
RAYTHEON 250 FORTRAN Il
I

PROGRAMMING AND OPERA Tl NG MANUAL

RAYTHEON COMPUTER 'RAYTHEON}-

RAYTHEON 250 FORTRAN 11

PROGRAMMING AND OPERA Tl NG MANUAL

Revised July 12, 1965

(Replaces issue of December 22, 1964)

RAYTHEON COMPUTER

TABLE OF CONTENTS

INTRODUCTION --- iv

CHAPTER I

1.
2.
3.
4.

CHAPTER II

CONSTANTS, VARIABLES, SUBSCRIPTS, EXPRESSIONS

Constants --­
Variables ---
Subscripts and Subscripted Variables
Arithmetic Expressions

FUNCTIONS AND SUBPROGRAMS

1

1
1
2
3

5

1. Standard Library Functions ------------------------------ 5
2. Arithmetically Defined Functions ------------------------ 5
3. FORTRAN Functions --------------------------------------- 6
4.

CHAPTER III

CHAPTER IV

Subroutines

THE ARITHMETIC FORM!JLA

CONTROL STATEMENTS AND THE END STATEMENT

6

7

8

1. Unconditional Co To ------------------------------------- 8
2. Assigned Go To -- 8
3 Assign -- 8
l Computed Go To -- 8
5. If -- 9
6. SPnse Light --- 9
7. If (Sense Light) -- 9
8. If (Sense Switch) -- 9
9. Pause --- 10

10. Stop --- 10
11. Do -- 10
12.
13.

CHAPTER V

1.
2.
3.
4.

CHAPTER VI

Continue
End

-- 12
12

STATEMENTS RELATED TO FUNCTIONS AND SUBPROGRAMS -------- 13

Function
Subroutine

-- 13
-- 14

Call -- 15
Return -- 15

INPUT/OUTPUT STATEMENTS ------------------------------- 16

1. Read Tape --- 16
2. Read Keyboard --- 16
3. Print --- 16
4. Punch --- 17

CHAPTER VII - DECLARATIVE STATEMENTS ------------------------------- 18

1. Comnon -- 18
2. Dimension --- 18

ii

CHAPTER VIII - PROGRAM AND DATA FORMATS ---------------------------- 19

1. Program --- 19
2. Data -- 19
3. Compilation of a FORTRAN program ------------------------ 21
4. Sample Program -- 22

CHAPTER IX OPERATION OF FORTRAN II ON THE RAYTHEON 250 ----------- 23

1. General --- 23
2. Operating Instructions for Program Compilation ---------- 23
3. Operating Instructions for Program Execution ------------ 26

CHAPTER X ERROR DETECTION -- 27

1. General --- 27 '
2. List of First Pass Error Indications -------------------- 27

CHAPTER XI COMPILER LIMITS --------------------------------------- 28

CHAPTER XII - COMPUTER REQUIREMENTS --------------------------------- 30

iii

INTRODUCTION

A FORTRAN program appears as a series of statements. On a program
form, each line corresponds to a single statement terminated by a carriage
return. Statements are normally executed in the order in which they are
written (that is to say from top to bottom), however, it is possible to
assign five digit numbers to a statement to permit reference to specific
statements of a source program. Blanks (spaces) have no significance and
are ignored in a compilation.

Raytheon 250 FORTRAN II consists of 23 statements, which may be
classified as follows:

1. The arithmetic formula, whi'ch allows computation of a result,
and whose syntax is described in Chapter III.

2. The 12 control statements, which govern the logic of an object
program; they are described in Chapter IV.

3. The 4 input/output statements, whose syntax is peculiar to the
Raytheon 250; they are described in Chapter IV.

4. The 2 declarative statements described in Chapter VII.

5. The 4 statements allowing the definition and use of sub­
programs. Their usage is described in Chapter V.

6. Format statements which are corranonly used by other FORTRAN
compilers are not used by 250 FORTRAN.

iv

CHAPTER I

CONSTANTS, VARIABLES, SUBSCRIPTS, EXPRESSIONS

1 . CONSTANTS

C0nstants may appear in a FORTRAN program and can be of two types:

a. Fixed Point Constants

A positive integer or zero, less than 2097152 and without a
decimal point.

Examples: 3732

51

b. Floating Point Constants

A decimal number with an optional decimal point to the left,
to the right, or embedded. If there is no decimal point, the
point is assumed to the right of the mantissa. This mantissa
consists of a maximum of 10 digits. It may be followed by an
exponent preceded by the letter E.

This exponent may be preceded by a sign, the absence of a sign
being understood as +. The absolute value of the exponent must
be less than 38.

Examples: 5.4E2

0. 7E-3

20.

The absolute value of a floating point number is zero or under­
stood between lo-38 and 10+38.

2 . VARIABLES

Two types of variables are allowed.

a. Fixed Point Variables

A fixed point variable is represented by a name of 1 to 7 alpha­
numeric characters, with the first character one of the letters
I, J, K, L, M, N.

Examples: IN

K3

JEME

The absolute value of a fixed point variable may be zero or any
integer less than 2097152.

-1-

b. Floating Point Variables

A floating point·variable is represented by a name of 1 to 7
alphanumeric characters, with the first character some letter
other than I, J, K, L, Mor N.

Examples: PI

A4

TIME

The absolute value of a floating point variable may lie anywhere
within the range from lo-38 to 10+38.

'
NOTE: A fixed or floating, point variable may be represented
by a name longer than 7 characters. The characters beyond
the seventh are ignored by the compiler and do not help to
distin9uish between two different variables. The name of a
variable nrust not cause confusion with some other quantity;
in particular, it nrust be diffarent from the name of a function.

3. SUBSCRIPTS AND SUBSCRIPTED VARIABLES

Any element of an array with 1, 2 or 3 dimensions may be represented as
a variable with 1, 2 or 3 subscripts. Such a variable is said to be
subscripted.

Subscripts may assume only the integral values greater than zero.

A subscript is an arithmetic expression composed of fixed point constants
or non-subscripted fixed point variables which are separated by the
arithmetic operators + * I and **·
A subscripted variable is represented by a fixed or floating point
variable followed by 1, 2 or 3 subscripts separated by commas and
enclosed by a single pair of parentheses.

Examples: ALPHA (I+S*J,K,LAMBDA)

ARRAY ((IND+7) *J ,K+l,MU-7)

For each variable which appears in a subscripted form, the dimension
of the array (that is, the maximum values that the subscripts may assume)
must be defined in a dimension statement preceding the first appearance
of the variable in the source program •.

In the object program (after compilation) a two-dimensional array will
be stored in contiguous storage locations in the order A11 , A21 , ••. ,
Alm• A2m•···• that is to say, by column, with the first subscript
varying most rapidly and the last least rapidly. The same applies to
three-dimensional arrays. The storage order is such that the highest
address is associated with the first term of an array, with decreasing
addresses for subsequent terms.

-2-

4. ARITHMETIC EXPRESSIONS

An arithmetic expression is composed of a set of constants,-variables
(subscripted or not) and functions separated by operators, commas and
parentheses.

The operators are:

+ Addition

Subtraction

* Multiplication

I Division

** Exponentiation

Rules for the formation of arithmetic expressions

a. All constants, variables and subscripted variables appearing in
an arithmetic expression must be of the same mode (fixed,or
floating point). Only special functions permit the use of
differing modes in the same arithmetic expression.

b.

However:
/

A floating point quantity or expression may be an arg~ment
of a function used in a fixed point expression.

A fixed point quantity or expression may be a function
argument, a subscript (if the item consists only of
constants, non-subscripted variables and the operators
+ * I ~:) or an exponent in a floating point
expression.

Two operators (+ * I **) may not appear in adjacent
positions in an arithmetic expression.

An arithmetic expression must begin with a minus sign, a left
parenthesis, a variable, a constant or a function.

A plus sign must not innnediately follow a left parenthesis, nor
may two operators be separated only by left parenthesis.

c. The result of a function is always of a mode defined by the name
of the function.

d. The operators + * I may be used only with operands of the
same mode. The mode of the result of the operation is the same
as the mode of the operands.

e. If E is an expression, (E) is an expression of the same mode.

-3-

f. Exponentiation: Given the expression E**F where E and F are
themselves expressions:

- Neither E. nor F may be of the form A**B, but one can
write A**(B**C).

- If E is fixed point, F must be fixed point and the
result is also fixed point.

- If E is floating point, F may be fixed or floating
point and the result is floating point

g. Hierarchy of Operations: The following give the hierarchy of
operations:

Exponentiation

Multiplication and Division

Addition and Subtraction

That is, in an expression lacking parentheses to define precisely
the hierarchy of operations, exponentiations will be executed first,
then multiplications and divisions, and finally, additions and
subtractions.

Example: A+B~'<'C**F /G means A+
BxcF

G

If there are no parentheses in a set of operations of the same
hierarchy, the execution of the operations takes place from left
to right.

Example: means Ax B _____ x D

c

-4-

N-J, r;
C>~ "'"'*"·"·

CHAPTER II

FUNCTIONS AND SUBPROGRAMS

Raytheon 250 FORTRAN II allows three types of functions and one type of
subprogram.

1. STANDARD LIBRARY FUNCTIONS

Function Name Argument Result

Absolute value ABSF floating floating

Square root SQ RTF floating floating

Sine SINF floating floating

Cosine COSF floating floating

Tangent TANF floating floating

Arc tangent ATANF floating floating

Exponential EXPF floating floating

-Beei'lna·±· logarithm LOGF floating floating

Integer part INTF floating floating

Fixed to floating FLOATF fixed floating

Floating to fixed FIXF floating fixed

These standard functions are referred to in arithmetic expressions by
the name followed by the argument enclosed within parentheses. The
argument may itself be an arithmetic expression of a convenient type.

Example: A+SINF (ALPHA~'d~2+BETA) /D

2. ARITHMETICALLY DEFINED FUNCTIONS

It is possible to define one or several functions in a source program,
by means of a simple arithmetic expression. The definition of this .
function will be retained throughout the program. This permits definition
of functions that are insufficiently used to justify their incorporation
in the library. A definition is achieved as follows:

function name (list of arguments) = arithmetic expression

The function name may consist of 1 to 7 characters; as with variables,
the first character must be a letter.

If the first letter of the name is I, J, K, L, Mor N, the function value
will be in fixed point, otherwise it will be in floating point.

Arguments may be fixed or floating point variables (according to the
mode established by the first letter) but are never subscripted. They
are separated by commas.

-5-

The arithmetic expression for an arithmetically defined function follows
the previously explained rules; however, it must not contain subscripted
variables and may call only standard functions or those functions
already arithmetically defined.

Any variable appearing in the expression at the right may be an argument
at the left.

_At the time of a call upon an arithmetically defined function, the
variables in the expression at the right which are not arguments at
the left are used·with their values at the particular moment of
execution. The values of the arguments are computed before the
execution of the arithmetically defined function.

;

Example: POLYN2(X) = A*X**2+B*Xof!C
I

or

POLYN2(A B C X) = A*X**2+B*X+c ' ' '
At the time of a call upon an arithmetically defined function, the
arguments may be any arithmetic expression (but of the mode indicated
at the time of the function definition).

The arithmetic definitions of functions must precede the first
executable statement of the program.

3. FORTRAN FUNCTIONS

This type of function permits definition in FORTRAN language of functions
which may not consist of a simple arithmetic expression but which, like
arithmetically defined functions, compute only a single result. They
are called upon in arithmetic expression, like standard or arithmetically
define~ functions.

The mode of the function, its name, and the mode of the arguments follow
the same rules as the arithmetically defined function. Chapter V
discusses the definition of FORTRAN functions.

4. SUBROUTINES

It is possible to organize in subroutine form certain actions that are
needed at several different points in a single FORTRAN program or in
several different programs.

Subroutines are written ·in FORTRAN.

Unlike functions, subroutines normally do not compute a single result.
Moreover, they are not called by reference in an arithmetic expression
but by the special "call" statement.

The name of a subroutine consists of 1 to 7 characters, the first of
which is a letter.

The mode of arguments is established by the normal conventions for
writing in FORTRAN II.

Chapter V discusses the definition of subroutine.

-6-

CHAPTER III

THE ARITHMETIC FORMULA

The following gives the syntax of an arithmetic fornrula:

V = E

where E is any arithmetic expression and V is a subscripted
or non-subscripted variable which is fixed or floating in
accordance with the first letter.

V is set equal to the computed value of the expression E.

If E is floating and V fixed, E. is computed in floating point
and the integer part of the result (with rounding) is stored
in V.

Conversely, if E is fixed and V floating, the result is
computed in fixed point, converted to floating and stored in V.

Examples: A B

A(SINF(PHI)+cOSF(PHI))/FLOATF(I)

-7-

CHAPTER IV

CONTROL STATEMENTS AND THE END STATEMENT

These 12 statements and the end statement allow the programmer to define
the flow of the program.

1. UNCONDITIONAL GO TO

go to stat

Statement stat will be executed next.

Example: go to 15

2. ASSIGNED GO TO

go to var, (statl, stat2, ... , statm)

where var is a non-subscripted fixed point variable whose value
has been preset by an assign statement, statl, stat2, etc. are
statement names. The statement that will be executed next is
the one whose relative position in the list corresponds to the
value of var.

Example: go to I, (10,7,15,11)

The statement executed next will be 10,7,15, or 11 depending
on values of 10,7,15, or 11 for I.

1 ~ ~ r ?

3. ASSIGN

Assign stat to var

where stat is a statement number and var is a non-subscripted
fixed point variable.

Example: assign 11 to I

This statement presets a variable for the eventual execution
of an "assigned go to" statement. Stat must also appear in the
list of the corresponding "assigned go to" statement.

The statement "assign 11 to 1 1·1 and the arithmetic fornrula
"I = 11" are not equivalents. A variable to which a value has
been assigned may be used only with an assigned go to until it
has been re-established as an ordinary variable.

4. COMPUTED GO TO

go to (statl, stat2, ... , statm), var

where statl, stat2, ... , statm are statement numbers and var is a
non-subscripted fixed point variable. If, at the moment of
execution, the value of var is k, the statement executed next

-8-

5. IF

will be the one occupying the kth position in the list.

Example: go to (10,30,7), I

The statement executed next will be 10, 30 or 7, depending
on values of 1, 2 or 3 for I.

if (expr) statl, stat2, stat3,

where expr is any arithmetic expression and statl, stat2, and
stat3 are numbers referring to statements. The next statement
executed will be statl, stat2 or stat3, depending on values of
less than, equal, or greater than zero for expr.

Example: if (ABSF(U(N)-EPS))10,11,11

6. SENSE LIGHT

sense light n

where n is 0,1, ... , 20

This statement permits the setting of a sense light to "on"
or "off". There are, of course, no sense lights on the console
to permit visual recognition of status.

If n = 0, all sense lights are set to "off", otherwise sense
light n is set "on".

Example: sense light 4

When the Library is loaded, all sense lights are in the OFF state.

7. IF (SENSE LIGHT)

if (sense light n) statl, stat2

where statl and stat2 are statement names and n is 1,2, ... , 20.

Statl or stat2 is the next
"off" status for switch n.
light n)" statement, sense

statement, depending on an "on" or
After execution of the "if (sense

light n is always "off".

Example: if (sense light 4) 30,40

8. IF (SENSE SWITCH)

if (sense switch n) statl, stat2

where statl and stat2 are statement names and n is 8, 9, ... , 15.
The choice of statl or stat2 as the next statement depends on
the status of the sense switch tested (see the chapter on
operating procedures).

-9-

9. PAUSE

10. STOP

11. DO

pause n

where n is an unsigned decimal integer less than 32. The
computer stops on this statement and displays in the Operand
Lights the octal equivalent of n. Operation of the Enable
Switch permits resumption of program execution.

Example: pause 20

The computer stops on this statement and displays octal 24 on
the console.

stop n

where n is an unsigned decimal integer less than 32. This
statement causes a stop without the possibility of resumption.
It is used when the programmer desires a final stop. The octal
equivalent of n is displayed on the console.

Example: stop 18

do stat ind = nl, n2

or

do stat ind = nl, n2, n3

where stat is a statement number. _!.!!9 is a fixed point variable.
nl, n2, n3 are each either an unsigned fixed point constant or a
non-subscripted fixed point variable. If n3 is omitted, it is
assumed to be 1. The 11 do 11 statement means:

"Do the following statements through stat and repeat them, the
first time with ind = nl, then incrementing ind by n3 each time
(that is nl + n3, nl + 2n3, ...) until ind has assumed the greatest
value of this series which is not greater than n2."

In other words, this statement group (called "do loop") will be
executed N times where N is the integer part of:

n2 - nl (-----
n3

+ 1)

nl may not be greater than n2 at the start.

During execution of a "do loop" the loop index (the variable being

-10-

incremented) may be used in calculation, whether in formulas
or subscripts.

Example: 10 do 11 I = l,N

11 SIGMA = SIGMA + TAB (I)

Other "do" statements may appear within a "do loop". It is
necessary, however, to respect the following rule:

If a "do.loop" contains another "do loop" all the statements of
the latter must also be contained within the former. This "nesting"
continues in the same manner and may be represented by the following
diagram:

rdo
\ rr ::
lL

The following organization is forbidden:

---"',dO
I

ltdo
Similarly, entry into a "do loop" by an "if" or "go to" statement
must be to the proper "do" statement.

On the other hand,exit from a "do loop" by an "if" or "go to"
statement is allowed without restriction.

Exception: It is possible to return into a "do loop"
after an exit if the following conditions apply:

a. The transfer goes to a statement situated outside
of the outermost loop encompassing the transfer
statement.

b. The section of program executed outside of the loops
modifies no indices or indexing parameters related
to control of the loops.

Index values upon exit from a loop: When control passes from
a "do loop" in the normal manner (that is, when the looping is
finished, the control passes to the statement after the last
statement of the loop), the exit is said to be normal. After a

-11-

normal exit from a "do loop" the value of the indexing variable
is equal to the value ilmilediately greater than the last value for
execution.

If the exit is made by a transfer from within the loop, the current
value of the index is available for any desired use. If the exit
takes place from the interior of nested loops, the values of all
the loop indices are available.

Last Statement of a do loop: The last statement of a "do loop" must
not be a transfer statement. In case of this need, the "continue"
statement described in the following paragraph permits proper
closing of the loop.

12 . CONTINUE

13. END

continue

This is a statement which causes generation of no instructions
for the object program. It is normally used as the last statement
of a "do loop".

As an example of a program requiring the "continue" statement,
consider the following table search:

10 do 12 I = 1,100

if (ARC - VAL(I)) 12,20,12

12 continue

13

This program examines the table of 100 values of VAL until it
finds an element equal to ARC.

At this moment, control is transferred to statement 20, with the
reference value of I available. Flow passes to statement 13 only
if no element equal to ARC is detected.

end
I

This statement has no effect upon the object program.

It must be the last statement of a program.

It signals the FORTRAN compiler that the preceding statements
constitute the entire source program.

-12-

CHAPTER V

STATEMENTS RELATED TO FUNCTIONS AND SUBPROGRAMS

It is possible to write FORTRAN subprograms to be used with other programs.
These subprograms may themselves call upon subprograms written in FORTRAN.

This chapter discusses two possible types of subprograms written in FORTRAN,
defined respectively by the "subroutine" statement and the "function" statement,
and the two statements which control transfer to and from subprograms: "call"
and "return".

In spite of the similarities between subprograms of the "function" or
"subroutine" types, it is convenient to 'remember the following differences:

a. "Function" subprograms allow the computation of only a single
resulting value.

b. The calling of a "function" is taken care of by the FORTRAN
compiler when the name of the function appears in an arithmetic
expression. By contrast, a "subroutine" may be called only
through use of a "call" statement.

Each of these two types allows construction of independent subprograms and
conforms to the progrannning rules of FORTRAN.

Subprograms may be compiled and debugged separately, but each time they are
used with a main program they must be compiled beforehand.

1. FUNCTION

function name (argl, arg2, ... , arg n)

where "name" is the symbolic name of the function.

The arguments (there must be at least one) are non-subscripted
variables.

The name consists of 1 to 7 alphanumeric characters, with the first one
a letter. If the first letter is I, J, K, L, Mor N, the function value
will be given in fixed point, otherwise it will be in floating point.

The name of the function must not appear in a "dimension" statement
for the subprogram or in such a statement for the programs using the
subprogram.

The "function" statement is the first of the statements forming a
subprogram. This subprogram must not contain any other "function"
or "subroutine" statement or any arithmetically defined functions.

A subprogram beginning with the "function" statement is called in the
main program by an arithmetic formula which contains the function name

-13-

followed by the list of arguments enclosed within parentheses. These
arguments must agree in number, order and mode with the list of formal
arguments appearing in the "function" statement. Within a function,
the name of the function must appear either at the entry point or at
least on the left side of an arithmetic formula.

Therefore, the result obtained by execution of the function may be sent
back to the calling program.

The arguments enumerated between the parentheses following the function
name being called may have different names than those that appear in the
list of formal parameters in the "function" statement. However, it is
proper to respect the following rules:

a. The list of arguments appearing;in the "function" statement
(actual arguments) must agree in number, mode and order with
the corresponding list in the calling program.

b. If an argument is an array, this array must be declared (with
the same number of subscripts) in a "dimension" statement in the
subprogram and in the main program.

c. No argument appearing in t'Qe list of a "function" statement may
appear in a "cormnon" statement for the "function" subprogram.

The actual arguments in the calling list for a function may be
arithmetic expressions or arrays.

2. SUBROUTINE

subroutine name (argl, arg2, ... , arg n)

Example: subroutine MULMAT (A,B,C,L,M,N)

The arguments (if any) are non-subscripted variables or arrays. The
name of the subprogram consists of 1 to 7 characters, the first being
a letter.

The name of the subprogram should not conflict with any other quantity,
either in the subprogram itself or in the calling program. The
"subroutine" statement must be the first of those forming the subprogram.
The subprogram must not contain any other "subroutine" or "function"
statement or an arithmetically defined function.

Transfer to the subprogram is effected by the "call" statement.

When an argument is the name of a dimensioned variable, it must appear
in a "dimension" statement of the subprogram. The corresponding
argument of the "call" statement must appear in a "dimension" statement
of the main program.

-14-

The results of "subroutine" subprogram can be transmitted to the
calling program, either by variables declared in a "connnon" statement
(see Chapter VII) and necessarily appearing on the left side of an
arithmetic formula belonging to the subprogram, or by arrays appearing
in the list of arguments.

3. ~

call name (argl, arg2, •.. , arg n)

where "name" is the name of a subprogram defined by a
"subroutine" statement,

Example: call MULMf\T (X,Y,Z,10,11,15)

An argument may be any arithmetic expression or an array.

The ucall" statement permits initiation of the execution of the
subprogram in question. The list of arguments in the "call" state­
ment must agree in order and mode with the list of the corresponding
"subroutine" statement.

4. RETURN

return

This statement terminates the execution of a "subroutine" or "function"
subprogram and returns control to the main program. It is not
necessarily the last statement of a subprogram, and any number of "return"
statements may appear in the same subprogram.

-15-

CHAPTER VI

INPUT/OUTPUT STATEMENTS

1. READ TAPE

read tape A,B,C,D, ...

where A,B,C,D, ... are fixed or floating point variables with
or without subscripting.

This statement causes reading of a set of values into storage from
the Flexowriter paper tape reader. The number of values is equal to
the number of variables in the "read tape" statement list. These
values belong (in the order of their ~ppearance) to A,~,C,D, ..•

2 • READ KEYBOARD

read keyboard A,B,C,D, ...

where A,B,C,D, ... are fixed or floating point variables with
or without subscripting.

This statement causes reading of a set of values into storage from
the Flexowriter keyboard. The number of values is equal to the
number of variables in the "read keyboard" list. These values
belong (in the order of their appearance) to A,B,C,D, ...

3. PRINT

print El E2 E3 ...

where El E2 etc. are elements of the "print" statement list.

An element for printing may have 3 different forms:

a. [literal]

where the literal consists of less than 30 characters.

b. A [lit;eral, punc~uation,x,~
where A is a fixed or floating point variable with or without
subscripting.

"Literal" is any list of less than 30 characters and will be
printed in front of the value for the variable A.

"Punctuation" is any.character which will signal the end of the
number being printed (note that for input the on!x._ allowable .
~~1!~~~-;_fq_;__~ignatini.J:_he e~Lq_l& .num~e :-·--,;;;~~_:.
tabulation and carriage return).

---------··--···--~·-·-·---~,·~"-"·-------k-~__... .. ,,._.~,, _ _.-.... ~~

-16-

"x" is the number of digits to the left of the decimal point.

"y" is the number of digits to the right of the decimal point.

c. A [punctuation,x,y]

4. PUNCH

This format is identical to the one just described except that
the literal has been omitted,

Any characters are allowed as punctuation or in a literal except
comma and carriage return; spaces are not eliminated; the decimal
point character is executed as a carriage return.

x and y are always positive or zero.

x + y must be less than 11.'

x = 0 and y F 0 cause floating point printing of a floating
point variable, with y digits of mantissa.

x F o and y r o cause fixed point printing of a floating
point variable, with x digits before the point and y digits after.

x r 0 and y = 0 cause fixed point printing (without a decimal
point) of a fixed point variable, with x the number of digits.·

The "print" statement

Example: print

punch El E2 E3 E4 ...

causes printing

[sTOP _ -] I

on the typewriter.

[rNTERATION NUMBER,.,4,o]

This statement, whose syntax is like that of "print", causes paper
tape punching.

-17-

CHAPTER VII

DECLARATIVE STATEMENTS

These two statements are not executable. They give information to the
compiler. They must appear at the front of a FORTRAN program.

1. COMMON

commonA,B, ...

where A,B, ... are names of variables or arrays.

The variables and the arrays appearing in "common'' statements are
assigned storage relative to a fixed address (whose value depends on
the size of the machine's storage). This permits assignment of the
same storage to variables used by a main program and by various
subprograms.

The array names appearing in a "common" statement must appear in a
"dimension" statement within the same program.

The sequence of assignment of storage corresponds to the order of
appearance of the variables in the "common" statement.

There may be only one "common" statement in a FORTRAN program. It
must be the first statement of a main program. In a subprogram,
it must appear immediately after the "subroutine" or "function"
statement.

2. DIMENSION

dimension Vl, V2, V3, ...

where each Vi is the name of a variable subscripted by
1, 2 or 3 positive integers.

Example: dimension A(lO), B(S,15), C(3,4,S)

The ''dimension" effects assignment of object program storage for arrays.

Each variable which appears in a subscripted form within a program
must appear in a "dimension" statement.

The maximum
statement.
the values

dimensions of arrays are specified in a "dimension"
In an object program, subscript values must never exceed

specified in the "dimension".

For example, dimension MAT (10,11) means that MAT has two dimensions,
that the first subscript never exceeds 10, and that the second subscript
never exceeds 11.

A single "dimension" statement can be used to define several arrays.

All "dimension" statements of a FORTRAN program must appear at the front,
imnediately after the "common" statement (if any).

-18-

CHAPTER VIII

PROGRAM AND DATA FORMATS

1. PROGRAM

A FORTRAN statement occupies a maximum of one line and is terminated
by a carriage return.

Statement key words are always written in small letters:

go to, if, if (sense light),

if (sense switch), assign,

do, pause, stop, end,

continue, function, subrout,ine,

call, return, dimension, common,

read tape, read keyboard, sense light, print and punch.

All other letters must be large.

Spaces, delete codes and blank tape are ignored by the compiler.

The source program may be punched in a paper tape. The compiler reads
it with the Flexowriter reader. It may also be typed directly into·
the compiler from the keyboard.

A line of commentary may appear between two FORTRAN statements. A
comments line must begin with a small c. The comments may be written
in any large or small characters. The end of the comments line is
indicated by a carriage return.

2. DATA

Data may be read from the Flexowriter reader or keyboard by the use
of read tape or read keyboard statements.

Data format is as follows:

a. Fixed point variable

Sign:

Value:

sign ·--. ---1·--·---
va lue Te j

-··------

+ or - sign. Absence of a sign is interpreted as +.

The value of the fixed point variable (without a decimal
point). The value must be less than 2097152.

-19-

TC: A terminal character which can be:

space

tabulation

carriage return

Leading spaces or zeros are eliminated.

Example:

b. Floating point variable

Sign:

Value:

E:

I •
\ sign ..____ __ value E ' \ sign exponent ! TC

+ or sign. Absence of a sign is interpreted as +.

The value of the variable, with a decimal point
normally required.

The letter E.

Exponent: An integer (no decimal point), with an absolute ·value
less than 38. The exponent gives the power of 10 which
is the scale factor for the value.

TC: A terminal character which can be:

space

tabulation

carriage return

Leading spaces and zeros are eliminated. The exponent (letter E,
optional sign and exponent value) may be omitted. In this case,

• the assumed exponent is zero. If the exponent is expressed, the
decimal point may be omitted and will then be assumed at the right
of the mantissa.

Examples of representations of the value 1:

l--.1 1 .. L...-1

+ 1 E 0

1 E 1

During reading of a number, delete codes and blank tape are
ignored. Reading of the lower case code causes cancellation of
all that has just been read and allows re-initialization of the
reading of the number in question.

-20-

3. COMPILATION OF. A FORTRAN PROGRAM

The operating procedures are described in Chapters IX-XII.

Compilation takes place in two passes with inter-pass representation
of the program in an intermediate language tape.

The object program is in binary.

The "subroutine" and "function" subprograms must be compiled before
the main program.

-21-

c
RAYTHEON 250 FORTRAN II

Nl.Cv13ER GAME DEMONSTl(ATION ROUTINE
SUGROUTI NE LI ST MATRIX
GIMENSION N(7,3)
COMMUN N
PR I NT (.RO\</ 1 RO\.J 2 R~\ .' 3 •)
DO 3Ci<J 1=1, 7
r'RINT (.)

DO 3CC J=l,3

SAMPLE PROGRAM

300 . PR I NT N (I 1 J)[1 4, 0)

lC

2C
3C
1
3

4

6
5

2

2CC
100

400

500

iCC

700
IOC

RETURN

------ _ENO
SUBROuTI NE INTERCHANGE ELEMENTS
DIMENSION N(7,3),NTEM~(7,3j
COMMtilN f;
PR I NT [.ROW?)
READ KEYBOARD L
1r(L-1)lO, 1,2C
I r(L-2) 101 31 3C
1r(L-3)1C,3, 10
L=4
M=l
L=L-1
DO 5 I =l, 7
DO 5 J=l,3
iHEMP(I, J)=N(M, LJ
IF(M-7)5,4,4
~

L=L+l
ar{L-3}5,5,6
L=l
M=M+l
0021=1,7
DO 2 J=l 1 J
N(l,J}=NTEMP(l,J)
RETURN

-_ ENO

Di-MENS ION N(7,3}
COMMON N
K=lO
DO 200 1=1 1 7
DO 200 J:!l, J
K=K+I
N(l,J}=K
PRINT (•• PICK A NUMBER AND TELL ME][WHICH ROW IT IS IN.]
NN=C
CALL LIST MATRIX
Nr+-NN+l
1r(NN-l)5CC,6CC,iOO
CALL INTERCHANGE ELEMENTS
PRINT (.NOW WHICH ROW 15 YO~ Nl.leER IN?.]
ao TO ~
PR I NT (.ROW?)
READ KEYBOARD L
1-4
IY(L-3)700,IOC,iOC
IY(L-1)600,IOC,IOO
PRINT N(l,L)(.THE NlJ.1BER YOU SELECTED WAS ,.,4,0]
PAUSE 7
ao TO 100
END

-22-

CHAPTER IX

OPERATION OF FORTRAN II ON THE RAYTHEON 250

I. GENERAL

The compilation of a FORTRAN program requires two passes. The
subsequent phase is the execution of the program.

The two passes take place under control of two compiler segments;
and the execution phase requires that the standard subroutines and
functions be in the machine (from the FORTRAN function tape).

During the first pass the source 1program is read and a tape is punched
with an intermediate language more readily understood by the machine.

During the second pass, the intermediate language is translated to
machine language and the resultant program is punched into another tape.

II. OPERATING INSTRUCTIONS FOR PROGRAM COMPILATION

The loading of the first pass, second pass, and FORTRAN subroutines
is accomplished with the bootstrap (fill) procedure.

Two versions of the compiler are available; one which makes use of
the high-speed Photoreader, and one which uses the Flexowriter only.

A. Description of loading with the bootstrap procedure.

1. Depress Enable and Breakpoint switches.

2. Mount the Phase I tape in the selected reader. Verify
that the corresponding bootstrap plug is affixed to the
rear of the computer.

a. Phase I Flexowriter version must be mounted in the
Flexowriter reader.

b. Phase I Photoreader version must be mounted in the
HSR Photoreader. ·

3. Raise the console Fill switch. After the tape begins
moving, raise either or both the Enable and/or Breakpoint
switches.

4. After the tape stops, depress the Fill switch.

5. Depress~ the Enable and Breakpoint switches, strike
the I key on the Flexowriter keyboard, and then raise
both the Enable and Breakpoint switches.

-23-

' ,
l~)

The tape should then be read to the end and the computer
should halt with the console Operand Lights displaying
octal 36.

If the computer halts during loading with the console
Operand Lights displaying octal 10, incorrect reading
has occurred and it is necessary to restart.

B. Operating procedures for the first pass.

1. If the first compiler section is not in storage,. load it
with the bootstrap procedure.

2. Advance the tape in the F;lexowriter Punch so as to obtain
about eight inches of leader, then make sure that the
Flexowriter Punch switch is off. Position the symbolic
tape in the mechanical reader.

3. To start the compilation process, depress the Enable switch
and the Breakpoint switch, strike the I key, then r.:_ai~ the
Eri.~~J-~ switch. The symbolic tape is then read and translated
into the intermediate language.

4. If the ~re~,!<J~Oint switch is -~-''~the compiler halts upon
recognition of an end statement occurring within a subprogram
(to permit loading of another tape). The compilation process
resumes when the i~reakpoint switch is raised (at which time
it should again be depressed).

5. The compilation process may be interrupted by detection of
source program errors (see Chapter X).

When the program is completely translated (signaled by an
end statement in the main program), the computer halts. [,_,,.,,.<'

The Operand Lights then contain octal 36 and the Parity >';, J. 0

Li~ht is on (!ILT 36) ,'

6. Ad'fancc the tape in the Flexowriter Punch so as to obtain
about 11) inches of trailer, then remove the punched program
and make sure the Flexowriter Punch switch is off.

7. To start the compilation process of another symbolic
program, it is not necessary to reload the first pass.
Do again only those operating steps associated with the
first pass (Step H).

C. Operating procedures for the second pass.

1. .Load the second pass with the bootstrap procedure.

a. If Phase II has loaded correctly, the entire tape will
have been read and control will go to the Octal Utility
fackage, thereby causing the Flexowriter keyboard input
light to come on.

-24-

b. If the computer halts during loading and the console
Operand Lights display octal 10, incorrect reading has
occurred and it is necessary to restart.

2. After Phase II is in memory, two cases are possible.

a. First Case. The first pass translation of a symbolic
program has just been accomplished, and the machine has
not been turned off. Then:

i. Advance the tape in the Flexowriter Punch so as to
obtain about eight inches of leader. Then make sure
that the Punch switch is off.

ii. Place the intermediate tape in the selected reader.

a. If the Flexowriter version is being used, the
intermediate tape must be mounted in the
Flexowriter reader.

b. If the HSR Photoreader version is being used,
the intermediate tape must be mounted in the
HSR Photoreader.

Strike the "T" key on the Flexowriter typewriter.
The second pass of the compilation then begins. The
computer processes 256-word blocks of the intermediate
tape and punches out the compiled program with O.U.P.
pre-addressing for each block.

If a block of the intermediate language is not read properly,
an octal 37 appears on the console, and the Parity Light is
turned on. In this event, reposition the tape at the
beginning of the block, depress the Enable switch and the
Breakpoint switch and then raise both switches. The
compilation process resumes normally. (The blocks are
separated by about ten inches of blank tape.)

At the end of the compilation, HLT 35 appears on the console.

b. Second Case. The first pass translation of a symbolic
program has been followed by the translation of one or more
source programs or by the turning off of the machine. It
is then necessary to perform an extra operation on the
intermediate tape.

First depress the Breakpoint switch, then find the last
block on the intermediate language tape and read it in
the selected reader. Remember that each block is preceded
by about ten inches of blank tape and starts with the
letter G (code 47).

In order to achieve this reading, type the following characters:

llF

16$, llF

(if using Flexowriter Reader)

(if using Photoreader)
or

It is then possible to proceed as with the first case.

-25-

III. OPERATING INSTRUCTIONS FOR PROGRAM EXECUTION

A. Load the standard subroutines by bootstrap method if they are
not already in storage.

1. If the program execution phase (Library of subroutines
and functions) has loaded correctly, the Flexowriter
keyboard input light will come on since the octal utility
package is in control.

2. If the computer halts during loading and the console
Operand Lights display octal 10, incorrect reading has
occurred and it is necessary to restart.

B. Load the compiled program in the 'selected reader. To accomplish
this, it is necessary to type the following characters:

F

07$,F

(if using Flexowriter Reader)

(if using Photoreader)
or

After each of these steps, the Flexowriter light should
be on. If not, restart the operation.

C. To begin execution strike the T key.

-26-

CHAPTER X

ERROR DETECTION

I. GENERAL

Prior to compilation, the program should be closely checked for errors.
Print statements should be carefully checked for proper format {commas,
brackets, etc.) and maximum number of literal characters.
A carriage return must be used only at the end of a statement.

The first pass of the compilation process is interrupted in case of
a syntax error.

The Parity Light is turned on and, an octal number is displayed in the
Operand Lights. This number is ~ndicative of the error.

To continue the compilation process, depress the Enable switch and the
Breakpoint switch, then raise the Enable switch. (In some cases, it
is necessary to do this operation several times.)

The second pass of the compilation indicates if the program is too
large for the machine. In the case where it is too large, the number
of words lacking is printed out in octal.

II. LIST OF FIRST PASS ERROR INDICATIONS

Octal Code

02

03

04

05

06

01,07'11

12

13'15'17

14,22

16

20

21

23

Significance

Subscript raised to a floating point power

Mode error

Too few or too many right parentheses

Mode error in a do statement

Unknown statement (the statement is read as if
commentary)

Incorrectly positioned operator (for example, two
consecutive operators)

Statement name or dimension error

Too many statement names, constants, functions

Too few or too many parameters

Number of formal parameters greater than 9

Too many functions

Punctuation error, incorrectly placed comma

Number of names greater than 111.

Except in the case of error message 23, the compilation process may
be resumed as previously described. The compilation process ends
with HLT 36.

-27-

CHAPTER XI

COMPILER LIMITS

The compiler allows 111 names of variables, FORTRAN functions, FORTRAN
subprograms, and arithmetically defined functions. However, in FORTRAN
functions and subprograms, the names of variables not declared in a conunon
statement are local, except for one case: within a FORTRAN function, the
name which is itself the name of the function. The number of local names
does not count in the total number of names in the program. Formal
parameters are not counted either.

Example: ! (A, B) = INTEGER (A**2 + B**2)

function FACT (X)

FACT = 1.

3 if (X) 1, 1, 2

2 FACT = X*FACT

x = x - 1

go to 3

1 return

end

read g_ , ~

Z FACT (F(Q,R))

print Z [. , 6 , 1]

end

The number of names counted for the above program is 6. (These names are
underlined~)

On the other hand let:

- E be the number of statement names

- L be the number of lists of statement names (such lists are found
in the commands - if, computed go to, and assigned go to.)

- EL be the number of statement names in these lists

- B be the number of do loops

- F be the number of FORTRAN functions, FORTRAN subprograms and
arithmetically defined functions.

- C be the number of constants

- M be the number of array names

-28-

Then the following relation must hold:

E + L + EL + B + F + C + M <: 124

Finally, if PF is the number of formal parameters, then· a
necessary relation is:

4F +PF <. 70

-29-

CHAPTER XII

COMPUTER REQUIREMENTS

The following equipment is required to compile programs with the Raytheon 250
FORTRAN II system.

A. A Raytheon 250 computer with:

1. The capability of executing an instruction from the "A" register.

2. A 16 word line 00.

3. Lines 1 - 16 (octal) of 256 words each.

4. Either a 16 or 256 word line 17 (octal).

5. Flexowriter.

B. Optional equipment that the FORTRAN II compiler can make use of includes:

1. An HSR-1 Photoreader.

2. A bank of 8 external sense switches.

The complete Raytheon 250 FORTRAN II system consists of three separate
sections of binary tape. These sections are referred to as Phase I,
Phase II, and the Execution Phase respectively.

There are two systems, one using the Flexowriter paper tape reader, the
other using the HSR Photoreader. Each system is further divided into
three sub-systems which determine the means of inputting the source program.
The first allows the source program to be typed in through the Flexowriter.
The second allows the source program to be input via the Flexowriter paper
tape reader. The third allows either of the preceding two and the option
is made by setting sense switch 0 false for typed input and true for
paper tape input. If sense switches are to be used, they should be connected
to the computer in such a way as to exhibit their condition on lines 10-17 (octal).

-30-

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

