SP-148A

An Introduction to

PB440 MICROPROGRANMMING

C

Pb Packard Bell Computer

An Introduction to

PB440 MICROPROGRAMMING

FOREWORD

This Microprogramming Manual is the first in a series
of technical and application reference manuals on the
Packard Bell PB440 Computer. Others to be made
available include programming manuals on command
sets, a Fortran Programming Manual and technical
manuals on peripheral equipment.

Although this present manual covers microprogram-
ming procedures in some detail, few PB440 users will
wish to program their machine at that level. However,
a study of microprogramming techniques will be help-
ful in disclosing many of the more significant details
of the PB440 hardware. To facilitate use of the PB440,
representative command lists covering engineering
scientific computation and realtime systems computing
and control will be provided with the machine.

REVISION NOTICE

This manual is a revised edition of “An Introduction to
the PB440 Computer,” dated November 1962. All in-
formation in this revised edition supersedes the infor-
mation contained in the November 1962 edition.

T PBC 5/63

TABLE OF CONTENTS

GENERAL DESCRIPTION
THE INSTRUCTION REPERTOIRE
DESIGNING AN INSTRUCTION SET
THE PB440’S INTERNAL SEQUENCE
THE REGISTERS

THE MICRO-STEPS
MEMORY ACCESS OPERATIONS .

LOGICAL WORD OPERATIONS
SHIFTING OPERATIONS
MULTIPLICATION AND DIVISION
TRANSFER OF CONTROL
TEST OPERATIONS
INPUT-OUTPUT SYSTEM
SUMMARY OF OPERATION CODES

PB440 CHARACTER CODES . ..

GLOSSARY

ILLUSTRATIONS

PB440 COMPUTER
PB440 CONTROL CONSOLE
PB440 MEMORY LAYOUT
AVAILABLE REGISTERS

MICRO-STEP IN MEMORY .

MULTIPLICATION AND DIVISION

FLOW CHARTS .

.19

sEesreny

ERSE SWITEHES

&
o
=

&

LRERBTIN

Packard Bell PB440 Computer

PB440 Computer Control Console

GENERAL DESCRIPTION

The PB440 Computer is a core-memory computer
whose basic operations can be performed at the clock
rate of the computer. The programmer has complete
control over the specific operation performed during
nearly every clock pulse; in this sense the computer is
said to be micro-programmed. Sequences of basic oper-
ations can be stored in memory and executed much like
a conventional subroutine, so that operations normally
considered to be “commands” on a conventional com-
puter can be described in terms of their elementary
operations, and can be changed at will. In this sense
the computer is said to be of the stored-logic type.

Two separate types of core memory are provided,
although the memory is addressed as a single homo-
geneous block. Main memory, comprising the bulk of
the storage capacity of the machine, consists of mag-
netic cores from which one word of information can be
obtained in 2 microseconds. The memory cycle time is
5 microseconds. Fast memory, designed to hold the
sequences of elementary steps which define an “instruc-
tion”, consists of a set of BIAX cores, from which a
word can be obtained in less than 1 microsecond. Since
these cores are read non-destructively, the term “cycle
time” does not apply to fast memory. The word length
of both memories is 24 binary digits (bits). (Internal
parity checking is provided automatically, and utilizes
an additional bit in each word for this purpose. This
bit is not available for programming purposes.)

The basic machine contains 4096 words of main
memory and 256 words of fast memory (see Figure 1).
Main memory can be expanded to a maximum of 28,672
words, and fast memory can be expanded (in 256 word
blocks) to 4096 words for a maximum of 32,768 words
of directly addressable memory.

The input-output equipment planned for the basic
computer consists of a photo electric paper-tape reader
capable of reading 500 characters per second, a paper-
tape punch capable of punching at a rate of 110
characters per second, and an electric typewriter which
can print 16 characters per second. Additional input-
output equipment, consisting of IBM-compatible card
and magnetic tape devices, is available at extra cost. A
high-speed line printer will also be available as optional
equipment.

THE INSTRUCTION REPERTOIRE

The PB440 does not have a set of instructions in the
same sense that conventional computers have. Instead,
its basic design provides the programmer with the
option of describing, in terms of elementary operations,
a sequence of steps which define an instruction. Nearly
every clock pulse is available to the programmer for

Module No:

Main
Memory
4096
Words=>»

.

Figure 1. PB440 Overall Memory

ayout

Each module can contain 4096 words, 24 bits in length.

Main memory access time: 2usec
Main memory cycle time: Susec
Fast memory access time: <lusec

Memory Addressing Scheme

Module No. Octal Addresses Decimal Addresses
1 00000 to 07777 00000 to 04095
2 10000 to 17777 04096 to 08191
3 20000 to 27777 08192 to 12287
4 30000 to 37777 12288 to 16383
5 40000 to 47777 16384 to 20479
6 50000 to 57777 20480 to 24575
7 60000 to 67777 24576 to 28671
3 70000 te 77777 28672 to 32767

1st Block of
Fast Memory 70000 to 70377 28672 to 28927

this purpose. A complete sequence of elementary steps
which describe an operation (instruction) in the con-
ventional sense is called a microutine. To avoid con-
fusion we will refer to the instruction described in this
way as a “macro-instruction”. A complete instruction
set consists of a control sequence (to determine which
of the various macro-instructions is indicated) and a
set of microutines, each of which defines a macro-
instruction. This instruction set is normally stored in
fast memory, although micro-steps can be executed
from main memory (at a slower rate) if so desired, or

if there is not enough room in fast memory to contain
them all.

There are, of course, many different ways in which
one could describe the individual logic steps which con-
stitute a conventional computer instruction. The logic
designer usually describes them with a set of Boolean

equations, each equation consisting of many terms of
differing meanings. He uses the same technique to
describe the “control” section of the computer. Since,
to a large extent at least, the design of the macro-
instructions for the PB440 computer has been left to
the programmer, a method of description was chosen
which is already familiar to him; that is, in terms. of a
sequential series of elementary steps which he calls a
program. It should be emphasized that there is a very
real difference between a microutine, which describes
a macro-instruction, and a computer program, which_
consists of a series of macro-instructions designed to
solve a problem, even though the methods used to
obtain the two are very much alike.

DESIGNING AN INSTRUCTION SET

The enormous advantage of being able to choose an

instruction set to suit a particular problem is probably
obvious to anyone who has written a program for a

digital computer. The programmer can, in a very real
sense, design the computer to fit his problem. The
resulting program which he can write will be far shorter
and more efficient than if he were restricted to an
instruction set not of his own choosing, and he need not
have a group of instructions available which he finds he
cannot use. As an example, by designing an instruction
set to execute a program written originally in the FOR-
TRAN language and compiled automatically, it was
found that the resulting program (generated by the
compiler) would be about half as long as one gener-
ated from the same source program on a more conven-
tional computer. This saving, in terms of the length of
the program, is effected by having available instructions
designed to concisely describe operations available in
the FORTRAN source language. In the same way, the
compiler itself can be made compact and efficient by
writing it in an instruction set which can describe, in a
very few instructions, the manipulations which a com-
piler must perform to translate a source program into a
machine language program.

It should be recognized that not all programmers will
want to be bothered with the problems of computer
design every time they write a program. They need not
be. Packard Bell recognizes its responsibility in this
regard, and will provide several complete instruction
sets with the computer upon delivery, in addition to
the FORTRAN system now under construction. As-
sembly routines and other “utility” routines will be
provided which are compatible with each of the in-
struction sets, and provision will be made for the pro-
grammer who may want to augment an instruction set
with a few instructions of his own design.

The design of an instruction set may be conveniently
divided into three parts:

1. A macro-instruction format is chosen, usually with
an eye toward rapid interpretation. This format
need not be restricted to a word length of 24 bits,
nor to single address instructions. The instructions
need not refer to an “accumulator” unless this is
useful, and more than one “accumulator” may be
referenced if desired. Conventional or unconven-
tional indexing may be described. Any other use-
ful features, such as indirect addressing, relative-
indirect addressing, or whatever special functions
are needed, can be included.

2. The control sequence is described. It must be
capable of distinguishing between the macro-
instruction formats chosen (if there were more
than one) and will normally provide operations
common to most, or all, of the instructions such
as indexing and indirect addressing. It will nor-
mally obtain the parameters, if any, needed for
the execution of the instruction.

3. The microutines, each of which defines the exe-
cution of an instruction, are written. These may
be of any length and complexity desired, and may
call on, or transfer control to, other microutines.
Astute design of the microutines can shorten the
whole instruction set considerably, and provide
many useful combinations not normally found on
conventional computers. As an example, assume
we need a fixed-point add instruction, and we also
require an instruction which stores the content
of an “accumulator” into memory. Very little is
required to provide an additional instruction
which performs both of these functions in
sequence. This new instruction becomes “add the
content of memory to the accumulator, and store
the result back in the same place in memory”. The
new instruction can make use of the other two
microutines already present, at little cost in space
or in execution time, and provides the facility for
increasing the value of a “counter” in memory.
For example, using only two instructions:

CLA 1 Clear and add “1” to the
accurnulator

ADS CNTR Add “CNTR” and store the
sum in “CNTR”

It should be remembered that the amount of time
required to interpret the macro-instruction should be
kept as short as possible, since this amount of time must
be added to the execution time of each macro-instruc-
tion, no matter how fast that execution may be. It is an
“overhead” which must be included when considering
the overall execution speed of any particular instruction
set.

This “overhead” time can be minimized in two ways.
Many of the micro-steps available to the programmer
are designed to make interpretation easy and fast, and
the programmer should become familiar with them
before he attempts to design an instruction set. He
should also choose the individual macro-instructions
with care so that as few of them as possible are needed
to do his job.

THE PB440'S INTERNAL SEQUENCE

The registers available in the PB440 Computer are
shown in Figure 2. For the moment, we need consider
only the registers labeled “P” and “E”.

The individual micro-steps are stored in memory in
pairs (see Fig. 3) and are executed in sequence from
left to right. The “P” register functions as a micro-pair
location counter, and normally contains the address of
the next micro-pair to be executed. It is automatically
incremented by 1 each time a micro-pair is obtained
from memory for execution.

The “E” register holds the pair of micro-steps being
executed, and may be thought of as the micro-level com-
mand register. If we examine the automatic sequence
of operations, beginning at the moment the micro-pair
is inserted into the “E” register for execution, we would
observe the following operations:

1. The “P” register is incremented by 1.

2. The left-hand micro-step is examined by the com-
puter logic and the indicated micro-step operation
is performed.

3. At the same time, the right-hand micro-step is
examined to see if it involves a memory refer-
ence, or indicates the “P” register is to be changed.
For the moment, assume it does not.

4. Following execution of the left-hand micro-step
the right-hand micro-step is examined and
executed as before.

5. During the execution of the right-hand micro-step,
the next micro-pair is inserted into the “E”
register and the cycle repeats.

Normal timing for this execution sequence, assuming
the next pair is located in fast memory, is 2 clock
pulses. To a first approximation one can say that execu-
tion proceeds at a rate of 1 micro-step per clock pulse.
When the right-hand micro-step changes the content
of the “P” register, however, the proper micro-pair can-
not be obtained from memory until this operation is
completed. This condition requires that the computer
wait for one additional clock pulse, so that 3 clock
pulses are required to execute the micro-pair.

The memory-bus structure allows either fast or main
memory to be referenced during any clock pulse, but

not both at the same time. Therefore, if the right-hand
micro-step is one which references either main or fast
memory, the next micro-pair cannot be obtained at the
same time, and the computer must wait for 1 additional
clock pulse after the memory access. There is no com-
pounding of waiting periods for both changing “P” and
accessing memory in a right-hand micro-step.

Since transfer of control is effected by altering the
content of the “P” register (which is addressable),
actual control transfer will not occur until after execu-
tion of the right-half micro-step. In general, then, it can
be seen that contol transfer micro-steps and memory
reference micro-steps should be kept in the left-half of
the pair wherever possible.

_One restriction is inherent in the micro-pair structure.
Since the “P” register contains the location of each pair,
it is possible to transfer control only to a left-half micro-
step. While this restriction might indicate that many
“no-op” micro-steps would be required, programmer
ingenuity can keep them to a minimum.

One consequence of the micro-pair structure should
be mentioned. Conditional-test micro-steps exhibit a
different response according to whether they are located
in the left- or the right-hand side of a micro-pair. If the
conditional test micro-step is located in the left-half of
a micro-pair and it the condition being tested is met, the
right-hand micro-step is executed as written. If the con-
dition is not met, the right-hand micro-step is not
executed. However, if the conditional-test micro-step
is in the right-half position, the next complete micro-
pair will be executed as written if the condition is met,
or it will be skipped if the condition is not met.

THE REGISTERS

The working registers are shown in diagram form in
Figure 2. All of the registers shown are directly address-
able with the exception of E, the micro-pair command
register. The dotted lines indicate portions of a register
which are not actually present in hardware; reference
to such a region has the same effect as if the register
contained all zeroes in those bit positions. The Q regis-
ter is all empty; it may be considered as a register
permanently containing zeroes.

The working registers consist of the A, B, C, and D
registers of 24 bits each, the N register consisting of 8
bits, the L register (15 bits in length), three carry tog-
gles, 6 “program flags” (which are addressable 1 bit
registers), and a parity toggle. Not shown in Figure 2
are those elements which are available on the computer
console (6 sense-switch toggles, address switches rep-
resenting a 15 bit address, and another set of switches
representing a full 24 bit word). These elements can be
referenced by the programmer (as can various input-

Reg. Reg.
Name Number Use

01234567891011121314151617181920212223

A 1 Arithmetic Register
] B 2 Arithmetic Register
C 3 Arithmetic Register
D 4 Arithmetic Register and Macro-Instruction

Interpretation Register

T T T T 9 23 L 5 Macro-Program Location Counter or General
- Address Register
:_ ______ 9 zj P 7 Logic Level Location Counter
e —— —— —
r [1 s T T T 1 N 6 Repeat Count Register or Exponent Register
R e S S S S -
o T T T T ': Q 0 Phantom Register
e o 4
0 1 12| 23| E — Micro-Pair Command Register (Not Addressable)
CARRY . . .
0f1 @ TOGGLES Indicate Carry from Bit Positions 0, 1, and 9
PROGRAM . .
FLAGS Boolean (1 Bit) Registers
D PARITY Indicates parity of the last memory access micro-
TOGGLE step

Figure 2. PB440 Register Configuration

L LEFT MICRO RIGHT MICRO

| op MOD

o | R | R|

Micro-steps are stored in pairs. Each micro-
step occupies 12 bit positions.

For some micro-steps the right-hand 6-bit field
is treated as a unit, and is called the modifier field.

For other micro-steps the modifier field is used
in two parts, R1 and R2. Each of these can
address one register.

REGISTER FORMATS FOR INSTRUCTION
INTERPRETATION AND ARITHMETIC

S MAGNITUDE

[s| _EXPONENT | FRACTION (MoST SIG) |
[s] FRACTION (LEAST SIGNIFICANT)]
| macro-op [x] ADDRESS]

| o1]wmope] | @ |

L LOGICAL WORD

Figure 3. PB440 Word Formats

One data-word format consists of the sign posi-
tion (bit 0) and magnitude (bit positions 1-23).

Floating-point data require two words. The sign
position of the most significant word indicates the
sign of the complete word. The other sign posi-
tion is unused. The exponent field (8 bits) is
always positive; excess—128 exponent convention
is used to allow both positive and negative expo-
nents.

The D register allows special formats. One
possible format for macro-instructions consists of
an op-code, 7 index registers and an address. Spe-
cial fields (like C1 and C2) can be used to address
memory, and the bits of the mode field can be
tested individually.

Many micro-steps operate on the full 24-bit
word, called a logical word.

output elements and devices) but are not considered in
detail in this discussion of the registers.

In general, it is expected that most arithmetic and
logical operations will be performed utilizing the A, B,
C, and D registers. It is expected that the L register
will be used as a macro-instruction location counter,
though it should be emphasized that the design in no
way restricts the use of any register (except, of course,
for “P” and “E”) to any particular function. Several
micro-step operations reference specific registers, but,
for the most part, the programmer is free to decide the
function of the registers for himself.

The carry toggles are set by certain micro-steps auto-
matically, and are designed to indicate carry-out from
bit positions 0, 1, and 9. That is, a carry toggle is made
true (or “1”) if carry-out occurs from its bit position,
or made false if no carry-out occurs. They may be set
and tested individually as well. The 6 program flags
may be set and tested at the discretion of the program-
mer, and their content, as well as the content of any
other register, may be displayed on the console. The
parity toggle contains the parity of the last executed
memory access micro-step, and it may be referenced by
the programmer.

The N register serves as a repeat counter for those
micro-steps which are of a repetitive nature, such as
multiplication, division, and shifting operations. It may
also be used for other purposes when desired.

Figure 3 shows various word formats in diagram form.
Various fields in the word have been labeled so that
they may be referred to during the description of the
individual micro-steps. It will be noted that the N regis-
ter is located so that it can hold the “exponent” field of
a floating-point format word. Also, the “fraction” por-
tion of a floating-point format word consists of 15 bits
and can also contain an address for reference to the
memory system of the computer.

Several micro-steps reference only the D register
which can be used to good effect as a macro-instruction
command register. Any register may be shifted, but the
N register should be shifted only after careful considera-
tion of the net effect.

THE MICRO-STEPS

Figure 3 shows two possible formats for a micro-step.
While many micro-steps utilize both the R1 and R2
fields to designate one of the registers, not all of them
do so, and these 3 bit fields may have special meaning
for certain of the micro-steps. In some cases the full
6 bit field, exclusive of the operation field, is used as a
unit and reference to the register (or registers) is
implied by the operation field.

10

In general, where the R1 and R2 fields are used to
designate two registers, both fields may designate the
same register. In some cases it is not meaningful to do
this since no change results, but it is always permitted.
For convenience, the individual micro-steps have been
grouped in the descriptions below.

Memory Access Operations

Memory accesses may refer to either main memory
or to fast memory. “Load” micro-steps retrieve a full 24
bit word from memory, and “Store” operations place
the full 24 bit word into the designated memory cell.
Where a register is less than 24 bits in length the “miss-
ing” portion will always store zeroes into memory in
those bit positions.

When main memory is referenced for a load opera-
tion, 2 clock pulses are required to read the content of
the memory cell into the designated register. Follow-
ing the main memory access, 3 clock pulses are required
to establish (or re-establish) the content of the memory
cell. This time may be used for useful computing, and is
referred to as “shadow time”. Should a reference to
main memory be made during this three clock-pulse
interval, the computer will wait until the previous cycle
is completed.

When main memory is referenced for a store opera-
tion, the computer is immediately ready for useful com-
puting. However the full memory cycle time must elapse
before another memory reference can be made. There-
fore since the store operation requires a single clock
pulse, the “shadow time” is 4 clock pulses, and if another
main memory reference is made during this time the
computer will wait until the previous cycle is com-
pleted. It is the programmer’s responsibility to utilize
the “shadow time” effectively if he can. Since fast
memory read-out is non-destructive, no “shadow time”
results from a fast memory access. The amount of time
lost in storing into fast memory (no computing is pos-
sible until such an operation is completed) is 8 micro-
seconds. This operation should probably be avoided if
maximum speed is desired.

Each individual module of main memory has its own
read-write circuitry, so that reference to module 2 may,
if desired, be made during the “shadow time” resulting
from a reference to module 1, with no penalty in execu-
tion speed.

In the micro-steps described below, the R1 field des-
ignates a register which contains an address. The low
order 15 bits of this register (bit positions 9-23) are
used as the address; the high-order bits are ignored. The
carry toggles are not affected unless specifically stated
in the description. The parity toggle is set to 1 if the

number of 1’s in the word is even, or to 0 if the number

of 1’s is odd.

Mnemonic

LDM R1 R2

Meaning

Load from
Memory

Description

The content of the memory
cell, designated by the address in
register R, replaces the content
of the register designated by R2.

STM R1R2 Store into

Memory

The content of the register des-
ignated by R2 is stored into the
memory cell designated by the
address in R1. The content of R1
and R2 remains unchanged.

LDIR1R2 Load (from The content of the addressed
memory) and memory cell replaces the content
Increment of the register designated by R2.
Simultaneously, the address in
register Rl is incremented by 1
in bit position 23. This latter op-
eration does not change the set-
ting of the carry toggles. When
R1 and R2 designate the same
register the content of the ad-
dressed memory cell and the
incremented value of the desig-
nated register are combined (log-
ical or), and the logical sum re-
places the content of that register.

STIRIR2 Store and

increment

The content of the register des-
ignated by R2 is stored into the
addressed memory cell. Simulta-
neously, the address in Rl is in-
cremented by 1 in bit position
23. This latter operation does not
change the setting of the carry
toggles. If R1 and R2 designate
the same register, the memory
cell will contain its own address
and R1 will contain the logical
sum of the address and its incre-
mented value at the end of the
operation.

It is clear that the above micro-steps can refer to any
memory cell in the computer, but an address for that
cell must be present in one of the registers. (Designat-
ing Q or N by the Rl field can refer only to main
memory location 00000. This should probably be
avoided.) Since many common operations involve the
requirement that the content of some register be stored
temporarily, a group of 8 cells in main memory has
been designated as “working storage”. These may be
referred to directly, without the requirement that an
address be provided. The following two micro-steps

reference these cells. The R1 field designates which
one of the 8 cells is to be used, and does not designate
a register.

Description

LDWRI1R2 Load from The content of the working

Working storage cell designated by R1 re-
Storage places the content of the register
designated by R2. The content
of the designated memory cell
remains unchanged.
STWR1R2 Store into The content of the register des-
Working ignated by R2 is stored into the
Storage designated working storage cell.

The content of the register desig-
nated by R2 remains unchanged.

LDS and STS —Load Special and Store Special

In addition to the above, two special micro-steps
have been provided which reference certain fixed loca-
tions in memory. In these micro-steps the Rl field is
used as a control field to designate which one of eight
possible load or store operations is desired. In all of the
operations, the effective address of the cell is constructed
from a designated field of the D register.

The first portion of main memory is divided into
blocks of 64 words each, numbered, for reference,
blocks 0-3. Seven of the 8 possible configurations of R1
reference this portion of memory while the eighth con-
figuration references fast memory according to the fol-
lowing scheme:

R1 Portionof DUsed Memory Block Referenced

0 Bits 6-8 Block 1, cells 00-07
(mode-field) (Locations 64-71)

1 Bits 18-23 Block 1, cells 00-63
(Locations 64-127)

2 Bits 18-23 Block 2, cells 00-63
(Locations 128-191)

3 Bits 18-23 Block 3, cells 00-63
(Locations 192-255)

4 Bits 0-5 Block 0, cells 00-63
(Locations 00-63)

5 Bits 0-5 Block 1, cells 00-63
(Locations 64-127)

6 Bits 0-5 Block 2, cells 00-63
(Locations 128-191)

7 Bits 0-5 Fast memory cells 28864 to

28927 (last 64 cells in 1st
module of fast memory)

The portions of main memory referenced by R1 con-
figurations 0-6 may be visualized by the following
representation of memory module 1:

11

MEMORY MODULE 1
(MAIN MEMORY)

Block Block Block Block
Loc. 0 Loc. 1 Loc. 2 %oc. 3
000 0645, _ 128 92,
A 06 iR1=0
o [T]
< S S o
— o~
,ll I Il ﬂ.
o= — — =
o= o=
120 '
063 ‘ 127 191 255
Working Storage

The portion of fast memory referenced by R1 con-
figuration 7 may be visualized by the following repre-
sentation of memory module 8§:

MEMORY MODULE 8
(FAST MEMORY)

Block Block Block Block
Loc. 0 Loc. 1 Loc. 2 Loc. 3
28672 28736 28800 28864 ‘
i
&
28735 28799 28863 28927 *
Mnemonic Meaning Description
LDSR1R2 Load Special An address is constructed from
the content of portions of the D
register, as designated by R1. The
content of the addressed cell re-
places the content of the register
designated by R2.
STSR1R2 Store Special An address is constructed from

the content of portions of the D
register, as designated by R1. The
content of the register designated
by R2 is stored in the addressed
memory cell. The content of the
register designated by R2 remains
unchanged.

12

Several useful operations can be performed simply
and easily by means of these micro-steps. For example,
any arbitrary 6-bit character code can be converted into
any other code by having available a table of the re-
placement code, arranged in the proper order, in mem-
ory. When one character of the alien code is obtained
it is placed in the D register, say in bit positions 18-23.
A single micro-step, e.g., “LDS 3 D” will replace the
character with one chosen from the table in memory
block 3. Another extremely important operation involves

branching to one of 64 possible microutines on the basis
of a macro-instruction operation code. If this code is

located in, say, positions 0-5 of the D register, and a
table of microutine starting locations is located in mem-
ory block 0, then execution of the micro-step “LDS 4 P”
will cause the desired branch of control. If a faster
branch is desired, in which fast memory is used for the
“jump table” (located in the last 64 words of the first
256-word block of fast memory) the micro-step “LDS
7 P” will effect the control transfer.

It should be clear that memory location assignments
for macro-instructions must take into account those
main memory locations actually used by the instruction
set, including working storage. It is expected that normal
operation will involve using the first 64 words of main
memory (Block 0) as a “jump table” for rapid macro-
instruction interpretation, and that Block 1 will be used
for index registers and, possibly, Block 1, 2, or 3 to
replace the character set obtained from input devices
with one more amenable to programming use.

Logical Word Operations

A rather complete set of operations is provided for
the manipulation of a 24-bit word, called a logic word.
In all of the following operations all 24 bit positions
take part in the operation; where registers of less than
24 bits in length are involved, the “missing” portions
take place as if they contained zeroes. In all of these
micro-steps R1 and R2 designate registers, and in all
cases the result of the operation appears in the register
designated by R2. The carry toggles are not affected
unless specifically stated in the description.

Mnemonic

CPL R1 R2

Meaning

Copy Logical

Description
The content of the register des-
ignated by Rl replaces the con-
tent of the register designated by
R2. The content of register R1

remains unchanged. If both Rl
and R2 designate the same reg-

ister, no change is observed.

CCLR1R2 Copy The content of the register des-
Complement ignated by Rl is complemented
Logical (1’s complement) and this result

Mnemonic

CILRIR2

CDLRI1R2

EXCR1R2

AND R1 R2
or
EXT R1 R2

LOR R1 R2

XOR R1 R2

Meaning

Copy and
Increment
Logical

Copy and
Decrement
Logical

Exchange

And

Extract

Logical Or

Exclusive Or

Description

replaces the content of the regis-
ter designated by R2. The content
of register R1 remains unchanged
unless it is the same register that
is designated by R2.

A 1 at bit position 23 is added
to the content of the register des-
ignated by Rl, and this result
replaces the content of the regis-
ter R2. All three carry toggles are
set by this operation; they will be
set to 0 if no carry-out passes
their bit position, and will be set
to 1 if such a carry is present.
Register Rl remains unchanged
unless it is also designated by R2.

An internally generated word,
consisting of 24 1’s, is added to
the content of the register desig-
nated by R1. This result replaces
the content of register R2. The
net effect is the same as if a 1 at
bit position 23 had been sub-
tracted from the content of Rl.
The carry toggles are not set by
this operation, and register R1 re-
mains unchanged unless it is also

designated by R2.

The contents of the two regis-
ters designated are exchanged. It
doesn’t matter which of the two
is designated by R1 and which by
R2; the result is the same. If R1
and R2 designate the same reg-
ister, no change is observed.

The logical product of the con-
tents of the two registers replaces
the content of the register desig-
nated by R2. The result has a 1
only in those bit positions where
both words contained a 1. The
content of Rl is unchanged.

The logical sum of the contents
of the two registers replaces the
content of the register designated
by R2. The result has a 1 in any
bit position where either of the
words contained a 1. The con-
tent of register R1 is unchanged.

The logical operation “exclu-
sive or” is performed on the two

Mnemonic Meaning Description

designated words, and the result
replaces the content of the regis-
ter designated by R2. The result
has a 1 in any bit position where
one word had a 1 and the other
did not; in bit positions where
both words contained a 1, or both
contained a 0, the result is 0. Note
that if R1 and R2 designate the
same register, the result is an all-
Zero register.

ADLR1R2 The arithmetic sum of the two
designated registers replaces the
content of the register designated
by R2. All three carry toggles are
set by this operation. Register R1
remains unchanged unless it is
the same register designated by
R2. In this case the result is iden-
tical with that obtained by shift-
ing the content of the register
left 1 position.

Add Logical

ALCR1R2 Add Logical

for Carry

The three carry toggles are set
by this operation, based on
whether or not « carry-out would
occur at their bit position if the
contents of the two designated
registers were added together
arithmetically. The contents of
the registers designated by Rl
and R2 remain unchanged.

SLSRIR2 Shift Left
or Six
SL6 R1 R2

The content of the register des-
ignated by R1 is shifted left 6 bit
positions, end-around, and the re-
sult replaces the content of the
register designated by R2. The
content of register Rl remains
unchanged unless it is also desig-
nated by R2.

Partial-Word Operations

Many of the micro-steps reference certain portions of
the 24 bit word, and operate only on that portion. The
remainder of the word remains unchanged by the opera-
tion. As with the logic word format micro-steps, Rl
designates one of the addressable registers and R2 desig-
nates the other, with the result appearing in R2. The
carry toggles are not affected unless the description so
states.

Mnemonic

CPSR1R2

Description

The sign position (bit 0) of the
register designated by RI1 re-

Meaning

Copy Sign

13

Mnemonic Meaning Description

places the sign position of the
register designated by R2. The
remainder of register R2 remains
unchanged. Register Rl is not
affected by this operation. If R1
and R2 designate the same regis-
ter no change is observed.

CCSR1R2 Copy The sign position of register R1
Complement is copied into the sign position of
Sign R2 in complemented form. If the

sign of register R1 were positive
(contained a zero) then the sign
position of register R2 will be
negative (will contain a 1) after
the operation. If R1 and R2 des-
ignate the same register, the net
effect is to change the sign of that
register.

The sign position of register R1
is added to the sign position of
register R2, the result replacing
the sign of register R2. Carry tog-
gle 0 will be set by this operation.
It will be on (will contain a 1)
if the sign of both designated reg-
isters contained a 1, and will con-
tain a zero (be set off) other-
wise. The sign of register Rl is
unchgnged unless it is also desig-

nated by R2.

ADSR1R2 Add Signs

These three micro-steps give the programmer com-
plete control over the sign positions of registers “A”,
“B”, “C”, and “D”, the only registers whose sign position
is actually present. Reference may be made to the other
registers, particularly in the R1 field of the micro-step,
where this might be useful. Remembering that any
“missing” portion of a register may be thought of as
containing zeroes, the micro-step “CPS N A” will set
the sign of the “A” register positive. Similarly, “CCS
L B” will set the sign of “B” negative. The sign position
of a register may be “preserved” (in carry toggle 0) by
the micro-step “ADS C C”. The result of this operation
will leave the sign of the “C” register zero, and carry
toggle 0 will be on only if the original content of the
sign position was a 1 (was negative).

It should also be noted that,“ADS A D” will leave
the sign of the “D” register in a state which indicates
whether it was the same as the sign of the “A” register
or not. If the signs of “A” and “D” were both positive,
or were both negative, the D register sign will be posi-
tive following the operation. It will be negative other-

14

wise. This operation corresponds to the logical operation
of “exclusive or”, applied only to the sign positions of
the two registers. The micro-step “CCS B B” will, of
course, reverse the sign of the “B” register.

Mnemonic Meaning Description
CPMR1R2 Copy The magnitude field (bits 1-
Magnitude 23) of the register designed by

R1 replaces the same field of the
register designated by R2. The
sign position of the R2 register
remains unchanged. If both Rl
and R2 designate the same regis-
ter, no change is observed.

CCMR1R2 Copy The magnitude field of the reg-
Complement ister designated by R1 is comple-

Magnitudle mented (1’s complement) and

this result replaces the same field

of the register designated by R2.

ADMR1R2 Add
Magnitude

The magnitude field of the reg-
ister designated by Rl is added
to the magnitude field of the reg-
ister designated by R2. This re-
sult replaces the magnitude field
of the R2 register. The sign posi-
tion of the R2 register is not af-
fected. Carry toggles 1 and 9 are
both set by this operation, but
carry toggle 0 is not affected. If
Rl and R2 designate the same
register, the result will be the
same as a magnitude left-shift of
1, with carry toggle 1 indicating
the value of the bit “shifted off”.

AMK R1R2 Add Magni-
tude with
Carry-in

The magnitude field of the reg-
ister designated by Rl is added
to the magnitude field of the reg-
ister designated by R2, and, at
the same time, the content of
carry toggle 1 is added into bit
position 23 of the sum. Carry
toggles 1 and 9 are set by this
operation, but carry toggle 0 is
not affected.

The micro-steps described above allow the computer
to perform arithmetic computations using data words
arranged in a “sign-and-magnitude” format, providing
the sign of the sum is determined separately and is
inserted into the sign position of the proper register.
Double-precision addition in this format is particularly
easy providing the format does not require that the sign
position of the least significant word be used. For exam-
ple, if the “A” and “B” registers contain one double-

precision data word and the “C” and “D” registers con-
tain the other, the micro-sequence

ADM D B
AMK C A

places the double-precision sum in the A and B regis-
ters. In the case of differing signs, the programmer must
expand this sequence to perform the complement opera-
tion on the proper words, and to establish the sign of
the result.

Certain of the micro-operations have been chosen to
allow rapid manipulation of double-precision data
words in a particular format; this format is shown in
Figure 3 and is designated the “floating-point format”.
It should not be assumed that the format shown is the
only possible one which can be implemented on the
computer; it is one whose execution times will be par-
ticularly short. The micro-steps described below refer-
ence the “exponent” and “fraction” fields of the floating-
point format. It should be noted that the “fraction” field
of 15 bits is also a convenient field for an address in a
macro-instruction word, and the micro-steps dealing
with this field can also be used to single out the address
field when it corresponds.

Mnemonic Meaning Description
CPXRLR2 Copy The exponent field of the reg-
Exponent ister designated by R1 replaces

the exponent field of the register
designated by R2. Bit 0 and the
bit field 9-23 of the R2 register
are not affected by this opera-
tion. The exponent field in any
register may be set to zero selec-
tively if the R1 field references a
register whose exponent field is
not present (is permanently
Zero).

CCXR1R2 Copy The exponent field of the reg-
Complement ister designated by R1 is comple-
Exponent mented (1’s complement) and

the result replaces the exponent
field of the register designated by
R2. If RI1 references a register
whose exponent field is perma-
nently zero, and R2 designates a
full 24-bit register, the exponent
field in the latter register is set
to all 1’s.

A 1 at bit position 8 is added
to the exponent field of the reg-
ister designated by R1, and the
result replaces the exponent field
of the register designated by R2.

CIXR1R2 Copy and
Increment

Exponent

Mnemonic

ADX R1 R2

CPFR1R2

CCF R1R2

ADF R1 R2

AFK R1 R2

Meaning

Add
Exponents

Copy
Fraction

Copy
Complement
Fraction

Add
Fraction

Add

Description
Carry toggle 1 is set by this op-
eration, and will contain a 1 only
if the original exponent field of
the Rl register contained all 1’s.
Carry toggles 0 and 9 are not
affected by this operation.

The exponent field of the reg-
ister designated by Rl is added
to the exponent field of the reg-
ister designated by R2, and the

sum replaces the exponent field
of the R2 register. Carry toggle 1
is set by this operation; the other
carry toggles are not affected.

The fraction field (bits 9-23)
of the register designated by Rl
replaces the fraction field of the
register designated by R2. Bits
0-8 of the R2 register are not af-
fected by this operation. The
fraction field in any register may
be set to zero if the R1 field ref-
erences a register whose fraction
field is not present.

The fraction field of the regis-
ter designated by R1 is comple-
mented (1’s complement) and
the result replaces the fraction
field of the register designated by
R2. If Rl references a register
whose fraction field is perma-
nently zero, the fraction field in
the register referenced by R2 is
set to all 1’s.

The fraction field (bits 9-23)
of the register designated by Rl
is added to the fraction field of
the register designated by R2,
and the result replaces the frac-
tion field of the R2 register. Carry
toggle 9 is set by this operation;
the other carry toggles are not
affected.

The fraction field of the regis-

Fraction with ter designated by Rl is added to

Carry-in

the fraction field of the register
designated by R2, and, at the
same time, the content of carry
toggle 1 is added into bit position
23 of the sum. Carry toggle 9 is
set by this operation; the other
carry toggles remain unchanged.

15

Mnemonic Meaning Description

The resulting sum replaces the
fraction field of the R2 register;
bit positions 0-8 of the R2 register
remain unchanged.

An additional micro-step, which might be included
in this group, is the one designated “SFR—Shift Floating
Right”. Since it is somewhat specialized, and involves
the use of the N register for repeat-counting, its descrip-
tion will be deferred until the discussion of the other
shift operations.

CLN and CLD—=Copy Literal to N and
Copy Literal to D

Several “copy” operations of a specialized nature are
possible utilizing micro-steps of this type. Some of these
are described under “Transfer of Control”, since this is
the effect obtained. Another two micro-steps provide
the same function, but reference different registers.

The term “Literal” is used in these micro-steps to
designate that the operand is contained in the modifier
field of the micro-step.

Mnemonic Meaning Description
CLN M Copy Literal The Modifier field of this mi-
toN cro-step, treated as a single 6-bit
or unit, is copied into bit positions
LRCM Load Repeat 3-8 of the N register. Bit positions
Counter 1 and 2 of the N register are set
to zero by this operation. This
micro-step provides a simple way
of initializing the “N” register for
repeated operations such as mul-
tiplication, division, and the vari-
ous shifting micro-steps.
CLDM Copy Literal The modifier field of this mi-

toD cro-step, treated as a single 6-bit
unit, is copied into bit positions
18-23 of the “D” register. Bit posi-
tions 0-17 are set to zero by this
operation.

CFS and CTS—Copy from Special and
Copy to Special

This pair of micro-steps is provided primarily for the
purpose of program interrupt operation. They allow the
programmer to record into the designated register the
contents of the various toggles for storage into main
memory, and provide the facility of retrieving this infor-
mation after the interrupt operation is complete and
restoring the original state of the toggles. Included as
well is the facility for setting special (optional) registers
connected with high-speed input-output devices. It is

16

also possible to set an information pattern into any class
of toggle, or into all three classes together.

In these micro-steps, the R1 field designates the class,
or classes, of device which is to be referenced, according
to the following table:

R1 items Referenced

4 All Carry Toggles

5 All Interrupt Masks

6 All Program Flags

7 All Toggles (Items 4, 5, and 6 Above)

The R2 field is used to designate a register which
either receives the information from the various items,
or provides the information for setting the items ref-
erenced by the Rl field. By convention, the various
classes of toggles are copied to or from the following
register bit positions:
1. Carry toggles 0, 1, and 9 correspond to register bit
positions 9-11.

2. The interrupt masks correspond to register bit
positions 14-17.

3. The program flags correspond to register bit posi-
tions 18-23.

Mnemonic

CFSR1R2

Meaning
Copy from
Special

Description

The information contained in
the item, or items, designated by
Rl is copied into the register des-
ignated by R2. If the information
does not occupy the complete
register, the “unused” portions of
the register are set to zero. Where
toggles are designated by R1, if
the toggle is in the on, or true,
state, the register bit position cor-
responding will be set to 1. If the
toggle is off (false state) the bit
position will be set to zero.

CTSR1R2 The information contained in
the register designated by R2 is
copied into the item, or items,
designated by R1, where such an

operation is possible.

Copy to
Special

Shifting Operations

All shifting operations are performed in a repeated
fashion (with the exception of the “SLS—Shift Left 6”
micro-step) and utilize the “N” register for counting
purposes. Execution proceeds at a rate of 1 clock pulse
per bit shifted (a shift of either zero or 1 position
requires 1 clock pulse). For the direct-shift micro-steps,
the programmer must initialize the “N” register prior to

execution of the shift micro-step. A count may be copied
into the “N” register from some other register; it may be
loaded from memory, or may be inserted by means of
the “LRC—Load Repeat Count” micro-step. Execution
of the direct-shift micro-steps will repeat until the “N”
register is “counted down” to zero. The carry toggles
are not affected by these micro-steps.

SSL and SDL—Shift Single Length
and Shift Double Length

These two micro-steps utilize the Rl field to desig-
nate the type of shifting operation desired. To simplify
discussion, the three bit positions of the Rl field are
called bits A, B, and C. In these two micro-steps they
are given the following meanings:

Bit Value Description

A 0 Shift Left

A 1 Shift Right

B 0 Closed (End-Around) Shift

B 1 Open Shift

C 0 Magnitude Shift (sign position does
not take part in the operation)

cC 1 T.ogical Shift /sign position is shifted)

When an “open” shift is indicated, the vacated posi-
tions of the register are set to zero, and the bits “shifted
off” are lost. The “N” register will always contain zeroes
after the execution of a direct-shift operation.

Mnemonic Meaning Description
SSLR1R2 ShiftSingle The content of the “N” register
Length is examined. If it is initially zero,

no operation takes place. If it is
non-zero, the content of the reg-
ister designated by R2 is shifted
one bit position in the manner
specified by Rl, and the content
of the “N” register is decremented
by 1. This process is repeated un-
til the “N” register is reduced to
zero.

SDLR1R2 Shift Double
Length

The coupled contents of the
“A” and “B” registers, treated as
a single double-length register,
are shifted in the manner desig-
nated by R1. The R2 field of this
micro-step is not used. The “N”
register is decremented by 1 for
each bit position shifted. The op-
eration is repeated until the “N”
register is reduced to zero.

SFR—Shift Floating Right

This micro-step is provided to facilitate certain float-
ing-point operations:

Mnemonic Meaning Description
SFRR1R2 Shift Floating The contents of the fraction
Right field of the “A” register and the

magnitude field of the “B” regis-
ter are treated as a single, ex-
tended-length register and are
shifted right until the content of
the “N” register is reduced to
zero. Zeroes fill the vacated por-
tion of the “A” register, and bits
shifted beyond position 23 of the
“B” register are lost. The R1 and
R2 fields are not used. The sign
and exponent fields of the “A”
register and the sign position of
the “B” register are unaffected.

SLC—Shift Left and Count

Although designed primarily as an aid to manipula-
tions involving normalized floating-point numbers, this
micro-step can be utilized for various types of logical
operations as well. The magnitude field of the “B” reg-
ister, and designated portions of the “A” register, are
treated as a single extended-length register for this
operation. The Rl field of the micro-step serves two
functions: It designates which portions of the “A” reg-
ister are to be involved in the shifting operation, and
also indicates which bit position, or positions, are to be
examined for termination of the shifting process. The
R2 field is not used.

The shifting operation is always a left shift, and is
repeated until one of the bit positions designated for
examination contains a 1. There are circumstances in
which this operation will not terminate, and it is the
programmer’s responsibility to see that they do not
occur. For each bit position shifted the “N” register is
decremented by 1, but the “N” register is not examined
by the process; it terminates only when one of the
designated bit positions of the “A” register is non-zero.

The effect obtained from the various possible con-
figurations of the R1 field can best be seen by reference
to a table. The letters “S”, “X”, and “F” are used to
designate the sign field, the exponent field, and the
fraction field respectively. Where more than one letter
appears it indicates that the designated fields take part
in the shift; absence of a letter or letters indicates that
the fields do not take part in the operation. The Rl
field is shown in binary format.

17

R1 ‘;Qp;%?f::d Bit Positions of “A"” Examined
000 F None. This will not terminate
001 F Position 9 only
010 XF Position 1 only
011 XF Positions 1 and 9
100 SXF Position 0 only
101 SXF Positions 0 and 9
110 SXF Positions 0 and 1
111 SXF Positions 0, 1 and 9
Mnemonic Meaning Description
SLCRIR2 Shift Left The coupled contents of the
and Count magnitude field of the “B” regis-

or ter and designated portions of the
FLCRIR2 FloatLeft “A” register are treated as a sin-
and Count gle extended-length register and
are shifted left until one (or
more) of the bit positions of “A”
designated for examination con-
tains a 1. The content of “N” is
decremented by 1 for each bit
position shifted. The sign position
of “B” and portions of “A” not
designated for shifting remain
unchanged. Vacated portions of
“B” are set to zero.

Multiplication and Division

Two micro-step operations are provided which can
greatly simplify the arithmetic operations of multiplica-
tion and division; in many cases they are sufficient in
themselves to provide this function. They are both re-
peated micro-steps, and the programmer must specify,
by establishing the proper count in the “N” register,
how many times they are to be repeated. The multipli-
cation operation (MPS—Multiply Step) requires 1 clock
time per step of its execution, while divide step (DVS)
requires 2. The operation of each is perhaps best ex-
plained by means of a flow chart (Figure 4). The con-
ditions which must be established by the programmer
prior to the execution of MPS are as follows:

1. The multiplier is loaded into the “B” register.
2. The multiplicand is loaded into the register desig-
nated by R1 (normally the “C” or “D” register).
3. The repeat count is loaded into the “N” register.
4. TIf the result is to be a simple double-length prod-
uct the “A” register must be set to zero. If it is
not zero, its content will be added into the least

significant bit positions of the double-length
product.

18

>

Assuming the “N” register contains “23” at the start
of the operation, indicating that the multiply step opera-
tion is to be executed 23 times, the results will be as
follows:

1. The “A” register will contain the most significant
bits of the product in bit positions 1-23. Bit posi-
tion 0 of the “A” register does not take part in the
operation and remains unaffected.

2. The “B” register will contain the least significant
half of the double-length product in bit positions
1-23. Bit position 0 of the “B” register does not
take part in the operation and is unaffected.

3. The “N” register will contain all zeroes.

4. The contents of all the other registers (except,
perhaps, “P”) remain unaltered.

This multiplication algorithm has many advantages
which may not be obvious from casual inspection. First
of all, the sign of the product can be established in the
single micro-step “ADS”. For integer multiplication
(where the least significant bit is located in bit position
23) the multiplicand is loaded into the “B” register,
“A” is set to zero (if no addition is to take place) and
the “MPS” micro-step is executed 23 times. The integer
product will appear in the “B” register, and overflow
will be indicated by a non-zero “A” register. In this
case, the sign of the product would be established in
the “B” register, either before or after the operation.

Again, dealing with integers, a repeated multiply step
operation can give the result B = BC + A, where the
letters designate the registers involved, and the “="
sign indicates that the result appears in “B”. As before,
a non-zero “A” register indicates overflow.

The divide-step algorithm, shown in flow chart form
in Figure 4, has similar advantages. Prior to execution
of the DVS operation the programmer must establish
the following conditions:

1. The most significant half of the dividend must be
in the “A” register in bit positions 1-23. The sign
bit of “A” is unimportant, but will be destroyed
in the process.
The least significant half of the double-length div-
idend must be in the “B” register, bit positions
1-23. The sign position of the “B” register does not
take part in the operation, and may contain the
pre-established sign of the quotient if desired.
3. The divisor, in 2's complement form, must be in
bit positions 1-23 of the “C” or “D” register. The
sign position of that register must contain a 1.

1o

4. The repeat count must be in the “N” register.

Assuming the “N” register contains “23” at the start
of the operation, indicating that the divide step opera-

Multiply

o IsN=0? @ Exit

[N-1>N]

RL+ A A
=17 |
((IsBa=17) >— (Magnitude)

0 -> Overflow Bit 1->» Overflow Bit if
Overflow.

0->» Overflow Bit if

no Overflow

Shift A and B Right (Cou-
pled, Magnitude, Double-
Length) 1 Position. (Shift
in Overflow Bit.)

Divide

N-1-> N

« LN=0°?)@ Exit

Shift AB (Coupled) Left 1.
By-Pass Sign Bit of B Reg-
ister. Shift A, into A,.

1
Trial Add R1 and A
(Magnitude)

1

Was There) Was There Carry
Overflow? Out of A,?
Copy the I

Sum into A
i
1> B2 0-> B3
1 B

Figure 4. Multiply and Divide Operations

19

tion is to be executed 23 times, the results will be as
follows:

1. The quotient will appear in the “B” register in
bits 1-23.

9. The remainder will appear in the “A” register, in
bit positions 1-23. The sign of the “A” register
will, in general, not mean anything; this can best
be seen from the flow chart.

3. The “N” register will contain all zeroes.

4. The other registers (except, perhaps, “P”) will be

unchanged.

No automatic provision is made to detect a divide-
overflow condition. This problem is left as an exercise
for the programmer.

While it is, in theory, possible to designate some reg-
ister other than “C” or “D” in using both MPS and
DVS, this should be done with caution; in particular,
designating “N” as the multiplicand will result in the
multiplicand being decremented by one after each
iteration. The two micro-steps use the same format
as the others, except that the R2 field must designate
the “A” register. Neither micro-step affects the carry
toggles.
Mnemonic

MPSRL A

Meaning Description

Multiply The content of the register

Step designated by R1 is multiplied by
the content of the “B” register,
and the double-length product
appears in the magnitude fields
of “A” and “B”. The “N” register
must initially contain the number
of multiplication iterations
desired. The sign positions of the
“A” and “B” registers are not
affected. The prior content of the
“A” register is added .into the
least significant bit positions of
the double-length product. The
“N” register will contain all
Zeroes.

Divide The content of the coupled “A”
Step and “B” registers, treated as con-
taining (in their magnitude
fields) a double-length dividend,
is divided by the content of the
register designated by R1. This
latter register must contain the
divisor in 2’s complement form,
and the “N” register must initially
contain the number of divide iter-
ations desired. Following execu-
tion, the quotient replaces the
magnitude field of the “B” reg-

DVSRI1A

20

Description

ister, and the remainder replaces
the magnitude field of the “A”
register. The sign of the “B” reg-
ister is unaffected, but the sign of
the “A” register is destroyed. The
“N” register will contain all
Zeroes.

Mnemonic Meaning

Transfer of Control

The “P” register contains the address in which the
next micro-pair to be executed is located. If the content
of the “P” register is altered during the execution of
any micro-pair, the new pair will be obtained from the
(altered) location indicated by the “P” register. Three
special micro-steps are provided to facilitate this process,
although it may also be accomplished by other means.
For example, if a transfer to some specified location is
desired, it can be accomplished by the micro-step
“LDM P P”. In this case the transfer address must be
located in the memory cell following the one in which
the LDM micro-step is located. Transfer to any portion
of memory can be effected in this manner. If return-
transfer is desired (that is, if one wants to return to
this sequence after transfer to another, as in a subrou-
tine call) the micro-pair

LDI PD
EXC P D

will cause transfer to the desired location in memory,
with the proper return location in the “D” register. In
general, any alteration in the “P” register content will
cause a transfer of control unconditionally. One inter-
esting point in this regard is the following: Recalling
that the “N” register and the “P” register do not overlap,

the micro-step
AMK N P

will cause the following micro-pair to be skipped (not
executed) if carry toggle 1 contained a 1; the pair will
be executed if it contained a zero.

The following three micro-steps utilize the modifier
field as a unit (see Figure 3); it is treated as a single
6-bit (literal) field. Carry toggles are not affected by
these micro-steps.

Mnemonic Meaning Description
CLPM Copy Literal The content of the M field
toP replaces bit positions 18-23 of the
“P” register. The rest of the “P”
register is set to 0 except for bit
positions 9-11, which are set to 1.
This results in an address which
refers to one of the first 64 words
of fast memory.
ALPM Add Literal The content of the M field
to P (from this micro-step) is added

Mnemonic Meaning Description
or into bit positions 18-23 of the “P”
FIRM Forward register. The new micro-pair to be
Transfer ~ executed will be obtained from
Relative the resulting address. Remember
that “P” contains, normally, the
address of the next micro-pair to
be executed.
ACP M Add A number is added to the con-
Complement tent of the “P” register consisting
(of Literal) ~ of all 1’s in bit positions 9-17, and
toP the literal field M in positions
or 18-23. The M field should be in
BTRM Backward 1’s complement form to effect a
Transfer transfer of control to an earlier
Relative part of the sequence. Remember

that “P” normally contains the
address of the next micro-pair to
be executed; if the M field is
composed of all 1’s (the comple-
ment of zero) a dynamic halt
will result.

The last two micro-steps provide simple means for a
relative transfer of control for looping and for other
operations, while the first of the trio provides a method
of control transfer to a group of fixed locations in fast
memoryv. Since each command set requires a control
sequence, this could be located in this region for simple
return-transfer from the many different microutines.

Test Operations

Several micro-steps are provided for testing bits
within registers and most of the hardware toggles. In
all instances, the address field of the micro-step specifies
the item (bit or toggle) being tested. The response is a
conditional prompt “skip” of the next micro-step or
micro-pair. If the conditional-test micro-step is the left-
half micro-step, the right-half micro-step will be condi-
tionally skipped; if it is in the right-half, the next com-
plete micro-pair will be conditionally skipped.

When a left-half test micro-step is executed, its exe-
cution time, as usual, requires one clock pulse. If the
condition is met (i.e., the test is “successful”) the right-
half micro-step will be executed as written and its
timing will also be normal. If, however, the condition
was not met, the right-half micro-step is not executed,
and the next micro-pair is inserted into the “E” register
during the next clock pulse.

Execution of a right-half test micro-step precludes
obtaining the next micro-pair until the result of the test
is known. Thus, if the test is successful, the total elapsed
time is two clock pulses. If the test is unsuccessful, the
computer increments “P” and places the word addressed

by “P” into the “E” register during the same clock pulse.
Therefore, a total elapsed time of two clock pulses is
required for the execution of a right-half test micro-step,
whether the condition is successful or not.

TZO and TNZ—Test for zero and
test for non-zero

These two micro-steps can address any one of the
eight working registers shown in Figure 2. The Rl field
of the micro-step is used to designate the register, while
the R2 field is used to designate the specific portion, or
portions, of the register to be tested. The high order bit
of the R2 field designates the sign position of the reg-
ister, the next (or center) bit designates the exponent
field (bit positions 1-8) and the least significant bit
designates the fraction field. If it is desired to test a
portion of a register, the corresponding bit must be a 1.
If a bit in R2 is a 0, the corresponding portion of the
register will not be tested.

For sign-testing, only the sign position should be
designated. The convention adopted in the design spec-
ifies that a zero sign position is used to designate a plus
(or false) state, while a 1 is used to designate a minus
(or true) state. The bit pattern of the R2 field may be
used in anv combination desired; an octal 7 (all three
bit positions 1) will test the entire 24 bit register; an
octal zero will cause no skip, i.e., the condition tested
is considered met.

Mnemonic Meaning Description
TZOR1R2 Test for The register designated by R1
Zero is tested for zero in those fields

specified by R2. If the indicated

register contains only zeroes in

the field(s) specified for testing,

the next sequential micro-step

will be executed. If the register is

not all zero in the field(s) speci-

fied for testing the next micro-

step (or micro-pair) will be
“skipped”.

TNZR1RZ Test for

Non-Zero

The register designated by R1
is tested for zero in those fields
specified by R2. If the indicated
register contains only zeroes in
the field(s) specified for testing,
the next micro-step (or micro-
pair) will not be executed. If the
register is not all zero (is non-
zero) in the field(s) specified for
testing, the next micro-step (or
micro-pair) will be executed,
since the specified condition
(non-zero) is met.

TMT and TMF—Test Mode bits for true and
Test Mode bits for false

This pair of conditional-test micro-steps is provided
to give extensive bit-testing operations on one specified
field of the “D” register. This field (called the mode
field, or mode bits) can be tested for any desired bit
pattern. It is located in bit positions 6-8 of the “D”
register.

It is expected that most instruction sets designed for
the PB440 will utilize this field to specify index registers
or special addressing modes, and this pair of micro-steps
is provided to make interpretation and index-register
reference as simple and direct as possible.

In both of these micro-steps, the bit pattern to be
tested for appears as the R1 field. “Ones” in the R2 field
are used to indicate which of the three bit positions in
the “D” register are to be tested. If R2 contains an
octal 7, for example, all three of the mode bits of the
“D” register will be tested. If it contains a zero, none of
the mode bits will be tested, and the next micro-step
(or micro-pair) will be executed.

If the bit pattern which comprises the Rl field is
identical, in those bit positions specified for testing by
the mask in R2, the condition is met; if it is not identi-

cal, the condition is not met.

Mnemonic Meaning Description

TMTR1R2 Test Mode The mode bits of the “D” reg-
Bits (of “D") ister (bit positions 6-8) are tested
for True against the bit pattern shown in

R1, in those positions designated
by a mask in R2. If the pattern is
identical, (the condition is met)
the next micro-step (or micro-
pair) is executed. If the tested
condition is not met (the pattern
is not identical) the next micro-
step (or micro-pair) is skipped.

TMFR1R2 Test Mode The mode bits of the “D” reg-
Bits (of “D") ister (bit positions 6-8) are tested
for False against the bit pattern shown in

R1, in those bit positions desig-
nated by a mask in R2. If the
pattern is identical (the condi-
tion is met) the next micro-step
(or micro-pair) is not executed.
If the tested condition is not met
(the pattern is not identical) the
next micro-step (or micro-pair)
is executed.

TCT and TCF—Test Condition True and
Test Condition False

This pair of micro-steps is provided to test various
conditions not covered by the zero test and mode test
22

micro-steps. In these micro-steps, the Rl field is used
to designate which class of device is to be tested, and
R2 designates which member (or members) of that
class is to be tested. The device classes which can be

tested in this way are:
Class O:

The six program flags. These are individual toggles
which can be set under program control to either the
true or false state; they may be considered to be 1
bit (Boolean) registers.

Class 1:

Interrupt masks. These masks (toggles) are used
to control the effect of interrupt signals received from
the input-output devices. They are described in more
detail in the section concerned with input-output
equipment.

Class 2:

The carry toggles and the parity toggle. A parity
toggle test should be made with caution since the
results being tested may be destroyed by an interrupt
before the test is made. This possibility may be
voided by making certain the micro-step making the
test is the right-hand micro-step of the word contain-
ing the load or store micro-step which sets the parity
toggle for the test. It may also be avoided by turning
off the interrupt masks for all channels that could
cause an interrupt until the test has been made.

Class 3:

The sense switches. These switches are mounted
on the computer console and can be set by the oper-
ator. Their setting cannot be altered by a program in

the computer.
Class 4:

Interrupt lines. These lines are made true or false
by the input-output devices, and represent one way
of determining the status of any device. Their opera-
tion is described in more detail in the section dealing
with the input-output equipment.

Class 5:

“A” or “B” register bit positions. Certain of these

bit positions can be tested individually for 0 or 1.
Class 6:

“D” register bit positions. Certain specific bit po-

sitions of the “D” register may be tested individually

forOorl.
Class 7:

Not assigned.
Some possible combinations represented by R1 and
R2 have not been defined. Those which have been
defined are shown in the following table:

(Class) R2 Item
0 1 Program Flag #1

Program Flag #2
Program Flag #3
Program Flag #4
Program Flag #5
Program Flag #6

oo o oo
DD W N

R1
(Class)

R2 Item
1 1 Interrupt Mask for Channel #1
1 2 Interrupt Mask for Channel #2
1 3 Interrupt Mask for Channel #3
1 4 Interrupt Mask for Channel #4
2 0 All Carry Toggles Zero (Off)
2 1 Carry Toggle 0
2 2 Carry Toggle 1
2 3 Carry Toggle 9
2 7 Parity Toggle (This toggle indi-
cates the parity of the last word
involved in a memory access
micro-step.)
3 0 All Sense Switches Off
3 1 Sense Switch #1
3 2 Sense Switch #2
3 3 Sense Switch #3
3 4 Sense Switch #4
3 5 Sense Switch #5
3 6 Sense Switch #6
4 0 All Interrupt Lines False. (No
interrupt present)
4 1 Interrupt Line #1
4 2 Interrupt Line #2
4 3 Interrupt Line #3
4 9 Interrupt Line #4
4 5 Bufter Channel Request Line
5 1 “A” Register, Bit Position 1
5 2 “A” Register, Bit Position 23
5 7 “B” Register, Bit Position 23
6 l “D” Register, Bit Position 9
6 2 “D” Register, Bit Position 10
6 3 “D” Register, Bit Position 11
Mnemonic Meaning Description
TCTRIR2 Test The condition designated by
Condition the R1 (class) and R2 (item)

True fields is tested. If the condition
is true, the next micro-step (or
micro-pair) is executed. If the
condition tested is false, the next
micro-step (or micro-pair) is
skipped.

TCFRLR2 Test The condition designated by
Condition the R1 and R2 fields is tested. If
False the condition is false, the next
micro-step (or micro-pair) is exe-
cuted. If the condition is true, the
next micro-step (or micro-pair)

is skipped.

STT and STF—Set Toggle True and
Set Toggle False

These two micro-steps have been provided to allow
the programmer to set the program flags, interrupt

masks and carry toggles either “on” (true) or “off”
(false). As with the “test condition” micro-steps, the
R1 field is used to designate the class of device, and the
R2 field is used to designate which item (or items) in
the class is to be affected. It will be noted that the same
class designations apply to both sets of micro-steps,
except those which cannot be changed by the computer
program are not defined for the “set” micro-steps. Those
combinations which can be used are shown in the fol-

lowing table:
R1

(Class) R2 Item(s)

0 1 Program Flag #1

0 2 Program Flag #2

0 3 Program Flag #3

0 4 Program Flag #4

0 5 Program Flag #5

0 6 Program Flag #6

0 7 All Program Flags

1 1 Interrupt Mask for Channel #1
1 2 Interrupt Mask for Channel #2
1 3 Interrupt Mask for Channel #3
1 4 Interrupt Mask for Channel #4
2 1 Carry Toggle 0

2 2 Carry Toggle 1

2 3 Carry Toggle 9

Other Micro-Steps

Mnemonic Meaning

HLTRIRZ Hait

Description

Execution of this micro-step
causes the automatic program
sequencing to stop, but has no
effect on any of the registers or
toggles. The R1 and R2 fields are
not used.

Execution of this micro-step
causes no operation to be per-
formed other than (perhaps) the
automatic incrementation of the
“P” register. The R1 and R2 fields
are not used. It does nothing at
all, and it takes only 1 microsec-
ond not to do it.

The R2 field designates a reg-
ister containing a micro-pair to
be executed immediately. The
content of the “P” register is not
automatically incremented dur-
ing execution of the special pair.
If EMP is a left-hand micro-step,
the right-hand micro-step will be
ignored, and will require no exe-
cution time.

NOPRIR2 No
Operation

EMP R2 Execute

Micro-Pair

23

INPUT-OUTPUT SYSTEM

This discussion is confined to the input and output
hardware of the PB440 main frame, and to micro-steps
which perform input and output operations. Informa-
tion on the detailed operation and control of data input
and output devices is contained in a peripheral equip-
ment manual.

An input-output device can communicate with the
computer over one of four separate channels. The four
channels can be assigned at will to any of the devices
present on the computer, and this assignment can be
changed as desired, under program control.

Each device contains a “controller” which allows the
computer to exercise control over the device, and which
informs the computer of the status of the device. Most
controllers contain either a character or word bufter
and data transmission is either in character- or word-
parallel mode. The computer actually communicates
only with this buffer for data transfer operations.

All data transfer and 1/0 device control operations
are under control of the computer program, and each
action taken is specified by the program. Only one
action at a time can be designated, but, by careful pro-
gramming, many devices can be kept operating at full
speed “simultaneously” since the computer program
can proceed at many times the response rate of most
input-output devices.

Each of the four communication channels contains
an “interrupt line” which is capable of interrupting the
normal computer program sequence if the programmer
has made provision for this tvpe of operation. The four
interrupt lines are examined, in numerical sequence, by
a four-position switch called a “commutator”, at the
clock rate of the computer. Each line is, therefore, ex-
amined once every four clock pulses for the presence
of an interrupt signal. The programmer can control the
effect that an interrupt signal can have on each of the
four lines individually. The ‘commutator action itself
is also under program control. It can be “unlocked”, so
that it will perform its normal scanning function auto-
matically, or it can be “locked” onto any one of the four
channels. It must, in fact, be locked for any data trans-
fer operation to take place.

Any of the devices may be “connected” to, or “discon-
nected” from the computer under program control,
although it is unlikely that the computer will be able
to turn them on or off physically. For more advanced
configurations of input-output equipment, this connect-
disconnect feature makes it possible for more than 4
devices to be operated on-line simultaneously.

The Interrupt Masks are a set of toggles which can
be set and tested under program control. Their function

24

is to determine the effect that an interrupt signal is to
have on their particular channel. If they are set to the
false or “0” state, interrupt signals have no effect on
the normal program sequence. The particular interrupt
line which has been “masked off” by this action will,
however, remain in the true state, and may be tested by
means of the TCT and TCF micro-steps. This mode of
operation has been named “programmed interrupt’,
since the conditions under which the program responds
to an interrupt signal are determined solely by how the
program is written.

If an interrupt mask is set to the true, or “17, state,
an interrupt signal on that channel will cause an “auto-
matic interrupt” operation to take place. This operation
consists of locking the commutator on the channel
which caused the interrupt, waiting until the micro-pair
in the “E” register has been executed, and then loading
the “E” register from one of the first 4 locations in fast
memory. If this mode of computer operation is chosen,
the programmer must see to it that the proper interrupt
program sequence is present in memory, and that the
corresponding location chosen for its first micro-pair
contains the proper micro-pair to preserve the content
of the “P” register and to transfer control to the inter-
rupt program sequence.

Since each of the interrupt masks can be set as
desired, the programmer may choose between these
different methods of operation for each separate chan-
nel. Any interrupt signal which reaches the commutator
(that is, is not “masked off”) will cause automatic inter-
rupt and will also lock the commutator to the line on
which the interrupt signal was detected. No automatic
interrupts can be effected while the commutator remains
locked.

An additional line (called the “Buffer Channel Re-
quest” line) is available to provide an input-output
“ready” signal from remote 1/0 devices. Several remote
devices may be connected to this request line when the
servicing of these devices is an exceptional occurrence.
Devices on the request line need not be assigned an
I/0 channel, and may not cause an “automatic inter-
rupt” as described above. Instead, the devices con-
nected to this line will provide the computer with a
“ready” signal, which will be reflected in the master
interrupt line (as well as the “Buffer Channel Request”
interrupt line) being set “true”. A micro-sequence may
then interrogate the devices connected to the request
line to determine which device presented the ready
signal, assign an 1/0 channel to the device, and then
service that device. After the device is serviced, the
1/0 channel may be reassigned to the device formerly
on that channel.

SEL—Select an Input or Output Device

The first of the three input-output micro-steps selects
a particular device, assigns it to one of the four chan-
nels, and receives a report of its status. It uses the R1
field to designate a register which must contain a “com-
mand word” for the device in question. The approxi-
mate format for this command word is shown below:

[sTco[cNn][FM DN [cH| oOP

Bit Pos. Field Description
0 S Status Only Bit
14 C0 Controller Type (Part of Device
Address)
56 CN Controller Number (Part of
Device Address)
7-8 FM Format Designation
9-11 DN Device Number (Part of Device
Address)
1213 CH Channel Assignment
1423 0P Operation to be Selected

The “S” field is used to select the device addressed,
or to merely return a status response from that device.
It acts as a master control over the bit positions in the
operation field. If the S field contains a “07, the
addressed device is selected and assigned to the channel
number indicated in the channcl assignment field. If the
S field contains a “1” the operation field has no effect;
it is used to obtain the status of a device without actu-
ally selecting it.

Controller Type Field

The device address actually consists of three parts:
The type of controller (i.e., photoreader, typewriter,
magnetic tape, etc.), the number assigned to that con-
troller (there may be more than one of that type), and
the number of the device in question, since certain con-
trollers can handle more than a single device. The
controller types already defiined are as follows:

Bit Pos.
1 2 3 4 Controller

0100 Paper Tape Punch
0010 Paper Tape Reader
0 001 Typewriter
1100 Magnetic Tape
1010 Card Punch
1001 Line Printer
1011 Card Reader

Controller Number Field

The controller number field is defined by the par-
ticular controller addressed. Each type of controller for
basic equipment has the number 00. Other controllers
of that type are assigned numbers other than 00 at the
time the PB440 is installed.

Format Designation Field

The interpretation of the remainder of the SEL com-
mand word (bits 9-23) is determined by the bit con-
figuration in the “FM” field. The special interpretations
of bits 9-23 are for the optional high-speed buffered
I/0 system.

Bits In
Positions

7-8 Interpretation

00 Normal interpretation as shown
above.

01 Bits 9-23 indicate the number of
words of data that are to be trans-
mitted via the optional high-
speed buffered 1/0 system.

10 Bits 9-23 indicate the initial
memory location to be associated
with data transmitted by the op-
tional high-speed buffered 1/0
system.

11 Bits 9-23 indicate the number of

words of data that are to be
transmitted via the optional high-
speed buffered I/0 system (An
interrupt is sent upon completion
of data transmission.)

Device Number Field

The device number field is defined by the particular
device addressed. Each of the basic devices is assigned
the number 000. Other devices of each type are as-
signed numbers other than 000 at the time the PB440
is installed.

Channel Assignment Field

The channel to which the device is to be assigned
muist appear in the “CH” field of the command word.
The channel numbers are as follows:

Bits Channel

00 Channel #1
01 Channel #2
10 Channel #3
11 Channel #4

Any device may be assigned to any of the four avail-
able channels, but should not be assigned to a channel
already in use. Should two devices be assigned to the
same channel and both be capable of transmitting data
at the same time, a data transfer at the same time will
result in both data words being combined (logical or)
during transmission

Operation Field

The operation (OP) field utilizes individual bit posi-
tions to designate the desired operation(s). More than
one operation may be selected if the bits have meaning
for the selected device. Certain of the operations have
no meaning for certain devices, and are ignored by that
controller. (You can’t rewind the typewriter, for
example.) 05

The status-response word will be returned by the
controller to the register designated by Rl The status-
response word is primarily to provide the computer
with the status information necessary to control the
input-output device. For the basic equipment this infor-
mation is minimal. For optional devices this information
may be quite comprehensive.

For all controllers, bit 23 of the response-word will
contain a “1” if the device is present, the power is on,
and the device is in working condition; otherwise that
bit will contain a zero.

Mnemonic

SELR1R2

Meaning

Select The R2 field is used to desig-
nate a register which contains
an input-output device command
word. This command word is exe-
cuted (if it indicates it should
be) and the device is assigned a
channel number and is “con-
nected” to the computer on that
channel. A status response word
replaces the content of the regis-
ter designated by R1, indicating
the status of the selected device.
The timing is such that R1 and
R2 may designate the same reg-
ister.
COM—Commutator Control

This micro-step utilizes the R1 field to indicate which
of three possible operations is to be performed. Any
combination of these operations is possible, and each is
called into action by the presence of a “1” in the proper
bit position. If we designate the three bits of the R1
field by the letters A, B, and C, the individual opera-
tions possible are as follows:

Bit Value

A 0

Resulting Operation

Unlock the commutator for
automatic scanning. If the com-
mutator is already unlocked, no
operation results.

Lock the commutator to a par-
ticular line. Note that line num-
ber one (channel #1) has the
number 00, line number two has
the number 01, etc. The specific
line is chosen from the register
designated by R2 if bit B = 1,
or is its present step in sequence
if bit B = 0.

No effect

Set the commutator to a value
determined by the content of bit
positions 21 and 22 of the register
designated by R2.

No ettect

26

Bit Value

C 1

Resulting Operation

The present setting of the com-
mutator is logically “or’ed into
bit positions 21 and 22 of the reg-
ister designated by R2, leaving
the remainder of the bit positions
of that register unchanged.

Description
Perform the action, or actions,

indicated by the Rl field on the
commutator. Utilize bit positions
21-22 of the register designated
by R2 for these actions if
required.

DTR—Data Transfer

The actual data transfer operation into and out of
the computer is controlled by the third, and last micro-
step of this group. For it to operate correctly the device
must first be selected (by the SEL micro-step) and the
status of the device must indicate that it is not busy. A
chosen device may remain “connected” to the computer
indefinitely; it is disconnected only when specifically
instructed by a subsequent micro-step.

Mnemonic Meaning

COM R1R2 Commutator
Control

The commutator must be locked (either as caused by
an automatic interrupt or by means of the COM micro-
step) to the proper channel. If it is not locked, no data
transfer operation will take place. The execution of the
data transfer also results in a conditional jump of the
next micro-step (or micro-pair) if a “special condition”
line in the 1/0 channel is false; it will not be skipped if
the “special condition” line is true. For example, if there
is a parity error in the character being transmitted by
the photoreader, the special condition line is true and
the next micro-step (or micro-pair) is executed. If there
is no parity error, the next micro-step (or micro-pair)
is skipped. Thus the DTR micro- step results in a con-
ditional jump identical to that of the “TCT--Test Con-
dition True” micro-step, where the condition tested is
the special condition line of the input-output system.

The data transfer micro-step utilizes the R1 field to
indicate which of several operations is to be performed,
as indicated in the following table:

R1 Operation to be Performed

0 Disconnect device.

1 Data Transfer In.

2 Data Transfer Out.

3 Data Transfer IN and OUT.

This operation is provided to per-
mit controllers which have been
designed for special purposes to
be used with the PB440 system.

R1 Operation to be Performed

4 No Data Transfer. The com-
puter does not send or accept
information. The controller, how-
ever, is activated to send or ac-
cept information. This combina-
tion is not practical and should
be avoided.

5 Data Transfer In, and end of
message.

6 Data Transfer Out and end of
message.

7 Return status response from
device to register designated by
R2,
Description

Data are transferred into or
out of the register designated by
R2, under control of R1. For data
transfers of less than a word of
data, the character is placed in or
taken from the least significant
bit positions of the register. The
content of the register is un-
changed by the output operation.
For both input and output data
transfers the next micro-step (or
micro-pair) is skipped if the spe-
cial situation is false. If the spe-
cial situation is true no skip
occurs.

OPTIONAL HIGH-SPEED BUFFERED
INPUT-OUTPUT SYSTEM

The PB440 standard memory module (4096 words of
25 bits including parity) is designed to be connected
in a tandem arrangement to the memory busses of a
single computer. Certain classes of applications, how-
ever, require that one or more modules which comprise
the memory system of the computer, be shared with
other devices. These applications can be accommo-
dated by employing a memory interchange to sample
read-write requests from the several devices and, to
connect the device’s address and data busses to those
of the memory module(s) being shared for the dura-
tion of a single operation. From 1-8 memory modules
may thus be shared by a maximum of 4 devices as
shown in Figure 5. The modular design of the memory
interchange allows the use of only the device switch-
ing electronics which are associated with the active
channels.

In order to permit two or more PB440’s to share a
common portion of their memory as described above,
it is only necessary to connect the “remote memory”

Mnemonic Meaning

DTRR1R2 Data
Transfer

Standard 4K
Memory Module

I 1

Memory Interchange

R

| IR

('
1
Basic -1
-

N ? lgh‘i Standard
PB440 : : pee o 10
O B o Device
Adapter [Controller

Figure 5. PB440 Shared Memory and High Speed 1/0 Options

output jacks of each of the individual computers to one
set of the memory interchange input jacks. If the shar-
ing device is instead an input-output controller (as il-
lustrated in Figure 5), an additional unit, termed a
high-speed I/O adapter, is required. During system
assembly, an adapter is connected between the com-
puter I/0 bus and the controller for the selected device
(a separate adapter is required for each device). The
adapter transmits I/O commands from the computer
to the controller and returns status responses to the
computer as required by the basic /O communications
procedures.

In addition it contains a word counter and a current
storage address counter which are filled by the pro-
gram at the outset of a data block transfer between the
device and the designated area of shared memory. The
adapter thereafter functions to translate the controller’s
requests for inputs or outputs, into memory read or
write signals, respectively, and conducts the corre-
sponding data transmissions directly from or into mem-
ory. The computer may thus continue processing with-
out interruption until such time as the desired number
of words shall have been transferred. When the desired
number of words have been transferred, the transmis-
sion is terminated, and if the option of requesting an
interrupt has been exercised, the interrupt takes place
at this point.

The maximum data transfer rates which can be ac-
commodated by the above described use of the mem-
ory interchange and 1/0 adapter options are determined
by the standard memory module cycle time (5 micro-
seconds) and the degree of competition among the de-
vices connected to a memory interchange. The result-
ing data rate capabilities are tabulated below for the
conditions of 1-4 active channels. In addition to a 24-bit
word rate, a character rate is quoted which is appli-
cable to those character oriented devices whose 1/0
controller is equipped with an assembly-disassembly
register for 6-bit characters. Also, the 24-bit word rate
is quoted as a bit rate to facilitate comparison with
competitive equipment.

27

Number of
Simultaneously
Active Channels

1
2
3
4

SHARED MEMORY DATA RATES

Wozltti‘BRigte Ch:;.Bgate RBait‘e

200 KC 800 KC 48 MC

100 KC 400 KC 24 MC
67 KC 268 KC 1.6 MC
50 KC 200 KC 1.2MC

SUMMARY OF OPERATION CODES

All micro-steps are shown in the following tabulation.
Symbols which appear in the “Operation” column are
defined as follows:

SYMBOL

[R]

n
ni

Nx

(S)
(M)
(X)
(F)
(Ch)
(HN)
(HA)
Rem
<N>
(MD)

EX
N.C.

Elllm'@ﬂ > 1~ ﬂ+¢*

MEANING

Content of memory cell whose address is
in R

Numeric Value

Numeric Value of Integer (at bit position
23)

Numeric Value of Integer (at bit position 8)
Working Storage Location

Register Field

Sign Field of Register

Magnitude Field of Register

Exponent Field of Register

Fraction Field of Register

Character field, bits 18-23.

Bits 1-2 of N register

High Address, bits 9-11

Remainder after division process

Repeat step until N = 0

Mode field (bits 6-8) of “D” Register
Content of carry toggle 1 added to bit posi-
tion 23

Execute next micro-step (or Micro-Pair) if
Carry toggles not set by “+” operation
Replaces

Exchange contents

Add contents

Multiply

Divide

“Not” or 1’s complement

Logical Product

Logical sum

Exclusive Or

Register Shift Operation

Is identical with

As designated by convention assigned to R

Wherever the add operation (+) is indicated it can
be assumed that the carry toggles will be set if the
corresponding field takes part in the operation. Where
a field does not take part, or where the symbol “N. C.”
is shown, the carry toggles are not affected.

28

The Roman numerals and letters which appear in
the “Timing Group” column designate the group to
which a micro-step is assigned for timing purposes.
These groups are as follows:

GROUP
1

II

111

IVA

VI A

VII A

EXECUTION TIME
One clock pulse unless used as a right-half
micro-step which replaces or alters the “P”
register.
One clock pulse when used as a left-half micro-
step; two clock pulses when used as a right-half
micro-step.
The time depends upon the device addressed
and whether the device is ready to return the
status response or other information to the com-
puter; the computer will delay until the status
response is received. The normal execution
time for a paper tape device which is ready is
four clock pulses.
N clock pulses, where N is the number con-
tained in the “N” register prior to execution of
the group IV micro-step. The execution time
may not, however, be zero. Therefore, if N
is zero, the execution time is the same as if N
were one, although the result will be that no
register, except perhaps “P,” is changed.
N clock pulses, where N is the number of bit
positions shifted for normalization. A shift of
zero bit positions and a shift of one bit position
both require one clock pulse.
2N clock pulses, where N is the number con-
tained in the “N” register prior to execution of
the group V micro-step. As in group IV, the
execution time is the same for N = O and N
=1.
Two o’clock pulses with a shadow time (see
page 10 for a definition of shadow time) of
three clock pulses when the operand is obtained
from main memory by a left-half micro-step.
Three clock pulses with a shadow time of two
clock pulses when the operand is obtained from
main memory by a right-half micro-step.
The same time as for group Il micro-steps
(with no shadow time) when the operand is
obtained from fast memory.
One clock pulse with a shadow time of four
clock pulses when the operand is stored in main
memory by a left-half micro-step.
Two clock pulses with a shadow time of three
clock pulses when the operand is stored in main
memory by a right-half micro-step.
Eight clock pulses with no shadow time when
the operand is stored in fast memory by a left-
half micro-step.
Nine clock pulses with no shadow time when

the operand is stored in fast memory by a right-
half micro-step.

MNEMONIC
ADF R1 R2
ADIL R1 R2
ADM R1 R2
ADSR1 R2
ADX R1 R2
AFK R1 R2
ALCRI1 R2
AMK R1 R2
AND R1 R2
BTRM
CCF R1 R2
CCL RI1 R2
CCM R1 R2
CCS R1 R2
CCX R1 R2
CDL R1 R2
CFSR1 R2
CILR1R2
CIX R1 R2
CLDM
CLPM
COM R1 R2
CPF R1 R2
CPL R1 R2
CPM R1 R2
CPS R1 R2
CPX R1 R2
CTSR1 R2
DTR R1 R2
DVSRI A
EMP R2
EXC R1 R2
FTRM
HLT

Alphabetically by Mnemonic Code

OCTAL MEANING

41
55
43
73
53
40
51
42
56
14
71
63
62
61
60
54
77
44
52

Add Fractions

Add Logical

Add Magnitudes

Add Signs

Add Exponents

Add Fractions, Carry-in
Add Logical for carry

Add Magnitudes, Carry-in
And (logical product)
Backward Transfer Relative
Copy Complement Fraction
Copy Complement Logical
Copy Complement Magnitude
Copy Complement Sign
Copy Complement Exponent
Copy Decrement Logical
Copy From Special

Copy, Increment Logical
Copy, Increment Exponent
Copy Literal to D

Copy Literal to P
Commutator control

Copy Fraction

Copy Logical

Copy Magnitude

Copy Sign

Copy Exponent

Copy To Special

Data Transfer

Divide Step

Execute Micro-Pair
Exchange

Forward Transfer

Halt

OPERATION

R1(F) + R2(F) > R2(F)

Rl + R2-> R2

R1(M) + R2(M) =» R2(M)
R1(S) + R2(S) = R2(S)
R1(X) + R2(X) = R2(X)
R1(F) + R2(F) + K-> R2(F)
Rl + R2

R1(M) + R2(M) + K- R2(M)
R1 A R2-> R2

-~0(~Ch) + M(Ch) + P=» P; N. C.
~RI(F)=» R2(F)

-~ Rl1-> R2
~R1(M) = R2(M)

- RI(S) =» R2(S)

-~ R1(X) > R2(X)

-0+ R1=» R N.C.
[R1}-> R2

Rl + 1> R2

R1(X) + <= R2(X)

M = D(Ch); 0 = D(=Ch)

TIMING
GROUP

I

[oan T o B o Y B B T e T |

(]
|

e TR T B B]

[T e B R e S

M-=>» P(Ch);7->»P(HA);0->» P(~Ch-HA) 1I

Control com{R1}; Com <€ R2[R1]
R1(F) - R2(F)

R1 > R2

R1(M)-=>» R2(M)

R1(S)-=>» R2(S)

R1(X) = R2(X)

R2->» [R1]}

{R11->> R2 or R2 > [R1}

A, B(M)/R1-> B(M); Rem A(M) <N>
{R2] =>» E

Rl «€«——>> R2

P+ Mi=>» P; N.C.

Halt

e e pe e e e

III

PAGE

29

Alphabetically by Mnemonic Code

MNEMONIC OCTAL MEANING OPERATION TROUP PAGE
LDI R1 R2 26 Load and Increment [R1]=>» R2; R1 +1: = Rl; N.C. vl 11
LDMR1R2 27 Load from Memory [R1] = R2 VI 11
LDSRIR2 22 Load Special [R1}-> R2 vl 12
LDWnR2 23 Load from Working Wi => R2 Vvl 11
LORRIR2 64 Logical “Or” R1 ¥V R2->» R2 I 13
LRCM 05 Load Repeat Count M- N(X); O->» (HN) I 16
MPS R1 A 15 Multiply Step B(M) ®* R1(M) + A(M)-=>» A, B(M) <N> IVA 20
NOP 00 No Operation I 23
SDL R1 13 Shift Double Length A, B ${R1] <N> IVA 17
SELR1R2 12 Select Status = RI; select [R2} Inr 27
SFR 11 Shift Floating Right A(F), B(M) $ right <N> IVA 17
SL6 R1 R2 67 Shift Left Six R1 $ left 6 - R2 I 13
SLCR1A 03 Shift Left and Count A[R1}, B(M) $ left [R1] until {R1] =1 IVB 18
SSL R1 R2 66 Shift Single Length R2 $ [R1} <N> IVA 17
STI R1 R2 24 Store and Increment R2-> [R1]; R1 + 1i=> R1; N.C. VII 11
STMR1R2 25 Store into Memory R2-> [R1] VII 11
STFR1IR2 34 Set Toggle False 0-> [R1} [R2] I 23
STS R1 R2 20 Store Special R2 > [R1] VII 12
STTR1IR2 36 Set Toggle True 1-> [R1} {R2} I 23
STWnR2 21 Store into Working R2 -» W VII 11
TCFRIR2Z 35 Test Condition False EX{R1} [R2] =0 I 23
TCTR1R2 37 Test Condition True EX{R1} [R2] =1 Imr 23
TMFRIR2 31 Test Mode False EX R1- =(MD) {R2} Im 22
TMTRIR2 33 Test Mode True EX R1=(MD) [R2} I 22
TNZR1R2 30 Test Non-Zero EX R1-= 0 [R2} I 21
TZOR1R2 32 Test for Zero EX R1=0 [R2} I 21
XORR1R2 57 Exclusive Or R1 & R2-> R2 I 13

30

OCTAL

01
02

MNEMONIC
NOP

HLT

CTS R1 R2
SLCR1 A
CLPM

LRC M
EMP R2
CLD M
DTR R1 R2
SFR

SEL R1 R2
SDL R1
BTR M
MPS R1 A
FTR M
DVSRI A
STS R1 R2
STW n R2
LDS R1 R2
LDW n R2
STI R1 R2
STM R1 R2
LDI R1 R2
LDM R1 R2
TNZ R1 R2
TMF R1 R2
TZO R1 R2
TMT R1 R2
STF R1 R2
TCF R1 R2
STT R1R2

Numerically by Octal Code

MEANING

No Operation

Halt

Copy to Special
Shift Left and Count
Copy Literal to P

Load Repeat Count
Execute Micro-Pair
Copy Literal to D
Data Transfer

Shift Floating Right
Select

Shift Double Length
Backward Transfer Relative
Multiply Step
Forward Transfer
Divide Step

Store Special

Store into Working
Load Special

Load from Working
Store and Increment
Store into Memory
Load and Increment
Load from Memory
Test Non-Zero

Test Mode False
Test for Zero

Test Mode True

Set Toggle False
Test Condition False

Set Toggle True

OPERATION

Halt
R2 <> {R1]
A[R1], B(M) $ left [R1} until {R1} =1

M =>» P(Ch); 7 =» P(HA); 0 —>
P(— Ch—HA)

M = N(X); O > (HN)

[R2] > E

M= D(Ch);0->» D(— Ch)
[R1}->> R2orR2 => [R1}

A(F), B(M) $ right <N>

Status = RI; select [R2]

A, B $[R1} <N>

~0(=Ch) + M(Ch) + P=»P;N.C.

B(M) ® RI(M) + A(M)=>» A, B(M) <N>

P + Mi=>» P:. N.C,

A, B(M)/R1 -3 B(M); Rem A(M) <N>

R2 > [R1]

R2 =» Wn

[R1] > R2

Wn ->» R2

R2->» [R1]; Rl + li > RI;N.C.
R2 = [R1]

[R1]=> R2;R1 + li = R1;N.C.
[R1] <> R2

EXRl1—=0{R2]

EX R1—= (MD) [R2}

EX Rl1=0[R2]

EX Rl = (MD) [R2]

0-> [R1}[R2]

EX{R1}{R2} =0

1> [R1} [R2]

TIMING
GROUP

I

I

I
IVB

II
1
I
I
III
IVA
111
IVA
IT
IVA
11
v
VII
VI
VI
VI
VIL
VII
\%!
VI
II
II
II
II

II

PAGE

31

OCTAL

37
40
41
42
43
44
45
46
47
50
51
52

55
56
57

61
62
63

65
66
67
70
71
72
73
77

32

MNEMONIC
TCT R1 R2

AFK R1 R2
ADF R1 R2
AMK R1 R2
ADM R1 R2
CIL R1 R2
EXCRI R2
CPL R1 R2
CPM R1 R2
CPX R1 R2
ALCRI1 R2
CIX R1 R2
ADXRI1 R2
CDL R1 R2
ADL R1 R2
AND R1 R2
XOR R1 R2
CCXRI1 R2
CCS R1 R2
CCM R1 R2
CCL R1 R2
LOR R1 R2
COM RI1 R2
SSL R1 R2
SL6 R1 R2
CPF R1 R2
CCF R1 R2
CPS R1 R2
ADS R1 R2
CFS R1 R2

Numerically by Octal Code

MEANING

Test Condition True

Add Fractions, Carry-In
Add Fractions

Add Magnitudes, Carry-In
Add Magnitudes

Copy, Increment Logical
Exchange

Copy Logical

Copy Magnitude

Copy Exponent

Add Logical for Carry
Copy, Increment Exponent
Add Exponents

Copy Decrement Logical
Add Logical

And (logical product)
Exclusive Or

Copy Complement Exponent
Copy Complement Sign
Copy Complement Magnitude
Copy Complement Logical
Logical “Or”

Commutator Control

Shift Single Length

Shift Left Six

Copy Fraction

Copy Complement Fraction
Copy Sign

Add Signs

Copy From Special

OPERATION

EX[R1}{R2]} =1

RI(F) + R2(F) + K - R2(F)
RI(F) + R2(F) > R2(F)
RI(M) + R2(M) = K = R2(M)
RI(M) + R2(M) > R2(M)
R1 + 1->» R2

R1 <««—>» R2

R1 2> R2

RI(M) = R2(M)

RI(X) > R2(X)

R1 + R2

RI(X) + Ix = R2(X)
RI(X) + R2(X) 3 R2(X)
-0 + R1-> R2; N. C.

R1 + R2 ->» R2

R1 A R2->» R2

R1 @ R2 > R2

— R1(X) 3 R2(X)
—RI(S) = R2(S)
—RI(M) > R2(M)

—R1 > R2

R1 A R2 -2 R2

Control com [R1}; Com <=3 R2 {R1]}]
R2 $ (R1} <N>

R1 $ left 6 > R2

RI(F) 3> R2(F)

—RI(F) 3 R2(F)
RI(S) = R2(S)

R1(S) + R2(S)-=>» R2(S)
[R1}-> R2

TIMING
GROUP

II

HHHH)—‘H)—()—‘P—‘HHHHH)—QP—I)—(HI—‘HHH

==
<
>

| DR T T B B

PAGE
23

15
15
14
14
13
13
12
14
15
13
15
15
13
13
13
13
15
14
14
12
13
27
17
13
15
15
13
14
16

Binary
000000
000001
000010
000011

000100
000101
000110
000111

001000
001001
001010
001011

001100
001101
001110
001111

010000
010001
010010
010011

010100
010101
010110
010111

011000
011001
011010
011011

011100
011101
011110
011111

(BS)—Backspace
(LF)—Line Feed

PB440 CHARACTER CODES

Octal
00
01
02
03

04
05
06
07

10
11
12
13

14
15
16
17

20

oy §
22
23

SRHR

30
31
32
33

34
35
36
37

Character

=
=

P S
1l 53 © ® N OUE WD
"

\VARD

v~ QOMEY O% - +

44+/\l_—|\-/

(CR)—Carriage Return

(TAB)—Tabulate

(SP)—Space

Binary
100000
100001
100010
100011

100100
100101
100110
100111

101000
101001
101010
101011

101100
101101
101110
101111

110000
110001
110010
110011

110100
110101
110110
110111

111000
111001
111010
111011

111100
111101
111110
111111

Octal Character

40
41
42
43

44
45
46
47

50
51
52
53

54
55
56
57

60
61
62
63

64
65
66
67

70
71
72
73

74
75
76
77

BO WOZZE o R— |

(CR)

(SP)

PN XS <4 3w

33

Pb Packard Bell Computer

A DIVISION OF PACKARD BELL ELECTRONICS

1905 ARMACOST AVENUE
LOS ANGELES 25, CALIFORNIA
GRanite 8-0051 + BRadshaw 2-9161

	00
	01
	02
	03
	05
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	back

