
pb 250

Programming Manual

PBC 1004 Revision 1

/l '). ')
c 0 ~ y __i_· 0_· ·-"'-

Packard Bell Ce>mputer
A SU891DIA .. Y OP' PACKA .. D BELL ELECTFIONICS

1905 ARMACOST AVENUE • LOS ANGELES 25, CALIFORNIA • GRANITE 8-4247

March 15, 1961

NOTICE

This document involves confidential PROPRIETARY
information of Packard Bell Computer Corporation
and all design, manufacturing, reproductions, use,
and sale rights regarding the same are expressly
reserved. It is submitted under a confidential rela­
tionship for a specified purpo"se, and the recipient,

·by accepting this documen~ assumes custody and
control and agrees that (a) this document will not be
copied or reproduced in whole or in part, nor its
contents revealed in any manner or to any person
except to meet the purpose for which it was delivered,
and (b) any special features peculiar to this design
will not be incorporated in other projects.

When this document is not further required for the
specific purposes for which it was submitted, the
recipient agrees to return it.

PREFACE

This manual is a guide to programming the PB250. Although a great

deal of this material is similar to that which is included in the PB250 Re­

ference Manual, it is presented he re in more detail. The information pro­

vided in this manual will be useful in actual programming operations. Sup­

plements and modifications to this manual will be published as a series of

Programming Notes to be distributed to personnel posses sing Programming .

Manuals.

CONTENTS

Section Page

PREFACE

I GENERAL PB 250 CHARACTERISTICS

1.1 Introduction.. 1-1

1. 2 Memory Organization • . . . • . • • . . • . • • . • • • . . • • • • 1- 1

1. 3 Command Word Configuration • • . • • • . • • . . • . • • • . . . • • • • • • 1-5

L 4 Command Sequencing and Timing • • . • • . 1-6

1. 5 Parity Check ..•....•...•••.•. o e............ 1-9

II PB 250 COMMANDS

2 . 1 Gener al . Z - 1

III STANDARDS AND PROGRAMMING TECHNIQUES

3. 1 Programming Techniques • • • . . . • . • 3-1

3. 2 Use of Line 0 0 . 3 - 3

3. 3 Sample Programs . . . • . . • • • • . . • • . . • 3-5

3. 4 Programming Conventions .•.......••.••........• ; • . . 3-5

3. 5 Flow Diagramming Conventions . . • • . . . • • • • 3-8

3. 6 Annotation Conventions • • • • • • • • • 3 - 11

3.7 Available PB 250 Programs 3-12

IV INPUT-OUTPUT TECHNIQUES

4.1 Flexowriter.. i-1

V COMPUTER OPERATION AND PROGRAM CHECKOUT

5. 1 Computer Operation .. 5-1

5 .. 2 Program Checkout • • . 5-1

5. 3 Bootstrap Loading • • • • • . 5-3

i

APPENDICES

APPENDIX A: Binary-Octal Numbers

APPENDIX B: Numerical Conversion Tables

APPENDIX C: Octal Utility Program ...•............•...

APPENDIX D: Recirculation Chart ,•

ILL US TRA TIO NS

Figure

1-1 Data Word Configuration

1-2 Index Register

1-3 Input Buffer

1-4 Command Word Configuration ·

1- 5 Typical Command Word

4-1

4-2

4-3

Table

1- 1

2-1

2-2

3-1

3-2

ii

Flexowriter Keyboard, . ·

Flexowriter Code•........•

Flexowriter Characters•.............................

TABLES

Command Classification•........................•..

Division Correction

Flexowriter Configurations for woe Commands I •••••••

Standard Flow Diagram Symbols

Summary of Available PB 250 Programs

Page

A-1

B- 1

C-1

D-1

Page

1-2

1-4

1-5

1-5

1-6

4-2

4-2

4-2

Page

1- 10

2-35

2-59

3-10

3-13

PB 250 General Purpose Digital Computer.

I. GENERAL PB 250 CHARACTERISTICS

1. 1 INTRODUCTION

The Packard Bell PB 250 is a high-speed, completely solid-state gener-

al purpose digital computer in which both the data and the commands required

for computation are stored in a homogenous memory. The storage medium is

a group of nickel steel magnetostrictive lines along which acoustical pulses are

propagated. At one end of each of these lines is a writing device for translating

electrical energy into acoustical energy. At the other end of each line is a read­

ing device for translating acoustical energy back into electrical signals. By re­

writing the stored information as it is read, information continously circulates

without alteration, except for alterations which result from the execution of ~he

computer program. Use of the optional battery power supply will preserve

memory information even during power interruptions.

1. 2 MEMORY ORGANIZATION

The memory of the basic PB 250 contains ten lines, numbered octally

(base eight) from 00 through 11~ which may hold both data and instructions.

Each long line, 01 through 11, contains 256 (decimal), or 400 (octal), locations,

~ecto-rs, that are numbered 000 through 377. Note: All sector and

line numbers are gjven in octal notation throughout this manual. Since the in!for­

mation in any location can be either ~ or a command, the generic term"word" -----
is used to cover both. The location of any word is specified by a sector and line

number (S~SLL), and these together are called an,3ddress~ Line 00 is ·a 16-

word Fast Access Line. Since line 00 is 1/ 16 the length of a long word line, any

unit of information contained in it is available 16 times during each complete

circulation of the 256-word lmes. Any word in the Fast Access Line is identified

by one of 16 channel addresses { see Recirculation Chart9 Appendix D). Line 00

1- 1

channels are designated FOO through Fl 7. For example, channel FOO of the

line 00 can be identified by the following ~ddresses: 00000, 02000, 04000,

06000, 36000.

Fifty-three additional lines, each of which may have from one to 256

words, can be added. These lines are numbered 12 throug;h 36, and 40 thr.ough

77. Line number 37 is used for the Index Register. If all of the additional lines

are used, and if all hold 256 words, the memory capacity of the PB 250 is ex­

tended to 15, 888 words. The PB 250 cabinet can hold a total of 16 lines.

Commands can be executed only from lines 00 t_ti.rough ~7; these lines
---· _,,

are therefore designated ''Command Lines."
~-·· . ·······-----·-·····-·-·-·-··-···· .

1. 2. 1 Data Word Configuration

Every number stored in the PB 250 is .represented by a series of

pulses which correspond to a series of zeros and ones tqat are the digits of the

binary number system. The term "binary digit" is usually contracted to the

word "bit." (A discussion of binary numbers may be found in Appendix A.)

A number stored in a location in the PB 250 consists of twenty-one

bits that represent magnitude and a twenty-second bit to indicate sign. A nega­

tive number has a one in position zero, whereas a po$itive number has a zero

in position zero. Negative numbers are expressed in: their 2's complem'ent

form. (A discussion of complementary arithmetic may be found in Appendix

A.) Figure 1-1. shows a PB 250 data word configuration.

Figure 1-1. Data Word Configuration

These 22 positions are sufficient to represent a 6-digit decimal number.

1-2

Larger numbers may easily be represented by using the double precision

features of the computer.

1. 2. 2 Arithmetic Registers

Three arithmetic registers, A, B, and C, are provided for arithmetic

operations and information manipulation. Each register has exactly the same

format as a memory location, including the sign, and all are available to the

programmer. Double precision commands treat A .and B as a double-length

register. The contents of a register may be tested for non-positive values or

compared against the contents of any memory location. In addition, infor­

mation may be interchanged between A, B, and C. A record may be kept in

one register of operations perforrned on the others.

1. 2. 3 Index And Buffer Registers

Both the Index and Buffer registers are part of special one-word regis -

ters. When loading the A, B, or C registers from either the Index or Buffer

registers, suitable masking should be employed to avoid reading extraneous

inf or ma ti on.

1.2.3. l Index Register

The Index register, which is part of the machine Instruction register

(see. Figure 1-2), stores a line number for use with commands which have an

Index Tag of one. When used, the contents of the Index register replace the

• line number of the address in the command. This replacement is made during

the reading of the command, but does not change the command as its stands in

memory. For example, if the contents of the Index register are 01, then in

the execution of the following program step:

OP Code Address Index Tag

ADD 03204 1

1-3

The contents of 03201, instead of the contents of 03204, will be added to the

contents of the A register.

Line number 3 7 is reserved to designate the Index register.

Addresses 00037 through 37737 all apply to this register, and bit position 16

through 21 are the useful positions for the line address. Thus, a STA into

line 37, any sector, places bits 16 through 21 of A into the Index register,

bits 16 through 21.

0 78 15 16 21

Operand Sector Counter Index
Sector For Next Register

Counter Command

Figure 1-2. Index Register

The term "effective address," as used in this manual, means the

actual location referred to by the computer when executing a command. In the

event that the Index register is used, the effective address consists of the sector

address specified by the command, plus the line address stored in the Index

register, which replaces the line address of the command.

1. 2. 3. 2 Input Buffer

The Input Buffer is part of the machine~Sector Counter (see Figure
~.

1-3). It receives the input from the Flexowriter and can accept up to an

eight-bit character. This entry is logically accumulative for each bit of the

character, requiring that the buffer be cleared before each input. The Input

Buffer is enabled to accept information ~y either a READ TYPEWRITER

KEYBOARD or a READ PAPER TAPE command. The single character sent

by the reader, or provided by the depressed typewriter key, is loaded into

1-4

.
the buffer and, upon completion of buffer loading, the computer is signaled

by the Flexowriter. This action requires a period of time during which it

is possible to execute a large number of commands.

0

l

1. 3

7 8 15 16

Sector Sector

Counter Counter I
:

\.

Figure 1- 3. Input Buffer

COMMAND WORD CONFIGURATION

21 G p

___ __.)

Input :Bliffer

As previously described, information in any memory location may

be either data or a command. When the information is a command, it has a

definite configuration, or format, as illustrated in Figure 1-1.

0 1
.,

3 ~ 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 1-2_ 2 0 21 "'
I
I

-- ,., · ~~· ._.,
~--... ~ I I ! I

-··· ---~ t-- - ... ·---1
__ _,_____.

··--+·
I -~-·---

Sector Address Op Code ~ Linb t
Seq. Tag

Address

Figure 1-4. Command Word Configuration

Each subdivision, or field, of the command word is uniquely identified. The

subdivisions are the sector address, sequence tag, op code, line address,

and index tag fields. There will be frequent references in subsequent

descriptions, to the address field of a c~mmand. Although the address is

made up of a sector number and a line number, these numbers are not

contiguous in the command format. The address field, however, is considered

as a single entity. The address 03204 refers to sector 032 line 04. The

contents of the address field in a command do not always designate a memory

location.

1-5

For example, the shifting commands use the address field to indicate the

number of positions to shift.

The sequence tag field may contain either a one or a zero, and

its use is detailed in paragraph 1. 4 "Command Sequencing and Timing.''

The op code field contains a numeric code which specifies one of

the PB250 commands.

The index tag field may contain either a one or a zero. When a

one is placed in this field, the contents of the Index register are used

(see paragraph 1. 2. 3. 1); a zero in the field indicates no use of that regis­

ter.

Bit position 20 contains a one only when referring to a line address

of 40 or greater. For example, an LDA command referring to sector 30,

line 42, has an address of 03042 and appears as shown in Figure 1-5.
c>'-' oS-Lf-2-;

Figure 1-5. Typical Command Word

1. 4 COMMAND SEQUENCING AND TIMING

The PB250 reads and executes commands from the circulating com­

mand lines. The words of the long lines are read serially in sector address

sequence (000, 001, 002, --- 376, 377, 000, 001, ---). The time for each

word to pass through a reading device is 12 microseconds; therefore, the time

for all 256 words of a long line is 3072 microseconds. The 'performance of

each command involves four phases:

Phase I

Phase II

Phase III

Phase IV

Wait to read next command.

Read next command.

Wait to execute command.

Execute command.

For example, a command 00001 to store A in 03004 will be, read

(Phase II) in sector 000, held for execution (Phase III) in sectors 00 1 through

02 7, executed (Phase IV) in sector 0 30, and held while waiting to read the

next command (Phase I) in sectors 031 through 000. Phase II will follow in.

sector 001, causing the next command to be read from location 00 10 1.

There are four classes of commands in which the nature of Phase IV

differs. A tabulation showing the class into which each command falls is pro­

vided in Table 1-1. This tabulation is referred to extensively in Section II

of this manual.

1. 4. l Class 1

In this class of commands, execution always follows the reading of

the command by skipping Phase III. The sector address of the cornr:o.and is

used to designate the first sector. number in which Phase IV is discontinued.

This class of commands consists of all those which require an extended inter-

val of execution, such as block transfer, shifting, and multiplication· The

execution time for th is class of comm.and varies with the required d...i ration.

For example, block transfer requires 12 microseconds per word, shifting

requires 12 microseconds per bit, and multiplication requires 12 microseconds

per multiplier bit.

1. 4. 2 Clas s 2

In this class of commands, execution is always completed in the

sector specified by the sector address of the command. This class consists

of all one-sector operations such as load, store, add, and clear. ~11 com-

1-7

to execute . · S {?..Q. I~ r k: (P; i - ;; J.)

Class 3 is an extension of Class 2 to handle double precision operations.
As in c

lass 2, execution always starts in the sector spedfied by the sector ad­
dress

of the command, but the execution phase is always extended into the follow-
ing se eta r.

All commands of this class require 24 microseconds to. execute.

1. 4. 4
Class 4 ----=-=--
Class 4 consists of commands for conditional and unconditional trans­

fer of
control.. The condition for a conditional transfer is tested in Phase II

and, if th
e condition is met, the next command is read from the line and sector

nurnbe r
Ii the condition is not met, the command

8 Pecified by the command.
directly £

0 llowing the transfer of control command is read. A conditional trans­
fer whe::r:-

e the condition is not met, thus requires no execution time. The un­
conditional

t:ransfer selects the next command with no restrictions. The exe­
cution tir:n e

~ when control is transferred, is 12 microseconds per sector for the
interval

bet-vveen the transfer of control command and the next command.

1. 4. 5
~q~ence Tag

"With coinmands stored in sequential sectors, the indicated command
sequence ""Vi.;".

1 11 ·proceed at the rate of one instruction per (3072 + 12) micro­
seconds.

~ C> provide for a higher computation rate, a Sequence Tag of one may
be used i 2":l.. •

. b :i.. t position 8 of commands in Classes 1, 2, and 3. The use of this
:>pt1on wi.l. -.l..

ca use the next command to be read in the sector directly following
:he end of

t.h..e execution phase.
n 03004 ~i.l..l_

For example, a command in 00001 to store A

be followed by the command 03101 if the Sequence Tag is a one.

-8

1. 5 PARITY CHECK

Each memory word carries an additional position for ·an even parity

check. This position is not under program control and need not concern the

programmer in the design and coding of his problem. The parity check is

generated during the execution of the STORE and M~VE commands and is tesJ

ted when loading the arithmetic registers, during adding and subtracting oper­

ations, and when reading commands.

Computation will stop on a parity error, and may be restarted by

clearing the parity flip-flop with the BREAKPOINT switch and the ENABLE

switch of the Flexowrite r.

The actual PB250 word consists of 24 bits, of which 22 are acces­

sible to the programmer. A parity bit precedes bit position 0 (see Figure

1-1)p and a guard bit follows bit position 21.

1-9

Table 1-1 (Sheet 1 of 3)

COMMAND CLASSIFICATIONS

Class 1: Executed Between Command Location and Address

Sector Number.

NORMALIZE AND DECREMENT NAD (20)*

NORMALIZE NOR (20)*

LEFT SHIFT AND DECREMENT LSD {21)*

AB LEFT SLT (21)*

RIGHT SHIFT AND INCREMENT RSI (22)*

AB RIGHT SRT {22)*

SCALE RIGHT AND INCREMENT SAI (23)

NO OPERATION NOP (24)

INTERCHANGE A AND M IAM (25)

MOVE LINE X TO LINE 7 MLX (Z6)

SQUARE ROOT SQR (30)

DIVIDE DIV (31)*

DIVIDE REMAINDER DVR { 31)*

MULTIPLY MUP (32)

SHIFT B RIGHT SBR (33)*

LOGICAL RIGHT SHIFT LRS (33)*

WRITE OUTPUT CHARACTER woe (6X)

PULSE TO SPECIFIED UNIT PTU (70)

MOVE COMMAND LINE BLOCK MCL (71)

BLOCK SERIAL OUTPUT BSO (72)

BLOCK SERIAL INPUT BS! (73)
1-i A 1-I HLI ~ .:.\1 !*"

1-10

Table 1-.l (Sheet 2 of 3)

Class 2: Executed. in Address Sector Number

INTERCHANGE A AND C IAC (01)

INTERCHANGE B AND C IBC (02)

LOAD A LDA (05)

LOAD B LDB (06)

LOAD C LDC (04)

STORE A STA (11)

STORE B STB (12)

STORE C STC (10)

ADD ADD (14)

SUBTRACT SUB (15)

EXTEND BIT PATTERN EBP (40)

GRAY TO BINARY GTB (41)

AND M&C AMC (42)

CLEAR A CLA (45)

CLEAR B CLB (43)

CLEAR C CLC (449

AND OR COMBINED AOC (46)

EXTRACT FIELD EXF (47)

DISCONNECT INPUT UNIT DIU (50)

READ TYPEWRITER KEYBOARD RTK (51)

READ PAPER TAPE RPT (52)

READ FAST UNIT RFU (53)

LOAD A FROM INPUT BUFFER LAI (55)

COMPARE A AND M CAM (56)

CLEAR INPUT BUFFER C.TB (57)

HA--b-T ·H-~ (-0-0)*

MERGE A INTO C MAC { 00)':c

1-11

Ta.ble 1- 1 (Sheet 3 of 3)

Class 3: Executed In Address Sector Number And

.Following Sector.

ROTATE

LOAD DOUBLE PRECISION

STORE DOUBL~ PRECISION

DOUBLE PRECISION ADD

DOUBLE PRECISION SUBRACT

ROT

LDP

STD

DPA

DPS

Class 4: Executed Between Command Location And

Address Sector Number.

TRANSFER UNCONDITIONALLY TRU

TRANSFER IF A NEGATIVE TAN

TRANSFER IF B NEGATIVE TBN

TRANSFER IF C NEGATIVE TCN

TRANSFER ON OVERFLOW TOF

TRANSFER ON EXTERNAL SIGNAL TES

(03)

(07)

(13)

(16)

{17)

(37)

(35)

(36)

(34)

(75)

(77)

* Asterisk iridica.tes that the OP code has at least two meanings, depending

on the address used with the command. See Section II for a detailed descrip­

tion of the commands.

1- 12

\

II. PB 250 COMMANDS

2.1 GENERAL

2. 1.1 Command Structure

For each PB 250 command, a 3-letter mnemonic code has been devised.

These mnemonics are derived from an abbreviation of the command names and

are a convenient device for remembering the function of the command.

When writing a command word, the language of the Octal Utility Program

(Appendix C) will be used. This language is the standard language for the com­

munication of programs. Thus, referring to the illustration of a typical command

word (Figure 1-2), the fields are written as fdlows:

a) Sector Address: Three octal digits specifying the particular sector

to be used (000 ~SSS ~377).

b) Sequence Tag: If sequence tag is present, a capital S will be written;

if no sequence tag is used, a blank space will separate the sector

address and OP Gode.

c) Operation Gode (OP Gode): Two digits which indicate what command

will be executed.

d) Line Address: Two octal digits specifying the particular line to be

used (0 ~LL -~77).

e) Index Register: If the contents of the Index register are to replace
I .

the line address, there will be a ca~ital I at the end of the command;
I

if the Index register is not being used, there will be a semi-colon

(;) at the end of the command.

The following two commands illustrate this procedure:

2-1

017 s 37 03 ; .._,....- '- '-"""' -~
a b c d e

002 ..__.J 05 02 I
--...~ --,..... -v-'

a b c d e

Note: The letters a, b, c, d, and e refer, respectively, to the sector ad-

dress, sequence tag, op code, line address, and Index register.

2. 1. 2 Command Descriptions

In this manual, the notations A, B, and C will be used to refer,

respectively to the A register, B register, and C register, while M will be

used to refer to a particular memory location. Parentheses around the

letter indicate the contents of the register or memory location; e.g., (A)

refers to the contents of the A register.

The "contents of" always refers to all 22 bits of the appropriate

register or memory word, unless indicated otherwise by numerical

subscripts. These numerical subscripts tell to which particular bits refer -

ence is being made. For example: (A)
0

_
10

refers to bit positions 0 through

10, inclusive, of A; (B)S refers to bit position 5 of the B register; (01502)3_6

sector 15, line 2, bits 3 through 6.

"Effective address" will be used to mean the actual address employed

by the computer in execution of a command; if the Index register is used, then

the effective address will be the contents of the Index register and the sector

address specified by the command word.

It should again be noted that throughout this manual all op codes,

line numbers, and sector numbers will be in. octal notation.

Command descriptions in this section will consist of four parts, or

less, as requireda These parts will be:

2-2

2. I. 3

a) Description: Details of what the command does - - its effect on

registers, memory locations, etc.

b) Example: Specific numerical example showing the appearance of

the registers and relevant memory locations before and after exe­

cution of the command. (In the case of such basic commands as

CLEAR A, STORE A, etc., no example is given.)

c) Timing: The timing classification of the command plus, as re­

quired, optimization information such as addressing for optimum

timing.

d) Usage: Exceptions to the use of the command or examples of how

the command may be used. (Especially useful in such commands

as GRAY TO BINARY and EXTEND BIT PATTERN, whose use

might not be readily apparent to the programmer.)

Special Considerations

Codes 27, 54, 74, and 76 are unassigned and should not be used by

the programmer. In the event that these· op codes are used, the computer will

not halt but will try to execute a command unintended by the programmer.

Certain computer commands operate in a. modified manner as determined

by the address of the command. These modifications are either described under

the commands to which they apply or, if more appropriate, listed as separate

commands.

It should be noted that sequence tagging (as described in Section I) never

permits the command execution sequence to transfer to a different line, except

in the case of a TRU. That is, .if the computer executes a sequence-tagged

command from line"{ , the next command wilt always be executed from line "{ ,

regardless of sequence tagging - - except in the case of a TRU command with

a line address ,i "{ .

2-3

" ~ Note: The term execution time, as used in this section, includes the 12 micro-

seconds needed to read the command in addition to the time necessary to perform

the required operation.

2-4

_w- (

Oo f-{ LI 3i DVlf .~-~
oo .MAC ~/l~C ·3 .:2. MU .P ~
0/ .r Ac ~/1-fC 3.3 SB t(,4-p B,~t

O;.. I Ee I I g 'f (. :'33 L. l?S ~~·d#
OJ R. OT .~.AB~c . 3 /"" ICN ~4C-~ .,; ,, '

o· ~f L!>C ~ c 3S IAN . , , ' I I If .,

OS LJ) A -WA '3t TBN ,. .. IS ,,

o G L [) B ~ B 537 11(u -~
07 LOP ~,~~ 'f o EBP ~µ,~

I 0 STC. ~c J.f I &- TB ~k~
1 / SIA .~A "'.2. A~I c ~~ .M~ C

I 2. .STB. ~ B '13 CL[3 ~'1/V B

I .l .s TD ~~~~ if 'f CLC .~ c

l'f fl/) j) ~ 'fS- CLA ~ A

IS ~-v l3:. .~ 'f 6 /IOC ~,,.fYV~ ·'

/(o OPA .~·~~ 'f 7 EXF ~-µd

/1 OPS I• ··~ So DI. u ~~+.~ .
~o .f\/ AD ~~~ SI R. TK ~~~

']...0 ,VoR. -~ si R.PT ~h,ilvv,~

'2. I L5D ·~~'~+~ S3 R. FU .~µ-~
2(~Lt ·~~.11µ- S'S LA- I. ~~/l~-~-f~
".22 f(.SI /~4'-A~~~..;t Sb- C4"'1 .-id>~ A + /.1

22 ') r(T ·~·~ S1 c~ /3 ~aN~µ-.~
'l 3

·) . .
-~~-~-f/vJ4~ s A I .o--cJ .~++ ~c/li-'~ ~.X. woe

1- 'f /J ~; p .~~~ 70 p-ru ~A:tr.~~t
""1. s I,-\ Y\ .~AfM 71 .l\j C L ~~1~_µ_4

:q lvj L- .X .. ;~J).it... ~ x /tp,,. ~ 7 1 .L /3So .. Mrck ~~ .. ~-t/aM---:t-
·ff' -SC(• f~ ~~.i~"t- 1 .] 1$.S J:: ~~k ,,u>-~' --~~+

) I DEv ,.-,1 ~ 15' ID F ,~~ ,,-;r--~/L.~v-..... \,..

77 1(£ s .·~ .. I>">'- _i.,~·~ .~ra-e

HLT Halt (OO)*

This command stops computation under the conditions noted below and turns on

the parity error indicator light on the console. The OPERAND lights on the

console will indicate the line address associated with this command. To continue

execution of the program, the ENABLE switch and the BREAKPOINT switch on

the Flexowriter must be depressed. This will turn off the parity error indicator

and, upon release of the ENABLE switch, the program will continue. This

command will not stop computation if the sector address equals a. + 1, when the

HLT command itself is located in a • (See MAC description.)

Timing: HLT is a class 1 command. If parity is cleared, and the HLT com­

mand is sequence tagged, the next command is executed from '3 • where '3 is the

sector address. If the HLT command is not sequence tagged, the next command

is executed from a + 1. where HLT is located in a •

Usage: Error halts in a program are easily identified if difference line numbers

are used, thus providing a ready means of determining the location ~ithin the

program at which the computer has halted, the line number being read from the

console lights. The Octal Utility Program uses HLT 37) 8 to indicate a check­

sum error.

2-5

MAC Merge A into C (00)*

This command is a special case of HALT (00). If a HALT command is given

which has as its sector address ct+ 1, where a is the sector of the HLT, the

program will not halt. Instead, there will be a logical A OR C executed, with

the result appearing in C. The contents 6£ A are merged into the contents of

C; a one is placed in those bit positions of C in which there are ones in the

corresponding positions of A or C or in both. All 22 positions of A and C take

part in this operation. The (A) and (B) are not affected by this command.

Example:

Before execution of MAC

After execution of MAC

(A)

011001 0 l

01100101

(C)

11010101

11110101

Timing: MAC operates as a class Z command, being executed in sector a+ 1.

If the sequence tag is 1, the next command executed will be in a+ 2; whereas, if

the MAC is not sequenced, the next command follows fr.om sector a + 1. Note

that this is· different from a sequenced halt command, when the next command

comes from the sector specified.

Usage: When the C register is cleared before execution of MAC, the command

effectively functions as o.. "copy A into C", that is, the contents of A are dupli­

cated in C. When using this command, it should be remembered that the sectors

are addressed circularly, with sector 000 following sector 377.

Z-6

IAC Interchange A and C (C) 1)

The contents of the A register are loaded into the C register, and the contents

of the C register are loaded into the A register. These operations occur simul­

taneously; thus, no information is lost.

Example:

Before execution of IAC

After execution of IAC

(A)

+ 012 3456

+ 6543210

(C)

+ 6543210

+ 012 3456

Timing: IAC is a class Z. command. The sector address has meaning only in

terms of sequence tagging (providing a transfer). The line address may be any

number. The sector address, however, for minimum execution time (24 micro­

seconds) must be a+ 1, where a is the location of the INTERCHANGE A AND C

command. The next command to be executed, under sequence tagging, will be

taken from a+ 2.

2-7

IBC Interchange B and C (02)

The contents of the B register are loaded into the C register, and the contents

of the C register are loaded into the B register. These operations occur simul­

taneously; therefore no information is lost.

Example:

Before execution of !BC

After exe.cution of !BC

(B)

+2043177

+0021~01

(C)

+0021701

+2043177

Timing: IBC is a class 2 command. (For further description, see IAC, 01,

which is similar to !BC.)

2-8

ROT Rotate A, B, and C (03)

The contents of the A, B, and C registers are simultaneously rotated in the

following fashion: the contents of C are placed in B; the contents of B are

placed in A; and the contents of A are placed in C. No information is lost.

Example:

Before execution of ROT

After execution of ROT

(A)

+ 1205721

+6201530

(B)

+ 6201530

-31700ZS

(C)

- 3170024

+ 1205721

Timing: ROT is a class 3 command; 36 microseconds is the minimum exe­

cution time. Although the sector address has no meaning \n terms of exe­

cution of the command, for optimum programming, the address a+ 1 is re­

quired, where a is the location of the ROT command. This addressing, in

conjunction with the sequence tag, obtains a minimum execution time (36

microseconds). The next command will be executed from a+ 3. The line

address may be any number. As in allather commands in which sector

address has no meaning in terms of command execution, ROT may be used

to provide. a transfer by use of sequence tagging.

2-9

LDA Load A (05)

The A register is cleared and the contents of M, the effective address, are read

into the A register. The previous contents of A are destroyed: the contents of

M are not affected.

LDB Load B (06)

The B register is cleared and the contents of M, the effective address, are read

into the B register. The previous contents of B are destroyed; the contents of

M are not affected.

LDC Load C (04)

The C register is cleared and the contents of M, the effective address, are read

into the C register. The previous contents of C are destroyed; the contents of

M are not affected.

Timing: LDA, LDB, and LDC are class 2 commandso To obtain minim"um exe­

cution time (24 microseconds), the operand which is to be loaded into the regis­

ter must be located in the next sector after the command (a + 1), but not neces­

sarily in the same linep and the command must have a sequence tag of one. The

next command to be executed will be taken from ct· + 2, where a is the location

of the load command.

2=10

LDP Load Double Precision {07)

Both the A and B registers are cleared. The contents of M, the effective ad­

dress, are read into the B register; the contents of M + 1 are read into the A

register. The contents of M and M + 1 are not affected.

Timing: LDP is a class 3 command. To obtain minimum execution time {36

microseconds), the operand must be stored in a+ 1 and a+ 2, where LDP is

located in a, in any line. Sequence tagging under these circumstances results

in the next command being executed from a+ 3.

Usage: This command, along with the other double precision commands,

provides double precision arithmetic capacity within the command structure

of the PB 250. Furthermore, in terms of data handling, it is often convenient

to pick up or store two consecutive words which are not a single number but 1

"•
are two separate units of information. The LDP command red~es the number

of memory accesses necessary in a program.

Some discussion of double precision is in order. A double precision number;

consists of two words, or 44 bits. Commands functioning in the double pre-.~ ..

cision mode will operate on two words and treat A and B as one register, w~re
A is the Most Significant Word (MSW) and B is the Least Significant Word(LSW).

Double precision numbers must be stored in consecutive words; the effective

address is the lower-ordered address. For,example, if the specified memory

location is 03404, the double precision number is stored in memory locations

03404 and 03504. Location 03404 contains the Least Significant Word (LSW),

while 03504 contains the Most Significant Word (MSW).

2-11

STA Store A (11)

The contents of the A register are stored in M, the effective address. The previ­

ous contents of M are destroyed; the contents of the A register are not affected.

STB Store B (12)

The contents of the B register are stored in M, the effective address. The previ­

ous contents of M are destroyed; the .~ontents of the B register are not affected.

STC Store C {10)

The contents of the C register are stored in M, the effective address. The previ­

ous contents of M are destroyed; the contents of the C register are not affected.

Timing: STA, STB, and STC are class 2 commands. To obtain minim.um exe­

cution time (24 microseconds), the contents of the register must be stored in

the next sector after the command (a + 1), but not necessarily in the same line,

and the command must have a sequence tag of one. The next command to be exe­

cuted will be taken from a + 2, where a is the location of the store command.

2.-12

STD Store Double Precision 13)

This command operates on both the A and B registers. The contents of the B

register are stored in M, the effective address; the contents of the A register

are stored in M + 1. For example, if the specified addre~s is 00004, the

contents of B are stored in 00004 and the contents of A are stored in 00104.

The previous contents of A and B are not affected; the previous contents of

00004 and 00104 are lost.

Timing: STD is a class 3 command.

2-13

ADD Add (14)

The contents of M, the effective address, are algebraically added to the contents

of the A register. This sum replaces the contents of A; the contents of M are

unaffected. Overflow occurs when (A) and (M) initially have like signs and the

result in A has a different sign.

Example: The command 011 1403; is executed. The contents of line 3, sector

0 l 1 , are + 0 210 416.

(A) (01103)

Before execution of ADD +O 143115

After execution of ADD +0353533

+0210416

+0210416

Timing: ADD is a class 2 command. To obtain the minimum execution time

(24 microseconds), the operand which is to be ad<;led to (A) must be located in

the next sector after the command, but not necessarily in the same line, and

the command must have a sequence tag of one. The next command to be

executed will be taken from a + 2, where a is the location of the ADD command.

Usage: Reference should be made to the discussion of 2's complement arith­

metic in Appendix A prior to coding arithmetic problems for the PB 250.

2-14

SUB Subtract (15)

The contents of M, the effective address, are algebraically subtracted from the

contents of the A register. The result replaces the contents of A; the contents

of M are unaffected. Overflow occurs when (A) and - (M) initially have like

signs and the result in A has a different sign.

Example: The command 125 1507;

sector 125, are +OZ 312 34.

Before execution of SUB

After execution of SUB

Timing: SUB is a class 2 command.

is executed. The contents of line 7,

(A)

+ 6120134

+ 5666700

(12507)

+ 0231234

+ 0231234

2-15

DPA Double Precision Add (16)

The contents of the word pair starting at M, the effective address, are

algebraically added to the contents of the combined A and B registers.

This sum replaces the contents of A and B; the word pair beginning at M is

not affected. Position 0 of the B register does not act as a sign; but is part

of the magnitude of the number, and any carry from position 0 of B propagates

into position Z.1 of A. Overflow occurs when (A) and (M+l) initially have like

signs and the result in A has a different sign. The double precision word in

memory starts with (M + 1), where (M) represents the least significant part

of the double precision number.

Example: The command OOZ 160Z; is executed. The contents of line OZ,

sector 003, are + 1Zl0456. The contents of line OZ, sector OOZ, are

731Z0604 (111.0110010100001100001). (A) (B) (003)

Before execution of DPA

After execution of DPA

+01Z4471

+1335150

314Z5000

2.4545604

+lZ.10456

+12.10456

(OOZ)

731Z0604

7312.0604

·Timing: DPA is a class 3 command. To obtaj"l the minimum execution time

of 36 microseconds, the operand which is to be added to (AB) must be located

in the next two sectors after the command, but not necessarily in the same line

and the command must have a sequence tag of one. The next command to be

executed will be taken from ci + 3, where ct is the location of the .DPA comm.and.

Usage: The DPA command may be used to accumulate a double precision sum,

where six decimal digits are not sufficient in an arithmetic computation. Another

use occurs when it is certain that the sum in B will not overflow to A; two sepa­

rate sums may then be accumulated, one in A and one in B. ADD may be used

to add to (A), while DPA may be used to add to (B), where the most significant

word to be added to (AB) consists of all zeros. A further use of DPA is t0

2.-16

DPA Double Precision Add (cont.)

round a positive double precision number in (AB) to a single precision number

in A. The number to be added to (AB) should appear as follows:

a

a + 1

·- -0000000

= +0000000

(16)

2-17

DPS Double Precision. Subtract (17)

The contents of the word pair starting at M, the effective address, are algebrai­

cally subtracted from the contents of the combined A and B registers. The r~­

sult replaces the contents of A and B; the word pair at M is not affected. Po­

sition 0 of the B register does not act as a sign, but is a part of the number,

and any carry from position 0 of B propagates into position 21 of A. Overflow

occurs when (A) and - (M+ 1) initially have like signs, while the result in A

has a different sign. The double precision word in memory starts with (M+ l);

(M) represent the least significant part of the double length number.

Example: The command 113 1705; is executed. The contents of line 5, sectors

114 and 113 are, respectively, +0124471 and 31425000.

Before execution of DPS

After execution of DPS

Timing: DPS is a class 3 command.

2-18

(A)

+ 1210456

+ 106 3765

(B) (114) (113)

73120604 +0124471 31425000

41473604 +0124471 31425000

NAD Normalize and Decrement

The address field of the NORMALIZE AND DECREMENT command is not used

to specify the location of an operand, but contains an address number, N,

which specifies the first sector following the completion of execution. In exe­

cuting this command, the (AB) are shifted left until one of two conditions is

met:

1) (A) 0 =1= (A) 1 ; i.e., the contents of A, position 0, do not equal

the contents of A, position 1.

2) (AB) has been shifted S positions (where S is selected by the

programmer).

The line address should not have a one in position 16 (see description of NOR

command). The (C) are decremented by one for each position shifted. Po­

sition 0 of A does not move, but position 0 of B takes part in the shifting. The

vacated positions of B are filled with zeros. The programmer should select

S large enough so as not to inhibit proper normalization. S is used in de­

termini:tJ.g N in the following manner:

N)
8

=Sector location of the command)
8

+ S)
8

+ 1)
8

Example: The command 071 2000; is located in sector 015 of line 02.

Timing:

Before execution of NAD

After execution of NAD

+0012461

!!- ' 5::Z.3J) 5 6 0

34105614

42706000

+0000010

+ 0000000

NAD is a class 1 command. If a sequence tag of one is used, the

(20)*

next command is read from N. With a sequence tag of zero, the next command

is read from a + 1, where a is the sector location of the NAD command.

Usage: This command may be used in "floating" a fixed-point number to

obtain a normalized floating point representation. Choosing S equal to 53)8

2-19

NAD Normalize and Decrement (cont.)

allows for normalizing every possible number in AB, but still terminates the

operation if (AB) equal zero. If normalization is accomplished before N time,

the command is executed as a NOP (24) for the retnaining sectors. Note that

a shift of zero positions cannot be accomplished by any of the shifting commands.

2-20

NOR Normalize 20)*

The address field of the NORMALIZE command is not used to specify the lo­

cation of an Qperand, but contains a.n address, N, which specifies the first

sector following completion of execution. In executing this command, the (AB)

are shifted left until one of two conditions is met:

2) (AB) has been shifted S positions, where Sis selected by the

programmer.

The line address must have a one in position 16. (See description of NAD com­

mand.) The (C) are not affected by execution of NOR. Position 0 of A doe,s not

move, but position 0 of B takes part in the shifting and moves from 0 of B into

21 of A, etc. The vacated positions of B are filled with zeros. The programmer

should select S large enough so as not to inhibit proper normalization. S is

used in determining Nin the following manner:

Example:

Timing:

N)
8

= Sector loca~ion of the command)
8

+ S)
8

+ 1)
8

The comtnand 071 20 10; is located in 01502.

Before execution of NOR

After execution of NOR

(A)

- 77 31245

-3124532

(B)

32001420

00142000

NOR is a class 1 command. If a sequence tag 6£ one is used, the

next command is read from N. With a sequence tag of zero, the next command

is read from a + 1, where a is the sector location of NOR.

Usage: Choosing S = 53)
8

allows for normalization of every possible

number in AB, but still terminates the operation if (AB) equal zero. If normal­

ization is accomplished before N time, the command is executed as a NOP (24)

for the remaining sectors.

2-21

LSD Left Shift and Decrement (21)*

The (AB) are shifted left for S positions, S being determined by the programmer.

The (C) are decremented by one for each position shifted. Bits shifted past

position 1 of A are lost and zeros fill the vacated positions of B. Position 0 (the

sign) of A is not moved, but position 0 of B takes part in the shifting. The line

address of this command should not have a one in position 16. (See description

of SLT command). The sector address field of this command is not used to

specify the location of an operand, but contains an address, N, which is deter­

mined by:

N)
8

=Sector location of the command)
8

+ S)
8

+ 1)
8

.

Example: The command 021 2100; is located in line 3, sector 015.

Before execution of LSD.

After execution of LSD

(A)

- 1532104

- 5321043

(B)

36124104

61241040

(C)

+0000007

+0000004

Timing: LSD is a class 1 command. The next command to be executed, when

this comm.and has a sequence tag of one, is the command located in N.

Usage: This command should be used only when it is desired to decrease (C)

by l for each position shifted left. It is important to remember that the sign

position of A does not participate in the shifting. Note: S:>53)
8

results in

setting (A) l-2.l and (B) 0-2.l equal to zero.

SLT Shift Left (21)*

The (AB) are shifted left for S positions, S being determined by the programmer.

The (C) are not affected by this command. The line address of this commapd

mu!.t.h~ve a one in position 16 (see description of LSD command). Bits sHifted
... -·-- .,...._._-V••«:"'•"•&_. __ .. .,, •• _ __..,~ .. _..,.p;,_...,_,.....,...,,_...,r..,.- ... -r•• ~·"-:-.. ·~~,.,.r•

past position 1 of A are lost, and zeros fill the vacated positions of B. Position

0 of A is not moved (does not participate in the shifting), but position 0 of B

does participate in the shifting. The sector address of this command is not used

to locate an operand, but contains an address, N, which determines the length

of the shift.

N) 8 = Sector location of the command)
8

+ 5)
8

+ 1)
8

·

Example: The command 021 2110: is located in line 03, sector 015.

(A) (B)

Before execution of SLT -1532104 36124104

After execution of SLT -5321043 61241040

Timing: SLT is a class l command. The next command to be executed, when

this command has a sequence tag of one, is the command located in N.

Usage: This command may be used when it is desired to shift left without

disturbing (C). The sign position of A does not participate in the shift:ing, and

S > 53)
8

results in setting (A)
1

_
21

and (B)
0

_
21

equal to zero.

2-23

RSI Right Shift And Increment (Z.2)>lc

The (AB) are shifted right for S positions, S being determined by the programmer.

The (C) are incremente.d by one for each position shifted. The bit in the sign

position of A is copied into the vacated positions of A. Bits shifted past position

21 of B are lost. Position 0 (the sign) of A is not moved, but position 0 of B takes

part in the shifting. The line address should not have a one in position 16. (See

description of SR T command.) The address field of this command is not used to

specify the location of an operand, but contains an address number, N, which is

determined by:

N) 8 = Sector location of the command) + S) + 1) .
8 8 8

Example: Command 021 2200; is located in sector 015 of line 03.

Timing:

Usage:

Before execution of RSI

After execution of RSI

RSI is a class 1 command.

(A)
-3120456

-7312045

(B)
47217030

6472.1700

(C)
+0000000

+0000003

Use RSI only when it is desired to shift (AB) right and to increment

the C register. (when C register incrementing is undesirable, see description

of SR T command.)

z. -2.4

SRT Shift Right

The (AB) are shifted right S positions, S being determined by the programmer.

The (C) are not affected. The bit in position 0 of A (sign position) is copied

into the vacated positions of the A and B registers. Bits shifted past position

21 of B are lost. Position 0 (sign position) of A is not moved but position 0

of B takes part in the shifting. Note: The line address of this command must

be such that bit position 16 contains a one. (See description of RSI command.)

The sector address field of this command is not used to specify the location of

an operand, but contains an address numbe.r, N, which is determined by:

N)
8

= Sector locat\on of the command)
8

+ S)
8

+ 1)
8

.

Example: The command 200 2210; is located in line 2, sector 171.

Before execution of SR T

After execution of SR T

Timing: SRT is a class l command.

(A)

- 3177204

- 7731772

(B)

21643104

04216430

Usage: This command should be used when it is desired to shift (AB) right

without affecting the (C). (If incrementing the C register is desirable, see

description of RSI command.)

2-25

SAI Scale Right And Increment (23)

The (AB) are shifted right and the (C) are incremented by one for each position

shifted. The ope ration continues until one of the two conditions is met:

1) (C) ~ 0

2) (AB) are shifted S positions, where Sis selected by the programmer.

The bit in the sign position of A is copied into the vacated positions of A. Po­

sition 0 (the sign) of A is not moved, but position 0 of B takes part in the shift­

ing. S should be so selected as not to inhibit the scaling. The line address of

this command should be zero. The sector address field of this command is not

used to specify the location of an operand, but contains an address number, N,

which is determined by:

N)
8

= Sector location of the command)
8

+ S)
8

+ 1)
8

.

Example: The command 004 2300; is located in 00002.

(A) (B)

Before execution of SAI

After execution ·of SA!

+1231046

+0123104

21320040

62132004

(C)

-7777500

-7777503

Timing: SAI is a class 1 command. If sequence tagging is used with the com­

mand, the next command to be executed will be taken from N, even if condition

(1), above, is obtained before N sector time.

Usage: This command can be used in "fixing" floating point numbers at a

particular scale factor. If (C) become ~ 0 before N time, the command is

executed as a NOP (which, in this case, will have an op code number of 27)

for the renf~ining sectors.

2-26

NOP No Operation (24)

This command causes the computer to continue in the regular command sequence.

Memory arid registers are not affected.

Timing: NOP is a class 1 command. Sector address has meaning only in the

event that a· maximum operation speed is to be obtained. Optimum programming

requires a sequence tag of one and a sector ad.dress of a + 2, where NOP is

located in a . The next command to be executed will come from a + 2. Line

address may be any number. NOP may also function as a transfer to f3 , when

the sector address of the NOP command is ~ (13 must be in the same line as

NOP).

2-27

IAM Interchange A and M (25)

This command interchanges information in the line designated by the line ad­

dress, with the information in the A register. The interchange starts in the

sector following the !AM command and continues up to, but not including, the

address sector number. This command results in a one-word precession of

the information in the designated line. The information originally in the A

register is entered into the first sector and is replaced by the information in

the las t s e c tor .

Example: The command 015 2503; is located in sector 012 of line 2.

Timing:

Usage:

Before execution of IAM

After execution of IAM

IAM is a class 1 command.

(A)
+3214071

+3246002

(01303)
-5377210

+3214071

(01403)
+3246002

-5377210

This is a very convenient way of manipulating sector sequential

data in memory without modifying· addresses. In effect, the designated sectors

and the A register function, temporarily, as a special line. Each time IAM is

executed, a stepping of data takes place as shown below. Note: a is the sector

location of the IAM command, but is not necessarily in the same line as a + 1,

a +2, etc., and a

Location

A register

a + 1

a + 2

a + N-1

a + N

2-28

+ N + 1 is the IAM

Initial
Contents

Xa

X1

Xz

x
n-1

sector

After
1st IAM

xn

xa

xl.

x
n-2

x n-1

address.

After
2nd IAM

Xn-1

xn

x a

x
n-3

x n-2

MLX Move Line X to Line 7 (26)

This command transfers information from the effective line address to line 07.

The transfer begins in the sector following the MLX command and continues up

to, but not including, the sector address.

Timing: MLX is a class 1 command; timing is similar to that for MCL (71).

Usage: This command should be studied in conjunction with MCL (71). It is

to be noted, that both of these commands, though similar, have certain

significant differences. MCL moves an entire command line, or any part of a

command line in which the MCL is actually located, into another line. MLX

moves some specified line, not necessarily the one in which it is located, OJ"

part thereof, into line 7; thus, in the case of a machine in which subroutines

are stored in lines 10, 11, etc., it may be desirable to move these subroutines

into line 7 for execution. This can be accomplished by using the MLX command.

An entire line may be moved by giving the address a+ 1, where the MLX com­

mand is located in a. It can be seen that both of these commands have a sepa­

rate and important use in the PB 250. Judicious use of these commands provides

an easy method for moving data· from line to line, while preserving the same rela­

tive sector locations.

2-29

SQR Square Root (3 0)

The argument must be in the combined AB registers. The (C) must be positive.

The square root appears in B with the remainder in A. The C register takes

part in this operation and its contents are replaced by the square root. The (C)

will be the full root but will differ from the (B) in the least significant bit com­

puted. If only A is loaded with the argument, (B) should be cleared or they may

influence the least significant bit of the computed root.

The line address of this command should be zero. The sector address contains

a number, N, which specifies the first sector location following the completion

of the operation. The SQR command is a variable length operation, which per -

mits the programmer to specify a quantity, S, which is the number of bits of

the root that are to be developed. N is determined from S as follows:

N) = Sector location of the command) + S) + 1)
8 8 8 8

The argument, (AB), must be positive for this operation to be executed cor -

rectly. If S = 21, the full root is formed in B.

Example: The command 006 3 000; is located in 3 6005.

(A) (B)

Before execution of SQR

After exectuion of SQR

+0100000

-5777776

+0000000

+1000000

(C)

+0000000

+1000001

Timing: The number whose square root is to be found should be at an even

scale factor, 2Q. The result in the B register will be scaled at Q + 21 - S.

For example, where S = 21)
10

and the (AB) are at 2Q = 20, the result in B is

scaled at Q = 10. If S = 10, and the (AB) are at 20 = 20, the result is in B at

2-30

SOR Square Root (cont.)

Q = Z 1. Bit 11 of B will be a zero, and the result will be in bits 12 through 21;

bit 0 of C will be a zero, and nine bits of the result will be in bits 1 through 9.

SOR is a class 1 command.

(30)

2-31

DIV Divide l A :. < r
f"l ' · V'"·
• . \;~ ·-!~ .•

,;_ ·.

The dividend is in the combined AB registers and the di visor is in the C regis -

ter. The quotient appears in the B r~_gister, with a remainder in A. The

line address of this command should not have a one in either positions 15 or

19. The sector address field contains an address, N,
0
which specifies the first -----sector location following the completion of the operation. 'The DIV command is

a variable length operation, which permits the programmer to specify a quanti­

ty, S, which is the number of bits of the quotient (including sign) to be developed.

If S is 22, the full quotient is formed in ~, with a sign in (A) 21 , and the unit

bit i,n (B)o. In case the divi~..Q..~_a.s. . ..gi:e.a.te.r.~~than-.the-~d.Uiid~.-the... . .units...hit . ._V'.{ill

eg ~~}. ~1.11.~Ll?J_gri.-<Jij!J\ ... ,~ 1?:~·-·-~-~~~-·-q·~-~,!.!_~~~.t ... ~!}.!_.,_~ 12 P.~~E. ?-.. ~,. ~-~-~- i_g_~~~-,~-~.!.!.1 b~::_ .. ~~--~--~~!Y ·
N is determined as follows:

Example:

N) 8 Sector location of the command) 8 + S)_8 -\- 1) 8

The command 02 7 3100; is located in 0000 3.

Before execution of DIV

After execution of DIV

+0700000

-6200001

+0000000

+7777777

-7100000

-7100000

This is a divide with S = 22. The last bit of A is the sign of the quotient, which

is negative. In canonical form, the quotient is -0000000, and the remainder is

+0000000.

Timing: DIV is a class 1 command. If a sequence tag of one is used, the

next command is executed from N.

Usage: 1) If the dividend is scaled at Q (a), and the divisor at Q (b), then

the quotient is scaled at Q [a - b + 22 - SJ .

2-32

DIV Divide (cont.) (3l)>:c

2) The machine remainder is scaled at Q b-1 . The corrected remainder

will be scaled at Q (b).

3) The binary point of the quotient is preceded by the unit bit and sign, and

is succeeded by the 1/2 bit, 1/4 bit., 1/8 bit, etc. Bits to the left of the sign bit

are not cleared.

Sign Bit Units Bit l/ 2 Bit

==tT ±G l11f 4l 1
181 ·I· I· I I 7,

Radix Pt.

QUOTIENT

In case the divisor is, in absolute value, greater than the dividend, then the

sign and unit bits are equal. Whenever the quotient is less than 2. in absolute

value, the unit bit reflects the true integral value. In case S = 22., the unit bit

is in (B)
5

, and the sign of the quotient is in (A)21 . This will affect the least

significant bit of the remainder. For example, a full division of -1, scaled

at Q (0), by itself, gives a quotient of+ 1 scaled at Q (0), i.e., a one in (B).s

and zeros in (~)21 and (B)1-2 i ·

4) To obtain the undivided remainder at Q (b) from the machine remainder,

shift (A) right one position, using an LRS with bit 15 equal to ~; if (A)5 and

(C)5 are now unequal, add (C) to (A). The undivided remainder is in the A

register.

5) The canonical quotient is, in absolute value, less than, or equal to,

the theoretical answer. This implies that the sign of the canonical divided

remainder has the same sign as the quotient. In the PB 250, the quotient is

always less than, or equal to, the theoretical answer. Therefore, the divided

Z-33

DIV Divide (cont.)

remainder will always ~e positive. For example, using integers scaled at the

right of the registers, -5 divided by+ 3 is -1 with a divided remainder of -2/3

in canonical form. In the PB 250, a quotient of -2 and a divided remainder of

+ 1/3, is obtained which is mathematically correct. In the case of a negative

quotient, the quotient and undivided remainder must be altered if canonical

form is desired. Note that the quotient need only b~
1

corrected in the least sig­

nificant bit position. Therefore, for most purposes, the ma.;chine quotient is

sufficiently accurate.

6) The correction to canonical form, which is described in (7),

can be avoided if the original dividend and divisor are both positive, i.e., if

one attaches the sign to the quotient and remainder after the division takes

place. The correction de .. scribed in (8) must be applied in either case.

7) To obtain an answer in canonical form, the quotient is altered

by adding a (+l) in bit position 2.1 if the quotient is negative. Table 2-1 shows

how to go directly from the uncorrected machine remainder to the canonical

undivided remainder. First shift (A) right one place using an LRS command
.... •\":""°!.

with bit 15 equal to z-e:r-0. Then add or subtract (C), or leave (A) unchanged

according to Table 2-1. This depends on the signs (A)5 , (B)8 , and (C)8
after the shift and before the quotient is corrected. The remainder will have

a scale of Q (b).

2-34

DIV

(C)S

+

+

+

+

-
-
-
-

Divide (Cont.)

Table 2-1

DIVISION CORRECTION

(A)S (B)S

+ +

+ -
- +

- -
+ +

+ -
- +

- -

(31)*

Correction

none

-(C)

+(C)

none

none

+(C)

none

-(C)

8) After the cor.rection to canonical form, the quotient may

be exactly one unit less than the answer, in absolute value. This will be

reflected by:

a) (remainder} = (divisor) if the quotient is positive.

b) (remainder) = - (divisor) if the quotient is negative.

In these cases, the quotient should be increased or decreased by a (+l} in bit

position 21, and the remainder set equal to zero.

2-35

DVR Divide Remainder (31)*

The remainder is in the combined AB registers, and the divisor is in the C

register. The quotient appears in the B register; the remainder appears in A.

The line number of this command should have a one in position 19 and a zero

in position 15. The sector address field contains an address, N, which specifies

the fir st sector location following the completion of the operation. The DVR

command is a variable length operation, which permits the programmer to

specify a quantity, 5, which is the number of bits of the quotient to be developed.

The quotient has no sign. If 5=22, the most significant bit will be in (B)
0

. N

is derived as follows:

N)
8

= Sector location of the command)
8

+ S)
8

+ 1)
8

.

Example: A 4, scaled at 24, is divided by 3, scaled at Z 1. The result, with

5=21, should be 1 1I3, scaled at 4. The result· after the DIV is shown, and

then the result after saving the quotient, clearing the B register, DVR with

5=22, and replacing the original quotient into the A register, giving a double

precision result.

Timing:

Before execution of DIV

After execution of DIV

After execution of DVR
and splicing

(A)

+ 0000000

- 7777776

+ 05252.52.

(B)

- 0000000

+ 0525252

- 2.52.52.52.

(C)

+ 0000003

+ 0000003

+ 0000003

DVR is a class 1 command. If sequence tag of one is use.d, the

next command is executed from N.

Usage: The DVR operates on an uncorrected rem.ainder. Before performing

the DVR, if maxim.um accuracy is desired, the quotient should be saved and the

B register should be cleared. For rn.a.Ximum accuracy, the original DIV should

2.- 36

DVR Divide Remainder (Cont.) (31)*

have used an S of 21, maximum. This is because of the sign bit in (A) Zl

when S = ZZ (see DIV description). The quotient of the DVR, with S = ZZ,

can be spliced to the quotient of the DIV., In general, the quotient of the

DVR should be shifted left (ZZ - S) places before splicing it to the quotient

of the DIV. The correction to the remainder, and the correction for can­

onical form, follow the procedure described in DIV, except that correcting

the quotient requires a DOUBLE PRECISION ADD (DPA) command of+ 1

in the 43 rd bit of the quotient.

2-37

MUP Multiply (32)

The multiplier m.ust be loaded into the B register and the multiplicand must be

loaded into the C register. The computer clears the A register before multi­

plying, provided that the line address of the command does not have a one. bit

in position 15. The product appears in the combined AB registers; (C) are

unaffected. The sign of the product and the 21 most significant bits of magni-
.2.. I

tude appear in the A register; the -~ least significant bits of magnitude ap~ear

in the B register.

The address field of the MULTIPLY com.m.and is not used to specify the loca­

tion of an operand, but contains an address number, N, which specifies the

first sector num.ber following the completion of multiplication. The MULTIPLY

command is a. variable length operation and, as such, the programmer may

specify a quantity, S, which is the num.ber of bit•, starting from the least
.......... . . .

rrrr +-= li . I l.t.i'fft...,.....~~

significant end of the multiplier, B, to operate on the maj~i.RU.c.and, C •.. If the
-----·---·-·--· . ~~..,,,,,.~-Y~"~-. ... ~-.~...,,q.7.i.-r""'·,~.•;....,..:.r.

~point is always considered to be to the right. of the sign, and S is ZZ)
10

, or

2.6)
8

, then the full product is formed in A and B with the binary point to the

right of the sign bit in A. Note that the sign of B is counted as a. multiplier

bit. If Sis Z3)
10

• or 27)
8

• one-half of the product- is formed in A and B with

the binary point to the right of the sign bit in A. N is determined from Sin

the following manner:

N)
8

= Sector number of the cornm.and)
8

+ S)
8

+ 1)
8

•

Timing: MUP is a class 1 comm.and. 12.microseconds are required to read

the command; lZ S microseconds are required to carry out the command. In

the event a sequence tag of 1 is used, ·the next commUld is executed from N.

Z-38

MUP Multiply (cont.) (32)

Example: The command 037 32.00; is located in 01003.

Before execution of MUP

After execution of MUP

irrelevant

+0000000

+0000003 +0000004

+0000030 +0000004

Usage: When S = 26) 8 is used, all the bits 0£ the multiplier operate on all

the multiplicand. If the (B) are at Q = 10 and the (C) are at Q = 17, then the Q

of the product is 2 7. (The binary point is between bit positions S and 6 of the

B register.) When a product which is less than full length is formed (which
~ • ..,,. ,.. _._ ,,, -l ,_,_.....-, ,,-........... -,.-...... ·~· '• >Lo.••"···:l'~t-.ir .. :~ .. =--·-.· ·~ ... :·:-· - ·--~··1 .. -........ , ... · .. ,- ... - .. ,, , .. --·' -- ' ... -, .. > , ··' ... : ,.,._ •

red~ces the time required to execute a MUP), S bits of the B register are
.. .,._,......,._. ~-~~-.~-..,...,.~r~~~.~1.-•-c.•-·-_,,-.-; __ ,..._,_, __ ••:>t-",.'"•...,··.i.~"'·•C:'•.,.-"".·~,.v·-'"•'., .. "l_·-.... ,.,......, : ... - •. • ·.• .• v--" ..,.,._,.., ··"··' :,,,, •• •-J: .-................ .,.. , ...

combined with the 22 bits of the C register to form a product which occupies
.,..,.. • ., ____ ,. •. , ~_,., • .,.,.~, ,.,.,.~.., .. ~ . .,. ... ~ .. ~-':l<l"l.,...,~,.,~·:v·:·,-:... .. "!.':T"'"....,.-t·~.,-t"."rl""'..,._._-.i..,-.. , ___ ,.,,_, , •. ~lA;..,._ ,. . •.. ,·,·;: ... ·-• .. :•.-::•1-:. ... 1':'•~y.:i---.····· .•..• ,....., •. - ... ~.-:_,,, -,-.... :-.•·-.-~.--..... -._,..,_.,.,,.. .. ~--.... ...,.~.

S + 2.1 significant bits of the combined AB registers, starting with the sign
---,._~,•4.t __ _.._....,...!h~•l' , ... f'O.,··· ,;.,;..-•·•.-.:'I'<;"-·-,. .. ,.:•, .,,.·...:o•-.;.4:'1irf:A _-;a.~•"•-._->,._,,__ ____ ~-.,,.,._..,,.,...,, ,., •.. _.., __ , ...,,-;~,.·•··-.. ·,,-"""l ,.·_.._.,..-:,,_ • .. -·; ,_.,, ,.. _____ .,_,_,_.....,._,__,,,,,,.,..,_~

position of A. For example, if the multiplier is known to be always no more
...., ___ ,.,··~~-.. ·····--,,~-~- {_ BJ

than 9 bits plus sign, S would equal 12)
8

, and the product would appear as

shown:

A B

l°I Zr T 10
z 11

I
Sigp of Magnitude of
Product Product

The bits which are originally in (B)0 _ 1 1 are moved to (B) lO-Z l' with the

bit in (B) 10 repeated in (B)
9

.

2-39

SBR Shift B Right (33)*

The (AB) are shifted right,. S positions, S being determined by the programmer.

The (C) are unaffected by the execution of this command. After (AB) are shifted

right one bit position, the A register is cleared; thus, if S ~ 2., zeros are shif­

ted into B after sector time a.+ 1, where ais the location of the SRB command.

Bits enter (B)
0

from (A)
21

; bits shifted past position 2.1 of the B register are lost.

The line address of this command must have a zero in position 15 (see descrip­

tion of LRS command). The sector address field of this command is not used

to specify the location of an operand, but contains an address number, N, which

is determined by:

N)
8

= The Sector location of the command)
8

+ S)
8

+ 1)
8

.

Example: The command 004 3300; is located in.sector 000 of line 3.

Timing:

2.-40

Before execution of SBR

After execution of SBR

(A)

10101111

00000000

SBR is a class 1 command.

(B)

01011001

00101011

LRS Logical Right Shift {33)*

The {AB) are shifted right S positions, S being determined by the programmer.

The (G) are unaffected by the execution of this command.. LRS differs from

RSI in that the sign position of A, {A) 0 , participates in the right shift. The

parity bit is copied into the sign position of A, and, if shifting continues, it is

then copied into the vacated positions of AB, Bits shifted past position Z 1 of

Bare lost. The line address of this command must have a one in position 15.

The sector address field of this command is not used to specify the location of

an operand but contains an address number, N, which is determined by:

N)8 ::: The sector location of the command)
8

+ S)
8

+ 1)
8

.

Example: The command 012 3320; is located in sector 005 of line 07.

Before execution of LRS

After execution of LRS

(A)

-2310724

XXS 14435

(B)

76124500

23705224

Note: XX are bit positions 0 through 3 of the A register, which are filled with

the parity bit.

Timing: LRS is a class l command.

2-41

TAN Transfer if A Negative

If the contents of the A register are negative, the computer will take its next

command from the effective address, which may be in any command line. If

the contents of A are not negative, the next sequential command is executed.

A sequence tag of zero is required.

TBN Transfer if B Negative

If the contents of the B register are negative, the computer will take its next

command from the effective address, which may be in any command line. If

the contents of B are not negative, the next sequential command is executed.

A sequence tag of zero is required.

TCN Transfer _if C Negative

If the contents of the C register are negative, the computer will take its next

command from the effective address, which may be in any command line. If

the contents of C are not negative, the next sequential command is executed.

A sequence tag of zero is required.

(3 5)

(36)

(34)

Timing: TAN, TBN, and TCN are class 4 commands, therefore all operate

under the same timing considerations. If the register referred to is negative, the

next command is read from the line and sector number specified by the command.

If the register is not negative, the command directly following the transfer of

control command is read. A conditional transfer, where the condition is not met,

thus requires no execution time. The execution time, when control is transferred,

is 12 microseconds per sector, for the interval between the transfer of control and

the next command to be executed.

Usage: A sequence tag of one with either TAN, TBN, or TCN results in an

unconditional transfer.

2-42

TRU Transfer Unconditionally (3 7)

The computer will take its next command from the specified address, which

may be in any command line. For an unconditional transfer to be executed,

a sequence tag of one must be present.

Timing: TRU is a class 4 command. The execution time is lZ microseconds

to read the transfer command itself, plus 12 microseconds per sector for the

interval between the transfer of control command and the next command to be

executed. Optimum transfer location is a + 2, where a is the location of the

TRU command.

Usage: The TRU command functions as a TBN when the sequence tag of one

is not present.

2-43

EBP Extend Bit Pattern (40)

Starting from the right, each position of M, the effective address, is checked.

If the position contains a zero, the corresponding position in A is unaffected; if

the position contains a one, the corresponding position of A is changed so that it

is the same as the bit written to its immediate right. The (M) are unaffected.

All 22 positions of A and M take part in this operation.

Example:

Timing:

Usage:

Before execution of EBP

After execution of EBP

EBP is a class 2 command.

(M)

111000111000

11100011 :1000

{A)

0~19 10 10 10 0 0 1

111101000001

(M) should not have a one in position 21, for this would "extend" the

guard bit. This command can be used to determine the presence or absence

of a one in any bit position of the A register, by extending that bit to the sign

position of the A register and then performing a TAN to provide a transfer of

control if there was a one in the position tested. EBP may also be used to

extend a sign located in any other bit position into position O.

2-44

GTB Gray to Binary (41)

The GRAY TO BINARY command sends the binary representation of a Gray­

coded number in A to A. The result in A is correct only if the sign of the

A register is positive.· If the sign is negative, the one's complement of the

result in A should be used. This command .will also aid in parity tests on

input data. If, after this command is given, the sign of A is negative, then

A originally had an odd number of ones in bit positions 1 through 21.

Where the original bits in A are A
21

, A
20

, A
19

, etc., in bit positions 21,

20, 19, etc., the GRAY TO BINARY command produces bits B
21

, B
20

, B
19

,

etc., in A, where

21

and B.
l

= 1 if I ~is odd. o~ i~ 20

k = i + 1

The theoretically correct values for the GRAY TO BINARY conversion are

B. = 0
0

and B.
1

o~ i.(20

This command either gives the correct result for all bits or the one's comple­

ment of the correct result.

Example:

Before execution of GTB

After execution of GTB

(A)

00101110

00110100

(SZ in Gray code)

(SZ binary)

2-45

GTB Gray to Binary (cont.) (41)

Timing: GTB is a class 2 command.

Usage: When used to check parity, an even number of ones in the A register

will produce a zero in position 0 of the A register (A sign positive). An odd

number of ones in the A register will produce a one in position 0 of A (A sign

negative).

When used to convert Gray code to binary (a common requirement when analog

information has been digitized), the GTB should always be followed by a TAN

command. The address of the TAN should lead to a sequence whereby the one's

complement of (A) may be found. If the (A) ar~ positive, this need not be

completed as. the correct result will have been obtained.

2-46

AMC And M & C (42)

A one is placed in each of those bit positions of B where there are ones in the

corresponding positions of both C and M, the effective address. Zeros are

placed in all other positions of B. (C) and (M) are not affected. All 22 positions

of M, B, and C take part in this operation.

Example:

Timing:

Before execution of AMC

After execution of AMC

(M)

1100

1100

(C)

1010

1010

(B)

irrelevant

1000

This is a class 2 command. The optimum address is a+ 1; sequence

tagging under these circumstances results in the next command coming from

a+ 2.

Usage: This command produces the logical sum of the contents of the C

register and the contents of memory, and places this logical sum in B. The

most common use would be in applications requiring AND logic. An instance

would be where corresponding bit positions in a group of words, each word

representing elements of an ensemble, represent the presence (1) or absence

(0) of a quantity. It is desired to know which quantities are present in all

elements of the ensemble. This can be obtained by a series of AMC commands

on the various elements (words) of the ensemble.

2-47

CLA Clear A (45)

Each bit in the A register is set to zero, including the sign position.

CLB Clear B (43)

Each bit in the B register is set to zero, including the sign position.

CLC Clear C (44)

Each bit in the C register is set to zero, including the sign position.

Timing: CLA, CLB, and CLC are class 2 commands. Although the sector

address has no meaning, timing considerations for optimization require that the

sector adciress be the next sector after the command (a+ 1.), and that the com­

mand have a sequence tag of one. The next co.mmand to be executed will then

be taken from a+ 2, where a is the location of the clear command. These com­

mands effectively provide "transfer and clear" when sequence tagging is em­

ployed and the sector address of the command is ~ - 1, when it is desired to trans­

fer to ~.

2-48

AOC AND OR Combined (46)

Symbolically., this command is MC OR MB, with the result appearing in B. For

each one in M, the effective address, the bit in the corresponding position of C

is copied into B. For each zero in M, the bit in the corresponding position of

B is preserved. All 22 positions of M, B, and C take part in this ope ration; (M)

and (C) are not affected.

Example:

Before execution of AOC

After execution of AOC

(M)

1111 0000

1111 0000

Timing: AOC is a class 2 command.

(C}

11 001 0 1 0

11 001 0 1 0

(B)

01011100

11001100

Usage: This command effectively provides a means of inserting selected

information from one word into another word. It is a convenient method of

"packing" a word.

2-49

EXF Extract Field (47)

For each one in M, the effective address, a zero is put in the corresponding

position in B. For each zero in M, the bit in the corresponding position of B

is preserved. All 2.2 positions of M and B take part in this operation.

Example:

Timing:

Usage:

Before execution of EXF

After execution of EXF

EXF is a class 2 command.

(M)

111 000

111000

(B)

110101

000101

Selected positions of the B register may be zeroed out while all

other positions are left unchanged. Sometimes a word is divided into two or

more fields (groups of consecutive bit positions), where each field has a

distinct meaning. This is called "packing" a word. Thus, it is possible to

edit the (B) and remove (zero out) unwanted fields from a packed word.

2-50

DIU Disconnect Input Unit (50)

The Input Buffer is deactivated and all input devices are disabled from filling

it. The Indicating light of the Flexowriter, if on, is turned off.

Timing: DIU is a class 2 command.

Usage: This command is used to disconnect an input device, especially a

fast device, after the input is complete and before another device is activated.

DIU can also be used after the computer has "waited" for a period of time and

not received an input; for example, if the typewriter is activated and, after a

certain period of time, no character is entered, the program can deactivate the

keyboard and continue.

Z-51

RTK Read Typewriter Keyboard (51)

The Indicating light on the Flexowriter is turned on and the Input Buffer is

activated to accept a character from the keyboard. After ·a key has been de­

pressed, the Flexowriter sends a signal to the computer, which may be tested

by a TES command havir~g a line address of 36)
8

to determine if the Input Buffer

has been filled. Depressing a key also causes the light on the Flexowriter to

go out. It is necessary to execute an R TK for each character to be read.

Timing: R TK is a modified class 2 command. ~.xe~~-~~2!1. begins in sector

a + 1, where a is the sector location of the command, and c.9!1.~J~~~-~ .. !h:r-9\l.gh

Jl:l~sector_~_ified by the CQ.mmand"'- If '3 is the sector address, and a sequence

tag of 1 is used, the next command will come from fl + 1. !£a sequence tag of

0 is used, the next command will come from a + 1.

Usage: R TK is always used when reading information from the typewriter

keyboard. This information will be loaded into the buffer in 6-bit codes which

may be loaded into the A register with an LAI command.

2-52

RPT Read Paper Tape (52)

This command functions exactly as R TK except that instead of turning on the

keyboard light a11d waiting for a key to be depressed, it causes the tape reader

to read one frame of tape. Sine the paper tape reader has 8 columns, as many

as 8 bits per frame may be punched on it and loaded to the Input Buffer by means

of the RPT command. It is necessary to execute this command for each frame

of tape read.

Timing: Like R TK, RPT is a modified class 2 command which starts its exe-

cution in a+ 1 and continues through j3 , where a is the actual sector location of

R TK and '3 is the sector address.

Usage: If an RPT command is given at the proper intervals, it is possible

to keep the tape moving at 10 frames I second, which is the maximum input rate

0£ the Flexowriter. (See Section IV for details on this operation.)

2-53

RFU Read Fast Unit (53)

This command will cause the Input Buffer to be filled by a fast, special purpose

unit. The PULSE TO SPECIFIED UNIT command is used to select, start, and

stop these fast units. This command differs from the other read commands in

that it is not self-disabling. The DISCONNECT INPUT UNITcommand must be

used to terminate this operation deactivate the buffer.

Timing; RFU is modified class 2 command. :>t--

Usage: This command may be used for fast input devices that require the

Input Buffer.

~ .,Jk_ a\ -r K [S 3) (iJ>, 2 - s •) fr'- -~~'+.J:"...,,;_ ~ /~---?4AY~

~'2

2-54

LAI Load A from Input Buffer (5 5)

The capacity of the Input Buffer is any character up to eight bits. This com­

mand will load the contents of the Input Buffer into positions 14 through 21 of

the A register under control of a Format Word, or "mask." Load A from

Input Buffer always takes the Format Word from the specified sector and from

the same line in which the LAI command is located. The sector location of the

"mask" is specified by the sector address of the LAI command. Positions 0

through 13 of A may be affected if the mask contains ones in positions 0 through

13. The Format Word functions as follows: in those positions of the word where

there are ones, the corresponding bit positions of the Input Buffer register are

transferred to the corresponding positions of A. No other positions of A are

altered. After the transfer of information to A, the Input Buffer is cleared.

Example:

Before execution of LAI

After ·execution of LAI

Timing: LAI is a class 2 command.

(A)

+0124000

+o 1241 o4

(IB) (Mask)

1 04 +00003 77 -----
000 +00003 7 7

Usage: This command is always used when information is input to the PB 250

by way of the Input Buffer. Another use occurs if the mask contains all ones

and is located in sector 376 of the appropriate line; if the Input Buffer has been

previously cleared, zeros will be inserted in all positions of A. Selective

insertion of zeros in A is possible by varying the mask, but the mask must be

in sector 376 of the appropriate line.

2-55

CAM Compare A and M (56)

The contents of A (the effective address) are compared with the contents of M

and, if the two are identical, the Overflow switch is turned on. If not, the Over­

flow switch will be turned off. In either case, the (A) and (M) are unaltered and

command execution continues in the regular manner. All 22 positions of A and

M are compared. The description of the TOF command should be studied in

conjunction with the CAM command.

Timing: CAM is a class 2 command.

Usage: The following sequence effectively provides a transfer on zero in A:

2-56

Location

a

a+ 1

a+ 2

a + 3

Contents

CAMa + 1, S

00000 .

TOFJ-1

Remarks

Must be sequence tagged.

Location contains all zeros.

Transfer if (A) = 0, where
Pf a+ 3.

Program continues here if
(A):/= 0.

GIB Clear Input Buffer (57)

The eight bits of the Input Buffer are set to zero. Execution will occur during

the sector address time.

Timing: CIB is a class 2 command.

Usage: This command is used when it is necessary to clear out old or un-

wanted information from the Input Buffer before accepting new data. The use

of GIB as an in-line transfer is the same as for other clear commands. Althoup:h

LAI clears the Input Buffer each time it is executed, extraneous information

will get into the buffer ~hen the sequence counter is reset to sector CJ of line 1

by the L key (I goes into the input buffer), or when single-stepping through a

program by means of the C key (C goes into the input buffer). The input buffer,

therefore, should be cleared pJ:ior to each use.

2-57

woe Write Output Character (6X)

This command causes a single character up to eight bits to be sent to a spe­

cified output unit. The character is incorporated into the command and occu-
•.

pies bit positions 12 throu_gh 19 of the word; these bit-s are bits 12 through 14

of the op code field and bits 15 through 19 of the line number. The X in the

numbered code (6X) is thus determined by the output character.

The unit to which the character is sent is specified by the command line in

which the WOC command is located. Line 05 specifies the typewriter; line 06

specifies the punch; and line 00 specifies certain devices such as magnetic tape

or. a high- speed punch.

In order to provide the output device with a signal of sufficient duration to

initiate operation, a delay number must be loaded into the C register before

the execution of WOC. This number is decremented by one for each sector

time after the command until the number goes negative. When the (C) go nega­

tive, the woe command behaves as all other class 1 commands and terminates

when the sector specified, (3 , is reached.

The signal to the output device is therefore sustained from a + 1, where a is

the location of woe, Until (3 I the specified sector» appears for the first time

after the C register becomes negative. The (C) continue to be decremented,

after the.y become negative, until the command terminates.

If the C register is initially negative, the output signal will be sustained only

form a+ 1 to '3; however, (C) will still be decremented.

Timing: WOC is a modified class 1 command and, as such, will cause the

next command to be taken from the sector specified iE the sequence tag is 1.

2 .. 58

woe Write Output Character (cont.) (6X)

Usage: All output, except that controlled by the BSO or PTU commands,

must be in the form of WOC commands. When forming WOC commands in

a program, the output character is offset from the right end of the word by

two bits, and the index tag is generally zero. The WOC configurations for

the Flexowriter codes are as follows:

Table 2-2

. FLEXOWRITER CONFIGURATIONS FOR woe COMMANDS

Alphabetical Characters Numerical and Special Control
(available in both upper Characters

Characters and lower case) Upper Lower

A 6101 N 6005) 6100 0 UC 6132

B 6102 0 6006 -,, 6001 1 LC 6134

c 6123 p 6027 r 6002 2 Tab 6136

D 6104 Q 6030 = 6023 3 C/R 6116

E 6125 R 6011 r- 6004 4 Stop 6013 ·L
F 6126 s 6122 J 6025 5 Delete 6137

G 6107 T 6103 SL 6026 6 Space 6020

H 6110 u 6124 & 6007 7

I 6131 v 6105 * 6010 8

J 6021 w 6106 (6031 9

K 6022 x 6127 ? 6036 +
L 6003 y 6130 - 6037 -
M 6024 z 6111 : 6120 j

II 6033 I

'
6133 ,

. 6113

I 6121 $

2-59

PTU Pulse to Specified Unit (70)

This command produces a specified combination of signals on five output lines

and an "activate" signal on a sixth line. These signals are used to start and

stop equipment external to the computer. The line address of the PTU com­

mand specifies the combination of signals, while the sector address defines

the first sector following execution. The activate signal is presented in the

sectors between the command location and the sector address.

Timing: PTU is a class 1 command. The PTU signal.will be held "on" until

13 comes up, where 13 is the sector address of the PTU command.

Usage: The following sequence of commands may be useful when de siring

to hold a PTU "on" for,_ 3N milliseconds:

Location Contents

a LDC a + 1

a + 1 Count

a + 2 LSD a+ 4

a + 3 not used

a +4 TCN a+ 6

a + 5 PTUa + 2

a + 6 Continue

Seq.

~

s}
s

}
s}

Remarks

Initialize counter

PTU is "down" 36 µsec

each cycle

Execute

Such a sequence can be used to condition the setting of relays extern.al to the

computer.

2-60

MCL Move Command Line Block (71)

The contents of the first word following the MCL command, and all subsequent

words on that line up to, but not including, the address sector number, are

copied into the corresponding sector positions of the effective line address.

Example: The command 010 7104; is located in 37006. When this command

is executed, the information in line 6, beginning with sector 371, and con­

tinuing through sector 007, is moved to the corresponding sectors of line 4.

The information which was originally in line 6, sectors 371 through 007, re -

mains as before, but now this information has been duplicated in line 4, sectors

3 71 through 007.

Timing: MCL is a class 1 command. In this class of commands, the sector

number of the command is used to designate the first sector number in which

execution of the command is discontinued. Thus, 12 microseconds are re­

quired for eeading this command, and 12 microseconds per sector transferred

are required for executing this command.

Usage: This command is a convenient way of moving entire lines of infor­

mation, one line at a time. By giving as the sector address a + 1, a com­

plete line is moved from its original location to a new location. This method

provides a convenient means of initializing subroutines in which addresses

are to be modified. (Also see the MLX command, 26, in this connection.)

2-61

BSO Block Serial Output (7 2)

The BLOCK SERIAL OUTPUT command operates in a manner which is ef­

fectively the reverse of the BLOCK SERIAL INPUT (73) command. That is,

the information in the data line is shifted into the External Register (ER)

whenever a one appears in the Format Block. Nothing is done with infor -

mation in those positions of the data line which correspond to zero bits in

the Format Word. F~:>r details of this command, reference is made to the

description of the BLOCK SERIAL INPUT (73) command. Computer memory

and registers are unaffected by this command.

Example: The command 01257204; is located in 01 002. All ones are stored

in 0 1102.

Before execution of BSO

After execution of BSO

(0 1104)

+1215702

+1215702

(ER--22 bits)

+0000000

+1215702

Timing: BSO is a class 1 command. (See BS! description for further informa­

tion.)

Usage: BSO can be used to provide a fast output, with format control, to an

External Register.

2-62

BSI Block Serial Input (73)

This command loads information directly into memory at the rate of 0.5 micro­

seconds per bit. Input information is presented to the computer in the form of

a series of bits, normally from some external shift register (ER). The shifting

operation in the external register must be under computer clock control. A

Format Block detern1ines when a bit will be accepted from the input device. This

Format l3lock is forrr1ed by the binary configuration of information contained in

that portion of the command line which begins with the sector following the BLOCK

SERIAL INPUT con1mand and continues up to, but not including, the sector address

of the command. The information entering the computer will be loaded into the

line specified by the line address of the command; it will occupy those positions

of this line that correspond with one bits in the Format Block. Positions of this

data line that correspond with zero bits in the Format Block will be loaded with

zeros.

Example: The command 37757305; is located in 37502. Location 37602 contains

all ones. ER is the external register source from which information enters the

con1puter.

Before execution of BSI

After execution of BSI

(37605)

+ 0000000

+ 1234567

(ER - - 22 bits)

+ 1234567

+ 0000000

Timing: J3SI is a class 1 con1mand. The next command to be executed, when

this corrnnand has a sequence tag of 1 (which it always should L will come from '3,

where '3 is the sector address. '3 will be the sector after the last sector of the

mask.

Usage: The BSI and BSO commands provide a very fast and convenient method

for communicating with an external register. In addition, formatting control is

also provided. The most frequent use of these commands will come in con1puter

systems work, where a high-speed buffer is used by the computer to communicate

with equipment the computer is cont.rolling.

2-63

TOF Transfer on Overflow (75)

An overflow results from generating a number too large for the capacity of the

arithmetic registers, specifically from the ADD, SUBTRACT, DOUBLE PRE­

CISION ADD, and DOUBLE PRECISION SUBTRACT commands. When an over-

flow occurs, the Overflow switch is turned on. The command COMPARE A AND

M will also turn the Overflow switch on if (A) are equal to (M), but turn off the

Overflow switch if this is not true. After execution of the command SQUARE

ROOT, the Overflow switch is turned off.

The TRANSFER ON OVERFLOW command will cause the computer to take its

next command from the specified address (if the Overflow switch is on), and

then turn off the switch. If the Overflow switch is off, the next sequential

command is executed and the switch remains off. Transfer may be to any

sector of any command line. A sequence tag of "zero is required for conditional

~- A sequence tag of one provides an unconditional transfer and turns

the Overflow switch off.

Timing: TOF is a class 4 command. Therefore, in the event a transfer is not

executed, control proceeds to the next £Ommand and the total time required is

the 12 microseconds required to read this command. In the event control is

transferred, execution time is 12. microseconds per sector for the interval

between the TOF command and the command to which control is being trans­

ferred, plus 12 microseconds to r.ead the TOF command.

Usage: The TOF command should be studied in conjunction with the CAM

command. It is the programmer's responsibility to see that the Overflow

switch i.s off before executing a set of comm.ands which are tested by a TOF.

?.-64

TES Transfer on External Signal (77)

This command will cause the computer to take its next command from the epe~i­

fied address upon sensing a signal from the source external to the computer. The

nature of this signal is specified by the line address of the TES command. In

the standard PB 250, line addresses 25 through 37 are used to specify the

following input signals:

Lines 25-30:

Line 31:

Line 32:

Line 33:

Line 34:

Line 35:

Line 36:

Arbitrary input signals.

High-speed punch sync. signal

Magnetic tape gap signal

Magnetic tape reader clock input signal

Photo tape reader sprocket input signal

BREAKPOINT switch input signal.

Typewriter or paper tape reader "character
input complete" signal.

Line 37: "Typewriter not ready for an output character"
signal.

Line numbers 00 through 24 will provide additional input selectors which

may be obtained as options for additional arbitrary input signals. Since

the line number of the address is reserved for signal specification, the

effected transfer can be only to some sector in the same line as the TRANSFER

ON EXTERNAL SIGNAL command ..

Example:

Location Op Code Ad.dress

I 02206 TES 02736

If a transfer is effected, ,\the computer will take the next command from location

02706. If no transfer is effected, the next command will be executed from 02306.

The sequence tag should always be zero for this command. -Timing: TES is a class 4 command. When a signal is not present, the command

directly following TES command is read and the total execution ti~ is 12 micro­

seconds. If control is transferred, execution time is 12 microseconds,

2-65

TES Transfer on External Signal (cont.) (77)

plus 12 microseconds per sector for the interval between the TES command and the

command to which control is being transferred.

Usage: Use of this command is further described in Section IV, " Input/Output

Techniques." In general, the TES command acts as a " stoplight," indicating

whether input/ output commands should be executed or delayed. If a TES is

executed which refers to an input line not physically present on the computer,

the transfer will take place.

2-66

III. STANDARDS AND PROGRAMMING TECHNIQUES

3. 1 PROGRAMMING TECHNIQUES

3. l. 1 In tr oduc ti on

There are two basic methods of programming the PB 250; rela-

tively non-optimized, and relatively optimized. The detailed techniques and

optimization rules are given for most of the commands described in Section II.

Considered as a computer without any capabilities for optimizing

programs, the PB 250 still has the same command structure, and presents only

the problems of any serial, binary, single-address computer. In this frame of

reference, commands are generally executed from sequential sectors, at a rate

of approximately three milliseconds per operation.

Partial optimiz~tion, i.e. , locating the operand for class Z commands

in the next sector after the command, wherever possible, is relatively simple.

For example, if a constant is needed, it is prestored in the sector after the

sector for which it is required. This basic optimization greatly increases the

operation speed of the machine, but does not make the most efficient use of

memory. More complex optimization techniques will provide high operation

speed while at the same time using memory efficiently. The programming

time will be expected to increase as the complexity of techniques is increased.

Although the more complex programming methods result in more efficient

machine operation, a point of "diminishing returns" will be reached. After

this point, more programming time will not appreciably increase either com­

puter operation speed or efficiency of memory usage.

3 - 1

3. I. 2 Optimization Considerations

The traditional l + 1 address serial computer offers a variety of possi­

bilities for optimizing a command" If the next command cannot be placed in

the optimum location (often the next section after the last operand required),

then the sector one further down may be chosen, etc. On the PB Z.50, however,

no such gradation exists. The next command is either in the optimum location

(generally immediately following the operand) o·r it is completely unoptimized

and simply follows the current command (which is in a) by appearing in a + 1.

Para.g1.aphs 3. 2 and 3. 3 describe the use of the fa·st line and show an

example of the difference between ~n optimized and unoptimized PB 250 program.

It is sufficient to state that the most effective. wa.y of using the fast line is as a

fast access location for data. frequently required during a computation, rather

than as a means of storing a program to be executed. It is stressed that

addresses which refer to the fast line are interpreted in exactly the same way

as the addresses which refer to any of the long lines.

An important rule to remember for optimization is that memory

accesses are always ex.pensive in terms of program execution time. That is,

the programmer should always think in terms of manipulating information in

the A, B, or C registers, rather than storing and loading it back into these

registers. Among the operations for manipulating information within the

registers are the shifts {with or without affecting the C register), the register

interchanges, the Rotate command, and the Merge A into C command (which

can be used as a copy A into C if the C register is first cleared).

3. 1. 3 Special Techniques

One useful technique is the method of placing the two's complement

(negative) of the (G) into Ao This occurs under a. or..e-·sector multiplication,whe:re

3-2

the B register has previously been loaded with a word whose last two bits (po­

sitions (20 and 21) are 01. All the variable length commands should be closely

scrutinized by the programmer for possible special uses.

Another special technique consits of setting an internal switch by the

use of RFU to turn the switch off, DIU to turn it on, and a TES 36)
8

to deter­

mine whether the switch is on or off. Transfer will occur when the switch is

on.

If additional externally operated controls are desired beyond the

single BREAKPOINT switch on the Flexowriter, these may be furnished by

using the surplus (unassigned) signal lines, together with external toggle

switc;::hes. (See description of TES command.)

Any optimized program uses much more space in the computer than its

unoptimized equivalent. However, these empty spaces do not have to be wasted.

It is possible that at least one other optimized program can be interlaced

with the original program in the available vacant sectors.

3. 2 USE OF LINE 00

Line 00, the "fast access" line, provides fast access storage for 16

words. Any word placed in any sector of line 00 is read 16 times during each

long line circulation time of 3 072 microseconds. Thus 9 each word in line 00

is 16 times more accessible than a word stored in the long lines.

A number used rep~atedly in a calculation can be stored in the fast

line for ready availability. {See the Recirculation Chart in Appendix D.)

3-3

The following example illustrates the use of the fast line:

Sector Line

023 06

024

025

026

027

030
I
I
I
I

042

043

Command

[

02450500;

Not Used

04251406;
I
I
I
I

I
Constant

04451100;

Remarks

~F04~(A)

(A)=(F04)+(04206)

(A)-» (F04)

A word is picked up from channel F04, a constant is added to it, and

the sum is stored back into F04.

The programmer should be aware that optimization is possible only when

reference is made to the proper sector of a channel. That is, an LDA command

in 023, which is to pick up data from F04, must be sequence tagged and have a

sector address of 024, not 004, 044, etc. If the sequence of commands in the

previous example were written in the non-optimized modes, the execution time

would be 3. 072 milliseconds per command, or a total of 9. 216 milliseconds.

By optimization, the same computation is accomplished in ·o. 216 milliseconds.

Addresses referring to line 00 are not interpreted modulo 16)
10

, which

is why the appropriate sector of a particular channel must be referenced for

optimization purposes.

3-4

The fast line is extensively used in connection with such high- speed

input I output devices as magnetic tape and photoelectric tape readers.

3. 3 SAMPLE PROGRAMS

clear.

The sample problem may be stated as follows: Channel F03 is initially

X. (1 ~ i.(10, X> 0) are stored in line 03, sectors 003 through 014.
1

It is required to write a program which obtains the sum of these elements.

and, in addition, replaces each X. by
l

x. +100
l

4
Overflow

will not occur. The program should halt with line address 33)
8

and with

stored in F03.

10

1

The optimized and unoptimized programs to perform the desired

function are presented on the following two pages. These two example

should be studied as a contrast in techniques. The unoptimized program re­

quires over 300 milliseconds t~ execute; the optimized program requires

only 30 milliseconds to execute.

3. 4 PROGRAMMING CONVENTIONS

Certain conventions and techniques should be followed as a program is

being developed. These conventions ensure that:

a) Communications between programs is simplified.

b) Routines can be adapted to a wide variety of problems.

c) Neces·sary modifications can be implemented with the minimum

amount of program rewrite.

3-5

x.
1

cpbJ Packard Bell Comput:er

PB 250 PROGRAM LISTING
PROBLEM ___ U_N_O_P_T_IM __ fZ_E_D_S_A_MP __ L~E_P_R_O~G_R_AM-'-----------------~ PAGE ----- OF __ __._ __

PROGRAMMER R L HOOPER . . DATE _3_--2.-fil
LOCATION INSTRUCTION SYMBOLIC ft!NAftKI

OP CODE

00102 015 0502_;_ L.DA
)7 c I) ,) I/

002 _fil.5_ 2503_. lAM 1 I • t)'... C,I; /J,.;) '(_ lj d,, I/ I
,., I

" . - J·. L

003 014 3502; TAN JI{~ ;,I :;' ,-(,i..._ 11- ,A i\.i '~ ;ft' 1~ J '

004 000 4400_;_ Cil_ cie 11-i!.. c
;11 r.. h.fJ l

A /,'J j"C) (_,,

005 _006- ooon · MAC ,-

006 003 1400; ADD A PD
")

007 000 0100; IAC \

QlQ _0_16 1402_:_ ADD rt iJ J

011 014 2210; SRT I

012 003 1000; STC :;· ,"'::. ~ c! c

013 00253702; TRU -1 .-• L-e '~
//:.. .. ~ rJ ,',' .

Ll tJ c~;JJ11/~·v11';/

_Q_14 000 0033_:_ l:lLI 11 n Lr ·
015 -0000000

016 +0000144

t-·-

PB 250 PROGRAM LISTING

PROBLEM Optimized Sample Program

P R 0 G R A M M ER R__ J...L Jf._
LOCATlON INST .. UCTION IYMIDLIC

oi- coo£

'AGE _l ___ 0, 1
DATE l/ ~O '61

RUIAIUCI

00002 00 150502; LOA ST ART --·-·---·--------1-------------------- ---···------
00102 -0000000

~---------+-·--···- ···--·--- ·-· ---··

00202 01552503; I.AM
!--·--·-----·--·--·-- ---····· ·----· .. ·-·-·-·- -········- - . - .. -·- . ---- -- ·-·-

00302
--·-·----------------------ii-----

00402
I----------__.. _______________ __

00502
------~--------------------

00602 ----·--·-----------1-------------·----t------
00702

I---·-·-------...&----------------·---
01002

I-··· ·--------·--·--·-4---------------------
01102

1----· ---------+------·---·------------
0120:2

!--··--·----·-·-----+--·---··--------·-·--------

01302

01402
--------!----·-·-------·-----------

-···· ···-------r-·---·-··--·-··-. --·- -------------·----+----
01502 017 3502;

01602 01754400;

01702 021 0033;
- . ·-· ... --- .. -··-· ····------~-··--- --·-·-· ----- ·-····-----------

02002 02150000; MAC -----------------11------------------
02102 000 0000; -·-- __________ ,__,_ _________ ·-·------------+------!

02202 02381400; ADD
.._---·-----------+---·-·-·- •··--·---------

02302 000 0000;
... ·---------------1------------·----+-------

02402 02580100; IAC
!---·--·· - ------·"···- ·- .. --···-·---I,___ __ ---------+---

02502
!-------·-····" ···- 000 _0000; -··-----------

02602 02751402; ADD
~------------+---- ----··---·---t-----t

02702 +0000144
-··-----·-·-·------.t~-

03002 03352210; RST
!----·-------·--- --· ----------··----·-----~---!

~---·Ql!-=..0__:_2 _____ J.-_______ , __ --·----+-----l

03202 J-----·----· ____ __,___, _____________ _

03302
~-----------·· ----

04351000;
...... -I----·----·---·---·--·-·-- ---·--·-· --·--+--------!

STC

........ --· ·--- ---- -------+--- ·- '--···-· ---· ·- ·-·------·---·--+-------4

~----. ··-···------· -·----i------------·------------1
04402 00253702; TRU

- ·-" .. ·- ·-· ------·' - --- ·-. ---i-------

negative

X.- A; (A)--- M
l

not used

not used

THRU

O-•HC)

STOP

x1--(C)

not used i _
1

xi + L xi
1

not used

(A)~ (C)

not used

xi + loo 10
constant

(X. + 100)/4
1

not used

not used
i
L xi--... M
1

back to start of loop

3-7

d) Ease of understand.ing will be provided.

As previously described, the group of sectors in line 00 which simul­

taneously contain the same information, are called a channel. Line 00 channels

are designated FOO through Fl 7. For· example, FOO refers to, collectively,

locations 00000, 02000, 04000, 06000, 10000, 12000, 14000, 16000, 20000,

22000, 24000, 26000, 30000, 34000, and 36000.

Lines are referred to by their octal address, i.e., 00 through 77)
8

;

sectors are also referred to in octal notation, i.e., 00 through 377)
8

.

Normally, the Index register, and FOO through Fl 7, are available to

any program or subroutine and must be preserved by the programmer before

entering the subroutine, if these registers contain information which is to

be used later in the main program.

Subroutines will generally be entered with the argument in the A register

and the exit in the C register. If the argument requires two words, these words

will be located in the A register and B register and the exit will be located in

the C register. Subroutine exits will normally be complete instructions (un­

conditional transfers).

3. 5 FLOW DIAGRAMMING CONVENTIONS

3-8

Flow diagrams are divided into two groups as follows:

a) Macro Flow Diagrams -- broad, descriptive flow diagrams, out­

lining a large, complex program. They are not oriented to the

program logic but serve to provide a general picture of how the

program operates, and also serve as a guide to a more detailed

flow diagram.

b) Micro Flow Diagrams - - machine ot'iented diagrams whose functions

is to define the program logic.

Table 3-1 lists the standard flow diagram symbols used in PB250

programming. These symbols have been selected both for their convenience

and universal acceptance. With the exception of the start symbol, they

represent the flow chart symbols recommended for use by the Association for

Computing Machinery.

Referring to the table, small English letters are used to identify fixed

connectors while small Greek letters with numerical subscripts are used to

identify variable connectors. To avoid possible confusion, it is recommended

that the flow- diagram page number be included with the connector to facili­

tate following the flow diagram.

To aid personnel unfamiliar with a particular program, important and

significant micro flow diagram boxes are cross -referenced to the program

listing by having the location (line and sector) of the first instruction executed

within the respective box (in the upper right hand corner as shown below). It

is emphasized that not all boxes of the flow diagram are keyed to the listing.

Cross -referencing of all boxes on the flow diagram requires the performance

of considerable updating by the programmer responsible for maintaining the

program. In many cases, because of the auxiliary nature of this cross -

referencing, the diagrams may not be kept up to date; therefore, the number

of cross-reference boxes should be kept to a minimum.

SSS LL

3-9

3-10

Table 3-1

STANDARD FLOW DIAGRAM SYMBOLS

SYMBOL

a
CJ

(_)

0

MEANING

Tape (Magnetic)

Operation, Function

Fixed Connector

Varfable Connector

Comparison, Test, Decision

Closed Subroutine

Start, Stop

Assertion, Explanation

Care must be taken to make the flow diagram appear clear and un­

cluttered. This can be avoided by minimizing the number of boxes per page.

The wording appearing in the flow diagram box should be as descriptive

as possible. Language contained in the micro flow diagram is more general

than that contained in the listing annotations.

3. 6 ANNOTATION CONVENTIONS

The following annotation symbols and conventions will be used:

a)

b))
c)

[].

Replaces: e.g., (A) + (X).- (A),
1

contents of A plus contents of X.
1

replace contents of A.

Contents of: e.g., (A), contents of

A register; (Xi contents of location x1;

(10002). c.ontents of sec tor 100, line 02.

Modified Command: a command which

is modified by another command within

the same subroutine. Commands within

a particular routine will never be

modified by commands, outside that

routine.

d) Brackets are used to identify all instructions included in a particular

annotation, as follows:

-->
e) The word "enter" · is inserted to the left of the first ins true ti on

operated in a particular routine. The exit or exits from a routine

should be clearly annotated.

3-11

3.7

£) Annotations should include the listing page number of all transfers

whose locations are not in:luded on the same page.

g) The binary point of a number is identified using Q notation, i.e.,

to represent an integer, N, on an annotated listing, the programmer

would write: N @ 21.

AVAILABLE· PB 250 PR<:f6'RAMS
/"" /' ,

/ / ~
Ta91-€3-2 lists,,.Some of the standard routines whfch are avaj.la:b1e for

/

the P~ 250.

3-12

IV. INPUT-OUTPUT TECHNIQUES

4. 1 FLEXOWRITER

A Model FL Flexowriter is used as the input-output control unit for the

PB 250. The Flexowriter is also used to prepare, duplicate, and read tapes and

can be used on-line (under control of computer), or off-line (under control of

operation). This section is primarily concerned with the on-line mode of

operation. General appearance and operations are similar to those of a stan-

dard electric typewriter. Such features as space lever, paper release lever,

platen knobs, margin release lever, ribbon position lever, margin and tab stops,

and type guide, are used in exactly the same manner as for a standard typewriter.

See Figures 4-1, 4-2, and 4-3 for illustrations of the Flexowriter keyboard, code,

and characters, respectively.

4. 1. 1

The tape used with the Flexowriter has eight channels across its width.

The keys of the typewriter, however, will only cause 6-bit codes to be punched

on this tape. When punching tape under computer control, it is possible to out­

put 8 bit of information at a time. It is desirable to utilize all eight channels on

the tape wherever possible, since this reduces the number of frames of tape that

m11st be input or output for a block of information.

When the READ TYPEWRITER KEYBOARD (RTK) command is given,

the light on the front of the Flexowriter will co.me on and it will be possible to

enter information, in the form of 6-bit codes, into the Input Buffer. Each time

a key on the typewriter is depressed, the light will go off and it will be necessary

to give another RTK command before another code can be entered.

4-1

4-2

ITART

HAD

ITO ..

ltl!AD
ltl!Ol!ll l!NA9LI! INDICATING

LIGHT

ITOI' CODI! TAl'I!

coot Ol!Ll!TI! Pl!ID

ALL

..
u ij • c
II

OPP @] ['BJ []] [fil ITJ [TI [ill [JJ [Q] [I] Q ~
~ [[] [fil ~ @] [BJ QJ IBJ w CJ [I] ~
rn 0 @J ~ []] []] [0 CJ D ITJ

LOWER

CAH

i+I
'-f :<.
t, .?
<-t-+
~ .. ,
bt
't 7

:..., --~c·
7t
::2_. I
~'2.. '"2..

~
".:.?.,"f -l?

b
'.:l..7
::,c,
I I

~ .2.
--t3
Ii>'-/-
t.f .:;)
if b

(7
7C'

. 5 /

ABCDEF'QM

A B C 0 E f' G H

Figure 4- 1. Flexowriter Keyboard

A • •
B • • c • • ••
D • •
E •• • •
F •• ••
G • •• •
H • • • • • • • •
K • •
L • •

M • •
N • •
0 • •
p • • ••
Q • •
R • • s • • •
T • •• u • • •
v • • •
w • • •
x • • • • •
Y . • • • z • • •

ALPHABETICAL CHARACTERS
AVAILABLE IN BOTH

UPPER & LOWER CASE

Upper lower

"'t c
c. .. C.11

) 0
j 1t' 1

-< v 2

,23 3

'1- [4

2..5 J 5

"2..' .n. 6
·7 & 7

I tJ * 8
·.? i

9
''.:)£;;

? + ·?->7
Sc
3.~ " 7 3>
.:.; 3
(. ' / $

Upper Case

lower Case

Tab
5 '-Carriage Return

t ~ Stop Code

77
"?-C

Delete

Space

• • • • • • • • • • • • • • • • • •• • • • • • • • • • • •• • • • • •• • • • • • • • •• • NUMERICAL & SPECIAL
CHARACTERS

•• • • • • • • •• • • • • • • • • • • •• • • • • •
CONTROL CHARACTERS

Figure 4-2. Flexowriter Code

•• ..
0 ij •
' "

.JtcLMNOPQRsruvwxvzu~=[Jo&•()?_" I
J K L M N 0 P Q R S T U V W X Y Z 1 2 3 4 5 6 7 8 9 0 + • 1 ; $

Figure 4-3. Flexowriter Characters

. , . ,

The READ PAPER TAPE command will cause the tape reader to read

one frame of tape and then advance the tape one frame. Eight bits of infor­

mation will be loaded into the buffer. If the tape was prepared in the PB 250

Flexowriter format, only six of these eight bits will be significant; however,

if the tape was prepared by the computer, all eight bits may have significance.

When either the tape reader or the keyboard has loaded the buffer, a

· signal is sent to the computer, which may be sensed by a TES command having

a line address of 36)
8

. This signal deactivates the Input Buffer so that it cannot

be loaded with further information. Any time after either an R TK or RPT

command is given, the presence of information in the buffer may be sensed by

giving a TES command with a line number of 36)
8

. If the buffer has been filled,

the transfer will occur.

Since the maximum speed of the Flexowriter for both the reader and the

keyboard is 10 characters/ second, and the PB 250 operates at microsecond

speeds, it is possible for a program to be ready for another input before the

Flexowriter has finished with the previous input; if a READ command were

given during this time period, the same character would be read again.

To keep the Flexowriter tape reader operating at its maximum rate,

and at the same time avoid reading the same character twice, a sequence of

commands can be used with either the RPT or RTK commands to provide an

automatic method of determining if character read-in is complete. This method

proceeds by giving a READ command and then testing line 36)
8

after only 3 ms.

H line 36)
8

is true, it can be assumed that a previous character is being read,

since the Flexowriter cannot react in 3 ms. The sequence then cycles through

these two commands, READ and TES 36)
8

, until the TES fails, which will occur

only when the previous read-in is complete. Then, by clearing the buffer and

waiting for line 36 to go true, the next READ will fill the Input Buffer with a

new character.

4-3

The command sequence is illustrated in the following flow diagram

nth character to be read):

~ Q .. ~ 3 f ~ it~~-~ ... p;1.;,~~··P"1''1.-fa..1
~~-~ h ~ JJ-u..&f... .

~c ,; 0 Ml.i "17fatt~~~~fw1. orv

~1~-t'trl~ ,,1~: . II

~h·..p._Aj:j:\, ~ ~-
+~t ~~~
~ ft;vll-?~ ;t~
~ (.r;~/J.~7..)~

;..;~ ~ ,.eo-jJJ~-f}~ -J,~

~ °1'~~-

4-4

NO

READ

LINE 36

TRUE?

NO

CLEAR
BUFFER

LINE 36

TRUE?

YES

READ

YES

Location

Sector

a.

a+ 1

a+ 2.

a+ 3

a+ 4

a+ 5

The command sequence for the read operation is as follows:

op

Code

LAI (etc)

TRU

READ

READ

TES

TES

CIB

Line

Address

LL

00

00

36

36

00

Sector

Address

a + 2

~ - 1

a + 3

a + 2

a + 1

a + 3

Seq

~

s
s

s

The function of the sequence is as follows:

The sequence is entered at a + 2, where a READ command with

sector a + 3 and no sequence tag is executed. After 3 ms, line 36 is tested
II II

and if the line is true, control returns to the READ command. If line 36 is not

"true", control will pass through to the GIB command which clears the buffer

and returns contro: to the second TES 36. The program will wait in this TES­

CIB loop until line 36 goes "true", at which time the TES 36 will transfer to

the READ in a + 1. This READ will execute for the greater part of a mem.ory

circula~ion and then transfer control to ~ , the next operation. Although {'.)

is not a fixed location it should be as far from a + 1 as possible, that is a

or a - 1.

4-5

4. 1. 2 Output

There are two ways to obtain output on the Flexowriter: the typewriter,

which has a speed of 10 characters/ second, and the punch, which operates up

to 15 characters/ second.

1'
T<j> type out on the typewriter, the woe command must be located in

I

line 05. In order to give the FlexowrHer time to respond to the output signal,

it is necessary to load the e register with a delay number before executing

the Woe command. This number will be decremented by one for each sector

of execution until it goes negative, at which time the woe acts like a standard

class 1 command. For the typewriter, a signal of 20 milliseconds duration is

always sufficient; however, for some Flexowriters, less time may suffice.

To obtain this delay, an octal number, + 0003232, should be loaded into the e
register before execution.

In order to avoid sending an output signal before the typewriter has

completed a previous character, a TES command ·.with a line number of 37)
8

should be used to test for "typewriter busy." Line 37 will become "true"

11-13 milliseconds after the woe command has started, and will remain

true for as long the typewriter is busy typing a character. The TES 37

command may be used to transfer back on itself, and in this way produce a

one-word loop until the typewriter is. ready to receive the output character.

4-6

Information output on punched paper tape is faster than output using the type-

writer and is controlled in almost the same way as the typewriter, except that

the WOC command is located in line 06 instead of 05. In the case of the punch,

a 15-millisecond delay is always long enough to start the punching operation,

instead of the 20-millisecond delay required for the typewriter. There is, however,

no way to test for the punch being .busy and the programmer must always allow

sufficient time between characters. One method of testing is to calculate the

amount of time used by the program in its operations between characters, and

then to make up the remainder of the time by using a larger delay number for

the woe command. It is permissible to use a woe for longer than 15 milli­

seconds, but no longer than approximately 60 milliseconds. In this way, it is

possible to output a tape without the necessity of using an additional counter.

For the 15-millisecond delay, an octal number of + 0002424 should- be

loaded into the C register.

4-7

V. COMPUTER OPERATION AND PROGRAM CHECKOUT

So 1 COMPUTER OPERATION

The POWER button on the front panel of the computer is the only

control necessary to turn the machine ON or OFF. When the computer is

on, this button will be illuminated. The Flexowriter ON-OFF switch is

located on the Flex.owriter.

When loading a program, the Octal Utility Program, which is pre­

sented in Appendix C~ should be used. This utility package simplifies con­

trol of the PB 250 during program operation and checkout.

The delay line memory of the PB 250 is erased when power is re­

moved and~ upon turning the machine on again, the contents of memory will

not necessarily be all zeroes, but will be a random bit configuration. In

consequenceii parity halts may be generated by trying to load the A, B, or C

registers with sectors in which information has not been previously stored.

PROGRAM CHECKOUT

So 2. I Dumping and Tracin~

Once a program has been coded, punched and loaded into the computer,

the question still remains as to whether the program, as written, is correct.

Jn the event that the program produces a print-out of results, these results can

be compared with known results obtained by hand computation of test cases. In

the event the program does not perform as predicted, several courses ar,e open

to the operator. A static dump (memory print-out) of the contents of appropriate

memory locations may be made, or the program may be traced, which is a

dynamic process showing the conditions of the various registers as computation

proceeds.

5-1

5.2.2 Single -Step Operation

An easier approach than either dumping or tracing, is to single- step the

computer through the program and, by comparing the results shown on the con­

sole lights with annotated coding sheets, find the flaw or flaws in the program.

Single-stepping may be accomplished by depressing the ENABLE switch and de­

pressing the C Key on the Flexowriter once for each program step to be executed.

Note: Each time any Flexowriter key is depressed, the Input Buffer is loaded with

this character, In addition, certain commands appear in the OPERATION lights

as other than that which is actually being executed; these co'mmands are as

follows:

ROT (O 3), which shows as 01

LDP (O 7), which shows as 05

STD (13), which shows as 11

DPA { 16), which shows as 14

DPS { 1 7), which shows as 15

For class 1 commands, such as MUP, DIV, etc., the information

displayed in the OPERAND lights will not reflect the actual line number of the

command being executed.

Conditional transfer commands will not appear in the OPERATION lights

unless the condition necessary for transfer is present. For example, TBN (36)

will always be executed {i.e., either a transfer will take place if Bis negative,

or the regular instruction sequence will continue if B is not negative) but will

not appear in the OPERATION lights unless the B register is negative when this

command is being executed.

5-2

Within the limitations previously described, the console indicator

lights may be interpreted as follows:

OPERATION lights (6) - - - - - - - Op code of command

OPERAND lights (5) ------- Line address of command

COMMAND lights (3) - - - - - - - Line location of command

Note that single -stepping through class l commands located in line 00

w~ll in general give incorrect results.

5.2.3 Use of The FILL Switch

During checkout, it may be necessary to reload the Octal Utility Pack­

age using the FILL switch. Programs other than the Octal Utility Package will

be destroyed when the FILL switch is turned on if the extreme left-hand light of

the OPERATION lights is illuminated. To turn this light off, single-step the

computer from the Flexowriter until the light goes out. The bootstrap leader

on the Octal Utility Package may then be loaded by the FILL switch without

disarranging the rest of memory.

5.3 BOOTSTRAP LOADING

5. 3. 1 Method

When the computer is first turned on, it is necessary to load a small

service routine, called a bootstrap, into the computer by turning on the FILL

switch, which is located on the computer console. This bootstrap program, in

turn, is used to load the Octal Utility Package which is capable of loading tapes

in conventional 6-channel or 8-channel format. The bootstrap tape is a special

binary information tape with the information arranged as shown in the following

diagram.

5-3

Stop
Channel

0

0
o o o o o o oo o o o o o e oo o o Clo o

0 0 0 0 0 0 0 0 0 0 0 0 0

0

Direction of
Tape Motion

Sprocket
Holes

Information
Channel

Bootstrap tapes load one information bit at a time, starting with the guard

bit of sector 377 of line 01. The next bit enters the guard bit of 377 and

pushes the bit previously loaded, down to position 21 of 377. This continues

through the parity bit of 377 and into the guard bit of 000 of line 01, as follows:

00101 00001

Codes on the bootstrap tape are as follows:

(Zero)

5-4

0

H

C/R

Stop Code

0

1

37701

Guard Bit

Stop Loading (After last C/R)
Always preceded by a zero

For each word that is loaded, a parity bit must have been computed and

punched. A stop code on the tape will cause the tape read in to cease, at

which time the operator may transfer to 00001 by first turning off the FILL

switch then depressing both the ENABLE and BREAKPOINT switches, strik­

ing the I key and raising the ENABLE awitch.

5-5

BINARY-OCTAL NUMBERS

A. NUMERICAL SYSTEMS

f\nv 1nnnbe1· c:a.n be reprP.sented as the sum of a group of terms, having
t\ \ I ' 0

t t H I u nt . ~1 nu i- rt
3

h ~ t ._\ 2. 1> ~ + ,_1
1

b t a
0

h • ,._.he r P b > l and 0 ~ ct ~ { b - I)

Th(' intPf_!<-~r ''h" 1~ call~d thf' hase. or radix. of the particular nun1er1cal systf-'m

, •. Jul,,··,,·' r1'.pn:Bt~nL; t.ht:· range of numeric:al values in that system.

1. Decimal System

The numerical system of radix l 0 is called the decimal system. In

this case, numerical values are specified by combining powers of ten in the form
n 3 2 I 0

an (I 0) . . . + a
3

(1 0) + a
2

(1 0) + a
1

(1 0) + a
0

(1 0) . The usual pr act ice, when

writing decimal numbers, is to omit the powers of ten and write out only the

values of "a". For example, r.onsider the decimal number 1875. This number
3 2 . l 0

actually represents 1 (10) + 8 (IO) + 7 (10) + 5 (10) but for the sake of con-

venience is merely written as 1875, with the position of the particular decimal

digit indicating with which p~wer of ten the digit is associated.

2. Binary System

The PB 250 operates i.n the binary, or radix 2, mode; therefore, to

understand the operation of the computer, an understanding of binary arithmetic

is essential.

. Here, numeric.al values are specified by combining powers of 2 in
n 3 2 l 0

the form an (2) ... + a
3

(2) + a
2

(2) + a
1

(2) + a
0

(2). As before, the usual

practice when writing binary numbers is to omit the. powers of 2 and write out

only the values of the "a" terms. For example, consider the binary number 1011.
3 2 1 0

This number actually represents "l (4) + 0 (2) + I (2) + 1 (2) but for the sake of

convenience is merely written as 1011, with the position of the particl,llar binary

A-1

digit (or bit) indicating with which power of 2 the digit is associated. The

only digits available in binary notation are 0 and 1.

3. Octal System

•
In the octal system, numbers are specified by combining powers

. n 3 2 1 0
·of 8 m form an(8) ... + A

3
(8) + a

2
(8) + a

1
(8) + a

0
(8). For the decimal

and binary systems, the powers of the base (8 in this case) are omitted, and

only the values of the "a" terms are written. For example, the octal number
3 2 1 0

7142 actually represents 7(8) + 1 (8) + 4(8) + 2(8). The digits available

in octal notation are 0, 1, 2, 3, 4, 5, 6, and 7.

B. RADIX CONVERSION

It is frequently necessary to convert numbers from one base, or

radix, to another during programming operations. The more common con­

versions are described in this section.

1. Decimal-to-Binary Integer Conversion

Assume it is desired to convert 2?)
10

to binary form. Note:

The notation)
10

indicates radix 10, or decimal system;)
8

indicates radix

8, or octal system;)
2

indicates radix 2, or binary system.

A-2

a) From the definition of the general binary form, it can be

seen that the decimal inte.ger can be broken down into a

summation of successive powers of 2.

25)10 = 1(2
4

) + 1 (2
3

) + 0 (2
2

) + 0(2
1

) + l (2°)

For larger decimal integers, make use of the Table of

Powers of 2, in Appendix B. Note: Adding the above

terms would yield 16 + 8 + 0 + 0 + 1 = 25.

b) The decimal integer can be divided repeatedly by 2; the

successive remainders, when read from the end, will be

the desired value.

Remainders

2~
1 ... least significant bit (a

0
)

2 12 0

2 ___&_ 0

1 2~
2 1 1 ... most significant bit (a~)

:J:

0

As before, 25)
10

= 11001)
2

This method follows from the fact that when converting an integer,

N, to the form N =an Zn+ a
1

z1
t a

0
2° 1 the remainder~ when N is divided

by 2, is a
0

; dividing this fir st quotient by 2 yields a
1

as a remainder, etc.

2. Binary-to-Decimal Integer Conversion

Assume it is desired to convert 11110)
2

to decimal form:

a) The values of the powers of 2 can be summed up to give

the decimal equivalent.

11110)2 = 1(2
4

) + 1(2
3
)+1(2

2
)+1(2

1
)+0 (2°)

= 16 + 8 + 4 + 2 + 0 = 30)10

Thereforep 11110)
2

= 30)
10

b) A second method is tu multiply the most significant bit

by 2, add the next most significant bit, multiply the

resulting sum by 2, add the next most significant bit, etc.

A-3

1 1

~J
3

2
6

1
7

2
14

1
15

2
30

0

1

30)
10

... ,..,_ __ answer

As before, 11110)
2

= 30)
10

1

multiply

add

multiply

add

multiply

add

multiply

add

This method follows from factoring the general binary term

for a 5-bit number to obtain the form

N = a
0

+ 2(a
1

+ 2 (a
2

+ 2.(a
3

+ 2(a
4

))))

Evaluating N, starting at the inner parentheses, gives the

required decimal integer.

3. Decimal-to-Octal Integer Conversion

To convert a decimal integer to oct~l form, divide the number

repeatedly by 8; the successive remainders, when read from the end, will be

the desired octal value.

A-4

converted to the

divided by 8, is

For example, convert 75)
10

to octal.

8 75

s l2_
8 lL.
8~.

Therefore, 75)
10

= 11 3)
8

3 ··----

1 ..

least significant digit

most significant digit

This method follows from the fact that when an integer, N, is
n 1 0

form N = an 8 + ... a
1

8 + a
0

8 , the remainder, when N is

a
0

; dividing this first quotient by 8 yields a
1

as a remainder, etc.

Note: It is usually convenient for the programmer to refer to

the Octal-Decimal Integer Conversion Table, Appendix B, when converting

integers from decimal to octal and vice-versa. The use of this table is self-evident.

4:. Octal-to-Decimal Integer Conversion

To convert an octal integer to decirnal form, multiply the lHOf.3t

significant digit of the number by 8, add the next most significant digit, multiply

the resulting sum by 8, add the next most significant digit, etc. For example,

convert 155)(3 to decimal.
l

3
0

5

5 ·---'
13

l

lO:_J
109)

10
...,___ Answer

Therefore, 155)
8

= 109)
10

multiply

add

multiply

add

A-5

This method follows from factoring the general octal term (for a

3 -digit number} to obtain

N = a o + + 8 (a 1 + 8 (az))

Evaluating N, starting at the inner parentheses gives the required

decimal integer.

5. Binary and Octal Number Relationships

3
Since 2 = 8, it can be seen that three binary digits are represented

by one octal digit. This applies for fractional quantities as well as for integers.

The binary-to-octal conversion is performed by grouping the binary

number into 3-bit units, starting from the binary point, and interpreting each

unit individually. For instance, 101011010)
2

becomes

and 0. l 10 1 1 1)
2

becomes . 110
'---'

6

~
3

or 532)
8

~
7 or .67)

8

Conversely, it can be seen that any octal number can be converted

to binary by writing the binary equivalent of each octal digit. For example,

becomes

A-6

6 1 2
~ ~ \._::_/

110 001 010 or 110001010)
2

6. Decimal Fractions to Octal or Binary

Keeping in mind that the general term for a fraction, base b, is

-1 -2 -3
a_

1
b +a_ 2 b +a_

3
b +----

it is evident that multiplying by the base, b, will produce the a_ 1 term in the

units position (immediately to the left of the radix point). Successive multi­

plication by the base will successively isolate the a _
2

term, a _
3

term, etc.

By this process, a decimal fraction, D, can be converted to the
-1 -2 -3

octal form D = a_
1

8 + a_
2

8 + a_
3

8 +----,or to the binary form

-1 -2 -3
D=a_ 1 2 +~_ 2 2 +a_ 3 2 +----

Note: A fraction in one base will not usually transform to a finite

fraction in another base.

For example, to transform 0. 725)
10

into a binary fraction, multi­

ply the fraction successively by 2, isolating the units position after each multi­

plication, until the desired number of bits are generated .

. 725
2

a _
1

term ----11.-~]. 450

2

og.900

2

i). 800

2

]. 600

Therefore . 725)
10

= . 1011 ---)
2

1

To convert. 082)
10

to octal, multiply the fraction successively by

8, isolating the units position after each multiplication, until the desired number

of octal digits are gene rated.
A-7

. 082
a·

term___......].656
8

Therefore

OJ. 248
8

J).984

b7
.082) = .0517---)

10 8

The Octal-Decimal Fraction Conversion Table, Appendix B,

is useful for decimal-to-octal or octal-to-decimal fractional conversions.

7. Binary or Octal Fractions to Decimal

Remembering the general notation for a fraction, it is evident that

a binary fraction can be converted to decimal by adding up the negative powers

of Z, referring to the Table of Powers of 2, Appendix B.

For example, convert . 101)
2

to decimal

This fraction equals l (Z-
1

) + 0 (Z-
2

) + l (2-
3

)

Therefore, . 101)
2

= . 625)
10

It is also possible to convert the binary fraction to octal and look

up the corresponding decimal value in the Octal-Decimal Fraction Conversion

Table.

In the above example, . 10 l)
2

= . 5)
8

Fr om the table, . 0 5)
8

= . 0 7 81 Z 5)
1 0

Multiplying both sides by 8: . 5)
8

= . 078125 x 8)
10

= . 625)
10

C. BINARY COMPLEMENTARY ARITHMETIC

Certain computer operations, such as subtraction or the manipulation

A-8

of negative numbers, are performed in the computer by using the complement of

the particular number. An understanding of complementary arithmetic is

therefore important as an aid in understanding computer operation.

The l's complement of a binary number is defined as the number

that must be added to the original number to give a result consisting of all l's.

The l's complement is obtained by simply inverting, i.e., by changing all l's

to 0 's and changing all 0 's to 1 's in the given binary number. For example, the

l's complement of 1010110 would 0101001.

The 2's (or "true") complement of a binary number is formed by

fir st finding the l's complement of the number and then adding 1 to the least

significant b.t position.

For example, thP 2.'s complement of 1010110 would be the 1 's

complement (0101001) plus 1, or 0101010

Some examples are given on the following page in decimal,

binary and complemented binary forms. The complemented binary form has

a leading 0 to indicate positive numoers, which becomes a leading l when

complemented for negative numbers. A negative answer appears in comple­

mented form with a leading 1.

?~:ti ~~ ~ ']._ 1,.,..

A/-t., ~~· ~ ~.

~~-

A-9

a)

b)

c)

A-10

Decimal

+12

-04

+08

+10

-10

+oo

+12

-14

-02

Binary

+1100

-0100

-1000

+1010

-1010

+0000

+1100

-1110

-0010

/

2- ~Complemented

I
)4-~f....

0 ID ID

I 0 IOI
-·---------~-·-

I ' I I I

Binary

0 1100

1 1100

0 1000

0 1010

1 0110

0 0000

0 1100

1 0010

1 1110

Table of Powers of 2

2" n 2-"

l 0 1.0
2 1 0.5

;/ 4 ·2 0.25
/9 ·3 0.125

16 4 0.062 5
/ 32 ·5 0.031 25

64 6 0.015 &25
'- 128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 o:ooo 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
v· 8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 1~ 0.000 015 258 789 062 5
/.--- 131 072 17 0.000 007 629 394 531 25

262 144 18 0.000 003 814 697 265 625
v- 524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 Q.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
v 2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 o. 000 000 000 232 830 643 653 869 628 906 25
8 599· 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 158 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

B-1

0000 0000
to to

0777 0.511
rOttal) (Oeci,,.ol)

Octal Decimal
10000. 4094
20000. 8192
30000 • '2208
AOOOO • l638A
50000 • 20.480
60000. 2.C.576
70000 • 28672

1000 l 0512 •• •• 1777 1023
(Octal) IOul•al>

B-2

Octal-Decimal Integer Conversion Table

0 1 2 3 .. s 6 7 0 l 2 !! • ~ 6 1

0000 0000 0001 0002 OOO;J 0004 0005 OOOfJ 0007 0400 0256 0257 0258 0259 0260 0261 0262 0293
001() 0008 0009 0010 0011 0012 OOJJ 0014 0015 0410 0264 0265 0266 0267 0268 0269 0270 0271
0020 0016 0017 0018 0019 0020 0021 0022 0023 000 0272 0273 0274 0275 0276 0277 0278 0279
0030 0021 0025 0026 0027 0028 0029 0030 0031 0430 0280 0281 0282 0283 0284 0285 028~ 0287
0040 0032 0033 0031 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 0292 0293 02914 0295
0050 0040 0041 0042 0043 00"4 0045 0046 ()047 0450 0296 0297 0298 0299 0300 0301 0302 0303
0060 0048 0049 0050 0051 0052 0053 0054 0055 0460 O:t04 0305 0308 0307 0308 0309 0310 0311
0070 OOMI 0057 OO!i8 0059 0060 0061 0062 006J 0470 0312 0313 0314 OJIS 0316 0317 0318 0319

0100 0064 0065 OOfJR 0067 0068 0069 0070 0071 0500 0320 0321 0322 0323 0324 0325 0326 0327
0110 0072 0073 0074 0075 0076 007'7 0078 0079 0~10 0328 0329 0330 0331 0332 0333 0334 0335
0120 0080 0081 0082 0083 0084 0085 OOH 008'7 0520 0336 0337 0338 0339 0340 0341 0342 0343
0130 0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351
0140 OOH 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355 0356 0357 0358 0359
0150 0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0364 0365 0366 0367
0180 0112 0113 0114 0115 0116 0117 OtlB 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375
0170 0120 0121 0122 0123 0124 0125 0126 0127 0570 0376 0377 0378 0379 0380 0381 0382 0383

0200 0128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 038"1 0388 0389 0390 0391
0210 0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399
0220 0144 0145 0146 0147 0148 0149 Olf»O OUl 0620 0400 0401 0402 0403 0404 0405 0406 0407
0230 OU2 0153 0154 0155 0156 0157 01&8 OU9 0630 0408 0409 0410 0411 0412 0413 04l4 0415
0240 0160 0161 0162 0163 0164 Ol6S 0166 OIS7 0640 0416 0417 0418 0419 0420 0421 0422 0423
0250 0168 0169 0170 0171 0172 0173 (1174 0175 0650 0424 0425 0426 0427 0428 0429 0430 0431
0260 0176 0177 0178 01'19 0180 0181 0182 0183 0660 0432 0433 0434 043& 0436 0437 0438 0439
0270 0184 0185 0186 0187 0188 0189 0190 OHH 0670 0440 0441 0442 0443 0444 0445 0446 0447

0300 0192 0193 0194 0195 0196 01~7 0198 0199 0700 04'18 0449 0450 0451 0452 0453 0454 0455
0310 0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0458 0459 O-t60 0461 0462 0463
0320 0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466 0467 0468 0469 0470 04'11
0330 0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474 0475 0476 0477 0478 0479
0340 0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486 0487
0350 0232 0233 0234 0235 0236 0237 0238 0239 0750 0488 0489 0490 0"91 0492 0493 0494 0495
0360 0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 049'1 0498 0499 0500 0501 0502 0503
0370 0248 0249 0250 0251 0252 0253 0254 0255 07'10 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7 0 I 2 3 4 5 6 7

1000 0512 0513 0514 0515 0516 0517 0518 0519 1400 0768 0769 0710 0771 07'12 0'7'13 07'14 07'15
lOIO 0520 0521 0522 0523 0524 0525 0526 0527 1410 07'16 0777 07'18 0779 0780 0781 0782 0783
1020 0528 0529 0530 0531 0532 0533 0534' 0535 1420 0784 0785 0786 0787 0788 0789 0790 0791
1030 0536 0537 0538 0539 0540 0541 OS42 0!>43 1430 0792 0793 0794 0795 0796 0791 0798 0799
1040 0544 0545 0546 0547 OM8 0549 0550 0551 1440 0800 0801 0802 0803 0804 0805 0806 0807
1050 0552 0553 0554 0555 0556 0557 0558 0559 1450 0808 0809 0810 0811 0812 0813 0814 0815
1060 0560 0561 0562 0563 0564 0585 0566 0567 1460 0816 0817 0818 0819 0820 0821 0822 08Z3
1070 0568 0569 0510 0571 0512 0573 0574 0575 1470 0824 0825 0826 0827 0828 0829 0830 0831

1100 05'16 0577 0578 0579 0580 0581 0582 0583 1500 0832 0633 0834 0835 0836 083'1 0838 0839
ll 10 0584 0585 0586 0587 0&88 0'89 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846 084'7
1120 0592 0593 0594 0595 0596 059'1 0598 0599 1520 0848 0849 0850 0851 0852 0853 08!>4 0855
1130 0600 0601 0602 0603 0604 0605 0606 0607 1S30 0856 0857 0858 0859 0860 0861 0862 0863
ll40 0608 0609 0610 0611 0612 0813 0614 06lS 1540 0864 0865 0866 086'1 0868 0869 08'10 0871
1150 0618 061'1 0618 06-19 0820 0621 0622 0623 USO 08'12 0873 08'14 08'15 08'16 0877 08'18 0879
U60 0624 0625 0626 062'1 0628 0629 0630 0631 1S60 0880 0881 0882 0883 0884 0885 0888 0887
1110 0632 0633 0634 0635 0631 063'1 0638 0639 U10 0888 0889 0890 0891 0892 0893 0894 oats

1200 0640 0641 0642 0843 0644 0645 0846 0641 1600 0896 0897 0898 0899 0900 0901 ·0902 0903
1210 06-t8 0649 0850 0651 0652 0653 0854 0855 1810 0904 0905 0906 090'1 0908 0909 0910 091 l
1220 O&S6 0857 0858 0859 0660 0681 0662 0663 1620 0912 0913 0914 0915 0916 0917 0918 0919
1230 0664 0665 0666 066'1 0668 0669 0610 0671 1630 0920 0921 0922 0923 0924 OHS 0926 092'1
1240 0612 06'13 0614 0675 06'16 061"1 0618 0679 1640 0928 0929 0930 0931 0932 09 33 0834 093$
1250 0680 0681 0882 0683 0684 0885 0686 0881. 1850 0936 093'1 0938 0939 0940 0941 0942 0943
1260 0688 0189 0690 0691 0692 0693 0694 0695 lHO 0944 0945 0948 0947 0948 0949 09&0 OH l
l2'10 0896 069'1 0698 0699 0'100 0101 0102 0103 1610 0952 0953 OH4 0955 0956 095'1 0958 0959

1300 0'104 0105 0'106 0'10'1 0'108 0709 0710 0711 1700 0960 0961 0982 0963 0964 0985 09H 0917
1310 0112 0718 0714 0715 0116 0717 0718 0719 1710 0968 0969 0910 0971 0972 09'13 0974 09'15
1320 0720 0721 0'122 0723 0724 0125 0726 07i1 1720 0979 0977 0918 0979 0980 0981 0982 0983
1330 0728 0729 0130 0731 0'132 0733 0734 0735 1730 0984 0985 0986 0987 0988 0989 0990 0991
1340 0'136 0'13'1 0138 0739 0'140 0'141 0'142 0143
1350 0144 0145 0'146 0747 0748 0149 0'150 07Sl

1'140 0992 0993 0994 0995 0996 0997 0998 0999
1750 1000 1001 1002 1003 1004 1005 1006 100'1

1360 0752 0'153 0754 0'155 0'156 0757 0'1S8 0759
13'10 0'160 0'161 0162 0'163 0'164 0'165 0766 0167

1'160 1008 1009 1010 lOll 1012 1013 1014 lOU
1770 1016 1017 1018 1019 1020 1021 1022 1023

Octal-Decimal Integer Conversion Table

0 t 2 3 4 5 6 7 0 1

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289
2020 1040 1041 1042 1043 1044 1045 J0-46 1047 2420 1296 1297
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305
2040 1056 1057 1058 1059 lOGO 1061 1062 1063 2440 1312 1313
2050 106'4 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321
2060 1072 107.3 1074 1075 1076 1077 1078 1079 2460 1328 1329
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 134~
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353
2120 1104 llOS 1106 1107 1108 1109 l J 10 1111 2520 1360 1361
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369
2140 1120 1121 1122 1123 1124 1125 1126 1127 25'40 1376 1377
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393
2170 1144 1145 1146 1147 1148 1149 1150 U5l 2570 1400 1401

2200 1152 1153 1154 1155 J156 1157 1158 1159 2600 1408 1409
2210 1160 1161 1162 1163 1164 1165 1166 l 167 2610 1416 1417
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425
2231) 1176 1177 1178 1179 1180 1181 1182 1183 2630 1432 1433
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441
2250 1192 1193 1194 1195 1196 1197 1198 1199
2260 1200 1201 1202 1203 1204 1205 1206 1207

2650 1448 1449
2660 1456 ·1'457

2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465

2300 1216 ·~17 1218 1219 1220 1221 1222 1223 2700 1472 1473
2310 1224 1225 1226 1227 1228 1229 1230 1231 27l0 1480 1481
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740 1504 1505
2350 1258 1257 1258 1259 1280 1281 1262 1263 2750 1512 1513
2380 1%64 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529

0 I 2 3 4 5 6 7 0 I

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 1792 1793
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 1808 1809
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817
3040 1568 1569 1570 1571 1572 1573 1574 1575
3050 1576 1577 1578 J579 1580 1581 1582 1583

3440 1824 1825
3450 1832 1833

3060 1584 1585 J586 J587 1588 1589 1590 1591 3460 1840 1841
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470 1848 1849

3100 1600 1~01 1602 1603 1604 1605 1606 1607 3500 1856 1857
3110 1608 1609 J610 1611 1612 1613 1614 1615 3510 1864 1865
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1861
3140 1632 1633 J.634 1635 1636 1637 1638 1639
3150 1640 1641 1642 1643 1644 1645 1646 1647

3540 1888 1889
3550 1896 1897

3160 1648 16-49 1650 1651 1652 1653 1654 1655 3560 1904 1905
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 1936 1937
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 1968 1969
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985
3310 1736 1737 1738 1739 174.0 1741 1742 1743 3710 1992 1993
3320 17'44 1745 1746 1747 1748 1749 1750 1751 3720 2000 2001
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2006 2009
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740 2016 2017
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750 2024 2025
3360 1716 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041

2 3 4

1282 1283 1284
1290 1291 1292
1298 1299 1300
1306 1307 1308
1314 1315 1316
1322 1323 1324
1330 1331 1332
1336 1339 1340

1346 1347 1348
1354 1355 1356
1362 1363 1364
1370 1371 1372
1378 1379 1380
1386 1387 1388
1394 1395 1396
1402 1403 1404

1410 1411 1412
1418 1419 1420
1426 1427 1428
1434 1435 1436
1442 1443 1444
1450 1451 1452
1458 H59 1460
1466 1467 1468

1474 l-i75 1476
1482 1483 1484
1490 1491 1492
1498 1499 1500
1506 1507 1508
1514 1515 1516
1522 1523 1524
1530 1531 1532

2 3 4

1794 1795 1796
1802 1803 1804
1810 1811 1812
1818 1619 1820
1826 1827 1828
1834 1835 1836
1842 1843 1844
1850 1851 1852

1858 1859 1860
1866 1867 1868
1874 1875 1876
1882 1883 1884
1890 1891 1892
1898 1899 1900
1906 1907 1908
1914 1915 1916

1922 1923 1924
1930 1931 1932
1938 1939 1940
1946 1947 1948
1954 1955 1956
1962 1963 19i4
1970 1971 1972
1978 1979 1980

1986 1987 1988
1994 1995 1996
2002 2003 2004
2010 2011 2012
2018 2019 2020
2026 2027 2028
2034 2035 2036
2042 20<t:i 2044

5 6

1285 1286
1293 1294
1301 1302
1309 1310
1317 1318
1325 1326
1333 1334
1341 1342

1349 1350
1357 1358
1365 1366
1373 1374
1381 1382
1389 1390
1397 1398
1405 1406

1413 1414
1421 1422
1429 1430
1437 1438
1445 1446
1453 1454
1461 1462
1469 1470

147'7 1478
1485 1488
1493 1494
1501 1502
1509 1510
1517 1'18
1525 1526
1533 1534

5 6

1797 1798
18Q5 1806
1813 1814
1821 1822
J829 1830
1837 1838
1845 1846
1853 1854

1861 1862
1869 1870
1877 1878
1885 1886
1893 1894
1901 .1902
1909 1910
1917 1918

1925 1926
1933 1934
1941 1942
1949 1950
1957 1958
1965 1966
1973 1974
1981 1982

1989 1990
1997 1996
2005 2006
2013 2014
2021 2022
2029 2030
2037 2038
2045 2046

7

1287
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
1391
1399
1407

1415
1423
1431
1439
144'7
1455
1483
1471

1479
148'7
1405
1503
1511
1510
1527
1535

7

1799
1807
1615
1623
1831
1839
1847
1855

18'&3
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

2000: 1024
to to

2111 1.535
(Octal) (Dtcimelt

Octdl Decimal
10000 • .(096
20000. 8192
30000. 12280
.40000 • 1638A
soooo • 20'480
60000. 24576
70000 • 28672

lOOO
to

'3711
COct•O

1536'
to

2t)47
(Decimoll

B-3

•000 ,0,8
to 10

•77'1 2.5.59
IOctoU IDMimoll

Octol Decimal
10000 • A096
20000. 8192
30000 • 12288
40000 • 16384
50000 • 20480
60000. 24576
70000 • 28672

.5000 2$60
to to

5777 3071
(Oc:tot) CDuirnal)

B-4

0

4000 2048
4010 2056
4020 2064
4030 2072
4040 2080
40~0 2088
4060 2096
4070 2104

4100 2112
4110 2120
4120 2128
4130 2136
4140 2144
4150 2152
4160 2160
4170 2168

4200 2176
42101 2184
4220 2192
4230 2200
4240 2208
4250 2216
4260 2224
4270 2232

4300 2240
4310 2248
4320 2256
4330 2264
4340 2272
4350 2280
4360 2288
4370 2296

0

5000 2560
5010 2568
5020 2576
5030 2584
5040 2592
5050 2600
5060 2608
5070 2616

5100 2624
5110 2632
5120 2640
5130 2648
5140 2656
5150 2664
5160 2672
5170 2680

5200 2688
5210 2696
5220 2704
5230 2712
5240 2720
5250 '2728
526012736
5270 2744

5300 2752
5310 I 27GO
5320 2768
5330 2776
5340 2784
5350 2792
5360 2800
5370 2808

1

2049
20~17

2065
2073
2081
2089
2097
210~1

2113
2121
2129
2137
2145
2153
2161
2169

2177
2185
2193
2201
2209
2217
2225
2233

2241
2249
2257
2265
2273
2281
2289
2297

1

2561
2569
2577
2585
2593
2601
2609
2617

2625
2633
2641
2649
2657
2665
2673
2681

2689
2697
2705
2713
2721
2729
2737
2i45

2753
2761
2769
2777
2785
2793
2801
2809

2 3 4

2050 2051 2052
20!lR 20:,9 2060
2066 2067 206fl
2074 207~ 2076
2082 2083 2084
2090 2091 2092
2098 2099 2100
2106 2107 2108

2114 2115 2116
2122 2123 2124
2130 2131 2132
2138 2139 2140
2146 2147 2148
2154 215!> 2156
2162 216J 2164
2170 2171 2172

2178 2179 2180
2186 2187 2188
2194 2195 2196
2202 2203 2204
2210 2211 2212
2218 2219. 2220
2226 2227 2228
2234 2235 2236

2242 2243 2244
2250 2251 2252
2258 2259 2260
2266 2267 2268
2274 2275 2276
2282 2283 2284
2290 2291 2292
2298 2299 2300

2 3 4

2562 2563 2564
2570 2571 2572
2578 2579 2580
2586 2587 2588
2594 2595 2596
2602 2603 2604
2610 2611 2612
2616 2619 2620

2621) 2627 2G28
2634 2635 2636
2642 2643 2644
2650 2651 2652
2658 2659 2660
2666 2667 2668
2674 2675 2676
2682 2683 2664

2690 2691 2692
2698 2699 2700
2706 2707 2708
2714 2715 2716
2722 2723 2724
2730 2i31 2732
2738 2739 2740
2746 2747 2748

2754 2755 2756
2762 2763 2764
2770 2771 2772
2778 2779 2780
2786 2787 2768
2794 2795 2796
2802 2803 2804
2810 2811 2812

Octal-Decimal Integer Conversion Table

5 6 7 0 I 2 3 4 5 6 7

20~>3 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311
2061 2062 2063 4410 2'.$12 2313 2314 2315 2316 2317 2318 2319
2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327
2077 2078 2079 •1430 2328 2329 2330 2331 2332 2333 2334 2335
2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342 2343
2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359
2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367

2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375
2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383
2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
2141 2142 2143 4530 2392 2393 2394 2395 2396 2397 2398 2399
2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2406 2407
2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
2165 2106 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423
2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2430 2439
2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
219':' 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 24~3
2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471
2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
2229 2230 2231 4660 2480 2481 2482 2483 2184 2485 2486 2487
2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495

2245 2246 2247 4700 2.496 2497 2498 2499 2500 2501 2502 2503
2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
2261 2262 2263 472.0 2512 2513 2514 2515 2516 2517 2518 2519
2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535
2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543
2293 2294 2295
2301 2302 2303; -

4760 2544 2545 2546 2547 2548 2549 2550 2551
4770l2!l52 2553 2554 2555 2556 2557 2558 2559

-----.
I

5 6 7 0 1 2 3 4 5 6 7

2565 2566 2567 5400 2816 2617 2818 2819 2820 28?.l 2822 2823
2573 25':'4 2575 5410 2824 2825 2626 2827 2828 2829 2830 2831
2581 ~582 2583 5420 2832 2833 2834 2835 2836 2837 2838 2839
2~8Y 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 :841
2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855
2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862 2863
2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870 2871
2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 287V

2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
2637 2638 2639 5510 2888 2809 2890 2891 2892 2893 2894 2895-
2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903
2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919
2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943

2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951
2701 2702 2703 5610 2952 2953 2954 2955 2956 2957 2958 2959
2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2967
2717 2718 2719 5630 2968 ~~G9 2970 29'71 2972 2973 2974 2975
2725 2726 2727 5640 2976 2977 2978 2~79 2980 2981 2982 2983
2733 2734 2735 5650 2984 2965 2986 29Si 2980 2989 2990 2991
2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007

2757 2758 2759 :>700 3008 3009 3010 3011 3012 3013 3014 3015
2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
2773 2774 2715 5720 3024 3025 3026 3027 3028 3029 3030" 3031
2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038 3039
2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063
2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

Octal-Decimal Integer Conversion Table

0 1 2 3 4 5 6 1 0

6000 l072 3073 3074 3075 3076 3077 3078 3079 6400 3328
6010 3080 3081 3082 3083 3084 3085 3086 3087 8410 3336
fJ020 3088 3089 3090 3091 3092 3093 3094 3095 64~0 3344
6030 3096 3097 3098 3099 3100 :11 Ol 3102 3103 6430 3352
6040 3104 3105 3106 3101 3108 3109 3110 3111 6440 3:)60
8050 3112 3113 3114 3115 3116 3117 3118 3119 6450 3368
6060 3120 3121 3122 3123 3124 3125 3126 3127 8460 3376
6070 3128 3129 3130 3131 3132 3133 3134 3135 6470 3384

6100 3136 3137 3138 3139 J140 3141 3142 3143 6500 3392
6110 3144 3145 3146 3147 3148 3149 3150 3151 6510 3400
6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 3408
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 3418
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540 3424
6150 3176 3177 3178 3179 3180 3181 3182 3183 6550 3432
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560 3440
6170 3192 3193 3194 3195 3196 3191 3198 3199 6570 3448

t6200 3200 3201 3202 3203 3204 3205 3206 3201
to210 3206 3209 3210 321 t 3212 3213 3214 3215

6600 3456
6810 3464

6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472
6230 J224 3225 3226 3227 3228 3229 3230 3231 6630 3480
fi2'40 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488
G250 3240 3241 3242 3243 3244 3245 3246 3247 6650 3496
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504
6270 3256 3257 3258 3259 3260 3261 3262 3263 6670 3512

6300 3264 3265 3266 3267 3268 3269 3210 3211 6'700 3520
6310 3272 3273 3214 3275 3276 3277 3278 3279 6'710 3528
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 35l6
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 3544
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552
6350 3304 3305 3306 3307 3308 3309 3310 331J 6750 3560
6360 3312 3313 3314 3315 3316 3317 3318 3319 6160 3568
6370 3320 3321 3322 3323 3324 3325 3326 3321 6770 3576 .__

0 1 2 3 4 5 6 1 0

7000 3584 3585 3586 3587 3588 3589 3590 3591 7400 3840
7010 3592 3593 3594 3595 3596 3597 3598 3599
7020 3600 3601 3602 3603 3604 3605 3606 3607

7030 3608 3609 3610 3611 3612 3613 3614 3615

7410 3848
7420 3856
7430 3864

7040 3616 3617 3618 3619 3620 3621 3622 3623
7050 3624 3625 3626 3627 3628 3629 3630 3631
7060 3632 3633 3634 3635 3636 3637 3638 3639
7070 3640 3641 3642 3643 3644 3645 3646 3647

7440 3812
7450 3880
7460 3888
7410 3896

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 390"6
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510 3912
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520 3920
7130 3672 3673 3674 3675 3676 3617 3678 3679 7530 3928
7140 3680 3681 3682 3683 3684 3685 3686 3687 7540 3936
7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944
7160 3696 3691 3698 3699 3700 3701 3702 3703 7560 3952
7170 3704 3705 3706 3707 3·108 3709 3710 3711 7570 3960

7200 3712 3713 3714 3715 3716 3711 3'718 3719 7600 3968
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610 3976
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620 3984
72JO 3736 3737 3738 3739 3740 3741 3742 3743 7630 3992
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640 '4000
7250 375-2 3753 3754 3755 3756 3757 3758 3759 7650 4008
7260 3760 3761 3162 3763 3764 3765 3766 3767 7660 4016
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670 '4024

7300 3776 3777 3778 3779 3780 3181 3782 3783 7700 4032
7310 3784 3785 3786 3787 3788 3789 3790 3791 7710 4040
7320 3792 3793 3794 3795 3796 3797 3798 3799 1720 '4048
7330 ~800 3801 3802 3803 3804 3805 3806 3807 7730 4056
7340 3808 3009 3810 3811 3812 3813 3814 3815 7740 4064
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750 4072
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 4080
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770 4088

I 2 3 4

3329 3330 3331 3332
3337 3338 3339 3340
3345 3346 3341 3348
3353 3354 3355 3356
3361 3362 3363 3364
3369 3370 3371 3372
331'1 3378 3:)79 3380
3385 3386 3387 3388

3393 3394 3395 3396
3401 3402 3403 3404
3409 3410 3411 3412
3417 3418 3419 3420
.J425 3426 3427 3428
3433 3434 3435 34~6
3441 3442 3443 3444
3449 3450 3451 3452

3457 3458 3459 3460
3465 3466 3461 3468
3473 3474 3415 3476
3481 3482 3483 3484
3489 3490 3491 3492
3491 3498 3499 3500
3505 3506 3507 3508
3513 3514 3515 3516

3521 3522 3523 3524
3529 3530 3531 3532
3537 3538 3539 3540
3545 3546 3547 3548
3553 3554 3555 3556
3561 3562 3563 3564
3569 3570 3571 3572
3$77 3578 3579 3580

l 2 3 4

3841 3842 3843 3844
3B49 3850 3851 3852
3857 3858 3859 3860
3865 3866 3867 3868
3813 3874 3875 3876
3881 3882 3883 3884
3889 3890 3891 3892
3897 3898 3899 3900

3905 3906 3907 3908
3913 3914 3915 3916
3921 3922 3923 3924
3929 3930 3931 3932
3937 3938 3939 3940
3945 3946 3947 3948
3953 3954 3955 3956
3961 3962 3963 3964

3969 3970 3971 3972
3977 3978 3979 3980
3985 3986 3987 3968
3993 3994 3995 3996
4001 4002 4003 4004
4009 4010 4011 4012
4017 4018 4019 4020
'4025 -4026 -4027 4028

4033 4034 4035 4036
4041 4042 '1043 4044
4049 '4050 4051 4052
4057 4058 4059 4060
4065 4066 4067 '4068
4013 4074 4015 4'076
4081 4082 4083 '4084
4089 4090 4091 4092

5 6

3333 3334
3341 3342
3349 3350
3357 3358
3365 3366
3313 3374
3381 3382
3389 3390

3391 3398
3405 3406
3413 3414
3421 J422
3429 3430
3437 3438
3445 3446
3453 3454

3461 3462
3469 3470
34'11 3-418
3-485 3486
3493 3494
3501 3502
3509 3510
3517 3518

3525 3526
3533 3534
3541 3542
3549 3550
3557 3558
3565 3566
3573 3574
3581 3582

5 6

3845 3846
3853 3854
3861 3862
3869 3i10
3877 3818
3885 3886
3893 3894
3901 3902

3909 3910
3917 3918
3925 3926
3933 3934
3941 3942
3949 3950
3957 3958
3965 3966

3973 3974
39ar 3982
3989 3990
3991 3998
4005 4006
4013 4014
4021 4022
4029 4030

4037 4038
4045 4046
4053 4054
4061 4062
'4069 4070
4071 4078
4085 4086
4093 4094

1

3335
33"3
3351
3359
3367
3375
3383
3391

3399
3407
3415
3423
3431
3439
3447
3455

3463
3471
3479
3487
3495
3503
3511
3519

3527
3535
3543
3551
3559
3587
3515
3583

1

3847
3855
3863
3871
3879
3887
3895
3903

3911
3919
3927
3935
3943
3951
3959
3967

3975
3983
3991
3999
4007
4015
4023
'4031

4039
'4047
4055
4063
4071
4079
4087
4095

6000 3072
,., to

6777 3,83
(Octal) (Oe<i"'alt

Octal Dedmol
10000- A096
20000 - 8192
30000 ~ 12288
AOOOO - 1638A
50000 - 20.t80
60000 - 2 457 6
70000 . 28672

7000 J564
to lo

7777 409S
(Octal) (D~dmol)

B-5

Octal-Decimal Fraction Conversion Table

OCTAL ·DEC. OCTAL Ot:C. OCTAL Dl::C. OCTAL m:c .

• ooo .000000 • 100 • lZ&OOO .200 • 250000 .300 .375000
.001 .001953 • 101 • 126953 • 201 • 251!>53 .301 .:J7G953
.002 .003906 .102 .128906 • 202 , 25390G .302 .378!>0r.
.003 .065859 .103 .130859 .203 • 255859 .303 .380859
.004 • 00781Z .104 .132812 .204 • 257812 .304 .382812
.005 • 909765 i .1o:r-. .134765 .205 .250765 .305 • 384765
.006 • 011'7\8 .106 .136718 .206 .21H718 .306 • "386'718
.001 • 013611 .107 • 138671 .207 • 263671 .307 .388671
.010 .015625 • llO .140625 .210 • 265625 .310 .390625
.011 • 017578 • 111 .142578 • 2ll • 267578 • 311 .392578
.012 .019531 .112 • 144531 .212 .269531 • 312 .394531
.013 ,021484 .113 .1'6484 .213 • 271484 .313 .396484
• 014 .OZ343T .114 .148437 • Zl4 • 273437 • 314 .398437 .ou .025390 .115 • 150390 .215 .275390 .315 .400390
.016 .027343 .116 .152343 .216 .271343 .316 .402343
.017 • 029296 • 11'1 • 154296 .zn • 279296 • 317 .404296
.020 .031250 .120 .156250 .220 • 281250 .320 .406250
.021 .033203 .121 .158203 .221 • 283203 .321 • 408203
.022 .035156 .122 • 160156 . 222 • 285156 • 322 .410156
.023 • 037109 .123 • 162109 .223 .287109 .323 .412109
.024 .03906Z .124 • 164062 .224 • 289062 .324 • 414062
.025 .041015 .125 .166015 .225 • 291015 • 325 .416015
.026 ,042968 .126 • 167968 .226 • 292968 .326 • 417968
.027 .044921 .127 .169921 .227 .294921 .327 .419921
.030 • 0468'5 .130 • 171875 .230 • 296875 • 330 ,421875
.031 • 048828 • 131 .173828 .231 • 298828 .331 • 423828
.032 ,050781 .132 • 175781 .232 . 300781 .332 .426781
,033 • 052734 .133 • 1•;7734 .233 • 302734 .333 .427734
.034 .06468'7 • 134 • 179687 .234 • 304687 .334 .429687
.035 .056640 .135 • 181640 .235 • 306640 .335 .431640
.036 .058593 .136 .183593 .236 • 308593 ,336 • 433593
.037 • 060546 .137 • 185546 • 237 • 310546 .337 .435546
.040 .062500 .140 .187500 .240 • 312500 .340 .437500
.041 .064453 .141 • 189453 .241 .314453 .341 .439453
.042 .066406 .142 .191406 • 242 • 316406 .342 • 441406
.043 .068359 .143 .193359 .243 • 318359 ,343 .443359
.044 ,OT0312 .144 .195312 .244 • 320312 • 344 .445312
.045 .072265 .145 ,197265 .245 • 322265 .345 .447265
.046 • 074218 .146 .199218 .246 • 324218 .346 .449218
.047 .076171 .147 • 201171 • 247 • 326111 .347 • 451171
.oso .078125 .150 .203125 .250 • 328125 ,350 .453125
.051 • 080018 • 151 • 205078 • 251 • 330078 • 351 .455078
,062 • 082031 .152 .207031 .252 • 332031 .352 .457031
.053 .083984 .153 .208984 .253 • 333984 .353 • 458984
.054 • 08593'1 .154 • 210937 .254 • 335937 ,354 .460937
.055 .081890 .155 • 212890 .ZS5 • 337890 .355 • 462890
.056 .089843 • 156 • 214843 .256 • 339843 .356 .464843
.057 • 091'196 .15'1 • 216796 • 257 .341796 .357 .466'796
.060 .093750 .160 • 218750 .260 .343750 .360 .468750
.061 • 095703 .161 .220703 • 261 • 345703 .361 .4'10703
.062 .0976S6 • 162 • 222656 • 262 • 347656 .362 .472656
.063 .099609 .163 • 224609 .263 • 349609 .363 .474609
.064 .101562 .164 ,226562 • 264 • 351562 .364 .476562
.065 .103515 .165 .228515 .265 • 353515 .365 ,478515
.066 .105468 .166 .230468 .266 .355468 .366 .ff0468
.067 • 107421 • 167 • 232421 • 267 • 357421 .367 .482421
.070 .109375 • 1'10 . 234375 • 270 ,359375 .370 .484375
• 071 .111328 • 171 • 236328 .271 • 361328 .371 .486328
.072 .113281 • 172 • 238281 .272 .363281 .372 ,4882lH
.073 .115234 • 173 • 240234 .273 • 365234 .373 .490234
,074 .117187 . 174 .242187 .274 • 367187 .374 .492187
.0'15 .119140 • l'l5 .244140 .275 • 369140 .375 • 494140
.0'16 ,121093 .176 .246093 • 276 • 371093 .376 • 496093
.077 .123046 • 177 • 248046 • 277 • 373046 .377 .498046

B-6

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000000 .000000 • 000100 .000244 • 000200 .000488 ,000300 ,000732

.000001 ,000003 .000101 • 000247 • 000201 .000492 ,000301 • 000738

.000002 • 000007 • 000102 .000251 • 000202 .000495 ,000302 • 000740
,000003 • 000011 ,000103 .000255 • 000203 .000'499 .000303 ,000743
,000004 ,000015 • 000104 .000259 • 000204 . 000503 • 000304 • 000747
• 000005 .000019 • 000105 ,000263 • 000205 • 000507 ,000305 ,000751
,000006 .000022 • 000106 .000267 .000206 • 000511 ,000306 ,000755
,000007 .000026 • 000107 .000270 • 000207 .000514 ,000307 .000759
.000010 ,000030 , 000110 • 000274 • 000210 ,000518 • 000310 ,000762
• 000011 .000034 • 000111 ,000278 .000211 .000522 ,000311 .000766
,000012 ,000038 • 000112 ,000282 • 000212 • 000526 ,000312 ,000770
,000013 • 000041 .000113 .000286 • 000213 .000530 • 000313 • 000774
,000014 ,000045 .000114 • 000289 • 000214 • 000~34 • 000314 • 000118
,000015 .000049 • 000115 .000293 • 000215 • 000537 • 0003115 • 000782
• 000016 • 000053 • 000116 ,000297 • 000216 • 0005"1 • 000316 • 000785
,000017 ,000057 • 000117 .000301 • 000217 • 000545 • 000317 ,000789
.000020 • 000061 • 000120 ,000305 • 000220 • 0005"9 • 000320 ,000793
,000021 • 000064 .000121 • 000308 • 000221 . 000553 ,000321 • 000791
.000022 .000068 .000122 .000312 • 000222 .000556 • 000322 • OQ0801
.000023 .000012 • 000123 .000316 • 000223 • 000560 • 000323 .000805
.000024 .000016 • 000124 .000320 ,000224 ,00056'4 • 000324 ,OQ0808
,000025 ,000080 • 000125 .000324 • 000225 .000568 ,000325 • 000812
.000026 .000083 .000126 .000328 • 000226 .000572 • 000326 .OQ0816
.000027 .000087 • 000127 ,000331 • 000227 ,000576 • 000327 • OQ0820
.000030 .000091 .000130 .000335 • 000230 ,000579 • 000330 • 0()0823
.000031 .000095 .000131 .000339 • 000231 ,000583 • 000331 . oqo921
.00003% ,000099 • 000132 .000343 • 000232 .000587 • 000332 • 0()0831
.000033 ,000102 .000133 .000347 • 000233 .000591 • 000333 ,000835
.000034 .000106 .000134 .000850 • 000234 .000595 • 000334 • 000839
.OtJ0035 • 000110 • 000135 ,000354 • 000235 ,000598 • 000335 .000843
,000036 ,000114 • 000136 ,000368 • 000236 • 000602 ,000336 • 0008'46
,000037 ,000118 • 000137 .000362 • 000237 ,000606 .000337 • 000850
.000040 .000122 • 000140 .000366 • 000240 ,000610 • 000340 .000854
.000041 .000125 • 000141 .000370 • 000241 • 000614 • 000341 • 000858
,000042 • 000129 • 000142 • 000373 • 000242 ,00061'7 • 000342 .000862
,000043 .000133 .0001'13 .000377 • 000243 ,000621 • 000343 .000865
,00004'4 .000137 • 000144 • 000381 • 000244 ,000625 • 0003« • 000869
.000045 ,000141 • 000145 .000385 • 000245 ,000629 • 000345 .000873
,000046 ,000144 • 000146 ,000389 • 000246 ,000633 • 000346 . 000871
.oooon • 000148 • 000147 .000392 • 000247 • 000637 • 000347 • 000881

,000050 .000152 • 000150 ,000396 • 000250 .000640 • 000350 .000885
,000051 ,000156 • 000151 ,000400 • 000251 • 000644 • 000351 .000886
,000052 .000160 • 000152 ,000404 • 000252 • 000648 • 000352 ,000892
,000053 .000164 • 000153 .000408 • 000253 • 000652 • 000353 • 000896
• 000054 ,000167 • 000154 • 000411 • 000254 ,000656 • 000354 • 000900
,000055 • 000171 .000155 .000415 • 000255 ,000659 • 000355 .000904
.000056 • 000175 ,000156 • 000419 • 000256 ,000663 • 000356 ,000907
.000057 ,000179 • 000157 ,000'423 • 000257 • 000667 • 000357 .000911

.000060 ,000183 .000160 .000427 • 000260 • 000871 • 000360 ,000915

.000061 ,000186 • 000161 .000431 • 000261 • 000675 • 000361 .000919
,000062 .000190 • 000162 • 000434 • 000262 • 000679 ,000362 • 000923
.000063 ,000194 • 000183 ,000438 .000263 • 000682 • 000363 • 01)0926
,000064 .000198 • 000164 • 000442 • 000264 • 000686 • 00036" ,000930
.000065 .000202 • 000165 • 0004'46 • 000265 .000690 • 000385 • 000934
• 000066 ,000205 ,000166 .000450 • 000266 • 000694 • 000366 ,000938
.000067 ,000209 .000167 .000453 • 000267 ,000698 • 000367 • 000942

.000070 • 000213 • 000170 .000457 . 000270 • 00070 l • 000370 .000946
• 000071 • 000217 • (i00171 .000461 . 000271 ,000705 . 000371 .000949
,000072 .000221 • 000172 ,000465 • 000272 ,000709 • 000:112 ,000953
,000013 • 000225 .000173 ,000469 . 000273 ,000713 .000373 .000957
,000014 ,000228 ,000174 • 000473 . 000274 .000717 • 00037-\ .000961
• 000075 • 000232 • 000175 • OOO-t76 • 000275 . 000720 .000375 .000965
.000076 • 000236 .000176 ,000480 • 000276 . 000724 . 000376 ,000968
.000077 ,000240 ,000177 .000484 • 000277 . 000728 • 000377 • 000972

~---------- •. ---·----

B-7

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC, OCTAL DEC. OCTAL DEC •

.ooo•oo • 0009'16 .ooosoo • 001220 • 000600 • 001464 • 000700 • 001'708

.000401 .000980 • 000501 • 001224 • 000601 • 001468 • ~00701 • 001712

.000402 .000984 .000502 • 001228 ,000602 • 001472 ,000702 • 001716

.000403 .000988 .000503 • 001232 .000603 • 001476 • 000703 ~001720
,000404 ,000991 • 000504 • 00123& • 000604 • 001480 .000'104 .001724
.000405 .000995 .000505 .001239 .000605 • 001483 .000705 .001728
.000406 .000999 .000506 • 001243 • 000606 • 001487 .000'106 .001731
,000401 .001003 • 000507 • 00124'1 .00060'1 • 001491 .000101 .001735
,000410 .001007 • 000510 .001251 • 000610 • 001495 • 000710 .001'139
.000411 .001010 .000511 • 001255 • 000611 • 001499 .000711 • 001743
.000412 .001014 • oqos12 • 001258 • 000612 • 001502 .000112 • 001747
.000413 ,001018 • 000513 .001262 • 000613 .001506 .000113 • 001750
,000414 .001022 • OQ0514 • 001268 .000814 • 001510 • 000114 .001754
.000415 .001026 .000515 • 001210 • 000615 • 001514 .000715 • 001158
.000416 • 001029 • 000516 • 001274 .000616 • 001518 .000718 .001762
.000417 • 001033 • 00051'7 .001ZT7 • 000617 • 001522 .000717 • 001'766
• 000420 .001037 .000520 • 001281 • 000620 • 001525 • 000720 .001170
.000421 .001041 .000521 • 001285 • 000621 • 001529 • 000721 • 001773
.0.00422 • 001045 .000522 • 001289 • 000622 • 001533 .000722 ,001777
.000423 .001049 .000523 ·• 001293 • 000623 • 001537 • 000123 • 001'181
,000424 • 001052 • 000524 • 001296 .000624 .001541 ,000124 • 001785
.000425 • 001056 .000525 • 001300 .000625 .001S44 • 000725 • 001'1H9
• 000426 • 001060 .000526 • 001304 .000626 • 001548 .000726 .001792
• 000427 • 001084 .000527 • 001308 .000827 .001552 • 000727 .001796
• 000·'30 • 001068 .000530 • 001312 ,000630 .001556 ~000730 .001800
• 000431 • 001011 .000531 • 001316 .000631 .001560 • 000731 .001804
• 000432 • 001016 .000532 • 0.01319 .000632 .• 001564 • 000732 .001808
• 090433 • 0010'19 .000533 .001323 .000633 .001567 .0001'33 .001811
.000434 • 001083 • 000534 .001327 .000634 ,001571 • 000134 .001815
.000435 • 001087 .000535 • 001331 .000835 • 001575 ,000735 • 001819
• 000436 • 001091 ,000536 ,001335 ,000638 • 0015'19 .000736 .001823
.000437 • 001094 ,000537 .001338 .000637 .001583 .000737 .001821
• 000440 ,001098 ,000540 ,001342 .000640 ,001586 • 000140 .001831
.000441 ,001102 .000541 .001346 .000641 .001590 .• 000741 .001834
.000442 • 001106 .000542 • 001350 ,000642 .001594 .000742 .001838
.000443 • 001110 .000543 .001354 .000643 • 001598 .000743 .001842
• 000444 ,001113 .000544 • 001358 • 000644 .001602 ,000'744 .001846
• 000445 • 00111'1 .000545 .001361 .000645 .001605 .000745 .001850
• 000446 .001121 ,000546 .001365 .000646 .001609 • 000146 .001853
.00044'1 .001125 .00054'1 .001369 .000647 • 001613 .000'147 ,001851
• 000450 • 001129 .000550 .001373 • 000650 .001617 .000750 .001861
• 000451 • 001132 .000551 .001317 .000651 .001621 • 000751 • 001865
• 000452 .001136 .000552 .001380 .000652 ,001825 .000752 .001869
• 000453 .001140 .000553 • 001384 .000653 • 001828 • 000153 ,001873
• 000464 .001144 .000554 • 001388 • 000654 ,001832 • 000754 • 001876
• 000455 .001148 ,000555 .001392 .000655 .001636 .000755 .001880
,000456 • 001152 .000556 • 001396 .000656 .001840 • 000'158 .001884
• 000457 .001155 .000557 .001399 .00065'1 .001644 .000757 .001888
.000460 .001159 .000560 • 001403 .000860 ,001647 .000760 .001892
• 000461 ,001163 .000561 .00140'1 • 000661 .001651 • 000761 • 001895
• 000462 ,001167 .000562 .001411 ,000662 .001655 .000762 • 001899
• 000463 .001171 .000563 .001415 .000663 .001659 .000763 • 001903
• 000464 • 001174 .000564 ,001419 • 000664 • 001663 • 000764 • 001907
.000465 .001178 .000565 ,001422 .000665 • 001667 .000785 .001911
.0004.66 .001182 .000566 .001426 .000666 • 001670 • 000766 • 001914
• 000467 • 001186 .000567 .001430 .000667 • 001674 • 000'167 • 001918
• 000470 .001190 .0005?0 ,001434 • 000670 • 001678 • 000770 • 001922
.000471 .001194 • 000571 • 001438 .000611 • 001682 .000771 • 001926
.000472 .001197 .000572 • 001441 .000672 .001686 • 000712 .001930
• 000473 .001201 .0005'13 • 001445 .000673 • 001689 • 000773 .001934
• 0004'14 .001205 ,000574 • 001449 .000674 • 001693 • 000774 • 001937
• 000475 .001209 .000575 • 001453 .000675 • 001697 ,000775 .001941
• 000476 ,001213 • 000576 ,001457 • 000676 • 0017.01 • 000776 ,001945
.00047'1 .001216 • 000577 ,001461 • 000677 .. 001705 • 000777 • 001949

B-8

APPENDIX C

OCTAL UTILITY PROGRAM

Packard Bell Computer PB250 Program Library

Catalog Number 0001A

IDENTIFICATION:

AUTHOR:

ACCEPTED:

PURPOSE:

RESTRICTIONS:

SPACE:

TIMING:

OCTAL UTILITY PACKAGE II

A. W. England, PBCC

February 27, 1961

To provide simplified control of the PB250 during pro­
gram ope ration and checkout. The utility program
operations are easily controlled by means of appropriate
code letters, which allow the user to enter, inspect, and
output information in a variety of formats.

Only those codes which are recognizable by the program
should be entered; these include 0 to 9, +, -," semicolon
(;), comma(,), period(..), $, Tab, C/R, Delete, Space,
B, C, D, F, G, I, S, T, W, Z. Entry may either be
from paper tape or from the Flexowriter keyboard.

Of the remaining codes, any which have an octal configu­
ration of 40 or greater will cause erratic and unpredictable
ope ration. In this group are A, E, H, U, V, X, Y, apos­
trophe ('), U/ C, L/ C. Any codes which have an octal con­
figuration les~ than 40 will be interpreted as octal digits,
the value being determined by the least significant three
bits of the code; included are J, K, L, M, N, 0, P, Q, R,
/, Sto.e Code, Tape Feed.

The program uses all sectors of line 01 for instructions
and storage, plus additional memory as follows: (1) When
punching, sectors 376 and 377 of line 06; (2) When typing,
sectors 376 and 377 of line 05.

Since this is essentially an input-output program, its speed
is determined by the speed of the Flexowriter. All opera­
tions will proceed at the maximum rate for the Flexowriter,
which .is about 10 ·characters/ second for reading tape and
typing, and 15 characters/ second for punching.

- 1 -

USE:

Catalog Number OOOlA

l. Loading the Program

The utility program has a bootstrap and la self-loading.
To load the prog~am, insert the tape into the reader. The
starting point ls not critical, but it must be before the
first set of holes. Raise the Fill switch on the console
and clear any parity by depressing both the Enable and
Breakpoint switches. Be sure· to raise one of theee after
the tape starts moving.

The tape will atop when the bootstrap has been entered. To
read the remainder of the \ltility tape, firat lower the Fill
ewitch, then clear parity and initiall~e by depreaaing both
the Enable and Breakpoint switches and &triking the I key
while the Enable switch h down. When the Enable ewltch
ia raised, the tape will be read under program control (The
Breakpoint switch may be up or down).

When the tape has been read in correctly (the check sum
compares), the light on the Flexowriter will come on, in­
dicating keyboard control. If the Flexowrlter light does
not come on, and 0037)8 appears in the Operation andOper­
and lights of the console, the check sum did not compare
and the program should be loaded again.

The functions of the utility package will normally be con­
trolled from the Flexowriter keyboard. The keys for the
input. output, control~ and function operations are described
in the following paragraphs.

z. Input Codes_

a) $ (Set Location)

Causes the specified location to be set for the input of
information. The use·r first types five octal digits of
the form SSSLL, ·where SSS is the sector and LL the .
line number of the location to be set, and then $. SSS
may be any octal number from 000 to 377, and LL any
octal number from 00 to 37. Regardless of the number
of digits entered prior to the $, only the last five will

- 2 -

USE (cont.):

Catalog Number OOOIA

be interpreted as an address. The sector number
will be inserted into an indexed store command, and
the line number will be stored in the Index register.

b) Carriage Return (Enter)

Used to enter a word of information into a location
previously set with $. After one word is entered, the
location counter is advanced by one, with sector 000
following 377, so that the next C/R will enter a word
into the next location. Each time the C/R is given,
the contents of the program accumulator a.re entered
into the location specified by the sector counter: the
contents of the accumulated word are not affected. Re­
gardless of the number of characters preceding the
CIR, only the last 21 bits will be entered Jnto the spe­
cified location.

c) F (Fill)

Causes the program to begin reading paper tape. This
tape may be prepared ahead of time in the same for­
mat used when entering from the keyboard, in which
case the control codes are interpreted as if they were
typed. A location of the form SSSLL may be specified
before the F code, and this will be set the same as
with $. However, any $ on the tape will override the
setting of the F.

The tape may also have been prepared by the utility
program in a binary format in blocks of 256 words
(one long line, see discussion of Output Codes) plus
check sum. In this case, it is only necessary to set
a line location either by typing LLF or by having placed
LL$ or LLF on the tape before the binary block was
punched.

At the be ginning of the binary block will be a G, placed
there at the time of punching by the program, which
marks the start of the block. After loading the line spe­
cified, the check sum on the tape is compared with the

- 3 -

USE (cont.):

Catalog Number OOOlA

sum computed during loading. If the check sum was
correct, the program will continue to read in the
normal F mode unless the Breakpoint switch is down,
in which case control will return to the keyboard.

If the check sums do not compare, the program will
halt with a line number of 37)8 appearing on the con­
sole. Control may be returned to the keyboard by
de pre a sing both the Enable and the Breakpoint switches
together: when the Enable switch is raised, the Flexo­
writer light will come on. The computed check sum
will be stored in Fl 7 of line 00. It may be typed out
in octal by typing "017000."

A "W" will also cause control to return to the key­
board, regardless of the position of the Breakpoint.
switch.

d) G (Guard)

Thie code guards the be ginning of a .binary block and
is always punched by the program when preparing a
binary tape. It should never be necessary for the
user fo depress this key.

3. Output Code s

a) B (Binary)·

A line number ranging from 00 to 3 7)8 , followed by
a B, will cause the indicated line to be punched in a
binary format starting from sector 177)8 and pro­
ceeding backward to sector 200)8 • In this format,
three frames on tape are required for each word in
memory. The first has six bits of information, where­
as the next two each contain eight bite. At the end of
the tape, a check sum will be punched. This check
sum is compared when the tape is reentered into the
computer. Twice this check sum will be stored in line
00, channel F 1 7.

A G code will be punched to mark the beginning of the
tape.

- 4 -

USE (cont.):

Catalog Number 0001A

b) C (Command Type)

To type out a word ln command format, first type
the location of the word (SSSLL) followed by a C;
the program will then type this word, carriage re­
turn, and if the Breakpoint switch is up, type the
next word. Typing will continue until the Breakpoint
switch is depressed. If the Breakpoint switch is down
when C is depressed, only one word will be typed.

c) D (Data Type)

To type out a word in octal format, follow the same
procedure as in C, except depress the D key instead
of the C key.

d) Output Note

It ls not possible to punch a listable tape directly,
however, If the punch is t\Jrned on while the program
is typing out in command or octal format, a tape will
be punched which can be read into the computer.

4. Transfer-Control Codes

a) (Period)

Th~ period will cause control to be transferred to the
location sped.fled by the preceding five ·octal digits
(SSSLL). Control can be transferred to any sector of
line e 00 thru 07.

b) w
When read from tape by the program, W will cause
control ·to be returned to the keyboard. It is useful
at the end of listable, octal format tapes, to return
control to the keyboard. It is also useful at the end
of binary tapes, if control is to be returned to the key·
board regardless of the position of the Breakpoint
switch.

- 5 -

USE (cont.):

Catalog Number OOOIA

c) T

This code causes an unconditional transfer to sector
000 of line OZ. The transfer command h located in
sector 306 of line 01 and can be changed for use by a
specific program. Any program which changes 306 01
should also make provision for re storing the original
contents ~f this location upon completion of the pro­
gram.

d) (Comma)

Whenever a $, F, B, C, D, or • code is read, the
utility program 11tore s the two octal digits preceding
the code in the Index register. The comma (,)code
makes use of this fact and transfers· control to sector
000 of the line specified in the Index register; it can
be used for a self-starting program tape that may go
into any of several line e.

e) Enable - I

Control may always be returned to the keyboard from
any place at any time by depressing the Enable switch
and striking the I key. When the Enable switch is
raised, the Flexowriter light will come on unless there
is a parity which must also be cleared.

S. Function Codes

a) Z (Ze~o One Line)

This code will cause the contents of the indexed line ·
to be set to zero. It ie first necessary to set the de­
sired line numbe·r into the Index register with an LL*,
or equivalent, and then to zero the accumulated word
by typing +0000000. Then, when the Z code ie read,
the de sired line will be cleared and control will return
to reading from whichever mode (tape or keyboard)-the
code was given. The accumulated word is not stored
in the sectors of the line, but it must be cleared before
the operation functions properly. The time required
for this operation is less than Z seconds.

- 6 -

USE (cont.): 6. Input-Output Formats

a) Command Format

Catalog Number OOOIA

A command format word hae three octal digits for
sector number, one bit for sequence tag, two octal
digits for ope ration code, two octal digits for line
number, and a one-bit index tag.

For example: In command 123545071, 123 is the
sector number, S indicates that there is a sequence
tag, .45 is the operation code, 07 the line number,
and I indicates that there is an index tag. If there
were no sequence tag, a apace should be typed in­
stead of the S; likewise, if there were no indextag,
semicolon (;) should be typed instead of the I. Out­
put wUl be in the same form as input.

The line number consists of six bits (two octal° digits),
but these are arranged with the most significant bit
on the right of the si:x, next to .the inde:x tag. It is
not necessary for the user to concern himself with
this, however, as the program will autc:>matically ar­
range this bit on input and rearrange it for output.

b) Data or Octal Format

An octal format word has a sign and seven octal
digits. For example, +1234567 or -3214276. Nega­
tive numbers are not complemented either on input
or output. The minus sign cause e a one bit to be
entered for the sign position; plus produces a zero
in the sign position ..

c) Tab arid Code Delete

For convenience, the tab is ignored when entered
from either tape or keyboard. The code delete is
also ignored when read from tape.

- 7 -

METHOD:

Catalog Number OOOIA

1. · When reading information in octal format ft·om either
tape or keyboard, the program inspects each character for
the presence of a bit in the most significant position. ll
a one is present, it interprets this as a control code anrl
jumpe to the appropriate routine. If the high-order bit la
a zero, the program aesumea the character to be an octal
digit and loads the three low-order bits of the charade r
into the low-order positions o(an accumulating word which
h shifted left to allow insertion of the digit.

z. The four one-bit characters, S, Space, I, semicolon
(;), cause inae rtion of only one bit into the accumulator.
In addition to inserting one bit, I and ; , also cause the pre­
ceding six bite to be rearranged by moving the most sl~nl­
ficant bit of the six to the least significant position.

3. The control characters which require an addreee a11-
aume that this address is the last thing entered into the
program accumulator. The Index register is then set
with the line number of the address, and the sector num­
ber ls placed into an appropriate load or store command.
None of these control characters rearrange the line num­
ber, therefore, it is impossible to set a line number
greater than 37 >s·

- 8 -

APP£ND1X A

OPERATIONS SUMMARY

OCTAL UTILITY PACKAGE II

Set location counter

Enter accumulated word and advance location counter

Set location counter and fill from tape

Punch line ln binary format

Type word in command format

Type word ln data (octal) format

Jump to epe clfied location

Return control from t;\pe to keyboard

Jump to eector 000 of line 02

Jump to sector 000 of laet line indexed

Clear Indexed line to +0000000

Sequence tag: one (1)

Sequence tag: zero (0)

Index tag: one (l)

Index tag: zero (0)

,Sign plue: + (0)

Sign minus, - (1)

Ignored code e:

- 9 -

SSS LL$

C/R

SSSLLF

LLB

SSSLLC

SSS LLD

SSSLL.

w

T

LL$+0000000 Z

s
Space

I

;

+

{

Tab

Code delete

[p:b:J Paokerd Bell Oompu~er.
Pl 250 PIOllAM llSTING Catalog Number OOOIA
PROBLEM __ o_c.....,tA L __ U __ I.....,t...-L IT Y PA~c-K_A __ GE_ .. _________ _ PAO! 1 OP 9 ----A PROGR MMER .a l.l. ..r.tJCt ANn DATI 2-28-61 -..

IYMIOLtO . LOCATION tMITRUCTtOfll
01' CODI - HMAIUCI

00001$ 263S0701J LOP LOAD RTK•S

001 377 00001_ CONST -7740000 [SECTOR DECREMENT]

002 fil3S21001. l.50 8
F

003 027S5501J LAI (BINARY SWITCH]

004 017 36011 TBN WHEN WORD COMPLETE

..oos 001540011 EBP TO FILL SIGN or A
006 017 1100J STA IN CK. SlJ..1

JXrr 377 0401J LDC LINE COIJNT

010 011507011 LOP TO LOAD MARKER INTO B

Jll.1 oon 00161 CONST +0000071 [I CODE]

fil2
00255100) RTK L> CHANGEABLE READ CC»+1ANDS

Q13 014 5100J RTK

014 013 7736J TES TO REJECT OLD CHARACTER

.lll5. _fil2_ ll36.I J[S TO SENSE NEW CHARACTER -
01·6 01455700J CIB BACK TO TES

_o_11 301 3401J TCN LINE COMPLETE

02n 010 26411 TEMP ALSO (STORE (2)]

021 _0_17 14001 ADD CK. St.J4 STA-
CK. SlM 022 .1U1. ll00.1

r

LOA 023 020 0501; STORE (2)

024 001 1401 J ADD SECTOR DECREMENT

025 020 ·11011 srA STORE (2)

_Q_a§_ JlluS31U.l.J. TRU TO LOAD MARKER -
027 000 01771 CONST +0000377

030 03354001; EBP TO TEST f OR CONTROL CHARACTER

031 033 4001; EBP

032 1 41 54400 .i. CLC

1)33 ~·
CONST -7777700

- r

034 2'71 3501 j TAN TO CONTROL sa ECTOR

035 315 5601; CAM }LLTI:l _s_p ACE C _OOE

- 1 1 -

[JlbJ .. ••k•rd ••II OorwtSJtUtl•r
PlllO PIOllAM llSTINI
PROILIM OC!~L UYILITY PACKAGC
PAOORA~MUt. AiWa. t:NGLANO

\.OOATtoN '""""'"'"
IOllOt.tO
tP GOH

03601 344 7501J tor
037 000

t-·
oaoo, tee

oAo.____ ..Q.44 ~21-0J ._RSO .

t------..0..41 Ol'Vl _(UM•
~

IAC

1----__.0JI ~ 066 2210) hSO

043 012s~~Q01 CLA -
044 Q2R n._rin.t 1 LOA -.,
049 061 5601J CAM

'"

046 136 79011 TOF"
I-·-·

Jo..·-·
047 07_1S2200_t RSI

I-· 050 .. -- ... ~ . "-~ ~··· ._091. 2100_1. .LSD

ll~'I 1lQd ~itnt •.
~ - ... ~ . LDB

062 054 3300J SBR
,......~~...-....-.. .. """

003~ 0~7S2100J L"SO "•=

!--·-··-· .Q£S4. " 095 .71011
'Y

1De_

. 058 OOOS3701J TEMP
1--·-· ·- - .. -.... . -· -

058 063S0200J tat . ,
" .. •,

.J>.37 114S3701J TAU
--···

~··-·
. ,.,,

• q . .. l\N.\ .. _,,, . " .000 ., :)501 _1 T~N ·- ~

.. 06.1 onn onnn. , ...
b, " l:l.JN.:tj

...... ,.nt\Q
111s11ao) CONS1

j:-; ··= ", "• ·--

063 Of34S1301J sro·
...... .,- •.. ,..,,... ___

~ .,, .,.,, -=·".-..

.... Q~~··· 088 '1100J Lao
. . .. - .. ,. -. ~ , -

~ JltUt """ .. J>.66 11371. STB ..

............ " nM -· ~ ... ~t). 2l00i LSD -
"' -· Qfl.7 - t ·-·· ' ,013.040lJ 10('

. ,=---•c-, ... - .. ~tll.O_ _.
,., 011 S4.601.J AOC

... ~..... ~- ~ -~- . '" . ·~ .. -
"· .. ··~ ... ~. ___ OlL -OOOS.7.1 lll ___ - ·~ ..

~()NS1

-•<'•''317.2.
013 1·201 J STD

....;7~--..... ····-··-···· . -··· ·-··-· •.... ··~ .. _ --·-··· ·--·-·-···-- , .. , ...

Q.73 2!S3 osoot LOA
... ~ ,. ___ -·--=- - ,, . ". "' ..

.. l Z ...

Catalo1 Number OOOlA

PA11• OP t ---. .. ,. •·••·11
TO SPACE ROUTINE

3

19

BACK TO READ

KEY TEW.
0

aa

8

TEMP w
1

3

roR TYPE OUT ,LAG
f OR TYPE OUT k£Y

TO START

+ooooooo [D FLAG]
+7777700 (D KEV \«>RD)

IN TYPE OUT TEMPS ,
IN INOtx REG I STEA

7

LOAD (1)

TO S£T UP SEC TOA

+0037777
LOAD (1)

[LOAD (1)]

cpbJ Packard Bell Compu'l:er
Pl 2SO PROGRAM llSTING Catalog Number OOOlA

PROBLEM
PROGRAMMER

OCTAi UT I l I TY PACKAGE _________ _ PAtl 3 OP' _..9 __ _
A W ENGLAND '-'- . DATE 2-28-61

lOCATtON INSTRUC TtON IYMIOLIC OP CODI

07401 020 1101; STA. TEMP W

075 055 0601J LOB KEY

016 000 4500J CL_A
011

_102 ~1M• ----·-·-.. -· T
LSD 2

100 226 1201 j STB KEY TEMP
>--·

101 020 0601 J LOB TEMP W
.. ---• .. ••w-

102 000 OlOOJ IAC

_-__103 J_Q~2100i LSD 1

104 J.ni:; 33M.1 ,, ..5BR 1

1-----1.05-
050 3401 J TCN KEY DIGIT 0

106 110 2100; LSD 1

107 153 3401J TCN KEY DIGIT 1
110 112 21001 LSD 1

111 .114 34011
~

ICN KEY DI.GIT 2
112 114521001 LSD 1 roR KEY DIGIT 3

113 217 3501.l TAN TO WRD OUT
1-----·

114 020 1201.i ----.. _S_TJi TEMP W

Jl5
14354300; CLB

_ __,....___, ___ 4 __ ... - ... ·-··

116 117 0030J MAC COPY A TO C

11.1 374541001 __GIB TO CHECK PARITY
. _120_ 061 5r.;04 CAM 0

121 124 3401; TCN PARITY CORRECT

122 315 1401.1 A_o_O PARITY BIT

123 _122 7501_! ...,. .IOE TO ADD PARITY BUT AGAIN roR a CODE
124 127 2100; LSD 2

125 127 1601 j OPA RETURN AND woe 0

126 14350300; ROT

-121 _044S37n1 • ., _:mu [RETURN]

130 000 6000; woe [woe o]

14653701; TRU [DUt.f.1Y CHAR. RETURN]
131 8

- 13 -

[JJ_bJ Packard Bell Compu-l:er
PB 250 PROGRAM LISTING

PROBLEM OCTAi llTll ITY PACKAGE

PROGRAMMER A W ENGLAND ,IL

LOCATION ffUTAUCTtON l'IMIOLIC
OP COOi.

13201 376 1305J STD

133 311 0401_1 LDC

134__ 134 .773_7 l TES

135 376S3705J TRU

136 137S0701J LOP
--

___ 1_~1 000 '61161 woe
140 307S3701J TRU

141 132537011 TRU

___ _14_2 143 003_01 MAC

143 36250200; IBC

144 115544001 CLC
--

145 13150200J IAC

146 013 77351 n:s

141 . 073__()501 f
"7'

LOA

150 001 1501 J SUB

151 073 1101J STA
f-·

152 07353701J TRU

1~.:t 020 12011 STB

154 _l 56 330Cl1 -5.BR

_lfi~ 054 1501J SUB

156 061 56011 CAM

157 177 7501 J TOF
I-·

160 054 1101J STA

161 171 3501; TAN

- _162 020 06011 LOB
163 167 3601 J TBN

164 16550501; LOA

165 000 00141 CONST

1 e::e:. 12~~43001_ r.1.a -...,.-..,.. ·'
167 011 0501; LOA

Catalog Number OO()IA

PAGE 4 0, __ g __

- .. DATE 2 28 61
IN TYPE OUT SECTORS

DELAY NO.

TYPEWRtTER BUSY
TO TYPE OUT

TYPE C/R AND RETURN

C/R

C/R RETURN
TO STORE AND LOAD DELAY

B. P. FOR END or TYPING

LOAD (1)
SECTOR ·DECREMENT

LOAD (1)

LOAD (t)

TEMP W

1 AND CLA
F'LAG

0

TO SELECT + OR -

FLAG

SELECT S OR SPACE

TEMP W [SELECT i OR J]

LOAD I CODE

J CODE

+0000060 [J CODE]

TO ADD woe 0

J CODE

cpm Paokard Bell Compui:er

Pl 250 PIO GRAM llSTING

PROBLEM OCTAi UTILITY PACKAGE
PROGRAMMER A W ENGLAND ll '....I_

liOCATION INITftllOTION IYMIOLtC
Oft ~OOI

17001 1~354300J CLB

ll1 174 3601J TBN

1.72 315 0501__t LOA

173 12354300J CLB

174 175505011 LOA

ll5_ 000 00.5.4; CONST
176 12354300J CLB

177 201 21001 LSD

200 235 1401J ADO

201 1~.3~4.3001 CLB
202 000 7735J TES

203 265S4300J CLB

204 226 '101 J STA

205 113 Q50ll. LOA

206 245 1101 J ..SIA_

207 000 45~--- CLA
1-------

210 017 1100t ·STA

211 212S0701J LOP

212 000 6107; woe

213 223S310lJ TRU

214
376 1306; STB

215 311 0401; LDC

216 37653706; TRU

217 226 0501_1 LOA

220 001 1401; ADD

r---- 221 226 1101; STA

222 252 7501..t TOF

?Q~ 2~450501;----i ._J..Q~

224 24553701; TRU
·- ------

___ t;?25 377 1106; _J_ STA

- 15 -

Cataloi Number OOOlA

l'All !5 O' _9 __ _
DATI 2-28-61

TO ADO woe 0

TO LOAD S CODE (SELECT S OR SPACE]

SPACE DOCOOE
TO ADO woe 0

S CODE

+0000062 Cs cooEJ
TO ADD woe 0

1 (SELECT + OR -J

+ CODE

TO ADO woe

i· P. roR· ~EtURN TO KEYBOARD
TO RESET BIN. SW. ROUTINE

LOAD '(a)

WITH TAN TO WORD OUT

OUT SW.

CK. S~

woe G. ANO RETURN

G

G RETURN
IN PUNCH OUT SECTORS

DELAY NO.

PUNCH OUT

LOAD (2)

SECTOR DECREMENT

LOAD (2)

LINE END

TRU BACK FROM 06

BACK FROM 06

RETURN SECTOR

cp=bJ Packard Bell Computer

PB 250 PIOGIAM llSTING Catalog Number OOOIA
PROBLEM~~O~C~JA~L-ull~I-IL~l~IY.....-.P~A~CK~A~G~E....__~~~~~-----~·---- 'All 6 OP' 9 ----
PROGRAMMER A W..._ £Nr.I ANO DATI 2-28·61

LOCATION INITltUCTION IYMIOLIC OP CODI

22601 177 05001 TEMP (LOAD (2))

227 020 1101J STA TEM' B

23n 017 1400.t ADO CK. SlJ.1

231 01.1 1100..!_. -5IA CK. St.14 ,
232 o~o 0601 J LOB TEMP B

233 ~15 0401J LDC COUNTER

234 23_5_54500_1_ Cl.A t--

235 000 0047J CONS'J' +0000036 (+ CODE]

2~~ 245 2100_1 LSD ~ 6 ,
'";:~r

237 1120 1201 J_ SlB TEMP B p

240 000 4300J CLB

!>U 244 2110.t LSO a ---...
242 130 l.401.J. , AOO. woe o
_2_43 376 1106_J_ STA PUNCH OUT SECTOR

QA.A _2_l4SO_lOO_t JJ\C TO LOAD DELAY NO. - . -.,,,-

.245 000 3501J TAN (OUT SW.)
t----·

246 020 0401; LDC TEMP B
t--·

2'17 000 03001_ RO] -
250 2612100__:_ ISD 8 .
251

23757501J TOf' TO STORE IN TEMP

252 060 0501J LOA WITH TAN START (LINE END]
t--·-··

253 245 11011 STA OUT SW.

2.5A_ __O_ 1 I _0600 _: LOB CK. Sl.f\.1

.255. 2.~"'.> ~A 'lQQ • _r..LA .. TO PUNCH OUT 't«>RD R<XJTINE ,

256 027 5501J LAI FOR BINARY SW. ON

251.. 177 11001 STA fOR STORE (2)

260 020 11011_ STA IN STORE (2)

26..1 0031~.:.. SIB IN B I NARY SW.

262 005545001 CLA TO BINARY START

.263 00255100;. RTK roR READ SEQUENCE
. - 1"6 -

~bJ Packard Bell Oe>mpui:er
PB 250 PRO ORAM llSTING

PAOBLEM~__,O~t~T~AL.._,.U~T~IL~f~T~Y~P~A~C~KA~G~t.__~-
PROGRAMMER A. W. rNGI~

LO CAT ION IH8T"UCTION SYMBOLIC
op coot

26401 014 5100; RTK
,, ... ,,. ... ________ .. ___ ..

265 012 1301; $TO
!-·-.. ·-·-·-.. ---··--

.. ________ _?fil 267S04Q1; LDC

267 027S5501J LAf
~--··----.. --·--

270 003510Q!; STC ---·--- ----- ... - .. ·-·----J-.

_ .. L-c--·-2.ll ______ __ _o_2_o__L2.0l; ______ t---SIJl_
272 000 4300; CLB

1------- --- ---
273 303 2200; RSI

---~

________ 27_~ 060 1601J DPA

I--
275 277 1201_1 STB

..___ 276 __otm_ J)_601 J I
LOB

326 3501J TAN
_zJ.j__

300 036545001 CLA

301 017 5600J CAM

302 202 7501.j_ TOF

1---·· 3(')3 00050031-J_ l:ILI
304 306 2100; LSD

JO!)
31750501: LOA

306
noo~~1,12 •

7
_mu

307 13050701; LOP

310 34450200_; IBC
!--------'-·---

311 000 1205..:. CONSl
1--· -,.

~12
27557124; CONST

313 05451301; STD

314 00053701; TRU

315 000 0004_;_ CONSl

-31£ 25650101..:. LDP

317 ·177 05001 LOA

320 20351237; STB

321 32352100; LSD

- J 7 -

Catalog Number 0001 A

PAG! ·7 0' _g_· ---
DATE 2-28·_6_1

IHMARlct

FOR READ SEQUENCE

IN READ SEQUENCE

WITH BIN. SW. OFF
FOR BIN. SW. OFF

BIN. SW.

IN ACCUMULATED WORD [CONTROL SELECTOR

7

TAN 0

JUMP

AC'CUMULATED WORD
[JUMP] (A IS NOW ALWAYS .NEG.)

[O ROUTINE]

CK. SUM [LINE END FOR BINARY INPUT]

IF CK. S~ COMPARES

37 [BAD CK. SU\1 ERROR HALT]

1 [B ROUTINE]

WITH INITIALIZED LOAD (2)

SECTOR 000 LINE 02 [I ROUTl!NE]
DU~Y CHAR. AND RETURN

[D ROUTINE)

+0002424 [C FLAG] [DELAY NO.]

-3676320 [C KEYWORD)

IN TYPE OUT TEMP•S,,

START (W ROUTINE]

+0000020 [SPACE CODE]

BIN. W. ON + INITIAL STORE (2)

[INITIAL STORE (2))

INDEX REGISTER

1

r:pbJ Packard Bell Compui:er
PB 250 PIOGIA.M llSTIHG

PROBLEM OCTAL UTILITY PACKAGE
PROGRAMMER A W ENGLAND • '...!.

LOCATtON UllTRUCTION IYMIOLIO
0, CODI

32201 037 0401J LDC

323 013 3401J TCN

32! 325S2500I IAM

'!l':l~ ~n~45no~ CLA --- - ,
326 330 21001 LSD

327 _ _336512311 STB
330 340 2100J LSD

. 331 334 0401J LDC

..J.32 071 46011 AOC

---- -- .e-333... a11 :"ll •~.,UO.J. BOY_

334 055 12001 STB

335 334 0501) LOA

336 37154400) CLC

f--· 337
~

347521001_ L.50

ROT 340 ~_L!>U.:11. XU r-· ,

341 363S0300J ROT
J--·------

342 344 2100J LSD
1--

343 327S1237J STB

t--· 344 340501001. f AC

":.\Jl.6. nlUSOioli lnP - ·- ,

346 35250200; IBC

_J.41 ·352 0401 J LDC
t-·

.350. 071 46011 AOC

351 352 1~1.I ..sm
05.4537001

TRU
_352 -LOP
..353 31150701_.;_

354 IBC
000 ~021>0.l

355 ,3.;:\.n~ ·,_t_,_ l.DP
.._ I

t2: _.356. 002552001 RPT -

.35.1. Jll 4 5200J_ RPT
·-

. - 13 -

Catalog Number OOOIA

PAI! I OP ~ ----DATI 2-28-61
HNAIUCI

COUNT FOR ZERO LINE [Z ~OUTINE]

BACK TO READ

256

TO LSD 1 (31 7)
1' (• ROUTINE)

INDEX REGISTER

1

STORE (,)

TO SET SECTOR

(STORE (1)) (C/R ROUTINE)

STORE (1)

7

(J ROUTINE]

1 [$ ROUTINE]

INDEX REGISTER

[S AND SPACE ROUTINE)

0 FLAG ANO KE~RD
(C ROUTINE]

TRANSFER

TO SET SECTOR

.TRANSFER
(TRANSFER]

C FLAG AND KE~RD

[f ROUTINE)

RPT•S FOR READ SEQUENCE

FOR READ SEQUENCE

~bJ Packard Bell C.on~puf::er
PB 2SO PROGRAM LISTING Catalog Number OOOlA
PROOLEM OCTAL UTIUTY PACK __ A_GE'. ____________ _

PAGE 9 O' 9 ----
A PROGRAMMER A .M .Ill.Gl..AMO D TE _2_-28-..61

LOCATtON INStRUCTION IVMllOLIO
RUtARU OP CODE

36001 012 1301J s_ro IN READ SEQUENCE

361 341 S_Q_~.Qi f BC TO $ ROUTINE

~"~ .3 3._7_S("14 ".l1 •· -, LDC (I ROUTINE]
363 011 2210J RSO 21

364 366S0100J tAC

365 013522001 RSI 21

366 j)()(J=:i:1_LUU1 _tRU SECTOR 000 INDEXED LINE (, ROUT 1rp
367 020 0401J LDC ACCUMULATED WORD
370 033 4601J AOC TO SET LINE NO.
371 340501001 IAC

372 001 15011 SUB SECTOR DECREMENT

-3.ll ..3.~il i1..0.1.i .Sli STORE (1)
~ JI

374 012S4500J CLA TO READ (TAB ROUTINE]
375 1115_0_1001 IAC TO RECALL ORIGINAL OCTAL DIGIT TO A

316 01254500; CLA TO READ [CODE DELETE ROUTINE]

Zl1 000 4002J CONST +0010010 [LINE COUNT]

--, .. ·-- - -..

.. 19 -

E]

APPENDIX C
OCTAL UTILITY PACKAGE IT
fLOW DIAGRAM

SET R.£AD

~KlYIJOARD

SET BINARY

SWITCH OFF

OIZDI

READ I
CHA~ACTER

OFF

0370/

ENTE.R ON£
OCTAL

CHARACTER

- 21 -

RES£r

IADRD COUNT

LOAD

No

8 BITS
t----~

2.7101

PAGE. IOF6

STOR£(Z
WORIJ

YES

OCTAL UT/LlrY PACKAvE II

FLOW D/AtrRAM

34ZOI

SET STORE.0)

OFr:-

8.P.

.33401
.STORE (If

WORD

ADVANC£
STORE (I)

- 22 -

OU

PAS£ Z. OF 6

-35401

sEr READ
TO TAPE

OCTAL UT/LlrY PACl<AG-E LL

FLOW DIACrRAH

31601

r SET BINAflY

S~V/7CH ON

INITIALIZE

. STORE(Z)

. SET LINE.

COUNT

SE.T LINC'

INDEX

ZERO_. CHECK SUM

. 30501
INITIALIZE.
LOAD (Z

-~2;....:..,..1101
PUNCH

G

22601 -----
LOAD {z.) ~
WORD

SET WORD
COUNT

__ ..L..-;;;i!. __ 3...;;.0._0 I Z360/

MODIF'Y
LOAD (Z)

NO

LINE YES
our P

OFF 245"01

OUT ON

NO

WORD rCK. SHIFT PUNCH
1----IL~ 1---.f:._..

5UM-..CK. SUAf G BITS % BITS

- 23 -·

PAGE :J Or 6

26401

LOAD
CH.SUM

25201

SET OUT

SW. ON

C.500/
SHIFT

8 BITS

• OCTAL UTILtrY PAtl<ACrE If
,Ft.OW DIAGRAM

.34-601
.SET FLAG
& KEYWORD
TO COMMAND

OSOOI
REARRANGE
LINE NO.
6 BITS

15301

CLEAR &

SIJBTRACr FLAG

.SET FLAG
& KEYWORD

TO DATA

. 17701

SET TYFE CHAR

TO+ OR -

/6ZOI

SET TYrE CHAR ..__.

17101

SET TYFE
CHAR TO
G OR SPACE

TO I OR;

PAGE 4- OF 6

SET LOAD(/)

EXTRACT
~y DISIT

SHIFT

2. BITS
...__----ti

I I
5111/:T

301rs

11501
CORRECT
PARITY

12501
SET ocrAL
DIGIT INTO

TYPE CHAR.

TYPE
CHAR

OCTlll U T/l ITV f'ACl<A Cr£ LI
FLOW DIAORAM

SET I
Bir

13GOI
TYPE
C/R1

...._____.

!J440/

SETO
BIT

LOAD 8/T

INTO ACCUM

B. P.

- 25 -

PAGE Sor 6

OrF MODIFY

SE.T
JUMP

LOAD (I)

.36Z.OI

t--~ 4-

SET BIT J_.....--! S£T BIT 0

03/DI

REARRAN6
PREJ/101/$

6 BITS

LOAIJ BIT
INTO ACCUM

ocrAL UTILITY PACXAGE TT

FLOW DIAGRAM

CLEAR WORD

AND SHIFT .L/NE.

NO LINE CL£ARE.D

- 26 -

PASE 6 OF6

APPENDIX D

OCTAL UTILITY PACKAGE II
BOOTSTRAP

Catalog Number 0001A

The bootstrap section of this program is actually the binary loading portion of

the complete program .• After the bootstrap is loaded by means of the binary

fill mode (controlled by the Fill switch on the console), the bootstrap pulls in

the rest of the program around it, without using more than one additional sec­

tor in another line. The bootstrap routine itself occupies 25 aectors from

377)
8

- OZ7)
8

: of this, sectors 001 - 027)
8

are actually part of the completely

loaded program.

In the bootstrap only, the binary loading routine starts loading into sector 000

and loads the main program backwards through sector 030)
8

• This method pro­

. duces the shortest possible tape and the fastest loading time. Ordinarily, load­

ing starts with sector 177.

- 27 -

[f'-_m Packard Bell Comput:er
PB 250 PROGRAM llSTING

PROBLEM~___.O~C~IA~L--UT._._.IL~l~T~Y~P~A~C~KA_G~t~BO--=-O~TS~T~R~A~P----~----~

Catalog Number 0001A

PAI! _..!__ O' __ 1 __
PROGRAMMER A._W.. .ENGL.AND DAT! 2-28 .. 61

LOCATION INIT"UCTION IYM80LIC
· ltlMAIUCI OP COOi

37701$ +0007230 CONST [Lf NE COUNT]

000 005S4500j CLA F'OR CK. StJt.1

QQl ~40000 CONST [EDP MASK] (SECTOR DECREMENT]
002 01352100J LSD 8

003 027 5501 J LAI LAI MASK

004 017 !IOO~ I TBN TO WORD ENO

005 00154001 a _me_ TO rtLL SIGN or A
006 017 1100J STA CK. S~

007 377 0401 J LDC LINE COUNT

_OlO. M.15010tt LOP TO LOAD MARKER INTO B

fill ""1uljQa7_1 CONS1 [MAR~ER] .
012 002S5200J

__R2I TO LOAD eurf"ER
013 014 5200J RPT ~ TO REJECT OLD CHAR. _..

014 013 77361 TES

at!i __lll.2_ 173f:i t _rrs TO WAIT roR NEW CHAR. - .7

CIB 016 014S5700J
-

017 301 3401J TCN LINE END

0ao 000 1101 J STA [STORE (2)] FOR LINE 01
021 017 1400J ADD CK. Sl.J.1

022 017 1100J STA CK. StM

023 020 0501J LOA STORE (2)

_0_24 001 14011 ADD SECTOR DECREMENT

.02.!i 1120.. Ua1t. STA STORE (2)
7

Jl.26 010S3701J TRU TO LOAD MARKER

1'J2j_ +000li311 CON-5' (LAI MASK]
......

~·

~ 2n -

APPENDIX D

RECIRCULATION CHART

Recirculation Chart For a 16-Word Line

FOO FOl F02 F03 F04 FOS F06 F07 FlO Fll Fl2 Fl3 . Fl4 Fl5 Fl6 Fl 7

0 1 2 3 4 5 6 7 10 11 12 13 14 is T 16 17

20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77

100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117

120 121 122 123 124 125 126 127 130 1 31 132 133 134 1 35 I 136 137

140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157

160 161 162 163 164 165 166 167 170 1 71 172 173 174 175 176 1 77

200 201 202 203. 204 205 206 207. 210 211 212 213 214 215 216 217

220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237

240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257

2.60 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317

320 321 322 323 324 325 326 327 330 331 332 3331 334 335 336 337

340 341 342 343 344 345 346 347 350 351 352 353 I 354 I 355 356 357

360 361 362 363 364 365 366 367 370 371 372
-r t

313 I 314 I 375 376 377 l

	0001
	0002
	0003
	0004
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-04a
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	D-00
	D-01

