SNAPI ASSEMBLER

PBC 1018

Pb Packard Bell Computer

A DIVISION OF PACKARD BELL ELECTRONICS
1905 ARMACOST AVENUE o LOS ANGELES 25, CALIFORNIA ® GRANITE 8-4247

June 1, 1962

NOTICE

This document involves confidential PROPRIETARY
information of Packard Bell Computer Corporation
and all design, manufacturing, reproductions, use,
and sale rights regarding the same are expressly
reserved. It is submitted under a confidential rela-
tionship for a specified purpose, and the recipient,
by accepting this document assumes custody and
control and agrees that (a) this document will not be
copied or reproduced in whole or in part, nor its
contents revealed in any manner or to any person
except to meet the purpose for which it was delivered,
and (b) any special features peculiar to this design
will not be incorporated in other projects.

When this document is not further required for the
specific purposes for which it was submitted, the
recipient agrees to return it.

CONTENTS

Page

Introduction e e e e e v
I. Description of Equipment I-1
A. General e e e 1-1

B. Description of PB 250 Computer 1-1

C. Description of Flexowriter 1-8

II. The Assembly Language 2-1
A General e e e e e e 2-1

B . Location Field, Z-1

C. OpField i, 2-2

D. Address Field, 2-3

E. Tag Field -5

III. SNAP Commands i i it v v vt i ine e 3-1
A General L e e e e e e e e e e e e 3-1

B Addressing Requirements 3-1

C. Pseudo Operations v v it i i it v v .. 3-5

D. Symbolic Programming Code 3-8

IV. Useof Assembler, 4-1
A. General 00000 e e s S 4-1

B. Loading the Assembler 4-1

C. Initializing the Assembler for Phasel 4-2

D. Initializing the Assembler for Phase 2 4-3

E. Restarting the Assembler 4-3

iii

CONTENTS (Continued)

Vv Error Detection v v v e .
A, General e e
B. Error Codes v it

Appendix A.
Appendix B.

Frontispiece

3-1
A-1
B-1

Sample Symbolic Program .,

‘Reéirculation Chart, Fast Line

FIGURES
PB250 General Purpose Digital Corhputer L

Data Word Configuration e e e e
Command Word Configuration
PB250 Corﬁputer Console
Flexowriter K‘eylboard e e e e e e e e

Flexowriter Code .. ., ... e e e e e e e e

TABLES

Symbolic Programming Code e .
Machine vs Symbolié Coding

Fast Line Recirculation Chart e e

iv

Page
5-1

vi

1-3
1-4
1-8
1-9
1-10

3-10
A-6
B-3

INTRODUCTION

The SNAP I, Symbolic Non-optimizing Assembly Program, enables
the programmer to code all instruction operation codes and addresses in
symbolic language. This symbolic language program is translated by the
assembler into Octal Utility Package listable format and punched on paper
tape. The symbolic tape may be read by either the Flexowriter or by the
rmodified HSR-1 High-Speed Reader, and the output tape may be punched by
either the Flexowriter or by the HSP-1 High-Speed Punch.

This manual contains a description of the PB250 Computer as a deci-
mal device and provides instructions for programming using symbolic coding.
A list of symbolic codes to be used by the programmer is located in Section

III. A sample program using these codes is located in Appendix A,

PB250 Computer Rack and Desk Mounted

I. DESCRIPTION OF EQUIPMENT

A, GENERAL

This chapter contains a description of the PB250 Computer and the

Flexowriter. A description of their controls and indicators is also provided.

B. DESCRIPTION OF PB250 COMPUTER

The Packard Bell PB250 is a high-speed, completely solid-state
general purpose digital computer in which both the data and the commands
required for computation are stored in a homogeneous memory. The storage
medium is a group of nickel steel magnetostrictive lines along which acoustical
pulses are propagated. At one end of each of these lines is a writing device
for translating electrical energy into acoustical energy. At the other end of
each line is a reading device for translating acoustical energy back into
electrical signals. By rewriting the stored information as it is read, infor-
mation continuously circulates without alteration except for alterations which

result from the execution of the computer program.

The PB250 provides a repertoire of more than 50 commands flexible
enough to permit coding of a very broad range of scientific and engineering
problems. Double precision commands are provided for operating upon large
numbers. Commands to normalize and scale numbers facilitate floating
point vopera.tion. Square root, and variable length multiplication and division
operations are available in the command list. Other features include input-

output buffering, and a .la.rge .number of optional peripheral units such as

punched card equipment, tape handlers, shaft encoders, photo readers, and

analog-to digital and digital-to analog converters.

B-1. MEMORY ORGANIZATION

The memory of the basic PB250 cbntains 10 lines, numbered
decimally from '00. through 09, which hold both data and instructions. Each
long line, 01 through 09 contains 256 locations, also called sectoré, that are
numbered 000 through 255. Since the information in any location can be
either data or a command, the generic term "word" is used to cover both.
The location of any word is specified by a 'line and sector number, and these
together are called an address. Line 00 is a 16-word fast accéss line. Since
line 00 is 1/16 thé length of a long word line, any unit of information contained
in it is available 16 times during each complete circulation of the 256 -word
lines. Thus, any word ‘inbthe fast access line can be identified by one of 16
sector addresses. For example, sector 000 of line 00 can be identified by

the following addresses:VOOOOO, 01600, 03200, 04800,..... 24000.

Fifty -three additional lines, each of which may have from 1 to 256
words, can be added. These 1inés akre numbered 10 through 30 and 32
" through 63. Line number 31 is used as an Index register. If all of the
additional lines are used, and if all hold 256 words, the mémory capacity of

the PB250 is extended to 15, 888 words.

Commands can be executed only from lines 00 through 15; these lines

are therefore designated "Command Lines''.

B-2. Data Word Configuration

Every number stored in the PB250 is represented by a series of

pulses which correspond to a series of zeroes and ones that are the digits

1-2

of the binary number system. The term Ilbinary digit" is usually contracted to

the word 'bit" .

A number stored in a location in the PB250 consists of 21 bits (Figure
1-1) that represent magnitude, and a 22nd bit to indicate sign. A negative
number has a one in position zero, whereas a positive number has a zero in
position zero. Negative numbers are expressed in their 2's complement

form.

1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21

0
+

Figure 1-1. Data Word Configuration

These 22 bits can represent any decimal number less than 2, 097, 152.
Larger numbers may easily be represented by using the double precision

features of the computer.

B-3, Arithmetic Registers

Three arithmetic registers, A, B, and C, are provided for arithmetic
operations and information manipulation. Each register has exactly the same
format as a memory location, including the sign, and all are available to the
programmer., Double precision commands treat A and B as a double-length
registevr; information may be interchanged between A, B, and C. The con-
tents of a register may be tested for non-positive values or compared against
the contents of any memory location. A record may be kept in one register of

operations performed on the others.

1-3

B-4. COMMAND WORD CONFIGURATION

Information in any memory location may be either data or a command,
When the information is a command, it has a definite configuration, or for-

mat, as illustrated in Figure 1-2.

0 1 2 3 4 5 6 7|89 1011 12 13 14|15 16 17 18 19|20|21

SECTOR NUMBER SEQ. 0P CODE LINE NUMBER INDEX
TAG TAG

Figure 1-2. Command Word Configuration

'~ Each subdivision, or field, of the command word is uniquely identified. The
subdivisions are the sector number, sequence tag, op code, line number,
and index tag fields. There will be frequent r‘eferences in subsequent dis-
cussions to the address field of va command. Although the address is made
up of a sector and a line number, these numbers are not contiguous in the
command format. The address field, however, is considered as a single
entity, The address 03204 refers to sector 032, line 04. The contents of
the address field in a command do not always designate a memory location.
For_ example, the shifting commands use the address field to indicate the

number of places to shift.
The sequence tag field may contain either a one or a zero.

The op code field contains a numeric code which specifies one of the

PB250 commands.

‘The index tag field may contain either a one or a zero, When a one
is placed in this field, the contents of the Index register are used; a zero in

the field indicates no use of that register.

1-4

Bit position 20 contains a one only when referring to a line number of

32 or greater.

B-5, INDEX REGISTER

The Index register contains a line number for use with commands
which are index-tagged. When used, the contents of the Index register
replace the line number of the address in the command. This replacement
is made during the reading of the command, but does not change the command

as it stands in memory.

Line numbver 31 is reserved to designate the Index register. Addresses
00031 through 25531 all apply to this register, and bit positions 16 through 20

are the useful positions for the line number.

B-6. COMMAND TIMING

The PB250 readé and executes commands from the circulating com-
mand lines. The words of the long lines are read serially in sector number
sequence (000, 001, 002 --- 254, 255, 000, 001 ---). The time for each
word to pass fhrough a reading device is 12 microseconds; therefore, the
time for all 256 words of a long line is 3072 microseconds. The commands

are read and executed in numerical order from a given line and a given

sector: 000 of line 01'(00001, 00101, 00201, ---) or 011 of line 05(01105,
01205, 01305, ---). The performance of each command involves four phases:
Phase I Wait to read next command.
.Phase II Read next command.
Phase III Wait to execute command.

Phase IV Execute command.

For example, a command in 00001 to store A in 03004 will be read

(Phase II) in sector 000, held for execution (Phase III) in sectors 001 through

1-5

029, executed (Phase IV) in sector 030, and held while waiting to read the next
command (Phase I) in sectors 031 through 000. Phase II will follow in sector

001 to read the next command in 00101.

There are four classes of commands in which the nature of Phase IV

differs.

CLASS 1.

In this class of commands, execution always follows the read-
ing of the command by skipping Phase III. This class of com -
mands consists of all those which require an extended interval
of execution such as block transfer, shifting, and multiplica-
tion. Thé execution time for this class of command varies
with the required_‘duration. For example, block transfers
require 12 microseconds per word, shifting requires 12
microsec'onds,per.bit, and fnultiplication requires 12 micro-

seconds per multiplier bit.

CLASS 2.

In this class of commands, execution is always completed in
the sector specified by the sector number of the command.
This class consists of all one-sector operations such as load,
store, 2dd, and éigar'. All commands of this class require 12

microseconds to execute.

CLASS 3.

Class 3 is an extension of class 2 to handle double precision
operations. Aé in class 2, execution always starts in the
sector specified by the sector number of the command but the
execution phase is always extended into the following sector.

All commands of this class require 24 microseconds to execute.

1-6

CL.ASS 4.

Class 4 consists of commands for conditional and unconditional
transfer of control. The condition for a conditional transfer is
tested in Phase Il and, if the condition is met, the next command

is read from the address specified by the command. If the condition
is not met, the command directly following transfer of confrol com-
mand is read. A conditional transfer where the condition is not met,
thus reciuires no execution time. The unconditional transfer selects
the next command with no restrictions. The execution time when
control is transferred is 12 microseconds per sector for the interval

between the transfer of control command and the next command.

B-7. THE COMPUTER CONSOLE

The console of the PB250, shown in Figure 1-3, is composed of
lights and switches arréng'ed in two rows. The top row has three sets of
lights: six for OPERATION, five for OPERAND, and three for COMMAND.
OPERATION speci‘fies which' OP code is being executed, i.e., ADD, LOAD
A, etc. Using 1 to indicate light on, and 0 for a light off, the pattern 001100
represents the command ADD (Command 12 in decimal). OPERAND specifies
the line number portion of the address, and COMMAND indicates from which

command line the command is being executed.

~ On the second row are the O'FLOW light, PARITY light, FILL switch,
TEST switches, and POWER button. The O'FLOW light is on if an overflow
has occurred. The PARITY light indicates a parity check error. Computa-
tibn may be started by depressing the ENABLE and BREAKPOINT SWITCHES
on the Flexowriter to clear the pavity flip-flop. The FILL switch is used for

loading a '"bootstrap loading program''. The TEST switches are used for

maintenance of the system. The POWER button is an alternating type,

turning the power to the computer on or off.

000000 00000 Oo0a

OPERATION . OPERAND COMMAND
ON ON ON
O'FLOW PARITY FitL TEST 1 TEST 2 POWER

Figure 1-3. PB250 Computer Console

C. DESCRIPTION OF FLEXOWRITER

A Model FL Flexowriter is used as the control unit for the PB250,
This machine is also used to pfepa‘re, duplicate, and read tapes. The Flexo-
writer can be used on-line (Flexowriter under control of computer), or off-
line (Flexowriter under control of operator). The general appearance and
operation of theiFlexowriter are similar to a standard electric typewriter.
(See diagram of Flexowriter keyboard in Figure 1-4.) Such features as space
lever, paper release lever, platen knc;bs, margin release lever, ribbon posi-
tion lever, margin and tab stops, and type guide, are used in exactly the

same manner as for a standard typewriter.

The Flexowriter prepares tape by punching coded holes across the
width of the tape. The punched tape is prepared manually from the keyboard
(off-line) or by output commands from the computer (on-line), and is

described as having channels and characters. The channels run lengthwise

1-8

along the tape while characters are across its width. The PB250 uses six
channels of an eight-channel tape; the code used in this tape is pictured in
Figure 1-5. The tape reader can read and type out the information contained

on a coded tape.

When the Flexowriter is under the control of the computer, its paper -
tape reader, typewriter keyboard, and paper-tape punch are used as input-
output devices by the computer. Each typewriter character has a specific

code, which is sent to the computer as a pattern of six bits.

The command READ PAPER TAPE will cause the tape reader to read
a single character and load it into the input buffer of the computer. The
command READ TYPEWRITER KEYBOARD will turn on the INDICATING
LIGHT of the Flexowriter, after which a typewriter key must be depressed
to load the input buffer. The INDICATING LIGHT is turned off by the loading

operation.

The command WRITE OUTPUT CHARACTER provides information to
either the typewriter or the punch. It is possible to prepare a tape with as
many as eight channels by this command and read such a tape back into the

computer with the READ PAPER TAPE command.

START sTOP - SREAX avor coot TAPR

AZOEN | ENABLE INDIGATING

- IT-‘l.s (R R R RIS JI| M| ? A
2 3 4 8 [? [) (") R :
. _ 1,
Q] (W] [E] [R][T] Y] V]] (o] [P] =] [o S
we (Al(S](D](F]{G] [H)] (K] LL) Ll L) e g
. urreEn, ' ore

-

CANE

) [ZIXIMBENMEIE
\ I"sm:!un' j

Figure 1-4. Flexowriter Keyboard

1-9

CHANNEL CHANNEL

AB 8 421 Yoo Lo A B 8 4 2 1
Al® @) o|®
8@ o T @
cl@® L 0 V- 2 [J
D|® 1@ = 3 L J ol
E(@® o (O C 4 @
FlOO® (1L J s (] ® []
G|® L L AL) n 6 e |ole®
HI®| |® & 7 [LI)
| |O|0|® @ * 8 ®
J @ @ (L4 o0 ®
K @ @ ? + 0|0|0|®
AHE Q0 - - [|eo/ejelele]
M |@®] |@® : 3 |e|e
N o] 1@ " L 1L J ol
le) { JL) y v 000 L 1L
i |® |®|@®® - - @ @] |e|e
Q o|® / § |®oe L J
R ® ol NUMERICAL & SPECIAL
s[ol® ® CHARACTERS
T|® (I
uiol® |® -
vie® [] ® Upper Case- (@] ©®|©®)
w|® L 1L lower Case |O|09|O®|®
- x|leo|/e] |eole|® ' Tob |GlO@®|®
vy|®|e|® . Carriage Return |@ [20 I)
zZi®] |® [] Stop Code |® L 40)
ALPHABETICAL CHARACTERS : Delete |99 ©]|©|0|O®
AVAILABLE IN BOTH Space °
UPPER & LOWER CASE

CONTROL CHARACTERS

Figure 1-5. Flexowriter Code

The keybo_ard. of the Flexowriter is similar to a standard typewriter
keyboard and may serve many of the same purposes. The numeric, alpha-
betic, and symbolic keys require no explanation other than the alphanumeric
code for the computer as given in Figdre 1-3, The TAB KEY, CAR RET
(Carriage return), LOWER CASE, UPPER CASE, and SPACE BAR are self-

explanatory and are analogous to controls on a standard typewriter. The

REGEN SWITCH, when depressed, permits exact duplication of the tape

which is in the Flexowriter tape reader.

Certain switches and keys on the Flexowriter are used to control the

computer.

ENABLE SWITCH:

1. Iﬁferrupts computation.
2. Conditions the use of other switches and keys of the
Flexowriter.

BREAKPOINT SWITCH:

1. Sends signal to computer which may be tested by the

command TRANSFER ON EXTERNAL SIGNAL.

2. With ENABLE SWITCH clears parity flip-flop (indicated
by PARITY light on).

I Key: With ENABLE SWITCH causes the computer to execute the

command in memory location 00001.

C Key: With ENABLE SWITCH causes the computer to cycle by one

command.

II. THE ASSEMBLY LANGUAGE

A, GENERAL

This chapter describes the instruction format to be used for coding
programs symbolically and describes the principles of programming using

SNAP. All numbers used in this section are radix 10.

SNAP instructions consist of four parts, or fields, separated by tabs,
with the entire instruction terminated with a carriage return. The fields are
designated as location, operation code (op code), address, and tag and are
described in paragraphs B through E below. The only field required for each
instruction is the op code, 'however, many op codes require an address (see

paragraphs C and D below). A typical instruction is shown below.

Location Op Code " Address Tag
- - —)
g G 3 .
START & ADD & $-+5 e S g 5
5 2
@)
B. LOCATION FIELD

Programs assembled using SNAP are free of many of the clerical
chores required for octal coding. This is accomplished by the SNAP func-
tion, which assigns seduential location to instructions once an absolute
location is specified. If an initial absolute location is not specified, instruc-
tions are assigned sequential locations, beginning with sector 000 of line 02.

Instructions will be assigned sequentially within the same command line,

with sector 000 following sector 255, until a new absolute location is speci-
fied by the user. When a location other than 00002 is desired, the absolute

location is inserted in the location field.

A symbolic location field may contain from one to five alphanumeric
characters, at least one of which must be alphabetic. Alphanumeric charac-
ters include A through Z and the numbers 0 through 9. Special characters

‘such as §, +, -, etc., should not be used in the location field.

It is also permissible to specify an absolute decimal location of the
form SSSLL, where SSS is a three-digit dec.im:all sector number from
000-255, and LL is a two-digit decimal number from 01-21. When an abso-
lute location field is encountered, the location counter in the assembler is
set to the new value, and instructions are assigned sequential locations from
there. If an absolute location is specified, to which an instruction has becn
‘assigned previously by the. assembler, the location will be flagged as a
memory overlap error, and én ex;ror printout will occur. The location

counter will be set to the new location, however, and the assembler will

assign instructions sequentially from there.

The location field must be terminated by a tab. 1f a blank location

field is desired, a tab alone should be typed, followed by the operation code

C. OP CODE FIELD

The operation code field (op code) contains the oper'ation to be per-
formed, such as ''add'" or "subtract''. A list of the operations to be per-

formed is given in Table 3-1. Each op code must consist of one of the

symbolic codes shown in the table.
Operations are divided into two categories:

1) Standard Operations, which are those operations which can

be performed ;r_>y the PB250 Computer and which are

2-2

described in PBC1004, PB250 Programming Manual. Use of

one of these op codes results in a command format word.

2) Pseudo Operations, which are those additional operations

which can be performed using SNAP and which are described
in Section III of this manual. Some pseudo operations result
in the storage of a data format word, while others provide

control functions.

Most operations require an address field. The Reference column of
Table 3-1 refers to the paragraph which defines the address requirements
for each op code. These requirements are described in Section III of this

manual,

When an op code requires an address, the op code field is terminated
with a tab and the address is insertéd as described in paragraph D below.
When the op code does not require an address, the op code field is termi-
nated with a carriage return, indicating end of instruction, and the program

continues.

D. ADDRESS FIELD

It is not necessary to use the address field for each instruction, this
is determined by the op code (see Section III of this manual). When the

address field is required, use one of the following forms:

1) An absolute decimal consisting of five decimal digits of the
form SSSLL where SSS is a éector number from 000 to 255,

and LL a line number from 00 through 63.

2) A symbolic address consisting of from one to five alphanu-

meric characters, at least one of which must be alphabetic.

3)

4)

Alphanumeric characters include the letters A through Z, and

the numbers 0 through 9.

A relative address, which refers to an address relative to an
established symbolic location, or an address relative to the
location of the instruction being written. Assuming that a
symbolic address of NOT12 has been established previéusly,
and that it is desired to refer to the fourth sector location
folloWing that assigned to NOT12, it is permissible to write
in the address field NOT12+4. Any decimal integer up to 225
may be used. To refer to sectors Jpreceding NOTlZ, a minus

sign should be used instead of the plus.

If the desired address is in the next sector location, a $+1 is
required: where $ means, ''this location.' Thus, $-1 means
this location plus one location, or the next location. Any + or

- integer may be used depending on the location desired.

An address may be relative to a symbolic address or to the

location of the instruction. An address relative to an absolute

address should not be used. The + or - will be ignored by
SNAP, and SNAP will function on the absolute address listed, .
resulting in erro‘r-or false computation. The relative address
will, in all cases, ha.vé thé same line number as the base

address'.

A decimal integer less than 256. The number used represents
the duration of certain operations such as shifts. Assuming
that the number 6 is used in the address field of one of the
shift op codes, the AB registers will shift once for each unit

of the number.

2-4

5) An address field used as defined in Section III for certain

pseudo operations.

6) An address field left blank for op codes not requiring an
address. Where an op code, such as CLA or IAC, does not
normally require an address, but an address is specified, only

the sector portion is used, and the line portion is set to 00.

E. TAG FIELD

The tag field contains an S if an instruction is to be sequence-tagged,
an I if index-tagged, or SI if both sequenée and index tagging are to be used.
No instruction in SNAP is required to have either a sequence tag or an index
tag. Certain pseudo ops use the tag field to specify control data. This usage

is described in Section III.

III. SNAP COMMANDS

A, GENERAL

This section describe_s the addressing requirements of the PB250
Computer and the SNAP pseudo operations. Table 3-1 lists the symbolic
coding data alphabetically, gives it designation and octal values, and
describes their functions. Reference is provided to paragraphs which con-

tain specific data for each code.

B. ADDRESSING REQUIREMENTS

The addressing requirements of each of the commands are described

in the following paragraphs.

B-1. The commands listed below require an address field which is either
symbolic, absolute decimal in the form SSSLL, or which uses the notation $.

A relative address (Section II, paragraph D) may also be used.

ADD EBP LDP TAN
AMC EXF STA TBN
AOC LAI STB TCN
CAM LDA STC TOF
DPA LDB STD TRU
DPS LDC SUB

B-2. The commands listed below do not require an address. If an address
is specified, only the sector portion is used with the line address being set at
00, except in the case of HLT, in which the line address is also inserted into

the command.

If no address is specified, the assembler inserts sector and line
addresses of 000 and 00, respectively, except in the case of MAC, in which

the correct sector address will be formed.

Execution occurs during the sector address specified, except in the
cases of NOP and HLT in which execution occurs up to, but not including, the

specified sector address.

CIB DIU IBC ROT
CLA -GTB MAC RPT
CLB HLT NOP RTK
CcLC IAC -~ RFU
Example:
Symbolic | Machine Word
IBC J00 0200;
B-3. The commands listed below require an address consisting of a decimal

integ‘ér less than 256, which indicates the number of bit positions the AB

registers are to be shifted.

Execution occurs during the next N sectors, where N is the number

speciﬁéd in the address field.

LRS NOR -~ SBR
LSD RSI SLT

NAD SAI SRT

Example:

Symbolic Machine Word
00003 SLT 6 007 2110;
B-4. Certain commands do not require an address. When an address is

specified, it must be a decimal number indicating the number of sector times

the command is to operate.

When no address is specified, a full-length command will be formed.
A full-length DIV, DVR, or MUP command requires 22 sector times for

execution, while a full-length SQR requires 21 sector times for execution.

Example:
Symbolic Machine Word
00002 MUP 027 3200;
B-5. The commands listed below require an address of the form LL, M,

where LL is a 2-digit decimal line number and M is a memory location of the
form described under paragraph B-1 above. In forming the command, only
the sector address of M is used, with the line address coming from LL.

Separate LL from M by a comma.

Execution starts in the sector following the command and continues up

to, and including, the sector address of M. \
BsSI IAM MLX
BSO MCL, PTU
Example:
Symbolic Machine Word
00005 MCL 00, $+5S 006S7105;

3-3

B-6. The TES command has an address of the form LI, M as described in
paragraph B-5 above. In the case of TES, however, when the specified signal
is present, transfer is made to M, which must be located in the same memory

line as the TES command itself.

Use signal numbers 21 through 31 to specify the following:

Signal Number Function
21-24 Arbitrary input signals

25 High-speed punch sync. signal

26 Magnetic tape gap signal

27 Magnetic tape reader clock input signal

28 Photo tape reader sprocket input signal

29 BREAKPOINT switch input signal

30 Typewriter or paper tape reader ''character
input complete' signal

31 "Typewriter not ready for output character'
signal

Example:
Symbolic Machine Word

TES 29, ALPHA 025 7735;

B-7. The WOC command requires an address of the form X, M (where X is
the particular output character and M is the location in which the command is
to be executed). Only the sector address of M is used. X must be separated

from M by a comma.

3-4

It is not necessary to specify an address of execution. When one is not

designated, a sector address of 000 will be inserted.

The character, X, may be any alphanumeric or special character,
including space. Control characters other than space should not be used

directly. The special codes listed below should be used.

To form a dummy WOC command, terminate the WOC op code with a

carriage return.
Example: To output the letter A, the command would be as follows:

Symbolic Machine Word

WOC A 000 6101;
Control Character Special Code
Carriage Return CR
Tab TB
Upper Case _ ucC
Lower Case , LC
Stop Code ' ST
Code Delete DE
Blank (Tape Feed) BL

C. PSEUDO OPERATIONS

Each of the pseudo operations used with SNAP are described below.

C-1. BINARY-CODED DECIMAL (BCD)

Information in the address field is stored as six-bit bcd data, pre-
ceded by a leading octal zero and a positive sign, as shown below. The

address field can contain any combination of up to three alphanumeric

characters, including__space. Control characters other than space, must be
represented by two-letter co.les (carriage return = CR, tab = TB, upper case
= UC, lower case = LC, stop code = ST, delete = DE). When a épecial two-
letter code is used, it must be the only information in the address field of the

particular bcd instruction and the tag field of the instruction must contain an X,

Example: Message: END OF JOB

Op Addr Tag Machine Word
BCD . END +0650544
BCD OF +0200666
BCD - Jo | +0202106
BCD B | +0420000
BCD CR. X +0560000

C-2. BLOCK STARTED BY.‘SYMBOL-(BSS)

This pseudo op code reserves consecutively the number of words
specified in the address field, up to 256, beginning with the location specified

by the BSS instruction. The reserve block must lie entirely within one mem-

ory line.
_]E_c_)_g 92 Addr Machine Word
TABLE BSS 100 " Locations TABLE through TABLE + 99,
incluéive, are reserved. Location TARLE
will be defined as the location of the BSS
instruction.
20003 BSS 10 Sectors ZOO - 209 of line 03 are reserved.

C-3. DECIMAL (DEC)

This pseudo op code is used to enter decimal data. The decimal num-

‘ber can contain a sign, decimal point, and no more than seven decimal digits.

3-6

The magnitude of the decimal number, ignoring decimal point, must be less

than 2, 097,'152. If the decimal number is entirely fractional, the maximum
number of digits possible is six. The decimal number will be stored as a
binary machine word at spgciﬁed binary scaling, Q. Q is expressed decimally
and must lie within the range 02 Q < 21. The Q value must be placed in the
tag field. If no Q is s.pecified, the nurnber will be assumed an integer and
stored at 21. For example, to convert the number 100. 25 to binary and store

itata Q of 7:

Op Addr Tag
DEC 100.25 7

C-4. END

This pseudo oprche'. terminates the program. The address field is
ignored and the op code is terminated by a carriage return. A "W" will be
punched at the end of the listable assembled tape as an Octal Utility Package

control code. This pseudo op code is nongenerative.

C-5. EQUALS (EQU)

This pseudo op code is used to define symbols. The location field
must be symbolic and contain a symbol which does not appear in the location

field of any other instruction. This pseudo op code is nongenerative.

E:xamf;les:
Loc Op - Addr Machine Word
ALFHA EQU ' The symbol ALPHA is entered .into the
' ' symbol table as equal to sector 001 of
‘ line 07. S
- Ss2 EQU TAB2 SS2 is now defined to have the same
' ' location as TAB2. 'TAB2 must have
béen. previously defined. ’ ‘
FIN EQU DATA+20 " FIN is assigned to the 20th sector

following that previously assigned to
the symbol DATA.

-7

L

C-6. OCTAL (OCT)

This pseudo op code is used to enter octal data. The address field
may contain a sign and from one to seven octal digits. If no sign is present,
plus is assumed. If less than seven digits are present, the machine word
will be right-justified with leading octal zeros and the appropriate sign. A

minus sign will not generate a complemented number. Example:

9_p Addr Machine Word

OCT +4217077 +4217077

OCT -20 ' -0000020

oCT 1 +0000001
C-1. PROGRAM ORIGIN (ORG)

The location counter is set to the absolute address appearing in the
location field. Instructions are assigned sequentially from this point. This

pseudo op code is nongenerative.

C-8. SKIP (SKIP Y)

The location counter is advanced Y + 1 sectors within the same
command line. This pseudo op code does not reserve any memory sectors,

nor does it generate any instructions.

D. SYMBOLIC PROGRAMMING CODE

Table 3-1 lists all of the operations used w{th SNAP, briefly’
describes their functions, and gives their class. The Reference column lists
the paragraph which outlines the addressing requirements of the op code.

Symbols used in the table are described as follows:

3-8

Meaning
contents of
replaces
next command
complemented contents of
logical NOT
sum or logical OR
Memory sector locations M and M + 1

pseudo operation

3-9

Table 3-1. (Sheet 1 of 3)

SYMBOLIC PROGRAMMING CODE

Octal .

Operation Code Value - Function Class Reference
Add ADD 14 (M) + (A) —A 2 B-1
AND M and C AMC 42 (C) A M) —~B 2 B-1
AND OR AOC 46 MC + MB —B B-1
Combined
Binary-Coded BCD - Alphahumeric Address PSEU C-}
Decimal
Block Serial BSI 73 Transfers (external register) 1 B-5
Input to M ‘
Block Serial BSO 72 Transfers (M) to External 1 B-5
Output -) i Register
Block Started BSS - Reserve data block PSEU C-2
by Symbol)
Compare A CAM 56 Set Overflow if (A) = (M) 2 B-1
and M g
Clear Input CIB 57 Clear Input Buffer 2 B-2
Buffer :
Clear A CLA 45 Clear (A) to Zero 2 B-2
Clear B CLB 43 Clear (B) to Zero 2 B-2
Clear C CLB 44 Clear (C) to Zero 2 B-2
Decimal DEC - Decimal Number PSEU C-3
Disconnect DI1U 50 Disconnects input buffer 2 B-2
Input Unit '
Divide DIV 31 (AB)+ (C) —=DB, Rin A 1 B-4
Double DPA 16 (mM) + (AB) —-AB 3 B-
Precision Add
Double Preci- DPS 17 -(mM) + (AB) —AB 3 B-1
sion Subtract ‘
Divide DVR 31 (AB) + (C) —~(B) 1 B-4
Remainder :
Extend Bit EBP 40 (M) lock (A) —~A 2 B-1
Pattern
End END - Terminates Program PSEU C-4
Equals’ EQU - Defines Symbols PSEU C-5
Extract Field, EXF 47 (M) A (B) —(B) 2 B-1
Gray to Binary GTB 41 (A) from gray to binary 2 B-2
Halt HLT 00 Stops Computation 1 B-2
Interchange IAC 01 (A) ~—(C) 2 B-2
A and C
Interchange 1AM 25 (A) «—(M) 1 B-5
A and M
Interchange IBC . 02 (B) ~—(C) 2 B-2
B and C

3-10

Table 3-1,

{Sheet 2 of 3}

SYMBOLIC PROGRAMMING CODE

Octal
Operation Code Valne Function Class Reference
Load A from LAIL 55 (Input Buffer) A (M) 2 B-1
Input Buifer + (AY A (M) —A
Load A LDA 05 (M) —{A) 2 B-1
Load B LDB 06 (M) —~(B) 2 B-1
Load C LDC 05 (M) --(C) 2 B-1
Load Double LDP 07 (raM) —(AB) 3 B-1
Precision
Logical Right LRS 33 (AB) Shifted S places 1 B-3
Shift .
Left Shift and LsD 21 Shift (AB) left Decrement (C) 1 B-3
Decrement
Merge A and C MAC 00 (A) to (C), (C) = 1 when (A) 2 B-2
or (C) =1
Move Command MCL 71 Command line to Line M 1 B-5
Line Block .
Move Line X MLX 26 (ML) —Line 07 1 B-5
to Line 7 '
Multiply MUP 32 (B) X (C) —(ADB) 1 B-4
Normalize and NAD 20 Normalize {AB) decrement (C) 1 B-3
Decrement
No Operation NOP 24 Continue in Command Sequence 1 B-2
Normalize NOR 20 Normalize (AB) Decrement (C) 1 B-3
COctal oCT - Enter Octal data PSEU C-6
Program Origin ORG - Set location counter PSEU C-7
Fulse to PTU 70 Starts - Stops External 1 B-5
Specified Unit Equipment
Read Fast Unit RFU 53 Enable fast character input 2 B-2
Rotate A, B, C ROT 03 (A) 3 B-2
B) ~(C)
Read Faper Tape RPT 52 {Paper tape) to input buffer 2 B-2
Right Shift and RSI 22 Shift (AB) right, Increment C 1 B-3
Increment
Read Typewriter RTK 51 {Keyboard) to input buffer 2 B-2
Kevboard
Scale Right and SAI 23 Scale (AB) right, Increment C 1 B-3
Increment
Bhift B Right SBR 33 Shift (AB) right S positions 1 B.3
Skip SKP - Advance location counter PSEU C-8
Shift Lelt SLT 21 Shift (AB) left S positions 1 B~
Square Root SQR 30 N(AB) —C 1 B-4
5hift Right SRT 22 Shift (AB) right S positions 1 B-3
Stove A STA 11 {A) —(M) 2 B.1

3-11

Table 3-1. (Sheet 3 of 3)

SYMBOLIC PROGRAMMING CODE

Octal
Operation Code Value Function Class Reference

Store B STB 12 (B) —(M) B-1
Store C STC 10 (C) —~(M) B-1
Store Double STD 13 (AB) —(mM) 3 B-1
Precision
Subtract SUB 15 -(M) + (A) —~(A) B-1
Transfer if TAN 35 NC from (M)} if (A) negative B-1
A Negative
Transfer if TBN 36 NC from (M) if (B) negative 4 B-1
B Negative
Transfer if TCN 34 NC from (M) if (C) negative 4 B-1
C Negative '
Transfer on TES 77 When external signal is pres- 4 ‘B-6
External Signal ent, transfer to specified

address. When external sig-

nal is not present, take next

instruction,
Transfer on TOF 75 NC {from {M) if Overflow 4 B-1
Overflow
Transfer TRU 37 NC from (M) 4 B-1
Unconditionally
Write Output wOoC 6X Character Output 1 B-6
Character '

IV. USE OF ASSEMBLER

A GENERAL

Since SNAP is a two-pass assembler, the symbolic tape must be read
in twice for a complete assembly. The first pass generates a symbol tale
and checks for memory overlaps, errors in the location field, and certain
operation code errors. The second pass checks for illegal operation codes
and certain address field errors. Any absolute addresses used in the sym-

bolic program must be in decimal.

B, LOADING THE ASSEMBLER

SNAP requires 13 long memory lines in the PB250 Computer. The

assembly program has its own bootstrap and is self-loading.

To load the program, insert the tépe in the Flexowriter tape reader
and raise the FILL switch. If the PARITY light is on, depress the ENABLE
and BREAKPOINT switches. After the tape starts to move, raise the
ENABLE and the BREAKPOINT switches. When the bootstrap section has
been loaded, the computer will halt with the parity light on. To read the
tape, depress the ENABLE and BREAKPOINT switcﬁes, strike the I key,
and raise the switches.

The SNAP tape is prepared with a 6- to 8-inch space between sections.
As each section of the assembler is locaded, a check sum is formed and com-

pared against the one punched on the SNAP tape. If the two sums agree,

loading continues; if not, the computer halts with an octal line number of 37

4-1

displayed on the OPERAND lights of the computer. Should this happen, back

up the SNAP tape to the beginning of the particular section involved, depress
the ENABLE and BREAKPOINT switches, and raise the switches to attempt

to read the section again. If a parity error occﬁrs on the first binary section
of the tape, it will be neéessary to restart loading from the bootstré.p section

of the tape.

C. INITIALIZING THE ASSEMBLER FOR PHASE 1

When the assembler has been properly loaded, the following heading
will be printed out:
PB250 ASSEMBLY
IDENTIFICATION:

At this time, information may be typed to identify the particular
symbolic program being assembled. When a carriage return is typed, the
assembly will continue. When no identification is desired, strike the
carriage return to continue,.

The assembler will not print:

PHASE 1
INPUT:

Load the symbolic tape to be assembled into either the Flwxowriter or
modified HSR-1 and type the desired input mode as follows:
| For Flexowriter input, type FLEX
For photo reader input, type HSR

When the proper input mode has been specified, type a carriage return.

The assembly program proceeds automatically through phase 1.

D, INITIALIZING THE ASSEMBLER FOR PHASE 2

Upon completion of phase 1, the assembler will print:
| PHASE 2
OUTPUT:

Reload the symbolic tape into the same input unit used for phase 1 and
specify whether the output tape is to be punched on the Flexowriter or High
Speed Punch (HSP-1). The output mode is specified as follows:

For Flexowriter output, type FLEX
For High-Speed Punch output, type HSP

When the proper output mode has been specified, type a carriage return.
The assembly program proceeds automatically through phase 2 and produces
an output tape. Upon completion of phase 2, the assembler prints END OF
JOB and halts with an «ctal line number of 37 displayed on the OPERAND

lights of the comnsole.

E. RESTARTING THE ASSEMBLER

After a normal end-of-job halt, SNAP may be restarted for a new
assembly by depressing, then raising, the ENABLE and BREAKPOINT
switches.

At any time during phase 1 or phase 2, except during input, the assem-
bly program may be restarted at phase 1 by depressing the ENABLE and
BREAKPOINT switches, striking the I key, then raising the switches.

During phase 2 the assembly may be restarted in the phase 2 mode by
depressing the BREAKPOINT éwitcho Phase 2 will be restarted after the
assembler completes the current instruction being processed, including any
input-output in progress. Raise the BREAKPOINT switch after phase 2

restarts.

V. ERRCOR DETECTION

A GENERAL

SNAP contains an error diagnostic which has been designed as an
integral part of the assembler itself. The symbolic program is checked for
a large number of possible errors and these errors are printed on-line as

soon as they are detected.

When an error is detected and printed out, the assembler will continue
to process the symbolic program, if possible. All errors detected during

phase 1 should be corrected before goiﬁg on to phase 2.

An error in the operation or address field will cause a word of zeroes,
preceded by a space, to be punched on the output tape if phase 2 is performed,

This format causes faulty instructions to be readily discernible.

The error printout will be of the form
SSSLL$XXSp
where SSSLL is the current setting ofA the location counter and XX is a
special two-letter code, followed by a space, indicating the type of error

detected. Following this, normally, will be the field which was in error.

B, ERROR CODES

B-1. ADDRESS FIELD ERROR (AD)

The printed address field contains an error. The possible errors are

(1) an absolﬁte sector number greater than 255, (2) an absolute line number

greater than 63, (3) illegal special code for control character, (4) no comma
in instruction as required, and (5) a BCD pseudo op code containing more

than three characters in address field.
B-2. FIELD LENGTH (FL)

Indicates that an excessively long field has been found in an instruction.

The remainder of the instruction will be ignored.

B-3. LOCATION FIELD ENDS IN C/R (LC)

Indicates that a location field has been terminated in a carriage return

instead of the required tab.
B-4. LOCATION FIELD ERROR (LO)

An error is present in the 10'¢ation field printed out. The location
field will be ignored. The possible errors are: $, field contains more than
6 characters, field contains + or -, .absoluf.e .sélctor greater than 255,
absolute line equal 00 or greater than 21, and numeric or blank location field

used with an EQU instruction.
B-5. MULTIPLE DEFINITION OF SYMBOL (MD)

The symix~]l printed out has been used in the location field of more than
one instruction. The symbol will be reassigned to the current setting of the

location counter,
B-6. MEMORY OVERLAP (MO)

The p:dgram has assigned an instruction or reserved a data block in a
sector to which an instruction has been previously assigned.or which has pre-
viously been reserved as part'of a data block. Each overlapping sector will
be prinfed out; however, the assembler will assign the sectors as indicated

in the symbolic program.

5-2

B-T7. NO ADDRESS (NA)

An address has been omitted in an instruction which requires an
address. If possible, the op code will be printed out. The entire instruction

will be set to +0000000.
B-8. NO OP CODE (NO)

The instruction contains no operation code.
B-9. OP CODE ERROR (OP)

The operation code printed out is in error. The possible errors are:

op code contains more than three characters, or an illegal mnemonic.
B-10. SCALING ERROR (SC)

In DEC pseudo op, designated number can not be held at specified

scaling.
B-11. SYMBOL TABLE FULL (SF)

The capacity of the symbol table (256 entries) has been exceeded. No
further symbols will be assigned to the table. The 'symbol printed out and all

symbols following will therefore be undefined.
B-12, TAG FIELD ERROR (TGQG)

Illegal character in tag field. |
B-13. TAPE FORMAT (TF)

Indicates that a carriage return has been omitted from a symbolic

instruction in the general area printed out, The assembly will halt with an
octal line number of 11 displayed on the console. It will be necessary to

correét the error and restart the entire assembly,

5-3

B-14. UNDEFINED SYMBOL (UD)

.The symbol used in the address field has not been defined by

being in the location field of an instruction.

5-4

>
T
¥ i
&
=
&
fotss
>

SAMPLE SYMBOLIC
PROGRAM

A-1

The following sample program is used to assemble interpretive
control words from data read on paper tape. The data represents several
variables required to compute a special function, where the variables are
constantly changing. The function of the program is to accept octal inputs,
and when a carriage return is sensed, to establish the fields according to

the predetermined format shown below.

Data Line
Data Address Message Address (\
8 bits 8 bits 2 bits | 2 bits | 2 bits
[—— —"
\. —~ J
Class Link

Immediately following the sample program Table A-1 shows the
symbolic coding prepared by the programmer as compared to the machine

coding prepared by the computer.

PP SNAP SYMBOLIC CODING SHEET

PROBLEM: _D. P. C-W Assembly

DATE:

PROGRAMMER: PAGE .l _of 3
LOCATION oP ADDRESS TAG REMARKS
START LIDIP | $+1 S

T{o|F | A1
1B|C
S|T|B | SPACE Set space link-1
s|T|A | PHASE Set phase link-1
C{L A | READ s
L{Al1 | MASK lCharacter — A
READ R{P|T|$-2
RIP T/ $+1 lReiéct last character
T|E|S | 30,$-1" '
T|ElS | 30,READ Wait for next character
cli|B | $-2 S
MASK olc|T | 77
ClA|M | $+1 5
olc|T | 56
T|o|F | CR Exit if CR
cla|M| $+1 S
olclt |20 ’ d
SPACE T|O|F | A1 Exit to space link
PHASE 1B c " Exit to phase link
SIRIT |3 link-1
A |C Assemb}e by 3
SIR|T | 19
clijal READ s Return to read
Al siL|T | 14 Il Space link-1
R siTin 1 Save lagat 8 bits
L|iDlA | $+1 5 Set space link-2
T|O| F | A2

(Fpk») snaP symMBOLIC CODING SHEET

D.P. C-W Assembly

PROB LEM: DATE:
PROGRAMMER: PAGE _2 __of _3
LOCATION OP ADDRESS TAG REMARKS
SIT A ISPACE
Cl L4 A |JREAD 5 Return to read
A2 EIX|F {$+1 Space link-2 -
OfC|{T |-7777400
S |L|T |6 Save last ;bits.“mww“
S|T|IB | Ml+l
LiDIP {$+1 S Set space link-3
TI|O|F (A3 and phase 'i‘i“;'l::;“‘“—'“"’""*—
1 elc lew-1 s '
SiT|{D {SPACE
: iU A | READ 5 Return to read
cw siriT {2 ' Phase link-2
I11ALSG Asgsemble by 2
SIR|T 120 Al
LA} READ 8 Return to read
A3 E|Xl F|$+1 S Space link-3
. ClT§-1717774
SIL|T {2 Save last 2 bits
SIT|B | M1+2
Cildi A TLREAD Return to read
CR E{X F | 3+1 Save last 4 bits
¢ T| -7777160
S|L|T | 20 n High order 2-»A
clycC H' Save in C
TLALC
SIRIT | &2 H Split the 2
1Al C Merge
S|L|T | 4 ll Position in A

P sSNAP SYMBOLIC CODING SHEET

PROBLEM: . D, P, _C-W Assembly DATE:
PROGRAMMER: PAGE.3 _of 3 __
LOCATION oP ADDRESS TAG REMARKS
AJQ_ D | Ml Add remaining
AlD|D | Ml+1 Fields
AlD|D | Ml+2 .
STORE s|T|a | ooo14 ’ Store in output
LiD|A | STORE Advance Store
AlD|D | $+1 S
O|C|T | +0040000
S|T|A | STORE _
TIR|{U | START o 3 Return for next word
M1 BiS IS 3
EIN|D

Table A-1l.

(She.et 1 of 2)

MACHINE VS SYMBOLIC CODING

I

Machine Coding

Symbolic Coding

PB250 ASSEMBLY

IDENTIFICATION: CONTROL LIST ASSEMBLY
PHASE 1

INPUT:FLEX

PHASE 2
OUTPUT:FLEX

END OF JOB

00002$00150702;
00102$030 7502;
00202$000 0200;
00302%022 1202;
00402$023 1102;
00502$00754500;
00602$01455502;
00702$00585200;
01002$011 5200;
01102$010 7736;
01202$007 7736;
01302$01185700;
01402$+0000077;
01502$01655602;
01602$+0000056 -
01702$060 7502;
02002$02185602;
02102$+0000020
02202$030 7502;
02302$000 0200;
02402%$030 2210;
02502$000 0100;
02602$052 2210;
02702$00754500;
03002$047 2110;
03102$101 1202;
03202$03350502;
033024036 7502;
03402$022 1102;
- 03502$00754500;

START

READ

" MASK

SPACE
PHASE

Al

LDP $+1
TOF Al
IBC

STB SPACE
STA PHASE
CLA READ

LAl MASK
RPT $-2
RPT $+1

TES .30, $-1

"TES 30, READ

CIB §-2
oCcT 77
CAM $+1
OCT 56
TOF CR
CAM $+1
OCT 20

- TOF Al
IBC
SRT 3
IAC
SRT 19
CLA READ
SLT 14
STB Ml
LDA $+1
TOF A2
STA SPACE
CLA READ

hnn

Table A-1,

(Sheet 2 of 2)

MACHINE VS SYMBOLIC CODING

oe—

Machine Coding Symbolic Coding
03602$03754702; A2 EXF $+1
03702$-7777400 OCT -7777400
04002$047 2110; SLT 6
04102$102 1202; STB Ml+l
04202$04350702; LDP $+1
04302$053 7502; TOF A3
04402$046S0200; IBC Cw-1
04502$022 1302; STD SPACE
04602$00754500; CLA READ
047025052 2210; Ccw ~ SRT 2
05002$000 0100; IAC
05102$076 2210; SRT 20
.05202$00754500; CLA READ
05302$05454702; A3 EXF §$+1
05402%$-7777774 OCT -7777774
05502$060 2110; SLT 2
05602$103 1202; STB Ml+2
05702$007S4500; . CLA READ
06002$06154702; CR EXF $+1
06102$-7777760 oCT -7777760
06202$107 2110; SLT 20

- 06302$000 4400; CLC
06402$000 0100; IAC
06502$070 2210; SRT 2
06602$000 0100; IAC
067025074 2110; SLT 4.
070025101 1402; ADD Ml
07102$102 1402; ADD Ml+l
07202$103 1402; ADD Mil+2
07302$000 1116; STORE STA 00014
074025073 0502; LDA STORE
07502$07651402; ADD $+1
07602$+0040000 OCT +0040000
07702$073 1102; STA STORE
10002$000S53702; TRU START
w Ml BSS 3

END

APPENDIX B

FAST LINE

RECIRCULATION CHART

Table B-1..

FAST LINE RECIRCULATION CHART

F00 FO1 FO02 FO03 F04 F05 F06 F07 F08 F09 F10 Fll.FIZ F13 F14 F15

0 1 2 -3 4 5 6 7 8 9| 10f 11| 12| 13} 14| 15

16| 17| 18| 19| 20| 21| 22| 23| 24 25| 26| 27| 28| 29| 30| 31

32| 33| 34| 35| 36| 37| 38| 39| 40| 41| 42| 43| 44|. 45| 46 | 47

48| 49| 50| 51| 52| 53| 54| 55| 56| 57| 58| 59| 60| 61| 62| 63

64| 65| 66| 67| 68| 69| 70| 71} 72| 73| 74| 75| 76| 77| 18 | 19

so| 81| 82| 83| 84l 85| 86| 87| 88| 89| 90| 91| 92| 93| 94| 95

96| 97} 98| 99100101 |102|103| 104{105|106}|107|108|109|110 {111

112113} 114|115 |116|117 |118|119] 120 | 121 122|123 124| 125 | 126 |127

12811291130 131|132/133 134|135} 136137138139 140} 141 142 |143

144 | 145|146 | 147 | 148|149 | 150 | 151| 152 | 153 | 154 | 155| 156| 157 | 158 |159

160] 1611162163 (164|165 (166 167(168|169 |170{171| 172| 173|174 {175

176 177|178(179|180 181 {182 183 184 | 185 186 187 188{ 189 | 190 {191

192]193|194|195|196| 197 {198| 199| 200: 201|202 | 203 | 204| 205|206 [207

208(209|210|211|212|213 |214|215| 216|217 |218|219|220| 221 | 222 |223

224225226227 |228|229 (230|231 232|233|234|235|236|237|238 |239

240(241|242 243 244|245 |{246|247| 248|249 250|251 252|253 |254 {255

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-03

