

CASSETTE INTERFACE ASSEMBLY AND USING MANUAL

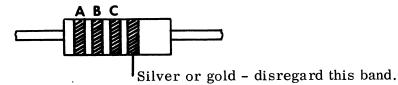
PS-87 PARTS LIST

Prior to beginning assembly, check the supplied parts against the following parts list.

QUANTITY

1	8:500 Transformer
1	.1 mfd. mylar capacitor
1	16 pin IC socket
1	8 pin IC socket
1	1702A (POTSHOT) PROM
1	4042 Integrated Circuit
1	24 pin IC socket
1	8 pin header
1	TIL-209 LED
1	27K resistor (red-violet-orange)
1	3.3K resistor (orange-orange-red)
1	12 inch length of 4 conductor ribbon cable
2 .	1K resistor (brown-black-red)
2	10K resistor (brown-black-orange)
2	100K resistor (brown-black-yellow)
2	2N5139 transistors
2	miniature phone plug

If you should find any parts missing, damaged, or otherwise unusable, contact PAIA Electronics, Tech. Services for replacement. Along with your request, we must have the packer number from the parts bag, and the order number under which this kit was ordered.


The parts that constitute the CS-87 cassette interface option fit entirely on the 8700 Computer/Controller board.

CS-87 ASSEMBLY

Install the following components on a PROPERLY OPERATING 8700 Computer Controller circuit board. DO NOT proceed with the assembly of this option until the 8700 has been fully verified as being operational. Remove all power and peripheral connectors from the 8700 before proceeding with the CS-87 installation.

All of the DOs and DON'Ts that were mentioned in the assembly manual for the 8700 apply here also.

Begin assembly by installing the following resistors:

PART NUMBER	VALUE	COLOR CODE A-B-C				
() R4	100K 1000 ohms	. brown-black-yellow . brown-black-red . brown-black-orange . brown-black-red				
Install the single ceramic disk (or in some kits, mylar) capacitor						
() C10 0.1 mfd.						

There are two 2N5139 transistors which are used for relay drivers in conjunction with the POTSHOT Cassette system tape motion control software. Install these transistors now.

() Q8, Q9 (2 parts) 2N5139

The single Light Emitting Diode provides an indication that data is coming into the computer from the cassette player. Orientation of the LED is keyed by the length of the two leads, the short lead is the cathode and should be installed in the circuit board hole marked +. When installing the LED, leave it as high above the surface of the board as possible so that it will be visible above the displays in the cut-out provided in the 8700 Keyboard circuit board. When installing, leave the lead of the LED as long as possible for maximum visibility.

() D2 TIL-209 Light Emitting Diode

3

NOTE SHORT

The 500:8 interstage transformer provides coupling between the cassette recorders output and the computer's output. NOTE that while a solder pad is provided for the center tap on the primary side of this transformer, there are no connections to the pad and this lead may be clipped off if desired. NOTE ALSO that some transformers may have three leads coming from both sides. On these devices, the primary side of the transformer is marked with a "P" (which on some transformers comes out nothing more than a black smudge). The leads coming from this side of the transformer are to be installed in the circuit board holes closest to the edge of the board and the center leads may be clipped from both sides of these transformers.

() T1 500:8 interstage transformer

Install the following sockets at the positions indicated. As with the 8700, observe the polarity notches of the sockets.

- () 24 pin socket at IC 18
- () 16 pin socket at IC 20
- () 8 pin socket at J9

Install the 2 IC's in their sockets. WARNING CMOS PARTS. Leave these parts in their conductive foam carrier until ready to install, do not wear synthetic clothing during installation. Observe orientation notches during installation.

A piezo-electric transducer is part of the CS-87, which produces an audible "beep" providing positive indication of keyboard activations. The software required to drive the beeper is included in the PIEBUG monitor program. THE BEEPER IS NOT REQUIRED FOR POT-SHOT OPERATION.

Depending on the final installation of the 8700 system, the beeper may be mounted either on the 8700 board as illustrated shortly, or, for maximum volume, may be mounted on a sounding surface external to the computer.

If you elect to mount the beeper on the 8700 board, proceed as follows:

- () Solder the wire connected to the center silver colored disc of the transducer to the top end of resistor R46 as shown in figure
- 2. Be careful not to short adjacent conductors during soldering.

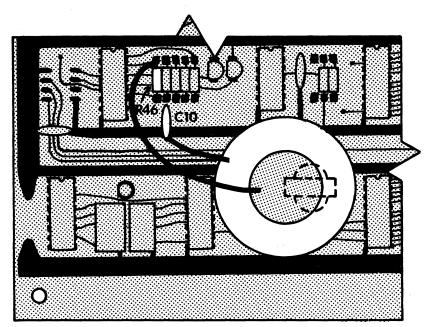
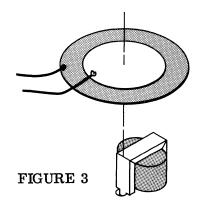
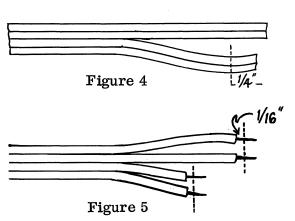



FIGURE 2

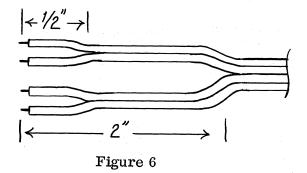
- () Solder the wire coming from the copper outer disk of the transducer to the ground conductor at the bottom of C10.
- () Thoroughly clean the back of the beeper and the top of the transformer T1 and using contact cement or other adhesive mount the beeper to the transformer as shown in figure 3. NOTE that the beeper mounts off-center on the transformer.

THIS COMPLETES INSTALLATION OF COMPONENTS ON THE 8700 CIRCUIT BOARD. We are now ready to prepare connecting cables.

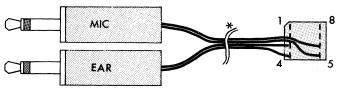
The header to which the cables connect is somewhat fragile and can also be damaged by excessive soldering temperatures.


Because of the variety of configurations and user-options available, pre-assembled cables are not supplied for the cassette interface.

While wires are being soldered to the header, some sort of vise must be used to serve both as heat sink and to hold the pins rigid. If a vise with small enough jaws is not available, one may be rigged from a pair of needle-nosed pliers held closed by wrapping a rubber band around the handles. PROVIDING SOME SORT OF MECHANICAL SUPPORT AND HEAT SINK IS ESSENTIAL. Do not attempt the following assembly steps without this.


ALSO, proper preparation of both wires and header will simplify assembly. Pretin the header pins before soldering the wire in place (note that only the "U" shaped part of the pin to which the wire will attach need be tinned - do not tin the portion of the pin which will mate with the socket).

Prepare the ends of the wire which are to be soldered to the header pin by stripping approximately 1/4" of insulation from its end, tightly twisting the exposed strands, tinning by heating the strands and flowing a small amount of solder into them, and, finally, by clipping the now-tinned exposed wire so that only 1/8" extends beyond the end of the insulation.


() Prepare one end of the 4 conductor ribbon cable by first separating the four conductors into two pairs. Cut 1/4" from the end of one of the two pairs. Separate into two pairs of conductors and remove 1/4" from the length of one pair. Separate the ribbon into four conductors and strip 1/4" of insulation from the end of each of the leads. Tightly twist and tin the exposed conductors. Finally, clip the 4 exposed, tinned conductors so that only 1/16" extends beyond the ends of the insulation. Snip

1/4" of insulation from the end of each of the conductors. Twist tightly and tin. After tinning, cut so that 1/16" of twisted conductor extends beyond insulation.

() While pins 1-4 of the cassette connector header are being held in a vise, solder the two shorter leads prepared above to pins 3 and 4 of the header.

() Similiarly, while holding pins 5-8 in a vise, solder the longer leads prepared above to pins 5 and 6.

*LENGTH AS REQUIRED

Figure 7

The length of ribbon cable supplied with the CS-87 option is intentionally longer than will be required for most applications. Trim the length of the cable as required before installing the miniature phone jacks.

- () Separate the free end of the ribbon cable into two pairs of conductors. About 2 inches of separation will be sufficient in most cases. Further separate the two pairs into individual conductors (about 1/2" separation) and strip 1/4" of insulation from each end wire before twisting and tinning the exposed strands.
- () Locate the two miniature phone plugs supplied, unscrew the cover from one and slip the cover over the end of the pair of wires coming from header pins 3 and 4, (the threaded end of the cover should be toward the free end of the cable.) Solder one of the two wires to the short soldering lug of the plug and the other to the ground frame. (Polarity is not important here). Screw the plug cover back in place. This plug should be labeled "EAR".
- () Unscrew the cover of the second phone jack and slide it over the remaining two conductors of the cable. Solder the wire coming from pin 6 of the header to the soldering lug of the phone plug and the wire coming from pin 5 of the header to the ground frame of the plug. OBSERVE POLARITY. Screw the plug cover back in place. This plug should be labeled "mic".
- () Mate the cassette connector header with the socket J9 on the 8700 board (observe orientation if assembled as above, the cables will naturally exit the connector over the nearest edge of the 8700 board).

THIS COMPLETES ASSEMBLY OF THE CS-87 CASSETTE INTERFACE SYSTEM. Re-connect the power supply and keyboard for an initial testing sequence to follow, but do not yet totally re-assemble the computer.

Testing and Familiarization

RECORDER SELECTION

The CS-87 "POT-SHOT" cassette option has been carefully designed to reliably save and retrieve programs and data using extremely inexpensive, low-fidelity, audio recording equipment. While the Phillips format cassettes have proven to be exceptionally convenient because of their size and ease of storing and handling, any recording scheme (even reel-to-reel) can be used with equally predictable results, though perhaps more hassle.

The only hard and fast requirements of the recorder selected are that it have ready access to external input sources (mic and/or aux. inputs) and some provision for a high level output (ear and/or ext. spkr. jacks). The presence or absence of an Automatic Level Control circuit is immaterial to the operation of the system. A "remote" input jack capable of starting and stopping the recorder will be handy if you think you may be adding the optional tape motion control relays at a later date.

We highly recommend the Realistic CTR-34 recorder sold by Radio-Shack for a number of reasons including low cost, convenient size and ready availability.

TAPE SELECTION

Consideration should be given to the kind of tape you will use for storing digital programs. A problem known to magnetic tape media as "dropout" can scrub your programs. Dropout causes the signal on tape to fade away for very brief periods of time and is caused by fluctuations in the thickness of the iron oxide coating on the tape. This is a problem that can go unnoticed when recording voice or music but the loss of one bit of data is fatal when trying to load a program into your computer. Therefore you should find a brand of tape that is reliable and stick with it. Also dropout is always a problem with any tape at the very front of the tape where it is connected to the leader. Avoid this area by skipping the first 15 or 30 seconds of the tape before saving the first program on that cassette.

TESTING

Connect the cassette connectors "mic" plug to your recorders "mic" (first choice) or "aux" (second choice) input jacks and the "ear" plug to the "ear" or "ext spkr" jacks. Apply power to the 8700 Computer/Controller and verify that nothing has happened during installation of the interface system to change the normal operating characteristics of the processor. Since we will be initially testing the system by storing and then retrieving the counting demo program from the 8700 Assembly and Using Manual, entry and execution of this program is a reasonable vehicle for accomplishing this initial important test. Load this program from the keyboard and verity that it runs properly.

DEMO COUNTING PROGRAM

ADDR	CODE	LABEL	INSTRUCTION	COMMENTS
0000	A9 00	BEGIN	LDA #0	;CLEAR ACCUMULATOR
0002	8D 20 08	REPEAT	STA \$0820	;DISPLAY ACC
0005	A0 00		LDY #0	;CLR Y
0007	A2 50		LDX #\$50	;SPEED SETTING (IN HEX)
0009	C 8	LOOP	INY	;DELAY LOOP
000A	D0 FD		BNE LOOP	;BRANCH UNTIL Y=0
000C	CA	•	DEX	;CHECK SPEED
000D	D0 FA		BNE LOOP	;BRANCH UNTIL X=0
$000\mathbf{F}$	F 8		SED	SET DECIMAL MODE
0010	18		CLC	;CLR CARRY
0011	69 01		ADC #1	;ADD 1 TO ACC
0013	4C 02 00		JMP REPEAT	;DO IT ALL AGAIN

SAVING AND LOADING PROGRAMS

Before performing tape operations, there is some information that the computer needs to successfully complete these tasks:

- 1) The beginning address of the program or data to be saved or loaded. (4 hexadecimal digits; two bytes)
- 2) The ending address of the block of data that is to be saved or loaded. (4 hexadecimal digits; two bytes)
- 3) A file identifier number (2 hex digits; one byte)
- 4) A one byte (2 hex digits) indicator for either a load operation (11) or a dump operation (DD).

All of this information is entered as a continuous string of digits from the processor keyboard. THE ENTER KEY IS NEVER USED WHILE KEYING IN THIS INFORMATION.

Using the counting program (which you should have entered by now) as an example; this program begins at location \$0000 and ends at location \$0015 (the second byte of the operand for the JUMP at location \$13). Our first 8 entries from the keyboard will, therefore, be;

BEG. ADDR. END ADDR.

display shows: 15

Any file identifier number may be assigned to this file (except 00 which has special significance as we will see shortly). Since this is our first file on the tape, we will assign it number 01. Your next two keystrokes will be;

ID

7

display shows: 01

The final entry will be the LOAD/DUMP "switch". In this case, for a dump from the computer to the tape recorder, DD (think of the D as meaning Dump). Your next two keystrokes

display shows: dd

DUMP D-D

If you made any mistakes while keying in the preceding information you have no choice but to begin again and key in the whole sequence;

BEG. ADDR. END ADDR. ID DUMP

When the preceding data has been entered correctly, you are ready to perform the dump. Put your recorder in the "record" mode and start the tape rolling. Allow about a ten second interval (see TAPE SELECTION) and press the 8700's TAPE control key.

A number of things will happen now. Simultaneously the display should clear to 00 and the beeper should begin to produce a constant tone (which is the leader and synchronization bits). After about three seconds of this tone, its sound should change slightly (as data begins to flow out) and the displays should begin counting, showing the low byte of the address of the data currently being transferred.

It will only take a second or two for the program to dump and when finished the displays will once again clear to 00 and the tone from the beeper should stop.

The program is now stored on tape and if you wish you may rewind the tape, put the recorder in ''play'' mode and listen to the tone that was recorded on the tape (it should sound very similar to what you heard through the beeper). Be sure to unplug the ''ear'' jack if you want to listen to the tape — and plug it back in when ready to load a program.

THE BIG TEST

Now we are ready to find out if it worked. Wipe out the program in the memory of the computer by temporarily disrupting power. Restore power and RESET.

Before loading the program for the first time, the playback level of the recorder must be set. With many tape interfaces this is a hit-or-miss proposition, but POT-SHOT provides the level indicating LED D2 (directly above the displays) for this purpose.

Turn your recorders volume control up fully and begin playing the tape. When the program is found the level-LED should begin to glow brightly. (residual clicks and pops on the tape may cause the LED to wink briefly - this should not affect the operation of the system). When sustained glow is observed, quickly (since you have only a few seconds of actual material recorded on tape) reduce the level of the volume centrol until you see a slight decrease in the brightness of the LED. This should be the proper playback level.

Loading programs follows the same format as did the dump with a continuous string of keyboard entries indicating beginning address, ending address, ID number and LOAD/DUMP switch.

The first 8 entries, beginning and ending address;

BEG. ADDR. END ADDR.

0-0-0-0-0-1-5

display shows: 15

The next two entries, ID#;

0-1

display shows: 01

and finally the LOAD "switch"; think of the 1's as L's - as in LOAD.

L5

 $\widetilde{1-1}$

display shows: 11

As with the dumping procedure, if you make any mistakes in entering this data you have no alternative but to begin again and enter the entire sequence;

Rewind, put your recorder in the "play mode, start the tape rolling and touch the 8700's TAPE key. You should immediately hear an artoo-type "bleep" from the beeper (it will sound different from the normal key-stroke beep) and the display should clear to 00.

When the leader and synch tone of the information recorded on tape is found, the single level LED will begin to glow continuously and after a few seconds the displays will begin to count. The counting will continue for a few seconds after which one of three things will happen:

1) The level LED will extinguish, the beeper will beep and the displays will show "AA". If this happens you're in good shape - the AA indicates "A-OK", a good load. You may now verify that the program is back by keying in its beginning address and RUNning it.

-otherwise-

- 2) The level LED will extinguish, the beeper will sound and the displays will show EE, an Error. This is a check sum error and it may mean that a transient (probably on the tape itself) prevented the data being entered back into the computer properly. You may try varying the volume control setting of the recorder and trying again.

 NOTE when POT-SHOT announces an error it is in most cases not necessary to enter all of the addresses, identifiers, etc. again. These are saved in the memory of the computer and it is only necessary to re-wind the tape and try again by touching the TAPE key. The exception is when any other keyboard entries other than TAPE are made before trying to load again.
- 3) A third possibility is that the level LED will extinguish and everything will simply stop with no beep and the displays showing some apparently random number. This indicates that the computer does not realize that it should be finished and is still looking for more data. This is a strong indication that improper keyboard entries were made either during preparation for the dump or the load. Try again and if still no luck try Dumping the program again (which at this point must unfortunately be loaded from the keyboard).

SUMMARY

LOAD

IDENTIFIER

Entry Sequence:

BEGINNING ENDING ADDRESS LOAD

X-X-X-X-Y-Y-Y-Y-Z-Z-1-1-TAPE

- 1) Keyboard entries of beginning and ending addresses <u>must</u> each be 4 digits, short addresses not allowed.
- 2) ENTER key not used during entry sequence.
- 3) ØØ identifier causes first file encountered to be loaded.
- 4) AA displayed at end of load indicates OK
 EE displayed at end of load indicates check sum error.
- 5) If you have a file on tape of which the end address is not known, it can be determined with the following method:
 - 01) Load the file as normal but with an end address of "FFFF".
 - 02) Hit RESET when the displays stop counting.
 - 03) Examine the pointer with the pointer keys (PCH, PCL).
 - 04) Subtract 2 from the pointer (in HEX) and that will be the end address.

DUMP

Entry Sequence:

- 1) Keyboard entries of beginning and ending addresses <u>must</u> each be 4 digits, short addresses not allowed.
- 2) ENTER key not used during entry sequence.
- 3) ØØ identifier NOT ALLOWED.

TAPE MOTION CONTROL

(if used)

Manual control sequence:

0-0-TAPE

Recorder will remain activated until next keyboard entry.

ZERO PAGE LOCATIONS

PIEBUG BUFFER

$\mathbf{F}0$	DUMP/LOAD/MAN SWITCH (tested for zero, bit 7)
$\mathbf{F1}$	IDENTIFIER
$\mathbf{F2}$	LSB END ADDR.
$\mathbf{F}3$	MSB END ADDR.
$\mathbf{F4}$	LSB BEG ADDR.
F5	MSB BEG ADDR.
$\mathbf{F}6$	LSB POINTER
$\mathbf{F7}$	MSB POINTER

POT-SHOT Monitor Listing

```
0150
      0200
0160
      0200
0170
      0200
0180
      0200
                           ***********
0190
      0200
0200
      0200
                              POT-SHOT CASSETTE SYSTEM
0210
      0200
                              WRITTEN BY ROGER WALTON
0220
      0200
                              COPYRIGHT 1977 BY PAIA
0230
      0200
                                ELECTRONICS, INC.
0240
     0200
                              VERSION 1.0
0250
     0200
0260
     0200
                           ************
0270
      0200
0280
      0200
                        PORT
                               =$0900
                                               CASSETTE I/O PORT
0290
      0200
                        DISPLY =$0820
                                               JLED DISPLAY
0300
      0200
                        PIEBUG =$0F52
                                               JDISP ACC; GOTO PIFRUG
0310
     0200
                        BEEP
                               =$0F22
                                               JBEEP SUB IN PIEBUG
0320
     0200
0330
     0200
                        STATUS = SEF
                                               JINPUT BIT STATUS
0340
     0200
                        CHKSUM =SEE
                                               3 CHECKSUM
0350
     0200
                        PNTER =$F6
                                              316 BIT ADDR POINTER
0360
     0200
                        COMAND =SFO
                                              *LOAD/DUMP COMMAND
     0200
0370
                        IDENT =SF1
                                              FILE IDENTIFIER
0380
     0200
                        ENDADR =$F2
                                               JEND ADDR
0390
     0200
                        BEGADR = $F4
                                               JBEGINNING ADDR
0400
     0200
0410
     0200
                               *=$0E00
0420
     0E00
0430
     0E00
           20 25 OE
                        START
                               JSR SNDBIT
                                               START TAPE
0440
     0E03
            80 20 08
                               STY DISPLY
                                               JCLEAR DISPLAY
0450
                               LDA BEGADR
     0E06
            A5 F4
                                               *MOVE BEGINNING
0460
     0E08
            85 F6
                               STA PNTER
                                               J ADDR TO POINTER
0470
     OEOA
                               LDA BEGADR+1
           A5 F5
0480
     OEOC
           85 F7
                               STA PNTER+1
0490
            A5 FO
     OEOE
                               LDA COMAND
                                               JGET COMMAND
0500
     0E10
            FO 07
                               BEQ MANUAL
                                               JBR IF COMMAND= "00"
0510
     0E12
            20 AA 0E
                               JSR CASS
                                               JOUMP OR LOAD BLOCK
0520
     0E15
           18
                               CLC
0530
            20 22 OF
     0E16
                               JSR BEEP
                                               STOP TAPE AND BEEP
0540
      0E19
            4C 52 OF
                        MANUAL JMP PIEBUG
                                               FRETURN TO MONITOR
0550
     OEIC
0560
     OEIC
0570
     OEIC
0580
     OEIC
                              DELAY SUBROUTINE
0590
      OEIC
                              THIS SUB DELAYS FOR ONE HALF CYCLE
     OEIC
0600
                              (2000 HZ). Y IS CLEARED, X, A, AND
0610
                              CARRY ARE PRESERVED.
      OEIC
     OEIC
0620
```

```
0630
       OEIC
             8D 00 09
                           DELAY
                                  STA PORT
                                                    JUPDATE TONE
 0640
       OE1F
                                  LDY #15
             AO OF
 0650
       0E21
              88
                           DLY
                                  DEY
 0660
       0E22
              DO FD
                                  BNE DLY
                                                    3BR UNTIL DELAY FINISHED
 0670
       0E24
              60
                                  RTS
                                                    JRETURN
 0680
       0E25
 0690
       0E25
 0700
       0E25
 0710
                                 SEND BIT SUBROUTINE
       0E25
                           3
                                 THIS SUB SENDS THE CARRY BIT TO THE TAPE.
 0720
       0E25
                           3
 0730
                                 A "1" BIT CONSISTS OF 16 CYCLES OF 2000 H7
       0E25
                           3
 0740
       0E25
                           3
                                 AND A "O" BIT CONSISTS OF 8.
                                                                  THIS SUB
 0750
       0E25
                                 TURNS RELAY 1 ON AND RELAY 2 OFF.
                                                                       YIS
                           1
 0760
       0E25
                                 CLEARED, X, A, AND CARRY ARE PRESERVED.
                           3
 0770
       0E25
 0780
       0E25
                           SNDBIT PHA
              48
                                                    SAVE A
 0790
       0E26
              8A
                                  TXA
 0800
       0E27
                                  PHA
              48
                                                    SAVE X
 0810
       0E28
              A2 10
                                  LDX #16
                                                    INO. OF CYCLES FOR A "1"
 0820
       0E2A
             BO 02
                                  BCS CYCLE
                                                    BRANCH IF "1" BIT
 0830
       0E2C
              A2 08
                                  LDX #8
                                                    JNO. OF CYCLES FOR A "O"
 0840
       0E2E
              A9 B0
                           CYCLE
                                  LDA #%10110000
                                                    STAPE ONS OUTPUT HIGH
                                  JSR DELAY
 0850
       0E30
              20 1C 0E
                                                    SUPDATE PORT AND DELAY
 0860
       0E33
             A9 80
                                  LDA #%10000000
                                                    JTAPE ON; OUTPUT LOW
 0870
       0E35
              20 1C OE
                                  JSR DELAY
                                                    JUPDATE PORT AND DELAY
 0880
       0E38
              CA
                                  DEX
                                                    JLAST CYCLE?
                                  BNE CYCLE
 0890
       0E39
              DO F3
                                                    BRANCH IF NOT
 0900
       0E38
              A9 90
                                  LDA #%10010000
                                                    STAPE ONS OUTPUT NEUTRAL
 0910
       0E3D
              A2 10
                                                    JDELAY COUNTER
                                  LDX #16
0920
      0E3F
            20 1C OE
                          GAP
                                 JSR DELAY
                                                   PRODUCE A GAP
 0930
       0E42
              CA
                                  DEX
                                                    *DELAY FINISHED?
 0940
       0E43
              DO FA
                                  BNE GAP
                                                    BRANCH IF NOT
 0950
       0E45
              68
                                  PLA
 0960
       0E46
              AA
                                  TAX
                                                    *RESTORE X
 0970
       0E47
              68
                                  PLA
                                                    FRESTORE A
 0980
       0E48
              60
                                  RTS
                                                    3RETURN
 0990
       0E49
                           3
 1000
       0E49
                           3
 1010
       0E49
 1020
       0E49
                                 DETECT BIT SUBROUTINE
 1030
       0E49
                           3
                                 THIS SUB WILL PICK UP ONE BIT FROM
 1040
       0E49
                                 THE TAPE AND RETURN WITH IT IN THE
                           3
 1050
       0E49
                           3
                                 CARRY FLAG.
                                               Y IS CLOBBERED, X AND A
 1060
       0E49
                                 ARE PRESERVED.
                           3
                                                  RELAYS ARE NOT AFFECTED.
 1070
       0E49
 1080
       0E49
              48
                           DETBIT PHA
                                                    SAVE A
 1090
       OE4A
              8A
                                  TXA
 1100
       OE4B
              48
                                  PHA
                                                    3 SAVE X
 1110
       OE4C
             AD 00 09
                           TONE
                                  LDA PORT
                                                    3LOOK FOR START OF TONE
 1120
       OE4F
              10 FB
                                  BPL TONE
                                                    BRANCH UNTIL FOUND
 1130
       0E51
             A2 00
                                  LDX #0
                                                    JCLEAR COUNTER
 1140
       0E53
              E8
                           COUNT
                                  INX
                                                    3 COUNT TRANSITIONS
 1150
       0E54
             A0 23
                                  LDY #35
                                                    STIME LIMIT
 1160
       0E56
             AD 00 09
                                  LDA PORT
                                                    CHECK INPUT
 1170
       0E59
             85 EF
                                  STA STATUS
                                                    SAVE INPUT STATUS
 1180
       0E58
             AD 00 09
                           CHECK
                                  LDA PORT
                                                    3CHECK INPUT
```

```
1190
      0E5E
            45 EF
                                 EOR STATUS
                                                  JHAS IT SWITCHED?
1200
      0E60
             30 F1
                                 BMI COUNT
                                                  IF SO, BRANCH
1210
      0E62
            88
                                 DEY
                                                  ITIME UP?
1220
      0E63
            DO F6
                                 BNE CHECK
                                                  JIF NOT, BRANCH
1230
      0E65
            EO 08
                                 CPX #8
                                                  JOOES TONE BURST QUALIFY?
1240
      0E67
            90 E3
                                 BCC TONE
                                                  JBRANCH IF NOT
1250
      0E69
            EO 18
                                 CPX #24
                                                  #SEC IF "1"; CLC IF "0"
1260
      OE6B
             68
                                 PLA
      OE6C
1270
            AA
                                 TAX
                                                  RESTORE X
1280
      OE6D
             68
                                 PLA
                                                  *RESTORE A
1290
      OE6E
             60
                                 RTS
                                                  JRETURN
1300
      OE6F
                         3
1310
      OE6F
                         3
1320
      OE6F
                         3
1330
      OE6F
                                SEND BYTE SUBROUTINE
                         3
                                THIS SUB SENDS THE BYTE CONTAINED
1340
      OE6F
                         3
1350
      0E6F
                                IN THE ACC TO THE TAPE ALONG WITH
                         3
1360
      0E6F
                         3
                                A START BIT AND ONE STOP BIT. X AND
1370
      OE6F
                         3
                                Y ARE CLEARED, A IS PRESERVED,
1380
      OE6F
                         3
                                CARRY IS SET. RELAY 1 IS TURNED ON,
1390
      OE6F
                                RELAY 2 IS TURNED OFF.
                         3
1400
      OE6F
1410
      OE6F
            18
                         SNDBYT CLC
1420
      0E70
            20 25 OE
                                 JSR SNDBIT
                                                  SEND START BIT
1430
      0E73
            A2 09
                                 LDX #9
                                                  SET BIT COUNTER TO 9
      0E75
1440
             38
                                 SEC
                                                  SET STOP BIT
1450
      0E76
            2A
                         NEXT1
                                 ROL A
                                                  MOVE BIT TO CARRY
            20 25 OE
1460
      0E77
                                 JSR SNDBIT
                                                  SEND IT
1470
      0E7A
            CA
                                 DEX
                                                  $LAST BIT?
      0E7B
1480
            DO F9
                                 BNE NEXT1
                                                  BRANCH IF NOT
1490
      OE7D
             60
                                 RTS
                                                  RETURN
1500
      OE7E
1510
      OE7E
1520
      OE7E
1530
      OE7E
                                GET BYTE SUBROUTINE
1540
      OE7E
                                THIS SUB WILL PICK UP A BYTE FROM
                         3
1550
      OE7E
                                TAPE AND RETURN IT IN THE ACC.
                         3
1560
      OE7E
                         3
                                X AND Y ARE CLEARED, CARRY CONTAINS
1570
      OE7E
                                THE STOP BIT. RELAYS ARE NOT AFFECTED.
                         3
1580
      OE7E
1590
      OE7E
            20 49 OE
                         GETBYT JSR DETBIT
                                                  JLOOK FOR START BIT
1600
      0E81
            BO FB
                                                  JBRANCH UNTIL FOUND
                                 BCS GETBYT
1610
      0E83
            A2 09
                                 LDX #9
                                                  SET BIT COUNTER TO 9
1620
      0E85
            2A
                         NEXT2
                                 ROL A
                                                  MOVE BIT TO ACC
1630
      0E86
            20 49 OE
                                 JSR DETBIT
                                                  JGET NEXT BIT
1640
      0E89
            CA
                                 DEX
                                                  $LAST BIT?
1650
      OE8A
             DO F9
                                 BNE NEXTS
                                                  JBRANCH IF NOT
1660
      OE8C
             60
                                 RTS
                                                  JRETURN
```

```
1670
     0E8D
1680
     0E8D
1690
     OESD
1700
                             CHECK ADDRESS SUBROUTINE
     0E8D
1710
     OESD
                      3
                             THIS SUB COMPARES THE POINTER TO
1720
     0E8D
                      3
                             THE END ADDRESS AND SETS THE CARRY
1730
     OESD
                      3
                             IF THEY ARE THE SAME. IF THEY ARE
                     3
1740
     OE8D
                             NOT, THE CARRY IS CLEARED AND POINTER
1750
     0E8D
                             IS INCREMENTED. IT ALSO ADDS THE
1760
     OE8D
                      3
                             CONTENTS OF THE ACC TO THE CHECKSHM
1770
     OE8D
                             AND DISPLAYS THE LOW BYTE OF POINTER.
                      3
1780
     0E8D
                       3
                             A IS MUTILATED, X AND Y ARE PRESERVED.
1790
     OE8D
                             RELAYS ARE NOT AFFECTED.
1800
     OE8D
1810
     OE8D
                       CHKADD CLD
           D8
1820
     OE8E
           18
                              CLC
1830
     OE8F
           65 EE
                              ADC CHKSUM
                                              JUPDATE CHECKSUM
1840
     0E91 85 EE
                              STA CHKSUM
                                              SAVE IT
1850
     0E93 A5 F6
                              LDA PNTER
                                              GET POINTER LOW
                              STA DISPLY
1860
     OE95 8D 20 08
                                              JDISPLAY IT
1870
     0E98 C5 F2
                              CMP ENDADR
                                              JCMP WITH END ADDR LOW
1880 OE9A DO 06
                              BNE INCPTR
                                             BRANCH IF NOT EQUAL
1890
     OE9C A5 F7
                              LDA PNTER+1
                                             JGET POINTER HIGH
1900 OE9E C5 F3
                              CMP ENDADR+1
                                              3CMP WITH END ADDR HIGH
     OEAO FO 07
1910
                              BEQ RET
                                             BRANCH AND SEC IF SAME
1920 OEA2
           E6 F6
                       INCPTR INC PNTER
                                             ; INC LOW BYTE
1930 OEA4 DO 02
                              BNE SKIP2
                                             JBRANCH IF NO CARRY
                              INC PNTER+1
1940 OEA6
           E6 F7
                                              JINC HIGH BYTE
1950
     OEA8
           18
                       SKIP2
                              CLC
1960 OEA9
           60
                       RET
                              RTS
                                              JRETURN
1970
     OEAA
                       .
1980
     OEAA
                       3
1990
     OEAA
                       3
2000
     OEAA
                       3
2010
     OEAA
           10 21
                     CASS
                            BPL LOAD | BR IF COMMAND= "LOAD"
2020
     OEAC
2030
     OEAC
                       3
2040 OEAC
                       3
2050
     OEAC
                             DUMP BLOCK SUBROUTINE
                      3
2060 OEAC
                             THIS SUB TRANSFERS A BLOCK OF MEMORY
                       3
2070
     OEAC
                      3
                             TO TAPE. BEGINNING OF THE BLOCK IS
2080
     GEAC
                      3
                             SPECIFIED WITH "PNTER", END OF THE
2090
     OEAC
                             BLOCK WITH "ENDADR", AND BLOCK
                      3
2100
     OEAC
                             IDENTIFICATION WITH "IDENT". A
                       3
2110
     OEAC
                       3
                             CHECKSUM IS SENT AT THE END OF
2120
     OEAC
                       3
                             THE BLOCK. A, X, AND Y ARE CLEARED.
2130
     OEAC
                       3
                             CARRY IS SET. RELAY 1 IS TURNED ON,
2140
     OEAC
                       3
                             RELAY 2 IS TURNED OFF.
2150
     OEAC
2160
     OEAC
           A2 FF
                       DUMP
                              LDX #255
                                              SET UP BIT COUNTER
2170
     OEAE
           38
                       NEXT3
                              SEC
                                              "1" BIT
2180
     OEAF
           20 25 OE
                              JSR SNDBIT
                                              SEND LEADER
2190
     0EB2
           CA
                              DEX
                                              FINISHED?
2200
     OEB3
           DO F9
                              BNE NEXT3
                                              JBRANCH IF NOT
2210
     OEB5
2220
     OEB5
           86 EE
                              STX CHKSUM
                                             CLEAR CHECKSIM
     0EB7 A5 F1
2230
                              LDA IDENT
                                              JGET IDENTIFIER
```

```
2240
       OEB9
             20 6F 0E
                                  JSR SNDBYT
                                                  SEND IT
 2250
       OEBC
 2260
       OEBC
             A1 F6
                          NEXT4
                                  LDA (PNTER,X)
                                                  JGET BYTE
 2270
       OEBE
             20 6F 0E
                                  JSR SNDBYT
                                                   SEND IT
 2280
       OEC1
             50 8D 0E
                                  JSR CHKADD
                                                   JLAST BYTE?
 2290
       OEC4
             90 F6
                                  BCC NEXT4
                                                 BRANCH IF NOT
 2300
       OEC6
             A5 EE
 2310
       OEC6
                                  LDA CHKSUM
                                                  JGET CHECKSUM
 2320
       OEC8
             20 6F 0E
                                  JSR SNDBYT
                                                  SEND IT
 2330
       OECB
             8A
                                  TXA
                                                  3CLEAR ACC
 2340
       OECC
              60
                                  RTS
                                                  *RETURN
 2350
       OECD
                          3
 2360
       OECD
 2370
       OECD
                          3
 2380
       OECD
                                LOAD BLOCK SUBROUTINE
 2390
       OECD
                                 THIS SUB WILL SEARCH FOR A BLOCK ON
                          3
 2400
       OECD
                                 TAPE WITH AN IDENTIFIER THAT MATCHES
 2410
       OECD
                          3
                                 "IDENT".
                                           WHEN FOUND, IT WILL TRANSFER
 2420
       OECD
                          3
                                 THE BLOCK FROM TAPE TO MEMORY.
 2430
       OECD
                          3
                                 BEGINNING OF THE DESTINATION IS
 2440
       OECD
                          3
                                 SPECIFIED WITH "PNTER" AND END WITH
 2450
       OECD
                          3
                                 "ENDADR". FOR THIS REASON THE SIZE
 2460
       OECD
                                 OF THE BLOCK MUST BE KNOWN. ACC IS
                          3
 2470
       OECD
                                 RETURNED WITH "AA" FOR SUCCESSFUL LOAD
                          3
 2480
                                 AND "EE" FOR ERROR. X IS CLEARED,
       OECD
 2490
       OECD
                          3
                                 Y IS SMASHED. RELAYS ARE NOT AFFECTED.
 2500
       OECD
 2510
       OECD
                          LOAD
             A2 14
                                  LDX #20
                                                   JSEARCH FOR LEADER
 2520
       OECF
             20 49 OE
                          LOOP
                                  JSR DETBIT
                                                   JGET A BIT
 2530
       0ED2
             90 F9
                                  BCC LOAD
                                                   START OVER IF "O" BIT
 2540
       OED4
             CA
                                  DEX
                                                   $20 BITS YET?
 2550
       0ED5
             DO F8
                                  BNE LOOP
                                                   BRANCH IF NOT
 2560
       OED7
             20 7E 0E
                                  JSR GETBYT
                                                  JGET IDENTIFIER FROM TAPE
 2570
       OEDA
             8D 20 08
                                  STA DISPLY
                                                  DISPLAY IT
 2580
       OEDD
                                  LDY IDENT
             A4 F1
                                                  JGET DESIRED ID
 2590
       OEDF
             FO 04
                                  BEQ SKIP3
                                                  *SKIP COMPARISON IF ID=On
 2600
       OEE1
             C5 F1
                                  CMP IDENT
                                                  *CORRECT ID?
 2610
       OEE3
             DO E8
                                  BNE LOAD
                                                  JSTART OVER IF NOT
 2620
       OEE5
             86 EE
                          SKIP3
                                  STX CHKSUM
                                                  JCLEAR CHECKSUM
 2630
       OEE7
                          3
            20 7E OE
2640
      OEE7
                         NEXT5
                                 JSR GETBYT
                                                 JGET A BYTE
 2650
       OEEA
             90 10
                                  BCC ERROR
                                                   BRANCH IF STOP BIT=0
 2660
       OEEC
             81 F6
                                  STA (PNTER, X)
                                                   *STORE BYTE BY POINTED
 2670
       OEEE
             20 8D 0E
                                  JSR CHKADD
                                                  JLAST BYTE?
 2680
       OEF1
             90 F4
                                  BCC NEXTS
                                                  JIF NOT, GET NEXT BYTE
 2690
       OEF3
                          3
 2700
       OEF3
             20 7E OE
                                  JSR GETBYT
                                                  JGET CHECKSUM
 2710
       OEF6
             AO AA
                                  LDY #SAA
                                                   JA-OK MESSAGE
2720
       OEF8
              C5 EE
                                  CMP CHKSUM
                                                  JIS CHECKSUM OK?
 2730
       OEFA
              FO 02
                                  BEQ SKIP4
                                                  JSKIP ERROR MESSAGE IF SO
 2740
       OEFC
              AO EE
                          ERROR
                                  LDY #SEE
                                                  JERROR MESSAGE
 2750
       OEFE
              98
                          SKIP4
                                  TYA
                                                  JXFER MESSAGE TO ACC
 2760
       OEFF
              60
                                  RTS
                                                  JRETURN
 2770
       OFOO
                          3
 2780
       OF00
 2790
       OFOO
                          END
 2800
       OFOO
                                  . END
```

ERRORS = 0000

SYMBOL TABLE

MANUAL	0E19	CASS	OEAA	CYCLE	OESE	INCPTR	0EA2
RET	OEA9	SKIP2	0EA8	LOAD	OECD	SKIP3	ÓEE5
ERROR	OEFC	SKIP4	OEFE	SNDBIT	0E25	PORT	0900
DISPLY	0820	PIEBUG	0F52	BEEP	OF22	STATUS	OOEF
CHKSUM	OOEE	PNTER	00F6	COMAND	OOFO	IDENT	00F1
ENDADR	00F2	BEGADR	00F4	START	0 E 0 0	DELAY	OEIC
DLY	0E21	GAP	0E3F	DETBIT	0E49	TONE	OE4C
COUNT	0E53	CHECK	0E58	SNDBYT	OE6F	NEXT1	0E76
GETBYT	OE7E	NEXT2	0E85	CHKADD	OE8D	DUMP	OEAC
NEXT3	OEAE	NEXT4	OEBC	LOOP	OECF	NEXT5	OEE7
FND	OFOO						

TAPE MOTION CONTROLS

One of the more unique features of the CS-87 POT-SHOT cassette interface system is the built-in hardware and software provision for relays to control tape motion. The relays are to be supplied by the user and it should be understood that when used with simple cassette recorders only start and stop control is possible.

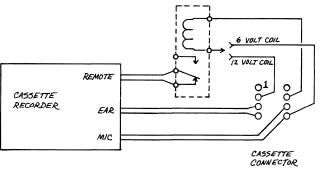
THE RELAYS

Almost any small relays having either 6 volt or 12 volt coils may be used with the tape motion control, with the following two restrictions:

- 1) The coils should pull no more than 20 ma. of current when activated.
- 2) The relay must have a set of NORMALLY CLOSED contacts.

As shown in the accompanying illustration, relays with 6 volt coils are to be connected between GND (pin 5) and the appropriate relay control pin of the cassette connector header (pin 7 for relay 1 and pin 8 for relay 2).

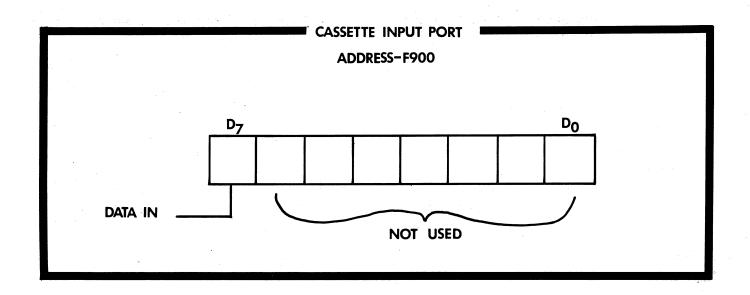
Relays with 12 volt coils are connected between the appropriate relay control pin of the cassette connector header and its -9 volt supply point (pin 2).

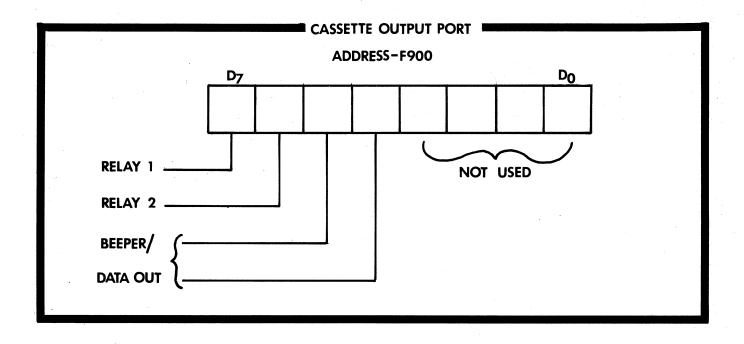

NOTE that the Normally Closed contacts of the relay are used to control the recorder (so that the recorder will be operational when power to the computer is off).

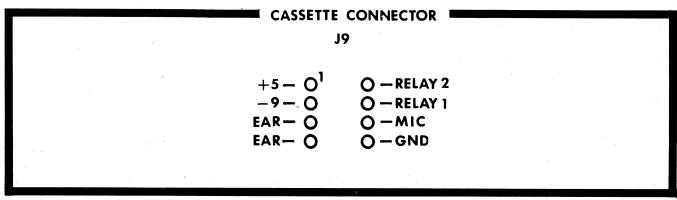
THE SOFTWARE

The normal operating software for the CS-87 POT-SHOT cassette system controls relay #1 only (except that relay #2 is initialized as being off both by PIEBUG and POT-SHOTs SNDBIT subroutine).

Relay #1 is automatically turned on at the beginning of LOADs and DUMPs and turned off when the tape operation is complete.

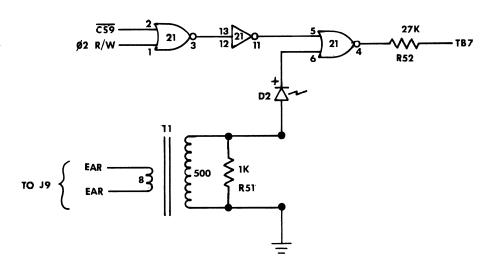

To facilitate fast forward and rewind operations of the recorder, a bypass function over the normal operating sequence of the relays has been provided. This by-pass is activated by entering $\emptyset\emptyset$ from the 8700 keyboard followed by touching the TAPE control pad. This operation turns relay #1 on and leaves it on until any key of the 8700 keyboard is touched, at which time the relay is de-activated.




POT-SHOT TAPE FORMAT

POT-SHOT uses a technique that was first described in the September 1975 issue of Popular Electronics as the 'HIT" System (Hobbyist Interchange Tape System). The technique is one that uses tone bursts to represent bits on the tape. However, the format has been changed to gain greater reliability. A 'O" bit is represented as 8 cycles of 2000 Hz. and a "1" bit is 16 cycles of 2000 Hz. The dead space between bits is a constant 4 milliseconds (same amount of time as a "O" bit takes). We found this technique and format to be the most tolerant of speed variations and distortion produced by the cassette recorder.

The format of a file on tape is as follows: First there is a 3 second leader tone that consists of 255 "1" bits. This leader serves three purposes; it gives the tape recorder time to come up to the speed, the automatic level control time to stabilize (if the recorder has one), and identifies the start of a file. Next the file identifier byte is sent. Then the actual file is sent starting with the byte specified by "BEGINNING ADDRESS" and continuing to the byte specified by "END ADDRESS". After the file, a one byte checksum is put on tape to ensure data integrity when the file is loaded back into the computer.



Schematics

CASSETTE INPUT PORT

CASSETTE OUTPUT PORT

