Programming ' Manual
for
TRICE

P Packard Bell Computer

A SUBBIDIARY OF PACKARD BELL ELECTRONICS
1908 ARMACOST AVENUE ¢ LOS ANGELES 28, CALIPFORNIA © GRANITE 84247

2nd Edition | | 30 May 1960

CONTENTS

Section Page
I GENERAL DESCRIPTION | 1-0
1.1 General i i e 1-1
1.2 Purpose of Equipment 1-1
1. 3 Applicationsot e 1-1
1. 4 Modules00 SN e 1-2
1.5 Input/Qutput C e e e e 1-2
1.6 Sizeof TRICE System « 1-5
1.7 Reference Data Coe 1-5
II PRINCIPLES OF QPERATION | 2-0
2.1 General'. Ce 2-0
2.2 Input and Output Mathematical Representation 2-0
2.3 Computing Moduleso 2-0
2.3.1 Integrator e e e e e e - 2-0
2.3.1.1 Mathematical Operation R T T 2-3
2.3.2 Constant Multiplier 2-7
2.3.3 Variable Multiplier 2-7
2.3. 4 Digital Servo 000000 2-11
2,3.5 Decision Servo e, 2-11
2.3.6 AY Summer e e e e e e 2-11
2.4 Analog-to-Digital Converter 2-12
2.5 Digital-to-Analog Converter 2-12
I11 PROGRAMMING PROCEDURE | 3-0
3.1 General oo e e e e 3-0
3.2 Analysis of Problem 3-0

CONTENYS (Cont.)

Section -Page
3.2. 1 Initial Conditions C 3-2
3.2.2 Limiting Values 3-4
3.3 Mapping Lo e e e e e e . 3-4
3.3.1 Approaches to Mapping' T 3-4
3.3. 1.1 Separation of Highest Order Derivative 3-5
3.3. 1.2 Integration with Res_p"ect to an Independent Variable . 3-7
3.3.1.3 UseofServos 00w e 3-12
3. 4 Scalingo 0 o0 3-28
3.4. 1 Relation of Scaling Factors to Limiting Values of

Problem o000 e e e e e 3-30
3.4.2 Primary Scale Powers 3-30
3.4.3 Secondary Scal.e Powers v v v v v v u v 3-30
3.4. 4 Output Scale Powers 3-31
3.5 Codingo 3-32
3.6 Interpretation of Results 3-33
3.7 Special Progrémming Considerations 3-34
3.7.1 Compensating for Delays 3-35
3.7.2 Compensating for Round-Off 3-38
3.7. 3 Special Programming Co;lsiderations, Example
Problem o000 0000 3-39
Iv OPERATION 4-0
4.1 Initial Control Positions 4-1
4.2 System Clear Process , 4-2
Automatic Typewriter Control 4-3
4.4 Controls ¢ 000 e e e e e 4-4

1i

CONTENTS (Cont.)

Section Page
4.4.1 Power Switches 4-4
‘4. 4.2 Power Supply Controls e e e e e e © 4-4
4.4.3 Input/Output Controls 4-6
4.4.3.1 Analog Inputs . . .‘ 4-6
4.4.3.2 Analog Outputs _,v 4-6
4.4.3.3 Input Switch. L e e . 4-8
4.4.3.4 Punch Switch, . 4-9
4.4. 3.5 Readout Scale Factor Switches 4-10
4.4.3.6 BackspaceButton. 4-11
4.4.3.7 Code Delete Button 4-11
4.4. 3.8 Start Reader Butflon e e e e e e e e e e e e e e e e 4-12
4.4.3.9 Start Punch Button. 4-12
4.4. 4 Function Switching Switches 4-12
4.4.5 Function Switching Set and Reset Buttons - 4-12
4. 4.6 Computation Controls 4-12
4.4.6.1 Addressof Modules 4-13
4.4.6.2 Overflow Switch and Overflow Alarms 4-13
4.4.6.3 Address Button. e e e e e e e e 4-14
4.4.6.4 +Buttono 000 ed e e e e . 4-14
4.4.6.5 -Button. et e e e e e e . 4-14
4.4.6.6 Number Button 4-15
4.4.6.7 Exponent Button00 . 4-15
4.4.6.8 Clear Converter Button e 4-15
4.4.6.9 Clear Address Button 4-15
4.4.6.10 Keyboard 4 e ue e . 4-15
4.4.6.11 M1 Multiverter Reset Button e . . 4-17

iii

Section

iv

BB R R R R R R R R R R R R R R R R R A R R A A A AR
NN NSNS OO0 00O M AR R AR AR S A

— s
N - O

O 00 N O ;b w NV e

12
13

. 14

15
16
17
18
19

.20

CONTENTS (Cont.)

Reset All Units Button

Reset Patched Units Button

Reset Single Unit Button

t+/t-Button. e v . . .

Slow Rate + Button

Slow Rate - Button .,’i
Compute Button . . D

Single Step Button
Slow Button .

Visual Display of Register Contents .
Programming the TRICE Patchboard
Division of V",.Patc.hboard e e e e e
Existence Code

Sign Code

Convenience Lines

Reset Codes\..

Overflow Codes

Start Reader . .

Start Punch . .

Buffer

Function Switch Code
AY Summer Connections

Multiverter Connections

oooooo

ooooo

oooooo

oooooooo

ooooo

. . °

.

oooooo

Rules for Patchboard Connections . . .

The A-to-D Qutput..
Input for the D-to-A

Input for the A-to-D Connected to Operate as a

D-to-A00

ooooo

Pége
4-18
4-18
4-18
4-18
4-19
4-19
4-19
4-20
4-20
4-20
4-22
4-23
4-23
4-26
4-26
4-26
4-27
4-27
4-27
4-27
4-28
4-28
4-28
4-29
4-29
4-29

4-30
4-30

CONTENTS (Cont.)

Section Page
\4 DIGITAL INTERPOLATOR 5-0
APPENDIX
Example Problem I: Sine Curve e e e A-1
Example Problem II: . Damped. Sine Wave A-4
E&Ample Problem III: CormuSpiral A-11
Example Problem 1V: Caldulationof Pi A-15
Example Problem V: Bessel Function A-18

LIST OF ILLUSTRATIONS

Figure Title | Page
1-1 TRICE 1-0
1-2 Variable Multiplier L0000 000 1-3
1-3 Symbols for TRICE Modules 1-4
2-1 Symbol for Integrator 000000 L e C2-1
2-2 Simple Mechanization of Integrat.or 2-1
- 2-3 . Graphical Representation of Rectangular Integration 2-3
2-4 Graphical Representation of Trapezoidal Extrapolative
Integrationo L0000 0L ool . 2-4
2-5 Multiplication Using Two Integrators Lo 2-7
2-6 Rectangular Multiplication. 2-8
2-7 Trapezoidal Multiplication 2-9
3-1 Map of Third Order Differential Equation 3-6
3-2 Alternate Map of Third Order Differential Equation 3-10

LIST OF ILLUSTRATIONS (Cont.)

Figure Title Page
3-3 Map of Simultaneous Differential Equations Using Inte-

gration with Respect to Independent Variable | e e e e e . 3-11
3-4 Digital Servo Formation of SUM . o o o 3-13
3.5 Generation of Absolute Value Using Decision éervo e e e e 3-13
3-6 Map of Saw-Tooth Functions Using Servo 3-16
3-7 Map of Clipped Sine Wave . . ./. 3-17
3-8 Generation of Square Root Using Digital Servo. CoL 3-18
3-9 Map of Oscillator Voltage Loép Ce e e e e e v e e 3-20
3-10 Map of Product e e e . 3-21
3-11 Map of Elliptical Spiral00, . 3-22
3-12 Map Using Substitution)of Variables -. e e e e e 3-23
3-13 Map Using Decision Servo to Avoid Infinite Point ‘ 3-24
3-14 Map of Arctangent.'.. C e e e e e e e e e e e e e e e e 3-25
3-15 Mapof Sinhxand Coshx C e e e e e . 3-26
3-16 Map of Vo o o o e e 3.27
3-17 Map of Orbit Problem Employing Special Programming Con-

siderations C e e e e e e e e e e e e e e 3-40
4-1 ControlPanel.........................'... 4-0 _
4-2 Power Supply Controls Coe e e 4-5
4-3 Input/Output Equipment, Block Diagram 4-7
4-4 Address Block Diagram 0000 . 4-24
4-5 TRICE Patchboard e e .o 4-25

- A-1 Map of Sine- Cosine Curve ¢« ¢ ¢ o o« . . . A-2

A-2 Map of Damped Sine Wave Coe e A-6
A-3 Mapof CornuSpiral 00 . A-12

Figure

A-4
A-5

A-1
A-2
A-3
A-4
A-5

LIST OF ILLUSTRATIONS (Cont.)

Title

Map for Calculation. of Pi .

Map of Bessel Function .
LIST OF TABLES
. Title

Basic TRICE Frame .

TRICE Modules°
TRICE Accessories .

Example Integrands

Octal Coding .

Front Panel Controls, Initial Positions .

Tape Codes .

Controls Illuminated by INPUT Mode Selection .

Accuracy vs. Speed Table for Sine Curve .
Octal Code for Damped Sine Wave .
Octal Code for Cornu Spiral .

Octal Code for Calculation of Pi .

Octal Code for Bessel Function .

Page

A-16
A-21

Page

1-6
1-6
1-6
3-2
3-32
4-1
4-3
4-9

A-3

A-10
A-14
A-18
A-20

vii

NOTE

The "Programming Manual for TRICE" is written for a com-
prehensive TRICE system. It will beapparent from the system
configuration which portions of the manual apply to a specific
system. Furthermore, since the TRICE is expandable, the ad-
ditional information will apply if a small system is enlarged,

or may assist in preparing expansion plans.

Section I ‘ General Description

'''' @ ®all Compute.

ommn— S—

. -.fni"' ~w P
.

e & 8y

"\ e\

Figure 1-1. TRICE

1-0

General Description Section 1
SECTION 1

GENERAL INFORMATION

1.1 GENERAL.

This manual describes the TRICE, Transistorized Realtime Incremental
Computer Expandable. A typical TRICE systern is shown in Figure 1-1. Subjects
discussed include a general de.sc ription, princliples of operation, programming,
and operating procedures for the TRICE.

1.2 PURPOSE OF EQUIPMENT.

The TRICE is a completely solid-state computer that is capable of solving
analytical problems by the use of digital differential analyzer (DDA) techniques.

Problems to be solved by TRICE rnaiy involve mathematical terms such as:
(1) Differenti}als
(2) Integrals
(3) Exponentials
(4) Logarithms
(5) Trigonometric functions
(6) Inverse ftrigonometric functions
(7) Discontinuities
(8) Vector quantities

1.3 APPLICATIONS.

The possible uses of TRICE in engineering and science are unlimited.

A few typical TRICE applications are:

1-1

Section I General Description

(1) Control system stability
(2) Autopilot response simulation
(3) Pilot plant simulation
(4) Missile trajectory studies
(5) Satellite orbit parameter studies
(6) Impact prediction
(7) Coordinate transformation of target acquisition
(8) Stable platform calculations
(9) Transformation of coordin}éte systems for stabilizing devices,
e. g. radar |
(10) Satellite orbit prediction’

(11) Airborne guidance control

1. 4 MODULES.

The TRICE system is co'fnposed of independent computing modules con-
structed on etched boards. These m.odules operate in parallel; thus, the speed of
the system is not affected by the number of computing modules used. Electrical
delay lines are used for memory in the various computing modules. Figure 1-2

shows the Variable Multiplier opened for access to its delay lines.

The symbols and the mathematical representations for the inputs and out-
puts of the TRICE computing modules are shown in Figure 1-3. These modules

are interconnected by means of patchcords on a patchboard to solve problems.

1.5 INPUT/OUTPUT.

The input to TRICE may be either manual (keyboard) or automatic (tape).
Analog-to-digital and digital-to-analog converters are used to convert analog in-
formation to digital form (allowing analog voltages to be an independent variable

input) or vice versa (allowing the output to be in analog form).

1-2

General Description

Figure 1-2,

Variable Multiplier

Section I

1-3

General Description

Section 1

dXx
dZ =(Y, +Y.) dx
INTEGRATOR e 1772
1
| Y,
d X -
VARIABLE | _ 47 -d(XYy) dX CONSTANT | O .5 _ k4
MULTIPLIER | ® ™ MULTIPLIER X
dY—.-A \J
dx
DIGITAL | o 47 - (Sign [Y1 +Y2]) dX
le_—’ SERVO '
dY, —am
dx
DECISION Z=(Sign Y, +Y, | ax)
SERVO 4y 1 "2
2
dy,
dY’2 >
dY —e '
3 | &dZ = (dY +dY, +dY, +dY, +dY, +dY,)
AY SUMMER] i T g T T g TAT,
dY;———. .
dY =
dy >
6
INPUT OUTPUT
VOLTAGE Aeto.D D-to-A VOLTAGE
Z ~to- o dZ dY -e» — Y
CCNVERTER CONVERTER

1-4

Figure 1-3. Symbols for TRICE Modules

General Description ' Section I

The output may be in digital or analog form; furthermore, the output
may be examined in binary or decimal using a plotter, scope, readout registers,

or readout tape.

1.6 SIZE OF TRICE SYSTEM.

The size of a TRICE system is determined by the complexity of the
problems to be solved. Table 1-1 shows the basic frame required for any TRICE
system. The modules of TRICE are listed in Table 1-2. The accessories for
TRICE that add versatility to TRICE systéms are listed in Table 1-3. A TRICE
system is composed of the basic equipment listed in Table 1-1 and the modules
and accessories as needed from Table 1-2 énd Table 1-3. It should be noted that

additional equipment from Table 1-2 or Table 1-3 may be added at any future date.

1.7 REFERENCE DATA.

(a) SIZE: The modular eiements o‘ TRICE are 12.75 inches high and
20 inches deep. With the excep*ion of the Variable Multiplier,
which 1s 3.50 inches wide, ail TRICE modules are 1.75 inches wide.

(b) POWER: The Integrator and AY Summer require 8 watts each; the
Constant Multiplier and Digi*al Servo require 6 watts each; the

Variable Muitip'ier requires 19D watts.

(c) CONSTRUCTION- The modular elements are slide supported at the
top. Each element car be pulled out for Servicing; by means of

extension boards, elements can be operated extended from the cabinet.

1-5

Section I General Description

Table 1-1. Basic TRICE Frame

Unit

Patchbay
Patchboards
Patchcords
Control Panel .
Timiné and Control Unit
Readout Buffer

Power Shpply *

Racks

* Additional units?"necessary for expansion.

Table 1-2. TRICE Mcdules

Module Name Mondule Name
Integrator Digital Servo
Variable Multiplier ' Decision Servo
Constant Multiplier ! AY Summer
USRI SO I . e e e o

Table 1-3. TRICE Accessories

Input / Qutput Equipment

Paper Tape Input With High Speed Address System
Binary/Decimal, Decimal/Binary Converter Scaler

Paper Tape Qutput Unit

Off-Line Flexowriter for Tape Preparation and Printout Unit
A-to-D Converter

D-to-A Converter

Function Switching Logic

1-6

Section II Principles of Operation
SECTION I1

PRINCIPLES OF OPERATION

2.1 GENERAL."

The TRICE consists of a set of incremental computer blocks as shown
in Figure 1-3. These computing elemeénts may be interconnected on a patchboard

to solve problems.

The basic computing element of TRICE is the Integrator. This element
is described in detail; other computing elements are similar and are described
in general. Analog-to-digital and digital-to-analog converters used with TRICE

are also described. - , ' .

2.2 INPUT AND OUTPUT MATHEMATICAL REPRESENTATION.

It should be recognized that AX, AY, and AZ are more nearly correct
representations of the actual mechanization of the inputs and outputs of the TRICE
modules than are dX, dY, and dZ; however, for schematic and programming pur-

poses, the finite A increments are replaced by their differential.

2.3 COMPUTING MODULES.,

The following paragraphs describe the mathematical operation of each
of the computing modules. The Integrator is the basic computing module and thus

is described in the greatest detail.

2.3.1 Integrator. -

The Integrator evaluates an integral by summing incremental areas. The

sum of these incremental areas approximates the area under the curve. The

2-0

Principles of Operation Section Il

accuracy of the integration is dependent upon the size of the increments used.

The symbol for an Integrator is shown in Figure 2-1.

Figure 2-1. Symbol for Integrator

The block diagram for the simplest mechanization of the Integrator is

shown in Figure 2-2.

dz R- REGISTER

!

ADDER |[@——dX

!

Y - REGISTER

} lo—dy

ADDER |

Figure 2-2. Simple Mechanization of Integrator

Section II Principles of Operation

The value of Y is maintained in the Y-register by the addition of the dY
increments (secondary input) to the Y-register. In this manner the value of Y
is made to vary in accordance with the desired function. The value Y in the
Y-register is added to or subtracted from the value in the R-register each time
there is a dX increment input (primary input) to the adder; i.e., Y is added to
the R-register when dX is positive, and Y is subtracted from the R-register
when dX is negative. The R-register produces a positive dZ output increment
when it overflows in a pogitive-going direction and a negative dZ output incre-
ment when it overflows in a negative-going direction. Thus, the sum of the over-
flows of the R-register is an indication of the summation.of the values of Y dX

or an approximation to/Y dX.

Graphically, the operation of an Integrator may be represented as shown
in Figure 2-3. Thus, the Integrator receives two incremental inputs, dX and
dY, and generates an incremental output, dZ. If these incremental outputs are}

summed, the result is a number Z, where

Z‘-l:/Y dX

cver the interval of X values employed.

It should be noted that the independent variable may be any function and

need not be time.

The dZ output of one Integrator may serve as the dX or dY input to a-
nother Integrator or some other TRICE unit. The dZ output is stored in two
lines; one line indicates the sign of the outpu}, and the other line indicates the
existence of the output. If the integrand, f(X), exceeds its preassigned full-
scale value, an OVERFLOW light turns on and computation may be stopped auto-

matically.

Refinements added to this simple mechanization of the Integrator include
an I-register, a trapezoidal correction, and a scaling factor. Provisions are
made for two secondary inputs (dY's). These refinements are explained in the

following paragraphs.

2-2

Principles of Operation _ - Section II -

N
AN
N

AN

Nlmm

AN

Figure 2-3. Graphical Representation of Rectangular Integration

2.3. 1.1 Mathematical Operation. -

Operation is in a trapezoidal extrapolative mode; i. e., the Integrator
calculates the area of the (i+l) interval during the i interval (see Figure 2-4),
This mode of operation is used because the secondary input, dY, frequently is
an Integrator output from a preceding integration interval. Thus, the Y value

to be integrated is extrapolated by linear interpolation.

Section II

X

2-4

Principles of Operation

1he operation of the Integrator is defined mathematically as follows:

(a) The value stored in the Y-register in any cycle, i, may be ex-

(b)

_—-.-&\\ o | —

pressed as

Kzj- 1
Y =Y + d
=Y hZ; Y,

K

where Yo is the initial valuesof Y. Y is obtained from the I-register'
o
! .
where the initial value of Y is stored. The adjustable scale factor,
h, is determined by the position of a scaling bit in the register. The

dY increment is a +1, -1, or 0. The range of Y is given by

_l<Y < +1
1

That is, the Y-register is fractional. 7Thus, Yi can take on the value
of -1, but the provis‘ion for the zero value, makes it impossible for

1]

Yi to take on the val.ue +1.

Adding the values of Y into the R-register would result in a rectan-

gular incremental integration as shown in Figure 2-3,

N

To provide greater accuracy, a trapezoidal extrapolative correction
is made. This mode of integration may be represented as shown in

Figure 2-4.

- — <

Y = £(X) \

X X

i i+l

Figure 2-4. Graphical Representation of Trapezoidal Extrapolative Integration

Principles of Operation Section II

The quantity Si 18 added to the R-register during any cycle, i, and

is given by

. 1 .
X5, = (Y,4dY) aX 4 () @Y)) [Slgn (@x] .
N §7/ X

where dX consists of one binary digit and a sign. The term

{Sign (dXi)jis explained as follows:

[Sign (dXi)] equals +1 when d)(i is positive.

{Sign (dXi)] equalsl-l when d}(i is negative.

The quantity Yi is the value of Y at the beginning of the i cycle.

" The second term in the equation, 1/2 (in) [Sign (dXi)] , i8 the

trapezoidal correction. The quantity in (dXi) is the extrapolative

correction.

A slightly different, but equivalent, form of the equation for the com-

putation of Si 18 .
1 .
5, = [(Yi+in) |dxi| +(5) (@AY,)] [Slgn (dxi)]

The above equation is a good representation of how the computation
of Si 18 mechanized. It should be noted that the primary input, dX,
can be a +1 0, or -1. Thus, the primary input may be 0 on many
successive integration cycles. However, in this case

1 .
Si = (E) (in) [Sign dXi]

where the term [Sign dxi]is the sign of the last non-zero dXi; simi -
larly, all TRICE computing modules remember and use the sign of the
last non-zero increment. Thus, the effect is that of averaging the

value of Y in the region between non-zero inputs.

If the capacity of the R-register were large enough, its contents

would approximate

Section] Principles of Operation

-

However instead of accumulating the full integral,increments of
the integral, dZ, are generated and only the remainder is stored

in the R-register.

Hence, the content of the R-register, Ri' at the beginning of any

cycle, i, is

K=i-1
‘ 1.
R = < ¢+ E v (S, -dZ.)
1 2 K:O] k k

where Ri is the range between 0 and 1. The R-register is set to an

initial value of 1/2 to minimize the round-off error.

(d) The incremental output (overflows of the R-register) consists of one

binary digit and a sign, i.e., dZ. The output is defined as follows: _.

(1) _[Sign (dZi)], - [Sign Si] , i.e., the sign of the output incre-

ment is the same as the sign of Si'

(2) dz = +1 if (Ri + Si) =1, i.e., there will be a positive output
increment if the remainder in the R-register from the pre-
vious cycle plus the value added to the R-register in the pre-

sent cycle 1s equal to or greater than 1.

(3) dzZ = -1if (R+ Si)<0'. i.e., there will be a negative output
1
increment if the remainder in the R-register from the pre%
vious cycle plus the value added to the R-register in the pre-

sent cycle 1s less than 0 (in this case Si is riegative).

(4) dz =01if O E(Ri + Si)< 1, i. e., there is no output increment
if the value of the remainder from the previous cycle plus
the value added to the R-register in the present cycle is greater

than or equal to zero, but less than 1.

Since the Integrator operates in a trapezoidal extrapolative mode, the

output for any cycle, i, can be written as

2-6

Frinciples of Operation v Section II

dz = {(Y, +dY.) ldX_' v 2 dY,][Signdx.] -
1 1 1 1 2 1 1 e

2.3.2 Constant Multiplier. -

The Constant Multiplier is identical to an Integrator except there afe'
no provisions for dY increments (see Figure 1-3). The value of the Y -register isload-
ed in the same manner as for the other units; however, the value selectéd for Y
is not incremented (it does not change . Thus, Y is treated as a constant in the

Constant Multiplier. o i

2.3.3 Variable Multiplier. -

1]

Multiplication can be performed by the use of two Integrators as shown

in Figure 2-5.

XdyY
Y N
X - d dX
dX
YdX
v dy S > }

(R]
ADDER

'

d(XY) = XdY + YdX

Figure 2-5. Multiplication Using Two Integrators

Section II - Principles of Cperation

However, greater circuit economy and computational accuracy are achieved by
combining the two Integrators into a single multiplier unit. The Variable Multi-

plier uses the exact formula

d(XY) = (Y+dY)dX + XdY

or d(XY) = XdY + YdX +dYdX

It should be noted that with rectangular integration the error is dXdY.

That 18 !

]

d(XY) = (Y+dY)dX + (X+dX)dY

d(XY) = YdX + XdY + 2 dXdY

as shown in Figure 2-6.

T —
NV

o] dX |o—

v

/

/s

oS

Figure 2-6. Rectangular Multiplication

As illustrated in Figure 2-7, the error in exfrapolative trapezoidal

integration is 2dXdY from

d(XY) = (Y+—23—-dY) dX + (X 473 dX) dy

d(XY) YdX + XdY + 3dXdY

1

2-8

Principles of Operation Section 11

e

" DI "‘_4_"

g+l

A/ AIIIR Y,

?

-_-—-x———.b

Figure 2-7. ‘Trapezoidal Multiplication

The formula

d(XY) = (Y+dY)dX + XdY

is implemented by multiplying the old value of X by dY, the new value of Y by

dX, and sumrning both of these quantities into the R-register. In this manner

the corner area is added only once. The saving of circuitry over the compound
multiplier results mainly from the use of only one R-register, one pair of adders,
and one output circuit to accumulate the product and send it out in incremental
form. In addition, all overhead functions such as filling. timing, and overflow
detection are performed by common circuits shared between the two multipli-

cation factors, X and Y. T1he Variable Multiplier has the following 5 registers:

(a) Y-register

(b) X-register

2-9

Section II ' Principles of Operation

(c) Y-initial-condition register
(d) X-initial-condition register
(e) R-register

The initial -condition values are stored in the same manner as for the

Integrators.

The Variable Multiplier can oveil'sflow under each of the following con-

ditions:
(a) The X-register exceeds the range:
-1 =X=+1
(b) The Y-register exceeds the range:
1= Y+l
(c) The quantity S = YdX + XdY exceeds the range:
-1 =8 <=+1]

The first two conditions, (a) and (b), will be satisfied if the scaling is

such that
x| =
[y | <1

The last condition (c), will be satisfied if the scaling is such that

1
|X|<-‘z
lYl <.1_

2

Frinciples of Cperation Section II

2.3.4 Digital Servo. -

The Digital Servo is used as a nulling device in the solution of differential
equations or as a decision element in the generation of discontinuous and non-linear
functions. The Servo detects any deviation from zero in its Y-register, which is

initially set to zero.

The Digital Servo receives two secondary incremental inputs, dY , and

1
dYZ’ and accumulates them in the Y-register. The incremental output, dz, is

!

1 for |AX|V = lwhenO<lYI<l

I

a2

Sign AZ = (Sign AX) (SignY)

Since the output is directly derived from Y and AX, no R-register is required.

The Y-register is automatically set to zero by the RESET signal.

2.3.5 Decision Servo. -

Discontinuous and non-linear functions such as square or saw-tooth

waves, may be generated using a Decision Servo. The symbolic representation
of the Decision Servo 1s shown 1n Figure 1-3. The initial condition for the Decision
Servo Y-register may or may not be zero. The mathematical operation of the

Decision Servo 18 defined as follows:

1
. 0<Y<2-
lAZI::lfor ! 1f lAX'Zl
O’Y:-‘z ’

Sign AZ = (Sign AX) (Sign Y)

Since the output is derived from Y and AX, no R-register i1s required. The Y-

register is automatically reset to the filled initial condition by the RESET signai.

2.3.6 AY Summer. -

The Integrators and Servos each are capable of receiving only two dY
inputs directly. However, as many as six dY inputs can be summed by the AY
Summer and used as the input to the Integrator or the Servo to which theAY |

Summer is connected.

Section 11 Principles of Operation

The partial sums (le + dY2 +dY3) and (dY4 + dY5 +dY6) are formed .
during the first phase of operation. 7lhese partial sums are in the range from

- 3to+3. During the second phase of operation these partial sums are addea to
produce a final sum in the range from -6 to +6. The shift operation gates the

final sum into the Y-register of the unit to which the AY Summer is directly

connected (an Integrator and a Servo).

2.4 ANALOG-TO-DIGITAL CONVERTER.

The input to the A-to-D converter is an analog voltage representation of
a variable, Z. Increments in the form of voltage levels constitute the digital out-
put from the A-to-D converter. If Z increases to the next higher level of voltage,
a positive increment is produced (positive output). If Z decreases to the next
lower level of voltage, a negative increment is produced (negative output). Thus,
the rate at which the output increme.nts occur 1s dependent upon the slope of the
analog input voltage curve. The mathematical symbolic representation of the

A -to-D converter is shown in Figure 1-3.

A l4-stage binary counter 1s used in conjunction with a precision voltage
divider to generate a voltage with which to balance the Z input voltage at a summing
n,de. A comparator is triggered by a 100, 000-cps signal from the Control unit
to compare the error at the summing node with <ero volts. When the error exceeds
+(1/2)dz or -(1/2)dZz, the counter is pulsed to count down or count up by single
dZ increments. These counting pulses constitute the incremental dz output of the

converter.
2.5 DIGITAL-TO-ANALOG CONVERTER.

The D-to-A converter receives information in digital form and converts
it to an analog voltage. The mathematical symbolic representation of the D-to-A
converter is shown in Figure 1-3. The A-to-D converter can be connected to

operate as a D-to-A converter.

Section III Programming Procedure

SECTION III

PROGRAMMING PROCEDURE

3.1 "GENERAL.

3

This section describes procedures for preparing the mathematical pro-
gram for TRICE. Section IV describes how to operate TRICE, using these
programs. The Appendix contains example problems in which the programming

and operating procedures are explained in detail.

The three steps involved in the mathematical programming of TRICE

are

(1) Mapping
(2) Scaling

(3} Coding

Many programs may be prepared for any problem. Although straight-
forward methods for preparing a program are available (such as separating
the highest derivative), the efficiency of programming a problem may be in-
creased by the ingenuity of the programmer. Experience in programming will

lead to short cuts and the selection of the most efficient programs.

3.2 ANALYSIS OF PROBLEM.

A problem should be analyzed for program simplification before start-
ing a program. Since the TRICE actually solves differential equations, the first
step is to make sure that the problem is in the form of a differential equation.

The second step in analyzing the problem is to consider the terms with respect to

3-0

Programming Procedure Section II1

what each computing module of TRICE can perform, for example:

(1)

(2)

(3)

(4)

(5)

(6)

Integrators can be used to generate any order of derivative.

Assume that the integrand of an Integrator is8 an nth order deriva-
tive; when integrated with respect to the independent variable, the
output may be summed to obtain the (n - 1) order derivative (see

Example Problem II in the Appendix).

Digital Servos are used to generate u as a fum::tion v, where u is
defined implicitly as a function of v by F (u, v) = 0. (See Example
Problem V in the Appendix.) Diéital Servos are also used to increase

the number of primary inputs to another unit.

Constant Multipliers are used to multiply a variable by a constant.

(See Example Problem II in the Appendix.)

Variable Multipliers are used to generate the product of two func-
tions. Example Problem II in the Appendix shows an interesting

use. made of the Variable Multiplier to vary a constant in a problem.

Decision Servos are used to generate discontinuities and non-linear
functions such as square and saw-tooth waves. Another common
use of the Decision Servo is in generating absolute values. The De-
cision Servo operates like a Digital Servo when the ‘ Y |va1ue is

less than 1/2.

AY Summer are used preceding secondary inputs to a unit when it is
desired to increase the number of secondary inputs to that unit. The
maximum number of secondary inputs any unit can accept is two;
however, the AY Summer makes it possible to combine six second-
ary inputs. Each AY Summer is connected directly to an Integrator

and a Servo.

The third step in analyzing a problem is to consider any special program

advantages that may be obtained or required by a particular mode of operation,

Section III | ‘ Programming Procedure

e. g., input, output, function switching, method of filling, and computation

rate.

The last step in analyzing a problem is to consider the problem with

respect to initial conditions and limiting values.

3.2.1 Initial Conditions. -

The Integrators, Variable Multipliers, and Decision Servos have initial-
condition registers that determine the values for their variable computing re-
gisters at the beginning of each com,’puting run. The initial-condition registers
hold the initial conditions and insert them into the computing registers each time
a RESET signal is received. Hence, it is necessary to determine the initial

values for each of these registers by analyzing the problem.

A starting point is given. However, usually the initial conditions for

a few of the modules must be calculated. Sometimes a starting point must be

assumed. For example suppose the mapping of

2
y dy 2
2 T Y

o}
(o}

-siny -K =0

&

leads to the integrands listed in Table 3-1.

Table 3-1. Exar;lple Integrands

Integrator Integrand
: 2
d y
. 2
dx
2 dy
dx
Y L]
4 cos Yy
5 sin Y

3-2

Programming Procedure Section III

Assume that the problem requires the second order derivative to be
equal to K when y = 0. Thus, the values for the initial-condition registers may

be chosen as follows:

(1) Integrator 1
2

d
Given: Initially -—% =Kandy =0
dx

Hence, the initial-condition register value for Integrator 1 is

i

equal to K.

(2) Integrator 2

1
Given: Initially y = 0 and (—-fz-y— = K.
dx
The given equation becomes
-, dy
+ — - =
K d»> . 0
Therefore, dy ;

dx
Hence, the initial-conditidn register value for Integrator 2 is

equal to 0.

i

(GN]
—

Integrator 5

Given: Starting point of y - 0

Hence, the initial-condition register value for Integrator 3 is
equal to O.

(4) Integrator 4

Given: Initially y = 0; thus, siny =0
Hence, the initial-condition register value for Integrator 4 is
equal to O.

(5) Integrator 5

Given: y = 0 initially, thus, cos y =1

w
!
w

Section III Programming Procedure

Hence, the initial-condition register value for Integrator 5 is

equal to 1.

By considering the availability of initial values, difficulties van be
avoided in mapping by using those terms whose initial conditions are known or

can be easily obtained.

3.2.2 Limiting Values. -

Consideration should also b,é given to the maximum and minimum values
related to a problem. These values"'may affect the efficiency with which a prob-
lem must be mapped. The length of the various computing registers, as deterec
mined by scale factors, is also affected by these maximum and minimum values,
The values may be physical restrictions in the problem, e.g., maximum altitude,

maximum speed, maximum acceleration and minimum pressure.

3.3 MAPFPPING.

A map of the solution of a problem is prepared by interconnecting the

inputs and outputs of the computing module symbols shown in Figure 1-3.

The method of solution of any mathematical problem may vary among
mathematicians; likewise, the map selected for a problem may vary among

programmers. Experience and ingenuity of the programmer is a valuable asset

3.3.1 Approaches to Mapping. -

-

There are several accepted approaches to mapping. Probably the
most popular method of mapping is integration with respect to an independent
variable, which is explained in paragraph 3. 3. 1.2. Programmers often develop »
their own approach to mapping problems. Often the ingenuity of a programmer
leads to some unusual uses of the various computing modules. For instance
in Example Problem II, the Variable Multiplier 1 is used as a Constant Multiplier

with a variable constant.

3-4

Programming Procedure | Section III

Thus, the followingv paragraphs describe a few accepted mapping

procedures with example maps for several problems.

NOTE

Remember that the output of a computing module
may be either positive or negative, depend-

ing upon which of the two dutputs are used.

!

3.3. 1.1 Separation of Highest Order Derivative.

The most direct approach to map;ping a problem is to express the
problem as a single n-th order differential equation; then, interconnect the
computing modules in such a manner as to generate each of the terms of the
equation. This method is only slightlvy different from the meéthod described in
paragraph 3. 3. 1.2, but results in /a more complex map. However, if the highest
order derivative of the problem is of importance, which is not usually the case,
this method must be used since the method of paragraph 3. 3. 1. 2 will not genetate

the highest order derivative.

Since the mapping procedure of paragraph 3. 3. 1.2 is usually more use-
ful and less complex than the map obtained by the method described abcve, the
details of this method are not discussed because this mapping solution should be
obvious to the reader after reading paragraph 3. 3. 1. 2.

The problem used in Figure 3-1 is identical to the problem used in
Figure 3-2. However, the map of Figure 3-1 is prepared using the separation
of the highest order derivative; whereas, the map of Figure 3-2 is obtained
after effectively integrating once with respect to the independent variable. Note
that the highest order derivative i8 generated in Figure 3-1, but not in Figure
3-2. Both maps require six modules; however, Figure 3-1 uses a Variable Multi-
plier to perform the functions of two Integrators. Furthermore, Figure 3-1 re-
quires Integrator Il to be one of the Integrators that is connected directly to a

AY Summer.

3-5

9-¢

Il

I2

d &
r d(—)
dt ! dt
Z i
d & T4
3 d(dt‘-) —
d e do
3
dt
dee —_—
~
e ¢
- dt
dZG
dtz T . ZYI
— <
. de - ‘L? >
d (5! dt 2
‘ L (¢ Sl__?) —
- dt®
dr - t AY Summer
-
de VM1 _—
ds — i€ o>
3 2
. _ d & e 2
ulven, ——x- =t ——— + e + &
3 2
dt dt

Figure 3-1. Map of Third Order Differential Equation

II[uotd9g

d1npadoxy Jurwweadox g

Programming Procedure Section III

3. 3. 1.2 Integration with Respect to an Independent Variable.
Express the problem as a single n-th order differential equation, e.g.,

de de _
f(t’eta't—_—; ,T)-o

then separate the highest order derivative, i.e.,

=g(t, 8 —/,

Multiply the equatian by the independent variable differential, dt, i.e.

]

n “
(‘3—?) dt = g (t, e.%?, .., 4.8

the result is

d (

If the equation

d"o 4o a" e
= =g (t, 6, ‘a—t'"—, Ce e ey ""‘"'r"—':-r)
dt dt

is integrated with respect to the independent variable (t in this case)

and then the differential were obtained, the results would be identical, i.e.,

d“‘le) - (e e, 3O a"le
n-1' - BB S gy T

dt dt

d (

Thus, the effect is to perform the first integration for TRICE. Since this method
improves efficiency by reducing the number of modules required and usually the
highést order derivative is of no interest in most problems this is the most popular

method of mapping problems.

3-7

Section 111 Programming Procedure

The map is prepared as follows:

(1) Let the integrand of the first lnteg‘rator be

and integrate with respect to the independent variable, t, which

results in

£

.2 "
4 a ‘e
(=03)

n
dt
as the output of the Integrator.

(2) Let the integrand of the second Integrator be

and integrate with respect to the independent variable, t, which

produces i

as the output of the Integrator.

(3) Continue this process until each term of the equation

@ le de @ lo
d () =g (t, 8,

-y tee., —) dt
dtn—l dt dt

has been generated as outputs from the various Integrators.

(4) Ccnnect the outputs of the various Integrators in such a manner

as to obtain

d“'lel)
dtn-l

d

3-8

Programming Procedure Section III

(5)

which is the required secondary input to the first Integrator. See

Figure 3-2 for the map to the simple problem using this method

of mapping. The AY Summer is necessary to sum the three terms
for the secondary input of 11, which must be one of the Integrators

that is connected directly to a AY Summer.

The output of this interconnection is taken from a line that has the
desired result on it. AFor example, if the output of 12 in Figure 3-2
is taken, 16 is the output; th,-;s ¢ould be the input to a D-to-A con-
verter that would sum d© to”’produce © as the output of the D-to-A.
This could be used as the vertical axis input to a plotter, and if dt
were fed through a D-to-A converter to the horizontal axis of the
plotter, a plot of © versus t would result. Plots of the other terms

may be obtained in the same manner.

Simultaneous differential equations are solved in a similar manner

with a group of Integrators being used to generate the derivatives associated with

- each dependent variable. Figure3-3 is an example of a simultaneous differential

equation mapped using this method. In this problem both secondary inputs to

Integrators 11 and 15 are used.

NOTE

The machine variable dt may be
the independent variable or the

dependent variable in a problem

A labor-saving method of mapping for the experienced programmer is

to represent the inputs and outputs of Integrators b‘y equations. An Integrator

may be represented by the following equation:

d ﬁxtegrand = |Integrand|| Primary Input '

3.9

I1

12

I3

14

I5

16

Section Il

Given Equation:

de
dt

Figure 3-2.

3-10

+©

Programming Procedure

6/9 = 1d6 + et + Ot

d?ztds +e6
dt dt
dt
de
FA d(dt)
d e
('—'2—)
dt

t

dt
ag

AY SUMMER 1

dt —f ‘ r
e dt .
. A '.
doe
(S)
e .
de8 9
dt
eedt
o

Alternate Map of Third Order Differential Equation

Il

}f i

>.,b, _

4

oanpwd0oirq Burwwesldoxg

vdt

Ti-¢

P

I5
, | |
d“w ‘dt >
—2-— d v
dt ' dtz
12
16
dw 1 d
dt at
i3 ‘ dv
:‘ e {17
w -9 v
14
18
w t
Given: ii_f_ cw v v d3V _ dw
at> dt s T Yoo t»

Figure 3-3. Map of Simultaneous Differential Equations Using Integration With Respect to

Independent Variable

IIT uoydeg

Section III ' Programming Procedure

with the secondary input being the derivative of the integrand. The output of the

d ﬁtegrand

Using this scheme the map of Figure 3-1 would be as follows:

Integrator is

11 d(-g?- = dz?) dt
ot
12 de :;'(_g_t_e_) dt
13 edt = (©) dt
14 de® - (®)a0.
G e

15 e dt = (e }dt

16t [d(—-d—-)] = (t) [d(%i?-]

This scheme of course can be extended in the same manner for the other com-

puting modules.

3.3.1.3 Use of Servos.

The use of Servos in mapping a problem is in itself an approach to
mapping certain problems. Servos fall into two general classes; one is a Servo
that performs the normal functions of a Servo and is referred to as a Digital
Servo in this manual; the other is a decision element, which is referred to as a
Decision Servo in this manual. The principal differences betweén these modules

can be ascertained from paragraphs 2. 3. 4 and 2. 3. 5.

If the outputs from different computing modules are to be combined as
the primary input to a computing module, they must firet be made the secondary"

inputs to a Servo.

3-12

Frogramming Procedure Section III

For example, if it i8 desired to make dv the primary input to an Iﬁte-

grator, where dv is defined by the equation

dv = dw + du,

then the term dv would be obtained by a Digital Servo, indicated as S in Figure

3-4.
S

|dt| "(—@®' +dv

-dv

- u+w-v B : I

AY SUMMER [@— du

©

-@— dw

Figure 3-4. Digital Servo Formation of Sum

When it is desired to generate the absolute value of a variable, u, the
primary and secondary inputs to a Decision Servo are made the differential du

of the variable. Figure 3-5 shows a Decision Servo connected to perform this

function.
du

y

o d lul 9

. AN
D.Ss. .) /

Figure 3-5. Generation of Absolute Value Using Decision Servo

ou L,er—w; (’J(‘H ﬂ{ h}]v
¢ T4 u Aoes .

— l/{&.»‘f‘"./ Sl ~ L
A g 3-13

Section III ' Programming Procedure
'

The absolute value results from the fact, as indicated in paragraph

2.3.5, that

when AX = +1
and <Y<+ _21‘..
Also | AZ = +] 3
when AX = -1 "
and LO0=Y=. A
2
Furthermore, AZ = -1
when AX = -1
and O0<Y=<+ —12—
Also AZ = -1
when AX = +1
and 0O>Y>- -ZI

For example, using the above properties, a set of simultaneous differential

equations as defined by

dv _ .
S o [v]

dw

> Sign [v]
may be mapped using Decision Servos as shown in Figure 3-6. The D-to-A con-

verters may be connected as shown to obtain the graphs on the analog plotters.

A clipped sine wave, as defined by

u(©e)=>bsin 8 when b 8in 6 <a

u (8)=a when b sin 6= a

3-14

Programming Procedure Section III

may be generated using the map of Figure 3-7 and the properties indicated in

paragraph 2. 3.5, i.e.,

AZ =0 when +1>Yz+21.
AZ = +] when + %>Y>O if AX = +1
AZ = -1 when+%->Y>O i AX = -1

b

The normal function of the Digital Servo is to generate u as a function .

of v, where u is defined implicitly as a function of v by F (u,v) = 0.

Paragraph 2. 3. 4 defines the mathematical operation of a Servo. Figure

3-8 shows a Digital Servo used in the generation of a square root, as defined by

F (u, v)=v-u2=0
hence | u = Vv
In differential form dv - 2udu = O

8F (u,v) for

The output sign of the Servo must be dpposite to the sign of Sa

stability.
&F (u,v)
Su

= - 2u,
thus, use (+) sign of the Servo for stability.

When incremental changes in v of Figure 3-8 cause F (u, v),{O, the Digi-

tal Servo generates incremental changes in u until F (u, v) = 0.

Figures 3-9 through 3-16 are maps that have been prepared using a
combination of modules and methods of mapping. The Constant Multiplier, which
has not been discussed to this point, is used to rriultiply variables by a constant.

The use of the Constant Multiplier in mapping is evident from paragraph 2. 3. 2.
It would be a good exercise for the reader to prepare a map for each of the following

problems.

3-15

Section III Programming Procedure

. dv _ . dw |
Given: & -ngn‘[W], T = Sign [v]
dx
D.S. 1 d"—‘
@~ dv—e D-to-A - v —
w dw
9
D.S.2
D-to-A - =
v
W PLOTTER 1
,J
v PLOTTER 2
\\/\ X e v
[}
—dx -~ D-to-A »o— X

Figure 3-6. Map of Saw-Tooth Functions Using Servos

3-16

Prograrmmming Procedure

Il

12

.l

Given: u(©) =bsin® whenbsine <a

Section III

u (8)=a when b sin 8 > a
de
Q_L '
- bd(alne-)._TL Doto-A o
b cos © thd (cos O
b sin © bd(SinG)'—?
bd(sin 6)—¢
1 .d [“(9)}_——.' D-to-A
5 =) +1
5 a +bsin® A be (3in@)-
NOTE: Ii’x the Servo 1A means 1 (9)
one increment
al—~——-—- - -
e jg—

PLOTTER

Figure 3-7. Map of Clipped Sine Wave.

sl d

3-17

Section III Programming Frocedure

Use can be made of the various modules to operate as control modules
to vary initial conditions and change problem parameters. A module used in

such a manner makes use of its overflow or an output to actuate the automatic

reset.
S1
dt —&
| e——d(u)
dv —p» > "
!_.-Zudu v - u
¢ o [-to-A | eu=-Vv
VM1
T du —_— a
-— -d (u.u)
du —_— u

Figure 3-8. Generation of Square Root Using Digital Servo

3-18

Programming Procedure Section III

Problem for Figure 3-9

Given: A voltage loop in an oscillator circuit, that represents the differential

equation
2
2
dx LK(x -1)%’-:- +x=0
dt
The resistance term 2 !
K(x -1) '
. . 2
is negative if . x <1
" . 2
and positive if x <1

Thus, the energy in the loop is increased when the resistance becomes more
negative; whereas, the energy is decreased when the resistance becomes more
positive. A stable oscillator solution is obtained when the energy gains and losses

cancel; thus, there is one solution for each value of K. The stable solution may

be represented by plotting x versus t. (See Figure 3-9.)

3-19

0z-¢

I1

FLOTTER

o
dt x
2
dx —e o-d(x)—
dx_
dt i x
2
K (x°-1)dx VM1
r~—
12
dt
-xdt] @—o K ' —
x 4
CM1
’ Kdx —d
13
dx
K 2 —o . -
-K(x ddy D-to-A
2
x -1
cat
— D-to-A -t
Given Equation:
d(%"t- = -x(xz-l)dx - xdt

Figure 3-9. Map for Oscillator Voltage Loop

III uor3dag

3xnpasorq Burwmweadoag

Programming Procedure

Problem: Generate Kuvywdx, where K is a Constant.

Section 111

du —& u
’d(\lV) —_—
"
dv —e» ‘
VM v |
Lo (uvyw)
YW
d VM 3
Y y
o-d (yW)
dw \\% .
VM 2
11 dx
(uvyw)dx —
uvyw
]
L e K - K uvywdx
CM 1
Figure 3-10. Map of Product

3-21

Programming Procedure

3-22

Section III

Given: Spiral defined by
2
dt
11 dt
)
2 dt C =0
d x : d
—_— x
ar” g
CMl1
y
12 dt - wldx
2
dic dyx —— ™ w b@-—-—l
dt
Ve
>—
L ldtl —-
. DIGITAL
SERVO
s —— L
AY SUMMER ‘ :
PLCTTER
2
& D-to-A __e| D-to-A |9 _x.
‘* 2
dt
- -

Figure 3-11.

_____dx_ __}

dt

Map of Elliptical Spiral

Programming Procedure Section III

Given: —g—xL- = Inx

Solution: dy = (lnx)dx

Let dt = d (Inx)

For small values of x :

Il

12
dy = (lnx) dx

lnx

d (1nx)

NOTE: Integrator 2 uses the machine time, dt, as its secondary input.

For large values of x: dx
' 13
(lnx)dx - dy
Inx
dx
I d(lnx)

1
X

12

dx 1

, S gy 4
el x
p 3

Figure 3-12. Map Using Substitution of Variables.

3-23

Section III Frogramming Procedure

Given: dy. .1 dy -Y; letdu=+—l- dy .
2 p dx x
dx .
Solution: A map using all Integrators for this problem would result in the inte-
grand of an Integrator becoming infinite at x = 0. Hence, a Decision

Servo is used.

I1
dy_
dx
12
Y .
d(-u) .
13 . -xdu . —
dx
x
|ox|
D.S. 1 q !-d
(—u)-—-;{ -
y -/Xdu dy

Stability of the Servo Circuit may be proven as described in Example Problem V
of Appendix.

Figure 3-13. Map Using Decision Servo to Avoid Infinite Point.

3-24

Programming Procedure

Given: F (uv)=y(v) cosu - x(v)sinu =0
- -1y
u = tan (x)

6Fé“"l") <0 if lx' + M»o

Section 111

d(ycoah)

d(-xsinu)
dt — gl
. . -1y 1
. —@-»du =d|tan ()]
'_——-—-—.1 R X
® ycosu - ¥ sinu ;
S
I1
sin u
Iz d(sinu) _—__|

cos u

dx

x
-o—()— d(-x 8in u) -
VM1 .

sin u

.

dy —&

y
VM2 —— d(y cosu)
cos u
\

Figure 3-14. Map of Arctangent.

3-25

Section III

Given: Generate Coshx and Sinhx.

Il

12

Programming Procedure

dx
G osh x dx=d(Sinhx)—
Cosh x .
dx
Sinh x dx =d(Cosh x.)-+
Sinh x ﬁ
d (Cosh x)
—e~ D-to-A t—— Cosh x
d (Sinhx)
| D-to-A @ Sinh x

Figure 3-15. Map of Sinh x and Cosh x.

Programming Procedure

‘ n
Problem: Generate v

Il

12

I3

Section 111

dv
-vl- dv=d(lnv) -» n -
1
; -
CM1
1 1 dlnv:d(;,l-)_b
v
_ _ nd(lnv)
n nv" n-1
) nv d(lnv) = — dv = nv dy:dvr:
n
\' L ¢
n
- A-to-D oy

Figure 3-16. Map of v"

3-27

Section III Programming Procedure

3.4 SCALING.

Scaling is the process that makes the inputs and outputs of the mapped
modules compatible. The speed and accuracy of TRICE is determined by the
scale factors. Speed can be traded for accuracy as shown 1n Example Problem I

in the Appendix.

The primary inputs, secondary inputs and outputs of the various com-

puting modules are as follows: ,

1
(a) Integrators have two secondary inputs (when a AY Summer is not

used), one primary input, one positive and one negative output.

(b) Constant Multipliers have one primary input, and one positive and

one negative output.

(c) Variable Multipliers have two secondary inputs (which also act as

primary inputs), one positive and one negative output.

(d) Servos (Digital and Decision) have one primary and two secondary

inputs (when a AY Summenr 1s not used).

(e) AY Summers have six 1nputs that are summed and serve as the -
secondary inputs to the Integrator or Servo to which it is perma-
nently connected. Thus, the output of the AY Summer is not available

on the pat_hboard. (See Section IV.)

The machine time 1s 100, 000 1terations per second. The maximum output
. 13 . .
range of the A-to-D converter is £ 2 1increments. The maximum input range of
. 13 :
the D-to-A converter is 2 increments. The range of any other input/output

equipment used 1n conjunction with TRICE must be taken into consideration.

Scale powers by definition are the exponents of a selected base and for a

binary machine, the base of 2 is used.

3-28

Programming Procedure Section III

The scale factor determines the length of the computing modules'
variable registers. Hence, they are used to determine where to insert a
scaling bit in each of the registers which effectively set the length of the re-
gisteri. Each register in TRICE is 30 binary bits long; a scaling bit and a
sign bit must be used in each register. The sign bit is always in the first
register position. To shorten the register, the scaling bit (a '"one') is filled
in a position nearer the sign bit and all positions after the scaling bit are filled
with zeros. Due to timing restrictions, th,f’e maximum length of a register is 27
computing bits plus a sign and a scaling bﬁ when the l.econdary input is the machiné
time. When the secondary input is not the machine time, the maximum length of
the register is 26 computing bits plus a sign and a scaling bit. If the least signifi-
cant bit position is taken to represent a decimal one, a register with four com- .
puting bits that is initially set to a value of +4 would be ieprecented in binary
as follows:

Computing Bits 24 Zelrel

— ’ ~
0_0100 1 000000000000000000000000
Sign Bit\ Scaling Bit

.For the sign bit, one represents negative values; zero represents positive values.

Negative numbers appear in 2-complement form.

The length of the two variable registers for the Variable Multipliers must .

be equal; i. e., the scaling bits must be in corresponding position.

It should be remembered that the variable computing registers are frac-

]

tional, i.e.,
-l=Y <]

Hence, if the absolute value of a number that is to be entered is greater than one,
the scale power rmust be negative. Ior example, if the maximum value that the

Y -value obtains is ten, the ecale power Bywould be -4, because 2.4 is the largest
value vhich, when multiplied by ten, will result in a number whose absolute

value is less than one,

3-269

Section III Programming Procedure

-

3.4.1 Relation of Scaling Factors to Limiting Values of Problem. -

The scale factors for a problem and the initial conditions should be
taken from the statement of the problem if possible, and in general these
are available in the statement of most problems. Trial and error must be

used in selecting these values when they are not stated.

Standard calculus procedures are used to obtain maxima and minima,
which constitute the limiting values. Howeyer, if such calculations are im-
practical, or impossible, the values of makima and minima are estimated or
guessed. If the scaling is such that the integrand exceeds the assigned limits,

an overflow indication wil} result and computation may be halted automatically.

The integrand scale power, represented as Sy' is the exponent of the
base 2, that, when multiplied by the maximum value of the integrand, will pro-

duce an absolute value less than one.

The Variable Multiplier has two variable registers, X é.ndY ; hence it has

two integrand scale powers Sx and Sy.

3.4.2 Primary Scale Powers. -

The Integrators, Constant Multipliers, Digital Servos, and Decision
Servos have primary inputs. The scale powers associated with these primary
inputs are known.as the primary scale powers; they are represented by the sym-

bol de.
NCTE

Digital and Decision Servos are scaled to a con-

venient value to allow them to operate properly.

3.4. 3 Secordary Scale Powers. -

All computing modules, except the Constant Multipliers have second-

ary inputs. The scale powers associated with these secondary inputs are known

3-30

Programming Procedure Section III

as secondary scale powers, represented by S The Variable Multiplier has

dy’
two secondary inputs, S, and S_ .
| y mp dy dx
The secondary scale powers are determined by the smallest variation
of the integrand; i. e., one secondary increment. For example, if it is required

that the accuracy of the changes in the integrand be 1/10, the secondary scale

power could be +4, because 1/10 is between 1/8, (--13-). and 1/16 (—i—),
: 2 2 .

All secondary factors associated with inputs to a specific module must
be equal. 7!‘

'3.4.4 Output Scale Powers. -

All computing modules have out;ﬁute; hence, they have output scale factors,

which are represented by S .
Z

Integrator output scale powers are equal to their integrand scale power

plus their primary scale power, i.e.,

= + S .
sz Sy dx

The Constant Multiplier output scale power is equal to the constant's
" scale power (which is the power to the base 2 that will produce a value smaller

than one when multiplied by the constant), plus the primary scale power: i.e.,

The Variable Multipliers must have their scale powers related as

follows:

S =S +S._ =S +8§
X

z y dx dy "’

The length of a registerin computing bits (excluding scaling and sign

bits) is determined by

Secondary Scale Power - Integrand Scale Power = Register Com-

1Say8? puting Length, i. e.,

S4 ‘%‘“‘ 1: 5.! % ___‘,\) S 9%
%) — "- -
L j N

o
\
-

3-31

Section]Il Programming Procedure

(S -Sy) = Liength of Y-register in bits

dy

For the Variable Multiplier, the lengths of the two variable registers

are equal, and the length of each is determined as follows:

Length of variable registers in bits = de-Sx = de- Sy

The various scaling powers are adjusted to obtain compatibility between

R S e -

_all units. The Appendix shows the scaling fdr the Example Problems,

!

3.5 CODING.

Coding is the process by which the program is made understandable to
the TRIGE. The map is used to connect the computing modules by means of a

patchboard as described in Section IV.

The scaling and initial conditions are filled into the variable registers as

described in Section IV. Information may be filled in octal or decimal form.

The decimal system is in common use and need not be explained. The

octal system is not as common, but just as simple and more exact for use in the

TRICE.

The octal code for the fill process is represented by eight keys that corore-

spond to binary digits as indicated in Table 3-2.

Table 3-2. Octal Coding

Binary Digits

X
®
<

000
001
010
011
100
101

110
111

NN W N = O

3-32

Programming Procedure " Section III

Hence, if it is desired to have a register length of 13 computing positions with -
an initial value of zero, the desired register should be filled to appear as follows:
Computing Bits
0_0000000000000 1 000000000000000
Sign;ﬂt\ Scalin:%

This would be accomplished by pushing:
(a) The zero key four times
(b) The one key one time

(c) The zero key five times
The short hand form of writing fhis is 0 4 10 5

For another example a register filled with ¢ 2 130 2 1 03 would make the

register appear as follows:

000 000 001 Ol1 000 000 001 000 000 000

When a decimal code is used for initial conditions and scaling, the TRICE
converts the decimal code to an octal code for loading the registers; hence, a

" truncation error makes the least significant binary bit in the register uncertain,

3.6 INTERPRETATION OF RESULTS.

The method of interpretation of the results obtained from TRICE depends
upon the method used to obtain the output. If a tape output is used, the values may

be read directly from the tape.

If a plotter or scope is used for the output, the results are known from the
scaling of the analog output. The accuracy of the results will depend largely upon
the method of obtaining the output.

The single iteration mode of operation is probably the most accurate
method of observing the output using a Readout Register; however, this mode
of operation is very slow. Usually the output can be obtained by any method

to a much higher degree of accuracy than required by the problem.

3-33

Section III i Programming Procedure

3.7 SPECIAL PROGRAMMING CONSIDERATIONS.

" The previoua paragraphs of this section describe straightforward
methods of programming. However, for a special class of problems, program-
ming techniques must be used which consider errors that are inherent to the

computing modules.

In the straightforward programming methods, the following assump-

i

tions were made:

!

(a) dz = ydz, and

(b) dx and dz are assumed to be infinitely small increments (differ-

entials).

Errors of the order of an increment (an increment in the R-régister) arise

in operation due to these assumptioné. Hence, if x varies over a range of unity,
z may have an error of the order of one increment. This error is very small
and will not seriously affect the accuracy of computation as long as the range

(in increments) of variation of the independent variable is comparable to the
typical register capacity (average reg1st‘er length of modules used). That is,
if the typical register length is n bits and the solution (computation) is com-
pleted in 2™ iterations or less, the error due to assumption (a) and (b) aboire,.

may be neglected. For example, this would be the case for transient solutions

when the period of the solution is comparable to the solution time.

However, in those cases where computation proceeds for a longer time
(i.e. problems with periodic solutions), the error due to assumptions '(a)
and (b) above, may accumulate and eventually lead to completely erroneous
results. Considerations for reducing these errors will be considered in the

following paragraphs.

3-34

Programming Procedure Section III

Two sources which are the major contributors to these errors are:

(a) Delays which occur between the primary (dx) input to the

computing module and its output.

(b) Round -off.

3.7.1 Compensating for Delays. -

i

The error due to delays can be reduced by operating in parallel-serial
map configuration. The corrective parallel-serial configuration analysis requires
the use of the more accurate operation expressions for the computing units as

listed below:
(a) Integrator

~dz dx ;) + 1/2 dy [sign dx(i)]

i+ Y@ T
(b) Constant Multiplier
dz o= kdx, ., .
(c) Variable Multiplier
= . d + d
vy T Y) T -1 Y
(d) Digital Servo

sign Y(i) dx if O‘IY(i)l"l

(i)

dzi41y) T
0, otherwise
(e) Decision Servo
i sign Y(i) dx(i) if -1/2 _<_|y(i)|-o or 9c|y(i)|<+ 1/2
(i+1) '

0, otherwise

3.35

)

Section III - Programming Procedure

NOTE

Increments have subscripts which relate them to
the iteration in which they are used; for ex-

ample, iteration i advances yfrorny(i 1) toy(i) .

Examination of the above operation expressions result in the following

conclusions:

(a) Any computing module has a dellay of one iteration (generation)

between the primary input and output.

(b) The Integrator extrapolates Vvy trapezoidally and dy should (for
maximum accuracy of extrapolation) be delayed one iteration

(generation) with respect to the primary input, dx.

(c) The Variable Multiplier requires dx and dy to be of the same
iteration (generation)for maximum accuracy of the trapezoidal

interpolation.

Rules formulated from the above conclusions to achieve maximum

aperating efficiency are as follows:

' (a) Prepare the map of the problem in a straightforward manner as

discussed in the previous paragraphs.

(b) Number the incrementsto determine their phase r.elationship. Start
the numbering at the primary input(independent variable) to the
Integrator performing the integration of the highest order derivative.
Tentattvely number all otherindependent.variable inputs (secondary
and primary) with the same number. The output of a unit is

numbered 1 greater than its primary input.

(c) Introduce one iteration (phase) delays using Constant Multipliers

filled with a constant of 1. Arrange the Constant Multipliers so

3-36

Programming Procedure Section III

(d)

(e)

(1)

(g)

that the secondary inputs, dy, to every Integrator which has a
dependent variable primary input,has a number greater than its

primary input, dx.

Furthermore, the Constant Multipliers should be arranged to

provide each Variable Multiplier with identical numbers for its

two inputs.

Squaring and multiplication should be performed using Variable

Multipliers whenever possible.

All Integrators with independent variable primary inputs have been
assigned numbers for their secondary inputs. Hence, the next
iteration with an independent variable increment should be assigned
a number equal to or greater than any number which has been |
assigned to any secondary input of the Integrator. For exémple,

if an Integrator Which has an independent variable primary input

through step (e) above, has the numbers assigned as follows:
dx - independent variable increment assigned number 1
dyl assigned number 2

dyz assigned number 4

Then assign the next independent variable increment, dx, number 4.

The difference between the numbers assigned to the independent
variable in step (a) and in step (f) is the ratio by which this input
must be scaled down with respect to the machine independent
variable. In the example of step (f), a Constant Multiplier filled
with a constant of 1/3 would be required to generate the ,probl‘em

independent variable from the machine independent variable.

The solution of the problem will be slowed down by this factor;

3-37

Section III Programming Procedure

-

however, a gain in accuracy may mean the difference between a

stable and an unstable solution.

(h) To improve solution speeds, it may be possible to use different sets
of numbers for different Integrators. For example, Integrator 1
may have dx as a primary input with the numbers 1 and 4 assigned
to the phase of successive primary increments; at the same time
Integrator 2 may also héve dx as its primary input, but with the

numbers 2 and 5 assigned to th;é phase of successive pPrimary in-

crements.

NOTE

The necessary delays in this scheme can
be generated by Constant Multipliers

filled with -1, using the negative outputs.

3.7.2 Compensating for Round-Off. -

A round-off error is due to the finite capacity of the R-register. Initial-
ly (start of computation) all R-registers contain a value of 1/2. Outputs are
generated by adding the contents of the Y-register to the R-register until it over-
flows either in the positive-going or negative-going direction. Therefore, 1/2K
increments of the same sign are required at the primary input of a Constant Multi-
plier containing the constant K to cause an output. If the primary input consists
of alternately positive and negative sequences, having fewer increments than 1/2 K
(i.e. increments of a periodic function of small amplitude), outputs will not be
generated and the term thus represented will drop out and the solution will be of
a different character (such as damped to unda'mped)« This difficulty can be over-
comé by using the Constant Multiplier only to generate the existance of the incre-
ments of its term; the sign output of the term is taken from the sign of the primary
_input. Due to the delay between the input and output of the Constant Multiplier, it

18 necessary that the input increments do not occur more often than every other

3-38

Programming Procedure | Section III

iteration so that each output increment will have the correct sign.

3.7.3 §_pecia1 ProgramminLConsiderations, Exan&le Problem. -

As an example of using the special programming procedures described
in the above discussion, consider Figure 3-17. Assume that no Variable Multi-
pliers are available for use, thus, necessitating the use of Integrators to perform

the squaring process. .

!

Initially, the map of Figure 3-17 is drawn in a straightforward manner.
The Constant Multiplier ?.t this time does not appear on the map. Integrators 106
and 108 are being used as Constant Multipliers. The primary input of the Inte-
grator 101 is assigned the number 1. All other dt inputs are also assigned the
number ''1.'" This leads to the outputs of Integrators 101, 105, and 106 being
assigned the number '""2.'" In turn, the outputs of Integrators 102 and 107 are
assigned the number " 3," which leads to the outputs of Integrators 103 and 109
being assigned the number '"4.'"" Continuing the assignment of numbers the out-
puts of Integrators 104 and 108 are assigned the number "'5.'" Observing the
numbers assigned on the map, it is .noted that only Integrator 104 has a secondary
input with a number that is not greater than its primary input. Hence, the Con-
stant Multiplier is introduced to produce a delay of "' 1! iteration. Thus, the
secondary input of Integrator 104 has the number '"'5" assigned to it. Note that

a Variable Multiplier should have been used if available. The round-off errors

discussed above are not serious in this problem and can be neglected.

3-39

0b-¢

IIT uonydeg

. dR de dt 2 40 1 a6
Given: d |——] = Rd —_— - — — — = —_—
: (5 (5) 2 Also R, (g)] joeg) d(RT)
2 46 dt o .
dé = Ro (—;—) | -5) * Factor of -2 needed to make this output equal to
R 1
d (-5) is taken care of in scaling initial condition
R
101 filled into Integrator 104.
" l'l dt
dR dR _—
at Rd6 (2)
dt
4)
102 " R% 109 "3
" 3n) "n4n
L dR S GO
R R dt
/ I 1 4n . /" "
103 "oyn 108
1"gn) 1 2 4o de
2 d]
5 — 4(R) R (g7 (R
ﬁ teg4n
104 Delay 107 nan
" 5“
K= -1 ' . . .
1 2 de dt _ |
I — Ro ('a'{)o -3 = doe
ﬁ R R
t CM
105 106
dt 2 46 2 de
1 - @ — “R_ (5) R"™ (g7) at
R7 R (o] t o o] o

Figure 3-17. Map of Orbit Problem Employing Special Programming Considerations

sanpasoxg BurwruwreaSoayg

Section IV Operation

SIS CNBURBACEI S ARTRNOERNNED

ores ® wen o wnwn <

R Y] 1tTIsver et B UNe

READOUT SELECTOR OVERROW NPyUT MANUAL INPUT AND TAPE PREPARATION PUNCH
{ ug | [R = —] f orr]
[+ 4 4
umn{ OCTAL BACKSRACE
O et O
[SINGLE
umT
Y START START CODE DELETE
s Qe © © o
conwae L 7.] PRUNCH

Figure 4-1. Control Panel

" -

Operation
SECTION IV
OPERATION
4.

indicated in Table 4-1 before applying power.

1 INITIAL CONTROL POSITIONS.

Section 1V

The front panel controls (see Figure 4-1) should be set to the position

]

Table 4-1. Front Pangl Controls, Initial Positions

Switch Position
READOUT SELECTOR BLOCK Disregard
READOUT SELECTOR UNIT Disregard
READOUT SELECTOR REGISTER Disregard
READOUT SCALE FACTOR BINARY -00
READOUT SCALE FACTOR DECIMAL -00

OVERFLOW

t+/t-

INPUT

SINGLE STEP

SLOW

COMPUTE

RESET SINGLE UNIT
RESET PATCHED UNIT
RESET ALL UNITS

EXPONENT
NUMBER
ADDRESS

AUDIBLE HALT

Disregard
OFF

Disregard
Disregard
Disregard
Disregard
Disregard
Disregard
Disregard
Disregard
Disregard

Disregard

Section IV Oper?.tion

Table 4-1. Front Panel Controls, Initial Positions (Cont.)

Switch Position
+ Disregard
Keys 0 through 9 Disregard
PUNCH : OFF
CLEAR ADDRESS) Disregard
CLEAR CONVERTER ! | Disregard
SLOW RATE - Disregard
SLOW RATE + . Disregard
FUNCTION SWITCHING 1 OFF
FUNCTION SWITCHING 2 OFF
FUNCTION SWITCHING 3 p OFF
POWER ‘ Not Depressed

(Light Out)

4.2 SYSTEM CLEAR PROCESS.

After applying power to the system, it is necessary to clear the input
devices and set them to a state in which they can accept information. This

procedure is as follows-

(a) Set INPUT switch to a MANUAL position { DECIMAL or OCTAL).
(b) Actuate ADDRESS button.
(c) Actuate CLEAR ADDRESS button.

(d) Actuate CLEAR CONVERTER button.

The system is now cleared and ready to accept information.

Operation Section IV

4.3 AUTOMATIC TYPEWRITER CONTROL.

The functions of some of the panel controls may be made automatic
by punched codes ontape. The automatic typewriter keys and tape codes for

these functions are shown in Table 4-2,

Table 4-2. | Tape Codes

Tape Code

Control Automatic Flexowriter Channel Designation
Function Typewriter 7]6]s5|4f. [3]2]1

Key ; Packard Bell Channel Designation
| U V W, X Y|z
0 1 0 * 1J]o0]J]o].]O}O]O
1 1 o|jo0o}]Jof]. 0]0 1
2 2 0]J]o}oO 0 110
3 3 1lo]o ol 1|1
4 4 ojo}o 11010
5 5 110710 110 1
6 6 1}0}]0]|. 111710
7 7 ojJofjoqg. 1 1 1
8 8 010 11, 010 }O0
9 9 10| 1} OO |1
+ Space ° 0 110 |a 0]0}oO
ADDRESS a 2 1|1 f{o]. Jo]o |1
NUMBER n 2 1 1101]. 0 1]0
EXPONENT ble 0 1j01]. 0 1 1
RESET ALL UNITS r 1 1 o]. 1 0 |O
CLEAR ADDRESS 0 110 1}. 110 1
RESET SINGLE UNIT s) 0 1101}{. 1 1]0
RESET PATCHED UNITS p 1 1 11]. 0]0 |O
- - 0 1 1. 0]0O 1
TAB (From TRICE) 1 1 1. 1 1 |0
BLANK .00 0]. 0 }]0 |0
CODE DELETE (From TRICE) ‘ 1 1 11. 1 1 1

Section IV Operation

4.4 CONTROLS.

The controls of TRICE consist of rotary switches, digit switches,
knobs, buttons, pin jacks, and coax connectors. The controls for the TRICE
are shown in Figure 4-1. The following paragraphs describe these controls and

connectors; however, the START button on the M1 should be disregarded.

4.4.1 Power Switches. -

$

The POWER button on the control panel supplies AC power to the Multi-
-verter and TRICE power supply by means of a terminal strip inside the cabinet.
Pushing the POWER button turns power ONor OFF. The power is ON when the

button is illuminated. (See Figure 4-1.)

The M1 Multiverter and the MC 72 cases containing input and output
logic each have their own power switch on their front panel. (See M1 Manual

for description of the M1 Multiverter.)

4.4.2 Power Supply Controls. - .

The TRICE power supply generates DC voltages of + 50, +8, -8, and
- 14volts. The M1 indicator lights require + 50 volts, whereas the TRICE
elements (not including the M 1) require +8, -8, and - 14 volts. The voltages

can be checked at the output terminals on the power supply.

The +8, -8, and - 14 volts can be adjusted over a small range by means’
of the three knobs on the front panel of the power supply(see Figure 4-2). These
knobs are located at the rear of the cabinet. The center knob is the adjustment
for the minus 8-volt level. The left knob is the adjustment for the plus 8-volt
level and the right knob is the adjustment for the minus 14-volt level.

The Multiverter and the Input and Output units contain their own power

supplies. See the M1 Manual for information about the M1 power supplies.

Section 1V

Operation

e 00 0o 60 0 00 0 0 0 0 0 O

£

3
¥
-

Figure 4-2. Power Supply Controls

4-5

Section 1V Operation

4.4.3 Input/Output Controls. -

TRICE input/output equipment consists of the following units:
(a) Control panel keyboard and switches.

(b) Punched paper tape reader.

(c) Tape' reader logic and address unit.

(d) Decimal-to-binary and binary-to-decimal converter scaler with

]

decimal display.
(e) Buffer register with binary display.
(f) Punch out logic unit.
(g) Paper tape perforator.

A block diagram of the interconnections of these units is shown in Figure
4-3. Several modes of operation of this equipment are possible using the controls

on the Control Panel.

4.4 3.1 Analog Inputs. -

Designated points on the patchboard are the connections for analog inputs
to éhe TRICE. The full-scale input voltage range is from - 100 to + 100 volts (see
the M 1 Manual). If the TRICE system has provisions for analog inputs, the patch-
board reference designations are shown on the TRICE system schematics. (See

the M 1 Manual,)
4. 4. 3.2 Analog.Outputs. -

If the TRICE system has provisions for analog oupputs, the patchboard
reference designations for these outputs are shown.on the TRICE system schematics.
The. analog output range is from -6. 67 volts to + 6. 67 volts, with an output impedance
of 3333 ohms. |

4-6

Operation Section 1V

O o 0 Tape -
o 0 9 Reader
o O o
(G
Keyboard . '
1
' DECIMAL OFF
Tape ™o ;
Punch OCTAL]
: AUTOMATIC Reset Control
OUTPUT PREPARE
o
Tape Reader Address
oFF ' Unit Unit t Address Linef
(Fill and Reset
Selection)
Punch Out 1 ; o
l |, AUTOMATIG
Unit OCTAL Y .
F1ill Signals and
OFF o=—s ~ Fill Control
et DECIMAL
D-B
' - B-D — Buffer Register[]
| Decimal Display . Binary Display
l | 1
- - - _ __
" Punch Out Octal Punch Out Manual Selec
(Readout
Control
Selection)

Figure 4-3. Input/Output Equipment,
Block Diagram 4-7

Section IV Operation

Normally, the DA 3 converters are used to obtain analog outputs;
however, when an M1 Multiverter is not being used to accept analog input
information, it may be connected to operate as a D-to-A converter. (See

the M1 and DA 3 Manuals.)

NOTE

An analog input to the TRICE must not be used
when the M 1's are connectedas D-to-A converters.

!

4.4.3.3 INPUT Switch. -

The INPUT switch has four positions as follows:

(a) In the OFF position, both the keyboard and the tape reader

are disconnected.

(b) In the OCTAL position, information is inserted in octal form
via the manual keyboard. The octal mode of operation provides

an exact value including the least significant bit.

(c) In the DECIMAL position, information is inserted in decimal
form via the manual keyboard. The conversion of information
from decimal form to octal form required for machine operation
incurs truncation and round-off errors which make the leaa't

significant bit uncertain.

(d) In the AUTOMATIC position, information is inserted via the

tape reader at sixty characters per second.

The controls normally used in a mode of operation are illuminated

when the mode is selected by the INPUT switch (See Table 4-3).

4-8

Operation

Section 1V

Table 4-3. Controls Illuminated by INPUT Mode Selection.

INPUT Switch Position Control Buttons
OFF | OCTAL | DECIMAL | AUTOMATIC Illuminated
x 0 through 9
x +, -
x . RESET SINGLE UNIT .
x ; RESET PATCHED UNIT
x RESET ALL UNITS
x ADDRESS
x NUMBER
x EXPONENT
x CLEAR ADDRESS
x : CLEAR CONVERTER

4.4.3.4 PUNCH Switch. -

The PUNCH switch has three positions as follows:

(a)

- (b)

(c)

In the OFF position the tape punch is disconnected.

In the PREPARE position, the preparation of tapes is accomplished.
In this mode, information is normally supi:lied from the manual

keyboard; however, tapes read on the reader may also be duplicated.

In the OUTPUT position, a command from a computing module,

as selected on the patchboard, causes the contents of a preselected
register to be punched on the tape. This information is first pre-
sented to the converter, where:it is converted from binary-to-
decimal and the proper scale factors (which have been set on the
READOUT SCALE FACTOR switches) are applied. The decimal

information is then presented to the punch unit.

4-9

Section IV , Operation

4.4.3.5 READOUT SCALE FACTOR Switches. -

Each initial condition value will have a binary scale factor as described
in paragraph 3. 4 of this manua. The binary scale factor for an initial condition

value is denoted by the notation 2‘, where s is the binary exponent.

In addition to the binary scale factor, a base ten factor must also be
applied. This factor, IOd, is obtained by representing the initial value as a
decimal fraction times ten raised to thé appropriate power. For example, if
a variable, w , has an initial value of 8765.000b in decimal, then w may be re-

presented as

. 87650000 (104)
or, as a safety conversion measure, it may be represented as
. 08765000 (105)

The values of s and d are used by the code converter as described in

the following paragraphs.

The code converter is a two-way device capable of converting from

decimal-to-binary and from binary-to-decimal.

In the decimal-to-binary mode, the converter accepts a decimal fraction
and applies a factor (2s) (10d) to it. The values of s and d are entered from the
keyboard or tape. The resultant decimal fraction is converted to a binary fraction.
This fraction is truncated after r bits, where r is the desired number of bits in
the register. The value of r may be entered from the keyboard or the tape. A -
scaling bit is placed in the position following the least significant of these r bits.
The binary information is then shifted out of the converter, three bits at a time,
to form octal digits which are loaded into the selecteél module. The sign bit is

placed at its proper position in the most significant octal digit. Negative numbers

are loaded in inverted (one's complement) form.

4-10

Operation . Section 1V

In the binary-to-decimal mode, the converter receives a binary
fraction from the readout register and converts it to a decimal fraction. Nega-

8 (107Y) is applied to the decimal

tive numbers are inverted. A factor of (2~
fraction. The values of s and d are set up on the appropriate READOUT SCALE
FACTOR switch positions. The resulting decimal value is displayed on the

decimal readout register and may also be punched out on tape through the output

unit.
i

The value of 8 for the output variable is set up in the BINARY positions
of the READOUT SCALE'FACTOR switch. The value of d for the output variable
is set up in the DECIMAL positions of the READOUT SCALE FACTOR switch.
The values of 8 and d that are set up in the READOUT SCALE FACTOR positions
for the output variable are identical to the values of s and d used when loading
the initial condition values (via keyboard or tape) for that variable. If w (example
above) is selected as output variable, +04 is set up in the DECIMAL poaitiofxa of
the READOUT SCALE FACTOR switch. | ~

4.4.3.6 BACKSPACE Button. -

When the PUNCH switch is in the PREPARE position and the BACK-
SPACE button is pressed, the tape moves back one space. The BACKSPACE
button is used in conjunction with the CODE DELETE button for effectively

erasing incorrect infarmation from the tape.

4.4.3.7 CODE DELETE Button. -

If incorrect information is found to exist on the tape, it may be effectively
erased by using the BACKSPACE button to backépace to the spot on the tape that
has incorrect information. Pushing the CODE DELETE button then causes all

tracks of tape to be punched (this is treated by the tape reader the same way

as absence of information).

4-11

Section IV Operation

4.4.3.8 START READER Button. -

When the INPUT switch is set to AUTOMATIC and the START READER
button is pushed, the tape reader controls the automatic filling of modules as

indicated by the code on the tape.

4.4.3.9 START PUNCH Button. -

When the PUNCH switch is in the OUTPUT position and the START
PUNCH button is pushed, the selected output will be punched out on the paper tape.

]

4.4.4 FUNCTION SWITCHING Switches. -

The three FUNCTION SWITCHING knobs provide a means of switching

rapidly from one program to another by changing the positions of these knobs.

Each of the three FUNCTION SWITCHING knobs is related to three rows
(6 holes per row) on the patchboard. When a switch is in position A, the top row
of holes is connected to the center row of holes, i.e., the first top row hole. is
connected to the first center row hole, the second top row hole is connected to the
second center row hole, etc. When a switch is in position B, the center row and
the bottom row of holes are connected. When a switch is in the OFF position, the

rows of holes are not connected.

4. 4.5 FUNCTION SWITCHING SET and RESET Buttons. -

The FUNCTION SWITCHING SET and RESET buttons are intended to

be used with auxiliary control logic.

4.4.6 Computation Controls. -

The following paragraphs describe controls used to

(a) Enter data for computation
(b) Prescribe the mode of computation

(c) Methods of indicating overflows

4-12

Operation Section 1V

4.4.6.1 Address of Modules. -

Each computing module has an address number. The AY Summers do
not have an address number. The address number is composed of one decimal
digit (block number) followed by two decimal digits (ugit number). The as-
signment of block and unit numbers is shown in Figure 4-4, pdge 4-24. Thus,

the address number consists of the block number joined with the unit number.

For example, the address of the Constant Multiplier in the upper right
hand corner of Block No. 1 is 115. The acliaress of the Integrator adjacent to
the Variable Multiplier in Block No. 1 is 101. The Variable Multiplier has two
addresses; the lower numbered address is for the X-register and the higher
numbered address is for the Y-register. (Note that Servos and Integrators are

interchangeable.)

4.4.6.2 OVYERAFLOW Switch and OVERFLOW Alarms. -

When the capacity of a variable computing register is exceeded (: by
adding to many increments to it), an overflow is indicated by a light on the
front panel of the module and by the OVERFLOW light on the control panel. The
Integrators, Variable Multipliers, and Servos have variable computing register;

"hence, they have OVERFLOW lights.

If the OVERFLOW switch is in the HALT positioﬁ, computation will
stop one iteration after an overflow occurs, and the OVERFLOW light on the
control panel will illuminate. If the OVERFLOW switch is in the AUDIBLE HALT
position, computation will stop one iteration after an overflow occurs, and the
OVERFLOW light on the control panel illuminates and the alarm buzzer sounds.
However, when the OVERFLOW switch is in thq CONTINUE position, compu-
tation will continue regardless of overflows. In this case, the OVERFLOW light
on the control panel illuminates when an overflow occurs, and the individual
module OVERFLOW lights will illuminate. Overflows are reset by pressing th?

appropriate reset button.

4-13

Section IV) Operation

The slot marked CLOCK on the control unit front panel provides access
to the clock bias pot, which is the adjustment for clock width. Moreover, as the
Constant Multiplier and the AY Summer cannot overflow, their slots should be

disregarded.

4.4.6. 3 ADDRESS Button (Typewriter ""a' Key). -

The address of the various médules is explaine{i in paragraph 4.4.6. 1.
For manual fill or manual tape preparation, t},;e address of a module is selected
by pushing the ADDRESS button and then pushing the three keys of the keyboard
that define the address of desired module (most significant digit, i. e., block digit,

first).

If a number of units in the same block and tens scope are to be filled
with identical contents, push the block digit, then the common tens digit, and

then each of the unit digits.

This button also clears any previously selected addresses, and also
resets the parity flip-flop.
4.4.6. 4 +Button (Typewriter Space Bar). -

The + button must be pushed before entering positive decimal numbers
or positive exponents. This button must also be pressed after filling the last
exponent digit, when in the decimal fill mode of operation, before entering the

two-digit decimal number that corresponds to the desired register length.

4.4.6.5 - Button (Typewriter ' - "' Key). -

The - button must be pushed before entering negative decimal numbers

or negative exponents.

4-14

Operation , Section IV

4.4.6.6 NUMBER Button (Typewriter ' n'" Key). -

After the desired module has been addressed, the NUMBER button must
be pressed before entering the numerical information, including sign, into the

modules (or for preparing tape) via the keyboard.

4.4.6. 7 EXPONENT Button (Typewriter ' x'' Key). -

In decimal mode of operation, the EXPONENT button must be pressed
before entering the scaling exponents. Each exponent consists of a sign and two
decimal digits. The first exponent is the éxponent of the base two, determined
when scaling the problem, as described in paragraph 3.4. The second exponent

entered is the power to base ten, which is explained in paragraph 4. 4. 3. 5.

4.4.6.8 CLEAR CONVERTER Button. -

The CLEAR CONVERTER button provides a means, in case of an error
during the filling of a number or the entering of exponents, to re-start the fill
process of the addressed register at the point of pushing the NUMBER button.

(Note that the address of the module is retained when this button is pressed.)

4.4.6.9 CLEAR ADDRESS Button. (Typewriter Period Key). -

The CLEAR ADDRESS button provides a means of clearing the addresses
held by the reader unit. This provides a means to start over at the point of
pushing the ADDRESS button. The CLEAR ADDRESS button must be used in the'

case of a wrong module addressed, before any number is entered.

If a tape is being prepared, this button puts a stop code on the tape. This

stop code is for the TRICE, not for the automatic typewriter.

4.4.6. 10 Keyboard. - '

-

The manual keyboard is used for addressing and filling (including scaling).

4-15

Section IV

Operation

A module is addressed as follows (INPUT switch in one of the MANUAL positions):

(a)
(b)
(c)

(d)

Push ADDRESS button.

Push the key that has the module's block number.

Push the key that corresponds to the module's first digit.

(Modules have two digits in their address; the first numbered

modulesis 01 .)

i

Push the key that corresponds to the module's last digit.

Initial conditions ate inserted into any TRICE initial condition register

by the fill process.

register may be cleared of its previous contents.

Furthermore, the fill process is the only process by which a

After the desired register has

been selected by address, the register is filled by pushing the NUMBER button,

then the appropriate keys (one at a time) of the keyboard.

When the INPUT switch is in the OCTAL position, the first key pressed

inserts three binary bits into the addressed register's least significant bit positions.

The :binary bits correspond to the keys as follows:

4-16

KEY

0
1

~N O o W

BINARY BITS

000
001
010
011
100
101
110
111

Operation Section IV

The second key pressed shifts the first three binary bits three bits
toward the most significant end of the register and inserts the binary bits re-
presented by the depressed key into the vacated three least significant bit
positions. This process is continued until the keys have been pressed ten times,
at which time the register is filled. Hence, the first three.bim ry bits inserted
will be in the three most significant bit positions (last three bit positions on the
right side of the scope). The last binary ''one'' inserted is the scaling bit, which
determines the length of the register. The'least significant bit is the first bit to
the left of the scaling bit. The fill process’ can be observed on a scope or readout

register as described in payagraph 4. 5.

When the INPUT switch is in the DECIMAL position, push.the + or -
button, after pushing NUMBER button, to indicate the sign of the.number. The.
first key pressed should then be the most significant decimal digit of the number.
The keys are then pressed in order (descending significance of the decimal digits)
until a total of eight decimal digits have been entered (zeros are used for later |
digits if the decimal number is less than eight digits long). The binary scaling
exponent is entered after the decimal number, by pushing the EXPONENT
button, the pressing the + or - button to indicate sign of the exponent, and then
cémplete the operation by pressing the two decimal digits on the keyboard(most
significant first) that correspond to the scaling exponent. - The second exponent
(tens exponent) is entered in a similar manner. The next step is to push the +
button, then the most significant digit of the desired register length, then the

last digit of the register length.

It should be noted that tapes may be prepared if the PUNCH switch is
in the PREPARE position -

4.4.6. 11. M1 Multiverter RESET Button. -

The RESET button of the M 1 Multiverter may be used to clear its counter,

(See the M 1 Manual for more detailed information,)

4-17

Section IV Operation .

4.4.6. 12 RESET ALL UNITS Button (Typewriter ' r "' Key). -
When the RESET ALL UNITS button is pressed

(a) The initial values are inserted into all the variable registers
of the Integrators. (The initial condition registers are left

unchanged.)

(b) The R-register of each Integrator and each Constant Multiplier

is filled to one-half of its capacity.

(c) Each Digital Servo Y-register is reset to ''zero.'" Each Decision

Servo Y-register is reset to its initial value.

(d) Both of the converter registers are set to the middle of their
range (M1 register indicators read 00000000000000, which

corresponds to 0 volts).

(e) The control panel and the module overflow lights are extinguished

(buzzer turned OFF if it is ON).

4.4.6.13 RESET PATCHED UNITS Button (Typewriter " p'" Key). -

When the RESET PATCHED UNITS button is pressed, the result isA
as described in paragraph 4. 4. 6. 12, except that only the units patched for reset

on the patchboard are effected. (The Multiverter is not reset.)

4.4.6. 14 RESET SINGLE UNIT Button (Typewriter '"'s'" Key). -

When the RESET SINGLE UNIT button is depressed, the results are

as described in paragraph 4.4.6. 12 for the unit whose address has been selected.
4.4.6.15 t+ /t - Button . -

When the t + /t - button is pressed, the sign of the positive machine
time (accessible at the patchboard as a patched +t) is changed to the sign

- opposite that which it had before. Pressing the button a second time, again

Operation Section IV

changes the sign of the positive machine time. The button has two lights in it.
When the right light (blue) is illuminated (normal position), the incréments
generated for positive machine time (+t on patchboard) are positive; when the
left light (red) is illuminated, the increments generated for positive machine

time (+ t on patchboard) are negative.

When the t + /t - button is pressed, the sign of the negative machine
time (accessible at the patchboard as a patched -t) is changed to the sign
opposite that which it had before. Pressin’g the button a second time, again
changes the sign of the negative machine time. When the left light is illuminated,
the increments generated for negative machine time (-t on patchboard)I are posi-
tive; when the right light is illuminated, the increments generated for negative

machine time (-t on patchboard) are negative.

NOTE

Never push this button during computation.

4.4.6.16 SLOW RATE + Button. -

When the COMPUTE switch is depressed and the SLOW RATE + button
is depressed, positive increments at the rate of 100 iterations per second are

available at the SLOW Z output holes on the patchboard.

4.4.6. 17 SLOW RATE - Button . -

When the COMPUTE switch is depressed and the SLOW RATE - button
is depressed, negative increments at 100 iterations per second are available at
SLOW Z output holes on the patchboard.

4.4.6. 18 COMPUTE Button. -

When the COMPUTE button is depressed, increments will be geﬁerated

or accepted and computation will be performed. The machine time (dt) rate is

4-19

Section IV Operation

100, 000 iterations per second in this mode of operation. The COMPUTE button
will stay latched (light ON) until the SLOW or SINGLE STEP button is pressed,
at which time it returns to its normal position. If the SLOW button is latched
(light ON), the COMPUTE button can not be latched until the SLOW button has
been released by pressing the SINGLE STEP button. ’

4.4.6.19 SINGLE STEP Button. -

When the SINGLE STEP button is depressed, a single iteration of
computation is initiated. The button will return to its normal position when

released.

This button may be pressed and released to stop computation when

the COMPUTE or SLOW button has been depressed.

4.4.6.20 SLOW Button. -

When the SLOW button is depressed, increments will be generated or
accepted and computation will be performed. The machine time (dt) rate is
100 iterations per second in this mode of operation. The SLOW button remains
latched (light ON) until the SINGLE STEP button is actuated. Depressing the
- SLOW button will also make the COMPUTE button return to its normal position

if it is depressed.

4.5 VISUAL DISPLAY OF REGISTER CONTENTS.

The contents of the various registers can be displayed on a scope by
connecting the scope ground to the ground pin jack and the scope input to the de-
sired register pin jack on the module containing the register. (When the con-
tents of a register are displayed on a scope, the leaet significant digit of the
register is on the left side of the scope display.) The scope sync should be
connected to the P 0 pin jack of the Control unit. (Use low capacité.nce probes

3
for the scope connections.)

4-20

Operation Section IV

The SYNC pin jack provides access to one of eight possible signals from

the Control unit. These signals are clearly identified on the circuit board.

The CLOCK pin jack on the front of the Control unit provides access to
the clock output for scope display or sync purposes. The "1'" pin jack on the front
of the Control unit provides access to the G1 signal for sync purposes during

checkout procedures.

The SHIFT pin jack on the front of the AY Summer provides access to
the shift signal Sh; whereas, the ZAY pin jack provides access to the output of
the AY Summer, Ya' .

The two pin jacks to the left of the READOUT SCALE FACTOR switches
facilitate scope display of the module selected by the READOUT SELECTOR

switches.

When the readout register and code converter are not being used for
punching out information, they may be used as visual monitors of the registers
throughout the computer. With the PUNCH switchinthe OUTPUT position, the
newest information must be maintaix;ed in the registers for immediate punching,
which requires constant shifting-in of new information. Thus, the old information

is not heldlong enough for the eye to register.

When the readout register is not being used as output device, the old
information is retained for about twenty times the time required for shifting in
new information. This ap‘pears visually as though the display register is static,
although, when computation is proceeding,the value held by the display register
will track the value of the variable display, In addition to the binary display,

a decimal display by means of the code converter is available, provided that the
code converter is not being used for input or output (i. e., the INPUT switch is
set to the OFF or AUTOMATIC position and the PUNCH switch is in the OFF or
PREPARE position). In order to display the variables in the same units as the
initial condition values, the decimal display will utilize the READOUT SCALE

4-21

Section IV Operation

FACTOR switches on the control panel.

Selection of the monitored register is performed by the manually

operated READOUT SELECTOR rotary switches.

| The three READOUT SELECTOR switches are as follows:
(a) BLOCK switch.
(b) UNIT switch. '
(c) REGISTER switch.

- The modules are selected by address number, as explained in paragraph
4.4.6. 1. The BLOCK switch is set to the block number of the desired module.
The UNIT switch is set to the unit number of the desired module. The I-Y
switch is set to I for initial condition registers (I-register) and to Y for the
integrand registers (Y-register, also X-register for VM). The contents of the
selected registers are viewed on the READOUT REGISTER (binary and/or decimal

types) or on a scope.

4.6 PROGRAMMING THE TRICE PATCHBOARD.

All interconnections between computing elements are made on the TRICE
patchboard by means of patchcords(see Figure 4-5) These connections provide
means to transfer increments from one module to another. Increments appear
as voltage levels on two lines, the existence line and sign line. Logic "'true'
corresponds to -7 volts, and logic ''false'' corresponds to 0 volts. A positive
increment appears as a ''l" (logic ''true, ' -7 volts) on the existence line and
a ""1" on the sign line. A negative increment appearsas a ''l" on the existence
line and a "'0" (logic ''false}' 0 volts) on the sign line. .The non-exisfence of
an increment is indicated by logic ''false' (O volts) on the existence line; however,
the sign line is not significant.

The designation code of the patchboard is described in the following para-

graphs.

4-22

Operation

Section 1V

4.6.1 Division of Patchboard. -

The patchboard is laid out in blocks that correspond. to blocks of

computing modules (see Figures 4-4 and 4-5).

The patchboard code is explained as follows:

(a)

The heaviest lines on patchboard separate the major blocks of

information.
(b) The medium weight lines indicate the boundary of plug holes for
a module.
(c) The lightest lines indicate the bounds of code designations.
4.6.2 Existence Codes. -

The codes used to represent the existence lines are explained below.

The existence of an increment is indicated when the line is -7 volts.

(2)

(b)

(c)

(d)

(e)

(f)

The t code designation is used to specify the existence of machine

time.

The Yl and Y2 code designations are used to specify the existence
input for secondary inputs. These codes are used for the Servos
and Integrators, as they have two secondary inputs. The AY

,Y.,Y.,Y., Y., and Y,.

Summer has inputs designated as Y1 2 Y3 Y, Y 6

The Y code designation is used to specify the existence input for

the Y secondary input of the Variable Multiplier.

The X code designation for the Variable Multiplier is used to de-

signate the existence input for the X secondary input.

The X code designation (for units other than the Variable Multiplier)

is used to specify the existence of the primary input of the module.

The Z code designation is used to specify the existence of a module's

output.

4-23

¥y

& 7
cic a clc a cle
a
VM
vMmir (o Ml M VMIYSIIIMM Y M| M
Y
6 17/01]]o9jo3joslo7f13]15
clc a C
clc N C c|c a C
M|M Y M

M MY M MM S M

11{12[02] |10/04|06]0d 14

a clc a clc a cic
s v
VM Y ol v VM |1 |y L R R P MIYSIIIMMI
L
cjlc N C clc a C clc A C
1
ml v Y M ul M stlxw M EMEI LR
y 4 s A

LA&Q&L_EQ.; B NO. 2

Figure 4-4. Address Block Diagram

Al wopdeg

sopeasdo

sZ-y

BLOCK 7

BLOCK |

BLOCK 2

BLOCK 3

sédocesdoovesbeOY eoe e
oikoooob‘obomébbi
:)
e ecedo
Joollo
g

se000s

bododode
6oéo§oéo'

Figure 4-5. TRICE Patchboard

ddjocjsboobviessed
svlesescotocsoeie
X C p sogt
[XXYUYY) . (YX Y]
secolloBelel ¢ o

olelololelele]ole]
HHHE

uorjeaadQ

Al uo13o9g

Section IV

4.6.3

Operation

Sign Code. -

The codes used to represent the sign lines are explained below. The

sign is positive when the line is - 7volts and negative when it is Ovolts.

4.6.4

(a)

(b)

(c)

The + - code designation is used to specify the sign input that

is teamed with existence, as indicated to the right or left.

The - code designation is used to specify the negative sign output

that is teamed with existence as indicated to the right.

The + code designation is used to specify the positive output

that is teamed with existence as indicated to the left.

Convenience Lines. -

The codes described below are used to designate lines that are included

as a convenience to facilitate patchboard connection.

4.6.5

4-26

(a)

(b)

(c)

The J-1 through J-11 plug holes of the individual blocks are in-
ternally connected to corresponding holes on the other blocks,
i.e., the right J-1 holesof blocks 1,2,3,4,5,and 6 are all jumpered

together, etc.

The plug holes above the J-6 plug holes are jumpered on the back
side of the patchboard in groups of three, as indicated by jumper

lines on patchboard.

TRUNK 1, TRUNK 2, and TRUNK 3 designations are intended to

serve as a means to connect additional TRICE systems.

Reset Codes. - .

The codes described below are used in conjunction with reset operations.

(a)

The R code designation is used to specify a module's RESET plug

Operation : Section 1V

holes. If two R plug holes of a module are jumpered by a plug,
this module will be reset by the reset-patched-units signal.

(b) The Rt code designation is used to specify the total reset control.
When the signal patched into the Rt hole goes "'true," a total reset

occurs, thereby resetting all units.

(c) The Rp code designation is used to specify the patched reset
control. When the signal patched into the Ro hole goes ' true,"
! Py

the modules patched for reset, as described in (a) above, are

reset to their initial conditions.

4.6.6 Overflow Codes. -

The Of code designation is used to specify the overflow signal. An over-
flow of any unit, causes an overflow signal, which is made available at the Of plug
hole. This signal may be used for control functions such as automatic reset

(R ,R), fill(F) and punchout(P).
p t c c

.

4.6.7 Start Reader. -

The Fc code designation is used to specify the start reader signal, which
is initiated by a signal patched to this plug hole. The INPUT switch must be in
AUTOMATIC position.

4.6.0 Start Punch. -

The Pc code designation is used to specify the start punch signal, which
is initiated by the signal patched to this plug hole and causes the punching of the
contents of the selected register on tape. The PUNCEH switch must be in the

OUTPUT position.

4.6.9 Buffer. -

The B code designation is used to specify the existence of the buffer's

4-27

Section IV Operation

outputs. The buffer is used when one computing module's putput provides
inputs to many computing units. The Bin code designation is used to specify

the existence input to the buffer.

4.6. 10 Function Switch Code. -

The three sets of function switch plug holes are co'nnected such that
the middle row of holes is connected to the bottom row (6 plug holes per row)
when the applicable FUNCTION s'witch is in the B position. The center row is
connected to the top row when the FUNCTION switch is in the A position. The
rows are not connected when the switch is irlx the OFF position. It should be

noted that the holes in a row are not jumpered together.

4.6.11 AY Summer Connections. -

The © ﬁzesignations are used to select the output of a AY Summer.
Jumpering the©| pair of holes connect the adjacent Integrator; whereas,

jumpering the rg.pair of holes connect the adjacent Servo.

4.6, 12 Multiverter Connections. -

In Block No. 7, lower right hand corner, the code designations are as

follows:

(a) The Y designation indicates the input existence line for the D-to-A

converter,

(b) The + - designation indicates the sign line for the D-to-A con-

verter.
(c) The E out indicates an output of the D-to-A.

(d) The REF indicates the output of a precision -20 volts reference

voltage.

in, ¥_in, P_in, P

4

out, PZ out, P3 out,

(e) The designations of P in, are intended to

1 2 3

be the inputs to four pots; whereas, Pl

and P4 out, are intended as the four pots' outputs.

4-28

Operation Section IV

(£) The designations Al in, A out, Az.'in, AZ out, A_ in, A, out,

1 3 3

A in, A, out, refer to plug holes which are intended to be

4 4
used for operational amplifier inputs and outputs (used to

match the TRICE output to an analog system).

NOTE -

The panel to the right of the patchboard is provided for mount-
ing components such as pots and operational ampliﬁgrs. The
pots may be used to adjust the ox"xtput voltages of the D-to-A
converters to values suitable for inputs to a device such as an
analog plotter.” The operational amplifiers in this case are
used to match the TRICE output impedances to the input impe-

dances of the analog plotter.

The plug holes, plotter Y and X, refer to the provision for a plotter's

input connections,

4.7 RULES FOR PATCHBOARD CONNECTIONS.

The rules for connecting the patchboard should be observed as indicated

in the following paragraphs.

4.7.1 The A-to-D Output. -

The A-to-D outputs can be used as dY or dX for all TRICE computing

elements. The maximum register length can be 24 bits.

4.7.2 Input for the D-to-A. - .

The D-to-A input can come from any source (dt, I, CM, Servo, VM,

A-to-D).

4-29

Section IV Operation

4.7.3 Input for the A-to-D Connected to Operate as a D-to-A. -

When an M] is connected to operate as a D-to-A, the input can come

from any source (dt, I, CM, VM, Servo).

4.7.4 Restrictions for Input to Destinations. -

-

An increment in every iteration is designated by dt. For +dt, connect
the existence to t and the sign of the input to +. For -dt, connect the existence

of the input to t and the sign of the input to -.

i

Because of timing differences in generating outputs, all sources

cannot be used as inputs to all destinations,

The dZ outputs from I, CM, VM, S, or dt may be used as dX or dY
inputs to any or all units, This allows.the I, CM, VM, and Servo registers to

have a maximum length of 26 bits.

The dZ output from the A-to-D converter may be used as dY or dX
inputs to any or all units. This allows the I and Servo registers to have a
maximum lepgth of 24 bits. .

If a AY Summer is used in connection with an Integrator or Servo-the

register length of that unit is restricted to 23 bits,
NOTE

The length of a computing register
is the number of significant binary

bits excluding sign and scaling bit.

As mentioned previously, though, source terminals must not be

connected to other source terminals.

The slow rate (SLOW Z) can not be used as an input to a D-to-A con-

verter.

Section V

5-0

Digital Interpolator

SECTION V

DIGITAL INTERPOLATOR

(Arbitrary Function Table)

i

This Section describes the Digital Interpolator (an
arbitrary function table). The Digital Interpolator
is a unit which provides a means to genérate arbi-
trary functions, i.e., functions defined by numerical
points on the curve. The unit interpolateé between
the numerical defining points to generate a smooth
curve of the arbitrary function. This Section will

be provided at a later date.

APPENDIX

This Appendix contains TRICE

programs of Sample Problems

Appendix

Example Problem 1: Sine Curve

Problem: Solve y = A sin't

Solution: This problem must be written in differantial form. Thus,
dy = A cos tdt

Map: (1) Assume A cos t 18 the i‘ntegrand of Integrator 1.

(2) Make dt the primary input; thus, A cos t dt is the output of

Integratbr 1.
Acostdt=d (A sint)
(3) For the secondary input, d (A cos t) is needed for Integra:tor 1.
(4) Assume d (A cos t) 18 the output of Integrator 2.
d (Acost)=-Asintdt
(5) Hence, dt is the pnimary input to Integrator 2.

(6) Furthermore, the integrand of Integrator 2 is (- A sin t).

(7) The required secondary input to Integrator 2 is d (-A sint),

which is - A cos t dt.

(8) It is noted that the needed secondary input for Integrator 1 is

now available from Integrator 2.

(9) It is also noted that the needed secondary input for Integrator 2
is available in the outptt of Integrator 1, except that the sign

is wrong.

(10) However, if the output of Integrator 1 is connected to the second-
ary input of Integrator 2, the contents of Integrator 2 becomes

+ A sin t and the output of Integrator 2 will remain - A sin t dt

Appendix

if the signal is taken from the negative output. The minus
sign at the output of Integrator 2 in Figure A-1 indicates a

reversal of sign.

(11) The output from the TRICE is taken from ‘Integrator l; i.e.,
dy = A cos tdt

Initial €onditions:

i

(1) From A cost, we find at t = 0 that the Y-register of Integrator 1
Will be A. The contents of Integrator 2, which is A sin t, must

initially be zero. The map is shown in Figure A-1.

OUTPUT
- n
[A costdt = d(Asint)][}
o (Acost)2 " [d(ACOSt)=-Asintdt] [- 50]
(-A sintdt) -
12 ‘
(Asint)2™"

Figure A-1. Map of Sine - Cosine Curve

. Appendix

Scaling: Since the Y-register of the two Integrators contain A cos t and A sin t,
which have the same limit A; therefore, the length of the registers must _
be the same. Thus, in this case, scaling only requires selecting a re-
gister length,. By increasing the register length, accuracy may be gained.
Table A-1 shows the characteristics associated with various register
lerigths. By shortening the register length, speed may be gained.

One increment of t = one increment of machine time = 165 seconds.
2" dt means there are 2" increm’;nts in a unit of t. One unit of t =
2“10'5 seconds.
Table A-1. Accuracy vs. Speed Table for Sine Curve
n A 2"
Register Unitof t Feriod Period Frequency
S‘xgniﬁca}nt IGAmplitude) in in ‘ 'in in
Binary Bits/ |\Increments/|\Increments/| Increments | Milli Seconds |Cycles/Second
1 1 2 12.6 G.126 1 7940
2 3 4 - 25.1 0.251 3980
3 7 50.3 0.503 1980
4 15 16 101 1.01 - 990
5 31 32 201 2.01 498
6 63 64 402 4.02 248 -
7 127 128 805 8.05 124
8 255 256 1610 16. 1 "62.1
9 511 512 3220 32.2 31.0
10 1023 1024 6450 64.5 15.5
11 2047 2048 12900° 129 7.9
12 4095 4096 25700 257 3.89
13 8191 8192 51400 514 1.95
14 16383 16384 103000 1030 0.97 -

Appendix

Programming Patchboard:

Connect the patchboard as described in Section IV.

Coding:
After the desired scaling has been selected, the initial conditions
and the scaling bit are filled as described in Section IV.
Cutput: .
The output of the TRICE may be used to display the curve on a scope,

plotter, or other outpbut equipment.

_Example Problem II. Damped Sine Wave.

Given: A damped wave that is defined by
dze de 2
— +2K — + w =0
dtz dt

For Kw<w then 6 = A sin wt.

Solve this problem by using TRICE.

Solution: Separate the highest derivative
2
2
a9 . k & _Jo
2 dt

dt
Map: The map 18 shown in Figure A-2.
Scaling: (1) Derive the first and second order derivatives from

o A 8in wt

that is,
9—-9—- = A w cos wt,

dt

A-4

}\ppendix

2
d €

dt2

2
and = - Aw sin wt

17
(2) Assume dt scale factor to be 2, because this value is close
to the real-time of the machine.

(3) Make the amplitude of © equal to 213, which allows the full
range of the D-to-A to be used provided that d© is scaled for Zo.

(4) Thus, for Integrator 2

=0
z
= 4 -
de 17
= +
z de Sy
Hence, S =-17
y
which indicates the maximum allowable amplitude of d—e—is 2+l7.

dt

(5) Determine the value of w as follows:

Since 9——9— — A w cos wt
dt .
de 17
. Rkl =2
and dt max !
therefore Aw:Z”.
Given = A sin wt
13
and from (3) © =2 ,
max
13
thus, A= 2 .,
. . 217
ence, =
213
or w = 24

A S5

Appendix

11 dt 217
d ﬁ
e _21 a ?123 de, -8
dt -[w dQ]Z' ~
13 Bite
-wZ 2.8
12 CM1
de_ -17 VM1
(dt) 2
13 Bits @
de -4 dt - 2
67 2
IMANUAL B . |
eyt g N | AR
14 Bits
. 10 o
K - d(2K) - 2.
A-to.-D
—d 'Zo—-.-
e D-to-A —— o —
SCOFE
Figure A-2. Map of Damped Sine Wave

(6)

(7)

(8)

(9)

(10)

Appendix

2
Determine the maximum value of 9_2_9 as follows:
dt
2
Since, d—eg- sz sin wt
2
dt
dz (2] 2 13 4 2 21
then —— =-Aw|:2 (27°) =2,
dt max

Determine the scale factors of Integrator 1 as follows:

Sy= -21, de:: +17

S +S., =-21+17=-4
z y dx

thus, S

The output of Integrator 1 is the secondary input of Integrator 2;

therefore, for Integrator 2

For the Variable Multiplier, scaling |X |<zl and IY | < -%
assures the prevention of overflows (as indicated in paragraph

2.3.3).

Since, [de] = 217
max

dt

Sx = -18 for the Variable Multiplier.
Therefore, VM Register Length = -4 - (-18) = 14 Bits.

For the Constant Multiplier, the primary input is the output of

Integrator 2. Thus, S, is 0 for the Constant Multiplier.

dx

Since, Sz = Sk + de

Appendix

and

and

which requires that

< .
Sk_ 8
S =-8+0-=-8
z
(11) For Variable Multiplier '
: S =85 of CM
z z
Sz = Sx + de
de =8 -(-18) =
Sy = Sz - de
=-4
y
This limits 2K to 2%
(12) Length of Registers:
Il Register Length =
12 Register Length =
VM Register Length =

10

=-8-(-4)

de‘ sy = (-8)-(-21) = 13 Bits
S, -8
dy 'y

de- Sy=de -Sx =

= (-4)-(-17) = 13 Bits

14 Bits

CM Register must be long enough to carry all bits of w .

Initial Conditions:

(1) Let computation start att = 0,

derived as follows:

Hence the initial conditions are

Appendix

Choose K=0

and © =A sinwt=0

do _ .
—a-t—-- A w cos wt
deo_ _15
Choose i 2

Scaling is chosen to vatry parameters

. .dze

=-szs'inwt=0
. 2
dt

Thus, d e

(2) The value of 2 K oan be varied from 2K = 0to 2K = 2 to ob-
tain a solution to the problem for each value. Other solutions can
also be obtained by using different values of w .

Fill Process:

(1) The octal code for filling the registers is given in Table A-2.

* NOTE

The register length here is 13 computing bits; thus, the

binary value of the least significant bit is found as follows:

Value of the least significant bit = —él—-
2 dy

Hence, L.S.B. = 1 4

_-——-:2:2

i
2

Appendix

Thus, the register appears as follows:

(,1: 600 000 000 000000000000000
[+Sisn 212 L S. B. \ 15 Zeros
ng Bit

Scali

Table A-2. Octal Code for Damped Sine Wave

Number of Binary Initial Value
Module Register Computing Bits (Binary) Octal Code
I1 Y 13 0 O4 1 05
-2
»x
12 Y 13 2 1 03 1 05
-3
VM1 X 14 2 | 04 03 4 04
VMI Y 14 0 05 4 0‘
cM1 | *ry 3 2° 420,

2
** Register holds 2-complement of -w .

Patchboard Connections:

Using the map, program the patchboard (for a more detailed discussion

of programming the patchboard, see Section IV).

Output:
In this case the output is viewed on a scope.

A-10

Appendix

Example Problem III. Cornu Spiral

Problem: Generate a cornu spiral as defined by

t
2
X (t) =ﬁst dt

0 At

Y (t) =/s.in,t2 dt
0

Solution: Write equations in differentig.l form,; i. e.,

2
cost dt

a[x o]

d [Y (t‘)] sin tz dt

Map: The map is shown in Figure A-3,

Initial Conditions:

Start at t =0
cos t2 =1 X=0
sin t° =0 Y=0

Thus, the initial values are set for all modules.

Scaling: (1) S of each Integrator is -1, because the maximum value of their
integrands is 1; due to symmetry, the Integrator would over-

flow if 0 were used because the register's range is -1=<Y =1,

(2) This problem will produce an overflow from the Variable Multi-
plier when its register length is exceeded. Hence, the number
of turns in the end of the spiral will be determined by the length
of the Variabde Multiplier registers,

Arbitrarily set the length of the Variable Multiplier to 18 bits.

Set output scale factor of Integrator 1 at 2+13 in oxder to use

the full range of the D-to-A. Hence, primary scale factor is 2+“

A-11

.

Apprendix

Il

:; 4
cost Gt)z-——-.

D-to-A
2, -1
(cost)2
10 Bats
—d(cos «2y2°
12 —
13
sint dt)2—w L[-to-A -
2. -1 t9 29
(sint) 2 d (sin Z)
10 Eats
[(~..tsmf c.t)&-—-—
I3
(sint®) 2-1 PlotterA
VS
dt ° i—ge b
'4 .
te2
VMY _>.[d(t2)> Zuu]zlo—-o —
Vert.
ek 11‘. Y| 1. 2“’“
18 Baits tart
4 Halt
[Cverflow
k(i&t cos t2 dt)29
(cos ',2) 2 ‘
10 Eita]
9
d(cos tz) 2

A-12

Figure A-3.

Map of Cornu Spiral

(3)

(4)

(5)

Appendix

Time varies fromt = 0tot = 23.

The scale factors for the Variable Multiplier are thereby fixed at
'de = de =+ 14

S =S =-4
x y

However, in this case, Sx and SY are the values that cause the inte-
grands of their respective registers to be 1 just before the registers

overflow. .

S =10

¥4

Scale factors for Integrator 1 are found to be

de =+ 14

de = SZ of Integrator 3 = 10 +(-1) =9
S = -1

Yy

S = 14+(-1)=13

<

Register length of Integrator 1 = +9 - (-1) = 10 bits

Scale factors of Integrator 2 are ,

= 14
de
S =14 -1=13
z
de :SZ of Integrator 4 = 10 +(-1) =9

Register length of Integrator 2 =9 2 (-1) = 10

Scale factors of Integrator 3 are
S =10

S.j, = 9

Appendix

s
y

1]
]
—

[}
o

Register length of Integrator 3 = 10 bits

(6) Scale factors and register length for Integrator 4 are the same as

for Integrator 3.

Patchboard Connections: '

!

Using the map, program the patchboard (see Section 1V).

-Fill Process:

The initial values and scaling bits are filled as described in Section IV.

The octal code for the fill process is given in Table A-3.

Table A-3. Octal Code for Carnu Spiral

. 'Number of Binary Initial Value '
Module Register Computing Bits (Decimal) Octal Code
| Il ~ Y 10 1/2 | 2 0z 1 06
12 Y 10 | 0 0,10,

13 Y 1 10 0 03 1 06
14 Y 10 1/2 2 02 1 06
VMl X 18 ‘ 0 06 24 03
VM1 Y 18 ' 0 06 2 03

A-14

Output:

Appendix

In this problem, an analog plotter is used to plot the curve. The

overflow caused by VM1 is used to halt operation of the plotter.

NOTE

A Servo or an Integrator can be used in the problem
to cause the time to varyfrom -t to +t, and then from
+t to - t;thus, the curve rclitraces itself. In this mode
repeatability can be observed.This mode of operation

is excellent for observing the output with a scope.

Example Problem IV. Calculation of Pi.

Problem:

Solution:

Map:

Calculate I7.

If a sine function is started at x = 0 and x is made to vary up to m,

the value of JT can be obtained from a register that sums x .

The rnap for this problem is shown in Figure A-4. There will be an
output of the Servo for each dt input until its Y-register reaches a
value of 0; at which time there will be no output. Thus, dt = dx
until the Y- register of the Servo reaches zero. (See paragraph

2. 3.4 for an explanation of the Servo's theory of operation.)

Cne increment is put into the Servo's Y-register to allow computa-
tion to start (see paragraph 2. 3. 4). The secondary input to the

Cervo is d (sin x), hence, when ;(reaches T the value of the Servo
Y-register is only one increment away from the value 0; hence, the

summed outputs of the Servo should be .

A-15

Appendix

DIGITAL SERVO

224 ¢
24
(sinx)2-1+1A : -
24 Bits
-:‘:.(airxx)zz'3
24
2
I2 [-sinx:lx=d(colx}2 3
‘) 23
(sinx) 2'1 | [d (amx?]Z f
24 Bits
24
11 Z dx

[cos x ax=d(sin x)] Z‘ZL‘

(cosx) 2-1

24 Bits

I3

(x) 22

26 Bits
Figure A-4. Map for Calculation of T,

A-16

Appendix

Output: In this case the results may be viewed in Integrator 3 by means of

a readout register (see Section IV for operation of readout register).

Scaling: Arbitrarily select 224 far the value for dt. The integrand scale
factor of the Servo may be represented as 2 v l. Thus, dx = 224,
and scaling requires each computing fegister to have a length of 24
bits. The register length of Integrator 3 must be 26 bits long, since |

. -2 . .
x scale factor is 2 , because the maximum value is Tr

!

Patchboard Connections:

Using the map, connect the patchboard as described in Section IV.
Initial Conditions:

The initial value of x is zero.

Hence, initially

"
o

sin x

n
o
.

Cco8s X

Fill Process:
The initial values and scaling bits are filled as described in SectionIV.

The octal code for the fill process is given in Table A-4.

Results: The value of ITin the octal code is 3 12 037 52 242. The last
"'one' in the register is the scaling bit; the readout register's value

is the exact value to at least 25 binary places.

A-17

Appendix

Table A-4. Octal Code for Calculation of 7F.
Number of Binary Initial Value |
Module Register Computing Bits (De¢imal) Octal Code
) B Y 24 1/2 e 07 20
12 Y 24 0 08 20
S Y 24 ' 1 Increment 08 60
I3 Y 26 0 09 4

Example Problem V. Bessel Function

Problem:

Solution:

A-18

and 0= x <4

dl._<1
dx

2 g

.

dy
ax Y

Maximum value of y =1 atx =0

% |~

dy - y dx

Generate the Bessel Function as described by

The result of multiplying the equatipn by dx is

Appendix

Map: The map is shown in Figure A-5. The Servo is used because' when

1 P
x =0, p becomes infinite.

Scaling: (1) Maximum value of x = 4. Hence, the value selectéd as a

scaling power for the Integrator 3 integrand is -2.
+ .
(2) Selectdx 2 11, giving a register length of 13 bits for Integrator 3.

,(3) The Servo is initially set to zero; the first input increment, dx
to Integrator 2 causes a ydx output increment. After several
iterations a dy increment from Integrator 1 is fed into the Y-re-
gister o.f the Servo, resulting in a -1 increment being in the Servo'
Y-register. However, since the Servo's Y-register contains this

increment, there will be an output , du_, from the Servo due to .-

the dy. Actually du = ;1 dy. Integratoxl' 3 now contains a small
positive number due to the dx's and primary input d (-u)) causes
the positive output of Integrator 3 eventually to emit - xdu, which
is equal to a feedback dy. The feedback -xdu is a positive incre-
ment which is usec‘l as a secondary input to the Servo which

causes the value of the Y-register to become 0 before the second

dy input occurs.

The scale power for the output of the Servo is 10. Since both

secondary inputs must have identical scale factors,

'S = 8 for Servo,
y

The Constant Multiplier is used to make the secondary scale

factor compatible for the Servo.

.

(4) The register lengths are found to be

Il Register Length = 10 - 0 = 10 Bits
12 Register Length = 11 -(-1) = 12 Bits
I3 Register Length = 11 - (-2)= 13 Bits

Servo Register Length taken as 13 Bits.

A-19

Appendix

Patchboard Connections:
Use the map to connect the TRICE patchboard as described in

Section IV.

Fill Process:

The octal code for the fill process is given in Table A-5.

Output:
In this case a plotter is used. A table may be taken from the plotter.
Table A-5. Octal Code for Bessel Function
| Register Length
Module Register in. Binary Initial Octal Code
Computing Bits Value
Il Y 10 0 03 1 06
I2 Y 12 1/2 2 03 2’05
13 Y 13 0 04 1 05
Servo Y 13 0 04 1 0'5

A-20

Appendix

11 dx- 211
ay- 2!} PLOTTER 1.1
d 0
L /
10 Bits
—d(-u)=1ay 2'° .
12 11
1
yde-? I—_—’ D-to-A
y- 27!
12 Bits
.
» dy28 N 2_3 dy Zlvl D-to-A
) 1
p— [ax = at]2
| S. 1
ldt| —
_-1,.1,10
-»-@—-[d (-u== dy]-—————-——-—-—
s 1 °
A [y-ﬁdu] 2 ps
13 Bits - |
10
13 [a0-w]2
[-x du] 28
X 2—2 dx - 2“
13 Eits

Figure A-5. Map of Bessel Function

A-21

¥ M sheldid e b have a Vool Ahay S 1 i~ -] AL
77 P 31r 4 p3B) ono e Al

18 R o 2 sly ,é},.JL % «m‘./ﬂéfj?
T ;uL_lla Ay, bl weed wle Ay pthe e <anscndef

P

becond veadsd VLo ,&D{D/KMS%L“

P B e Eloont & Cpem prpernhic
" 0 ,J,.J Abdc

B/d D/8 Lot cle ;:..LJw (el Lo
o figh e ik et | |
Y vl risnder sy A ST vrrn icna b ()
e Wl XAY YA o el VX <2t

.~

A A R VAT R I ot I BVN
FP Az~ (agu))dox Jo =2 ‘(y/<£ a3t &‘[j L.— y

‘ \ #o . e)
it W#%M,,‘/ | ‘”}‘,‘”‘7

11

{“E* o A ijb«“ t)/'J:J'*L*"w
/nv 71@ k/fw' Y Sanenme oolpat wal andll A pvp
. | (skek (T oo s2ce st 1Y)
| ¥ lpkin 2R rﬁ{ﬂ»/ u/au)/ ‘»«zji,t.« jo YA sd yA
e O EE N R R N ¥
(a VM ﬂ"xdr/», wf—fl D, o ijwdvl;‘,t,

M‘\A‘,{PIVJ }43-.»';1 M.QJJJV{ D}/{M alf«f:& At:rf ~ Mt-.

(J.u(w&w@ b deciss poro Cud das sl Lonm Ao de "I‘“T* sqe)]
Melteli (va) refpord fo e Aot de 77 (peu3-1)

DA d & 7/ t »
DA :f“:cynﬂ-j r¢7}sﬁ. '5:%7 \«.{)j - o1 M'Jﬁk)/wr.t

(fo A wdt. M«K,JJC—M/\ S 274 st swh bt Y
Lvhuj - - - 26 # 0 b e ez

% Crmperraffm - M oon ety

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	5-00
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	x-01
	x-02

