pulse times})$$ $$Qg = \overline{Ec} O6 \overline{O5} O4 O3 O1 \overline{P24} (P24-P7) + \overline{Fi} O6$$ $$+ \underline{Cpg} \overline{M3g} \overline{N7g} * + Ec \overline{Rc} O6 \overline{O5} O4 O3 O1 P24$$ $$\overline{Qg} = \overline{(Qg)}$$ ## C-2. INSTRUCTION REGISTER AND CONTROL $$\begin{bmatrix} E_{C} & sE_{C} & = P24 \ \overline{E_{C}} \ R_{C} \\ & rE_{C} & = E_{g} + E_{C} \ O5 \ O4 \ O3 \ \overline{O_{C}} + E_{C} \ \overline{R_{C}} \ P_{C} \ P_{C} \ P_{C} \ P_{C} \\ & &
\\ & & \\ &$$ ^{*} Optional sync terms for multiple computer operation. sIw = $$\overline{\text{Ec}} \text{ Rc (P8-P15) Sr} + \overline{\text{Ec}} \text{ Rc (P16-P23) Vg} + \text{Ec Oc (P8-P15)}$$ Sr + $\overline{\text{P24}} \text{ (P24-P7) M3g N7g Wg Ig}$ Iw + $\overline{\text{Ir}} \left[\overline{\text{Ec}} \text{ Rc (P8-P15)} + \overline{\text{Ec Rc (P16-P23)}} + \text{Ec Oc (P8-P15)} \right]$ + $\overline{\text{(P24-P7) M3g N7g Wg}} + \overline{\text{En (T6) T5}}$ TIw = $\overline{\text{(sIw)}}$ # C-3. OP CODE REGISTER soc = Og Vg + En P24 Is $$\overline{\text{Ec}}$$ $\overline{\text{Rc}}$ $\overline{\text{T6}}$ $\overline{\text{T5}}$ $\overline{\text{T2}}$ $\overline{\text{T1}}$ + P23 $\overline{\text{Ec}}$ Rc O5 O4 O3 ($\overline{\text{O6}}$ Ig + $\overline{\text{O2}}$ $\overline{\text{O1}}$ Cr + O6 $\overline{\text{O2}}$ O1 Of + O6 O2 O1 Jg) roc = Og $\overline{\text{Vg}}$ + Eg $$\begin{bmatrix} sO6 & = Og Oc + (Fi) F4 F3 F2 F1 Sr Sc \\ rO6 & = Og Oc + (Fi) P23 \end{bmatrix}$$ $$\begin{bmatrix} sO5 & = Og O6 + (Fi) P23 O6 \overline{O5} O4 \\ rO5 & = Og \overline{O6} + (Fi) P23 O6 O5 \end{bmatrix}$$ $$\begin{bmatrix} sO4 & = Og O5 + (Fi) (B5) \overline{O4} O3 \\ rO4 & = Og \overline{O5} + (Fi) P23 O6 O5 \end{bmatrix}$$ sO3 = Og O4 + P23 $$\overline{O6}$$ O5 $\overline{O4}$ $\overline{O3}$ $\overline{O2}$ $\overline{O1}$ (Aw \overline{Ar} + \overline{Aw} Ar) + P24 $\overline{O6}$ O5 $\overline{O4}$ $\overline{O3}$ O2 O1 \overline{Cw} + \overline{Fi} $\overline{B6}$ rO3 = Og $\overline{O4}$ + \overline{Fi} P23 O6 O5 o2 = Og O3 + $$\overline{\text{Ec}}$$ Rc P2 Vg rO2 = Og $\overline{\text{O3}}$ + P24 Ec $\overline{\text{Rc}}$ $\overline{\text{O6}}$ $\overline{\text{O5}}$ O1 + P24 Ec $\overline{\text{Rc}}$ $\overline{\text{O6}}$ $\overline{\text{O5}}$ O4 O3 + $\overline{\text{Ec}}$ Rc P2 $\overline{\text{Vg}}$ $$\begin{bmatrix} sO1 & = Og O2 + (Fi) (B4) (\overline{O5} + (Fi) O5 M1r \\ rO1 & = Og (\overline{O2} + (Fi) (\overline{O3} + (Fi) O5 (\overline{M1}r) \end{bmatrix}$$ Og = \overline{Ec} Rc F4 # C-4. OPERAND LINE SELECTOR sL5 = Lg $$\overline{O2}$$ Vg + Lg O2 Iw + $\overline{O6}$ O5 $\overline{O3}$ P24 Ec L5 rL5 = Lg $\overline{O2}$ \overline{Vg} + Lg O2 \overline{Iw} sL4 = Lg L5 + $$\overline{06}$$ O5 O4 $\overline{O3}$ $\overline{O2}$ [P24 Ec (L1 Cr + $\overline{L1}$ \overline{Cr}) + P23 Rc $\overline{L1}$ \overline{Zg} + P24 Rc L1 \overline{Zg}] + $\overline{O6}$ O5 O4 $\overline{O3}$ O2 $\overline{O1}$ P1 Be \overline{Br} rL4 = Lg $\overline{L5}$ + $\overline{O6}$ O5 O4 $\overline{O3}$ $\overline{O2}$ P23 L4 + $\overline{O6}$ O5 O4 $\overline{O3}$ O2 $\overline{O1}$ P24 sL3 = Lg L4 + $$\overrightarrow{06}$$ O5 $\overrightarrow{03}$ (P24 Bw + P2 Ar) + $\overrightarrow{06}$ O5 O4 $\overrightarrow{03}$ O2 $\overrightarrow{01}$ Ec L5 Be rL3 = Lg $\overrightarrow{L4}$ + $\overrightarrow{06}$ O5 $\overrightarrow{03}$ (P24 \overrightarrow{Bw} + P2 \overrightarrow{Ar}) + $\overrightarrow{06}$ O5 O4 $\overrightarrow{03}$ O2 $\overrightarrow{01}$ Ec L5 \overrightarrow{Be} sL2 = Lg L3 + $$\overline{06}$$ O5 $\overline{03}$ $\overline{02}$ Ec Br + $\overline{06}$ O5 O4 $\overline{03}$ O2 $\overline{01}$ P1 Be Br L2 = Lg L3 + $\overline{06}$ O5 O3 O2 Ec Br + $\overline{06}$ O5 O4 $\overline{03}$ O2 $\overline{01}$ P24 *L0 and M4g thru M7g are options for memory expansion. ``` Vg = \overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, M0r + \overline{K4} \, \overline{K3} \, \overline{K2} \, K1 \, M1r + \overline{K4} \, \overline{K3} \, K2 \, K1 \, M2r \\ + \overline{K4} \, \overline{K3} \, K2 \, K1 \, M3r + \overline{K4} \, K3 \, \overline{K2} \, \overline{K1} \, M4r + \overline{K4} \, K3 \, \overline{K2} \, K1 \, M5r \\ + \overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, M6r + \overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, M7r + \overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, M10r \\ + \overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, M11r + --- + \overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, M16r + \overline{K4} \, \overline{K3} \, \overline{K2} \\ \overline{K1} \, M17r \\ \overline{Vg} = (\overline{Vg}) ``` # C-6. A REGISTER $$\begin{bmatrix} Ar & sAr & = Ae \\ rAr & = \overline{Ae} \end{bmatrix}$$ ### C-7. B, REGISTER $+ 05 \overline{04} + \overline{06} 05 04 \overline{03} \overline{02} \overline{01})$ = (sCw) rCw + $\overrightarrow{P24}$ Cr [Ec \overrightarrow{Rc} ($\overrightarrow{O5}$ $\overrightarrow{O4}$ O3 $\overrightarrow{O2}$ $\overrightarrow{O1}$ + $\overrightarrow{O6}$ $\overrightarrow{O5}$ $\overrightarrow{O4}$ $\overrightarrow{O3}$ sOf = P23 Ec $$\overline{Rc}$$ $\overline{O6}$ $\overline{O5}$ O4 O3 $\overline{O2}$ $\overline{(Xg)}$ \overline{Yg} Ca + Xg Yg \overline{Ca}) + \overline{Of} Ec $\overline{O6}$ O5 O4 $\overline{O3}$ $\overline{O2}$ $\overline{O1}$ Pc + P24 Rc O6 $\overline{O5}$ O4 O3 O2 $\overline{O1}$ of = P23 Ec O6 O5 O4 O3 $\overline{O2}$ O1 + P23 $\overline{O6}$ O5 O4 $\overline{O3}$ $\overline{O2}$ $\overline{O1}$ + $\overline{P1}$ $\overline{P24}$ Ec \overline{Rc} O6 $\overline{O5}$ O4 O3 O2 $\overline{O1}$ (Fg \overline{Ar} + \overline{Fg} Ar) ## C-10. DATA TRANSFER GATES $$\begin{bmatrix} Fg & = M0g N0g M0r + M0g Nlg Mlr + --- + Mlg N7g Ml5r \\ + M3g N7g Ir + Fxg \\ \hline Fg & = (Fg) \end{bmatrix}$$ $$| Wg | = (\overline{O6} \overline{O5} \overline{O4} \overline{O3} + \overline{O6} \overline{O5} \overline{O4} \overline{O3} + \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{O2} \overline{O1}) \times \overline{Rc} \overline{Rc}$$ $$Ig = \overline{P24} \overline{O5} \overline{O2} \overline{O1} Cr + \overline{P24} \overline{O6} \overline{O2} O1 Ar + \overline{P24} \overline{O4} \overline{O2} Ar + \overline{P24} \overline{O6} O2 Br + \overline{P24} O6 O5 \overline{O2} Vg + \overline{P24} O6 O5 O2 Vg Hdg + P24 Pc \overline{Ig} = (\overline{Ig})$$ sPc = Ec $$\overline{Rc}$$ \overline{Pl} $\overline{O5}$ $\overline{O3}$ Ig \overline{Pc} + \overline{Pl} Ec \overline{Rc} $\overline{O6}$ $\overline{O5}$ $\overline{O3}$ Fg \overline{Pc} + \overline{Pl} \overline{Ec} Rc Vg \overline{Pc} + $\overline{P24}$ Ec $\overline{O6}$ $\overline{O5}$ $\overline{O4}$ $\overline{O3}$ $\overline{O2}$ $\overline{O1}$ \overline{Of} Dg + \overline{Fi} \overline{Bl} + Ec \overline{Rc} $\overline{O6}$ $\overline{O5}$ $\overline{O4}$ $\overline{O3}$ $\overline{O2}$ $\overline{O1}$ Pc = Ec \overline{Rc} \overline{Pl} $\overline{O5}$ $\overline{O3}$ Ig \overline{Pc} + \overline{Pl} \overline{Ec} \overline{Rc} $\overline{O6}$ $\overline{O5}$ $\overline{O3}$ Fg \overline{Pc} + $\overline{M3g}$ $\overline{N7g}$ \overline{Ec} \overline{Rc} $\overline{O3}$ + \overline{Pl} \overline{Ec} \overline{Rc} \overline{Vg} \overline{Pc} + \overline{En} \overline{Bp} + \overline{Ec} $\overline{O6}$ $\overline{O5}$ $\overline{O4}$ $\overline{O3}$ $\overline{O2}$ $\overline{O1}$ $\overline{O1}$ $\overline{O1}$ $\overline{O2}$ #### C-11. MEMORY LINES ``` sM0w = M0g N0g Wg \sqrt{\overline{\phi}2} \overline{\phi}1 (\overline{06} 05 \overline{04} 03 \overline{02} 01) M15r + \overline{Wg} \overline{\phi 2} \phi 1 (\overline{06} 05 \overline{04} 03 \overline{02} 01 \overline{Ig}) + - - - M0w rM_0w = M_0g N_0g Wg \left(\overline{\varphi_2} \varphi_1 \right) \left(\overline{06} O_5 \overline{04} O_3 \overline{02} O_1 \right) \overline{M_15} r + Wg \overline{\emptyset}2 \emptyset1 (\overline{06} O5 \overline{04} O3 \overline{02} O1) \overline{1g} + - - - sM0r = (M0w delayed by 382 pulse times) M0r rM0r = (\overline{M0w} \text{ delayed by 382 pulse times}) sMlw = M0g Nlg Wg Ig + [M0g Nlg Wg][Mlr (O5) (Fi) 0501] Mlw rMlw = M0g Nlg Wg \overline{lg} + \overline{M0g Nlg Wg} \overline{Mlr} (sMlr = (Mlw delayed by 6142 pulse times) Mlr rMlr = (\overline{Mlw} \text{ delayed by 6142 pulse times}) sM2w = M0g N2g Wg Ig + [M0g N2g Wg] [M2r] rM2w = M0g N2g Wg \overline{Ig} + M0g N2g Wg \overline{M2r} sM2r = (M2w delayed by 6142 pulse times) rM2r = (\overline{M2w} \text{ delayed by 6142 pulse times}) sM4w = - - + \overline{M0gN4gWg} \overline{Q2Q1M15r + (Q2 + Q1)M4r} rM4w = - - + \left[M0g N4g Wg \right] \left[\phi 2 \overline{\phi} 1 \overline{M15}r + (\overline{\phi} 2 + \phi 1) \overline{M4}r \right] Line 2, typical of lines 3, 5, 6, 7, 8, 9, 10, 11, ---29 and 30. ``` ### C-12. CHARACTER INPUT $$\begin{bmatrix} sRf & = Ec O6 \overline{O5} O4 \overline{O3} O2 + \overline{Fi} \overline{Pc} (P8-P15) \overline{Mr} \\ Rf & = Ec O6 \overline{O5} O4 \overline{O3} \overline{O2} + \overline{Fi} \overline{Mr} (P8-P15) + \overline{Rc} \overline{Ec} \end{bmatrix}$$ $$\begin{bmatrix} sTf & = Ec O6 \overline{O5} O4 \overline{O3} O1 \\ Tf & = Ec O6 \overline{O5} O4 \overline{O3} \overline{O1} +
\overline{Tc} \overline{Ec} + \overline{Fi} \end{bmatrix} (P8-P15)$$ Reader Contacts Return = Rf \overline{Tf} $$\boxed{\text{Typewriter Contacts Return}} = (\boxed{\text{En}} + \overline{\text{Rf}} \ \text{Tf})$$ Type Light = $$\overline{Rf}$$ Tf Bootstrap Start $$=$$ Fi $\stackrel{\frown}{Pc}$ Bootstrap Stop $=$ Fi $\stackrel{\frown}{Pc}$ Gate Line for Fast Readers = Rf Tf ### C-13. CHARACTER OUTPUT AND CONTROL PULSE OUTPUT ``` = Ec O6 O5 \overline{O4} - output character execute K3 = K3 K2 = K2 Destination code for character and control pulse outputs Kl = K1 = L1 L1 = L2 L2 L3 = L3 L4 = L4 Code output for character and control pulse outputs L5 = L5 O1 = O1 Ο2 = O2 = O3 = Ec O6 O5 O4 \overline{O3} \overline{O2} \overline{O1} (Control pulse execute) ``` = Ec O6 O5 $\overline{O4}$ K3 $\overline{K2}$ K1 $\overline{K4}$ (Typewriter gate signal) ``` = Tg (Execute to typewriter translator clutch) = Ll Tg LT1 = L2 Tg = L3 Tg (Code to translator magnets) = L4 Tg = L5 Tg = O1 Tg = Ec O6 O5 O4 K3 K2 K1 K4 (Punch gate signal) =Pg (Execute to tape punch clutch) = Ll Pg = L2 Pg = L3 Pg = L4 Pg (Code to punch magnets) = L5 Pg = Ol Pg = O2 Pg = O3 Pg JUMP CONTROL INPUT GATE C-14. ``` ## C-15. SERIAL INPUT $[Hsg = Ec O6 O5 O4 \overline{O3} O2 O1 Vg \overline{P1} \overline{P24}]$ (Hdg = data input to Ig gate) # C-16. SERIAL OUTPUT $\begin{bmatrix} Gsg & = Ec O6 O5 O4 \overline{O3} O2 \overline{O1} Vg \overline{P1} \overline{P24} \end{bmatrix}$ $\left[\mathsf{Gdg} \right] = \mathsf{Fg}$ #### D. INPUT/OUTPUT CONNECTORS ## D-1. FLEXOWRITER INPUT (ONE CONNECTOR) - 1. Type inputs: (T1) (T2) (T3) (T4) (T5) (T6) (T6) - 2. Reader inputs: (R1) (R2) (R3) (R4) (R5) (R6) (R7) (R8) (Rc) (Rc) - 3. Return for T's: ($(En) + \overline{Rf} Tf$) - 4. Return for R's: (Rf Tf) - 5. Typewriter busy signal: (Tb) - 6. ENABLE switch: (En) (En) - 7. BREAK POINT switch: (Bp) - 8. Signal ground ## D-2. FLEXOWRITER OUTPUT (ONE CONNECTOR) - 1. Translator drivers: LTC = Tg - LT1 = L1 Tg - LT2 = L2 Tg - LT3 = L3 Tg - 213 23 18 = L4 Tg LT4 - LT5 = L5 Tg - LT6 = Ol Tg - 2. Punch drivers: LPC = Pg - LP1 = L1 Pg - LP2 = L2 Pg - LP3 = L3 Pg - LP4 = L4 Pg LP5 = L5 Pg LP6 = Ol Pg LP7 = O2 Pg LP8 = O3 Pg - 3. Reader release magnet: LR = Rf \overline{Tf} - 4. Type light: Rf Tf - 5. -48v #### D-3. CHARACTER INPUT PHOTO READER (ONE CONNECTOR) - 1. Input signal: S(1) S2 S3 S4 S5 S6 S7 S8 - 2. Sprocket signal: Sc to be connected to jump input, (J28) - 3. Start and Stop control: K3, K2, K1, L1, L2, L3, L4, L5, Cpg. - 4. Gate signal: (Rf Tf). - 5. + 6v, 0v, -12v. ## D-4. CHARACTER INPUT MAGNETIC TAPE READER (ONE CONNECTOR) - 1. Input signal: U1 U2 U3 U4 U5 U6 U7 U8 - 2. Clock signal: (Uc) to be connected to jump input, (J27) - 3. Start and Stop control: K3, K2, K1, L1, L2, L3, L4, L5, Cpg - 4. Gate signal: (Rf Tf). - 5. + 6v, 0v, -12v. ## D-5. CHARACTER OUTPUT (TWO CONNECTORS) - 1. Destination: K3, K2, K1 - 2. Code: L1, L2, L3, L4, L5, O1 O2 O3 - 3. Execute: Cog - 4. Gnd, +6v, -12v ### D-6. CONTROL PULSE OUTPUT (TWO CONNECTORS) - 1. Destination: K3, K2, K1 - 2. Code: L1, L2, L3, L4, L5 - 3. Gnd, +6v, -12v - 4. Execute: Cpg #### D-7. SERIAL INPUT/OUTPUT (ONE CONNECTOR) - 1. Source code: K3, K2, K1 - 2. Input shift signal: Hsg - 3. Input data signal: Hdg - 4. Clock signal, ground - 5. Output shift signal: Gsg - 6. Output data signal: Gdg #### D-8. MEMORY ACCESSORY (ONE CONNECTOR) - 1. Selector signals: M2g, M3g, (M4g, M5g, M6g, M7g optional) N0g, N1g, N2g, N3g, N4g, N5g, N6g, N7g - 2. Write command: Wg - 3. Write data: Ig, Ig - 4. Read data: Fxg - 5. Sync signals (optional): Cpg, M0g, N0g, F5 - 6. Clock signal: + 6v, 0v, -12v #### D-9. JUMP CONTROL INPUTS (FOUR CONNECTORS) Connector 1: J0, J1, J2, J3, J4, J5, J6, J7, gnd Connector 2: J8, J9, J10, J11, J12, J13, J14, J15, gnd Connector 3: J16, J17, J18, J19, J20, J21, J22, J23, gnd Connector 4: J24, J25, J26, J27, J28, gnd ## D-10. BOOTSTRAP INPUT CONNECTOR (ONE CONNECTOR) 1. Input Character: (B6), (B5), (B4), (B1). 2. Mechanical reader control levels: Mr, Mr 3. Bootstrap Start, Bootstrap Stop. 4. Gnd, - 12v. 5. (R1), (R4), (Rc), (Rc). 6. (S1), (S4), (S5), (S6), Photo Start, Photo Stop. 7. (01), (04), (05), (06), Mag Start, Mag Stop. ## E. INDICATOR PANEL ### E-1. SWITCHES a. Power : on-off b. TEST : TEST 1 - TEST 2 c. FILL: FILL on (Fi) FILL off (\overline{Fi}) #### E-2. INDICATORS a. POWER : light on b. COMMAND Line : K3, K2, K1 c. OPERAND Line : L5, L4, L3, L2, L1 d. OPERATION Code: O6, O5, O4, O3, O2, O1 e. PARITY : Pc f. O'FLOW : Of | sSw | $= \overline{Sc} Sr \overline{Qg}$ $= \overline{Sc} \overline{Sr} \overline{Bg}$ | Recirculates buffer section (P7-P24) of sector | |-----|---|--| | rSw | = Sc Sr Bg J | counter. | | sSc | = F5 F3 F2 F1 | Sets carry flip-flop (Sc) to increment Nc section of sector counter (P7 time) | | sSw | $= Sc \overline{Sr} \overline{Qg}$ $= Sc Sr$ | Counts Nc section (P15-P8) of sector counter. | | rSw | $=$ Sc Sr \int | | | rSc | $= \overline{Sr} (\overline{F3} + \overline{F2} + \overline{F1})$ | Resets carry flip-flop when Sr flip-flop contains a zero(P8-P14 time if Sr). | | sSw | $= \overline{Sc} Sr \overline{Qg}$ $= \overline{Sc} \overline{Sr} \overline{Bg}$ | Recirculates Nc section (after it is incremented). | | rSw | $= \overline{Sc} \overline{Sr} \overline{Bg} $ | | | sSc | = F5 F3 F2 F1 | Sets carry flip-flop (Sc) to increment No section of sector counter (P15 time). | | sSw | $= \operatorname{Sc} \overline{\operatorname{Sr}} \overline{\operatorname{Qg}}$ | Counts No section (P23-P16) of sector counter. | | rSw | $= Sc \overline{Sr} \overline{Qg}$ $= Sc Sr$ | | | rSc | $= \overline{Sr} (\overline{F3} + \overline{F2} + \overline{F1})$ | Resets carry flip-flop (Sc) when Sr flip-flop contains a zero (Pl4-P22 time if Sr). | | sSw | = ScSrQg | Recirculates No section (after it is incremented). | | rSw | $= \frac{\overline{Sc} \overline{Sr} \overline{Qg}}{\overline{Sc} \overline{Sr} \overline{Bg}}$ | | | rSc | = P23 | Preserves existing information, if any, in the buffer section (P7-P24) by resetting the carry flip-flop at P23. Generally, the Sc flip-flop will be reset before P23 time by the alternate equation; however, it is possible for the Sc flip-flop not to be reset before this time. This situation would occur when the sector counter sections were to be incremented from sector (377) ₈ to (000) ₈ . (The last sector-count back to the first.) | sIs = P24 The preceding equations apply in all phases (1, 2, 3 and 4) for the specific functions outlined. This represents the equation after it has been through an inverter as indicated by the "overbar" over the original bracketed quantity. The asterisk indicates which terms will have - 12 volts present during Phase I. $Vg = \overline{K4} \overline{K3} \overline{K2} \overline{K1} M0r + \overline{K4} K3 \overline{K2} \overline{K1} M4r$ $+ \overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{M1r} + \overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{M5r}$ $+\overline{K4}$ $\overline{K3}$ K2 $\overline{K1}$ M2r + $\overline{K4}$ K3 K2 $\overline{K1}$ M6r $+ \overline{K4} \overline{K3} K2 K1 M3r + \overline{K4} K3 K2 K1 M7r$ Information from memory Command Word. $Vg = (\overline{Vg}) + K4 K3 K2 K1, M10r + K4 K3 K2 K1 M11 r + ---K4 K3 K2 K1 M17r$ Lg = $\overline{\text{Ec}} \text{ Rc } \overline{\text{F5}} (\overline{\text{F4}} + \overline{\text{F3}} \overline{\text{F2}} \overline{\text{F1}}) \overline{\text{P24}} \overline{\text{P1}}$ Shift control gate (P2-P8) for operand line select flip-flops. $sO2 = \overline{Ec} Rc P2 Vg$ $rO2 = \overline{Ec} Rc P2 \overline{Vg}$ Set by index tag configuration of incoming command word. $sL5 = Lg \overline{O2} Vg + Lg O2 Iw$ $rL5 = Lg \overline{O2} \overline{Vg} + Lg O2 \overline{Iw}$ Receives line number from incoming command word ($\overline{O2}$ flipflop "false") or index section of instruction register (O2 flip-flop "true"). sL4 = Lg L5 $rL4 = Lg \overline{L5}$ sL3 = Lg L4 $rL3 = Lg \overline{L4}$ sL2 = Lg L3 Serially shifts line number into operand line select flip-flops during (P2-P8). $rL2 = Lg \overline{L3}$ sLl = Lg L2 $rLl = Lg \overline{L2}$ Shift control gate (P8-P15) for operation code flip-flops. Og = \overline{Ec} Rc F4 Serially shifts operation code into operand code flip-flops during (P8-P15). $$sIw = \overline{Ec} Rc (P15-P8) Sr$$ $rIw = (\overline{sIw})$ $= Og \overline{O2}$ rOl $$sIw = \overline{Ec} Rc (P23-P16) Vg$$ $rIw = (\overline{sIw})$ Serially shifts the next instruction address from the Nc section (P8-P15) of the sector counter into the Nc section (P8-P15) of the instruction register. Serially shifts the operand sector number into the memory section (P16-P23) of the instruction register. Compares incoming Operand sector number (Vg, which is setting and resetting Iw during P16-P23) with No section of sector counter (Sr during P16-P23). This will determine whether phase 4 follows phase 2. $sEc = P24 \overline{Ec} Rc$ rRc = P24 Rc Is To phase 3 To phase 4 $sPc = \overline{Ec} Rc Vg \overline{Pc} \overline{Pl}$ $rPc = \overline{Ec} Rc Vg Pc \overline{Pl}$ $sEc = \overline{Ec} Rc P24$ Possibility of phase 3: rRc = P24RcIs $rEc = Ec \overline{Rc} Pc Pl$ To phase 1 only (nosRc equation at Pl of phase 4) $sRc = P24 \quad \overline{Ec} \quad \overline{Rc} \text{ Is } (\overline{En}) + - - -)$ $rRc = \overline{Ec} Rc Pl Pc$ rPc = (En) (Bp) From phase 2 to phase 3 or phase 4, then in phase 4 for one pulse and back
to phase 1 until Is (Nc = Nc) then into phase 2 for one pulse and back to phase 1. If a parity error is detected in this phase and the Pc flip-flop is reset by the BREAK POINT and ENABLE switches, the command is not executed and is effectively lost because the next command in sequence is picked up for execution. Possibility of phase 2 $sPc = \overline{P1} Ec \overline{Rc} \overline{O6} \overline{O5} O3 Fg \overline{Pc}$ $rPc = \overline{Pl} Ec \overline{Rc} \overline{O6} \overline{O5} O3 Fg Pc$ Eg = $P24 Ec \overline{R}c (\overline{O5} \overline{O2} + \overline{O5} \overline{O4} \overline{O1})$ rEc = Eg Possibility of phase 1 (Ec Rc) $$sRc = \widehat{En} \widehat{Fi} Eg Oc$$ $$+ \widehat{En} \widehat{Fi} Eg \overline{O5} Is$$ $sRc = P24 \overline{Ec} \overline{Rc} Is (\widehat{En} +---)$ When phase 2 is reached (Ec Rc) $rRc = \overline{Ec} Rc Pc Pl$ rPc = En Bp In phase 4 the error is detected, and at the completion of this phase the computer sequences to phase 1 or phase 2. At this point a loop between phase 1 and 2 begins until the Pc flip-flop is reset by the BREAK POINT and ENABLE switches. The command has been executed. $Ec\overline{Rc}$ #### PARITY GENERATION EQUATIONS $$Ig = \overline{P24} - - Cr + \overline{P24} - - Ar + \overline{P24} - - Br + \overline{P24} - - Ar + \overline{P24} - - Vg + \overline{P24} - - Vg Hdg + P24 Pc$$ $sPc = Ec \overline{Rc} \overline{Pl} \overline{O5} \overline{O3} Ig \overline{Pc}$ $rPc = Ec \overline{Rc} \overline{Pl} \overline{O5} O3 Ig Pc$ $Eg = P24 Ec \overline{Rc} (--++--+)$ #### MEMORY LINE SELECTION $$M0g = *\overline{L0}\,\overline{L5}\,\overline{L4}$$ $N0g = \overline{L3}\,\overline{L2}\,\overline{L1}$ $M1g = \overline{L0}\,\overline{L5}\,L4$ $N1g = \overline{L3}\,\overline{L2}\,L1$ $M2g = \overline{L0}\,L5\,\overline{L4}$ $N2g = \overline{L3}\,L2\,\overline{L1}$ $M3g = \overline{L0}\,L5\,L4$ $N3g = \overline{L3}\,L2\,\overline{L1}$ $*M4g = L0\,\overline{L5}\,\overline{L4}$ $N4g = L3\,\overline{L2}\,\overline{L1}$ $*M5g = L0\,\overline{L5}\,L4$ $N5g = L3\,\overline{L2}\,L1$ $*M6g = L0\,L5\,\overline{L4}$ $N6g = L3\,L2\,\overline{L1}$ $*M7g = L0\,L5\,L4$ $N7g = L3\,L2\,L1$ The following notation appears in the summary: Fg = Mig Nig Mir This notation is used to indicate the selected memory line which is feeding the Fg (Fetch) Gate. The (i) indicates the particular gate or component number that is being used. ^{*}L0 and M4g through M7g are options for memory expansion. $sEc = P24 \overline{Ec} Rc$ $sPc = EcRc\overline{06}\overline{05}\overline{04}\overline{03}\overline{02}\overline{01} \longrightarrow Phase 3$ rRc = P24 Rc Is → Phase 3 $rEc = Ec \overline{Rc} Pc Pl$ Phase 4 $sRc = P24 \overline{Ec} \overline{Rc} Is ((\overline{En}) + - - -) \rightarrow Phase 1$ $rRc = \overline{Ec} Rc Pc Pl \longrightarrow Phase T$ rPc = (En) (Bp) Limitation: Ms number associated with halt command must be other than a + 1 address. Definition: Computer goes from phase 2 to phase 3 until Is (Ms = No) (Pc flip-flop is being set) then into phase 4 for one pulse. Phase 1 is next and continues until Is (Nc = Nc) then into phase 2 for one pulse and back to phase 1 - - loops between phase 1 and 2. ^{*}Indicates that operation code has at least two meanings, depending on the address used with the command. Ec Rc 00* MERGE (Ms = a + 1) (MAC) $sEc = P24\overline{Ec}Rc$ No possibility of phase 3 (Ms = a + 1) rRc = P24RcIs $Ig = \overline{P24} \overline{O5} \overline{O2} \overline{O1} Cr + - - + \overline{P24} \overline{O4} \overline{O2} Ar + - -$ $sCw = Ec \overline{R}c \overline{O}6 \overline{O}5 \overline{O}4 \overline{O}3 Ig$ $rCw = (\overline{sCw})$ Eg = $P24 \text{ Ec } \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} \overline{O3} \overline{O1} + \overline{O5} \overline{O4} \overline{O1}) + - - -$ rEc = Eg Limitation: Ms number associated with halt command must be a + l address. ^{*}Indicates that operation code has at least two meanings, depending on the address used with the command. (IAC) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs Ig = --+ $\overline{P24}$ $\overline{O6}$ $\overline{O2}$ Ol Ar + --+ $\overline{P24}$ $\overline{O4}$ $\overline{O2}$ Ar + P24 Pc $\overline{Ig} = (\overline{Ig})$ $sCw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} Ig$ $rCw = (\overline{sCw})$ $sAw = - - + Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{O2} O1 Cr$ $rAw = (\overline{sAw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + - - -)$ $\overline{\mathrm{Ec}}$ Rc (IBC) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs $Ig = \overline{P24} \overline{O6} O2 Br + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $sC\dot{w} = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} Ig$ $rCw = (\overline{sCw})$ $sBw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} O2 Cr$ $rBw = (\overline{sBw})$ Eg = $P24 \text{ Ec } \overline{Rc} (\overline{O5} \overline{O3} \overline{O1} + \overline{O5} \overline{O4} \overline{O1} + - - -)$ (ROT) $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24RcIs $Ig = \overline{P24} \overline{O6} O2 Br + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $sCw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} Ig$ $rCw = (\overline{sCw})$ $sBw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} O2 Cr$ $rBw = (\overline{sBw})$ rO2 = P24 Ec Rc O6 O5 O1 $Ig = (\overline{P24} \overline{O6} \overline{O2} O1 + \overline{P24} \overline{O4} \overline{O2})Ar + - + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $sCw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} Ig$ $rCw = (\overline{sCw})$ $sAw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{O2} O1 Cr + - - -$ $rAw = (\overline{sAw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + - - -)$ (LDC) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24 Rc Is Fg = Mig Nig Mir $\overline{Fg} = (\overline{Fg})$ $sCw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} O3 \overline{O2} \overline{O1} Fg$ $rCw = (\overline{sCw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} \overline{O4} \overline{O1} + - - -)$ (LDA) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs Fg = Mig Nig Mir $\overline{Fg} = (\overline{Fg})$ $sAw = Ec\overline{Rc}\overline{O6}\overline{O4}O3\overline{O2}O1Fg$ $rAw = (\overline{sAw})$ $E_8 = P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + - - -)$ rEc Eg (LDB) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $sBw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} O3 O2 Fg$ $rBw = (\overline{sBw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O4} \overline{O1} + - - -)$ Ec Rc #### 07—→05 LOAD DOUBLE PRECISION (LDP) $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24RcIs Fg = Mig Nig Mir $\overline{Fg} = (\overline{Fg})$ $sBw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} O3 O2 Fg + - - -$ $rBw = (\overline{sBw})$ $rO2 = P24 Ec \overline{Rc} \overline{O6} \overline{O5} O1 + - - -$ $sAw = Ec \overline{Rc} \overline{O6} \overline{O4} O3 \overline{O2} O1 Fg$ $rAw = (\overline{sAw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + ---)$ (STC) $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24 Rc Is $Ig = \overline{P24} \overline{O5} \overline{O2} \overline{O1} Cr + - - - + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $Wg = Ec \overline{Rc} (\overline{O6} \overline{O5} O4 \overline{O3} + ---)$ sMiw = Mig Nig Wg Ig + Mig Nig Wg Mir rMiw = Mig Nig Wg Ig + Mig Nig Wg Mir Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} \overline{O3} \overline{O1} + - - -)$ ``` sEc = P24\overline{Ec}Rc ``` Possibility of phase 3: rRc = P24RcIs $= \overline{P24} \overline{O6} \overline{O2} O1 Ar + \overline{P24} \overline{O4} \overline{O2} Ar + - - + P24 Pc$ Ig $\overline{Ig} = (\overline{Ig})$ $Wg = Ec \overline{Rc} (\overline{O6} \overline{O5} O4 \overline{O3} + - - -)$ $sMiw = Mig Nig Wg Ig + \underbrace{Mig Nig Wg}_{Mir} \underbrace{Mir}_{Miw = Mig Nig Wg \overline{Ig}} + \underbrace{Mig Nig Wg}_{Mir} \underbrace{Mir}_{Mir}$ Eg = $P24 \text{ Ec } \overline{Rc} (\overline{O5} \overline{O2} + - - -)$ $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs Ig = $\overline{P24} \, \overline{O6} \, O2 \, Br + - - - + P24 \, Pc$ $\overline{Ig} = (\overline{Ig})$ $Wg = Ec \overline{Rc} (\overline{06} \overline{05} 04 \overline{03} + - - -)$ $sMiw = Mig Nig Wg Ig + \underbrace{Mig Nig Wg}_{Mir} Miw = Mig Nig Wg \overline{Ig} + \underbrace{Mig Nig Wg}_{Mir} \underbrace{\overline{Mir}}_{Mir}$ = $P24 Ec \overline{Rc} (\overline{O5} \overline{O3} \overline{O1} + ---)$ Eg $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24 Rc Is $Ig = \overline{P24} \overline{O6} O2 Br + - - + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $Wg = Ec \overline{Rc} (\overline{O6} \overline{O5} O4 \overline{O3} + - - -)$ $sMiw = Mig Nig Wg Ig + \underbrace{Mig Nig Wg}_{rMiw = Mig Nig Wg Ig + \underbrace{Mig Nig Wg}_{Mir}_{Mir}$ rO2 = P24 Ec Rc O6 O5 O1 $Ig = \overline{P24} \overline{O6} \overline{O2} O1 Ar + - - + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $sMiw = Mig Nig Wg Ig + \underbrace{Mig Nig Wg}_{Mir} Mir$ $rMiw = Mig Nig Wg \overline{Ig} + \underbrace{Mig Nig Wg}_{Mir} \overline{Mir}$ Eg = $P24 \text{ Ec } \overline{Rc} (\overline{O5} \overline{O2} + - - -)$ Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $Xg = \overline{O5} \, \overline{O1} \, Fg$ $\overline{Xg} = (\overline{Xg})$ $Yg = \overline{O6} O4 \overline{O2} Ar$ $\overline{Yg} = (\overline{Yg})$ $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rCa = CaRc rRc = P24 Rc Is $Zg = (\overline{\overline{Zg}})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg
\overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P2} 4 Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg}$ sOf = P23 Ec Rc O6 O5 O4 O3 O2 (Xg Yg Ca + Xg Yg Ca) $sAw = Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 \overline{O2} Zg$ $rAw = (\overline{sAw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + - - -)$ Fg = Mig Nig Mir $\overline{Fg} = (\overline{Fg})$ $Xg = \overline{O5} O1 \overline{Fg}$ $\overline{Xg} = (\overline{Xg})$ $Yg = \overline{06} \text{ O4} \overline{02} \text{ Ar}$ $\overline{Yg} = (\overline{Yg})$ $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rCa = CaRc $sCa = P24 Rc Is \overline{O6} \overline{O5} O4 O3 O1$ rRc = P24 Rc Is $Zg = (\overline{Zg})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg}$ $sOf = P23 Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 \overline{O2} (\overline{Xg} \overline{Yg} Ca + Xg Yg \overline{Ca})$ $sAw = Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 \overline{O2} Zg$ $rAw = (\overline{sAw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + - - -)$ Fg = Mig Nig Mir $\overline{Fg} = (\overline{Fg})$ $Xg = \overline{O5} \, \overline{O1} \, Fg$ $\overline{Xg} = (\overline{Xg})$ $Yg = \overline{O5} O2 Br$ $\overline{Yg} = (\overline{Yg})$ $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rCa = CaRc rRc = P24RcIs $Zg = (\overline{\overline{Zg}})$ $Zg = Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg}$ $sBw = Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 O2 Zg$ $rBw = (\overline{sBw})$ rO2 = P24 Ec Rc O6 O5 O4 O3 $Yg = \overline{O6} O4 \overline{O2} Ar$ $\overline{Yg} = (\overline{Yg})$ $sAw = Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 \overline{O2} Zg$ $rAw = (\overline{sAw})$ $sOf = P23 Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 \overline{O2} (\overline{Xg} \overline{Yg} Ca + Xg Yg \overline{Ca})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2}_{*} + - - -)$ Ec Rc 17 ---- 15 DOUBLE PRECISION SUBTRACT (DPS) Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $Xg = \overline{O5} O1 \overline{Fg}$ $\overline{Xg} = (\overline{Xg})$ $Yg = \overline{O5} O2 Br$ $\overline{Yg} = (\overline{Yg})$ $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rCa = CaRc $sCa = P24 Rc Is \overline{06} \overline{05} 04 03 01$ rRc = P24 Rc Is $Zg = (\overline{\overline{Zg}})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg}$ $sBw = Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 O2 Zg$ rBw = (sBw) rO2 = P24 Ec Rc O6 O5 O4 O3 + P24 Ec Rc O6 O5 O1 $Yg = \overline{O6} O4 \overline{O2} Ar$ $\overline{Yg} = (\overline{Yg})$ $sAw = Ec \overline{Rc} \overline{O6} \overline{O5} O4 O3 \overline{O2} Zg$ $rAw = (\overline{sAw})$ sOf = P23 Ec Rc O6 O5 O4 O3 O2 (Xg Yg Ca + Xg Yg Ca) Eg = $P24 Ec Rc (\overline{O5} \overline{O2} + - - -)$ \overline{Xg} $= (\overline{Xg})$ $sL3 = \overline{06} \ \overline{05} \ \overline{03} \ P24 \ Bw$ Coupling flip-flops between P23 of $rL3 = \overline{06} \ O5 \overline{O3} \ P24 \overline{BW}$ B register and P2 of A register. $sEc = P24\overline{Ec}Rc$ rRc = P24 Rc Is No possibility of phase 3: (O5 Command) $sL2 = \overline{O6} O5 \overline{O3} \overline{O2} Ec Br$ $rL2 = \overline{O6} O5 \overline{O3} \overline{O2} Ec \overline{Br}$ Delay flip-flop for B register. sBw = Ec \overline{Rc} $\overline{O6}$ O5 $\overline{O4}$ $\overline{O3}$ $\overline{O2}$ $\overline{P2}$ L2 + $\overline{P1}$ Br \overline{Ec} \overline{Rc} $\overline{(O6)}$ O5 $\overline{O3}$ + - - - $\overline{)}$ Left shifts B register. $rBw = (\overline{sBw})$ $sL1 = \overline{O6} O5 \overline{O4} \overline{O3} \overline{O2} Ec Ar$ $rL1 = \overline{O6} O5 \overline{O4} \overline{O3} \overline{O2} Ec \overline{Ar}$ Delay flip-flop for A register. $sAw = Ec \overline{Rc} \overline{O6} O5 \overline{O3} \overline{O2} P2 L3 -$ Transfers P23 bit configuration of B register to P2 position of A register. + Ec \overline{Rc} $\overline{O6}$ $\overline{O5}$ $\overline{O3}$ $\overline{O2}$ $\overline{P23}$ $\overline{P2}$ L1 \longrightarrow Left shifts A register. Recirculates sign of A register. + P23 06 05 04 03 Ar -+ Ar [Ec Rc (O6 O5 O3+---)] → Recirculates A register if shift $rAw = (\overline{sAw})$ rCa = O5 P24 $Xg = O5 \overline{O4} \overline{O3} (\overline{O2} + P2) \overline{L4}$ ^{*}Indicates that operation code has at least two meanings, depending on address used with the command. Ec Rc 20* NORMALIZE AND DECREMENT (continued) (NAD) $Yg = O5 \overline{O4} Cr$ $\overline{Yg} = (\overline{Yg})$ $Zg = (\overline{Zg})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg}$ $sCw = Ec \overline{Rc} O5 \overline{O4} Zg$ $rCw = (\overline{sCw})$ $sO3 = P23 \overline{O6} O5 \overline{O4} \overline{O3} \overline{O2} \overline{O1} (Aw \overline{Ar} + \overline{Aw} Ar)$ If these conditions occur, O3 is set. This stops the shifting operation and C register logic in phase 4; the computer remains in phase 4 until Is (Ms = No) with the A and B registers recirculating normally and the C register recirculating normally through the adder gates. sIs = P24 rIs = $(\overline{Sr} \text{ sIw} + Sr \text{ rIw})$ [Ec O5 (P23-P16) + - - -] $[\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F5}]$ Eg = P24 Ec Rc (O5 Is + - - -) rEc = Eg #### 20* NORMALIZE Whether the C register is decremented or not is a function of the line number used with the command. If the line number has a zero in the position corresponding to the L4 flip-flops' configuration, the C register is decremented. If the C register has a one in the position corresponding to the L4 flip-flops' configuration, the C register is recirculated normally via the adder. *Indicates that operation codehas at least two meanings, depending on address used with the command. $sL3 = \overline{06} O5 \overline{03} P24 Bw$ $rL3 = \overline{06} O5 \overline{03} P24 \overline{Bw}$ Coupling flip-flop between P23 of B register and P2 of A register. $sEc = P24 \overline{Ec} Rc$ rRc = P24RcIs No possibility of phase 3: (O5 Command) $sL2 = \overline{O6} O5 \overline{O3} \overline{O2} Ec Br$ $rL2 = \overline{O6} O5 \overline{O3} \overline{O2} Ec \overline{Br}$ Delay flip-flop for B register. $sBw = Ec \overline{Rc} \overline{O6} O5 \overline{O4} \overline{O3} \overline{O2} \overline{P2} L2$ Left shifts B register. $rBw = (\overline{sBw})$ $sL1 = \overline{06} O5 \overline{04} \overline{03} \overline{02} Ec Ar$ $rL1 = \overline{06} O5 \overline{04} \overline{03} \overline{02} Ec \overline{Ar}$ Delay flip-flop for A register. sAw = $Ec \overline{Rc} \overline{O6} O5 \overline{O3} \overline{O2} P2 L3$ Transfers P23 bit configuration of B register to P2 position of A register. + Ec \overline{Rc} $\overline{O6}$ O5 $\overline{O3}$ $\overline{O2}$ $\overline{P23}$ $\overline{P2}$ L1 — Left shifts A register. + P23 $\overline{06}$ 05 $\overline{04}$ $\overline{03}$ Ar \longrightarrow Recirculates sign of A register. $rAw = (\overline{sAw})$ rCa = O5 P24 $Xg = O5 \overline{O4} \overline{O3} (\overline{O2} + P2) \overline{L4}$ $\overline{Xg} = (\overline{Xg})$ $Yg = O5 \overline{O4} Cr$ $\overline{\overline{Yg}} = (\overline{\overline{Yg}})$ ^{*}Indicates that the operation code has at least two meanings, depending on the address used with the command. Ec Rc 21* LEFT SHIFT AND DECREMENT (continued) (LSD) $Zg = (\overline{\overline{Zg}})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg}$ $sCw = Ec \overline{Rc} O \overline{O} \overline{Q} Zg$ $rCw = (\overline{sCw})$ sIs = P24 rIs = $(\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[\text{Ec O5} \left(\text{P23-P16} \right) + - \right] \left[\overline{\text{K4}} \, \overline{\text{K3}} \, \overline{\text{K2}} \, \overline{\text{K1}} \, \overline{\text{F5}} \, \overline{\text{F3}} \right]$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ rEc = Eg Ec Rc 21* SHIFT LEFT (AB LEFT) (SLT) The equations used for left shift and decrement (LSD) and shift left (SLT) are the same. Whether the C register is decremented or not is a function of the line number used with the command. If the line number has a zero in the position corresponding to the L4 flip-flops' configuration, the C register is decremented. If the line number has a one in the position corresponding to the L4 flip-flops' configuration, the C register is recirculated normally via the adder. ^{*}Indicates that the operation code has least two meanings, depending on the address used with the command. ``` sEc = P24 \overline{E}c Rc rRc = P24 Rc Is ``` No possibility of phase 3: (O5 Command) ``` = \overline{06} \ 05 \ \overline{03} \ P2 \ Ar sL3 = \overline{06} \ O5 \ \overline{O3} \ P2 \ \overline{Ar} rL3 = Ec Rc O6 O5 O3 O2 P23 Be + Ec Rc O6 O5 O3 O2 P23 L3 sBw = (\overline{sBw}) rBw = Ec \overline{Rc} \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{O2} \overline{P23} \overline{Ae}
+ \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{P23} \overline{Ar} sAw = (\overline{sAw}) rAw rCa = 05 P24 = 05 \overline{04} \overline{03} (\overline{02} + P2) \overline{L4} Χg Xg = (\overline{Xg}) ``` $\begin{array}{ccc} Yg & = & O5 & \overline{O4} & Cr \\ \hline & & & \end{array}$ $\overline{Yg} = (\overline{Yg})$ $Zg = (\overline{Zg})$ $Zg = Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{Pl} \overline{P24} \overline{Xg} \overline{Yg}$ $sCw = Ec \overline{Rc} O5 \overline{O4} Zg$ $rCw = (\overline{sCw})$ ^{*} Indicates that the operation code has at least two meanings, depending on the address used with the command. $Ec\overline{Rc}$ 22 RIGHT SHIFT AND INCREMENT (continued) (RSI) sIs = P24 rIs = $(\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[\text{Ec O5} \left(\text{P23-P16} \right) + - - \right] \left[\overline{\text{K4}} \, \overline{\text{K3}} \, \overline{\text{K2}} \, \overline{\text{K1}} \, \overline{\text{F5}} \, \overline{\text{F3}} \right]$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ rEc = Eg \overline{Ec} Rc 22* SHIFT RIGHT (AB RIGHT) (SRT) The equation used for right shift and increment (RSI) and shift right (SRT) are the same. Whether the C register is incremented or not is a function of the line number used with the command. If the line number has zero in the position corresponding to the L4 flip-flops' configuration, the C register is incremented. If the line number has a one in the position corresponding to the L4 flip-flops' configuration, the C register is recirculated normally via the adder. ^{*}Indicates that the operation code has at least two meanings, depending on the address used with the command. ``` sEc = P24 \overline{Ec} Rc ``` rRc = P24 Rc Is No possibility of phase 3: (O5 Command) $sL3 = \overline{06} O5 \overline{O3} P2 Ar$ $rL3 = \overline{O6} O5 \overline{O3} P2 \overline{Ar}$ $sBw = \underbrace{Ec \,\overline{Rc} \,\overline{O6} \,O5 \,\overline{O3} \,O2 \,\overline{P23} \,Be + Ec \,\overline{Rc} \,\overline{O6} \,O5 \,\overline{O3} \,O2 \,P23 \,L3}_{+ \,\overline{P1} \,Br \, \left[Ec \,\overline{Rc} \,(\overline{O6} \,O5 \,\overline{O3} \,+ -- \,-)\right]}$ $rBw = (\overline{sBw})$ $sAw = Ec \overline{Rc} \overline{O6} O5 \overline{O4} \overline{O3} O2 \overline{P23} Ae + \overline{O6} O5 \overline{O4} \overline{O3} P23 Ar$ + Ar $\left[\operatorname{Ec}\overline{\operatorname{Rc}}\left(\overline{06}\right) + - - - \right]$ $rAw = (\overline{sAw})$ rCa = O5P24 $Xg = O5 \overline{O4} \overline{O3} (\overline{O2} + P2) \overline{L4}$ $\overline{Xg} = (\overline{Xg})$ $Yg = O5 \overline{O4} Cr$ $\overline{Yg} = (\overline{Yg})$ $Zg = (\overline{Zg})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg}$ $sCw = Ec \overline{Rc} O \overline{O} \overline{Q} Zg$ $rCw = (\overline{sCw})$ $\operatorname{Ec} \overline{\operatorname{Rc}}$ (SAI) $sO3 = P24 \overline{O6} O5 \overline{O4} \overline{O3} O2O1 \overline{Cw}$ sIs = P24 rIs = $(\overline{Sr} \text{ sIw} + Sr \text{ rIw})$ $\left[\text{Ec O5 (P23-P16)} + -\right] \overline{\left[\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F3}\right]}$ Eg = $P24 Ec \overline{Rc} (O5 Is + - -)$ $\overline{\mathbf{Ec}}$ Rc # 24 NO OPERATION (NOP) $sEc = P24 \overline{Ec} Rc$ rRc = P24RcIs No possibility of phase 3: (O5 Command) sIs = P24 rIs = $(\overline{Sr} sIw + Sr rIw)$ $\left[Ec O5 (P16-P23) + - - \right] \overline{\left[\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F3}\right]}$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ (IAM) ``` sEc = P24\overline{Ec}Rc ``` $$rRc = P24RcIs$$ No possibility of phase 3: (O5 Command) $$\overline{Fg} = (\overline{Fg})$$ $$Ig = (\overline{P24} \overline{O4} \overline{O2} + \overline{P24} \overline{O6} \overline{O2} O1) Ar + P24 Pc$$ $$\overline{Ig} = (\overline{Ig})$$ $$Wg = Ec \overline{Rc} (\overline{O6} O5\overline{O4} O3 \overline{O2} O1 + - - -)$$ $$sAw = Ec \overline{Rc} \overline{O6} \overline{O4} O3 \overline{O2} O1 Fg$$ $$rAw = (\overline{sAw})$$ $$sMiw = Mig Nig Wg Ig + Mig Nig Wg Mir$$ $$rMiw = Mig Nig Wg Ig + Mig Nig Wg Mir$$ $$sIs = P24$$ rIs = $$(\overline{Sr} \, s \, Iw + Sr \, r \, Iw)$$ $\left[Ec \, O5 \, (P23 - P16) + - - - \right] \left[\overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, \overline{F5} \, F3 \right]$ Eg = $$P24 Ec \overline{Rc} (O5 Is + - - -)$$ $$rEc = Eg$$ ``` \overline{\mathrm{Ec}}\,\mathrm{Rc} ``` #### 26 MOVE LINE X TO LINE 7 (MLX) $sEc = P24\overline{Ec}Rc$ rRc = P24RcIs No possibility of phase 3: (O5 Command) Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $sM7w = \overline{\left[\text{Mig Nig Wg}\right]} \left[M7r \left(\overline{\overline{06}\ \text{O5}\ \overline{\text{O4}}\ \text{O3}\ \text{O2}\ \overline{\text{O1}}\ \text{Ec}}\right) + \left(\overline{\text{O6}}\ \text{O5}\ \overline{\text{O4}}\ \text{O3}\ \text{O2}\ \overline{\text{O1}}\ \text{Ec}\right) \text{Fg}\right]$ $rM7w = \overline{\left[\text{Mig Nig Wg}\right]} \overline{\left[\text{M7r}\left(\overline{\text{O6 O5 O4 O3 O2 O1 Ec}}\right) + \left(\overline{\text{O6 O5 O4 O3 O2 O1 Ec}}\right) + \left(\overline{\text{O6 O5 O4 O3 O2 O1 Ec}}\right) + \overline{\text{Fg}}}$ sIs = P24 rIs = $(\overline{Sr} \text{ sIw} + Sr \text{ rIw})$ $\left[\text{Ec O5} \left(\text{P2 3-P 16}\right) + - - \right] \left[\overline{\text{K4K3}} \, \overline{\text{K2K1}} \, \overline{\text{F5 F3}}\right]$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ ``` sL4 = \overline{O6} O5 O4 \overline{O3} \overline{O2} \left[P23 Rc \overline{L1} \overline{Zg} + P24 Rc L1 \overline{Zg} + - - - \right] ``` $sEc = P24 \overline{Ec} Rc$ rRc = P24RcIs rCa = CaRc + O5P24 No possibility of phase 3: (O5 Command) Dg = OlCr $\overline{Dg} = (\overline{Dg})$ $Xg = \overline{O6} O5 O4 \overline{O3} \overline{O2} (\overline{L4} Dg + L4 \overline{Dg})$ $\overline{Xg} = (\overline{Xg})$ $Yg = \overline{O6} O4 \overline{O2} Ar$ $\overline{Yg} = (\overline{Yg})$ $Zg = (\overline{\overline{Zg}})$ $Zg = Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{O6} O5 O4 \overline{O3} \overline{O2} P1 L4 + \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg} + O5 P24$ $sL1 = \overline{06} O5 O4 \overline{O3} \overline{O2} Ec Zg$ $rL1 = \overline{06} O5 O4 \overline{O3} \overline{O2} Ec \overline{Zg}$ $sL2 = \overline{06} O5 \overline{O3} \overline{O2} Ec Br$ $rL2 = \overline{O6} O5 \overline{O3} \overline{O2} Ec \overline{Br}$ $sL3 = \overline{O6} O5 \overline{O3} (P24Bw+---)$ $rL3 = \overline{06} \ O5 \overline{O3} \ (P24 \overline{Bw} + - - - -)$ *Indicates that the operation code has at least two meanings, depending on the address used with the command. (DIV) ``` sL4 = \overline{O6} O5 O4 \overline{O3} \overline{O2} \text{ [P24 Ec (L1 Cr + \overline{L1 Cr}) + - - -]} \\ rL4 = \overline{O6} O5 O4 \overline{O3} \overline{O2} P23 L4 \\ sL5 = \overline{O6} O5 \overline{O3} \overline{O2} \text{ [P23 P2 L1 + P2 L3 + P23 O4 L1]} \\ rAw = (sAw) \\ sBw = (sAw) \\ sBw = \overline{O6} O5 O4 \overline{O3} \overline{O2} \text{ [Ec P2 P3 L2 + Ec P3 (\overline{L5 L4} + L5 L4) + \overline{Ec} P2 L4]} \\ rBw = (sBw) \\ Cw = Normal recirculation \\ sIs = P24 \\ rIs = (srsIw + srrIw) \text{ [Ec O5 (P23 - P16) + - - -] \text{ [K4 K3 K2 K1 F5 F3]} \\ Eg = P24 Ec \overline{Rc (O5 Is + - - -)} \\ \end{array} ``` Ec Rc rEc = Eg #### 31* DIVIDE REMAINDER (DVR) The equations used for divide (DIV) and divide remainder (DVR) are the same. The line number must have a one in the position corresponding to the L1 flip-flops' configuration and a zero in the position corresponding to the L5 flip-flops' configuration. ^{*}Indicates that the operation code has at least two meanings, depending on the address used with the command. $rL2 = \overline{06} \ O5 \ O4 \ O3 \ O2 \ O1 \ P24$ $rL4 = \overline{O6} O5 O4 \overline{O3} O2 \overline{O1} P24$ $sEc = P24 \overline{Ec} Rc$ rRc = P24 Rc Is rCa = O5 P24 No possibility of phase 3: (O5 Command) $sL2 = \overline{06} O5 O4 \overline{O3} O2 \overline{O1} P1 \overline{Be} Br$ $sL4 = \overline{O6} O5 O4 \overline{O3} O2 \overline{O1} P1 Be \overline{Br}$ $sCa = \overline{O6} O5 O4 \overline{O3} O2 \overline{O1} P1 Be \overline{Br}$ $Xg = \overline{O6} O5 O4 \overline{O3} O2 \overline{O1} (L2 Cr + L4 \overline{Cr})$ $\overline{Xg} = (\overline{Xg})$ Yg = $\overline{06}$ O5 O4 $\overline{03}$ O2 L5 ($\overline{P24}$ Ae + P24 Ar) Repeats P23 bit to P24 bit position for addition. $\overline{Yg} = (\overline{Yg})$ $Zg = (\overline{Zg})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{06} O5 O4 \overline{O3} O2 \overline{O1} P1 Be \overline{Br}$ + Pl P24 Ec Rc Xg Yg Ca $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg} + O5 P24$ sL5 = 06 05 03 P24 Ec $sAw = Ec \overline{R}c \overline{O}6 O5 O4 \overline{O}3 O2 Zg$ $rAw = (\overline{sAw})$ Transfers P2 of A register to Recirculates B register during P23 of B register. the first sector. $$sL3 = \overline{06} O5 \overline{O3} (P2 A_r + - - -) + \overline{06} O5 O4 \overline{O3} O2 \overline{O1} Ec \overline{L5} Be$$ rL3 = $\overline{06}$ O5 $\overline{O3}$ (P2 \overline{Ar} + - - -) + $\overline{06}$ O5 O4 $\overline{O3}$ O2 $\overline{O1}$ Ec $\overline{L5}$ Be $sBw = Ec \overline{Rc} \overline{O6} O5 \overline{O3} O2 (\overline{P23} Be + P23 L3)$ $rBw = (\overline{sBw})$ $$sCw = \overline{P24} Cr \left[\underline{Ec} \overline{Rc} \left(
\overline{O5} \overline{O4} O3 \overline{O2} \overline{O1} \right) + \overline{O6} \overline{O5} \overline{O4} \overline{O3} \overline{O2} \overline{O1} \right] + \overline{O6} O5 O4 \overline{O3} \overline{O2} \overline{O1} + \underline{P24} Cw$$ $rCw = (\overline{sCw})$ sIs = P24 rIs = $$(\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[\text{Ec O5 (P23-P16)} \right]$$ + - - - $\left[\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F3} \right]$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ ``` sEc = P24 \overline{Ec} Rc sL3 = \overline{06} O5 \overline{O3} P2 Ar rL3 = \overline{O6} O5 \overline{O3} P2 \overline{Ar} rRc = P24 Rc Is rCa = O5 P24 No possibility of phase 3: (O5 Command) sBw = Ec \overline{Rc} \overline{O6} O5 \overline{O3} O2 \overline{P23} Be + Ec \overline{Rc} \overline{O6} O5 \overline{O3} O2 P23 L3 rBw = (\overline{sBw}) = \overline{O6} O5 O4 \overline{O3} O2 L5 (\overline{P24} Ae + P24 Ar) Υg Ϋ́g = (\overline{Y}\overline{g}) = (No equation to activate this term) Χg Xg = (\overline{Xg}) Zg = \overline{(\overline{Zg})} \overline{Zg} = \overline{Xg} \overline{Yg} \overline{Ca} + - - - sAw = Ec \overline{Rc} \overline{O6} O5 O4 \overline{O3} O2 Zg rAw = (\overline{sAw}) sIs = P24 rIs = (\overline{Sr} \text{ sIw} + \text{Sr rIw}) \left[\text{Ec O5} \left(\text{P23-P16}\right) + - - \right] \left[\overline{\text{K4}} \,\overline{\text{K3}} \,\overline{\text{K2}} \,\overline{\text{K1}} \,\overline{\text{F5}} \,\text{F3}\right] Eg = P24 Ec \overline{Rc} (O5 Is + - - -) ``` ^{*}Indicates that the operation code has at least two meanings, depending on the address used with the command. The equations used for logical right shift (LRS) and shift B right (SBR) are the same. Whether logical right shift (LRS) or shift B right (SBR) occurs or not is a function of the line number used with the command. If the line number has a one in the position corresponding to the L5 flip-flops' configuration, the A register recirculates normally via the adder (L5 permits the Yg equation to operate). If the line number has a zero in the position corresponding to the L5 flip-flops' configuration, the A register is cleared during the first sector of execution (L5 does not permit the Yg equation to operate). The L3 flip-flop transfers the P2 bit configuration (one or zero) of the A register to the P23 position of the B register during the first sector time. After the first sector of execution, the L3 flip-flop transfers only zeroes from P2 of the A register to P23 of the B register. ^{*}Indicates that the operation code has at least two meanings, depending on the address used with the command. ``` sOc = P23 Ec Rc O5 O4 O3 O2 O1 Cr + - - - If sign were negative sEc = P24 \overline{Ec} Rc rRc = P24 Rc Is No possibility of phase 3: (O5 Command) rEc = Ec O5 O4 O3 \overline{Oc} \rightarrow If sign "+" go to phase 4 for one sRc = Ec O5 O4 O3 \overline{Oc} pulse and then back to phase 2. Kg = Ec O5 O4 O3 (\overline{O6} + \overline{O2}) F4 sKl = Kg Ll rKl = Kg \overline{Ll} sK2 = Kg L2 rK2 = Kg \overline{L2} sK3 = Kg L3 rK3 = Kg \overline{L3} sK4 = Kg L4 rK4 = Kg \overline{L4} = P24 sIs rIs = (\overline{\text{Sr sIw}} + \text{Sr rlw}) [Ec O5 (P23-P16) + - - -] \overline{(\overline{\text{K4}} \ \overline{\text{K3}} \ \overline{\text{K2}} \ \overline{\text{K1}} \ \overline{\text{F5}} \ \overline{\text{F3}})} ``` rEc = Eg sRc = (En) (Fi) Eg Oc Εg = P24 Ec \overline{Rc} (O5 Is + - - -) \longrightarrow Remain in phase 4 until Is (Ms = No), indicating which sector next command word is located. ``` = (\overline{P24} \ \overline{O6} \ \overline{O2} \ O1 + - - -) \ Ar + P24 \ Pc Ig = P23 Ec Rc O5 O4 O3 O6 Ig + - - - sOc = P24 Ec Rc \mathtt{sEc} rRc = P24 Rc Is No possibility of phase 3: (O5 Command) rEc ≈ Ec O5 O4 O3 Oc = Ec O5 O4 O3 \overline{\text{Oc}} sRc = Ec O5 O4 O3 (\overline{O6} + \overline{O2}) F4 Kg ☞ Kg Ll sKl = Kg \overline{L1} rKl sK2 = Kg L2 = Kg L2 rK2 sK3 = Kg L3 = Kg \overline{L3} rK3 = Kg L4 sK4 = Kg \overline{L4} rK4 = P24 sIs rIs \approx (\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[\text{Ec O5 (P23-P16)} + - - - \right] \left[\overline{\text{K4}} \overline{\text{K3}} \overline{\text{K2}} \overline{\text{K1}} \overline{\text{F5}} \overline{\text{F3}}\right] = P24 Ec \overline{Rc} (O5 Is + - - -) Eg rEc = Eg Eg Oc sRc ``` ``` Ig = \overline{P24} \overline{O6} O2 Br + P24 Pc sOc = P23 \overline{E}c Rc O5 O4 O3 \overline{O6} Ig + - - - \overline{)} sEc = P24 \overline{Ec} Rc rRc = P24 Rc Is No possibility of phase 3: (O5 Command) rEc = Ec O5 O4 O3 \overline{Oc} sRc = Ec O5 O4 O3 \overline{Oc} Kg = Ec O5 O4 O3 (\overline{O6} + \overline{O2}) F4 sKl = Kg Ll rKl = Kg \overline{Ll} sK2 = Kg L2 rK2 = Kg \overline{L2} sK3 = KgL3 rK3 = Kg \overline{L3} sK4 = Kg L4 rK4 = Kg \overline{L4} sIs = P24 rIs = (\overline{Sr} \text{ sIw} + \text{Sr rIw}) [Ec O5 (P23-P16) + - - -] \overline{(\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F3})} Eg = P24 Ec \overline{Rc} (O5 Is + - - -) rEc = Eg sRc = \overline{En} \overline{Fi} Eg Oc ``` Oc flip-flop will be set because this command must have an optimum code bit.* $sEc = P24 \overline{Ec} Rc$ rRc = P24 Rc Is No possibility of phase 3: (O5 Command) $Kg = Ec O5 O4 O3 (\overline{O6} + \overline{O2}) F4$ sKl = Kg Ll $rKl = Kg \overline{Ll}$ sK2 = Kg L2 $rK2 = Kg \overline{L2}$ sK3 = Kg L3 $rK3 = Kg \overline{L3}$ sK4 = Kg L4 $rK4 = Kg \overline{L4}$ sIs = P24 rIs = $(\overline{\text{Sr sIw}} + \text{Sr rIw})$ [Ec O5 (P16-P23) + - - -] $\overline{(\overline{\text{K4}} \overline{\text{K3}} \overline{\text{K2}} \overline{\text{K1}} \overline{\text{F5}} \overline{\text{F3}})}$ Eg = P24 Ec Rc (O5 Is + - - -) rEc = Eg $sRc = \overline{En} \overline{Fi} Eg Oc$ ^{*}Due to the similarity in logic mechanization if a TRU command is given with no optimum code bit, the operation takes on the aspect of a TBN command andwill act accordingly. $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24RcIs Fg = Mig Nig Mir $\overline{Fg} = (\overline{Fg})$ $rAw = (\overline{sAw})$ Eg = $$P24 \text{ Ec } \overline{\text{Rc}} (\overline{05} \overline{02} + \overline{05} \overline{06} + \overline{05} \overline{03} \overline{01} + \overline{05} \overline{04} \overline{01} + - - -)$$ rEc = Eg When memory has a "1," the previously written bit configuration in A register is repeated. When memory has a "0," the A register is recirculated. (GTB) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs $Ig = (\overline{P24} \overline{O6} \overline{O2} O1 + \overline{P24} \overline{O4} \overline{O2}) Ar + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $sPc = Ec \overline{Rc} \overline{Pl} \overline{O5} \overline{O3} Ig \overline{Pc}$ $rPc = Ec \overline{Rc} \overline{Pl} \overline{\overline{O5} O3} Ig Pc$ $sAw = Ec \overline{Rc} O6 \overline{O5} \overline{O4} \overline{O3} \overline{O2} O1 Pc$ $rAw = (\overline{sAw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} O6 + - - -)$ $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24 Rc Is Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $sBw = Ec \overline{R}c O6 \overline{O5} \overline{O4} O2 \overline{O1} Fg Cr$ $rBw = (\overline{sBw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + \overline{O5} \overline{O3} \overline{O1} + \overline{O5} \overline{O4} \overline{O1} + - - -)$ ``` \overline{\mathrm{Ec}}\ \mathrm{Rc} ``` # 43 CLEAR B (CLB) $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24 Rc Is sBw = PlBr $\left[\overline{\text{Ec}\,\overline{\text{Rc}}\,(\overline{\text{O5}}\,\overline{\text{O4}}\,\overline{\text{O3}}\,\text{O2})} + - - - \right]$ This will <u>not</u> be true $rBw = (\overline{sBw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + - - -)$ ``` Ec Rc ``` # 44 CLEAR C (CLC) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24 Rc Is $sCw = \overline{P24}Cr \left[\overline{EcRc} (\overline{O5O4O3O2O1}) + - - - \right]$ This will <u>not</u> be true. $rCw = (\overline{sCw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} \overline{O6} + \overline{O5} \overline{O4} \overline{O1} + - - -)$ $\overline{\mathrm{Ec}}\,\mathrm{Rc}$ 45 CLEAR A (CLA) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24 Rc Is $sAw = Ar \left[Ec \overline{Rc} \left(\overline{O5} \overline{O4} \overline{O2} O1 \right) + - - - \right]$ This will not be true. $rAw = (\overline{sAw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} O6 + - - -)$ $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24 Rc Is Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $sBw = Ec \overline{Rc} O6 \overline{O5} \overline{O4} O2 \overline{O1} Fg Cr$ $rBw = (\overline{sBw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + \overline{O5} \overline{O4} O1 + - - -)$ rEc = Eg If memory has a "1," C register is copied to B register. If memory has a "0," B register is recirculated. (EXF) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $sBw = \overline{Pl} Br \left[Ec \overline{Rc} \left(O6 \overline{O5} \overline{O4} O2 Fg \right) + --- \right]$ If memory has a "0," B register is recirculated. If memory has a "1," B register ter receives a "0." $rBw = (\overline{sBw})$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + - - -)$ (DIU) $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24 Rc Is $rRf = Ec \overline{Rc} O6 \overline{O5} O4 \overline{O3} \overline{O2}$ $rTf = Ec \overline{Rc} O6 \overline{O5} O4 \overline{O3} \overline{O1}$ Eg = $P24 \text{ Ec } \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} \overline{O6} + \overline{O5} \overline{O3} \overline{O1} + - - -)$ $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24RcIs $rRf = Ec \overline{Rc} O6 \overline{O5} O4 \overline{O3} \overline{O2}$ $sTf
= Ec \overline{Rc} O6 \overline{O5} O4 \overline{O3} O1$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} O6 + - - -)$ Bg = P24 $$\boxed{T}$$ \longrightarrow *SS No. 7 + P1 $\boxed{T2}$ \longrightarrow *SS No. 8 + P2 $\boxed{T3}$ \longrightarrow *SS No. 9 + P3 $\boxed{T4}$ \longrightarrow *SS No. 10 + $(P24-P7)$ $\boxed{F3}$ $\boxed{F2}$ $\boxed{F1}$ $\boxed{T5}$ \longrightarrow *SS No. 11 + $(P24-P7)$ $\boxed{F3}$ $\boxed{F2}$ $\boxed{F1}$ $\boxed{T6}$ \longrightarrow *SS No. 12 + (P24-P7) \mathbf{F} 3 \mathbf{F} 2 $\mathbf{\overline{F}}$ 1 $\mathbf{\dot{X}}$ + (P24-P7) F3F2F1X "0" always entered. $\overline{Bg} = (\overline{Bg})$ $sSw = Bg \overline{Qg} + Sr \overline{Sc} \overline{Qg}$ $rSw = \overline{Sc} \overline{Sr} \overline{Bg}$ $rTf = \overline{Tc} \overline{Ec}$ ^{*}Selector slides in Flexowriter. $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24 Rc Is $sRf = Ec \overline{Rc} O6 \overline{O5} O4 O3 O2$ $rTf = Ec \overline{Rc} O6 \overline{O5} O4 \overline{O3} \overline{O1}$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + \overline{O5} \overline{O3} \overline{O1} + - - -)$ $LR = Rf \overline{Tf} (Reader clutch)$ → *SR No. 1 = P24Bg + P1 ≻*SR No. 2 → *SR No. 3 + P2 > *SR No. 4 + P3 + (P24-P7) $F3\overline{F2}\overline{F1}$ > *SR No. 5 + (P24-P7) $F3\overline{F2}F1$ **≻***SR No.6 + (P24-P7) $F3F2\overline{F1}$ ≻ *SR No. 7 + (P24-P7) F3F2F1 →*SR No. 8 $\overline{Bg} = (\overline{Bg})$ $sSw = Bg \overline{Qg} + Sr \overline{Sc} \overline{Qg}$ $rSw = \overline{Sc} \, \overline{Sr} \, \overline{Bg}$ $rRf = (Rc) \overline{Ec}$ ^{*}Reader contacts in the Flexowriter. ``` sEc = P24\overline{Ec}Rc ``` Possibility of phase 3: sRc = P24RcIs $sRf = Ec \overline{Rc} O6 \overline{O5} O4 \overline{O3} O2$ $sTf = Ec \overline{Rc} O6 \overline{O5} O4 \overline{O3} O1$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + - - -)$ Bg = P24 ($$U1$$) + $S1$) + P1 ($U2$) + $S2$) + P2 ($U3$) + $S3$) + P3 ($U4$) + $S4$) + (P7-P24) F3 $\overline{F2}$ $\overline{F1}$ ($U5$) + $S5$) + (P7-P24) F3 $\overline{F2}$ F1 ($U6$) + $S6$) + (P7-P24) F3 $\overline{F2}$ $\overline{F1}$ ($U7$) + $S7$) $\overline{Bg} = (\overline{Bg})$ $sSw = Bg \overline{Qg} + S_r \overline{Sc} \overline{Qg}$ $rSw = \overline{Sc} \overline{Sr} \overline{Bg}$ Note: (U) indicates magnetic tape. + (P7-P24) F3 F2 F1 S indicates photo reader. Ec Rc (LAI) $sEc = P24 \overline{Ec} Rc$ rRc = P24RcIs Possibility of phase 3: $sL1 = O6 \overline{O5} O4 \overline{O2} Ec Sw$ $rL1 = O6 \overline{O5} O4 \overline{O2} Ec \overline{Sw}$ $sAw = Ec \overline{Rc} O6 \overline{O5} O4 O3 \overline{O2} O1 (L1 Vg + Ar \overline{Vg})$ $rAw = (\overline{sAw})$ $Qg = Ec \overline{Rc} O6 \overline{O5} O4 O3 O1 P24$ $+ \overline{Ec} O6 \overline{O5} O4 O3 O1 (P7-P24) \overline{P24}$ $sSw = \overline{Sc} Sr \overline{Qg}$ $rSw = Qg \overline{Bg}$ Eg = $P24 Ec \overline{Rc} (\overline{O5} \overline{O2} + \overline{O5} O6 + - - -)$ (CAM) $sEc = P24\overline{Ec}Rc$ Possibility of phase 3: rRc = P24 Rc Is Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ $sOf = P24Rc O6 \overline{O5} O4 O3 O2 \overline{O1}$ $rOf = \overline{P1} \overline{P24} Ec \overline{Rc} O6 \overline{O5} O4 O3 O2 \overline{O1} (Fg \overline{Ar} + \overline{Fg} Ar)$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + - - -)$ (CIB) $sEc = P24 \overline{Ec} Rc$ Possibility of phase 3: rRc = P24 Rc Is $Qg = Ec \overline{Rc} O6 \overline{O5} O4 O3 O1 P24$ + Ec O6 O5 O4 O3 O1 (P7-P24) P24 $sSw = \overline{Sc} Sr \overline{Qg}$ $rSw = Qg \overline{Bg}$ Eg = $P24 Ec \overline{Rc} (\overline{O5} O6 + - - -)$ $\overline{\text{Ec}}$ Rc ### 6X WRITE OUTPUT CHARACTER (WOC) $sEc = P24\overline{Ec}Rc$ rRc = P24RcIs No possibility of phase 3: (O5 Command) Tg = Ec O6 O5 $\overline{O4}$ K3 $\overline{K2}$ K1 $\overline{K4}$ — Designates output to type (Line O5) Pg = Ec O6 O5 $\overline{O4}$ K3 K2 K1 $\overline{K4}$ ————Designates output to punch (Line O6) LTC = Tg (type translator clutch) LPC = Pg (tape punch clutch) LT1 = L1Tg LP1 = L1Pg LT2 = L2Tg LP2 = L2Pg LT3 = L3Tg LP3 = L3Pg LP7 = O2Pg LT4 = L4Tg LP4 = L4Pg LP8 = O3Pg LT5 = L5Tg LP5 = L5Pg LT6 = OlTg LP6 = OlPg rCa = O5 P24 $Xg = O6 O5 \overline{O4}$ $\overline{Xg} = (\overline{Xg})$ $Yg = O5 \overline{O4} Cr$ $\overline{Yg} = (\overline{Yg})$ $Zg = (\overline{\overline{Zg}})$ \overline{Zg} = $Xg Yg \overline{Ca} + Xg \overline{Yg} Ca + \overline{Xg} Yg Ca + \overline{Xg} \overline{Yg} \overline{Ca}$ $sCa = \overline{P1} \overline{P24} Ec \overline{Rc} Xg Yg \overline{Ca}$ ``` (WOC) ``` $rCa = \overline{P1} \overline{P24} \overline{Xg} \overline{Yg} + O5 P24$ $sCw = Ec \overline{Rc} O5 \overline{O4} Zg$ $rCw = (\overline{sCw})$ sIs = P24 rIs = $(\overline{Sr} \, sIw + Sr \, rIw) \left[Ec \, O5 \, (P16 - P23) + - - - \right] \left[\overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, \overline{F5} \, F3 \right]$ + P23 Ec Rc O6 O5 O4 Cr Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ $\overline{\mathrm{Ec}}$ Rc (PTU) $sEc = P24\overline{Ec}Rc$ rRc = P24 Rc Is No possibility of phase 3: (O5 Command) $Cpg = Ec O6 O5 O4 \overline{O3} \overline{O2} \overline{O1}$ sIs = P24 rIs = $(\overline{Sr} \text{ sIw} + Sr \text{ rIw})$ $\left[\text{Ec O5} (P16-P23) + - - -\right]$ $\left[\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F3}\right]$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ $\overline{\mathbb{E}}$ c Rc ### 71 MOVE COMMAND LINE BLOCK (MCL) $sEc = P24\overline{Ec}Rc$ rRc = P24RcIs No possibility of phase 3: (O5 Command) $Ig = \overline{P24} O6 O5 \overline{O2} Vg + P24 Pc$ $\overline{Ig} = (\overline{Ig})$ $Wg = Ec \overline{Rc} (O6 O5 O4 \overline{O3} O1)$ $sMiw = Mig Nig Wg Ig + \underbrace{\boxed{Mig Nig Wg}} \quad \underbrace{\boxed{Mir}}$ $rMiw = Mig Nig Wg \overline{Ig} + \underbrace{\boxed{Mig Nig Wg}} \quad \boxed{\boxed{Mir}}$ sIs = P24 rIs = $(\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[\text{Ec O5} \left(\text{P23-P16} \right) + - - \right] \left[\overline{\text{K4}} \, \overline{\text{K3}} \, \overline{\text{K2}} \, \overline{\text{K1}} \, \overline{\text{F5}} \, \overline{\text{F3}} \right]$ = $P24 Ec \overline{R}c (O5 Is + - - -)$ $\overline{\mathrm{Ec}}\,\mathrm{Rc}$ # 72 BLOCK SERIAL OUTPUT (BSO) $sEc = P24\overline{Ec}Rc$ rRc = P24 Rc Is No possibility of phase 3: (O5 Command) Fg = Mig Nig Mir $\overline{\mathbf{F}\mathbf{g}} = (\overline{\mathbf{F}\mathbf{g}})$ Gdg = Fg $Gsg = Ec O6 O5 O4 \overline{O3} O2 \overline{O1} Vg \overline{P1} \overline{P24}$ sIs = P24 rIs = $(\overline{Sr} \, sIw + Sr \, rIw) \left[Ec \, O5 \, (P16 - P23) + - - - \right] \left[\overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, \overline{F5} \, F3 \right]$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ ``` sOc = P23 \overline{Ec} Rc O5 O4 O3 \left[O6 \overline{O2} O1 Of + - - - \right] sEc = P24 \overline{Ec} Rc rRc = P24 Rc Is No possibility of phase 3: (O5 Command) rEc = Ec O5 O4 O3 Oc sRc = Ec O5 O4 O3 \overline{Oc} sKl = Kg Ll rK1 = Kg \overline{L1} sK2 = Kg L2 rK2 = Kg \overline{L2} sK3 = Kg L3 rK3 = Kg \overline{L3} sK4 = Kg L4 rK4 = Kg \overline{L4} rOf = P23 Ec O6 O5 O4 O3 \overline{O2} O1 = P24 {f s}{f I}{f s} rIs = (\overline{Sr} \text{ sIw} + Sr \text{ rIw}) \left[\text{Ec O5 (P16-P23} + - - - \right] \left[\overline{K4} \overline{K3} \overline{K2} \overline{K1} \overline{F5} \overline{F5} \overline{F3} \right] = P24 Ec \overline{Rc} (O5 Is + - - -) \mathbf{E}\mathbf{g} rEc = Eg sRc Eg Oc ``` Ec Rc #### 77 TRANSFER ON EXTERNAL SIGNAL (TES) Jg = Mig Nig (Ji) (Selected external signal line) $sOc = P23\overline{Ec}RcO5O4O3 \left[O6O2O1Jg + - - -\right]$ $sEc = P24 \overline{Ec} Rc$ rRc = P24RcIs No possibility of phase 3: (O5 Command) $rEc = Ec O5 O4 O3 \overline{Oc}$ $sRc = Ec O5 O4 O3 \overline{Oc}$ sIs = P24 rIs = $(\overline{Sr} \, s \, Iw + Sr \, r \, Iw)$ $\left[Ec \, O5 \, (P16 - P23) + - - \right] \left[\overline{K4} \, \overline{K3} \, \overline{K2} \, \overline{K1} \, \overline{F5} \, \overline{F3} \right]$ Eg = $P24 Ec \overline{Rc} (O5 Is + - - -)$ rEc = Eg $sRc = \overline{En} \overline{Fi} Eg Oc$ | | | | | | sis. | |--|--|--|--|--|------| |