
Copy

(pb 250

Programming Manual

PBC 1004 Revision 1

' ' .

(

Packard Bell C<>mputer
A SUBSIDl.4 .. Y 0" JaACKA .. 0 llELL £LCCTJllt0N I CS

1905 ARMACOST AVENUE • LOS ANGELES 25. CALIFORNIA • GRANITE 8-4247

Ma rch 15 , 1961

NOTICE

This document involves confidential PROPRIETARY
information of Packard Bell Computer Corporation
and all design, manufacturing, reproductions, use,
and sale rights regarding the same are expressly
reserved . It is submitted under a confidential rela­
tionship for a specified purpo.se , and the recipient,
by accepting this document assumes custody and
control and agrees that (a) this document will not be
copied or reproduced in whole or in part , nor its
contents revealed in any manner or to any person
except to meet the purpose for which it was delivered,
and (b) any special features peculiar to this design
will not be incorporated in other projects.

When this document is not further required for the
specific purposes for which it was submitted, the
r ecipien t agrees to return it.

'

)

)

(

PREFACE

This manual is a guide to programming the PB250. Although a great

deal of this material is similar to that which is included in the PB250 Re­

ference Manual, it is presented here in more detail. The information pro­

vided in this manual will be useful in actual programming operations. Sup­

plements and modifications to this manual will be published as a series of

Programming Notes to be distributed to personnel possessing Programming

Manuals.

' ,• .. ~
·.::. l

)

. /

c

I

) _

(

CONTENTS

Section Page

PREFACE

I GENERAL PB 250 CHARACTERISTICS

l . 1 Introduction . 1-1

1. 2 Memory Organization • . . . • • . • • . . . • • . • . . • • • • . . . • • . 1-1

1. 3 Command Word Configuration . • • . • • . • • • . . . • . . . • . • • . • • • 1-5

1. 4 Command Sequencing and Timing •...•..•......•..•...•

1. 5 Parity Check o •••• •••• ••••

1-6

1-9

II PB 250 COMMANDS

2. 1 Gener al , . Z - 1

III STANDARDS AND PROGRAMMING TECHNIQUES

3. 1 Programming Techniques . . • • • • . 3-1

3.2 UseofLineOO•. . ..• 3-3

3.3 Sample Programs • • • . • . • 3-5

3 . 4 Programming Conventions ...••..•..•.......... . . ; . . . 3-5

3.5 Flow Diagramming Conventions • . • • • • 3 - 8

3.6 Annotation Conventions . . . • • . . • • . . . 3 - 11

3.7 Available PB 250 Programs 3-12

IV INPUT-OUTPUT TECHNIQUES

4. 1 Flexowriter . 4-1

v COMPUTER OPERATION AND PROGRAM CHECKOUT

5. 1 Computer Operation • . • . • 5 - 1

5. 2 Program Checkout . • • • . . . • 5-1

5. 3 Bootstrap Loading • • • • . 5-3

i

APPENDICES Page

Figure

1- l

1-2

1-3

1-4

1-5

4-1

4-2

4-3

Table

1- 1

Z- 1

2-2

3-1

3-2

ii

APPENDIX A: Binary-Octal Numbers. A- 1

APPENDIX B: Numerical Conversion Tables.. B - 1

APPENDIX C: Octal Utility Program . C - 1

APPENDIX D: Recirculation Chart. D- 1

ILLUSTRATIONS

Data Word Configuration

Index Register

Input Buffer

Command Word Configuration ',

Typical Command Word

Flexowriter Keyboard ~. '.

Flexowriter Code

Flexowriter Characters

TABLES

Command Classification

Division Correction•.•..

Flexowriter Configurations for WOC Commands

Standard Flow Diagram Symbols•.

Summary of Available PB 250 Programs •...................

Page

1-2

1-4

1-5

1- 5

1-6

4-2

4-2

4-2

Page

1- 10

2-35

2-59

3-10

3- 13

)

1 - ..

' J

I
/

r ··.

c·.
•I

. '

- i

__ _. .: .

... •·

''

-....

PB 250 General Pwpose Digital Computer.

)

.J

)

(

r
I

'-

I. GENERAL PB 250 CHARACTERISTICS

1. 1 INTRODUCTION

The Packard Bell PB 250 is a high-speed, completely solid-state gener-

al pu r pose digital computer in which both the data and the commands required

for computation are stored in a hornogenous memory. The storage medium is

a group of nickel steel magnetostrictive lines along which acoustical pulses are

propagated. At one end of each of these lines is a writing device for trans l ating

electrical energy into acoustical energy. At the other end of each line is a read­

ing device for translating acoustical energy back into electrical signals. By re­

writing the stored information as it is read, information continously circulates

without alteration, except for alterations which result from the execution of the

computer program. Use of the optional battery power supply will preserve

memory information even during power interruptions.

1. 2 MEMORY ORGANIZATION

The memory of the basic PB 250 contains ten lines , numbered octally·

(base eight) from 00 through 11 , which may hold both data and instructions.

Each long line, 01 through 11, contains 256(dec:imal) , or 400 (octal), locations,

also called,_s..e.cto.rs , that are numbered 000 thro11gh 377. Note: All sector and

line numbers a re gj ven in octal notat15>n throughout this manual. Since the infor­

mation in any location can be either ~ or a command, the generic term"word" -is used to cover both. The location of any word is specified by a sector and line

(_ number (SSSLL), and these together are called an3ddress . Line 00 is a 16-

word Fast Access Line. Since line 00 is 1/ 16 t.he length of a long word line, any

unit of information contained i.n it is available 16 times during each complete

circulation of the 256-word lrnes . Any word in thP. Fast Access Line is identified

by one of 16 channel addrP.sses (see Recirculation Chart, Appendix D). Line 00

'· ... ,

.·
1- 1

channels are designated FOO through Fl 7. For example, channel FOO of the

line 00 can be identified by the following ~ddres se s: 00000, 02000, 04000,

06000, 36000.

Fifty-three additional lines, each of which may have from one to 256

words , can be added. These lines are numbered 12 throug_h 36, and 40 through

77. L ine number 37 is used for the Index Register. If all of the additional lines

are used, and if all hold 256 words, the memory capacity of the PB 250 is ex­

tended to 15, 888 words. The PB 250 cabinet can hold a total of 16 lines .

Commands can be executed only from lines 00 t.hrough 17; these lines

are therefore designated "Command Lines. 11

,,--- . ·--- ······- ·---

1. 2. 1 Data Word Configuration

Every number stored in the PB 250 is.represented by a series of

pulses which correspond to a series of zeros and ones that are the digits of the

binary number system. The term "binary digit'' is usually contracted to the

word ''bit. 11 (A discussion of binary numbers may be found in Appendix A.)

A number stored in a location in the PB 250 consists of twenty-one

bits that represent magnitude and a twenty-second bit to indicate sign. A nega ­

tl.ve number has a one in position zero, whereas a po/.!!itive number has a zero

in position zero, Negative numbers are expressed in their 2's complement

form. (A discu ssion of complementary arithmetic may be found in Appendix

A.) Figure 1-1 shows a PB 250 data word configuration.

Figure 1-1. Data Word Configuration

These 22 positions are sufficient to represent a 6-digit decimal number.

1-2

'
./

~)

,_

' -

Larger numbers may easily be represented by using the double precision

features of the computer.

l. 2. 2 Arithmetic Registers

...

.,

Three arithmetic registers, A, B, and C, are provided for arithmetic,.

operations and information manipulation. Each register has exactly the same

format as a memory location, including the sign, and all are available to the

programmer. Double precision commands treat A.and B as a double-length

register. The contents of a register may be tested for non-positive values or

.. , .

compared against the contents of any memory location, In addition, infor- ··

mation may be interchanged between A, B, and C. A record may be kept in

one register of operations performed on the others.

l. 2. 3 Index And Buffer Registers

Both the Index and Buffer registers are part of special one-word r egi.s..­

ters. When loading the A, B, or C registers from either the Index or Buffer.

registers, suitable masking should be employed to avoid reading extraneous

inform a ti on.

1.2.J. l
.~v::

Index Register

The Index register, which is part of the machine Instruction regist~.1:" ,

(see Figure l-2), stores a line number for use with commands which have an

Index Tag of one. When used, the contents of the Index register replace the

• line number of the address in the command. This replacement is made during

the reading of the command, but does not change the command as its stands in

memory. For example, if the contents of the Index register a::-e 0 l, then in

the execution of the following program step:

OP Code

ADD

Address

03204

Index Tag

1-3

.... '"

The contents of 03201, instead of the contents of 03204, will be added to the

contents of the A register.

Line number 3 7 is reserved to designate the Index register.

Addresses 00037 through 37737 all apply to this register, and bit position 16

through 21 are the useful positions for the line address. Thus, a ST A into

line 37, any sector, places bits 16 through 21 of A into the Index register,

bits 16 through 21.

0 78 15 16 21

Operand Sector Counter Index
Sector For Next Register

Counter Command

Figure 1-2. Index Register

The term "effective address , " as used in this manual, means the

actual location referred to by the computer when executing a command . In the

- .

event that the Index register is used, the effective address consists of the sector J
address specified by the command, plus the line address stored in the Index

register, which replaces the line address of the command.

1. 2. 3. 2 Input Buffer

The Input Buffer is part of the machine -Sector Counter (see Figure
•

1-3). It receives the input from the Flexowriter and can accept up to an

eight-bit character. This entry is logically accumulative for each bit of the

character, requiring that the buffer be cleared before each input. The Input

Buffer is enabled to accept information 'by either a READ TYPEWRITER

KEYBOARD or a READ PAPER TAPE command. The single character sent

by the reader, or provided by the depressed typewriter key, is loaded into

1-4

./

)

(

(

the buffer and, upon completion of buffer loading, the computer is signaled

by the Flexowriter . This action requires a period of time during which it

is possible to execute a large number of commands .

0 7 8 15 16 21 G p

Sector Sector

Counter Counter i
: 1.. ___ _

Figure 1- 3. Input Buffer Input B°Gffer

)

1 . 3 COMMAND WORD CONFIGURATION

As previously described, information in any memory location may

be either data or a command. When the information is a command, it has a

definite configuration, or format, as illust r ated in Figure 1-1.

0 1 ') 3 't 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1__2._ 2 0 2 l
I
I

- ······· - - ·- -· I j I

- ·-- r ·-
L . I --r-Sec:tor Address Op Code ~ inc t

Seq. Tag
Address

Figure 1-4. Command Word Configuration

Each subdivision, or field, of the command word is uniquely identified. The

subdivisions are the sector address, sequence tag, op code, line address,

. i

(and index tag fields. There will be frequent references in s ubsequent

descriptions, to the address field of a c~mmand. Although the address is

made up of a sector number and a line number, these numbers are not

conti guous in the command format. The address field, however, is considered

as a single entity. The address 03204 refers to sector 032 line 04. The

contents of the address field in a command do not always designate a memory

location.

1-5

For example, the shifting commands use the address field to indicate the

number of positions to shift.

The sequence tag field may contain either a one o r a zero, and

its use is detailed in paragraph 1. 4 "Command Sequencing and Timing . 11

The op code field contains a numeric code which specifies one of

the PB250 commands.)

The index tag field may contain either a one or a zero. When a

one is placed in this field, the contents of the Index register are used

(see paragraph 1. 2. 3. l); a zero in the field indicates no use of that regis -

ter.

Bit position 20 contains a one only when referring to a line address

of 40 or greater. For example, an LDA command referring to sector 30,

line 42, has an address of 03042 and appears as shown in Figure 1-5.

Figure 1- 5. Typical Command Word

1. 4 COMMAND SEQUENCING AND TIMING

The PB250 reads and executes commands from the circulating com­

mand lines. The words of the long liries are read serially in sector address

sequence (000, 001, 002, --- 376, 377, 000, 001, ---). The time for each

word to pass through a reading device is 12 microseconds; therefore, the time

for all 256 words of a long line is 3072 microseconds. The performance of

each command involves four phases:

)

)

.. ~ "

Phase I

Phase II

Phase III

Phase IV

Wait to read next command.

Read next command.

Wait to execute command.

Execute command.

For example, a command 00001 to store A in 03004 will be read

(Phase II) in sector 000, held for execution (Phase III) in sectors 001 through

027, executed (Phase IV) in sector 030 , and held while waiting to read the

(next command (Phase I) in sectors 031 through 000. Phase II will follow in.

sector 001, causing the next command to be read from location 00101.

(_

There are four classes of commands in which the nature of Phase IV

differs. A tabulation showing the class into which each command falls is pro­

vided in Table 1- 1. This tabulation is referred to extensively in Section II

of this manual.

1. 4. l Class 1

In this class of commands, execution always follows the reading of

the command by skipping Phase III. The sector .:tddress of the command is

used to designate the first sector. number in which Phase IV is discontinued.

This class of commands consists of all those which require an extended inter­

val of execution, such as block transfer, shifting, and multiplication. The

execution time for this class of command varies with the required duration.

For example, block transfer requires 12 microseconds per word, shifting

requires 12 microseconds per bit , and multiplication requires 12 microseconds

per multiplier bit .

1. 4. 2 Class 2

In this class of commands, execution is always completed in the

sector specified by the sector address of the command. This class consists

of all one-sector operations such as load, store, add , and clear. All com-

'\

1 j
1- 7

mands of t h i s c la ss require 12 microseconds to execute . ..:;~ ~II<{_/.', ".l. • S- .i..)
("' tv' 'T /t ~fo.xl ~ :2- .

1. 4 . 3 Class 3

Class 3 is an extension of Class 2 to handle double precision operations.

As in Class 2, execution always starts in the sector specified by the sector ad­

dress of the command, but the execution phase is always extended into the follow­

ing sector . All commands of this class require 24 microseconds to execute.

1. 4. 4 Class 4

Class 4 consists of commands for conditional and unconditional trans -

fer of control. The condition for a conditional transfer is tested in Phase II

and, if the condition is met, the next command is read from the line and sector

number specified by the command. If the condition is not met, the command

directly following the transfer of control command is read. A conditional trans­

fer where the condition is not met, thus requires no execution time. The un­

conditional transfer selects the next command with no restrictions. The exe-

cution time, when control is transferred, is 12 microseconds per sector for the

interval between the transfer of control command and the next command.

1. 4. 5 Sequence Tag

With commands stored in sequential sectors, the indicated command

sequence will proceed at the rate of one instruction per (3072 + 12) micro­

seconds. To provide for a higher computation rate, a Sequence Tag of one may

be used in bit position 8 of commands in Classes 1, 2, and 3. The use of this

option will cause the next command to be read in the sector directly following

the end of the execution phase. For example, a command in 00001 to store A

in 03004 will be followed by the command 03101 if the Sequence Tag is a one.

1-8

J

)

1. 5 PARITY CHECK

Each memory word carries an additional position for an even parity

check. This position is not under program control and need not conce rn the

programmer in the de sign and coding of his problem. The parity check is

generated during the execution of the STORE and MOVE commands and is tes-

(ted when loading the arithmetic registers , during adding and subtracting oper­

ations, and when reading commands .

Computation will stop on a parity error, and may be restarted by

clearing the parity flip - flop with the BREAKPOINT switch and the ENABLE

switch of the Flexowri te r .

The actual PB250 word consists of 24 bits, of which 22 are acces ­

sible to the programmer . A parity bit precedes bit pos ition 0 (see Figure

,,- 1-1), and a guard bit follows bit position 21.
\..

(

'\

·. i' l -9
I •

. !

:T
.•. 1

'•
"

...

Table 1-1 (She et 1 of 3) -..

COMMAND CLASSIFICATIONS

Class 1 : Executed Between Command Location and Address

Sector Number.

NORMALIZE AND DECREMENT NAD (20)*
) NORMALIZE NOR (20)*

LEFT SHIFT AND DECREMENT LSD (21)*

AB LEFT SLT (21)*

RIGHT SHIFT AND INCREMENT RSI (22)*

AB RIGHT SRT (22)*

SCALE RIGHT AND INCREMENT SAI (2 3)

NO OPERATION NOP (24)

INTERCHANGE A AND M IAM (25)

MOVE LINE X TO LINE 7 MLX (26) _J

SQUARE ROOT SQR (30}

DIVIDE DIV (31)*

DIVIDE REMAINDER DVR (31)*

MULTIPLY MUP (32)

SHIFT B RIGHT SBR (33)*

LOGICAL RIGHT SHIFT LRS (3 3)*

WRITE OUTPUT CHARACTER woe (6X))
PULSE TO SPECIFIED UNIT PTU (70)

MOVE COMMAND LINE BLOCK MCL (71)

BLOCK SERIAL OUTPUT BSO (72}

BLOCK SERIAL INPUT BSI (7 3)
._, I- ,_ -;- i-. vr ~'"r:f

1-1 0

J

Table J -.1 (Sheet 2 of 3)

Class 2: Executed in Address Sector Number

INTERCHANGE A AND C IAC (01)

INTERCHANGE B AND C IBC (02)

LOAD A LDA (05)

(LOAD B LOB (06)

L OAD C LDC (04)

STORE A STA (11)

STORE B STB (12)

STORE C STC (10)

ADD ADD (14)

SUBTRACT SUB (15)

EXTEND BIT PATTERN EBP (40)

\ GRAY TO BINARY GTB (41)
'--

AND M&C AMC (42)

CLEAR A CLA (45)

CLEAR B CLB (43)

CLEAR C CLC (44 ~

AND OR COMBINED AOC (46)

EXTRACT FIELD EXF (4 7)

DISCONNECT INPUT UNIT DIU (50)

(_ READ TYPEWRITER KEYBOARD RTK (5 l)

READ PAPER TAPE RPT (52)

READ FAST UNIT RFU (53)

LOAD A FROM INPUT BUFFER LAI (55)

COMPARE A AND M CAM (56)

CLEAR INPUT BUFFER CTB (57)

HA-b-T I.J-b-"'F- (00)*

MERGE A INTO C MAC (00)*

1 -1 1

T a.ble 1- 1 (Sheet 3 of 3)

Class 3: Executed In Address Sector Number And

Following Sector.

ROTATE

LOAD DOUBLE PRECISION

STORE DOUBLE PRECISION

DOUBLE PRECISION ADD

DOUBLE PRECISION SUBRACT

ROT

LDP

STD

DPA

DPS

Class 4: Executed Between Command Location And

Address Sector Number.

TRANSFER UNCONDITIONALLY TRU

TRANSFER IF A NEGATIVE TAN

TRANSFER IF B NEGATIVE TBN

TRANSFER IF C NEGATIVE TCN

TRANSFER ON OVERFLOW TOF

TRANSFER ON EXTERNAL SIGNAL TES

(03)

(07)

(13)

(16)

(17)

(3 7)

(3 5)

(36)

(34)

(75)

(77)

* Asterisk indicates that the OP code has at least two meanings, depending

on the a.ddress used with the command . See Section II for a detailed descrip­

tion of the commands .

1- lZ

' .

)

II _,

)

•

(_

II. PB 250 COMMANDS

2. l GENERAL

2. 1.1 Command Structure

For each PB 250 command, a 3-letter mnemonic code has been devised.

These mnemonics are derived from an abbreviation of the command names and

are a convenient device for remembering the function of the command.

When writing a command word, the language of the Octal Utility Program

(Appendix C) will be used. This language is the standard language for the com-

munication of programs . Thus, referring to the illustration of a typical command

word (Figure 1-2), the fields are written as Id.lows:

a) Sector Address: Three octal digits specifying the particular sector

to be used (000 ~SSS ~377).

b) Sequenc e Tag: If sequence tag is present, a capital S will be writt e-n;

if no sequence tag is used, a blank space will separate the sector

address and OP Code.

c) Operation Code (OP Code): Two digits which indicate what command

will be executed.

d) Line Address: Two octal digits specifying the particular line to be

used (0 ~LL !S_77).

e) Index Register: If the contents of the Index register are to replace

the line address, there will be a ca~ital I at the end of the command;

if the Index register is :lOt being used, there will be a semi-colon

(;) at the end of the command.

The following two commands illustrate this procedure:

2-1

017 s 3·7 03 ..._,....., ..__ - _,....... --a b c d e

002 ..._,,.., 05 02 I .__,.....,
~-

..._,.- -..r
a b c d e

Note: The letters a, b, c, d, and e refer, respectively, to the sector ad-

dress, sequence tag, op code, line address, and Index register.

2. 1. 2 Command Des criptions

In this manual, the notations A, B, and C will be used to refer,

respectively to the A register, B register, and C register, while M will be

used to refer to a particular memory location. Parentheses around the

letter indicate the contents of the register or memory location; e.g., (A)

refers to the contents of the A register.

The "contents of" always refers to all 22 bits of the appropriate

register or memory word, unless indicated otherwise by numerical

subsc::-ipts. These numerical subscripts tell to which particular bits refer-

)

ence is being made. For example: (A) O- lO refers to bit positions 0 through)

10, inclusive, of A; (B) refers to bit position 5 of 'the B register; (01502)3_6
5

sector 15, line 2, bits 3 through 6.

"Effective address" will be used to mean the actual address employed

by the compuler in execution of a command; if the Index register is used, then

the effective address will be the contents of the Index register and the sector

address specified by the command word.

It should again be noted that throughout this manual all op codes ,

line numbers, and sector numbers will be in octal notation.

Command descriptions in this section will consist of four parts, or

less, as required, These parts will be:

2.-2

)

...... ,,

c

(_

2. 1. 3

a) Description: Details of what the command does - - its efiect on

registers, memory locations, etc,

b) Example: Specific numerical example showing the appearance of

the registers and relevant memory locations before and after exe­

cution of the command. (In the case of such basic commands as

CLEAR A, STORE A, etc., no example is given.)

c)

d)

Timing:

quired,

timing.

The timing classification of the command plus , as re­

optimization information such as addressing for optimum

Usage: Exceptions to the use of the command or examples of how

the command may be used . (Especially useful in such commands

as GRAY TO BINARY and EXTEND BIT PATTERN, whose use

might not be readily apparent to the programmer.)

Special Considerations

Codes 27, 54, 74, and 76 are unassigned and should not be used by

the programmer. In the event that these op codes are used, the computer will

not halt but will try to execute a command unintended by the programmer .

Certain computer commands operate in a modified manner as determined

by the address of the command. These modifications are either described under

the commands to which they apply or, if more appropriate, listed as separate

commands.

It should be noted that sequence tagging (as described in Section I} never

permits the command execution sequence lo transfer to a different line, except

in the case of a TRU. That is, if the computer executes a sequence-tagged

command from line'{ , the next command will always be executed from line '{ ,

regardless of sequence tagging - - except in the case of a TRU command with

a line address / '{ .

2-3

" u Note : The term execution time , as used in this sec tion, includes the 12 micro-

seconds needed to read the command in addition to the time nece ssary to perfo rm

the required operation .

•

2-4

)

)

c

(

(

'

HLT Halt (00)*

This command stops computation under the conditions noted below and turns on

the parity error indicator light on the console. The OPERAND lights on the

console will indicate the line address associated with this command. To continue

execution of the program, the ENABLE switch and the BREAKPOINT switch on

the Flexowriter must be depressed. This will turn off the parity error indicator

and, upon release of the ENABLE switch, the program will continue. This

command will not stop computation if the sector address equals ci + 1, when the

HLT command itself is located in a • (See MAC description.)

Timing: HLT is a class 1 command, If parity is cleared, and the HLT com­

mand is sequence tagged, the next command is executed from '3 , where ~ is the

sector address. If the HLT command is not sequence tagged, the next comm.and

is executed from a + 1. where HLT is located in a .

Usage: Error halts in a program are easily identified if difference line numbers

are used, thus providing a ready means of determining the location within the

program at which the computer has halted, the line number being read from the

console lights. The Octal Utility- Program uses HLT 37)
8

to indicate a check­

sum error.

2-5

MAC Merge A into C {00)*

This command is a special case of HALT {00). l£ a HALT command is given

which has as its sector address 4+ l, where a is the sector of the HLT, the

program will not halt. Instead, there will be a logical A OR C executed, with

the result appearing in C. The contents Of A are merged into the contents of

C; a one is placed in those bit positions of C in which there a.re ones in the

corresponding positions of A or C or in both. All 22 positions of A and C take

part in this operation. The (A) and (B) are not affected by this command.

Example:

Before execution of MAC

After execution of MAC

(A)

01100101

01100101

(C)

11010101

11110101

Timing: MAC operates as a class 2 command, being executed in sector a+ 1.

If the sequence tag is 1, the next command executed will be in a+ 2; whereas, if

the MAC is not sequenced, the next command follows fr.om sector a + 1. Note

that this is different from a sequenced halt command, when the next command

comes from the sector specified.

Usage: When the C register is cleared before execution of MAC, the command

effectively functions as a. "copy A into C", that is, the contents of A are dupli­

cated in C. When using this command, it should be remembered that the sectors

are addressed circularly, with sector 000 following sector 377.

2-6

)

)

)

/

c

!AC Interchange A and C (01)

The contents of the A register are loaded into the C register, and the contents

of the C register are loaded into the A register. These operations occur simul-

taneously; thus, no information is lost.

Example :

(A) (C)

Before execution of IAC +0123456 .,. 6543210

After execution of IAC + 654 3210 + 0123456

Timing : !AC is a class 2 command. The sector address has meaning only in

terms of sequence tagg ing (providing a transfer). The line address may be any

number. The sector address, however, for minimum execution time (24 micro-

seconds) must be a+ 1, where a is the location of the INTERCHANGE A AND C

command. The next command to be executed, under sequence tagging, will be

(taken from a+ 2.

(

2-7

IBC Interchange B and C (02)

The contents of the B register are loaded into the C register, and the contents

of the C re gi ster are loaded into the B register. These operations occ ur simul­

taneously; therefore no information is lost.

Example:

Before execution of IBC

After execution of IBC

(B)

+2043177
I

+0021 1,01

(C)

+0021701

+2043177

Timing: IBC is a class 2 command. (For further description, see IAC, 01,

which is similar to IBC.)

2-8

)

)

)

JI

.--

c

r ..
I

'

' ROT Rotate A, B, a nd C (03)

The contents of the A, B, and C registers are simultaneously rotated in the

following fashion : the contents of C are placed in B; the contents of B are

placed in A ; and the contents of A are placed in C. No i nformation is lost.

Example:

Before execution of ROT

After execution of ROT

(A)

+ 1205721

+6201530

(B)

+ 6201530

- 3170045

(C)

-3170024

+ 1205721

Timing : ROT is a class 3 command; 36 microseconds is the minimum exe ­

cution ti.me. Although the sector address has no meaning \n terms of exe­

cution of the command, for optimum programming, the address a+ 1 is re­

quired, where a is the location of the ROT command. This addressing, in

conjunction with the sequence tag, obtains a minimum execution time (36

microseconds). The next command will be executed from a+ 3. The line

address may be any number. As in all other commands in which sector

address has no meaning in te rms of command execution, ROT may be used

to provide. a transfer by use of sequence tagging.

2-9

LDA Load A (05)

The A register is cleared and the contents of M , the effective address, are read

into the A r e gister. The previous contents of A are destroyed: the contents of

M are not affected.

LDB Load B (06)

The B register is cleared and the contents of M , the effective address, are read

i nto the B register. The previous contents of B are destroyed; the contents of

M are not affected.

LDC Load C (04)
•

The C register is cleared and the contents of M, the effective address, are read

into the C register. The previous content s of C are destroyed; the contents of

M are not affected.

Timing: LDA, LDB, and LDC are class 2 commands. To obtain minim.um exe­

cution time (24 microseconds) . the operand which is to be loaded into the regis­

ter must be located in the next sector after the command (a + 1). but not neces­

sarily in the same line, and the command must have a sequence tag of one. The

next command to be executed will be taken from q + 2 , where a is the location

of the load command.

2 - 10

fl

)

_}

.)

\

LDP Load Double Precision { 07)

Both the A and B registers are cleared. Th~ contents o f M, the effective ad­

dress, are read into the B register; the c ontents of M + 1 are read into the A

register. The contents of M and M + 1 are not affected.

Timing: LDP is a class 3 command. To obtain minimum execution time {36

microseconds), the operand must be stored in a+ 1 and a+ 2, where LDP is

located in a, in any line. Sequence tagging under these circumstances results

(in the next command being executed from a+ 3.

Usage: This command, along with the other double precision commands,

provides double precision arithmetic capacity within the command structure

of the PB 250. Furthermore, in terms of data handling, it is often convenient

to pick up or store two consecutive words which are not a single number but

are two separate units of information. The LDP command red~es the number

of memory accesses necessary in a program.

Some discussion of double precision is in order . A double precision number

consists of two words, or 44 bits. Commands functioning in the double pre-.,.
·;i} el

cis ion mode will operate on two words and treat A and B as one register, w~re f'

A is the Most Significant Word (MSW) and B is the Least Significant Word{LSW} .

Double precision numbers must be stored in consecutive words; the effective

address is the lower-ordered address. For ,example, if the specified memory

location is 03404, the double precision number is store d in memory locations

03404 and 03 504. Location 03404 contains the Least Significant Word {LSW),

while 03504 c ontains the Most Significant Word {MSW).

2-11

I

STA Store A (11)

The contents of the A register are stored in M, the effective address. The previ­

ous contents of M are destroyed; the contents of the A register are not affected.

STB Store B (1 Z)

The contents of the B register are stored in M, the effective address. The previ­

ous contents of M are destroyed; the contents of the B register are not affected.

STC Store C (1 O)

The contents of the C register are stored in M, the effective address. The previ­

ous contents of M are destroyed; the contents of the C register are not affected .

•
Timing: STA, STB, and STC are class Z commands. To obtain minimum exe­

c ution time (Z4 microseconds), the contents of the register must be stored in

the next sector after the command (a + 1), but not necessarily in the same line,

and the command must have a sequence tag of one. The next command to be exe­

c uted will be taken from a + 2, where a is the location of the store command.

2-12

)

)

,,·-

c

(_

STD Store Double Precision (13)

This command operates on both the A and B registers. The contents of the B

register are stored in M, the effective address; the contents of the A register

are stored in M + 1. For example, if the specified addre!JS is 00004, the

contents of B are stored in 00004 and the contents of A are stored in 00104.

The previous contents of A and B are not affected; the previous contents of

00004 and 00104 are lost.

Timing: STD is a class 3 command.

2-13

ADD Add (14)

The content s of M, the effective address, are algebraic ally added to the contents

of the A register. This sum replaces the contents of A ; the contents of M are

unaffected. Overflow occurs when (A) and (M) initially have like signs and the

result in A has a different sign.

Example: The command 011 1403; is executed. The contents of line 3, sector

0 11 , are + 0 210 416.

(A)

Before execution of ADD +0143115

After execution of ADD +0353533

(01103)

+0210416

+0210416

Timing: ADD is a class 2 command. To obtain the minimum execution time

(24 microseconds). the operand which is to be ad9ed to (A) must be located in

the next sector after the command, but not necessarily in the same line, and

the command must have a sequence tag o f one. The next command to be

executed w ill be taken from a + 2, where a is the location of the ADD command.

Usage: Reference should be made to the discussion of 2's complement arith­

metic in Appendix A prior to coding arithmetic problems for the PB 250.

2 - 14

)

J

)

(

(

SUB Subtrac t (15)

The contents of M , the effec tive address, are algebraically subtracted from the

cont en ts of the A register . The result replaces the contents of A; the contents

of M are unaffec ted. Overflow occurs when (A) and - (M) initially have like

signs and the result in A has a different sign.

Example : The command 125 1507;

sector 125, are+ 0231234.

Before execution of SUB

After execution of SUB

Timing : SUB is a class 2 command.

is executed. The contents of line 7,

(A)

+ 6lZO134

+ 5666700

(12507)

+ 0231234

+ 0231234

2- 15

DPA Double Precision Add
fJ. -r(n+ I)
B, + rl (16)

The contents of the word pair starting at M, the effective address, are

algebraically added to the contents of the combined A and B registers.

This sum replaces the contents of A and B; the word pair beginning at M is

not affected. Position 0 of the B register does not act as a sign; but is part

of the magnitude of the number, and any carry from position 0 of B propagates)

into position 21 of A. Overflow occurs when (A) and (M+l) initially have like

signs and the result in A has a different sign. The double precision word in

memory starts with (M + l), where (M) represents the least significant part

of the double precision number.

Example: The command 002 1602; is executed. The contents of line 02,

sector 003, are + 1210456. The contents of line 02, sector 002, are

73120604 (111.0110010100001100001). (A)

Before execution of DPA

After execution of DPA

+0124471

+1335150

(B)

31425000

24545604

(003)

+1210456

+1210456

(002)

73120604

73120604

Timing: DPA is a class 3 command. To obtah the minimum execution time

of 36 microseconds, the operand which is to be added to (AB) must be l ocated

in the next two sectors after the command, but not necessarily in the same line

and the command must have a sequence tag of one. The next command to be

executed will be taken from ci + 3, where ci is the location of the DPA command.

Usage: The DPA command may be used to accumulate a double precision sum,

where six decimal digits are not sufficient in an arithmetic computation. Another

use occurs when it is certain that the sum in B will not overflow to A; two sepa­

rate sums may then be accumulated, one in A and one in B. ADD may be used

to add to (A), while DPA may be used to add to (B), where the most significant

word to be added to (AB) consists of all zeros. A further use of DPA is t0

2-16

)

)

- _ ..

(

c

(,

DPA Double Precision Add (cont.)

round a positive double precision number in (AB) to a single precision number

in A. The number to be added to (AB) should appear as follows:

a

a + 1

= -0000000

= +0000000

(1 6)

2- 17

DPS Do uble Precision Subtrac t (17)

The contents of the word pair starting at M, the effective address, are algebrai­

cally subtracted from the cont e nts of the combined A and B registers . The rf'­

sult replaces the contents of A and B; the word pair at Mis not affected. Po­

sition 0 of the B register does not act as a sign, but i s a part of the number,

and any carry from position 0 of B propagates int o position 21 of A. Overflow

occurs when (A) and - (M + 1) initially have like signs, while the r esult in A

has a different sign. The double precision word in m e mory starts with (M+ l);

(M) represent the least significant part of the double length number .

Example: The command 113 1705; is executed. The contents of line 5, sectors

114 and 113 are, respectively, + 0124471 and 31425000.

Before execution of DPS

After exe c ution of DPS

Timing: DPS is a class 3 command.

2-18

(A)

+ 1210456

+ 106 3765

(B) (114) (113)

73120604 +0124471 31 425 000

4147 3604 + 0124471 31425000

)

_)

__)

c

(_

(

'

NAD Normalize and Decrement

The address field of the NORMALIZE AND DECREMENT command is not used

to specify the location of an operand, but contains an address number, N,

which specifies the first sector following the completion of execution. In exe­

cuting this command, the (AB) are shifted left until one of two conditions is

met:

1) (A)0 =#:(A)
1

; i.e., the contents of A, position 0, do not equal

the contents of A, position 1.

2) (AB) has been shifted S positions (where S is selected by the

programmer).

The line address should not have a one in position 16 (see description of NOR

command). The (C) are decremented by one for each position shifted. Po­

sition 0 of A does not move, but position 0 of B takes part in the shifting. The

vacated positions of B are filled with zeros. The programmer should select

S large enough so as not to inhibit proper normalization. S is used in de­

terminiI)g N in the following manner:

N)
8

=Sector location of the command)
8

+S)
8

+ 1)
8

·

Example: The command 071 2000; is located in sector 015 of line 02.

Timing:

Before execution of NAD

After execution of NAD

+0012461

~ 5::l.3..0 5 6 0

34105614

42706000

+ 0000010

+ 0000000

NAD is a class 1 command. If a sequence tag of one is used, the

next command is read from N. With a sequence tag of zero, the next command

is read from a + 1, where a is the sector location of the NAD command.

Usage: This command may be used in "floating" a fixed-point number to

obtain a normalized floating point representation. Choosing S equal to 53)8

(20)'~

2-19

NAD Normalize and Decrement (cont.) (2. 0)*

allows for normalizing every possible number in AB, but still terminates the

operation if (AB) equal zero. If normalization is accomplished before N time,

the command is executed as a NOP (2.4) for the remaining sectors. Note that

a shift of zero positions cannot be accomplished by any of the shifting commands.

2.-2.0

'

)

c

(

(

NOR Normalize (20) *

The address field of the NORMALIZE command is not used to specify the lo­

cation of an operand, but contains an address, N, which specifies the first

sector following completion of execution. In executing this command, the (AB)

are shifted left until one of two conditions is met:

2) (AB) has been shifted S positions, where S is selected by the

programmer.

The line address must have a one in position 16. (See description of NAD com­

mand.) The (C) are not affected by execution of NOR. Position 0 of A does not

move, but position 0 of B takes part in the shifting and moves from 0 of B into

21 of A, etc. The vacated positions of B are filled with zeros. The programmer

should select S large enough so as not to inhibit proper normalization. S is

used in determining Nin the following manner:

N)
8

= Sector loca~ion of the command)
8

+ S)
8

+ 1)
8

Example: The command 071 20 10; is located in 01502.

Before execution of NOR

After execution of NOR

(A)

-7731245

- 3124532

(B)

32001420

00142000

Timing : NOR is a class l command. If a sequence tag of one is used, the

next command is read from N. With a sequence tag of zero, the next command

is read from a + 1, where a is the sector location of NOR.

Usage: Choosing S = 53)
8

allows for normalization of every possible

number in AB, but still terminates the operation if (AB) equal zero. If normal­

ization is accomplished before N time, the command is executed as a NOP (24)

for the rt:maining sectors.

2-2 1

LSD Left Shift and Decrement (21)*

The (AB) are shifted left for S positions, S being determined by the programmer.

The (C) are decremented by one for each position shifted. Bits shifted past

position 1 of A are lost and zeros fill the vacated positions of B. Position 0 (the

sign) of A is not moved, but position 0 of B takes part in the shifting. The line

address of this command should not have a one in position 16. (See description

of SLT command). The sector address field of this command is not used to

specify the location of an operand, but contains an address, N, which is deter­

mined by:

N)
8

= Sector location of the command)
8

+ S)
8

+ 1)
8

Example: The command 02.1 2.100; is located in line 3, sector 015.

Before execution of LSD

After execution of LSD

(A)

- 1532.104

- 532.1043

(B)

3612.4104

612.41040

(C)

+0000007

+0000004

Timing: LSD is a class 1 command. The next command to be executed, when

this command has a sequence tag of one, is the command located in N.

Usage: This command should be used only when it is desired to decrease (C)

by l for each position shifted left. It is important to remember that the sign

position of A does not participate in the shifting. Note: S>53)
8

results in

setting (A) l-2.l and (B) 0-2.l equal to zero.

2.-2.2.

)

'

SLT Shift Left (21)*

The (AB) are shifted left for S positions, S being determined by the programmer .

The (C) are not affected by this command. The line address of this command

mu_!!.Lh..~ve a one in position 16 (see description of LSD command). Bits shifted .. ---- ---·· ·- -------··-~--_,, __ ., __ ...,,_, -..... .

past position 1 of A are lost, and zeros fill the vacated positions of B. Position

0 of A is not moved (does not participate in the shifting), but position 0 of B

c· does participate in the shifting. The sector address of this command is not used

to locate an operand, but contains an address, N, which determines the length

......

of the shift.

Exampl e:

Timing:

N)8 =Sector location of the command)
8

+ S)
8

+ 1)
8

The command 021 2110; is located in line 03, sector 015.

Before execution of SLT

After execution of SLT

(A) (B)

-1532104

-5321043

36124104

6 1241040

SLT is a class i command. The next command to be executed, when

this command has a sequence tag of one, is the command located in N.

Usage: This command may be used when it is desired to shift left without

disturbing (C). The sign position of A does not participate in the shifting, and

S > 53)
8

results in setti~g (A)
1

_
2 1

and (B)
0

_
21

equal to zero.

2-23

RSI Right Shift And Increment (22)*

The (AB) are shifted right for S positions, S being determined by the programmer.

The (C) are incremente.d by one for each position shifted. The bit in the sign

position of A is copied into the vacated positions of A . Bits shifted past position

21 of B are lost. Position 0 (the sign) of A is not moved, but position 0 of B takes

part in the shifting. The line address should not have a one in position 16. (See

desc ription of SR T command.) The address field of this command is not used to

specify the l ocation of an operand, but contains an address number, N, which is

determined by:

N)8 =Sector location of the command) + S) + 1) .
8 8 8

E xample: Command 021 2200; is located in sector 015 of line 03.

Before execution of RSI

After execution of RSI

Timing: RSI is a class 1 command.

(A)

-3120456

-7312045

(B)
47217030

64721700

(C)
+0000000

+0000003

Usage : Use RSI only when it is desired to shift (AB) right and to increment

the C register. (when C register incrementing is undesirable, see description

of SR T command.)

2-24

)

(

(_

SRT Shift Right (22)*

The (AB) are shifted right S positions, S being determined by the programmer.

The (C) are not affected. The bit in position 0 of A (sign position) is copied

into the vacated positions of the A and B registe rs. Bi ts shifted past position

21 of B are lost . Position 0 (sign position) of A is not moved but position 0

of B takes part in the shifting. Note: The line address of this command must

be such that bit position 16 contains a one. (See description of RSI c ommand.)

The secto r address field of this command is not used to specify the location of

an operand, but contains an address numbe.r, N, which is determined by:

N)
8

= Sector locat\on of the command)
8

+ S)
8

+ 1)
8

.

Example: The command 200 2210; is located in line 2, sector 17 l.

Timing:

Before execution of SRT

After execution of SR T

SRT is a class l command.

(A)

- 3177204

- 7731772

(B)

21643104

04216430

Usa ge: This command should be used when it is desired to shift (AB) right

without affecting the (C). (If incrementing the C register is desirable, see

description of RSI command.)

2-2 5

SAI Scale Right And Increment (23)

The (AB) are s hifted right and the (C) are incremented by one for each position

shifted. The ope ration continues until one of the two conditions is met:

1) (C) ~ 0

2) (AB) are shifted S positions, where Sis selected by the p r ogrammer.

The bit in the sign position of A is copied into the vacated positions of A. Po­

sit ion 0 (the sign) of A is not moved, b ut position 0 of B takes part in the shift­

ing. S should be so selected as not to inhibit the scaling. The line address of

this command should be zero. The sector address field of this command is not

used to specify t he locati on of an operand, but contains an address number, N,

which is determined by:

I\)
8

= Sector location of the command)
8

+ S)
8

+ 1)
8

Example: The command 004 2300; is located in 00002.

Before execution of SAI

After execution of SAI

(A)

+1231046

+0123104

(B)

21320040

62132004

(C)

- 7777500

-7777503

Timing: SAI is a class 1 comman d . If sequence tagging is used with the com­

mand, the next command to be executed will be taken from N, even if condition

(1). above, is obtained before N sector time.

Usage: This command can be used in "fixing" floating point numbers at a

particular scal e factor. If (C) become ~ 0 before N time, the command is

executed as a NOP (which, in this case, will have an op code number of 27)

for the remaining sectors.

2-26

'

)

)

c

(

(_

' --

NOP No Operation (24)

This command causes the computer to continue in the regular command sequence .

Memory and registers are not affected.

Timing: NOP is a class 1 command. Sector address has meaning only in the

event that a maximum operation speed is to be obtained. Optimum programming

requires a sequence tag of one and a sector address of a + 2, where NOP is

located in a . The next command to be executed will come from a + 2. Line

address may be any number. NOP may also function as a transfer to j3 , when

the sector address of the NOP command is 13 (13 must be in the same line as

NOP).

2 -27

IAM Interchange A and M (25)

This command interchanges information in the line designated by the line ad­

dress, with the information in the A register. The interchange starts in the

sector following the !AM command and continues up to, but not including, the

address sector number. This command results in a one - word precession of

the information in the designated line. The information originally in the A

register is entered into the first sector and is replaced by the information in

the last sector.

Example: The command 015 2503; is located in sector 012 of line 2.

Timing:

Usage:

Before execution of !AM

After execution of !AM

!AM is a class 1 command.

(A)
+3214071

+3246002

(01303)
-5377210

+3214071

(01403)
+3246002

-5377210

This is a very convenient way of manipulating sector sequential

data in memory without modifying addresses. In effect, the designated sectors

and the A register function, temporarily, as a special line. Each time !AM is

executed, a stepping of data takes place as shown below. Note: a is the sector

location of the IAM command, but is not necessarily in the same line as a+ 1,

a +2, etc., and a + N + 1 is the !AM

Location

A register

a +l

a + 2

a + N-1

a + N

2-28

Initial
Contents

Xa

X1

Xz

x
n-1

sector

After
1st !AM

xn

xa

XL

x
n - 2

x n-1

address.

After
2nd IAM

xn-1

xn

x a

x
n-3

x n-2

\

)

_)

,)

. ../

(

'·

MLX Move Line X to Line 7 (26)

This command transfers information from the effective line address to line 07 .

The transfer begins in the sector following the MLX command and continues up

to, but not including, the sector address.

Timing: MLX is a class 1 command; timing is similar to that for MCL (71).

Usage: This command should be studied in conjunction with MCL (7 1). It is

to be noted , that both of these commands, though similar, have certain

significant differences. MCL moves an entire command line, or any part of a

command line in which the MCL is actually located, into another line. MLX

moves some specified line, not necessarily the one in which it is located, or

part thereof, into line 7; thus, in the case of a machine in which subroutines

are stored in lines 10, 11, etc., it may be desirable to move these subroutines

into line 7 for execution. This can be ac c omplished by using the MLX command.

An entire line may be moved by giving the address a+ 1, where the MLX com -

mand is located in a. It can be seen that both of these commands hav e a sepa ­

rate and important use in the PB 250. Judicious use of these commands provides

an easy method for moving data· from line to line, while preserving the same rela­

tive sector locations.

2-29

SQR Square Root (3 0)

The argument must be in the combined AB registers. The (C) must be positive .

The square root appears in B with the remainder in A. The C register takes

part in this operation and its contents are replaced by the square root. The (C)

will be the full root but will differ from the (B) in the least significant bit com­

puted. If only A is loaded with the argument, (B) should be cleared or they may

influence the least significant bit of the computed root.

The line address of this command should be zero. The sector address contains

a number, N, which specifies the first sector location following the completion

of the operation. The SQR command is a variable length operation, which per -

mite the programmer to specify a quantity , S, which is the number of bits of

the root that are to be developed. N is determined from S as follows:

N) = Sector location of the command) + S) + 1)
8 8 8 8

The argument, (AB), must be positive for this operation to be executed cor­

rectly . If S = 21, the full root is formed in B.

Example: The command 006 3000; is located in 36005.

(A) (B)

Before execution of SQR

After exectuion of SQR

+0100000

-5777776

+0000000

+1000000

(C)

+0000000

+1000001

Timing: The number whose square root is to be found should be at an even

scale factor, 2Q. The result in the B register will be scaled at Q + 21 - S.

For example, where S = 21)
10

and the (AB) are at 2Q = 20, the result in Bis

scaled at Q = 10. If S = 10, and the (AB) are at 2Q = 20, the result is in Bat

2-30

..

)

)

... ...-...

l .

SQR Square Root (cont .)

Q = l l. Bit 11 of B will be a zero, and the result will be in bits 12 through 21;

bit 0 of C will be a zero, and nine bits of the result will be in bits 1 through 9.

SQR is a class 1 command.

(3 O)

2-31

DIV Divide i .A (•
r t '·· _,,. • ,.

\ .

: -

The dividend is in the combined AB registers and the divisor is in the C regis­

ter. The quotient appears in the B register, with a remainder in A. The

line address of this command should not have a one in either positions 15 or

19. The sector address field contains an address, N, 'which specifies the first -sector location following the completion of the operation. The DIV command is

a variable length operation, which permits the programmer to specify a quanti­

ty, S, which is the number of bits of the quotient (including sign) to be developed.

If S is 22, the full quotient is formed in !?• with a sign in (A) 21 , and the unit

bit i,n (B) o. In case th e _ _giyi~..Q..r w as. . ..gx.ea.te.r .. th.an-the-d.Wid.e~.--t.he.. . .units..hit~ill

eq~~} .t1l~-~J.gp __ Q,i~, .. iinq_ .t~-~ ~~~~~-':-n~. ~~.1! .. ~~f?~!lr ~~ - ~. si_~~E'.~.};.~~b=.:. .. ~.~--~-!:?1Y ·

N is determined as follows:

E xample:

N)8 Sector location of the command) 8 + S)~ -t 1) 8

The command 027 3100; is located in 00003.

Before execution of DIV

After execution of DIV

+0700000

-6200001

+0000000

+7777777

-7 100000

-7100000

This is a divide with S = 22. The last bit of A is the sign of the quotient, which

is negative . In canonical form, the quotient is -0000000, and the remainder is

+0000000.

Timing: DIV is a class l command. If a sequence tag of one is used, the

next command is executed from N.

Usage: 1) If the dividend is scaled at Q (a), and the divisor at Q (b), then

the quotient is scaled at Q [a - b + 22 - SJ .

2-32

'

)

(

(

DIV Divide (cont.) (31)*

2) The machine remainder is scaled at Q b-1 . The corrected remainder

will be scaled at Q (b).

3) The binary point of the quotient is preceded by the unit bit and sign, and

is succeeded by the 1/2 bit, 1/4 bit, 1/8 bit, etc. Bits to the left of the sign bit

are not cleared.

Sign Bit Units Bit l/ 2 Bit

3J ±G l11f 14l 118I I· I· I
/\

Radix Pt.

QUOTIENT

In case the divisor is, in absolute value, greater than the dividend, then th e

sign and unit bits are equal. Whenever the quotient is less than 2 in absolute

value, the unit bit reflects the true integral value. In case S = 22, the unit bit

is in (B)5 , and the sign of the quotient is in (A)21• This will affect the least

significant bit of the remainder. For example, a full division of -1, scaled

at Q (0), by itself, gives a quotient of+ 1 scaled at Q (0), i.e., a one in (B)S

and zeros in (~)21 and (B)1-21·

4) To obtain the undivided r emainder at Q {b) from the machine remainder,

shift (A) right one position, using an LRS with bit 15 equal to ~; if (A)5 and

(C >s are now unequal, add (C) to (A). The undivided remainder is in the A

register.

5) The canonical quotient is, in absolute value, less than, or equal to,

the theoretical answer. This implies that the sign of the canonical divided

remainder has the same sign as the quotient. In the PB 250, the quotient is

always less than, or equal to, the theoretical answer. Therefore, the divided

2-33

DTV Divide (cont.)

remainder will always l:?_e positive. For example, using integers scaled at the

right of the registers, -5 divided by+ 3 is -1 with a divided remainder of -2/3

in canonical form. In the PB 250, a quotient of -2 and a divided remainder of

+ l/ 3, is obtained which is mathematically correct. In the case of a negative

quotient, the quotient and undivided remainder must be altered if canonical

form is desired. Note that the quotient need only b J corrected in the least sig-

' nificant bit position . Therefore, for most purposes, the machine quotient is

sufficiently accurate.

6) The correction to canonical form, which is described in (7),

can be avoided if the original dividend and divisor are both positive, i.e., if

one attaches the sign to the quotient and remainder after the division takes

place. The correction de.scribed in (8) must be applied in either case.

7) To obtain an answer in canonical form, the quoti ent is altered

by adding a (+l) in bit position 21 if the quotient is negative. Table 2 - 1 shows

how to go directly from the uncorrected machine remainder to the canonical

undivided remainder. First shift (A) right one place using an LRS command
~ ., -:.

with bit 15 equal to z-e.r-0. Then add or subtract (C), or leave (A) unchanged

according to Table 2-1. This depends on the signs (A)3 , (B)5 . and (C)3
after the shift and before the' quotient is corrected. The remainder will have

a scale of Q (b).

2-34

)

_J

)

c

(

(

DIV

(C)S

+

+
+

+

-
-
-
-

Divide (Cont.)

Table 2-1

DI VISION CORRECTION

(A)S (B)S

+ +

+ -
- +

- -
+ +

+ -
- +

- -

(31)*

Correction

none

-(C)

+(C)

none

none

+(C)

none

-(C)

8) After the cor.rection to canonical form, the quotient may

be exactly one unit less than the answer, in absolute value. This will be

reflected by:

a) (remainder) = (divisor) if the quotient is positive.

b) (remainder) = - (divisor) if the quotient is negative.

In these cases, the quotient should be increased or decreased by a (+l) in bit

position 21, and the remainder set equal to zero.

2-35

DVR Divide R emainder (31)*

The remainder is in the combined AB registers, and the divisor is in the C

register. The quotient appears in the B register; the remainder appears in A.

The line number of this command should have a one in position 19 and a zero

in position 15. The sector address field contains an address, N, which specifies

the first sector location following the completion of the operation. The DVR

c ommand is a variable length operation, which permits the programmer to

specify a quantity, S, which is the number of bits of the quotient to be developed.

The quotient has no sign. If S=ZZ, the most significant bit will be in (B)
0

. N

is derived as follows :

N)
8

= Sector location of the command)
8

+ 5)
8

+ 1)
8

•

Example: A 4, scaled at 24, is divided by 3, scal ed at Zl. The result, with

S=Zl , should be 1 1/3, scaled at 4. The result after the DIV is shown, and

then the result after saving the quotient, clearing the B register, DVR with

S=i?.2, and replacing the original quotient into the A register, giving a double

precision result.
(A) (B) (C)

Before execution of DIV + 0000000 - 0000000 + 000000 3

After execution of DIV - 7777776 + 0525252 + 0000003

After execution of DVR
and s plicing + 0525252 - 2525252 + 0000003

Timing: DVR is a class 1 c ommand. If sequence tag of one is used, the

next command is executed from N.

Usage: The DVR operates on an uncorrected remainder . Before performing

the DVR, if maximum accuracy is desired, the quotient should be saved and the

B register should be cleared. F or maximum accur acy, the original DIV should

2 -36

'

)

_)

)

(_

DVR Divide Remainder (Cont.) (31)*

have used an S of 21, maximum. This is because of the sign bit in (A)
21

when S = 22 (see DIV description). The quotient of the DVR, with S = 22,

can be spliced to the quotient of the DIV. In general, the quotient of the

DVR should be shifted left (22 - S) places before splicing it to the quotient

of the DIV. The correction to the remainder, and the correction for can­

onical form, follow the procedure described in DIV, except that correcting

the quotient requires a DOUBLE PRECISION ADD (DPA) command of+ 1

in the 43rd bit of the quotient.

2-37

MUP Multiply (32)

The multiplier must be loaded into the B register and the multiplicand mutt be

loaded into the C register. The computer clears the A register before multi­

plying, provided that the line address of the com.mand does not have a one bit

in position 15. The product appears in the combined AB regieters; (C) are

unaffected. The sign of the product and the Zl most •ignificant bits of magni-
:;.1

tude appear in the A register; the ~ least significant bits of magnitude appear

in the B register.

The address field of the MULTIPLY command is not used to specify the loca­

tion of an operand, but contains an address number, N, which specifies the

first sector number following the completion of multiplication. The MULTIPLY

command is a variable length operation and, as such, the programmer may

specify a quantity, S, which is the number of bit~, starting from the least

significant end of the multiplier, B, to operate on the mul~~Bli.c.a.nd. . C. ., If the

..

----------------r-"4 ~--_,_... ·---"""' ·- .-.-:.·.··-· .. ··
~y point is always considered to be to the right of the sign, and Sis ZZ)

10
, or _)

Z6)
8

, then the full product is formed in A and B with the binary point to the

right of the sign bit in A. Note that the sign of B is counted as a multiplier

bit. If Sis Z3)
10

, or 2.7)
8

, one-half of the product is formed in A and B with

the binary point to the right of the sign bit in A. N is determined from Sin

the following manner:

N)
8

= Sector number of the command)
8

+ 5)
8

+ 1)
8

•

Timing: MUP is a class 1 command. lZ microseconds are required to read

the command; 12. S microseconds are required to carry out the command. In

the event a sequence tag of 1 is used, the next conunand is executed from N.

Z-38

(

(_

' '-

MUP Multiply (cont.) (32)

Example: The command 037 3200; is located in 01003.

Before execution of MUP

After execution of MUP

irrelevant

+0000000

+0000003

+0000030

+0000004

+0000004

Usage: When S = 26)g is used, all the bits of the multiplier operate on all

the bits of the multiplicand. Binary scaling follows the rule that the scale

factor of the product equals the sum of the scale factors of the multiplier and
-------·-·---·--.,,.~-, ..

the multiplicand. If the (B) are at Q = 10 and the (C) are at Q = 17, then the Q
_.,.. __ ., __ ~··-·-

of the product is 27. (The binary point is between bit positions 5 and 6 of the

B register.) When a product which is less than full length ie formed (which
,,,.-----·-- . . . -- -- - - - -. .

red~ses the time required to execute a MUP), S bits of the B register are ----------- . ----,·-.......... __ _ -.. . .,,.
combined with the 22 bits of the C register to form a product which occupies

-·· -~ .. --..,. - • • - ... -, •• ,,.., -·-·"··-····· M,. -· .. ~ .. · ·~ · -· ··- ... _ •• • ,_,_ .• ..._ ··- •• • _ _ ___ _

S + 21 significant bits of the combined AB registers, starting with the sign --- ... -...... _ ... __ ·-.... -... . .. ~- -~ .. ._... _.., _,.. ... _ _-___. ___ . __ -----.. ·--
position of A. For example, if the multiplier is known to be always no more
- --····--·· ·-----·- l Bi
than 9 bits plus sign, S would equal 12)

8
, and the product would appear as

shown:

A B

l°I 'T T
10

"I
I

Sigp of Magnitude of
Product Product

The bits which are originally in (B)
0

_ 11 are moved to (B) 10 _2 1' with the

bit in (B) 10 repeated in (B)
9

.

2-39

SBR Shift B Right (33)*

The (AB) are shifted right,. S positions, S being determined by the programmer.

The (C) are unaffected by the execution of this command. After (AB) are shifted

right one bit position, the A register is cleared; thus, if S ~ 2, zeros are shif­

ted into B after sector time a.+ l, where c;is the location of the SRB command.

Bits enter (B)
0

from (A)
21

; bits shifted past position 21 of the B register are lost .

The line address of this command must have a zero in position 15 (see descrip­

tion of LRS command). The sector address field of this command is not used

to specify the location of an operand, but contains an address number, N, which

is determined by:

N)
8

= The Sector location of the command)
8

+ S)
8

+ 1)
8

.

Example: The command 004 3300; is l ocated in .sector 000 of line 3.

Timing:

2-40

Before execution of SBR

After execution of SBR

(A)

10101111

00000000

SBR is a class 1 command.

(B)

01011001

00101011

'

}

)

(

(

(

LRS Logical Right Shift (33)*

The (AB) are shifted right S positions, S being determined by the programmer .

The (C) a re unaffected by the execution of this command . LRS differs from

RSI in that the sign position of A, (A) 0 , participates in the right shift. The

parity bit is copied into the sign position of A, and, if shifting continues, it is

then copied into the vacated positions of AB. Bits shifted past position 21 of

B are lost. The line address of this command must have a one in position 15.

The sector address field of this command is not used to specify the location of

an operand but contains an address number, N, which is determined by:

N)8 =-= The sector location of the command)
8

+ S)
8

+ 1)
8

Example: The command 012 3320; is located in sector 005 of line 07.

Before exe cution of LRS

After exe cution of LRS

(A)

-2310724

XX514435

(B)

76124500

23705224

Note: XX are bit positions 0 through 3 of the A register, which are filled wit.h

the parity bit.

T iming: LRS is a class 1 command .

2 - 41

TAN Transfer if A Negative

If the contents of the A register are negative , the computer will take its next

command from the effective address, which may be in any command line. If

the contents of A are not negative , the next sequential command is executed.

A sequence tag of zero is required.

T BN Transfer if B Negative

If the contents of the B register are negative, the computer will take its next

command from the effective address, which may be in any command line. If

the contents of B are not negative, the next sequential command is executed.

A sequence tag of z.ero is required.

TCN Transfer if C Negative

If the contents of the C register are negative, the computer will take its next

command from the effective addr ess, which may be in any command line . If

the contents of C are not negative, the next sequential command is executed.

A sequence tag of zero is required.

(35)

(3 6)

(34)

Timing: TAN, TBN, and TCN are class 4 commands, therefore all operate

under the same timing considerations . If the register referred to is negative, the

next command is read from th e line and sector number specified by the command .

If the register is not negative, the command directly following the transfer of

control command is read. A conditional transfer, where the condition is not met,

thus requires no execution time . The execution time, when control is transferred,

is 12 microseconds per sector, for the interval between the transfer of control and)

the next command to be executed.

Usage: A sequence tag of one with either TAN, TBN, or TCN results in an

unconditional transfer.

2-42

'

c

(

' -

TRU Transfer Unconditionally (37)

The computer will take its next command from the specified address, which

may be in any command line. For an unconditional transfer to be executed,

a sequence tag of one must be present.

Timing: TRU is a class 4 command. The execution time is 12 micros econds

to read the transfer command itself, p lus 12 microseconds per sector for the

interval between the transfer of control command and the next command to be

executed. Optimum transfer loca tion is a + 2, where a i s the location of the

TRU command.

Usage: The TRU command functions as a TBN when the sequence tag of one

is not present.

Z - 4 3

EBP Extend Bit Pattern (40)

Starting from the right, each position of M, the effective address, is checked.

If the position contains a zero, the corresponding position in A is unaffected; if

the position contains a one, the corresponding position of A is changed so that it

is the same as the bit written to its immediate right. The (M) are unaffected.

All 2.2 positions of A and M take part in this operation.

Example:

Timing:

Usage:

Before execution of EBP

After execution of EBP

EBP is a class 2 command.

(M)

111000111000

111000111000

(A)

Q.101010 10001

111101000001

(M) should not have a one in position 21, for this would "extend" the

guard bit. This command can be used to determine the presence or absence

of a one in any bit position of the A register, by extending that bit to the sign

position of the A register and then performing a TAN to provide a transfer of

control if there was a one in the position tested. EBP may also be used to

extend a sign located in any other bit position into position O.

2 - 44

) '

.)

- .

GTB Gray to Binary (41)

The GRAY TO BINARY command sends the binary representati on of a Gray­

coded number in A to A. The result in A is correct only if the sign of the

A register is positive.· If the sign is negative, the one's complement of the

result in A should be used. This command .will also aid in parity tests on

input data. If, after this command is given, the sign of A is negative, then

(A originally had an odd number of ones in bit positions 1 through 21.

(

(

Where the original bits in A are A
21

, A
20

, A
19

, etc., in bit positions 21,

20, 19, etc., the GRAY TO BINARY command produces bits B21 ,B20,B
19

•

etc., in A, whe:ce

and B.
1

21

= 1 if I
k = i + 1

~is odd. o~ i~ 20

The theoretically correct value s for the GRAY TO BINARY conversion are

B . = 0
0

and B .
l

o~ i~ 20

This command either gives the correct result for all bits or the one's comple­

ment of the correc t result .

Example:

Before execution of GTB

After execution of GTB

(A)

001011.10

00110100

(52 in Gray code)

(52 binary)

2-45

GTB Gray to Binary (c ont.) (41)

Timing: GTB is a class 2. command.

Usage: When used to check parity, an even number of ones in the A register

will produce a zero in position 0 of the A register (A sign positive). An odd

number of ones in the A register will produce a one in position 0 of A (A sign

negative).

When used to convert Gray code to binary (a common requirement when analog

information has been digitized), the GTB should always be followed by a TAN

command. The address of the TAN should lead to a sequence whereby the one's

complement of (A) may be found. II the (A) ar~ positive, this need not be

completed as. the correct result will have been obtained.

2.-46

)

)

)

(

(

(

\

AMC And M & C (42)

A one is placed in each of those bit positions of B where there are ones in the

correspondi ng positions of both C and M, the effective address. Ze r os are

placed in all o ther positions of B. (C) and (M) are not affected. All 22 positions

of M , B, and C take part in this operation.

Example :

Timing:

Befo.re execution of AMC

After execution of AMC

(M)

1100

1100

(C)

10 10

10 10

(B)

irrel evant

1000

This is a class 2 command. The optimum address is a+ 1; sequence

tagging under these circumstances results in the next command coming from

a+ 2.

Usage: This command produces the logical sum of the contents of the C

register and the contents of memory, . and places this logical sum in B. The

most c ommon use would be in applications requiring AND logic. An instance

would be where corresponding bit positions in a group of words, each word

representing elements of an ensemble, represent the presence (1) or absence

(0) of a quantity. It is desired to know which quantities are present in all

elements of the ensemble. This can be obtained by a series of AMC commands

on the vari ous elements (words) of the ensemble.

2-47

CLA Clear A (45)

Each bit in the A register is set to zero, including the sign position.

CLB Clear B (43)

Each bit in the B register is set to zero, including the sign position.

CLC Clear C (44)

Each bit in the C register is set to zero, including the sign position.

Timing: CLA, CLB, and CLC are class 2 commands. Although the sector

address has no meaning, timing considerations for optimization require that the

sector adciress be the next sector after the command (a+ 1.), and that the com­

mand have a sequence tag of one. The next co.mmand to be executed will then

be taken from a+ 2 , where a is the location of the clear command. These com­

mands effectively provide "transfer and clear 11 when sequence tagging is em­

ployed and the sector address of the command is 13 - 1, when it is desired to trans­

fer to 13.

2-48

)

_,)

)

(

(_

'

AOC AND OR Combined (46)

Symbolically, this command is MC OR MB, with the result appearing in B . For

each one in M, the effective address , the bit in the corresponding position of C

is copied into B. For each zero in M, the bit in the corre spending position of

B is preserved. All 22 positions of M, B, and C take part in this operation; (M)

and (C) are not affected.

Example:

Before execution of AOC

After execution of AOC

(M)

11110000

1111 0000

Timing: AOC is a class 2 command.

(C)

11 001 0 1 0

11001010

(B)

01011100

11001100

Usage: This command effectively provides a means of inserting selected

information from one word into another word. It is a convenient method of

"packing" a word.

2-49

EXF Extract Field (4 7)

For each one in M , the effective address, a zero is put in the corresponding

position in B. For each zero in M, the bit in the corresponding position of B

is preserved. All 22 positions of M and B take part in this operation.

Example:

Timing:

Usage:

Before execution of EXF

After execution of EXF

EXF is a class 2 command.

(M)

111 000

111 000

(B)

110101

000101

Selected positions of the B register may be zeroed out while all

other positions are left unchanged. Sometimes a word is divided into two or

more fields (groups of consecutive bit positions), where each field has a

distinct meaning. This is called "packing" a word. Thus, it is possible to

edit the (B) and remove (zero out) unwanted fields from a packed word.

2.- 5 0

\

)

_)

/

DIU Disconnect Input Unit (50)

The Input Buffer is deactivated and all input devices are disabled from filling

it. The Indicating light of the Flexowriter, if on, is turned off.

Timing: DIU is a class 2 command.

Usage: This command is used to disconnect an input device, especially a

C fast device, after the input is complete and before another device is activated.

(

DIU can also be used after the computer has "waited" for a period of time and

not received an input; for example, if the typewriter is activated and, after a

certain period of time, no character is entered, the program can deactivate the

keyboard and continue.

2-51

RTK Read Typewriter Keyboard (51)

The Indicating light on the Flexowriter is turned on and the Input Buffer is

activated to accept a character from the keyboard. After a key has been de­

pressed, the Flexowriter sends a signal to the computer, which may be tested

by a TES command havi~g a line address of 36)
8

to determine if the Input Buffer

has been filled. Depressing a key also causes the light on the Flexowriter to

go out. It is necessary to execute an RTK for each character to be read.

Timing: R TK i s a modified class Z command. Execution begins in sector

a + 1, where a is the sector location of the command, and continues through

the sector specified by the comman_g_,_ If 13 is the sector address , and a s equence

tag of 1 is used, the next command will come from (3 + 1. If a sequence tag of

0 is used, the next command will come from a + l.

Usage: R TK is always used when reading information from the typewriter

keyboard. This information will be loaded into the buffer in 6-bit codes which

may be loaded into the A register with an LAI command.

Z-52

•

)

_)

RPT Read Paper Tape (52)

This command functions exactly as R TK except that instead of turning on the

keyboard light a!'ld waiting for a key to be depressed, it causes the tape reader

to read one frame of tape. Sine the paper tape reader has 8 columns, as many

as 8 bits per frame may be punched on it and loaded to the Input Buffer by means

of the RPT command. It is necessary to execute this command for each frame

(of tape read.

l

. -

Timing : Like R TK, RPT is a modified class 2 command which starts its exe -

cution in a+ 1 and continues through 13 , where a is the actual sector location of

R TK and 13 is the sector address.

Usage: U an RPT command is given at the proper intervals, it is possible

to keep the tape moving at 10 frames/second, which is the maximum input rate

0f the Flexowriter. (See Section IV for details on this operation.)

2-53

RFU Read Fast Unit (53}

This command will caus e the Input Buffer to be filled by a fast, special purpose

unit. The PULSE TO SPECIFIED UNIT command is used to select , start, and

stop these fast units. This command differs from the other read c ommands in

that it is not self-disabling. The DISCONNECT INPUT UNITcommand must be

used to terminate this operation deactivate the buffer.

Timing; RFU is modified class 2 command . ~

Usage: This command may be used for fast input devices that require the

Input Buffer .

~ .£.e.. ~ I K f S -:!>) (ct'· " - '") fr" ~..)J.-!'-.rJ:- --/ ;-. "'¥,.,i

/~ '2.

2-54

)

-·

c

(_

(

LAI Load A from Input Buffer (55)

The capacity of the Input Buffer is any character up to eight bits. This com­

mand will load the contents of the Input Buffer into positions 14 through 21 of

the A register under control of a Format Word, or "mask. 11 Load A from

Input Buffer always takes the Format Word from the specified sector and from

the same line in which the LAI command is located. The sector location of the

"mask" is specified by the sector address of the LAI command. Positions 0

through 1 3 of A may be affected if the mask contains ones in positions 0 through

13 . The Format Word functions as follows: in those positions of the word where

there are ones, the corresponding bit positions of the Input Buffer register are

transferred to the corresponding positions of A. No other positions of A are

altered. After the transfer of information to A, the Input Buffer is cleared.

Example:

Before execution of LAI

After execution of LAI

Timing: LAI is a class 2 command.

(A)

+o 1 24000

+O 1241 04

(IB) (Mask)

1 04 +00003 77 --- --
000 +00003 7 7

Usage: This command is always used when information is input to the PB 250

by way of the Input Buffer. Another use occurs if the mask contains all ones

and is located in sector 376 of the appropriate line; if the Input Buffer has been

previously cleared, zeros will be inserted in all positions of A. Selective

insertion of zeros in A is possible by varying the mask, but the mask must be

in sector 376 of the appropriate line.

2-55

CAM Compare A and M (56}

The contents of A (the effective address} are compared with the contents of M

and, if the two are identical, the Overflow switch is turned on. If not, the Over-

flow switch will be turned off. In either case, the (A) and (M) are unalte re d and

command execution continues in the regular manner. All 22 positions of A and

M are compared. The description of the TOF command should be studied in

conjunction with the CAM command.

Timing: CAM is a class 2 command.

Usage: The following sequence effective! y provides a transfer on zero in A :

2-56

Location

a

a+ 1

a+2

a + 3

Contents

CAMa + 1, S

00000 .

TOFj.)

Remarks

Must be sequence tagged.

Location contains all zeros .

Transfer if (A) = 0, where

r>f-a + 3.

Program continues here i f

(A} :/= 0.

'

)

)

(

(

CIB Clear Input Buffer (57)

T he e ight bits of the Input Buffer a re set to zero. Exec ution will occ ur during

the sector a ddress time.

Timing: CIB is a class 2 command.

Usage : This c ommand is used when it is necessary to clear out old or un ­

wanted information from the Input Buffer before accepting new data. The use

of C IB as an in-l ine transfer is the same as for other clear commands. Altho tiph

LAI clears the Input Buffer each time it is executed, extraneous information

w i ll g et int o the buffer whe n the s e quence c ounter is reset to secto r C. of line 1

by the L key (I goes into the input buffer), or when single-stepping through a

program by means of the C key (C goes into the input buffer). The input buffe r

therefore, should be cleared p·rior to each use.

2-57

woe Write Output Character (6X)

This command causes a single character up to eight bits to be sent to a spe­

cified output unit. The character is incorporated into the command and occu­

pies bit positions 12 through 19 of the word; these bits are bits 12 through 14

of the op code field and bits 15 through 19 of the line number. The X in the

numbered code (6X) is thus determined by the output character.

The unit to which the character is sent is specified by the command line in

which the woe command is located. Line 05 specifies the typewriter; line 06

specifies the punch; and line 00 specifies certain devices such as magnetic tape

or a high-speed punch.

In order to provide the output device with a signal of sufficient duration to

initiate operation:, a delay number must be loaded into the e register before

the execution of woe. This number is decremented by one for each sector

time after the command until the number goes negative. When the (e) go nega­

tive, the woe command behaves as all other class l commands and terminates

when the sector specified, 13 , is reached.

The signal to the output device is therefore sustained from a+ 1, where a.is

the location of woe, until 13' the specified sector, appears for the first time

after the e register becomes negative. The (e) continue to be decremented,

after they become negative, until the command terminates.

If the e register is initially negative , the output signal will be sustained only

form a+ 1 to 13; however, (e) will still be decremented.

Timing: woe is a modified class l command and, as such, will cause the

next command to be taken from the sector specified if. the sequence tag is 1.

2-58

)

}

(

f r
I

(

woe Write Output Character (cont.) (6X)

Usage: All output , except that controlled by the BSO or PTU commands,

must be in the form of WOC commands. When forming WOC commands in

a program, the output character is offset from the right end of the word by

two bits, and the index tag is generally zero. The WOC configurations for

the Flexowriter codes are as follows:

Table 2-2

FLEXOWRITER CONFIGURATIONS FOR woe COMMANDS

Alphabetical Characters Numerical and Special Control
(available in both upper Characters

Characters and lower case) Upper L ower

A 6101 N 6005) 6100 0 UC 6132

B 6102 0 6006 -,, 6001 1 LC 6134

c 6123 p 6027 r 6002 2 Tab 6136

D 6104 Q 6030 = 6023 3 CIR 6116

E 6125 R 6011
....

-L 6004 4 Stop 60 13

F 6126 s 6122 J 6025 5 Delete 6137

G 6107 T 6103 _()_ 6026 6 Space 6020

H 6110 u 6124 & 6007 7

I 61 3 1 v 6105 * 6010 8

J 6021 w 6106 (6031 9

K 6022 x 6127 ? 6036 +
L 6003 y 6130 - 6037 -
M 6024 z 6111 : 6120 ;

" 6033 I

• 6133 •
. 6113

I 6121 $

2-59

PTU Pulse to Specified Unit (70)

This command produces a specified combination of signals on five output lines

and an "activate" signal on a sixth line. These signals are used to start and

stop equipment external to the computer. The line address of the PTU com­

mand specifies the combination of signals, while the sector address defines

the first sector following execution. The activate signal is presented in the

sectors between the command location and the sector address.

Timing: PTU is a class 1 command. The PTU signal .will be held "on" until

13 comes up, where 13 is the sector address of the PTU command.

Usage: The following sequence of commands may be useful when desiring

to hold a PTU "on" for_. 3N milliseconds:

Location Contents

a LDC a + l

a + l Count

a + 2 LSD a+ 4

a + 3 not used

a +4 TCN a+ 6

a +5 PTUa + 2

a + 6 Continue

Seq.

~

s}
s
}

s}

Remarks

Initialize counter

PTU is 11 down 11 36 µsec

each cycle

Execute

Such a sequence can be used to condition the setting of relays external to the

computer.

2-60

)

)

(

(

MCL Move Command Line Block (71)

The contents of the first word following the MCL command, and all subsequent

words on that line up to, but not including, the address eector number, are

copied into the corresponding sector positions of the effective line address.

Example: The command 010 7104; is located in 37006. When this command

is executed, the information in line 6, beginning with sector 371, and con­

tinuing through sector 007, is moved to the corre spending sectors of line 4.

The information which was originally in line 6 1 sectors 371 through 007, re -

mains as before, but now this information has been duplicated in line 4, sectors

371 through 007.

Timing: MCL is a class l command. In this class of commands, the sector

number of the command is used to designate the first sector number in which

execution of the command is discontinued. Thus, 12 microseconds are re­

quired for l!'eading this command, and 12 microseconds per sector transferred

are required for executing this command.

Usage: This command is a convenient way of moving entire lines of infor­

mation, one line at a time. By giving as the sector address a + l, a com­

plete line is moved from its original location to a new location. This method

provides a convenient means of initializing subroutines in which addresses

are to be modified. {Also see the MLX command, 26, in this connection.)

2-61

BSO Block Serial Output (72)

The BLOCK SERIAL OUTPUT command o perates in a manner which is ef ­

fectively the reverse of the BLOCK SERIAL INPUT (73) c ommand. That is,

the information in the data line is shifted into the External Register (ER)

whenever a one appears in the Format Block. Nothing is done with info r -

mation in those positions of the data line which correspond to zero bits in

the Format Word. F~:>r details of this command, reference is made to the

description of the BLOCK SERIAL INPUT (73) command. Computer memory

and registers are unaffected by this command.

Example: The command 01257204; is locate d in 01 002. All ones are stored

in 01102..

Before execution of BSO

Af~r execution of BSO

(0 1104)

+1215702

+1215702

(ER -- 22 bits)

+0000000

+1215702

Timing: BSO is a class l command. (See BSI description for further informa­

tion.)

Usage : BSO can be used t.o provide a fast output, with format control, to an

External Register.

2-62

/

)

)

(

(

BSI Block Serial Input (73)

This command loads information directly into memory at the rate of 0. 5 micro­

seconds per bit. Input information is presented to the computer in the form of

a s e ries of bits, normally fron1 some external s hift register (ER). The shifting

operation in the external register must be under computer clock control. A

Format Block d e termines when a bit will be accepted from the input device. This

Format Block is formed by the binary configuration of information contained in

that portion of the command line which begins with the sector following the BLOCK

SERIAL INPUT command and continues up to, but not including, the sector address

of the command. The information entering the computer will be loaded into the

line specified by the line address of the command; it will occupy those positions

of this line that correspond with one bits in the Format Block. Positions of this

data line that correspond with zero bits in the Format Block will be loaded with

zeros.

Example: The command 37757305; is located in 37502. Location 37602 contains

all ones. ER is the external register source from which information enters the

cornputer.

Befor e execution of BSI

After execution of BSI

(37605)

+ 0000000

+ 1234567

(ER - - 22 bits)

+ 1234567

+ 0000000

(T iming: BSI is a class l command. The next command to be executed, when

thi s command has a sequence tag of 1 (which it always should), will come from 13,

where 13 is the sector address. 13 will be the sector after the last sector of the

mask.

Usage: The BSI and BSO commands provide a very fast and convenient method

for communicating wi th an external register. In addi tion , forma tting control is

also provided . The most frequent use of these commands will come in compute r

s ystems work, where a high-speed buffer is used by the compute r to communicate

with equipment the computer is c onLrolling.

2-63

TOF Transfe r on Overfl ow (75)

An overflow results from generating a number too large for the capacity of the

arithmetic registers, specific ally from the ADD, SUBTRACT, DOUBLE PRE­

CISION ADD, and DOUBLE PRECISION SUBTRACT commands. When an over-

flow occurs, the Overflow switch is turned on. The command COMPARE A AND

M will also turn the Overflow switch on if (A) are equal to (M), but turn off the

Overflow switch if this is not true. After execution of the command SQUARE

ROOT, the Overflow switch is turned off.

The TRANSFER ON OVERFLOW command will cause the computer to take its

next command from the specified address (if the Overflow switch is on), and

then turn off the switch. If the Overflow switch is off, the next sequential

com.mand is executed and the switch remains off. Transfer may be to any

sector of any command line. A sequence tag of 'zero is required for conditional

~- A sequence tag of one provides an unconditional transfer and turns

the Overflow switch off.

Timing: TOF is a class 4 command. Therefore, in the event a transfer is not

executed, control proceeds to the next ~ommand and the total time required is

the 12 microseconds required to read this command. In the event control is

transferred, execution time is 12 microseconds per sector for the interval

between the TOF command and the command to which control is being trans -

£erred, plus 12 microseconds t o read the TOF command.

Usage: The TOF command should be studied in conjunction with the CAM

command. It is the programmer 1 s responsibility to see that the Overflow

switch is off before executing a set of commands which are tested by a TOF.

7.-64

'

)

c

(

TES Transfer on External Signal (77)

This command will cause the computer to take its next command from the spe<;i­

fied address upon sensing a signal from the source external to the compute r. The

nature of this signal is specified by the line address of the TES command. In

the standard PB 250, line addresses 25 through 37 are used to specify the

following input signals:

Lines 25-30:

Line 31:

Line 32:

Line 33:

Line 34:

Line 35:

Line 36:

Arbitrary input s ignals.

High-speed punch sync. signal

Magnetic tape gap signal

Magnetic tape reader clock input signal

Photo tape reader sprocket input signal

BREAKPOINT switch input signal.

Typewriter or paper tape reader "character
input complete" signal.

Line 37: "Typewriter not ready for an output character"
signal.

Line numbers 00 through 24 will provide additional input selectors which

may be obtained as options for additional arbitrary input signals. Since

the line number of the address is reserved for signal specification, the

effected transfer can be only to some sector in the same line as the TRANSFER

ON EXTERNAL SIGNAL command.

Example:

Location

02206

Op Code

TES

Address

02736
I

If a. transfer is effected, the computer will take the next command from location

02706. If no transfer is effected, the next command will be executed from 02306.

The sequence tag should always be zero for this command.

Timing: TES is a class 4 command. When a signal is not present, the command

direc tly following TES command is read and the total execution time is 12 micro-

seconds. If control is transferred, execution time is 12 microseconds,

2-65

TES Transfer on External Signal (cont.) (77)

plus 12 microseconds per sector for the interval between the TES command and the

command to which control is being transferred.

Usage : Use of this command is further described in Section IV, 11 Input/Output

Techniques." In general, the TES command acts as a 11 stoplight, 11 indicating

whether input/ output commands should be executed or delayed. If a TES is

executed which refers to an input line not physically present on the computer,

the transfer will take place.

2-66

)

_)

)

(

3. 1

3. 1. 1

III. STANDARDS AND PROGRAMMING TECHNIQUES

PROGRAMMING TECHNIQUES

Introduction

There are two basic methods of programming the PB 250; rela-

tively non-optimized, and relatively optimized. The detailed techniques and

optimization rules are given for most of the commands described in Section II.

Considered as a computer withou t any capabilities for optimizing

programs, the PB 250 still has the same command structure, and presents only

the problems of any serial, binary, single-address computer. In this frame of

reference, commands are generally executed from sequential sectors, at a rate

of approximately three milliseconds per operation.

Partial optimization, i.e., locating the operand for class 2 commands

in the next sector after the command, wherever possible, is relatively simple ,

For example, if a constant is needed, it is prestored in the sector after the

sector for which it is required. This basic optimization greatly inc:reases the

operation speed of the machine, but does not make the most efficient use of

memory. More complex optimization techniques will provide high operation

speed while at the same time using memory efficiently. The programming

time will be expected to increase as the complexity of techniques is increased.

Although the more complex programming methods result in more efficient

machine operation, a point of "diminishing returns" will be reached. After

this point, more programming time will not appreciably increase either com ­

puter operation speed or efficiency of memory usage.

3 . 1

-~.1.2 Optimization Cl'.'nsiderations

The traditiona.l 1 + l address serial com puter offers a. variety of possi­

bilities for optimizing a command. H the next command cannot be placed in

the optimum location (often the next section after the last operand required) ,

then the Rector one further down may be chosen, etc. On the FB 250, however ,

no such gradation exists. The next command is either in the optimum location

(generally immediately following the operand) or it is completely unoptimized

and simply follows the current command (which is in a) by appearing in a + 1.

Par·agraphs 3. 2 a.nd 3. 3 describe the use of the fa·st line and show an

exa.mple of the difference between an optimized and unoptimized PB 250 program.

It is sufficient to state tha.t the most effective way of using the fast line is as a

fast access location for data frequen•;ly required during a computation, rather

thar. as a means of storing a program to be executed . It is stressed that

addresses which refer to the fas t line are interpreted in exactly the same way

as the addresses which refer to any of the long lines .

An important rule to remember for optimization is that memory

accesses are always expensive in terms of program execution time. That is,

the programmer should a.lways think in te rms of manipula.ting information in

the A, B, or C regis ters, rather than ~1.oring and loading it back into thes e

registers. Among the operat1or:>.i;; for rna.11ipulating information within the

registers are the shifts (with or without affecting the C register), the register

interchanges, the Rotate command, and t:he Merge A into C command (which

can be used as a copy A into C if the C register i s first cleared).

3. 1. 3 Special Techniques

One useful technique is the method of placing the two 1 El complement

(negative} of the (C) into A . This occu:ri; under a. or..e-·e>ector· multiplica.tion,where

3-2

'

' /

)

)

c

(

(

the B register has previously been loaded with a word whose last two bits (po­

sitions (20 and 21) are 01 . All the variable length commands should be closely

scrutinized by the programmer for possible special uses.

Another special technique consits of setting an internal switch by the

use of RFU to turn the switch off, DIU to turn it on, and a TES 36)
8

to deter­

mine whether the switch is on or off . Transfer will occur when the switch is

on.

!£ additional externally operated controls are desired beyond the

single BREAKPOINT switch on the Flexowriter, these may be furnis hed by

using the surplus (unassigned) signal lines, together with external toggle

switches. (See description of TES command.)

Any optimized program uses much more space in the computer than its

unoptimized equivalent. However, these empty spaces do not have to be wasted .

It is possible that at least one other optimized program can be interlaced

with the original program in the available vacant sectors.

3. 2 USE OF LINE 00

Line 00, the "fast access" line , provides fast access storage for 16

words . Any word placed in any sector of line 00 is read 16 times during each

long line circulation time of 3072 microseconds. Thus, each word in line. 00

is 16 times more accessible than a word stored in the long lines .

A number used repeatedly in a. calculation can be stored in the fast

line for ready availability. (See the Recircula tion Chart in Appendix D .)

3-3

The following example illustrates the use of the fast line:

Sector Line

OZ3 06

OZ4

OZ5

OZ6

OZ7

030
I
I
I
I

042

043

Command

[

02450500;

Not Used

04251406;
I
I

I
I

I Constant

04451100;

Remarks

(F04~ (A)

(A)=(F04)+(042 06)

(A)~ (F04)

A word is picked up from channel F04, a constant is added to it, and

the sum is stored back into F04.

The programmer should be aware that optimization is possible only when

reference is made to the proper sector of a channel. That is, an LDA command

in 023, which is to pick up data from F04, must be sequence tagged and have a

sector address of 024, not 004, 044, etc. If the sequence of commands in the

previous example were written in the non-optimized modes, the execution time

would be 3. 072 milliseconds per command, or a total of 9. 216 milliseconds .

By optimization, the same computation is accomplished in ·o. 216 milliseconds.

Addresses referring to line 00 are not interpreted modulo 16)10, which

is why the appropriate sector of a particular channel must be referenced for

optimization purposes.

3-4

)

)

J

c

\.

The fast line is extensively used in connection with such high-speed

input/ output devices as magnetic tape and photoelectric tape readers.

3. 3 SAMPLE PROGRAMS

clear.

The sample problem may be stated as follows: Channel F03 is initially

X. (l~i~ 10, X;;;>O) are stored in line 03, sectors 003 through 014.
1

It is required to write a program which obtains the sum of these el ements.

and, in addition, replaces each X. by
1

X. +100
1

4
Overflow

10

will not occur. The program should halt with line address 33)
8

and with x.
1

stored in F03.

The optimized and unoptimized programs to perform the desired

function are presented on the following two pages. These two example

should be studied as a contrast in techniques. The unoptimized program re­

quires over 300 milliseconds t~ execute; the optimized program requires

only 30 milliseconds to execute.

3 . 4 PROGRAMMING CONVENTIONS

Certain conventions and techniques should be followed as a program is

being developed. These conventions ensure that:

a) Communications between programs is simplified.

b) Routines can be adapted to a wide variety of problems.

c) Neces·sary modifications can be implemented with the minimum

amount of program rewrite.

3-5

1

LpbJ Packard Bell Computer

PB 2SO PROGRAM LISTING
PROBLEM __ U_N_'O_P_T_IM_l_Z_E_D_S_A_MP_l_E_P_R_O~G_RAM _ _____ ___ ~ PAGE __._ _ _ OF _ _..__ __

PROGRAMMER R. L. HOOPER DATE -3..-Z -Jil
L OC ATION I HST II V C Tl ON SY M90 LIC ll[lllAllkl

OP COD£

00102 015 0502_;_ LDA i ; c. 11 J) d

002 fil5251L':i.· JAM
! ' ; ',,_ (,/; ,,,,, j (_ I/ ii- I/ /

"7

iv-'. ;! /l r· · l
003 014 3502; TAN -/II > ;I :, , · , · .J... I 1· ,A

004 000 4400_;_ CLC (.ie .+ i'. C

j/J l n J ' A /,.: ru 6
005. _QQfi__OOOQ_. MA~

·~

006 003 1400; ADD A Pi>

007 000 0100; IAC (

_QJ_Q_ _Q_l--6_ _l 402. _AOO_ n vJ
011 014 2210; SRT

012 003 1000; STC 5 .: ~<! c

013 00253702; TRU ~< ,., ... ,· .. -t { (.). A..' (. • ,._; v I; I~ -., '1 ';/

, ' .

_Qli 000 0033· _HLI_ 1_.1;1...r ·

015 -0000000

016 +0000144

3-6

J

)

c

(
\. .

PB 250 PROGRAM llSTING
PROBLE M _ _QP.timized Sample P r ogra m

PROG RA MM E R R H
LO C ATIO N

00002 ---
00102

I NST~UCTIO ll
IY•IOLIC
o,. coot

00150502; LDA
- ------4--····-

- 0000000
1-- - -·-----+- - - -· .

l'AG[......;}::...___ 0' 1
DATE l /~0/61

llUUlllCI

START

negative

------~-~155~.so ~----· - ~~~1- Xi-A; (A)- M 00202
t--·

00302

00402
1--

00502 - - ---------+---------·-----~-~

00602
t---··· ------ --11---- ----·-----!-------<

00702
1- - ·------- +---------- ---1------1

0 1002
.. ·--·-- -··-··-··· -+-·- - ---- - -·---+-----!

0 1102
I-· -------+---·--·-------+----!

0 1202
!---------·--+- ··- - -- - ·-----+-----'

0 1302 , _____ ----+---- -·--- - --- --+-----!

------ - -· -··-·--------4---~

017 3502; TAN
------+-------------11---~

01754400; CLC ___ ,,___ __________ ~-~
02 1 0033; HLT

-----'-"- --- -· - - - . ·-·---~----!

02002 02 150000; MAC
1-- ---------'-"----- -----~---1

02102 000 0000;
--- --·---------'----·--·-------~--__..

02.202 023S1400; ADD
I--·-- ·-----+-- ·- · - -----~-~

02302 000 0000;
I- . ---------··~---·- -------+-----l

02402 02550100 ; IAC
t--·- - . - ·--· - .•. -- -·--ii---- - ---- ---1-- --l

t- 02 502_ __._.QOO _0000;

02602 02751402; A DD
!--·- - - ------+------------+-- - -

02702 +0000 144 - ____ . ____ _._ _____ ,_ ---+-- --
03002 03352210; RST

1-------· ·-·· - --'-------- - ··---+- ----<

1---91 ..l 02 -·--+--- --- --------4--- --i

l- - Q3202 ----'-----·-- ----1----1
03JOZ 04351000; STC

1--·-- - . -+-------- ··---·- -·-· __ _,_ __ _,

I- - ·- · . --- - ·-+- - - - -· -·-·------+----!

1--- - . --· - -·- ---·---- --- -+-----
04402 00253702 i

- - .. -· --·. - <1---
T RU

not used

'V

not used

THRU

o--Hc)
STOP

Xi - (C)

no t used i _
1

xi + [x i
1

n ot u s ed

(A)~(C)

not used

x
1

+ 100
10

con s t ant

(X. + 100)/4
l

not used

not used
i
[xi---M
1

back to start of l oop

3-7

d) Ease of understanding will be provided.

As previously described, the group of sectors in line 00 which simul-

taneously contain the same information, are called a channel. Line 00 channels

are designated FOO through Fl 7. For · example, FOO refers to, collectively,

locations 00000, 02000, 04000, 06000, 10000, 12000, 14000, 16000, 20000,

22000, 24000, 26000, 30000, 34000, and 36000.

Lines are referred to by their octal address, i.e., 00 through 77)
8

;

sectors are also referred to in octal notation, i.e., 00 through 377)
8

.

Normally, the Index register, and FOO through Fl 7, are available to

any program or subroutine and must be preserved by the programmer before

entering the subroutine, if these registers contain information which is to

be used later in the main program.

Subroutines will generally be entered with the argument in the A register

and the exit in the C register. If the argument requires two words, these words

will be located in the A register and B register and the exit will be located in

the C register. Subroutine exits will normally be complete instructions (un­

conditional transfers).

3. 5 FLOW DIAGRAMMING CONVENTIONS

3-8

Flow diagrams are divided into two groups as follows:

a) M acro Flow Diagrams -- broad, descriptive flow diagrams, out­

lining a large , complex program. They are not oriented to the

program logic but serve to provide a general picture of how the

program operates, and also serve as a guide to a more detailed

flow diagram.

j

(

(

b) Micro Flow Diagrams - - machine oriented diagrams whose functions

is to define the program logic.

Table 3-1 lists the standard flow diagram symbols used in PB 250

programming. These symbols have been selected both for their convenience

and universal acceptance. With the exception of the start symbol, they

represent the flow chart symbols recommended for use by the Association for

Computing Machinery.

Referring to the table, small English letters are used to identify fixed

connectors while small Greek letters with numerical subscripts are used to

identify variable connectors. To avoid possible confusion, it is recommended

that the flow diagram page number be included with the connector to facili­

tate following the flow diagram.

To aid personnel unfamiliar with a particular program, important and

significant micro flow diagram boxes are cross-referenced to the program

listing by having the location (line and sector) of the first instruction executed

within the respective box (in the upper right hand corner as shown below). It

is emphasized that not all boxes of the flow diagram are keyed to the listing.

Cross-referencing of all boxes on the flow diagram requires the performance

of considerable updating by the programmer responsible for maintaining the

program. In many cases, because of the auxiliary nature of this cross -

referencing, the diagrams may not be kept up to date; therefore, the number

uf cross -reference boxes should be kept to a minimum.

SSS LL

3-9

3-10

Table 3-1

STANDARD FLOW DIAGRAM SYMBOLS

SYMBOL

Q

D

D
0
0

MEANING

Tape (Magnetic)

Operation, Function

Fixed Connector

Vari"able Connector

Comparison, Test, Decision

Closed Subroutine

Start, Stop

Assertion, Explanation

)

)

(

(

(

Care must be taken to make the flow diagram appear clear and un­

cluttered. This c an be avoided by minimizing the number of boxes per page.

The wording appearing in the flow diagram box should be as descriptive

as possible. Language contained in the micro flow diagram is more general

than that contained in the listing annotations.

3. 6 ANNOTATION CONVENTIONS

The following annotation symbols and conventions will be used:

a)

b))
c)

l

Replaces: e.g., (A) + (X).- (A),
l

contents of A plus contents of X .
l

replace contents of A.

Contents of: e.g., (A), contents of

A register; (Xi contents of location x 1;

(10002). contents of sector 100, line 02.

Modified Command: a command whic h

is modified by another commana within

the same subroutine. Commands within

a particular routine will never be

modified by commands, outside that

routine.

d) Brackets are used to identify all instructions included in a particular

annotation, as follows:

- >
e) The word "enter" is inserted to the left of the first instruction

operated in a particular routine. The exit o r exits from a routine

should be clearly annotated.

3 - 11

3. 7

f) Annotati ons shou l cl jnr.lucle t he]jstin g page number of all transfers

whos e loc ations are n o t i n::: luded on the s a m e page .

g) The binary point of a number is ide ntifi e d using Q notation, i.e.,

to represent an integer , N, on an annotated listing, the programmer

would write: N@ 21.

,,...
AVAILABLE-PB 250 PReYGRAMS

Tabl~sts,,Sb:::f the stand~utines wl'fi-~ h are avaj la·b1e for
/

/

the PJ? 250.

3 - 12

\

)

J

)

(

(_

IV. INPUT-OUTPUT TECHNIQUES

4 . 1 FLEXOWRITER

A Model FL Flexowriter is used as the input-output control unit for the

PB 25 0. The Flexowriter is also used to prepare, duplicate, and read tapes and

can be used on-line (under control of computer), or off-line (under corttrol of

operation). This section is primarily concerned with the on-line mode of

operation. General appearance and operations are similar to those of a stan-

dard electric typewriter. Such features as space lever, paper release lever,

platen knobs, margin release lever, ribbon position lever, margin and tab stops,

and type guide, are used in exactly the same manner as for a standard typewriter.

See Figures 4- 1, 4-2, and 4-3 for illustrations of the Flexowriter keyboard, code,

and characters , respectively.

4. l. 1 Input

The tape used with the Flexowriter has eight channels across its width .

The keys of the typewriter, however, will only cause 6-bit code s to be punched

on this tape. When punching tape under computer control, it is possibl e to out-

put 8 bit of information at a time. It is desirable to utilize all eight channels on

the tape wherever possible, since this reduces the number of frames of tape that

m11 st be input or output for a block of information.

When the READ TYPEWRITER KEYBOARD (RTK) command is given,

the light on the front of the Flexowriter will come on and it will be possible to

enter information, in the form of 6-bit codes, into the Input Buffer. Each time

a key on the typewriter is depressed, the light will go off and it will be necessary

to give another RTK command before another code can be entered.

4-1

4-2

r.;;;,;]
~

ru;;;;J
~

'''"' RIAO
INDICATING

LI GHT

ITOP CODC: ,,,.,
CODI OI LITI r110

@] ~ w ffi] ITJ [TI ill] [I] [QJ ~ LJ [;;]
[Kl ~ ~ [£] @] [8J QJ IBJ w ITJ CJ ~
m0w~[§](El[0CJDw 1-;J

~

\ SPACE UR I
\...._..___~ ______ ___.__ _ ___.,./

Figure 4-1. Flexowriter Keyboard

i+I A

"I<. 8
l. .,, c
Y-'t D

t. ·) E
4t

't 7
• · -tC·

7 I

-=l I

G

H

.2. '-. K

~ l
":J..-j M

..­
,? N

£ 0
';2. 7 p

'?Jc· o
I I R

c. ~ s
'i '., T

b -t u
"r ":i v

w
x
y

z

• • •• • •• •• • • •• • •
•
• •

•• • • • • • • • • • •

• • •• • • • •• • • • • • • • • •• • • • •• •• • • • • • • • • • • • • • • • • • •
ALPHABETICAL OiARACTERS

AVAILABLE IN BOTH
UPPER & LOWER CASE

..... ,_
c. .. c. ..

"t c 0

11'

~ v 2

,2. ?:> 3

-+ ('
::i..S J '
"'a~ .n 6

7 & 7
1 6 • 8

°7 I 9
:?e
;, 7

? +

Sc
:> ~ " 73
~- -~
{ I / s

Upper Co••

lower Cost

Tob

S' Corriooe Return

I :!':> Slop Code

77
"2..C

Delelo

Spoce

• • • • • • • • • • • • • • • • • •• • • • • • • • • •• •• • • •• • • • •• • • • • • • • NUMERICAl & SPECIAl
CHARACTERS

•• • • • • •• •• •• • • •• • • •• •• •• •• •
CONTROL OiARACTERS

Figure 4-2. Flexowriter Code

•ecocroH
A B C 0 [F" G H

JKLMNOPQRSTUVWXYZJ!J°c[Jn&.•()?"

J K l M N 0 P Q R S T U V W X Y Z 1 2 3 4 5 6 7 8 9 0 + - '

Figure 4-3. Flexowriter Characters

ALL

• u

<a • c
•

0 " -----
,
• • l

•

..
ij
.,,

I . ,
$. ,

' /

j

)

(

(

The READ PAPER TAPE command will cause the tape reader to read

one frame of tape and then advance the tape one frame. Eight bits of infor­

mation will be loaded into the buffer. If the tape was prepared in the PB 250

Flexowriter format, only six of these eight bits will be significant; however ,

if the tape was prepared by the computer, all eight bits may have significance.

When either the tape reader or the keyboard has loaded the buffer, a

signal is sent to the computer, which may be sensed by a TES command having

a line address of 36)
8

. This signal deactivates the Input Buffer so that it cannot

be loaded with further information. Any time after either an RTK or RPT

command is given, the presence of information in the buffer may be sensed by

giving a TES command with a line number of 36)
8

. If the buffer has been filled,

the transfer will occur.

Since the maximum speed of the Flexowriter for both the reader and the

keyboard is 10 characters/ second, and the PB 250 operates at microsecond

speeds, it is possible for a program to be ready for another input before the

Flexowriter has finis hed with the previous input; if a READ command were

given during this time period, the same character would be read again.

To keep the Flexowriter tape reader operating at its maximum rate,

and at the same time avoid reading the same character twice, a sequence of

commands can be used with either the RPT or RTK commands to provide an

automatic method of determining if character read-in is complete. This method

proceeds by giving a READ command and then testing line 36)
8

after only 3 ms.

If line 36)
8

is true , it can be assumed that a previous c haracter is being read,

since the Flexowriter cannot react in 3 ms. The sequence then cycles through

these two commands, READ and TES 36)
8

, until the TES fails, which will occur

only when the previous read-in is complete. Then, by clearing the buffer a.nd

waiting for line 36 to go true, the next READ will fill the Input Buffer with a

new character.

4 -3

The command sequence is illustrated in the following flow diagram

nth character to be read):

READ

1 2 t · ""'-l .'.:\ ~ """" '" ~,, p;i,:,··f". .. , LINE 36 YES
41~ .Mi~ ri;.atf.. . TRUE?

L-;~ t,J.iJ;/,.?" ;lJli if'v NO
,c.q.

F?favv~}~-~ . fl

·:r.JC'/ .ti.-dJ" ;,µ ~ CLEAR

~. C"fofotNJ);-~ BUFFER

~~--11-~~
NO ~{Cl~~<--~)~

~· <\4 • .c-;J~1.l;~ -tJ,'T\ LINE 36
~~:.,,.,.. . TRUE?

YES

READ

4-4

_)

)

(

(

(

\.

The command sequence for the read operation is as follows:

Location

Sector

Cl

Cl+ l

a+ 2

Cl+ 3

a+ 4

Cl + 5

op

Code

LAI (etc)

TRU

READ

READ

TES

TES

GIB

The function of the sequence is

Line Sector

Address Address

LL a + 2

00 p - 1

00 a + 3

36 a + 2

36 a + l

00 a + 3

as follows:

Seq

Tag

s
s

s

The sequenct- is entered at a + 2, where a READ command with

sector a + 3 and no sequence tag is executed. After 3 ms, line 36 i s tested
If II

and if the line is true, control returns to the READ command. If line 36 is not

"true" , control will pass through to the GIB command which clears the buffer

and returns contro: to the second TES 36. The program will wait in this TES­

CIB loop until line 36 goes "true", at which time the TES 36 will transfer to

the READ in a + 1. This READ will execute for the greater part of a memory

circulation and then transfer control to 13 , the next operation. Although j:>

is not a fixed location i t s hould be as far from a + l as possible, that i s a

or a - 1.

4-5

4. 1. 2 Output

There are two ways to obtain output on the Flexowriter: the typewriter,

which has a speed of 10 characters/second, and the punch, which operates up

to 15 characters/ second.

1'
TC? type out on the typewriter, the woe command must be located in

line 05. In order to give the Flexowriter time to respond to the output signal,

it is necessary to load the e register with a delay number before executing

the WOe command. This number will be decremented by one for each sector

of execution until it goes negative, at which time the woe acts like a standard

class 1 command. For the typewriter, a signal of 20 milliseconds duration is

always sufficient; however, for some Flexowriters, less time may suffice.

To obtain this delay, an octal number, + 0003232, should be loaded into the e

register before execution.

In order to avoid sending an output signal before the typewriter has

completed a previous character, a TES command .with a line number of 37)
8

should be used to test for "typewriter busy." Line 37 will become "true"

11-13 milliseconds after the woe command has started, and will remain

true for as long the typewriter is busy typing a character. The TES 37

command may be used to transfer back on itself, and in this way produce a

one-word loop until the typewriter is ready to receive the output character.

4-6

_)

)

(

I

\

Informati on output on punched paper tape i s faster than output using the type-

wr i ter and i s c ontrolled in almost the same way as the typewriter, except that

the WOC c ommand is located in line 06 instead of 05. In the case of the punch,

a 15-millisecond delay is always long enough to start the punching operation,

instead of the 20-millisecond delay required for the typewriter . There is, however,

no way to test for the punch being busy and the programmer must always allow

sufficient time between characters. One method of testing is to calculate the

amount of time used by the program in its operations between characters, and

then to make up the remainder of the time by using a larger delay number for

the woe command. It is permissible to use a woe for longer than 15 milli­

seconds, but no longer than approximately 60 milliseconds. In this way, it is

possible to output a tape without the necessity of using an additional counter.

For the 15-millisecond delay, an octal number of + 0002424 should be

loaded into the C register.

4- 7

)

)

(

c

(_

V. COMPUTER OPERATION AND PROGRAM CHECKOUT

5 . l COMPUTER OPERATION

The POWER button on the front panel of the computer is the only

control necessary to turn the machine ON or OFF. When the computer is

on, this butt on w ill be illuminated. The Flexowriter ON-OFF switch is

located on the Fl exowr it er.

When loading a program, the Octal Utility Program, which is pre ­

sented m Appendix C. should be used . This utility package simplifies con­

trol of the PB 250 during program operation and checkout.

The delay line memory of the PB 250 is erased when power is re­

moved and, upon turning the machine on again, the contents of memory will

not necessari.ly be all zeroes. but will be a random bit configuration. In

c:onsequence, parity halts may be generated by trying to load the A, B, or C

registers with sectors in which iniormation has not been previously stored.

5 .2 PROGRAM CHECKOUT

s. 2. 1 Dumping and Trac-in~

Onc.e a program has been coded, punc:hed and loaded into the computer,

the question still remains as to whether the program, as written, is correct.

ln the event that the program produces a print-out of results, these results can

be compared with known results obtained by hand computation of test cases. In

the event the program does not pP.rform as predicted, several courses are open

to the operator . A static dump (memory print -out) of the contents of appropriate

mP-mory locations may be made, or the program may be traced, which is a

dynamic process showing the conditions of Lhf: various registers as computation

proceeds .

5-1

5. 2. 2 Single -St ep Ope r a ti on

An easier approach than either dumping or tracing, i s to single- step the

computer through the program and, by comparing the results shown on the con-

sole lights with annotated coding sheets, find the flaw or flaws in the program.

Single-stepping may be accomplished by depressing the ENABLE switch and de­

pressing the C Key on the Flexowriter once for each program step to be executed.

Note: Each time any Flexowriter key is depressed, the Input Buffer is loaded with

this character, In addition, certain commands appear in the OPERATION lights

as other than that which is actually being executed; these co'mmands are as

follows:

ROT (03) I which shows as 01

LDP (07), which shows as 05

STD (13), which shows as 11

DPA (16), which shows as 14

DPS (17), which shows as 15

For class 1 commands, such as MUP, DIV, etc., the information

d isplayed in the Of>ERAND lights will not reflect the actual line number of the

command being e:xecuted.

Conditional tr.ansfer commands will not appear in the OPERATION lights

unless the condition necessary for transfer is present. For example, TBN (36)

will always be executed (i.e., either a transfer will take place if B is negative,

or the regular instruction sequence will continue if B is not negative) but will

not appear in the OPERATION lights unless the B register is negative when this

command is being executed.

5-2

\

·)

_)

·)

(_

(

Within the limitations previously described , the console ind icator

lights may be interpreted as follows:

OPERATION lights (6) ------ - Op code of command

OPERAND lights (5) ------- Line address of command

COMMAND lights (3) - --- --- Line location of command

Note that single-stepping through class l commands located in line 00

w~ll in general give incorrect results.

5.2.3 Use of The FILL Switch

During checkout, it may be necessary to reload the Octal Utility Pack­

age using the FILL switch. Programs other than the Octal Utility Package will

be destroyed when the FILL switch is turned on if the extreme left-hand light of

the OPERATION lights is illuminated. To turn this light off, single-step the

computer from the Flexowriter until the light goes out. The bootstrap leader

on the Octal Utility Package may then be loaded by the FILL switch without

disarranging the rest of memory.

5.3 BOOTSTRAP LOADING

5. 3. l Method

When the computer is first turned on , it is necessary to load a small

service routine, called a bootstrap, into the com puter by turning on the FILL

switch, which is located on the computer console. This bootstrap program, in

turn, is used to load the Octal Utility Package which is capable of loading tapes

in conventional 6-channel or 8-channel format. The bootstrap tape i s a special

binary information tape with the information a rranged as shown in the followi ng

diagram .

5-3

Stop
Channel

0

0
000000000000 oe••••oeo

0 0 0 0 0 0 0 0 0 0 0 0 0

0

Direction of
Tape Motion

Sprocket
Holes

Information
Channel

Bootstrap tapes load one information bit at a time, starting with the guard

bit of sector 377 of line 01. The next bit enters the guard bit of 377 and

pushes the bit previously loaded, down to position 21 of 377. This continues

through the parity bit of 377 and into the guard bit of 000 of line 01, as follows:

00101 00001

Codes on the bootstrap tape are as follows :

(Zero)

5-4

0

H

C/R

Stop Code

37701

Information Entry

0

1

Guard Bit

Stop Loading (After last C/R)
Always preceded by a zero

\

)

)

)

For each word that is loaded, a parity bit must have been computed and

punched. A stop code on the tape will cause the tape read in to cease, at

which time the operator may transfer to 00001 by first turning off the FILL

switch then depressing both the ENABLE and BREAKPOINT switches, strik­

ing the I key and raising the ENABLE switch.

5-5

• _/

BINARY -OCT AL NUMBERS

A. NUMERICAL SYSTEMS

Anv '"unhc 1· r:an be reprP.st~ nt P:d as the sum o f a group o t t e rm s, hav ing

t It I
J ~ I Q

t .t
3

h 1 ._\
2

1> t .1
1

b t a
0

h . whcrP b>l and0E...d,.;;.(b-I)

Th" 1nt t>f_!t'r "I->" I"' ;illerl th,. h;\St! 0r radi x. of the partH.: ular r111n1enc:al systf'm

("·hil·· · '.1" r··~,1·1 . i;t~ 111 .-; lht:> range 11f 11umer1c:al values 1n that s ystem .

(

l . Decimal Syst em

The numerical system of radix 10 is called the decimal system. In

t his case, numerical values are specified by combining powers of ten in the form
n 3 2 1 0

an (10) •.. + a
3

(10) + a
2

(10) + a
1

(10) + a
0

(10). The usual practice, when

writing decimal numbers, is to omit the powers of ten and wr ite out only the

values of "a". F or example, r.onsider the decimal number 1875. This number
3 2 1 0

actually rep r esents 1 (10) + 8 (10) + 7 (10) + 5 (10) but for the sake of con-·

venience is merely written as 1875, with the position of the particular decimal

digit indicating with whkh power of ten the digit is associated.

2. Binary System

The PB 250 ope rates in the binary, or radix 2, mode; therefore , to

understand the operation of the computer, an understanding of binary arithmetic

is f!Ssential.

the form a
n

Here , numeric.al values are specified by combining powers of 2 in
n 3 2 l 0

(2) •• . + a
3

(2) + a
2

(2) + a
1

(2) + a
0

(2). As before, the usual

practke when writing binary num bers is to omit the powers of 2 and write out

only the values of the "a" terms. For example, consider the binary number l 01 1.
3 2 1 0

Thu; number actually repn~sents 1 (a) + 0 (2) + 1 (2) + 1 (2) but fo r the sake of

cunvenience is m1;rcly written as 1011 , with the position of the particular binary

A-1

digit (or bit) indicating with which power of 2 the digit is associated. The

only digits available in binary notation are 0 and 1.

3. Octal System

In the octal system, numbers are specified by combining powers
. n 3 2 1 0

·of 8 m form an(8) ... + A
3

(8) + a
2

(8) + a
1
(8) + a

0
(8). For the decimal

and binary systems, the powers of the base (8 in this case) are omitted, and

only the values of the "a" terms are written. For example, the octal number
3 2 1 0

71 42 actually represents 7(8) + 1 (8) + 4 (8) + 2(8) . The digits available

in octal notation are 0, 1, 2, 3, 4, 5, 6, and 7.

B. RADIX CONVERSION

It is frequently necessary to convert numbers from one base , or

radix, to another during programming o perations.

versions are described in this section.

The more common con-

1. Decimal-to- Binary Integer Conversion

Assume it is desired to convert 25)
10

to binary form. Note:

The notation)
10

indicates radix 10, or decimal system;)
8

indicates radix

8, or octal system;)
2

indicates radix Z, or binary system.

A-2

a) From the definition of the general binary form, it can be

seen that the decimal integer can be broken down into a

summation of successive powers of 2.
4 3 2 1 0

25) 10= 1(2)+1(2)+0(2)+0(2)+1(2)

For larger decimal integers, make use of the Table of

Powers of 2, in Appendix B. Note: Adding the above

terms would yield 16 + 8 + 0 + 0 + 1 = 25.

' J

..J

)

b) The de cJmal integer can be divided repeatedly by 2; the

successive remainders, when read from the end, will be

the des i red value .

Remainders

2~
1 ~ least significant bit (a

0
)

2 12 0

2 6 0

1 2~
2 1 1 Cl most significant bit (a"'}

~

0

As before, 25)
10

= 11001)
2

This method follows from the fact that when converting an integer ,

N, to the form N = an 2n + . . a
1

2
1

+- a
0

2° . the remainder, when N is divided

(by 2 , is a
0

; dividing this first quotient by 2 yields a
1

as a remainder, etc.

(

2. Binary- to-Decimal Tnteger Conversion

Assume it is desired to convert 11110)
2

to decimal form:

a} The values of the powers of 2 can be summed up to give

the decimal equivalent.

b)

11110}2 = 1(2
4

) + 1(2
3
}+1(2

2
)+1(2

1
}+0 (2°}

= 16 + 8 + 1 + 2 + 0 = 30)10

Therefore, 11110)
2

= 30)
10

A second method is tu multiply the most significant bit

by 2, add the next most significant bit, multiply the

resulting sum by 2, add the next most significant bit, etc.

A-3

1 1

:J
3

2
6

1
7

2
14

1

15

2
30

1

0

30) 10 --- answer

As before, 11110)
2

= 30)
10

1

multiply

add

multiply

add

multiply

add

multiply

add

This method follows from factoring the general binary term

for a 5 - bit number to obtain the form

N = a
0

+ 2 (a
1

+ l (a
2

+ 2(a
3

+ 2(a
4

))))

Evaluating N , starting at the inner parentheses , gives the

required decimal integer.

3. Decimal-to-Octal Integer Conversion

To convert a decimal integer to oct~l form, divide the number

repeatedly by 8; the successive remainders, when read from the end, will be

the desired octal value.

A-4

_)

')

(

(

(

For example, convert 75)
10

to octal.

8 75

s LL
8 lL.

8 l2_
Therefore, 7 5)

1 0
= l 1 3)

8

3----- least significant digit

+---- most signif1c ant digit

This method follows from the fact that when an integer, N, is
n l 0

converted to the form N = an 8 + ... a
1

8 + a
0

8 , the remainder, when N is

divided by 8, is a
0

; div1ding this first quotient by 8 y1elds a
1

as a remainder, etc.

Note: It is usually convenient for the programmer to refer to

the Octal-Decimal Integer Conversion Table, Appendix B, when conve rting

integers from decimal to octal and vic.e-versa. The use of this table is self-evident.

4. Octal-to-Decimal Integer Conversion

To convert an octal integer to decimal form, multiply the •nont

significant digit of the number by 8, add the next most significant digit, multiply

the resulting sum by 8, add the next most significant digit, etc. For example,

convert 155)
0

to decimal.

3
I}

5

5 •·~

109)
10

--- Answer

Therefore, I 5 5)
8

= 10 9)
1 0

multiply

add

mult1ply

add

A -S

This method follows from factoring the general octal term (for a

3-digit number) to obtain

N = a 0 + + 8 (al + 8 (a2))

Evaluating N, starting at the inner parentheses gives the required

decimal integer.

5. Binary and Octal Number Relationships

3
Since 2 = 8, it can be seen that three binary digits are represented

by one octal digit. This applies for fractional quantities as well as for integers.

The binary-to-octal conversion is performed by grouping the binary

number into 3-bit units, starting from the binary point, and interpreting each

unit individually. For instance, 101011010)
2

becomes

and 0. 110111)
2

becomes . 110_____,,
6
~

7

or 532)
8

or .67)
8

Conversely, it can be seen that any octal number can be converted

to binary by writing the binary equivalent of each octal digit. For example,

.J

612)8)

becomes ~~~
110 001 010 or 110001010)

2

A-6

(

c

(

l

6. Decimal Fractions to Octal or Binary

Keeping in mind that the general term for a fraction, ba:se b, is

it is evident that multiplying by the base, b, will produce the a_ 1 term in the

units position (immediately to the left of the radix point). Successive multi ­

plication by the base will successively isolate the a _
2

term, a _
3

term, etc .

By this process, a decimal fraction, D, can be converted to the
-1 -2 -3

octalformD =a _
1

a +a_
2

a +a_
3

a +--- - , ortothebinaryform

Note: A fraction in one base will not usually transform to a finite

fraction in another base.

For example, to transform 0. 725)
10

into a binary fraction, multi­

ply the fraction successively by 2, isolating the units position after each multi­

plication, until the desired number of bits are generated .

. 725
2

a_ 1 term ---~...-~]. 45 0

2

og. 900

2

iJ. 800

2

i]. 600

Therefore. 725)
10

= . 1011 ---)
2

To convert. 082)
10

to octo. l, multiply the fraction successively by

8, isolating the units position after each multiplication, until the desired number

of octal digits are generated .
A-7

.082.
8

term -----.. ~· 656
8

jj: 2.48
8

Jl.984

(, 7
Therefore . 082.) = • 051 7---)

10 8

The Octal-Decimal Fraction Conversion Table, Appendix B,

is useful for decimal-to- octal or octal-to-decimal fractional conversions.

7. Binary or Octal Fractions to Decimal

Remembering the general notation for a fraction, it is evident that

a binary fraction can be converted to decimal by adding up the negative powers

of 2., referring to the Table of Powers of 2, Appendix B.

For example, convert . 101)
2

to decimal

This fraction equals 1 (2.-l) + 0 (2.-2.) + 1 (2.- 3)

Therefore, .101)2 = .62.5)10

It is also possible to convert the binary fraction to octal and look

up the corresponding decimal value in the Octal-Decimal Fraction Conversion

Table.

In the above example, . 101)
2

= . 5)
8

From the table, . 05)
8

= • 07812.5)
10

Multiplying both sides by 8: . 5)
8

= . 07812.5 x 8)
10

= . 62.5)
10

C. BINARY COMPLEMENTARY ARITHMETIC

Certain computer operations, such as subtraction or the manipulation

A-8

\

J

)

c

of negative numbers, are performed in the computer by using the complement of

the particular number. An understanding of complementary arithmetic is

therefore important as an aid in understanding computer operation.

The 1 's complement of a binary number is defined as the number

that must be added to the original number to give a result consisting of all l's.

The l' s complement is obtained by simply inverting, i.e., by changing all l's

to O's and changing all O's to l 's in the given binary number. For example, the

l' s complement of 1010110 would 0101001.

The 2' s (or "true") complement of a binary number is formed by

fir st finding the l's complement of the number and then adding 1 to the least

s i gnificant b.t position.

For Pxample. thf' l's complement of 1010110 would i)e the I 's

complement (0 10 1001) plus l, or 0101010

Some examples are given on the following page m decimal,

binary and complemented binary forms. The complemented binary form has

a leading 0 to indicate positive numoers, which r)ecomes a leading 1 when

complemented for negative numoers. A negative answe r appears in comple ­

mented form with a leading 1.

A-9

a)

b)

c)

A- 10

Decimal

+12

-04

+08

+10

- 10

+00

+12

- 14

-02

Binary

+1100

-0100

-1000

+1010

-1010

+0000

+1100

-11 10

-00 10

,
2 ,,_ Complemented

I

I '°'~-
0 Io Io

J o I 01 -----
I I I "

Binary

0 1100

l 1100

0 1000

0 1010

l 0110

0 0000

0 1 100

l 0010

1 1110

'

_)

)

Taltle of llowers of 2

2" n 2-..

l 0 1.0
2 1 0.5
4 2 0,25

./8 3 0.125

16 4 0.062 5

(/ 32 5 0.031 25
64 6 0.015 &25

... 128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 o:ooo 976 562 5
2 048 11 0.000 488 281 25

4 096 12 o. 000 244 140 625
.,,.- 8 192 13 0.000 122 070 312 5

16 384 14 o.ooo 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0. 000 015 258 789 062 5

(t..- 131 072 17 0. 000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625

..., 524 288 19 0. 000 001 907 348 632 812 5

1 048 576 20 Q.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 Z3 0.000 000 119 209 289 550 781 25

16 777 216 24 0. 000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

(268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
...- 2 147 483 648 31 0,000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 582 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 158 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

B-1

0000 0000
to to

0777 O.Sll
10 ••• ,, 10 • • ; 11

Oc•al Decimal
10000. 4096
20000 . 9192
30000 . 12289
40000. 1638•
50000 • 20480
60000. 2"576
70000. 28672

1000 I osn ,. ..
1777 101)

(Octet) 10.clMel)

0

0000 0000
0010 0008
0020 OOIG
0030 0024
0040 0032
0050 0040
0060 0048
0070 00~8

01 00 0064
0110 0072
0120 0080
0130 OOH
0140 0098
0150 0104
0180 0112
0170 0120

0200 0128
0210 (1136
0220 0144
0230 OIS2
0240 0160
0250 Ole&
0280 0178
0270 0184

0300 0192
0310 0200
0320 0208
0330 0216
0340 0224
0350 0232
0360 0240
0310 0248

0

1000 0512
1010 0520
1020 0528
1030 0536
1040 0544
1050 0552
1060 0560
1070 0568

1100 0576
1110 0584
1120 0592
1130 0600
1140 0608
1150 0618
1\60 0624
1170 0832

1200 0640
1210 0648
1220 0856
1230 0664
U40 0672
1250 0680
1260 0681
1270 08111

1300 0704
1310 0712
1320 0720
1330 0728
1340 0736
1350 0744
1380 0752
1370 0760

I

0001
0009
001 7
0025
0033
0041
0049
0057

0065
0073
0081
0089
0097
0105
0113
011.)

0129
0137
0145
0153
0161
0169
0171
0185

0193
0201
0209
0217
0225
0233
0241
02411

I

0513
0521
0529
0537
0545
0553
0561
0569

0577
0585
0593
0601
06011
0617
0625
0833

0641
0649
0857
0665
0673
0611
01811
06117

0705
0711
0721
0729
0737
0745
0753
0781

2 3 '
0002 ooo;i 0001
0010 0011 0012
0018 0019 0020
0026 0027 0028
0034 0035 0036
0042 0043 0044
0050 00~ 1 0052
00~8 0059 0060

006fi 0067 006~
OOH 0075 0076
0082 0083 0084
0090 0091 0092
0098 0099 0100
0106 0107 0108
0114 0115 0116
0122 0123 0124

0130 0131 0132
0138 0139 0140
Ol46 0147 0148
0154 0155 0156
OIU 0163 0164
0170 0171 0172
0176 0179 0180
0186 0187 0188

0194 01115 0196
0202 0203 0204
0210 0211 0212
0218 02111 0220
0226 0227 0228
0234 0235 0236
0242 0243 0244
0250 0251 0252

2 3 4

0514 OSIS 0516
0522 0523 0524
0530 0531 0532
0538 0539 0540
0546 0547 0548
0554 0555 0556
0562 0563 0564
0570 0571 0572

0578 05711 0580
0586 0587 0588
05114 0595 0596
0602 0603 0604
0610 061 I 0612
0818 06'19 0620
0628 0627 0628
0634 0635 0631

0642 0843 0644
0650 0651 0652
0858 0659 0660
0668 0867 0868
0874 on5 0876
0882 0883 0884
06110 06111 06112
0698 06119 0700

0708 0707 0708
0714 0715 0716
0722 0723 0724
0730 0731 0732
0738 0739 0740
0748 0747 0748
0754 0755 0751
0762 0783 0764

Octal-Decimal Integer Conversion Table

s 6 7 0 I 2 3 ~ s e ' '
0005 0001 0007 0400 0258 0257 07.58 0259 0260 026 1 0262 0263
0013 0014 0015 041 0 0264 0265 0286 0267 0266 0269 ono 0271
0021 0022 0023 0420 0272 0273 0274 0275 0276 0271 0278 0279
0029 0030 0031 0430 0280 0281 0282 0283 0284 0285 0286 0287
0037 0038 0039 OH O (1288 0289 0290 0291 0292 0293 029A 0295
0045 000 (1047 0450 0296 0297 0298 02~9 0300 0301 0302 0303
0053 005~ 0055 0460 0, 04 0305 0306 0307 0306 0309 0310 OJI I
0061 0062 0063 0410 031 2 0313 0314 0315 0318 0311 0318 0319

0069 0070 0071 0500 0320 0321 0322 0323 0324 0325 0326 0327
0077 001i 0079 0510 0328 0319 0330 0331 0332 0333 0334 0335
0085 OOH oon 0520 0338 0337 0338 0339 0340 0341 0342 0343
0093 00114 0095 0530 0344 0345 0346 0347 0348 0349 0350 0351
0101 0102 0103 0540 0352 0353 0354 0355 0356 0357 0358 0359
0109 0110 0111 OSSO 0360 0361 0362 0363 0384 0365 0368 03&7
0117 0118 0119 0560 0368 0369 0370 0371 0372 0373 0374 0375
0125 012e 0127 0570 0376 0377 0378 0379 0380 0381 0362 0383

0133 0134 0135 0800 0384 0385 0388 0387 0388 0389 0390 0391
0141 0142 0143 0610 0392 0393 0394 0395 0396 0397 0398 0399
0149 0150 0151 0820 0400 0401 0402 0403 0404 0405 0406 0407
0157 0158 OU9 0630 0408 0409 0410 0411 0412 0413 0414 0415
0185 0166 0187 0640 0416 0417 0418 0419 0420 0421 0422 0423
0173 0174 0175 0850 0424 0425 0428 0427 0428 0429 0430 0431
0101 0182 0183 0860 0432 0433 0434 0435 0436 0437 0438 0439
0189 0190 0191 0870 0440 0441 0442 0443 0444 0445 0446 0447

0197 0198 0199 0700 0448 0449 0450 0451 0452 0453 0454 0455
0205 0208 0207 0710 0456 0457 0458 0459 0460 0461 0462 0463
0213 0214 0215 0720 0464 0485 0486 0467 0468 0469 0470 0471
0221 0222 0223 0730 0472 0473 0474 0475 0478 0477 0478 0479
0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0466 0487
0237 0236 0239 0750 040 0489 04110 0491 04112 0493 0494 0495
0245 0246 0247 0780 0496 0497 0498 04119 0500 OSOi 0502 0503
0253 0254 0255 0770 0504 0505 0508 0507 0508 0509 0510 0511

s 6 7 0 I 2 3 4 s 6 7 J
0517 051 8 0519 1400 0768 07611 0770 0771 0772 0773 0774 0775
0525 0528 0521
0533 0531 0535

1410 0776 0771 0778 0779 0780 0781 0782 0783
1420 0784 0185 0788 0787 078a 0789 0790 0791

0541 (1542 0543
0549 0550 0551

1430 0192 0793 0794 07115 0796 0797 0198 07119
1440 0800 0801 0802 0803 0804 0805 0806 0807

0557 0558 05511
0585 0566 0567
0573 0574 0575

1450 0808 080~ 0810 0811 0812 0813 0814 0815
1480 0816 0817 0818 0819 0820 0821 0822 0823
1470 0824 0825 0826 0827 0828 08211 0830 0831

0581 0582 0583
Oi811 0590 0591

1500 0832 0833 0834 0835 0838 0837 0838 0839
1510 0840 0841 0842 0843 0844 0845 0846 0847

05117 0598 051111 1520 0848 0849 0850 0851 0852 0853 0854 0855
0605 0608 0607 1530 0856 0857 0858 0859 0860 0861 0882 0883
0813 0814 0615 1540 0864 0865 0866 0867 0888 0889 0870 0871
0621 0622 0623 1550 0872 0873 0874 0875 0878 0877 0878 0879
06211 0630 0631
0637 0138 06311

H60 0880 0881 0882 0883 0884 oees 0888 0887
1570 0888 08811 0890 08111 08112 0893 0811, 0895)

0645 0848 0647 1600 0898 08117 0898 081111 0900 0901 ·0902 01103
0653 0654 0855 1610 0904 01105 01108 0907 0908 0909 01110 0911
0681 0662 0663 1620 0912 0913 01114 0915 0918 0917 0918 0919
0669 0670 0671
0677 0678 0679

1830 0920 01121 01122 0923 0924 0925 01128 0927
1840 01121 0929 0930 0931 0932 0933 0934 0935

0685 06N 0687 USO 01138 01137 0938 0939 0940 01141 0942 0943
06113 0694 06115 1860 0944 0945 0948 0947 01148 011411 0950 0951
0101 0'102 0703 1870 0952 0953 0954 0955 0956 0957 0958 01159

07011 0710 0711 1700 0980 01161 01182 0963 0964 01185 0988 Oii&?
0717 0718 0719 1710 0968 0989 0970 0971 0972 0973 0974 0975
0725 0728 0727 1720 0978 01177 0978 0979 01180 01181 0982 09U
0733 0734 0735 1730 0984 0985 0986 01187 01188 09811 0990 0991
0741 0742 OH3 1740 09112 09113 011114 01195 09116 0997 0998 09119
0749 0750 0751 1750 1000 1001 1002 1003 100(1005 1008 1007
0757 0?58 07511 1760 1008 1009 1010 1011 1012 1013 IOH 1015
0165 0766 0767 1770 1016 1017 1018 10111 1020 1021 1022 1023

Octal-Decimal Integer Conversion Table

0 I 2 3 4 5 6 1 0 I

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289
2020 1040 1041 1042 1043 1044 1045 W46 1047 2420 1298 1297
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305
2040 1056 1057 1058 1059 1000 1061 1062 1063 2440 1312 1313
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 1336 1337

2100 1088 IU89 1090 1091 1092 1093 1094 1095 2500 1344 1345
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353
2120 1104 1105 1106 1107 1108 1109 1110 111 1 2520 1360 1361
2130 1112 1113 111 4 1115 1116 1117 1118 1119 2530 1368 1369

c 2140 1120 1121 1122 1123 1124 11 25 1126 1127
2150 1128 1129 1130 1131 1132 1133 1134 1135
2160 1138 1137 1138 1139 1140 1141 1142 1143

2540 1376 1377
2550 1384 1385
2560 1392 1393

2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401

2200 11 52 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 141 6 1417
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425
2231) 1176 1177 1178 1179 1180 1181 1182 1183 2630 1432 1433
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441
2250 119? 1193 1194 1195 1198 1197 1198 1199 2650 IH8 1449
2280 1200 1201 1202 1203 1204 1205 1206 1207 2660 1456 1457
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465

2300 1216 IZ17 1218 1219 1220 1221 1222 1223 2700 1472 1473
231 0 1224 1225 1225 1227 1228 1229 1230 1231 2110 1480 1481
2320 1232 1233 1234 1235 1235 1237 1238 1239 2720 1488 1489
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497
2340 120 1249 1250 1251 1252 1253 1254 1255 2740 1504 1505
2350 1258 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513
2380 1284 1285 12116 1287 1288 1209 1270 1271 2780 1520 1521

(2370 1272 1273 1274 1275 1275 1277 1278 1279 2170 1528 1529

0 I 2 3 4 5 6 7 0 I

3000 1536 1537 1538 1539 1540 154 I 1542 1543 3400 1792 1793
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801
3020 1552 1553 155i 1555 1556 1557 1558 1559 3420 1808 1809
3030 1560 1561 1562 1563 ISM 1565 1566 1567 3430 1816 1817
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825
3050 1575 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833
3050 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841
3070 1592 1503 I 501 ! SOS 1506 1597 JSQB 1599 3'70 1848 1849

3100 1600 1001 1602 IG03 1604 1605 1606 1607
31 10 1608 1609 1610 1611 1612 1613 1614 1615

3500 1856 1657
3510 1864 1865

3120 1616 1617 1618 1619 1620 1621 1622 1623
3130 1624 1625 1626 1627 1628 1629 1630 1631

3520 1872 1873
3530 1880 1801

(
3140 16J2 1633 Ul34 1635 1636 1637 1638 1639
3150 1640 1641 I 642 1643 1644 1645 1646 164i
3160 1648 1649 1650 1651 1652 1653 1654 1655

3540 1888 1889
3550 1896 1897
3560 1904 1905

3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 J928 1929
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 1936 1937
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 19GI
3260 1712 1713 171 4 1715 1716 1717 1718 1719 3660 1968 1969
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 199Z 1993
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 2000 2001
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009
3340 1760 1761 1762 1763 1764 1765 1766 1767 3140 2016 2017
3350 1768 1769 1770 1771 1772 1773 17H 1775 3750 2024 2025
3360 1776 1777 1778 1779 1780 1181 1782 1783 3'1 60 2032 2033
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041

2 3 4

1282 1283 1284
1290 129 1 1292
1298 1299 1300
1306 1307 1308
13H 1315 1318
1322 1323 1324
1330 1331 1332
1338 1339 1340

1346 1347 1348
1354 1355 1356
1362 1363 1364
1370 1371 1372
1378 1379 1380
1388 1387 1388
1394 1395 1398
1402 1403 1404

1410 1411 1412
1418 1419 1420
1426 14 27 1428
1434 1435 1438
1442 1443 1444
1450 1451 1452
1458 1459 1460
1488 1487 1488

1474 IH5 1478
1482 1483 1484
1490 1491 1492
1498 1499 1500
1508 1507 1508
1514 1515 1518
1522 1523 1524
1530 1531 1532

2 3 4

1794 1795 1798
1802 1803 1804
1810 181 1 1812
1818 1819 1820
1826 1827 1828
1834 1835 1836
1842 1843 1844
lRSO 1851 1852

1858 1859 1860
18G6 1867 1868
1874 1875 1878
1882 1883 1884
1890 189 1 1892
1898 1899 1900
1906 1907 1908
1914 191 5 1916

1922 1923 1924
1930 1931 1932
1938 1939 1940
1946 1947 1948
1954 1955 1956
1962 1963 19i4
1970 1971 1972
1978 1979 1980

1986 1987 1988
1994 1995 1996
2002 2003 2004
2010 2011 2012
2018 2019 2020
2026 2027 2028
2034 2035 2036
2042 2043 2044

5 6

1285 1286
1293 1294
1301 1302
1309 1310
1317 1318
1325 1326
1333 1334
1341 1342

1349 1350
1357 1358
1365 1388
1373 1374
1381 1382
1389 1390
1397 1398
1405 1405

1413 1414
1421 1422
1429 1430
1437 1438
1445 1448
14$3 14$4
1481 1482
1489 1470

1477 1478
1485 1488
1493 1494
1501 1502
1509 1510
1517 1518
1525 1526
1533 1S34

5 6

1797 1798
1805 1806
1813 1814
1821 1822
1829 1830
1837 1838
1845 I 84G
1853 1854

1861 1862
1869 1870
1877 1878
1885 1886
1893 1894
1901 1902
1909 1910
1917 1918

1925 1926
1933 1934
1941 1942
1949 1950
1957 1958
1965 1966
1973 1974
1981 1982

1989 1990
1997 1998
2005 2006
2013 201 4
2021 2022
2029 2030
2037 2038
2045 2046

7

1287
1295
1303
131 1
1319
1327
1335
1343

1351
1359
1357
1375
1383
1391
1399
H07

1415
1423
1431
1439
1447
14$$
1483
1471

1470
148'7
1495
1503
1511
1519
1527
1535

7

1799
1807
1615
1823
1831
1839
1847
1855

1~3
1871
1879
1887
1895
1903
191 1
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

2000
to

2777
(Octal)

1024
lo

1.53$
(Otcimel)

Octol Decimol
10000- A096
20000 - 8192
30000- 12288
AOOOO- 1638"
50000 - 20.il80
60000 - 24576
70000 - 28672

3000 U l '
ta I<>

3777 le141
IOctel) (0.cimall

B-3

•OOO '048
•o to

•777 25~9

IO<loll IDN;moll

Oc101 Decimal
10000· .C096
20000. 8192
30000 • 12288
.coooo . 1638.C
50000 • 20480
60000. 2•576
70000. 28672

5000 2560
to to

5771 3071
(O<tol) (Ott;mol)

B-4

" I

4000 2048 2049
4010 20~6 20:,7
4020 2064 206'.>
4030 2012 2073
4040 2080 2061
40~0 2088 2089
4060 2096 2097
4070 2104 210'.>

4100 2112 2113
4110 2120 2121
4120 2128 2129
4130 2136 2137
4140 2144 2145
4150 2152 2153
4160 2160 2161
4170 2168 2169

4200 2176 2177
mo! 2184 2185
4220 2192 2193
4230 2200 2201
4240 2208 2209
4250 2216 2217
4260 2224 2225
4270 2232 2233

4300 2240 2241
4310 2248 2249
4320 2256 2257
4330 2264 2265
4340 2272 2273
4350 2280 2281
4360 2288 2289
4370 2296 2297

0 I

500() 2560 2561
5010 2568 2569
5020 2576 2577
5030 2584 2585
5040 2592 2593
5050 2600 2601
S060 2608 2600
5070 2616 2617

5100 2624 2625
5110 2632 2633
5120 2640 2641
5130 2648 2649
5140 2656 2657
5150 2664 2665
5160 2672 2673
5170 2680 2681

S200 2&88 2689
5210 2696 2697
5220 2704 2705
5230 2712 2713
5241) 2720 2721
S2~0 . 2728 272~

5260 12736 2737
5270 2744 2745

5300 2752 2753
5310 12760 2761
5320 2768 2769
5330 2776 2777
5340 2784 2785
5350 2792 2793
5360 2800 2801
S370 2808 2809

2 3 4 5

20'.>0 20:;1 2052 20:,3
20:>R 2059 2060 2061
20f>G 2067 20611 2069
2014 2075 2076 2077
2082 2083 2084 2085
2090 2091 2092 2093
2098 2099 2100 210)
2106 2107 2108 2109

2114 2115 2116 2117
2122 2123 2124 2125
2130 2131 2132 2133
2138 2139 2140 2141
2146 2147 2148 2149
2154 2155 2156 2157
2162 2163 2164 2165
2170 2171 2112 2173

2178 2179 2180 2161
2186 2187 2188 2189
2194 2195 2196 219~

2202 2203 2204 2205
2ZIO 'ZZI I 2212 2213
2218 2219 . 2220 2221
2226 2227 2228 2229
2234 2235 2236 2237

2242 2243 2244 2245
2250 2251 2252 2253
2258 2259 2260 2261
2266 2267 2268 2269
2274 2275 2276 2277
2282 2283 2284 2285
2290 2291 2292 2293
2298 2299 2300 2301

2 3 4 5

2562 2563 2564 2565
2570 2571 2572 2573
2578 2579 2580 2581
2586 2587 2588 2~8!1
2594 2595 2596 2597
2602 2603 2504 2605
2610 2611 2612 2613
2618 2619 2620 .U21

262.; 2627 2G28 2629
2634 2635 263G 2637
2642 2643 2644 2645
2650 2651 2652 2653
2656 2659 2660 2661
2666 2667 2668 2669
2674 2675 2676 2677
2682 2683 2684 2685

2690 2691 2692 2693
2698 2699 2700 2701
2706 2707 2708 2709
2714 2715 2716 2717
2722 2723 2724 2725
2~30 2731 2712 2733
2738 2739 2740 2741
2746 2747 2748 2749

2754 2755 2756 2757
2762 2763 2764 2765
2770 2771 2772 2773
2778 2779 2760 2781
2786 2787 2788 2789
2794 2795 2796 2797
2802 2803 2804 2805
2810 2811 2812 2813

Octal-Decimal Integer Conversion Table

G 7 0 1 2 3 4 5 6 7

2054 2055 4400 2301 2305 2306 2307 2308 2309 2310 2311
2062 2063 4410 2'.112 2313 2314 231 5 2316 2317 2318 2319
2070 2071 4420 ?.320 2321 Z322 2323 2324 2325 2326 2327
2078 2079 -1430 2328 ?.329 2330 2331 2332 2333 2334 2335
2086 2087 4440 233& 2337 2338 2339 2340 234 1 2342 2343
2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
2l02 2103 H60 2352 2353 2354 2355 2356 2357 2358 2359
2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367

2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375
2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383
2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
2142 21n 4530 2392 2393 2394 2395 2396 2397 2398 2399
2150 2151 4540 2400 2401 2402 2403 2404 2405 2406 2407
2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423
2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

2162 2183 4600 24 32 2433 2434 24 35 2436 2437 2438 2439
2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 241j3
2214 2215 46<10 2464 2465 2466 2167 2466 2469 2470 2471
2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
2230 22JI 4660 2480 2481 2162 2483 2184 2485 2486 2487
2238 2239 4670 2488 2469 2490 2491 2492 2493 2494 2495

2246 2247 4700 2.496 2497 2498 2499 2500 2501 2502 2503
2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
2262 22EJ 4720 2512 2513 2514 2515 2516 2517 2518 2519
2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535
2266 2267 4750 2536 2537 2536 2539 2540 2541 2542 2543
2294 2295
2302 2303;

4760 25H 2515 2546 2547 2546 2549 2550 2551
4770 I 2~52 2553 2554 2555 2556 2557 2558 2559

I

6 7 0 I 2 3 4 5 6 7

2566 2567 5400 2616 2817 2818 2819 2820 28?.I 2822 282~
2574 2575 5410 2624 2625 2826 2827 2828 2829 2830 2831
~582 2583 5420 2832 2833 2834 2835 2836 2837 2838 283P
2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 :!847
2598 25~9 5440 2848 2849 2850 2851 2852 2853 2854 285S
2606 2607 5450 2656 2657 2858 2659 2660 2661 2662 2863
2614 2615 5460 2864 2865 2866 2867 2868 2869 2810 2e11
2622 2623 5470 2872 2873 2874 2875 2876 2677 2878 28711

2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
2638 2639 5510 2888 2869 2890 2891 2892 2693 2894 2895
2646 2647 5520 2896 2897 2898 21199 2900 2901 2902 2903
2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
2662 2663
2670 2671
2678 2679

5540 2912 2913 2914 2915 2916 2917 2918 2919
5550 2920 2921 2922 2923 2924 2925 2926 2927
5560 2928 2929 2930 2931 2932 2933 2934 2935)

2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943

2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951
2702 2703
2710 2711
2718 2719
2726 2727
2734 2735
2742 2743

5610 2952 2953 2954 2955 2956 2957 2958 2959

562012960 2961 2962 2963 2964 2965 2966 2967
5630 2968 ::9G9 2970 2971 2972 2973 2974 2975
5640 29i6 2977 2na 2\179 2980 2981 2982 2983
5650 2984 29R5 2966 ns; 2980 2989 2990 2991
5660 2992 2993 29~4 '.!995 2996 2997 2998 2999

2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 30-07

2758 2759 ';)700 3008 3009 3010 3011 3012 3013 3014 3015
2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
2782 2783 5730 3032 3033 3031 303S 3036 3037 3038 3039
2790 2791 5740 3040 3041 3042 JOO 3044 3045 3046 3047
2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
2806 2807
2814 2815

5760 3056 3057 3058 3059 3060 3061 3062 3063
5770 3064 3065 3066 3067 3068 3069 3070 3071 ' J

Octal-Decimal Integer Conversion Tobie

0 I i 3 1 5 c 7 0

6000 3072 307l 3074 3075 3076 3077 3078 3079 6400 3328
8010 3080 3081 3082 3083 3084 3085 3086 3087 6410 33311
45020 3088 3089 3090 3091 3092 3093 3094 3095 6420 3344
6030 3096 3097 3098 3099 3100 3101 3102 3103 6430 3352
6040 3104 3105 3106 3107 3108 3109 3110 311 I 6440 33110
11050 3112 3113 311 4 3115 3116 3117 3118 3119 6450 3368
6060 3120 3121 3122 3123 3124 3125 3126 3127 6460 3376
6070 3128 3129 3130 3131 3132 3133 3134 3135 6470 3384

6100 3136 3137 3138 3139 3140 3141 3142 3143 6500 3392
6110 3144 31 45 3146 3147 3148 3149 3150 3151 6510 3400
6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 3408
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 3418
6110 316A 3169 3170 3171 3172 3173 3174 3175 6540 3424
6150 3176 3171 3178 3179 3180 3181 3182 3183 6550 3432
6160 3184 3185 3186 318'1 3188 3189 3190 3191 6560 3440
61'10 3192 3193 3194 3195 3196 319'1 3198 3199 6570 3448

J6200 J200 3201 noi 3203 3204 3205 3206 320'1
f11210 3208 3209 3210 321 1 3212 3213 3214 3215

6600 3456
6610 3464

6220 3216 321'1 3218 3219 3220 3221 3222 3223 6620 3472
6230 3224 3225 3226 3227 3228 3229 3230 3231 6830 3480
1;240 3232 3233 3231 3235 3236 3237 3238 3239 6640 J488
0250 3240 3211 3242 3243 3244 3245 3246 3247 6650 3496
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504
6270 3256 3257 3258 3259 3260 3261 3262 3263 61170 3512

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520
6310 3272 3273 3274 3275 3276 3277 32'18 3279 6710 3528
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 35l6
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 3544
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 3560

(6360 3312 3313 3314 3315 3316 3317 3318 3319
~70 3320 3321 3322 3323 3324 3325 3326 3327

6760 3568
6770 3576

0 I 2 3 4 5 6 7 0

7000 3584 3585 3586 3587 3588 3589 3590 3591

7010 3592 3593 3594 3595 3596 3597 3598 3599

7020 3600 3601 3602 3603 3604 3605 3606 3607

7030 3608 3609 3810 3611 3612 3613 3614 3615

7040 3616 3817 3618 3619 3620 3621 3622 3623

'10~i0 3624 3625 3626 3627 3628 3629 3630 3631

70GO 3632 3633 3634 3635 3636 3637 J638 3639

7070 3640 3641 3642 3643 3644 3645 3646 3647

7400 3840
1410 3848
7420 3858
1430 3864
1440 3872
1450 3880
H60 J888
14'10 3896

(

7100 3648 3649 3650 3651 3652 3653 3654 3655
71 10 3656 3657 3658 3659 3660 3661 3662 3663
7120 3664 3665 3666 3667 3668 3669 3670 3671

7130 3672 3673 3674 3675 3676 3677 3678 3679
7140 3G80 3681 3682 3683 3684 3685 3686 3687

7150 3688 3689 3690 3691 3692 3693 3694 3695

7160 3696 3697 3696 3699 3700 3701 3702 3703

7170 3704 3705 3706 3707 3'108 3709 3710 3711

1500 3904
1510 3912
1520 3920
1530 3928
1540 3936
1550 3944
1560 3952
1570 3960

7200 371~ 3713 3714 3715 3716 3717 3?18 3719
7210 3720 3721 3722 3723 3724 3725 3726 3727
7220 3728 3729 3730 3731 3732 3733 3734 3735
7230 3736 3737 3738 3739 3740 3741 3742 3743

7240 3744 3745 3746 3747 3748 3749 3750 3751

7250 3752 3753 3754 3755 3756 3757 3758 3759
1260 3760 3761 3762 3763 3764 3765 3766 3767

7270 3768 3769 3770 3771 3772 3773 3774 3775

1600 3968
1610 3976
1620 3964
1630 3992
1640 4000
7650 4008
7660 4016
7670 402•

7300 3776 3777 3778 3179 3780 3781 3782 3783
7310 3784 3785 3786 3787 3788 3789 3790 3791
7320 3792 3793 37!14 3795 3796 3797 3798 3799
7330 ~800 3801 3002 3803 3804 3805 3806 3807
7340 3008 3009 3810 3811 3812 3813 3814 3815
735;) 3816 3817 3818 3819 3820 3821 3822 3823
7360 3824 3825 3826 3827 3828 3829 3830 3831
7370 3832 3833 3834 3835 3036 3837 3838 3839

1700 4032
1710 40-10
1720 4048
1730 4056
7740 4064
1750 4072
1760 4080
1770 4088

I 2 3 4

3329 3330 3331 3332
3337 3338 3339 3340
3345 3348 3347 3348
3353 33H 3355 3356
3361 3382 3363 3364
3369 3370 3371 33l2
3377 3378 3l79 3380
3385 3388 3367 3388

3393 3394 3395 3396
3401 3402 3403 3404
3409 3410 3411 3412
3417 3418 3419 3420
3425 3426 3427 342R
3433 3434 3435 34~6

3441 3442 3443 3444
3449 3450 3451 3452

3457 3458 3459 3460
3465 3466 3467 3468
3173 3474 3475 3476
34AI 3482 3483 3484
3489 3190 J19l 3492
3497 3498 3499 3500
3505 3506 3507 3508
3513 3514 3515 35 16

3521 3522 3523 3524
3529 3530 3531 3532
3537 3538 3539 3540
3545 3546 3547 3548
3553 3554 355!> 35511
3561 3562 3563 3564
3569 3570 3571 3572
3~77 3578 3579 3580

I 2 3 4

3841 3842 3843 3844
3849 3050 3851 3852
3857 3858 3859 3860
38115 3868 3861 3888
3873 3874 3675 3876
388 1 3882 3863 3884
3889 3890 3691 3892
3897 3898 3899 3900

3905 3906 3907 3908
3913 3914 3915 3916
3921 3922 3923 3924
3929 3930 3931 3932
3937 3938 3939 3940
3945 3948 3947 3948
3953 3954 3955 3956
3961 39G2 3963 3964

3969 3970 3971 3972
3977 3978 3979 3980
3985 3986 3987 3988
3993 3994 3995 3996
4001 4002 4003 4004
4009 4010 4011 4012
4017 4018 4019 4020
4025 4026 4027 ~028

4033 4034 4035 4036
4041 1042 1043 4044
4049 4050 4051 4052
40)"/ 1058 40~9 1060
4065 40GG 4067 4068
4073 40H 4075 4078
4081 4082 4083 4084
4089 4090 4091 4092

s 8

3333 3334
3341 3342
3349 3350
3357 3358
3365 3366
3373 3374
3381 3382
3389 3390

3397 3398
3405 3406
3413 3414
3421 3422
3429 3430
3437 3436
3445 3446
3453 3454

3481 3462
3469 3470
3477 3478
3185 3486
3193 3191
3501 3502
3509 3510
3517 3518

3525 3526
3533 3534
3541 3542
3549 3550
3557 3558
3565 3566
3573 3574
358 1 3582

5 6

3845 311 46
3853 3854
3861 3862
3869 3870
3877 3878
3885 3886
3893 3894
3901 3902

3909 3910
3917 3918
3925 3926
3933 3934
3941 3942
3949 3950
3957 3958
3965 3966

3973 3974
398r 3982
3989 3990
3997 3998
4005 4006
4013 4014
4021 4022
4029 4030

4037 4038
4045 4046
~053 4054
1061 4062
4069 4070
4077 4078
4085 4086
4093 4094

l

3335
3313
3351
3359
3367
3375
3383
339 1

3399
3407
3415
3423
3431
3439
3447
3455

3463
3471
3479
3487
J49S
3503
351 1
3519

3527
3535
3543
3551
3559
3567
3575
3583

7

3847
3855
3863
3871
3879
3887
3805
3903

3911
3919
3927
3935
3943
3951
3959
3967

3975
3983
3991
3999
4007
4015
4023
4031

4039
4047
4055
1063
4071
4079
4067
4095

6000 3072
to to

6771 3'83
(Octoll (Ot<;.,.oll

Octal Decimal
10000 . 4096
20000. 8192
30000. 12288
AOOOO - 1638.4
50000 . 20480
60000. 7-4576
70000 . 28672

7000 3SC4
io to

7771 , 095
(Octol) (Oo<imol)

B-5

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL D t::C. OCT/IL Dl::C, OCT 11 L Of:C .

. ooo . 000000 . 100 • 125000 .200 . 250000 .300 .375000

. 001 • 001953 . IOI . 126953 . 201 • 251953 .301 .37C953
. 002 • 003906 • 102 . 12890(; .202 . 25390r. .302 .378:101;
. 003 . o658S9 . 103 • 130859 . 203 • 255859 .303 .380859
.004 • 001812 • 104 • 13?812 . 204 • 257812 .3P4 .382812
• 005 .&ones • • 105' • 134765 .205 . 25071\S ,305 . 3941r.5
.006 • 011718 . 106 • 136718 , 20fi . 2r.1118 .3or. .-:l8G718
. 001 • 013671 • 107 • 138671 .207 , 2G3G71 ,307 • 388G71
. 010 • 015625 .110 . 140625 . 210 • 265625 .3 10 . 390G25
.Oil • 017578 • 111 • 142578 . 211 • 267578 .3 11 .3!12578
. 012 • Olt531 .112 • 144531 • 212 • 269531 .312 .394531
.013 • 021484 .113 .146414 • 213 • 211484 .313 .3964&4
,014 .023431 • I 14 .14807 .214 • 273437 .314 .398437
.OlS .0253&0 .115 • 150390 .215 • 275390 .315 • 400390
.016 .027343 .116 .152343 .216 • 277343 . 316 .402343
.017 • 029296 .117 . 154296 .217 • 279296 • 3 17 • 404296

.020 .031250 .120 • 156250 • 220 . 281250 • :120 .40G250
• 021 .033203 . 121 • 158203 . 221 • 283203 .321 .408203
.ou .035 156 .122 • 160156 .222 .285156 .322 • 410156
.023 • 037109 . 123 • 162109 .223 • 287109 .aZJ .412109
.024 .039062 • 124 • 164062 .224 • 289062 . 324 . 4140G2
• 02.S • 041015 • 125 • 166015 . 225 • 291015 .325 . 4)£015
.026 .042968 • 126 . 167968 . 226 .292968 . 326 .417968
.021 • 044921 • 127 .169921 • %27 .294921 .327 .419921

.030 ,046875 • 130 • 171875 . 230 .296875 • 330 • 421875
.031 .048828 . 131 • 173828 . 2JI • 298828 .331 . 423828
.032 .050781 • 132 • 175781 .232 . 300781 .332 .426781
.033 • 05:t734 • 13.3 • n1134 . 233 • 302734 ,333 .427734
.034 • 064687 • 134 . 179687 • 234 .304687 .334 .429687
.035 .056640 • 135 • 181640 .235 ,306640 .335 . 431640

. 03& .058593 • 136 • 183593 .236 ,308593 • 336 . 433593

.037 .060546 • 137 . 185546 . 237 .310546 .337 .435546 _)

.040 • 062.500 • 140 . 187500 . 240 .312500 .340 .437500

.041 • 064453 • 141 . 189453 .241 • 314453 .341 .439453

.042 ,066406 • 142 . 191406 • 242 • 316406 • 342 .441406

.043 .068359 . 143 .193359 • 243 .318359 • 343 .443359

.044 .070312 • 144 . 195312 . 244 ,320312 • 344 .445312

.045 • 072265 • 145 .197265 • 245 • 322265 .345 .447265

.046 • 074218 • 146 .199218 .246 • 324218 .346 • 449218

.047 .076171 • 147 .201171 . 247 • 326171 .347 • 451171

.oso • 078125 • ISO .203125 . 250 • 328125 .350 .453125
• 051 • 080078 • 151 • 205078 .251 ,330078 • 351 • 455078

.062 • 0&2031 .152 • 207031 . 252 • 332031 .352 .457031

.053 .083984 • 153 , 208984 .2S3 .333984 .353 • 458984

.054 .085937 .154 • 210937 .254 • 335937 • 354 ,460937

.055 .081890 • 155 • 212890 .%5$ • 337890 ,355 .462890

,056 • 089843 • 156 . 214843 ,256 • 339843 .356 • 464843

.057 • 091796 • 157 ,216796 • 257 .341796 .357 .466796

.060 .093750 • 160 .218750 .250 .343750 .360 .468750

• 061 .095703 • 161 • 220703 .261 . 345703 .361 . 470703
)

.062 .097656 • 162 • 222656 .262 .347656 .362 .472656

, 063 • 099609 .163 • 224609 .263 ,349609 .363 .474609

.064 .101562 • 164 • 228562 • 264 . 351562 .364 .476562

.065 .103515 .165 .228515 .265 .353515 .3G5 .478515

.066 .105468 , 166 .230468 . 266 • 355468 .366 .~0468

.067 • 107421 . 167 . 232421 • 267 • 357421 .367 .482421

.070 .109375 .170 .234375 • 270 .359375 .370 .484375

.on • 111328 . 171 • 236328 .271 .361328 .371 . 486328

.072 • 113281 .172 . 238281 . 272 .363281 .372 • 4 882l!l

.073 • 115234 . 173 • 240234 • 273 .365234 .373 . 490234

. 074 • 117187 . 174 .242187 • 274 .367187 .374 . 492187

. 075 • 119140 .175 • 244140 . 275 .369140 .375 • 494140
, 076 .121093 • 116 • 246093 .%76 ,371093 .376 .i96093

.011 .123046 • 177 . 2-18046 • 277 • 373046 .377 .498046

B-6

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

,000000 ,000000 ,000100 ,000244 .000200 . 000488 .000300 . 000732
,000001 • 000003 ,000101 .000247 • 000201 . 000492 ,000301 ,000738
,000002 .000001 ,000102 .000251 ,000202 . 000495 .000302 .000140
.000003 • 000011 . 000103 .000255 . 000203 .000499 .000303 ,000143

.000004 ,000015 .000104 .000259 • 000204 .000503 ,000304 • 000147
,000005 . 000019 ,000105 .000263 . 000205 .000507 .000305 .000751

• 000008 • 000022 .000106 ,000287 ,000206 • 000511 . 000306 • 000755
• 000001 .000028 .000107 . 000210 • 000207 ,000514 ,000307 ,000759

. 000010 ,000030 ,000110 ,000274 .000210 .000518 .000310 ,000782

• 000011 ,000034 • 000111 .000278 • 000211 • 000522 • 000311 ,000766

• 000012 ,000038 • 000112 .000282 • 000212 .000526 ,000312 ,000770

• 000013 • 000041 .000113 ,000286 • 000213 .000530 • 000313 . 000774
,000014 ,000045 • 000114 .000289 . 000214 .000534 ,000314 .000778

• 000015 ,000049 .OOOll5 ,000293 ,000215 .000537 .000315 ,000782

,000018 • 000053 • 000116 ,000297 .000218 .000541 . 000318 ,000785

.000017 ,000057 • 000117 • 000301 • 000217 • 000545 . 000317 .000789

. 000020 • 000061 ,000120 .000305 ,000220 • 000549 • 000320 .000793

• 000021 • 000084 .000121 .000308 .000221 .000553 • 000321 ,000797

• 000022 • 000068 .000122 .000312 .000222 . 000556 ,000322 ,000801

.000023 ,000072 • 000123 ,000318 .000223 . 000560 . 000323 • 000805

• 000024 .000078 .000124 .000320 • 000224 .000564 . 000324 ,000808

.000025 ,000080 ,000125 .000324 .000225 .000568 • 000325 ,000812

.000026 .000083 .000126 ,000328 ,000226 .000572 , 000326 ,000816

• 000027 .000087 ,000127 .000331 . 000227 .000576 . 000327 ,000820

.000030 • 000091 .000130 . 000335 . 000230 . 000579 .000330 .000823

• 000031 . 000095 ,000131 .000339 • 000231 .000583 . 000331 ,000827

,000032 ,000099 .000132 . 000343 ,000232 . 000587 , 000332 ,000831

.000033 , 000102 ,000133 ,000347 .000233 • 000591 • 000333 ,000835

• 000034 • 000106 • 000134 ,000050 ,000234 .000595 ,000334 .000839

(
,0(10035 • 000110 • 000135 ,000354 • 000235 .000598 • 000335 ,000843

,000036 • 000114 ,000136 ,000368 ,000236 • 000602 . 000336 .000846

. 000037 • 000118 ,000137 ,000362 . 000237 ,000606 .000337 ,000850

,000040 ,000122 • 000140 .000366 • 000240 .000610 • 000340 ,000854

,000041 ,000125 • 000141 ,000370 • 000241 .000614 • 000341 .000858

• 000042 ,000129 ,000142 ,000373 . 000242 .000617 ,000342 ,000862

• 000043 . 000133 • 0001-l3 ,000377 . 000243 .000621 .000343 .000865

• 000044 • 000137 ,000144 ,000381 • 000214 .000625 ,00034-l ,000869

• 000045 • 000141 ,000145 , 000385 • 000245 ,000629 .000345 ,000673

• 000046 • 000144 . 000146 ,000389 ,000246 .000633 ,000346 .000877

• 000047 • 000148 • 000147 .000392 ,000247 ,000637 ,000347 . 000881

. 000050 .000152 • 000150 ,000396 • 000250 .000640 .000350 .000685
,000051 ,000156 .000151 . 000400 .000251 .0006H ,000351 .000888

• 000052 .000160 . 000152 ,000404 .000252 • 000648 ,000352 .000692

, Olt0053 • 000164 • 000153 .000408 ,000253 .000652 ,000353 .000896

,000054 ,000167 .000154 .000411 ,000254 .000656 ,000354 ,000900

,000055 . 000171 .000155 ,000415 ,000255 .000659 ,000355 .000904

,000056 ,000175 .000156 . 000419 . 000256 ,000663 ,000356 . 000907

.000057 .000\79 .000157 ,000423 • 000257 . 000661 ,000357 • 000911

,000060 .000183 ,000160 .000427 • 000260 • 000671 ,000360 . 000915

,000061 .000186 ,000161 .000431 • 000261 . 000675 .000361 .000919

,000062 • 000190 .000162 .000434 .000262 ,000679 .000362 ,000923

.000063 ,000194 ,000163 ,000438 .000263 . 000682 .000363 .000926

. 000064 ,000198 • 000164 .000442 .000264 .000686 ,000364 ,000930

.000065 .000202 ,000165 ,000446 . 000265 .000690 ,000365 . 000934

, 000066 . 000205 . 000166 .000450 . 000266 .000694 .000366 .000938

,000067 • 000209 .000167 .000453 .000267 .000698 .000361 . 000942

• 000070 • 000213 .0001 70 .000457 .000270 .000701 ,000370 ,000946

. 000011 . 000217 .C00171 ,000461 ,000271 . 000705 .000371 .000949

. 000072 .000221 . 000172 .000465 . 000272 . 000709 . 000372 .000953

.000073 .000225 .000173 . 000469 .000273 . 000713 .000373 . 000957

.000074 .000228 • 000174 . 000473 . 000274 . 000717 .0003H • 000%1

.000075 . 000232 . 000175 . 000176 . 000275 . 00072() ,000375 .000965

.000076 .000236 .000176 . 000480 . 000276 . 000724 .000376 .000968

.000011 .OOOHO . 000177 . 000464 . 000277 . 000726 . 000377 . 000972

-· ----·

B-7

Octal-Decimal Fraction Conversion Table

OCTAL OEC. OCTAL OtC. OCTAL DtC. OCTAi. OEC .

• 000(00 . 00097& • 000500 • 001220 .oooeoo • 001464 • 000700 • 001708
• 000401 • 000980 • 000501 • 001224 ,000601 • 001468 .000701 • 001712
,00040% • 000984 . 000502 .001228 .000602 • 001472 ,000702 • 001716
• 000403 . 000988 • 000503 • 001232 .000603 • 001476 • 000703 ' 001720
.000404 ,000991 • 000504 • 00123& ,000604 • 001480 .000704 .001724
.000405 ,000!195 • 000505 .001239 .oooeo5 • 001483 .000705 .001728
.000406 , OOOltt . 000506 • 001243 .000606 • 001481 • 000706 ,001731
• 000401 • 001003 • 000501 .OOIUT .000&07 ,001491 • 000707 .001735
.000410 ,001007 • 000510 • 001251 .000610 • 001495 • 000110 .001739
• 000411 ,001010 • 000511 • 001255 .000611 • 001499 • 000111 • 001143
• 00041% • 001014 • oqo512 • 001258 ,000612 • 001502 ,000712 • 001141
• 000413 ,001018 • 000513 .00126% ,000913 • 001506 .000113 • 001750
• 000414 ,0010ll • 000514 • 001286 .000614 • 001510 .000114 .001154
• 000415 .001028 .000515 • 001210 .000615 .001514 • 000715 .001758
.000418 • 001029 .000516 .001274 .000&18 • 001518 • 000116 ,001162

)
• 000417 • 001033 .000511 • OOliTT .000617 • 001521 • 000711 • 001766
.000420 • 001031 • 000520 .001281 ,000620 • 001525 • 000120 .001770
.000421 • 001041 • 000521 • 001285 ,000621 • 001529 .000121 ,OOITT3
.000422 • 001045 • 000522 .001289 .000622 • 001533 .000722 • 001717
.000423 • 001049 .000523 ·.001293 ,000623 • 001531 • 000723 ,001781
• OOQ.t24 • 001052 • 000524 • 001296 .000624 • 001541 .000124 .001785
.000425 • 001056 • 000525 .001300 .000625 .001$44 .000725 ,001Tti9
• 000426 .001060 .000525 .001304 .000626 • 001548 .000726 • 001792
• 000421 • 001064 • 000527 • 001308 . 000627 .001552 .000121 ,001196
• 000'30 • 001068 • 000530 • 001312 ,000630 • 001556 ,000730 .001800
.000431 .001011 .000531 • 001318 • 000631 • 001560 ,000731 . 001804
.000'3% • 001075 • 000532 • 0,01319 • 000632 .• 001564 .000732 . 001808
• 0904:13 • 001079 • 000533 • 001323 ,000633 • 001567 .OO~T33 • 001811
.000434 • 001083 • 000534 • 001321 . 000634 .OOISTI • 000734 • 001815
.000435 .001on • 000535 .001331 . 000635 . 001575 .000735 • 001819
.000436 • 001091 • 000539 ,001335 • 000636 . 001579 ,000736 • 001823
.000437 • 001094 • 000537 • 001338 • 000637 .001583 .000737 • 001827

• 000440 • 001098 .000540 • 00134% • 000640 ,001586 • 000740 • 001831
_)

.000441 • 00110% • 000541 .001348 . 000641 .001590 . • 000141 • 001834
. 000442 • 001106 • 000542 .001350 • 000642 • 001594 .000142 ,001838
.000443 .001110 • 000543 .001354 . 000643 .001598 .000143 ,001842
.000444 • 001113 • 000544 .001358 '000644 .001602 .000744 ,001846
.000445 • 001117 ,000545 • 001361 ,000645 .001605 • 000145 • 001850
• 000446 • 001121 • 000546 .001365 • 000646 • 001609 .000146 .001853
• 000447 • 001125 .000547 .001369 ,000641 .001613 • 000141 • 001857
.000(50 • 001129 .000550 • 001373 • 000650 • 001617 .000750 .001861
• 0004~1 • 001132 .0006£1 . 00131' • 0006$1 • 001621 • 000161 • 001865
.00045% .001136 .000552 .001380 • 000652 • 00182$.000752 .001869
• 000453 .001140 • 000553 .001384 • 000653 • 001628 .000753 • 001873
.000464 • 001144 .000554 .001388 • 000654 .001632 .000754 • 001876
.000455 • 001148 .000555 .001392 • 000655 • 001636 .000755 • 001880
.000456 • 001152 .000556 .001396 • 000656 • 001640 • 000756 • 001884
• 000457 .001155 .000557 .001399 • 000657 .001644 .000757 .001888

.000460 .001159 .000560 • 001403 • 000060 • 001647 • 000760 .001892

.000461 • 001193 .000561 . 001407 .000661 .001651 .000761 .001895)
• 000462 • 001167 ,000562 • 001411 • 000662 • 001655 .00076% • 001899
.000463 . 001111 .000563 • 00141$,000663 .001659 .000763 .001903
• 000464 • 001174 .000564 .001419 • 0006&4 .001663 .000764 • 001907
.000465 .001178 .000565 .001422 • 000665 • 001667 .OOOT6S .001911
.000466 • 001182 .000566 • 001426 ,000666 • 001670 ,000766 • 001914
,000467 • 001186 • 000567 • 001430 • 000667 ,001674 .000767 .001918

.000410 • 001190 ,000570 • 001434 • 000670 • 001678 • 000710 .001922

.000471 • 001194 .000$71 • 001438 • 000671 • 001682 , OCI0711 ,001926
.000472 • 001197 .000572 • 001441 .000672 .OOIG8G .000112 .001930
.000473 ,001201 • 000573 .001445 • 000673 . 001689 .000713 ,001934
• 000474 • 001205 • 000574 • 001449 • 000674 .001693 .000114 • 001937
• 000415 • 001209 • 000575 .001453 • 000675 .001697 ,000775 ,001941
.000476 . 001213 • 000576 ,001457 ,00067G ,0011.01 • 00077G • 001945
,000477 • 001216 • 000577 .001461 • OUOij~7 . 001705 • 000771 • 00190

B-8

