
PCI Local Bus
Specification

Production Version

Revision 2.1

June 1, 1995

Revision 2.1

REVISION REVISION HISTORY DATE

1.0 Original issue 6/22/92

2.0 Incorporated connector and expansion board specification 4/30/93

2.1 Incorporated clarifications and added 66 MHz chapter 6/1/95

The PCI Special Interest Group disclaims all warranties and liability for the use of this document
and the information contained herein and assumes no responsibility for any errors that may
appear in this document, nor does the PCI Special Interest Group make a commitment to update
the information contained herein.

Contact the PCI Special Interest Group office to obtain the latest revision of the specification.

Questions regarding the PCI specification or membership in the PCI Special Interest Group may
be forwarded to:

PCI Special Interest Group
P.O. Box 14070
Portland, OR 97214
(800)433-5177 (U.S.)
(503)797-4207 (International)
(503)234-6762 (FAX)

FireWire is a trademark of Apple Computer, Inc.

Token Ring and VGA are trademarks and PS/2, IBM, Micro Channel, OS/2, and PC AT are registered
trademarks of IBM Corporation.

Intel386, Intel486, and i486 are trademarks and Pentium is a registered trademark of Intel Corporation.

Windows is a trademark and MS-DOS and Microsoft are registered trademarks of Microsoft Corporation.

Tristate is a registered trademark of National Semiconductor.

NuBus is a trademark of Texas Instruments.

Ethernet is a registered trademark of Xerox Corporation.

All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Copyright © 1992, 1993, 1995 PCI Special Interest Group

ii

Revision 2.1

Contents
Chapter 1 Introduction
1.1. Specification Contents.. 1

1.2. Motivation ... 1

1.3. PCI Local Bus Applications ... 2

1.4. PCI Local Bus Overview.. 3

1.5. PCI Local Bus Features and Benefits.. 4

1.6. Administration ... 6

Chapter 2 Signal Definition
2.1. Signal Type Definition ... 8

2.2. Pin Functional Groups.. 8

2.2.1. System Pins .. 8

2.2.2. Address and Data Pins .. 9

2.2.3. Interface Control Pins ... 10

2.2.4. Arbitration Pins (Bus Masters Only) ... 11

2.2.5. Error Reporting Pins ... 12

2.2.6. Interrupt Pins (Optional) ... 13

2.2.7. Cache Support Pins (Optional) .. 14

2.2.8. Additional Signals .. 15

2.2.9. 64-Bit Bus Extension Pins (Optional) ... 16

2.2.10. JTAG/Boundary Scan Pins (Optional)... 17

2.3. Sideband Signals .. 18

2.4. Central Resource Functions .. 19

 iii

Revision 2.1

Chapter 3 Bus Operation
3.1. Bus Commands ..21

3.1.1. Command Definition ...21

3.1.2. Command Usage Rules ...23

3.2. PCI Protocol Fundamentals ..25

3.2.1. Basic Transfer Control ..25

3.2.2. Addressing ..26

3.2.3. Byte Alignment ...29

3.2.4. Bus Driving and Turnaround ...30

3.2.5. Transaction Ordering...30

3.2.6. Combining, Merging, and Collapsing ..33

3.3. Bus Transactions ..35

3.3.1. Read Transaction...36

3.3.2. Write Transaction..37

3.3.3. Transaction Termination..38

3.3.3.1. Master Initiated Termination ..38

3.3.3.2. Target Initiated Termination ..40

3.3.3.2.1. Target Termination Signaling Rules42

3.3.3.2.2. Requirements on a Master Because of Target
 Termination ..48

3.3.3.3. Delayed Transactions ..49

3.3.3.3.1. Basic Operation of a Delayed Transaction50

3.3.3.3.2. Information Required to Complete a Delayed
 Transaction ...51

3.3.3.3.3. Discarding a Delayed Transaction.......................................51

3.3.3.3.4. Memory Writes and Delayed Transactions..........................52

3.3.3.3.5. Delayed Transactions and LOCK#......................................52

3.3.3.3.6. Supporting Multiple Delayed Transactions53

3.4. Arbitration ..55

3.4.1. Arbitration Signaling Protocol ...57

3.4.2. Fast Back-to-Back Transactions ..59

3.4.3. Arbitration Parking..61

iv

Revision 2.1

3.5. Latency .. 62

3.5.1. Target Latency.. 62

3.5.1.1. Target Initial Latency .. 62

3.5.1.2. Target Subsequent Latency.. 64

3.5.2. Master Data Latency ... 64

3.5.3. Arbitration Latency... 65

3.5.3.1. Bandwidth and Latency Considerations ... 66

3.5.3.2. Determining Arbitration Latency ... 68

3.5.3.3. Determining Buffer Requirements ... 72

3.6. Exclusive Access.. 73

3.6.1. Starting an Exclusive Access .. 76

3.6.2. Continuing an Exclusive Access ... 77

3.6.3. Accessing a Locked Agent .. 78

3.6.4. Completing an Exclusive Access .. 79

3.6.5. Supporting LOCK# and Write-back Cache Coherency 79

3.6.6. Complete Bus Lock .. 80

3.7. Other Bus Operations ... 80

3.7.1. Device Selection ... 80

3.7.2. Special Cycle .. 81

3.7.3. Address/Data Stepping.. 83

3.7.4. Configuration Cycle.. 84

3.7.4.1. Configuration Mechanism #1 .. 89

3.7.4.2. Configuration Mechanism #2 .. 91

3.7.5. Interrupt Acknowledge ... 94

3.8. Error Functions .. 95

3.8.1. Parity .. 95

3.8.2. Error Reporting... 96

3.8.2.1. Parity Error Response and Reporting on PERR# 97

3.8.2.2. Error Response and Reporting on SERR# .. 99

3.9. Cache Support .. 100

3.9.1. Definition of Cache States .. 102

3.9.1.1. Cache - Cacheable Memory Controller .. 102

3.9.2. Supported State Transitions .. 103

3.9.3. Timing Diagrams .. 103

3.9.4. Write-through Cache Support ... 107

3.9.5. Arbitration Note.. 108

 v

Revision 2.1

3.10. 64-Bit Bus Extension ..108

3.10.1. 64-bit Addressing on PCI ..112

3.11. Special Design Considerations ..114

Chapter 4 Electrical Specification
4.1. Overview..119

4.1.1. 5V to 3.3V Transition Road Map ..119

4.1.2. Dynamic vs. Static Drive Specification ...121

4.2. Component Specification ..122

4.2.1. 5V Signaling Environment ..123

4.2.1.1. DC Specifications ..123

4.2.1.2. AC Specifications ..124

4.2.1.3. Maximum AC Ratings and Device Protection126

4.2.2. 3.3V Signaling Environment ...128

4.2.2.1. DC Specifications ..128

4.2.2.2. AC Specifications ..129

4.2.2.3. Maximum AC Ratings and Device Protection131

4.2.3. Timing Specification ...132

4.2.3.1. Clock Specification ..132

4.2.3.2. Timing Parameters ...134

4.2.3.3. Measurement and Test Conditions ...135

4.2.4. Indeterminate Inputs and Metastability ..136

4.2.5. Vendor Provided Specification ..137

4.2.6. Pinout Recommendation ...137

4.3. System (Motherboard) Specification ...138

4.3.1. Clock Skew ...138

4.3.2. Reset ...139

4.3.3. Pull-ups ...141

4.3.4. Power..142

4.3.4.1. Power Requirements ..142

4.3.4.2. Sequencing ..142

4.3.4.3. Decoupling ..143

4.3.5. System Timing Budget ..143

vi

Revision 2.1

4.3.6. Physical Requirements .. 144

4.3.6.1. Routing and Layout of Four Layer Boards 144

4.3.6.2. Motherboard Impedance .. 145

4.3.7. Connector Pin Assignments .. 145

4.4. Expansion Board Specification... 149

4.4.1. Board Pin Assignment .. 149

4.4.2. Power Requirements ... 153

4.4.2.1. Decoupling.. 153

4.4.2.2. Power Consumption .. 153

4.4.3. Physical Requirements .. 154

4.4.3.1. Trace Length Limits .. 154

4.4.3.2. Routing ... 155

4.4.3.3. Impedance ... 155

4.4.3.4. Signal Loading .. 155

Chapter 5 Mechanical Specification
5.1. Overview ... 157

5.2. Expansion Card Physical Dimensions and Tolerances .. 158

5.2.1. Connector Physical Description .. 173

5.2.1.1. Connector Physical Requirements ... 180

5.2.1.2. Connector Performance Specification .. 181

5.2.2. Planar Implementation .. 182

Chapter 6 Configuration Space
6.1. Configuration Space Organization .. 186

6.2. Configuration Space Functions... 188

6.2.1. Device Identification... 188

6.2.2. Device Control ... 189

6.2.3. Device Status .. 191

6.2.4. Miscellaneous Functions ... 193

6.2.5. Base Addresses ... 195

6.2.5.1. Address Maps.. 196

6.2.5.2. Expansion ROM Base Address Register .. 198

6.2.5.3. Add-in Memory... 199

 vii

Revision 2.1

6.3. PCI Expansion ROMs ..199

6.3.1. PCI Expansion ROM Contents ..199

6.3.1.1. PCI Expansion ROM Header Format ...200

6.3.1.2. PCI Data Structure Format ...201

6.3.2. Power-on Self Test (POST) Code ..202

6.3.3. PC-compatible Expansion ROMs ..202

6.3.3.1. ROM Header Extensions..203

6.3.3.1.1. POST Code Extensions ..203

6.3.3.1.2. INIT Function Extensions...203

6.3.3.1.3. Image Structure ..204

6.4. Vital Product Data ...205

6.4.1. Importance of Vital Product Data ...205

6.4.2. VPD Location ..206

6.4.3. VPD Data Structure Description ...206

6.4.4. VPD Format ...207

6.4.4.1. Recommended Fields ..208

6.4.4.1. Conditionally Recommended Fields...208

6.4.4.2. Additional Fields ...209

6.4.5. VPD Example ...210

6.5. Device Drivers..211

6.6. System Reset ..211

6.7. User Definable Configuration Items..212

6.7.1. Overview ..212

6.7.2. PCF Definition ..213

6.7.2.1. Notational Convention ...213

6.7.2.1.1. Values and Addresses ...213

6.7.2.1.2. Text ..214

6.7.2.1.3. Internal Comments ...214

6.7.2.1.4. Symbols Used in Syntax Description214

6.7.2.2. PCI Configuration File Outline ..214

6.7.2.2.1. Device Identification Block ..215

6.7.2.2.2. Function Statement Block ..216

6.7.2.2.2.1. Choice Statement Block217

6.7.2.2.2.1.1. INIT Statements217

6.7.3. Sample PCF ..218

viii

Revision 2.1

Chapter 7 66 MHz PCI Specification
7.1. Introduction ... 219

7.2. Scope ... 219

7.3. Device Implementation Considerations .. 220

7.3.1. Configuration Space ... 220

7.4. Agent Architecture ... 220

7.5. Protocol ... 221

7.5.1. 66MHZ_ENABLE (M66EN) Pin Definition ... 221

7.5.2. Latency... 221

7.6. Electrical Specification... 222

7.6.1. Overview .. 222

7.6.2. Transition Roadmap to 66 MHz PCI ... 222

7.6.3. Signaling Environment ... 222

7.6.3.1. DC Specifications.. 223

7.6.3.2. AC Specifications.. 223

7.6.3.3. Maximum AC Ratings and Device Protection 224

7.6.4. Timing Specification .. 224

7.6.4.1. Clock Specification ... 224

7.6.4.2. Timing Parameters .. 225

7.6.4.3. Measurement and Test Conditions ... 226

7.6.5. Vendor Provided Specification.. 228

7.6.6. Recommendations .. 228

7.6.6.1. Pinout Recommendations .. 228

7.6.6.2. Clocking Recommendations .. 228

7.7. System (Planar) Specification... 229

7.7.1. Clock Uncertainty ... 229

7.7.2. Reset .. 230

7.7.3. Pullups ... 230

7.7.4. Power ... 230

7.7.4.1. Power Requirements.. 230

7.7.4.2. Sequencing.. 230

7.7.4.3. Decoupling.. 230

7.7.5. System Timing Budget ... 230

 ix

Revision 2.1

7.7.6. Physical Requirements ..232

7.7.6.1. Routing and Layout of Four Layer Boards232

7.7.6.2. Planar Impedance...232

7.7.7. Connector Pin Assignments...232

7.8. Add-in Board Specifications ...232

Appendix A Special Cycle Messages..233

Appendix B State Machines..235

Appendix C Operating Rules..245

Appendix D Class Codes..251

Appendix E System Transaction Ordering..257

Glossary ...269

Index ...275

x

Revision 2.1

Figures
Figure 1-1: PCI Local Bus Applications ... 2

Figure 1-2: PCI System Block Diagram ... 3

Figure 2-1: PCI Pin List ... 7

Figure 3-1: Basic Read Operation .. 36

Figure 3-2: Basic Write Operation.. 37

Figure 3-3: Master Initiated Termination.. 39

Figure 3-4: Master-Abort Termination ... 40

Figure 3-5: Retry.. 44

Figure 3-6: Disconnect With Data .. 45

Figure 3-7: Master Completion Termination .. 45

Figure 3-8: Disconnect-1 Without Data Termination .. 46

Figure 3-9: Disconnect-2 Without Data Termination .. 47

Figure 3-10: Target-Abort .. 48

Figure 3-11: Basic Arbitration.. 57

Figure 3-12: Arbitration for Back-to-Back Access.. 61

Figure 3-13: Starting an Exclusive Access.. 77

Figure 3-14: Continuing an Exclusive Access .. 78

Figure 3-15: Accessing a Locked Agent ... 78

Figure 3-16: DEVSEL# Assertion... 80

Figure 3-17: Address Stepping ... 84

Figure 3-18: Configuration Read.. 86

Figure 3-19: Configuration Access Formats ... 87

Figure 3-20: Layout of CONFIG_ADDRESS Register... 89

Figure 3-21: Bridge Translation for Type 0 Configuration Cycles .. 90

Figure 3-22: Configuration Space Enable Register Layout ... 92

Figure 3-23: Translation to Type 0 Configuration Cycle... 93

Figure 3-24: Translation to Type 1 Configuration Cycle... 93

Figure 3-25: Interrupt Acknowledge Cycle... 94

Figure 3-26: Parity Operation... 96

Figure 3-27: Wait States Inserted Until Snoop Completes .. 104

Figure 3-28: Hit to a Modified Line Followed by the Writeback .. 105

 xi

Revision 2.1

Figure 3-29: Memory Write and Invalidate Command ..106

Figure 3-30: Data Transfers - Hit to a Modified Line Signaled Followed by a Writeback107

Figure 3-31: 64-bit Read Request with 64-bit Transfer ...110

Figure 3-32: 64-bit Write Request with 32-bit Transfer...111

Figure 3-33. 64-Bit Dual Address Read Cycle ..113

Figure 4-1: PCI Board Connectors ..120

Figure 4-2: 5V and 3.3V Technology Phases ..121

Figure 4-3: V/I Curves for 5V Signaling ...125

Figure 4-4: Maximum AC Waveforms for 5V Signaling...127

Figure 4-5: V/I Curves for 3.3V Signaling ..130

Figure 4-6: Maximum AC Waveforms for 3.3V Signaling ..131

Figure 4-7: Clock Waveforms...132

Figure 4-8: Output Timing Measurement Conditions ..135

Figure 4-9: Input Timing Measurement Conditions ..135

Figure 4-10: Suggested Pinout for PQFP PCI Component ..138

Figure 4-11: Clock Skew Diagram..139

Figure 4-12: Reset Timing ..140

Figure 4-13: Measurement of Tprop ...144

Figure 5-1: PCI Raw Card (5V) ..159

Figure 5-2: PCI Raw Card (3.3V and Universal)...160

Figure 5-3: PCI Raw Variable Height Short Card (5V, 32-bit) ..161

Figure 5-4: PCI Raw Variable Height Short Card (3.3V, 32-bit) ...162

Figure 5-5: PCI Raw Variable Height Short Card (5V, 64-bit) ..163

Figure 5-6: PCI Raw Variable Height Short Card (3.3V, 64-bit) ...164

Figure 5-7: PCI Card Edge Connector Bevel ..165

Figure 5-8: ISA Assembly (5V) ..166

Figure 5-9: ISA Assembly (3.3V and Universal)...167

Figure 5-10: MC Assembly (5V) ..168

Figure 5-11: MC Assembly (3.3V) ...168

Figure 5-12: ISA Bracket..169

Figure 5-13: ISA Retainer...170

Figure 5-14: MC Bracket Brace ..171

Figure 5-15: MC Bracket..172

xii

Revision 2.1

Figure 5-16: MC Bracket Details ... 173

Figure 5-17: 32-bit Connector .. 174

Figure 5-18: 5V/32-bit Connector Layout Recommendation .. 174

Figure 5-19: 3.3V/32-bit Connector Layout Recommendation.. 175

Figure 5-20: 5V/64-bit Connector .. 175

Figure 5-21: 5V/64-bit Connector Layout Recommendation .. 175

Figure 5-22: 3.3V/64-bit Connector ... 176

Figure 5-23: 3.3V/64-bit Connector Layout Recommendation.. 176

Figure 5-24: 5V/32-bit Card Edge Connector Dimensions and Tolerances.............................. 177

Figure 5-25: 5V/64-bit Card Edge Connector Dimensions and Tolerances.............................. 177

Figure 5-26: 3.3V/32-bit Card Edge Connector Dimensions and Tolerances........................... 178

Figure 5-27: 3.3V/64-bit Card Edge Connector Dimensions and Tolerances........................... 178

Figure 5-28: Universal 32-bit Card Edge Connector Dimensions and Tolerances 179

Figure 5-29: Universal 64-bit Card Edge Connector Dimensions and Tolerances 179

Figure 5-30: PCI Card Edge Connector Contacts.. 180

Figure 5-31: PCI Connector Location on Planar Relative to Datum
 on the ISA Connector ... 183

Figure 5-32: PCI Connector Location on Planar Relative to Datum
 on the EISA Connector .. 183

Figure 5-33: PCI Connector Location on Planar Relative to Datum
 on the MC Connector ... 184

Figure 6-1: Type 00h Configuration Space Header ... 187

Figure 6-2: Command Register Layout .. 190

Figure 6-3: Status Register Layout ... 192

Figure 6-4: BIST Register Layout .. 194

Figure 6-5: Base Address Register for Memory.. 196

Figure 6-6: Base Address Register for I/O.. 196

Figure 6-7: Expansion ROM Base Address Register Layout... 198

Figure 6-8: PCI Expansion ROM Structure .. 200

Figure 6-9: Typical Image Layout .. 205

Figure 6-10: VPD Format .. 207

Figure 7-1: Status Register Layout ... 220

Figure 7-2: 33 MHz PCI vs. 66 MHz PCI Timing .. 222

Figure 7-3: 3.3V Clock Waveform ... 224

Figure 7-4: Output Timing Measurement Conditions ... 226

 xiii

Revision 2.1

Figure 7-5: Input Timing Measurement Conditions ..226

Figure 7-6: Tval(max) Rising Edge...227

Figure 7-7: Tval(max) Falling Edge..227

Figure 7-8: Tval (min) and Slew Rate ...228

Figure 7-9: Recommended Clock Routing ..229

Figure 7-10: Clock Skew Diagram..230

Figure 7-11: Measurement of Tprop ...231

Figure D-1: Programming Interface Byte Layout for IDE Controller Class Code252

Figure E-1: Example Producer - Consumer Model..259

Figure E-2: Example System with PCI-to-PCI Bridges ...266

xiv

Revision 2.1

Preface

Specification Supersedes Earlier Documents
This document contains the formal specifications of the protocol, electrical, and
mechanical features of the PCI Local Bus, Revision 2.1, as the production version
effective June 1, 1995. The PCI Local Bus Specification, Revision 2.0, issued April 30,
1993 is superceded by this specification.

Incorporation of Engineering Change Requests (ECRs)

The following ECRs, have been incorporated into this production version of the
specification:

ECR # Date Title

6 8/16/93 Miscellaneous Mechanical Corrections

7 10/12/93 Standard Definition of Device Specific User Selectable
Configuration Items

8 2/24/94 Cache Line Toggle Mode Deletion

11 3/21/94 PCI Subsystem Identification

12 3/24/94 Miscellaneous Mechanical Clarifications/Corrections

13 4/13/94 ISA Retainer Correction

14 2/7/94 Cardbus Data Structure Pointer

15 2/7/94 Clock Run

16 4/25/94 CLKRUN# Support Status Bit

17 4/24/94 PCI Mini-card Specification

xv

Revision 2.1

Document Conventions
The following name and usage conventions are used in this document:

asserted, deasserted The terms asserted and deasserted refer to the
globally visible state of the signal on the clock edge,
not to signal transitions.

edge, clock edge The terms edge and clock edge refer to the rising edge
of the clock. On the rising edge of the clock is the
only time signals have any significance on the PCI
bus.

A # symbol at the end of a signal name indicates that
the signal’s active state occurs when it is at a low
voltage. The absence of a # symbol indicates that the
signal is active at a high voltage.

reserved The contents or undefined states or information are
not defined at this time. Using any reserved area in
the PCI specification is not permitted. All areas of
the PCI specification can only be changed according
to the by-laws of the PCI Special Interest Group. Any
use of the reserved areas of the PCI specification will
result in a product that is not PCI-compliant. The
functionality of any such product cannot be
guaranteed in this or any future revision of the PCI
specification.

signal names Signal names are indicated with this bold font. At
the first mention of a signal, the full signal name
appears with its abbreviation in parentheses. After its
first mention, the signal is referred to by its
abbreviation.

signal range A signal name followed by a range enclosed in
brackets, for example AD[31::00], represents a range
of logically related signals. The first number in the
range indicates the most significant bit (msb) and the
last number indicates the least significant bit (lsb).

implementation notes Implementation notes are enclosed in a box. They are
not part of the PCI specification and are included for
clarification and illustration only.

xvi

Revision 2.1

Chapter 1
Introduction

1.1. Specification Contents
The PCI Local Bus is a high performance, 32-bit or 64-bit bus with multiplexed address
and data lines. The bus is intended for use as an interconnect mechanism between highly
integrated peripheral controller components, peripheral add-in boards, and
processor/memory systems.

The PCI Local Bus Specification, Rev. 2.1 includes the protocol, electrical, mechanical,
and configuration specification for PCI Local Bus components and expansion boards.
The electrical definition provides for 5.0V and 3.3V signaling environments.

The PCI Local Bus Specification defines the PCI hardware environment. Contact the
PCI SIG for more information on the available PCI design guides and the PCI BIOS
Specification. For information on how to join the PCI SIG or to obtain these documents,
refer to Section 1.6.

1.2. Motivation
Graphics-oriented operating systems such as Windows and OS/2 have created a data
bottleneck between the processor and its display peripherals in standard PC I/O
architectures. Moving peripheral functions with high bandwidth requirements closer to
the system’s processor bus can eliminate this bottleneck. Substantial performance gains
are seen with graphical user interfaces (GUIs) and other high bandwidth functions (i.e.,
full motion video, SCSI, LANs, etc.) when a "local bus" design is used.

The advantages offered by local bus designs have motivated several versions of local bus
implementations. The benefits of establishing an open standard for system I/O buses
have been clearly demonstrated in the PC industry. It is important that a new standard
for local buses be established to simplify designs, reduce costs, and increase the selection
of local bus components and add-in cards.

1

Revision 2.1

1.3. PCI Local Bus Applications
The PCI Local Bus has been defined with the primary goal of establishing an industry
standard, high performance local bus architecture that offers low cost and allows
differentiation. While the primary focus is on enabling new price-performance points in
today’s systems, it is important that a new standard also accommodates future system
requirements and be applicable across multiple platforms and architectures. Figure 1-1
shows the multiple dimensions of the PCI Local Bus.

3.3VServers

High End
Desktops

Low, Mid-
Range

Desktop
X86

Architecture
Processor
Families

Alpha AXPTM

Processor
Families

Future
CPUs

5V
64-bit Upgrade

Path
Auto

Configuration

Mobile

Figure 1-1: PCI Local Bus Applications

While the initial focus of local bus applications has been on low to high end desktop
systems, the PCI Local Bus also comprehends the requirements from mobile applications
up through departmental servers. The 3.3-volt requirements of the mobile environment
and the imminent move from 5 volts to 3.3 volts in desktop applications must be
accounted for in a new standard. The PCI Local Bus specifies both voltages and
describes a clear migration path between them.

The PCI component and add-in card interface is processor independent, enabling an
efficient transition to future processor generations and use with multiple processor
architectures. Processor independence allows the PCI Local Bus to be optimized for I/O
functions, enables concurrent operation of the local bus with the processor/memory
subsystem, and accommodates multiple high performance peripherals in addition to
graphics (motion video, LAN, SCSI, FDDI, hard disk drives, etc). Movement to
enhanced video and multimedia displays (i.e., HDTV and 3D graphics) and other high
bandwidth I/O will continue to increase local bus bandwidth requirements. A transparent
64-bit extension of the 32-bit data and address buses is defined, doubling the bus
bandwidth and offering forward and backward compatibility of 32-bit and 64-bit PCI
Local Bus peripherals. A forward and backward compatible 66 MHz specification is also
defined, doubling the bandwidth capabilities of the 33 MHz definition.

The PCI Local Bus standard offers additional benefits to the users of PCI based systems.
Configuration registers are specified for PCI components and add-in cards. A system
with embedded auto configuration software offers true ease-of-use for the system user by
automatically configuring PCI add-in cards at power on.

2

Revision 2.1

1.4. PCI Local Bus Overview
The block diagram (Figure 1-2) shows a typical PCI Local Bus system architecture. This
example is not intended to imply any specific architectural limits. In this example, the
processor/cache/memory subsystem is connected to PCI through a PCI bridge. This
bridge provides a low latency path through which the processor may directly access PCI
devices mapped anywhere in the memory or I/O address spaces. It also provides a high
bandwidth path allowing PCI masters direct access to main memory. The bridge may
optionally include such functions as data buffering/posting and PCI central functions
(e.g., arbitration).

Exp Bus
Xface

Base I/O
Functions

LAN SCSI

Processor

Bridge/
Memory

Controller

Audio
DRAM

Motion
Video

Graphics

PCI Local Bus

ISA/EISA - MicroChannel

Cache

Figure 1-2: PCI System Block Diagram

Typical PCI Local Bus implementations will support up to four add-in board connectors,
although expansion capability is not required. The PCI add-in board connector is a
Micro Channel (MC)-style connector. The same PCI expansion board can be used in
ISA-, EISA-, and MC-based systems. PCI expansion cards use an edge connector and
motherboards that allow a female connector to be mounted parallel to the system bus
connectors. To provide a quick and easy transition from 5V to 3.3V component
technology, PCI defines two add-in board connectors: one for the 5V signaling
environment and one for the 3.3V signaling environment.

Three sizes of PCI add-in boards are defined: long, short, and variable short length.
Systems are not required to support all board types. The long boards include an
ISA/EISA extender to enable them to use ISA/EISA card guides in ISA/EISA systems.
To accommodate the 5V and 3.3V signaling environments and to facilitate a smooth
migration path between the voltages, three add-in board electrical types are specified: a
"5 volt" board which plugs into only the 5V connector, a "universal" board which plugs
into both 5V and 3.3V connectors, and a "3.3 volt" board which plugs into only the 3.3V
connector.

Two types of PCI backplates are currently defined: ISA/EISA- and MC-compatible.
The interchangeable backplates should both be supplied with each PCI Local Bus add-in
board shipped to accommodate usage of the board in all three system types.

3

Revision 2.1

It is assumed that typical low bandwidth, after-market add-ins will remain on the
standard I/O expansion buses such as ISA, EISA, or MC. One component (or set of
components) on PCI may generate the standard I/O expansion bus used in the system. In
some mobile or client systems, a standard expansion bus may not be required.

1.5. PCI Local Bus Features and Benefits
The PCI Local Bus was specified to establish a high performance local bus standard for
several generations of products. The PCI specification provides a selection of features
that can achieve multiple price-performance points and can enable functions that allow
differentiation at the system and component level. Features are categorized by benefit as
follows:

High Performance • Transparent upgrade from 32-bit data path at 33 MHz
(132 MB/s peak) to 64-bit data path at 33 MHz
(264 MB/s peak) and from 32-bit data path at 66 MHz
(264 MB/s peak) to 64-bit data path at 66 MHz
(528 MB/s peak).

• Variable length linear and cacheline wrap mode bursting
for both read and writes improves write dependent graphics
performance.

• Low latency random accesses (60-ns write access latency
for 33 MHz PCI or 30-ns for 66 MHz PCI to slave
registers from master parked on bus).

• Capable of full concurrency with processor/memory
subsystem.

• Synchronous bus with operation up to 33 MHz or 66 MHz.

• Hidden (overlapped) central arbitration.

Low Cost • Optimized for direct silicon (component) interconnection;
i.e., no glue logic. Electrical/driver (i.e., total load) and
frequency specifications are met with standard ASIC
technologies and other typical processes.

• Multiplexed architecture reduces pin count (47 signals for
target; 49 for master) and package size of PCI components,
or provides for additional functions to be built into a
particular package size.

• Single PCI add-in card works in ISA-, EISA-, or
MC-based systems (with minimal change to existing
chassis designs), reducing inventory cost and end user
confusion.

Ease of Use • Enables full auto configuration support of PCI Local Bus
add-in boards and components. PCI devices contain
registers with the device information required for
configuration.

4

Revision 2.1

Longevity • Processor independent. Supports multiple families of
processors as well as future generations of processors (by
bridges or by direct integration).

• Support for 64-bit addressing.

• Both 5-volt and 3.3-volt signaling environments are
specified. Voltage migration path enables smooth industry
transition from 5 volts to 3.3 volts.

Interoperability/
Reliability

• Small form factor add-in boards.

• Present signals allow power supplies to be optimized for
the expected system usage by monitoring add-in boards
that could surpass the maximum power budgeted by the
system.

• Over 2000 hours of electrical SPICE simulation with
hardware model validation.

• Forward and backward compatibility of 32-bit and 64-bit
add-in boards and components.

• Forward and backward compatibility with 33 MHz and
66 MHz add-in boards and components.

• Increased reliability and interoperability of add-in cards by
comprehending the loading and frequency requirements of
the local bus at the component level, eliminating buffers
and glue logic.

• MC-style expansion connectors.

Flexibility • Full multi-master capability allowing any PCI master peer-
to-peer access to any PCI master/target.

• A shared slot accommodates either a standard ISA, EISA,
or MC board or a PCI add-in board (refer to Chapter 5,
"Mechanical Specification" for connector layout details).

Data Integrity • Provides parity on both data and address, and allows
implementation of robust client platforms.

Software
Compatibility

• PCI components can be fully compatible with existing
driver and applications software. Device drivers can be
portable across various classes of platforms.

5

Revision 2.1

1.6. Administration
This document is maintained by the PCI SIG. The PCI SIG, an unincorporated
association of members of the microcomputer industry, was established to monitor and
enhance the development of the PCI Local Bus in three ways. The PCI SIG is chartered
to:

• Maintain the forward compatibility of all PCI Local Bus revisions or addenda.

• Maintain the PCI Local Bus specification as a simple, easy to implement, stable
technology in the spirit of its design.

• Contribute to the establishment of the PCI Local Bus as an industry wide standard
and to the technical longevity of the PCI Local Bus architecture.

SIG membership is available to all applicants within the microcomputer industry.
Benefits of membership include:

• Ability to submit specification revisions and addendum proposals

• Participation in specification revisions and addendum proposals

• Automatically receive revisions and addenda

• Voting rights to determine the Steering Committee membership

• Vendor ID number assignment

• PCI technical support

• PCI support documentation and materials

• Participation in SIG sponsored trade show suites and events, conferences, and other
PCI Local Bus promotional activities

For information on how to become a SIG member or on obtaining PCI Local Bus
documentation, please contact:

PCI Special Interest Group
P.O. Box 14070
Portland, OR 97214

Phone (800) 433-5177 (U.S.)
(503) 797-4207 (International)

FAX (503) 234-6762

6

Revision 2.1

Chapter 2
Signal Definition

The PCI interface requires a minimum1 of 47 pins for a target-only device and 49 pins
for a master to handle data and addressing, interface control, arbitration, and system
functions. Figure 2-1 shows the pins in functional groups, with required pins on the left
side and optional pins on the right side. The direction indication on signals in Figure 2-1
assumes a combination master/target device.

Interface
Control

System

Address
& Data

Arbitration
(masters only)

PCI
COMPLIANT

DEVICE

AD[31::00]

C/BE[3::0]#

FRAME#
TRDY#
IRDY# LOCK#

REQ#
GNT#

IDSEL
DEVSEL#

CLK
RST#

PAR PAR64

SERR#

TDO
TDI

TCK
TMS

TRST#

JTAG
(IEEE 1149.1)

REQ64#
ACK64#

AD[63::32]

C/BE[7::4]#

Error
Reporting

64-Bit
Extension

STOP#

Required Pins Optional Pins

PERR#

Interface
Control

SDONE
Cache
Support

SBO#

InterruptsINTB#
INTC#
INTD#

INTA#

Figure 2-1: PCI Pin List

1 The minimum number of pins for a planar-only device is 45 for a target-only and 47 for a master
(PERR# and SERR# are optional for planar-only applications). Systems must support all signals
defined for the connector. This includes individual REQ# and GNT# signals for each connector. The
PRSNT[1::2]# pins are not device signals and therefore are not included in Figure 2-1, but are required
to be connected on add-in cards.

7

Revision 2.1

2.1. Signal Type Definition
The following signal type definitions are from the view point of all devices other than the
arbiter or central resource. For the arbiter, REQ# is an input, GNT# is an output, and
other PCI signals for the arbiter have the same direction as a Master or Target. The
central resource is a “logical” device where all system type functions are located (refer to
Section 2.4. for more details).

in Input is a standard input-only signal.

out Totem Pole Output is a standard active driver.

t/s Tri-State is a bi-directional, tri-state input/output pin.

s/t/s Sustained Tri-State is an active low tri-state signal owned and driven
by one and only one agent at a time. The agent that drives an s/t/s pin
low must drive it high for at least one clock before letting it float. A
new agent cannot start driving a s/t/s signal any sooner than one clock
after the previous owner tri-states it. A pullup is required to sustain
the inactive state until another agent drives it, and must be provided
by the central resource.

o/d Open Drain allows multiple devices to share as a wire-OR. A pull-up
is required to sustain the inactive state until another agent drives it,
and must be provided by the central resource.

2.2. Pin Functional Groups
The PCI pin definitions are organized in the functional groups shown in Figure 2-1. A #
symbol at the end of a signal name indicates that the active state occurs when the signal
is at a low voltage. When the # symbol is absent, the signal is active at a high voltage.
The signaling method used on each pin is shown following the signal name.

2.2.1. System Pins

CLK in Clock provides timing for all transactions on PCI and is an
input to every PCI device. All other PCI signals, except
RST#, INTA#, INTB#, INTC#, and INTD#, are sampled on
the rising edge of CLK and all other timing parameters are
defined with respect to this edge. PCI operates up to 33 MHz
(refer to Chapter 4) or 66 MHz (refer to Chapter 7) and, in
general, the minimum frequency is DC (0 Hz); however,
component-specific permissions are described in Chapter 4
(refer to Section 4.2.3.1).

8

Revision 2.1

RST# in Reset is used to bring PCI-specific registers, sequencers, and
signals to a consistent state. What effect RST# has on a
device beyond the PCI sequencer is beyond the scope of this
specification, except for reset states of required PCI
configuration registers. Anytime RST# is asserted, all PCI
output signals must be driven to their benign state. In general,
this means they must be asynchronously tri-stated. SERR#
(open drain) is floated. SBO# and SDONE2 may optionally
be driven to a logic low level if tri-state outputs are not
provided here. REQ# and GNT# must both be tri-stated
(they cannot be driven low or high during reset). To prevent
AD, C/BE#, and PAR signals from floating during reset, the
central resource may drive these lines during reset (bus
parking) but only to a logic low level–they may not be driven
high. REQ64# has meaning at the end of reset and is
described in Section 4.3.2.

RST# may be asynchronous to CLK when asserted or
deasserted. Although asynchronous, deassertion is guaranteed
to be a clean, bounce-free edge. Except for configuration
accesses, only devices that are required to boot the system will
respond after reset.

2.2.2. Address and Data Pins

AD[31::00] t/s Address and Data are multiplexed on the same PCI pins. A
bus transaction consists of an address3 phase followed by one
or more data phases. PCI supports both read and write bursts.

The address phase is the clock cycle in which FRAME# is
asserted. During the address phase AD[31::00] contain a
physical address (32 bits). For I/O, this is a byte address; for
configuration and memory, it is a DWORD address. During
data phases AD[07::00] contain the least significant byte
(lsb) and AD[31::24] contain the most significant byte (msb).
Write data is stable and valid when IRDY# is asserted and
read data is stable and valid when TRDY# is asserted. Data is
transferred during those clocks where both IRDY# and
TRDY# are asserted.

C/BE[3::0]# t/s Bus Command and Byte Enables are multiplexed on the same
PCI pins. During the address phase of a transaction,
C/BE[3::0]# define the bus command (refer to Section 3.1.
for bus command definitions). During the data phase
C/BE[3::0]# are used as Byte Enables. The Byte Enables are
valid for the entire data phase and determine which byte lanes
carry meaningful data. C/BE[0]# applies to byte 0 (lsb) and
C/BE[3]# applies to byte 3 (msb).

2 SDONE and SBO# have no meaning until FRAME# is asserted indicating the start of a transaction.

3 The DAC uses two address phases to transfer a 64-bit address.

9

Revision 2.1

PAR t/s Parity is even4 parity across AD[31::00] and C/BE[3::0]#.
Parity generation is required by all PCI agents. PAR is stable
and valid one clock after the address phase. For data phases,
PAR is stable and valid one clock after either IRDY# is
asserted on a write transaction or TRDY# is asserted on a read
transaction. Once PAR is valid, it remains valid until one
clock after the completion of the current data phase. (PAR
has the same timing as AD[31::00], but it is delayed by one
clock.) The master drives PAR for address and write data
phases; the target drives PAR for read data phases.

2.2.3. Interface Control Pins

FRAME# s/t/s Cycle Frame is driven by the current master to indicate the
beginning and duration of an access. FRAME# is asserted to
indicate a bus transaction is beginning. While FRAME# is
asserted, data transfers continue. When FRAME# is
deasserted, the transaction is in the final data phase or has
completed.

IRDY# s/t/s Initiator Ready indicates the initiating agent’s (bus master’s)
ability to complete the current data phase of the transaction.
IRDY# is used in conjunction with TRDY#. A data phase is
completed on any clock both IRDY# and TRDY# are sampled
asserted. During a write, IRDY# indicates that valid data is
present on AD[31::00]. During a read, it indicates the master
is prepared to accept data. Wait cycles are inserted until both
IRDY# and TRDY# are asserted together.

TRDY# s/t/s Target Ready indicates the target agent’s (selected device’s)
ability to complete the current data phase of the transaction.
TRDY# is used in conjunction with IRDY#. A data phase is
completed on any clock both TRDY# and IRDY# are sampled
asserted. During a read, TRDY# indicates that valid data is
present on AD[31::00]. During a write, it indicates the target
is prepared to accept data. Wait cycles are inserted until both
IRDY# and TRDY# are asserted together.

STOP# s/t/s Stop indicates the current target is requesting the master to
stop the current transaction.

4 The number of "1"s on AD[31::00], C/BE[3::0]#, and PAR equal an even number.

10

Revision 2.1

LOCK# s/t/s Lock indicates an atomic operation that may require multiple
transactions to complete. When LOCK# is asserted, non-
exclusive transactions may proceed to an address that is not
currently locked. A grant to start a transaction on PCI does
not guarantee control of LOCK#. Control of LOCK# is
obtained under its own protocol in conjunction with GNT#.
It is possible for different agents to use PCI while a single
master retains ownership of LOCK#. If a device implements
Executable Memory, it should also implement LOCK# and
guarantee complete access exclusion in that memory. A target
of an access that supports LOCK# must provide exclusion to
a minimum of 16 bytes (aligned). Host bridges that have
system memory behind them should implement LOCK# as a
target from the PCI bus point of view and optionally as a
master. Refer to Section 3.6 for details on the requirements of
LOCK#.

IDSEL in Initialization Device Select is used as a chip select during
configuration read and write transactions.

DEVSEL# s/t/s Device Select, when actively driven, indicates the driving
device has decoded its address as the target of the current
access. As an input, DEVSEL# indicates whether any device
on the bus has been selected.

2.2.4. Arbitration Pins (Bus Masters Only)

REQ# t/s Request indicates to the arbiter that this agent desires use of
the bus. This is a point to point signal. Every master has its
own REQ# which must be tri-stated while RST# is asserted.

GNT# t/s Grant indicates to the agent that access to the bus has been
granted. This is a point to point signal. Every master has its
own GNT# which must be ignored while RST# is asserted.

While RST# is asserted, the arbiter must ignore all REQ#5 lines since they are tri-stated
and do not contain a valid request. The arbiter can only perform arbitration after RST#
is deasserted. A master must ignore its GNT# while RST# is asserted. REQ# and
GNT# are tri-state signals due to power sequencing requirements when 3.3V or 5.0V
only add-in boards are used with add-in boards that use a universal I/O buffer.

5 REQ# is an input to the arbiter, while GNT# is an output.

11

Revision 2.1

2.2.5. Error Reporting Pins

The error reporting pins are required6 by all devices and maybe asserted when enabled:

PERR# s/t/s Parity Error is only for the reporting of data parity errors
during all PCI transactions except a Special Cycle. The
PERR# pin is sustained tri-state and must be driven active by
the agent receiving data two clocks following the data when a
data parity error is detected. The minimum duration of
PERR# is one clock for each data phase that a data parity
error is detected. (If sequential data phases each have a data
parity error, the PERR# signal will be asserted for more than
a single clock.) PERR# must be driven high for one clock
before being tri-stated as with all sustained tri-state signals.
There are no special conditions when a data parity error may
be lost or when reporting of an error may be delayed. An
agent cannot report a PERR# until it has claimed the access
by asserting DEVSEL# (for a target) and completed a data
phase or is the master of the current transaction.

SERR# o/d System Error is for reporting address parity errors, data parity
errors on the Special Cycle command, or any other system
error where the result will be catastrophic. If an agent does
not want a non-maskable interrupt (NMI) to be generated, a
different reporting mechanism is required. SERR# is pure
open drain and is actively driven for a single PCI clock by the
agent reporting the error. The assertion of SERR# is
synchronous to the clock and meets the setup and hold times
of all bused signals. However, the restoring of SERR# to the
deasserted state is accomplished by a weak pullup (same value
as used for s/t/s) which is provided by the system designer and
not by the signaling agent or central resource. This pullup
may take two to three clock periods to fully restore SERR#.
The agent that reports SERR#s to the operating system does
so anytime SERR# is sampled asserted.

6 Some planar devices are granted exceptions (refer to Section 3.8.2. for details).

12

Revision 2.1

2.2.6. Interrupt Pins (Optional)

Interrupts on PCI are optional and defined as "level sensitive," asserted low (negative
true), using open drain output drivers. The assertion and deassertion of INTx# is
asynchronous to CLK. A device asserts its INTx# line when requesting attention from
its device driver. Once the INTx# signal is asserted, it remains asserted until the device
driver clears the pending request. When the request is cleared, the device deasserts its
INTx# signal. PCI defines one interrupt line for a single function device and up to four
interrupt lines for a multi-function7 device or connector. For a single function device,
only INTA# may be used while the other three interrupt lines have no meaning.

INTA# o/d Interrupt A is used to request an interrupt.

INTB# o/d Interrupt B is used to request an interrupt and only has
meaning on a multi-function device.

INTC# o/d Interrupt C is used to request an interrupt and only has
meaning on a multi-function device.

INTD# o/d Interrupt D is used to request an interrupt and only has
meaning on a multi-function device.

Any function on a multi-function device can be connected to any of the INTx# lines.
The Interrupt Pin register (refer to Section 6.2.4 for details) defines which INTx# line the
function uses to request an interrupt. If a device implements a single INTx# line, it is
called INTA#; if it implements two lines, they are called INTA# and INTB#; and so
forth. For a multi-function device, all functions may use the same INTx# line or each
may have its own (up to a maximum of four functions) or any combination thereof. A
single function can never generate an interrupt request on more than one INTx# line.

The system vendor is free to combine the various INTx# signals from the PCI
connector(s) in any way to connect them to the interrupt controller. They may be wire-
ORed or electronically switched under program control, or any combination thereof. The
system designer must insure that all INTx# signals from each connector are connected to
an input on the interrupt controller. This means the device driver may not make any
assumptions about interrupt sharing. All PCI device drivers must be able to share an
interrupt (chaining) with any other logical device, including devices in the same multi-
function package.

7 When several independent functions are integrated into a single device, it will be referred to as a multi-
function device. Each function on a multi-function device has its own configuration space.

13

Revision 2.1

Implementation Note: Interrupt Routing

How interrupts are routed on the motherboard is system specific. However, the
following example may be used when another option is not required and the interrupt
controller has four open interrupt request lines available. Since most devices are single
function and, therefore, can only use INTA# on the device, this mechanism distributes
the interrupts evenly among the interrupt controller’s input pins.

INTA# of Device Number 0 is connected to IRQW on the motherboard. (Device
Number has no significance regarding being located on the motherboard or in a
connector.) INTA# of Device Number 1 is connected to IRQX on the motherboard.
INTA# of Device Number 2 is connected to IRQY on the motherboard. INTA# of
Device Number 3 is connected to IRQZ on the motherboard. The table below describes
how each agent’s INTx# lines are connected to the motherboard interrupt lines. The
following equation can be used to determine which INTx# signal on the motherboard a
given device’s INTx# line(s) is connected.

MB = (D + I) MOD 4

MB = MotherBoard Interrupt (IRQW = 0, IRQX = 1, IRQY = 2 and IRQZ = 3)

D = Device Number

I = Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2 and INTD# = 3)

Device Number Interrupt Pin on Interrupt Pin on
on Motherboard device Motherboard

0, 4, 8, 12, INTA# IRQW
16, 20, 24, 28 INTB# IRQX

INTC# IRQY
INTD# IRQZ

1, 5, 9, 13, INTA# IRQX
17, 21, 25, 29 INTB# IRQY

INTC# IRQZ
INTD# IRQW

2, 6, 10, 14, INTA# IRQY
18, 22, 26, 30 INTB# IRQZ

INTC# IRQW
INTD# IRQX

3, 7, 11, 15, INTA# IRQZ
19, 23, 27, 31 INTB# IRQW

INTC# IRQX
INTD# IRQY

2.2.7. Cache Support Pins (Optional)

A cacheable PCI memory should implement both cache support pins as inputs, to allow
it to work with either write-through or write-back caches. If cacheable memory is
located on PCI, a bridge connecting a write-back cache to PCI must implement both pins

14

Revision 2.1

as outputs; a bridge connecting a write-through cache may only implement one pin as
described in Section 3.9..

It is recommended in systems that do not support PCI cacheable memory to pull-up
SBO# and SDONE (on the connector). PCI cacheable memory agents must come out
of reset ignoring SBO# and SDONE to work in systems that do not support PCI
cacheable memory and will be configured at initialization time to operate in a cacheable
mode when supported.

SBO# in/out Snoop Backoff indicates a hit to a modified line when
asserted. When SBO# is deasserted and SDONE is asserted,
it indicates a "CLEAN" snoop result.

SDONE in/out Snoop Done indicates the status of the snoop for the current
access. When deasserted, it indicates the result of the snoop is
still pending. When asserted, it indicates the snoop is
complete.

2.2.8. Additional Signals

PRSNT[1:2]# in The Present signals are not signals for a device, but are
provided by an add-in board. The Present signals indicate to
the motherboard whether an add-in board is physically
present in the slot and if one is present, the total power
requirements of the board. These signals are required for
add-in boards but are optional for motherboards. Refer to
Section 4.4.1 for more details.

Implementation Note: PRSNT# Pins

At a minimum, the add-in board must ground one of the two PRSNT[1:2]# pins to
indicate to the motherboard that a board is physically in the connector. The signal level
of PRSNT1# and PRSNT2# inform the motherboard of the power requirements of the
add-in board. The add-in board may simply tie PRSNT1# and/or PRSNT2# to ground
to signal the appropriate power requirements of the board. (Refer to Section 4.4.1 for
details.) The motherboard provides pull-ups on these signals to indicate when no board
is currently present.

CLKRUN# in, o/d,
s/t/s

Clock running is an optional signal used as an input for a
device to determine the status of CLK and an open drain
output used by the device to request starting or speeding up
CLK.

CLKRUN# is a sustained tri-state signal used by the central
resource to request permission to stop or slow CLK. The
central resource is responsible for maintaining CLKRUN#
in the asserted state when CLK is running, and deasserts
CLKRUN# to request permission to stop or slow CLK. At
the end of reset, CLKRUN# is asserted. The central
resource must provide the pullup for CLKRUN#.

15

Revision 2.1

Implementation Note: CLKRUN#

CLKRUN# is an optional signal used in the PCI mobile environment and not defined for
the connector. Details of the CLKRUN# protocol and other mobile design
considerations are discussed in the PCI Mobile Design Guide.

M66EN in The 66MHZ_ENABLE pin indicates to a device if the bus
segment is operating at 66 or 33 MHz. Refer to
Section 7.5.1. for details of this signal’s operation.

2.2.9. 64-Bit Bus Extension Pins (Optional)

The 64-bit extension pins are collectively optional. That is, if the 64-bit extension is
used, all the pins in this section are required.

AD[63::32] t/s Address and Data are multiplexed on the same pins and
provide 32 additional bits. During an address phase (when
using the DAC command and when REQ64# is asserted), the
upper 32-bits of a 64-bit address are transferred; otherwise,
these bits are reserved8 but are stable and indeterminate.
During a data phase, an additional 32-bits of data are
transferred when REQ64# and ACK64# are both asserted.

C/BE[7::4]# t/s Bus Command and Byte Enables are multiplexed on the same
pins. During an address phase (when using the DAC
command and when REQ64# is asserted), the actual bus
command is transferred on C/BE[7::4]#; otherwise, these bits
are reserved and indeterminate. During a data phase,
C/BE[7::4]# are Byte Enables indicating which byte lanes
carry meaningful data when REQ64# and ACK64# are both
asserted. C/BE[4]# applies to byte 4 and C/BE[7]# applies
to byte 7.

REQ64# s/t/s Request 64-bit Transfer, when actively driven by the current
bus master, indicates it desires to transfer data using 64 bits.
REQ64# has the same timing as FRAME#. REQ64# has
meaning at the end of reset and is described in Section 4.3.2..

ACK64# s/t/s Acknowledge 64-bit Transfer, when actively driven by the
device that has positively decoded its address as the target of
the current access, indicates the target is willing to transfer
data using 64 bits. ACK64# has the same timing as
DEVSEL#.

8 Reserved means reserved for future use by the PCI SIG Steering Committee. Reserved bits must not be
used by any device.

16

Revision 2.1

PAR64 t/s Parity Upper DWORD is the even parity bit that protects
AD[63::32] and C/BE[7::4]#. PAR64 is valid one clock
after the initial address phase when REQ64# is asserted and
the DAC command is indicated on C/BE[3::0]#. PAR64 is
valid the clock after the second address phase of a DAC
command when REQ64# is asserted.

PAR64 is stable and valid for data phases when both
REQ64# and ACK64# are asserted and one clock after either
IRDY# is asserted on a write transaction or TRDY# is
asserted on a read transaction. Once PAR64 is valid, it
remains valid for one clock after the completion of the data
phase. (PAR64 has the same timing as AD[63::32] but
delayed by one clock.) The master drives PAR64 for
address and write data phases; the target drives PAR64 for
read data phases.

2.2.10. JTAG/Boundary Scan Pins (Optional)

The IEEE Standard 1149.1, Test Access Port and Boundary Scan Architecture, is
included as an optional interface for PCI devices. IEEE Standard 1149.1 specifies the
rules and permissions for designing an 1149.1-compliant IC. Inclusion of a Test Access
Port (TAP) on a device allows boundary scan to be used for testing of the device and the
board on which it is installed. The TAP is comprised of four pins (optionally five) that
are used to interface serially with a TAP controller within the PCI device.

TCK in Test Clock is used to clock state information and test data into
and out of the device during operation of the TAP.

TDI in Test Data Input is used to serially shift test data and test
instructions into the device during TAP operation.

TDO out Test Output is used to serially shift test data and test
instructions out of the device during TAP operation.

TMS in Test Mode Select is used to control the state of the TAP
controller in the device.

TRST# in Test Reset provides an asynchronous initialization of the TAP
controller. This signal is optional in IEEE Standard 1149.1.

These TAP pins should operate in the same electrical environment (5V or 3.3V) as the
I/O buffers of the device’s PCI interface. The drive strength of the TDO pin is not
required to be the same as standard PCI bus pins. TDO drive strength should be
specified in the device’s data sheet.

The system vendor is responsible for the design and operation of the 1149.1 serial chains
("rings") required in the system. The signals are supplementary to the PCI bus and are
not operated in a multi-drop fashion. Typically, an 1149.1 ring is created by connecting
one device’s TDO pin to another device’s TDI pin to create a serial chain of devices. In
this application, the IC’s receive the same TCK, TMS, and optional TRST# signals. The
entire 1149.1 ring (or rings) is (are) connected either to a motherboard test connector for
test purposes or to a resident 1149.1 Controller IC.

The PCI specification supports expansion boards with a connector that includes 1149.1
Boundary Scan signals. The devices on the expansion board could be connected to a

17

Revision 2.1

1149.1 chain on the motherboard. Methods of connecting and using the 1149.1 test rings
in a system with expansion boards include:

• Only use the 1149.1 ring on the expansion board during manufacturing test of the
expansion board. In this case, the 1149.1 ring on the motherboard would not be
connected to the 1149.1 signals for the expansion boards. The motherboard would
be tested by itself during manufacturing.

• For each expansion board connector in a system, create a separate 1149.1 ring on the
motherboard. For example, with two expansion board connectors there would be
three 1149.1 rings on the motherboard.

• Utilize an IC that allows for hierarchical 1149.1 multi-drop addressability. These
IC’s would be able to handle the multiple 1149.1 rings and allow multi-drop
addressability and operation.

Expansion boards that do not support the IEEE Standard 1149.1 interface should
hardwire the board’s TDI pin to its TDO pin.

2.3. Sideband Signals
PCI provides all basic transfer mechanisms expected of a general purpose, multi-master
I/O bus. However, it does not preclude the opportunity for product specific
function/performance enhancements via sideband signals. A sideband signal is loosely
defined as any signal not part of the PCI specification that connects two or more PCI
compliant agents, and has meaning only to these agents. Sideband signals may be used
for two or more devices to communicate some aspect of their device specific state in
order to improve the overall effectiveness of PCI utilization or system operation.

No pins are allowed in the PCI connector for sideband signals. Therefore, sideband
signals must be limited to the planar environment. Furthermore, sideband signals may
never violate the specified protocol on defined PCI signals or cause the specified
protocol to be violated.

18

Revision 2.1

2.4. Central Resource Functions
Throughout this specification, the term central resource is used to describe bus support
functions supplied by the host system, typically in a PCI compliant bridge or standard
chipset. These functions may include, but are not limited to, the following:

• Central Arbitration. (REQ# is an input and GNT# is an output.)

• Required signal pullups or "keepers," as described in Section 4.3.3.

• Subtractive Decode. Only one agent on a PCI bus can use subtractive decode and
would typically be a bridge to a standard expansion bus (refer to Section 3.2.2).

• Convert processor transaction into a configuration transaction.

• Generation of the individual IDSEL signals to each device for system configuration.

• Driving REQ64# during reset.

19

Revision 2.1

20

Revision 2.1

Chapter 3
Bus Operation

3.1. Bus Commands
Bus commands indicate to the target the type of transaction the master is requesting. Bus
commands are encoded on the C/BE[3::0]# lines during the address phase.

3.1.1. Command Definition

PCI bus command encodings and types are as listed below, followed by a brief
description of each. Note: The command encodings are as viewed on the bus where a
"1" indicates a high voltage and "0" is a low voltage. Byte enables are asserted when
"0".

C/BE[3::0]# Command Type

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Interrupt Acknowledge
Special Cycle
I/O Read
I/O Write
Reserved
Reserved
Memory Read
Memory Write
Reserved
Reserved
Configuration Read
Configuration Write
Memory Read Multiple
Dual Address Cycle
Memory Read Line
Memory Write and Invalidate

The Interrupt Acknowledge command is a read implicitly addressed to the system
interrupt controller. The address bits are logical don’t cares during the address phase and
the byte enables indicate the size of the vector to be returned.

21

Revision 2.1

The Special Cycle command provides a simple message broadcast mechanism on PCI. It
is designed to be used as an alternative to physical signals when sideband
communication is necessary. This mechanism is fully described in Section 3.7.2..

The I/O Read command is used to read data from an agent mapped in I/O Address Space.
AD[31::00] provide a byte address. All 32 bits must be decoded. The byte enables
indicate the size of the transfer and must be consistent with the byte address.

The I/O Write command is used to write data to an agent mapped in I/O Address Space.
All 32 bits must be decoded. The byte enables indicate the size of the transfer and must
be consistent with the byte address.

Reserved command encodings are reserved for future use. PCI targets must not alias
reserved commands with other commands. Targets must not respond to reserved
encodings. If a reserved encoding is used on the interface, the access typically will be
terminated with Master-Abort.

The Memory Read command is used to read data from an agent mapped in the Memory
Address Space. The target is free to do an anticipatory read for this command only if it
can guarantee that such a read will have no side effects. Furthermore, the target must
ensure the coherency (which includes ordering) of any data retained in temporary buffers
after this PCI transaction is completed. Such buffers must be invalidated before any
synchronization events (e.g., updating an I/O status register or memory flag) are passed
through this access path.

The Memory Write command is used to write data to an agent mapped in the Memory
Address Space. When the target returns "ready," it has assumed responsibility for the
coherency (which includes ordering) of the subject data. This can be done either by
implementing this command in a fully synchronous manner, or by insuring any software
transparent posting buffer will be flushed before synchronization events (e.g., updating
an I/O status register or memory flag) are passed through this access path. This implies
that the master is free to create a synchronization event immediately after using this
command.

The Configuration Read command is used to read the Configuration Space of each agent.
An agent is selected during a configuration access when its IDSEL signal is asserted and
AD[1::0] are 00. During the address phase of a configuration cycle, AD[7::2] address
one of the 64 DWORD registers (where byte enables address the byte(s) within each
DWORD) in Configuration Space of each device and AD[31::11] are logical don’t cares
to the selected agent (refer to Section 3.7.4). AD[10::08] indicate which device of a
multi-function agent is being addressed.

The Configuration Write command is used to transfer data to the Configuration Space of
each agent. An agent is selected when its IDSEL signal is asserted and AD[1::0]are 00.
During the address phase of a configuration cycle, the AD[7::2] lines address the 64
DWORD (where byte enables address the byte(s) within each DWORD) Configuration
Space of each device and AD[31::11] are logical don’t cares. AD[10::08] indicate
which device of a multi-function agent is being addressed.

The Memory Read Multiple command is semantically identical to the Memory Read
command except that it additionally indicates that the master may intend to fetch more
than one cacheline before disconnecting. The memory controller should continue
pipelining memory requests as long as FRAME# is asserted. This command is intended
to be used with bulk sequential data transfers where the memory system (and the
requesting master) might gain some performance advantage by sequentially reading

22

Revision 2.1

ahead one or more additional cacheline(s) when a software transparent buffer is available
for temporary storage.

The Dual Address Cycle (DAC) command is used to transfer a 64-bit address to devices
that support 64-bit addressing when the address is not in the low 4 GB address space.
Targets that support only 32-bit addresses must treat this command as reserved and not
respond to the current transaction in any way.

The Memory Read Line command is semantically identical to the Memory Read
command except that it additionally indicates that the master intends to fetch a complete
cacheline. This command is intended to be used with bulk sequential data transfers
where the memory system (and the requesting master) might gain some performance
advantage by reading up to a cacheline boundary in response to the request rather than a
single memory cycle. As with the Memory Read command, pre-fetched buffers must be
invalidated before any synchronization events are passed through this access path.

The Memory Write and Invalidate command is semantically identical to the Memory
Write command except that it additionally guarantees a minimum transfer of one
complete cacheline; i.e., the master intends to write all bytes within the addressed
cacheline in a single PCI transaction unless interrupted by the target. Note: All byte
enables must be asserted during each data phase for this command. The master may
allow the transaction to cross a cacheline boundary only if it intends to transfer the entire
next line also. This command requires implementation of a configuration register in the
master indicating the cacheline size (refer to Section 6.2.4. for more information) and
may only be used with Linear Burst Ordering (refer to Section 3.2.2.). It allows a
memory performance optimization by invalidating a "dirty" line in a write-back cache
without requiring the actual write-back cycle, thus shortening access time.

3.1.2. Command Usage Rules

All PCI devices (except host bus bridges) are required to respond as a target to
configuration (read and write) commands. All other commands are optional.

For block data transfers to/from system memory, Memory Write and Invalidate, Memory
Read Line, and Memory Read Multiple are the recommended commands for masters
capable of supporting them. The Memory Read or Memory Write commands can be
used if for some reason the master is not capable of using the performance optimizing
commands. For masters using the memory read commands, any length access will work
for all commands; however, the preferred use is shown below.

While Memory Write and Invalidate is the only command that requires implementation
of the Cacheline Size register, it is strongly suggested the memory read commands use it
as well. A bridge that prefetches is responsible for any latent data not consumed by the
master. The simplest way for the bridge to correctly handle latent data is to simply mark
it invalid at the end of the current transaction. Otherwise, it must participate in the cache
coherency.

23

Revision 2.1

The preferred use of the read commands is:

Memory Read command When reading data in an address range that has
side-effects (not prefetchable) or a reading a
single DWORD.

Memory Read Line command Reading more than a DWORD up to the next
cacheline boundary in a prefetchable address
space.

Memory Read Multiple command Reading a block which crosses a cacheline
boundary (stay one cacheline ahead of the
master if possible) of data in a prefetchable
address range.

The target should treat the read commands the same even though they do not address the
first DWORD of the cacheline. For example, a target that is addressed at DWORD 1
(instead of DWORD 0) should only prefetch to the end of the current cacheline. If the
Cacheline Size register is not implemented, then the master should assume a cacheline
size of either 16 or 32 bytes and use the read commands recommended above. (This
assumes linear burst ordering.)

Implementation Note: Using Read Commands

Different read commands will have different affects on system performance because host
bridges and PCI-to-PCI bridges must treat the commands differently. When the Memory
Read Command is used, a bridge will obtain only the data the master requested and no
more, since a side-effect may exists. The bridge cannot read more because it does not
know which bytes are required for the next data phase. That information is not available
until the current data phase completes. However, for Memory Read Line and Memory
Read Multiple, the master guarantees that the address range is prefetchable and,
therefore, the bridge can obtain more data than the master actually requested. This
process increases system performance when the bridge can prefetch and the master
requires more than a single DWORD.

As an example, suppose a master needed to read three DWORDs from a target on the
other side of a PCI-to-PCI bridge. If the master used the Memory Read command, the
bridge could not begin reading the second DWORD from the target because it does not
have the next set of byte enables and therefore will terminate the transaction after a
single data transfer. If, however, the master used the Memory Read Line command, the
bridge would be free to burst data from the target through the end of the cacheline,
allowing the data to flow to the master more quickly.

The Memory Read Multiple command allows bridges to prefetch data farther ahead of
the master, thereby increasing the chances that a burst transfer can be sustained.

It is highly recommended that the Cacheline Size register be implemented to ensure
correct use of the read commands. The Cacheline Size register must be implemented
when using the optional Cacheline Wrap mode burst ordering.

Using the correct read command gives optimal performance. If, however, not all read
commands are implemented, then choose the ones which work the best most of the time.
For example, if the large majority of accesses by the master read entire cachelines and
only a small number of accesses read more than a cacheline, it would be reasonable for
the device to only use the Memory Read Line command for both types of accesses.

24

Revision 2.1

3.2. PCI Protocol Fundamentals
The basic bus transfer mechanism on PCI is a burst. A burst is composed of an address
phase and one or more data phases. PCI supports bursts in both memory and I/O
Address Spaces.

All signals are sampled on the rising edge of the clock9. Each signal has a setup and
hold aperture with respect to the rising clock edge, in which transitions are not allowed.
Outside this aperture, signal values or transitions have no significance. This aperture
occurs only on "qualified" rising clock edges for AD[31::00], AD[63::32], PAR10,
PAR64, and IDSEL signals11 and on every rising clock edge for LOCK#, IRDY#,
TRDY#, FRAME#, DEVSEL#, STOP#, REQ#, GNT#, REQ64#, ACK64#, SBO#,
SDONE, SERR# (on the falling edge of SERR# only), and PERR#. C/BE[3::0]#,
C/BE[7::4]# (as bus commands) are qualified on the clock edge that FRAME# is first
asserted. C/BE[3::0]#, C/BE[7::4]# (as byte enables) are qualified on each rising clock
edge following the completion of an address phase or data phase and remain valid the
entire data phase. RST#, INTA#, INTB#, INTC#, and INTD# are not qualified nor
synchronous.

3.2.1. Basic Transfer Control

The fundamentals of all PCI data transfers are controlled with three signals (see
Figure 3-1).

FRAME# is driven by the master to indicate the beginning and end of a
transaction.

IRDY# is driven by the master to indicate that it is ready to transfer data.

TRDY# is driven by the target to indicate that it is ready to transfer data.

The interface is in the Idle state when both FRAME# and IRDY# are deasserted. The
first clock edge on which FRAME# is asserted is the address phase, and the address and
bus command code are transferred on that clock edge. The next clock edge begins the
first of one or more data phases during which data is transferred between master and
target on each clock edge for which both IRDY# and TRDY# are asserted. Wait cycles
may be inserted in a data phase by either the master or the target when IRDY# or
TRDY# is deasserted.

The source of the data is required to assert its xRDY# signal unconditionally when data
is valid (IRDY# on a write transaction, TRDY# on a read transaction). The receiving
agent may delay the assertion of its xRDY# when it is not ready to accept data. When
delaying the assertion of its xRDY#, the target and master must meet the latency
requirements specified in Sections 3.5.1.1. and 3.5.2.. In all cases, data is only
transferred when IRDY# and TRDY# are both asserted on the same rising clock edge.

9 The only exceptions are RST#, INTA#, INTB#, INTC#, and INTD# which are discussed in
Sections 2.2.1. and 2.2.6..

10 PAR and PAR64 are treated like an AD line delayed by one clock.

11 The notion of qualifying AD and IDSEL signals is fully defined in Section 3.7.3..

25

Revision 2.1

Once a master has asserted IRDY#, it cannot change IRDY# or FRAME# until the
current data phase completes regardless of the state of TRDY#. Once a target has
asserted TRDY# or STOP#, it cannot change DEVSEL#, TRDY#, or STOP# until the
current data phase completes. Neither the master nor the target can change its mind once
it has committed to the current data transfer until the current data phase completes. (A
data phase completes when IRDY# and [TRDY# or STOP#] are asserted.) Data may or
may not transfer depending on the state of TRDY#.

At such time as the master intends to complete only one more data transfer (which could
be immediately after the address phase), FRAME# is deasserted and IRDY# is asserted
indicating the master is ready. After the target indicates that it is ready to complete the
final data transfer (TRDY# is asserted), the interface returns to the Idle state with both
FRAME# and IRDY# deasserted.

3.2.2. Addressing

PCI defines three physical address spaces. The Memory and I/O Address Spaces are
customary. The Configuration Address Space has been defined to support PCI hardware
configuration. Accesses to this space are further described in Section 3.7.4..

PCI targets (except host bus bridges) are required to implement Base Address register(s)
to access internal registers or functions (refer to Chapter 6 for more details.) The
configuration software uses the Base Address register to determine how much space a
device requires in a given address space and then assigns (if possible) where in that space
the device will reside.

Implementation Note: Device Address Space

It is highly recommended, that a device requests (via Base Address register(s)) that its
internal registers be mapped into Memory Space and not I/O Space. In PC systems, I/O
Space is limited and highly fragmented and will become more difficult to allocate in the
future, however the use of I/O Space is allowed. Requesting Memory Space instead of
I/O Space allows a device to be used in a system that does not support I/O Space. A
device may map its internal register into both Memory Space and optionally I/O Space
by using two Base Address registers, one for I/O and the other for Memory. The system
configuration software will allocate (if possible) space to each Base Address register.
When the agent’s device driver is called, it determines which address space is to be used
to access the device. If the preferred access mechanism is I/O Space and the I/O Base
Address register was initialized, then the driver would access the device using I/O bus
transactions to the I/O Address Space assigned. Otherwise, the device driver would be
required to use memory accesses to the address space defined by the Memory Base
Address register. Note: Both Base Address registers point at the same registers
internally. Note: A Base Address register does not contain a valid address when it is
equal to "0".

Address decoding on PCI is distributed; i.e., done on every device. This obviates the
need for central decode logic or for device select signals beyond the one used for
configuration. Each agent is responsible for its own address decode. PCI supports two
styles of address decoding: positive and subtractive. Positive decoding is faster since
each device is looking for accesses in the address range(s) that it has been assigned.
Subtractive decoding can be implemented by only one device on the bus since it accepts
all accesses not positively decoded by some other agent. This decode mechanism is
slower since it must give all other bus agents a "first right of refusal" on the access.

26

Revision 2.1

However, it is very useful for an agent, such as a standard expansion bus, that must
respond to a highly fragmented address space. Targets that perform either positive or
subtractive decode must not respond (assert DEVSEL#) to reserved bus commands

The information contained in the two low order address bits (AD[1::0]) varies by
address space. In the I/O Address Space, all 32 AD lines are used to provide a full byte
address. This allows an agent requiring byte level address resolution to complete address
decode and claim the cycle12 without waiting an extra cycle for the byte enables (thus
delaying all subtractive decode cycles by an extra clock). AD[1::0] are used for the
generation of DEVSEL# only and indicate the least significant valid byte involved in the
transfer. For example, if BE0# were asserted then AD[1::0] would be "00"; if only
BE3# were asserted, then AD[1::0] would be "11". (Note: An access with no byte
enables asserted is valid, in this case AD[1:0] can be "xx".) Once a target has claimed
an I/O access (using AD[1::0]) by asserting DEVSEL#, it then determines if it can
complete the entire access as indicated in the byte enables. Note: A device may restrict
what type of access(es) it supports in I/O or Memory Space but not in Configuration
Space. For example, a device may restrict its driver to only access the device using byte,
word, or DWORD operations and is free to terminate all other accesses with Target-
Abort.

The device decodes the AD lines and asserts DEVSEL# if it “owns” the starting address.
The AD lines that are used for decode purposes are dependent on the size of the space the
device claims. For example, a device that claims four bytes (which are within a single
DWORD) is not required to decode AD[1::0]. Once the access is claimed, the agent
completes the access, if possible, as indicated by the byte enables. Even though the
device “owns” the entire DWORD, it may terminate the access with Target-Abort when
it is accessed with a byte enable combination not supported by the device.

For a device that may share bytes within a single DWORD with another device, the
device addressed by AD[31::00] asserts DEVSEL# and claims the access. If the byte
enables request data not owned by the device, it is required not to transfer any data and
must terminate the access with Target-Abort. Only a device that may share bytes within
a DWORD should use the following table. The table indicates valid address/byte enable
combinations that a master may use when accessing a device in I/O Space. Any other
combination is illegal and must be terminated with Target-Abort if the byte enables
access an address outside the range of bytes inclusive in the device. Only a standard
expansion bridge (a bridge that does subtractive decoding) is exempt from terminating
the transaction with Target-Abort, because it does not know what devices reside behind
it. This condition can only occur for devices behind a standard expansion bus bridge.
Devices on the PCI bus are only assigned address space aligned on DWORD boundaries
and in quantities of 2N DWORDs.

AD1 AD0 C/BE3# C/BE2# C/BE1# C/BE0#
0 0 X X X 0
0 1 X X 0 1
1 0 X 0 1 1
1 1 0 1 1 1
X X 1 1 1 1

Note: X = either 1 or 0

12 Standard PC address assignments in the I/O Space are such that separate physical devices may share
the same DWORD address. This means that in certain cases, a full byte address is required for the device
to claim the access (assert DEVSEL#).

27

Revision 2.1

All targets are required to check AD[1::0] during a memory command transaction, and
either provide the requested burst order or execute a target Disconnect after or with the
first data phase. Implementation of linear burst ordering is required by all devices that
can support bursting. Implementing cacheline wrap is not required. In the Memory
Address Space, accesses are decoded to a DWORD address using AD[31::02]. In linear
incrementing mode, the address is assumed to increment by one DWORD (four bytes)
for 32-bit transfers and two DWORDs (eight bytes) for 64-bit transfers after each data
phase until the transaction is terminated (an exception is described in Section 3.10.). The
Memory Write and Invalidate command can only use the linear incrementing burst mode.

During Memory commands, AD[1::0] have the following meaning:

AD1 AD0 Burst Order
0 0 Linear Incrementing
0 1 Reserved (disconnect after first data phase)13

1 0 Cacheline Wrap mode
1 1 Reserved (disconnect after first data phase)

Cacheline wrap burst may begin anywhere in the cacheline. The length of a cacheline is
defined by the Cacheline Size register (refer to Section 6.2.4) in Configuration Space
which is initialized by configuration software. The access proceeds by incrementing
until the end of the cacheline has been reached, and then wraps to the beginning of the
same cacheline. It continues until the rest of the line has been transferred. For example,
an access where the cacheline size is 16 bytes (four DWORDs) and the transaction
addresses DWORD 8, the sequence for a 32-bit transfer would be:

First data phase is to DWORD 8

Second data phase is to DWORD C (which is the end of the current cacheline)

Third data phase is to DWORD 0 (which is the beginning of the addressed
cacheline)

Last data phase is to DWORD 4 (which completes access to the entire cacheline)

If the burst continues once a complete cacheline has been accessed, the burst continues at
the same DWORD location of the next cacheline. Continuing the burst of the previous
example would be:

Fifth data phase is to DWORD 18

Sixth data phase is to DWORD 1C (which is the end of the second cacheline)

Seventh data phase is to DWORD 10 (which is the beginning of the second
cacheline)

Last data phase is to DWORD 14 (which completes access to the second cacheline)

If a target does not implement the Cacheline Size register, the target must signal
Disconnect with or after the completion of the first data phase when Cacheline Wrap or a
reserved mode is used. If an alternate burst sequence is desired after the first cacheline
has completed, the master must stop the access after the first line has been transferred
and begin a new access in another mode.

13 This encoded value is reserved and cannot be assigned any “new” meaning for new designs. New
designs (master or targets) cannot use this encoding. Note that in an earlier version of this specification,
this encoding had meaning and there are masters that generate it and some targets may allow the
transaction to continue past the initial data phase.

28

Revision 2.1

In the Configuration Address Spaces, accesses are decoded to a DWORD address using
AD[7::2]. An agent determines it is the target of the access (asserts DEVSEL#) when a
configuration command is decoded, IDSEL is asserted, and AD[1::0] are "00".
Otherwise, the agent ignores the current transaction. A bridge determines a configuration
access is for a device behind it by decoding a configuration command, its bridge number
and AD[1::0] are "01".

3.2.3. Byte Alignment

Byte lane swapping is not done on PCI since all PCI compliant devices must connect to
all 32 address/data bits for address decode purposes. However, DWORD swapping is
done by masters that support 64-bit data paths when transferring data to a 32-bit device.
This means that bytes will always appear in their natural byte lane based upon byte
address.

Furthermore, PCI does not support automatic bus sizing. In general, software is very
aware of the characteristics of the target device and only issues appropriate length
accesses; 64-bit data path transfers are one particular exception.

The byte enables alone are used to determine which bytes carry meaningful data. The
byte enables are free to change between data phases but must be valid on the edge of the
clock that starts each data phase and must stay valid for the entire data phase. In
Figure 3-1, data phases begin on clocks 3, 5, and 7. (Changing byte enables during a
read burst transaction is generally not useful, but is permitted.) The master is free to
change the byte enables on each new data phase (although the read diagram does not
show this). If the master changes byte enables on a read transaction, it does so with the
same timing as would be used in a write transaction. If byte enables are important for
the target on a read transaction, the target must wait for the byte enables to be valid on
each data phase before completing the transfer; otherwise, it must return all bytes. Note:
Byte enables are valid during the entire data phase independent of the state of IRDY#.

When the current read transaction is to cacheable memory, all bytes must be returned
regardless of which byte enables are asserted. This requires the agent that determines
cacheability to guarantee the target returns all bytes. If cacheability is determined by the
request initiator, it must ensure that all byte enables are asserted so the target will return
all required data. If cacheability is determined by the target, it must ignore the byte
enables (except for PAR generation) and return the entire DWORD for a 32-bit transfer
(two DWORDs for a 64-bit transfer). The cacheable target must either return the entire
cacheline or only the first data requested.

If a target does not support caching but does support prefetching (bit set in the Memory
Base Address register -- refer to Section 6.2.5.1.), it must also return all data regardless
of which byte enables are asserted. A target can only operate in this mode when there are
no side effects (data destroyed or status changes because of the access.)

PCI allows any contiguous or non-contiguous combination of byte enables. If no byte
enables are asserted, the target of the access must complete the data phase by asserting
TRDY# and providing parity if the transaction is a read request. The target of an access
where no byte enables are asserted must complete the current data phase without any
permanent change. On a read transaction, this means that data or status are not changed.
If completing the access has no affect on the data or status, the target may complete the
access by either providing data or not. On a read transaction, the target must provide
parity across AD[31::0] and C/BE[3::0]# for a 32-bit transfer and AD[63::32] and
C/BE[7::4]# for a 64-bit transfer regardless of the state of the byte enables. On a write

29

Revision 2.1

transaction, the data is not stored and PAR is valid for a 32-bit transfer and PAR64 is
valid for a 64-bit transfer.

However, some targets may not be able to properly interpret non-contiguous patterns
(e.g., expansion bus bridges that interface to 8- and 16-bit slaves). If this occurs, a target
(expansion bus bridge) may optionally report an illegal pattern as an asynchronous error
(SERR#) or, if capable, break the transaction into two 16-bit transactions that are legal
for the intended agent. On an I/O access, the target is required to signal Target-Abort if
it is unable to complete the entire access defined by the byte enables.

3.2.4. Bus Driving and Turnaround

A turnaround cycle is required on all signals that may be driven by more than one agent.
The turnaround cycle is required to avoid contention when one agent stops driving a
signal and another agent begins driving the signal. This is indicated on the timing
diagrams as two arrows pointing at each others’ tail. This turnaround cycle occurs at
different times for different signals. For instance, IRDY#, TRDY#, DEVSEL#,
STOP#, and ACK64# use the address phase as their turnaround-cycle. FRAME#,
REQ64#, C/BE[3::0]#, C/BE[7::4]#, AD[31::00], and AD[63::32] use the Idle state
between transactions as their turnaround cycle. The turnaround cycle for LOCK# occurs
one clock after the current owner releases it. PERR# has a turnaround cycle on the
fourth clock after the last data phase, which is three clocks after the turnaround-cycle for
the AD lines. An Idle state is when both FRAME# and IRDY# are deasserted (e.g.,
clock 9 in Figure 3-1).

All AD lines (including AD[63::32] when the master supports a 64-bit data path) must
be driven to stable values during 64-bit transfers every address and data phase. Even
byte lanes not involved in the current data transfer must physically drive stable (albeit
meaningless) data onto the bus. The motivation is for parity calculations and to keep
input buffers on byte lanes not involved in the transfer from switching at the threshold
level, and more generally to facilitate fast metastability-free latching. In power sensitive
applications, it is recommended that in the interest of minimizing bus switching power
consumption, byte lanes not being used in the current bus phase should be driven with
the same data as contained in the previous bus phase. In applications that are not power
sensitive, the agent driving the AD lines may drive whatever it desires on unused byte
lanes. Parity must be calculated on all bytes regardless of the byte enables.

3.2.5. Transaction Ordering

Transaction ordering rules on PCI accomplish three things. First, they satisfy the write-
results ordering requirements of the Producer-Consumer Model. This means that the
results of writes from one master (the Producer) anywhere in the systems are observable
by another master (the Consumer) anywhere in the system only in their original order.
(Different masters (Producers) in different places in the system have no fundamental
need for their writes to happen in a particular order with respect to each other, since each
will have a different Consumer. In this case, the rules allow for some writes to be
rearranged.) Refer to Appendix E for a complete discussion of the Producer-Consumer
Model. Second, they allow for some transactions to be posted to improve performance.
And third, they prevent bus deadlock conditions, when posting buffers have to be flushed
to meet the first requirement.

30

Revision 2.1

The order relationship of a given transaction with respect to other transactions is
determined when it completes, i.e., when data is transfered. Transactions which
terminate with Retry have not completed since no data was transfered, and, therefore,
have no ordering requirements relative to each other. Transactions that teminate with
Master-Abort or Traget-Abort are considered completed with or without data being
transferred and will not be repeated by the master. The system may accept requests in
any order, completing one while continuing to Retry another. If a master requires one
transaction to be completed before another, then the master must not attempt the second
transaction until the first one is complete. If a master has only one outstanding request at
a time, then that master’s transactions will complete throughout the system in the same
order the master executed them. Refer to Section 3.3.3.3.6. for further discussion of
request ordering.

Transactions can be divided into two general groups based on how they cross a bridge in
a multi-bus system, posted and non-posted. Posted transactions complete on the
orginating bus before they complete on the destination bus. In essence, the intermediate
target (bridge) of the access accepts the data on behalf of the actual target and assumes
responsibility for ensuring that the access completes at the final destination. Memory
writes (Memory Write and Memory Write and Invalidate commands) are allowed to be
posted on the PCI bus.

Non-posted transactions complete on the destination bus before completing on the
originating bus. Memory read transactions (Memory Read, Memory Read Line, Memory
Read Multiple), I/O transactions (I/O Read and I/O Write), and configuration
transactions (Configuration Read and Configuration Write) are non-posted (except as
noted below for host bridges).

Host bus bridges may post I/O write transactions that originate on the host bus and
complete on a PCI bus segment when they follow the ordering rules described in this
specification and do not cause a deadlock. This means that when a host bus bridge posts
an I/O write transaction that originated on the host bus, it must provide a deadlock free
environment when the transaction completes on PCI. The transaction will complete on
the destination PCI bus before completing on the originating PCI bus.

Bridges may post memory write transactions moving in either direction through the
bridge. The following ordering rules guarantee that the results of one master’s write
transactions are observable by other masters in the proper order, even though the write
transaction may be posted in a bridge. They also guarantee that the bus does not
deadlock when a bridge tries to empty its posting buffers.

1. Posted memory writes moving in the same direction through a bridge will complete
on the destination bus in the same order they complete on the originating bus. Even
if a single burst on the originating bus is terminated with Disconnect on the
destination bus so that it is broken into multiple transactions, those transactions must
not allow the data phases to complete on the destination bus in any order other that
their order on the originating bus.

2. Write transactions flowing in one direction through a bridge have no ordering
requirements with respect to writes flowing in the other direction through the bridge.

3. Posted memory write buffers in both directions must be flushed before completing a
read transaction in either direction. Posted memory writes originating on the same
side of the bridge as a read transaction, and completing before the read command
completes on the originating bus, must complete on the destination bus in the same
order. Posted memory writes originating on the opposite side of the bridge from a
read transaction and completing on the read-destination bus before the read

31

Revision 2.1

command completes on the read-destination bus, must complete on the read-origin
bus in the same order. In other words, a read transaction must push ahead of it
through the bridge any posted writes originating on the same side of the bridge and
posted before the read. And before the read transaction can complete on its
originating bus, it must pull out of the bridge any posted writes which originated on
the opposite side and were posted before the read command completes on the read-
destination bus.

4. A device can never make the acceptance (posting) of a memory write transaction as a
target contingent on the prior completion of a non-posted transaction as a master.
Otherwise, a deadlock may occur.

Implementation Note: Deadlock When Posted Write Data is Not Accepted

As an example of a case where a device must accept posted write data to avoid a
deadlock, suppose a PCI-to-PCI bridge contains posted memory write data addressed to a
downstream agent. But before the bridge can acquire the downstream bus to do the write
transaction, the downstream agent initiates a read from host memory. Since requirement
3 above states that posting buffers must be flushed before a read transaction can be
completed, the bridge must Retry the agent’s read and attempt a write transaction. If the
agent were to make the acceptance of the write data contingent upon the prior completion
of the retried read transaction (that is, if it could not accept the posted write until it first
completed the read transaction), the bus would be deadlocked.

Since certain PCI-to-PCI bridge devices designed to previous version of this spec require
their posting buffer to be flushed before starting any non-posted transaction, the same
deadlock could occur if the agent makes the acceptance of a posted write contingent on
the prior completion of any non-posted transaction.

Bridges are not the only devices permitted to post memory write data. Non-bridge
devices are strongly encouraged to post memory write data to speed the transaction on
the PCI bus. How such a device deals with ordering of posted write data is strictly
implementation dependent and beyond the scope of this specification. However, non-
bridges must follow the same rules for avoiding deadlock as bridges. For example, non-
bridges can never make the acceptance of a posted write transaction contingent on the
prior completion of a non-posted transaction as a master.

Since memory write transactions may be posted anywhere in the system, and I/O writes
may be posted in the host bus bridge, a master cannot automatically tell when its write
transaction completes at the final destination. For a device driver to guarantee that a
write has completed at the actual target (and not at a intermediate device), it must
complete a read to the same device that the write was targeted. The read (memory or
I/O) forces all bridges between the originating master and the actual target to flush all
posted data before allowing the read to complete. For additional details on device
drivers refer to Section 6.5.. See also Section 3.11, item 6, for other cases where a read
may be necessary.

Interrupt requests do not appear as transactions on the PCI bus (they are sideband
signals), and, therefore, have no ordering relationship to any bus transactions.
Furthermore, the system is not required to use the Interrupt Acknowledge bus transaction
to service interrupts. So interrupts are not synchronizing events, and device drivers
cannot depend on them to flush posting buffers.

32

Revision 2.1

3.2.6. Combining, Merging, and Collapsing

Under certain conditions, bridges that receive (write) data may attempt to convert a
transaction (with a single or mulitple data phases) into a larger transaction to optimize
the data transfer on PCI. The terms used when describing the action are: Combining,
Merging, and Collapsing. Each term will be defined and the usage for bridges (host,
PCI-to-PCI, or standard expansion bus) will be discussed.

Combining -- occurs when sequential memory write transaction (single data phase
or burst and independent of active byte enables) are combined into a single PCI bus
transaction (using linear burst ordering).

The combining of data is not required but is recommended whenever posting of write
data is being done. Combining may only be done when the implied ordering is not
changed. Implied ordering means that the target sees the data in the same order as the
original master generated it. For example, a write sequence of DWORD 1, 2, and 4 can
be converted into a burst sequence. However, a write of DWORD 4, 3, and 1 cannot be
combined into a burst but must appear on PCI as three separate transactions in the same
order as they occurred originally. Bursts may include data phases that have no byte
enables asserted. For example, the sequence DWORD 1, 2, and 4 could be combined
into a burst where data phase 1 contains the data and byte enables provided with
DWORD 1. The second data phase of the burst uses data and byte enables provided with
DWORD 2, while data phase 3 asserts no byte enables and provides no meaningful data.
The burst completes with data phase 4 using data and byte enables provided with
DWORD 4.

If the target is unable to handle multiple data phases for a single transaction, it terminates
the burst transaction with Disconnect with or after each data phase. The target sees the
data in the same order the originating master generated it whether the transaction was
originally generated as a burst or as a series of single cycle accesses which were
combined into a burst. (Note: If a bridge does combining, a disable bit in device
specific Configuration Space is recommended.)

Byte Merging -- occurs when a sequence of individual memory writes (bytes or
words) are merged into a single DWORD.

The merging of bytes within the same DWORD for 32-bit transfers or QUADWORD
(eight bytes) for 64-bit transfers is not required but is recommended when posting of
write data is done. Byte Merging may only be done when the bytes within a data phase
are in a prefetchable address range. While similar to combining in concept, merging can
be done in any order (within the same data phase) as long as each byte is only written
once. For example, in a sequence where bytes 3, 1, 0, and 2 are written to the same
DWORD address, the bridge could merge them into a single data phase memory write on
PCI with Byte Enable 0, 1, 2, and 3 all asserted instead of four individual write
transactions. However, if the sequence written to the same DWORD address were byte
1, and byte 1 again (with the same or different data), byte 2, and byte 3, the bridge
cannot merge the first two writes into a single data phase because the same byte location
would have been written twice. However, the last three transactions could be merged
into a single data phase with Byte Enable 0 being deasserted and Byte Enable 1, 2, and 3
being asserted. Merging can never be done to a range of I/O or Memory Mapped I/O
addresses (not prefetchable).

33

Revision 2.1

Note: Merging and combining can be done independently of each other. Bytes within a
DWORD may be merged and merged DWORDs can be combined with other DWORDs
when conditions allow. A device can implement only byte merging, only combining,
both byte merging and combining, or neither byte merging or combining.

Cacheline Merging -- is when a sequence of memory writes are merged into a single
cacheline and may only occur when the address space has been defined to be
cacheable or when byte merging and/or combining are used to create a cacheline
transfer. This means that memory write accesses to a cacheline can be merged as
bytes, words or DWORDs in any order as long as each byte is only written once. An
agent can do cacheline merging when it either participates in the cache coherency of
the memory or has explicit knowledge of the address range of cacheable memory.

Collapsing -- is when a sequence of memory writes to the same location (byte, word,
or DWORD address) are collapsed into a single bus transaction.

Collapsing is NOT permitted by PCI bridges (host, PCI-to-PCI, or standard expansion)
except as noted below. For example, a memory write transaction with Byte Enable 3
asserted to DWORD address X, followed by a memory write access to the same address
(X) as a byte, word, or DWORD, or any other combination of bytes allowed by PCI
where Byte Enable 3 is asserted, cannot be merged into a single PCI transaction. These
two accesses must appear on PCI as two separate and distinct transactions.

Note: The combining and merging of I/O and Configuration transactions are not
allowed. The collapsing of data of any type of transaction (Configuration, Memory, or
I/O) is never allowed (except where noted below).

Note: If a device cannot tolerate Memory Write Combining, it has been designed
incorrectly. If a device cannot tolerate Memory Write Byte Merging, it must mark itself
as NOT prefetchable. (Refer to Section 6.2.5.1 for a description of prefetchable.) A
device that marks itself prefetchable must tolerate Combining (without reordering) and
Byte Merging (without collapsing) of writes as described previously. A device is
explicitly NOT required to tolerate reordering of DWORDs or collapsing of data. A
prefetchable address range may have write side effects, but it may not have read side
effects. A bridge (host bus, PCI-to-PCI, or standard expansion bus) cannot reorder
DWORDs in any space, even in a prefetchable space.

Bridges may optionally allow data to be collapsed in a specific address range when a
device driver indicates that there are no adverse side-effects due to collapsing. How a
device driver indicates this to the system is beyond the scope of this specification.

34

Revision 2.1

Implementation Note: Combining, Merging, and Collapsing

Bridges that post memory write data should consider implementing Combining and Byte
Merging. The collapsing of multiple memory write transactions into a single PCI bus
transaction is never allowed (except as noted above). The combining of sequential
DWORD memory writes into a PCI burst has significant performance benefits. For
example, a processor is doing a large number of DWORD writes to a frame buffer.
Since the typical frame buffer is not supported as PCI cacheable, the processor will
generate DWORD accesses to this region. When the host bus bridge combines these
accesses into a single PCI transaction, the PCI bus can keep up with a host bus that is
running faster and/or wider than PCI.

The merging of bytes within a single DWORD provides a performance improvement but
not as significant as combining. However, for unaligned multi-byte data transfers
merging allows the host bridge to merge misaligned data into single DWORD memory
write transactions. This reduces (at a minimum) the number of PCI transactions by a
factor of two. When the bridge merges bytes into a DWORD and then combines
DWORDs into a burst, the number of transactions on PCI can be reduced even further
than just merging. With the addition of combining sequential DWORDs, the number of
transactions on PCI can be reduced further. Merging data (DWORDs) within a single
cacheline appears to have minimal performance gains since PCI cacheable memory
appears to be rare (if in existence at all).

3.3. Bus Transactions
The timing diagrams in this section show the relationship of significant signals involved
in 32-bit transactions. When a signal is drawn as a solid line, it is actively being driven
by the current master or target. When a signal is drawn as a dashed line, no agent is
actively driving it. However, it may still be assumed to contain a stable value if the
dashed line is at the high rail. Tri-stated signals are indicated to have indeterminate
values when the dashed line is between the two rails (e.g., AD or C/BE# lines). When a
solid line becomes a dotted line, it indicates the signal was actively driven and now is tri-
stated. When a solid line makes a low to high transition and then becomes a dotted line,
it indicates the signal was actively driven high to precharge the bus, and then tri-stated.
The cycles before and after each transaction will be discussed in Section 3.4.

35

Revision 2.1

3.3.1. Read Transaction

Figure 3-1 illustrates a read transaction and starts with an address phase which occurs
when FRAME# is asserted for the first time and occurs on clock 2. During the address
phase, AD[31::00] contain a valid address and C/BE[3::0]# contain a valid bus
command.

FRAME#

CLK

TRDY#

IRDY#

AD

DEVSEL#

C/BE#

ADDRESS

BUS CMD

DATA-1 DATA-2 DATA-3

BE#'s

1 2 3 4 5 6 7 8 9

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

 W
A

IT

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

 W
A

IT

DATA
PHASE

 W
A

IT

BUS TRANSACTION

Figure 3-1: Basic Read Operation

The first clock of the first data phase is clock 3. During the data phase, C/BE# indicate
which byte lanes are involved in the current data phase. A data phase may consist of
wait cycles and a data transfer. The C/BE# output buffers must remain enabled (for both
read and writes) from the first clock of the data phase through the end of the transaction.
This ensures C/BE# are not left floating for long intervals. The C/BE# lines contain
valid byte enable information during the entire data phase independent of the state of
IRDY#. The C/BE# lines contain the byte enable information for data phase N+1 on the
clock following the completion of the data phase N. This is not shown in Figure 3- 1
because a burst read transaction typically has all byte enables asserted; however, it is
shown in Figure 3-2. Notice on clock 5 in Figure 3-2, the master inserted a wait state by
deasserting IRDY#. However, the byte enables for data phase 3 are valid on clock 5 and
remain valid until the data phase completes on clock 8.

The first data phase on a read transaction requires a turnaround-cycle (enforced by the
target via TRDY#). In this case, the address is valid on clock 2 and then the master
stops driving AD. The earliest the target can provide valid data is clock 4. The target
must drive the AD lines following the turnaround cycle when DEVSEL# is asserted.
Once enabled, the output buffers must stay enabled through the end of the transaction.
(This ensures that the AD lines are not left floating for long intervals.)

One way for a data phase to complete is when data is transferred, which occurs when
both IRDY# and TRDY# are asserted on the same rising clock edge. There are other
conditions that complete a data phase and these are discussed in Section 3.3.3.2.

36

Revision 2.1

(TRDY# cannot be driven until DEVSEL# is asserted.) When either IRDY# or TRDY#
is deasserted, a wait cycle is inserted and no data is transferred. As noted in Figure 3-1,
data is successfully transferred on clocks 4, 6, and 8, and wait cycles are inserted on
clocks 3, 5, and 7. The first data phase completes in the minimum time for a read
transaction. The second data phase is extended on clock 5 because TRDY# is
deasserted. The last data phase is extended because IRDY# was deasserted on clock 7.

The master knows at clock 7 that the next data phase is the last. However, because the
master is not ready to complete the last transfer (IRDY# is deasserted on clock 7),
FRAME# stays asserted. Only when IRDY# is asserted can FRAME# be deasserted as
occurs on clock 8, indicating to the target that this is the last data phase of the
transaction.

3.3.2. Write Transaction

Figure 3-2 illustrates a write transaction. The transaction starts when FRAME# is
asserted for the first time which occurs on clock 2. A write transaction is similar to a
read transaction except no turnaround cycle is required following the address phase
because the master provides both address and data. Data phases work the same for both
read and write transactions.

FRAME#

CLK

TRDY#

IRDY#

AD

DEVSEL#

C/BE#

ADDRESS

BUS CMD

DATA-3

1 2 3 4 5 6 7 8 9

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

 W
A

IT

 W
A

IT

DATA-1 DATA-2

 W
A

IT

D
A

T
A

 T
R

A
N

S
F

E
R

DATA
PHASE

BE#'s-1 BE#'s-3BE#'s-2

BUS TRANSACTION

Figure 3-2: Basic Write Operation

In Figure 3-2, the first and second data phases complete with zero wait cycles. However,
the third data phase has three wait cycles inserted by the target. Notice both agents insert
a wait cycle on clock 5. IRDY# must be asserted when FRAME# is deasserted
indicating the last data phase.

The data transfer was delayed by the master on clock 5 because IRDY# was deasserted.
The last data phase is signaled by the master on clock 6, but it does not complete until
clock 8.

37

Revision 2.1

Note: Although this allowed the master to delay data, it did not allow the byte enables to
be delayed.

3.3.3. Transaction Termination

Termination of a PCI transaction may be initiated by either the master or the target.
While neither can actually stop the transaction unilaterally, the master remains in
ultimate control, bringing all transactions to an orderly and systematic conclusion
regardless of what caused the termination. All transactions are concluded when
FRAME# and IRDY# are both deasserted, indicating an Idle state (e.g., clock 9 in
Figure 3-2).

3.3.3.1. Master Initiated Termination

The mechanism used in master initiated termination is when FRAME# is deasserted and
IRDY# is asserted. This condition signals the target that the final data phase is in
progress. The final data transfer occurs when both IRDY# and TRDY# are asserted.
The transaction reaches completion when both FRAME# and IRDY# are deasserted (Idle
state).

The master may initiate termination using this mechanism for one of two reasons:
Completion refers to termination when the master has concluded its intended

transaction. This is the most common reason for termination.

Timeout refers to termination when the master’s GNT# line is deasserted and
its internal Latency Timer has expired. The intended transaction is not
necessarily concluded. The timer may have expired because of target-
induced access latency or because the intended operation was very
long. Refer to Section 3.5.3. for a description of the Latency Timer
operation.

A Memory Write and Invalidate transaction is not governed by the
Latency Timer except at cacheline boundaries. A master that initiates
a transaction with the Memory Write and Invalidate command ignores
the Latency Timer until a cacheline boundary. When the transaction
reaches a cacheline boundary and the Latency Timer has expired (and
GNT# is deasserted), the master must terminate the transaction.

A modified version of this termination mechanism allows the master to terminate the
transaction when no target responds. This abnormal termination is referred to as Master-
Abort. Although it may cause a fatal error for the application originally requesting the
transaction, the transaction completes gracefully, thus preserving normal PCI operation
for other agents.

Two examples of normal completion are shown in Figure 3-3. The final data phase is
indicated by the deassertion of FRAME# and the assertion of IRDY#. The final data
phase completes when FRAME# is deasserted and IRDY# and TRDY# are both
asserted. The bus reaches an Idle state when IRDY# is deasserted, which occurs on
clock 4. Because the transaction has completed, TRDY# is deasserted on clock 4 also.
Note: TRDY# is not required to be asserted on clock 3, but could have delayed the final
data transfer (and transaction termination) until it is ready by delaying the final assertion
of TRDY#. If the target does that, the master is required to keep IRDY# asserted until
the final data transfer occurs.

38

Revision 2.1

CLK

TRDY#

IRDY#

1 2 3 4 1 2 3 4

T/O

T/O

FRAME#

GNT#

Figure 3-3: Master Initiated Termination

Both sides of Figure 3-3 could have been caused by a timeout termination. On the left
side, FRAME# is deasserted on clock 3 because the timer expires, GNT# is deasserted,
and the master is ready (IRDY# asserted) for the final transfer. Because GNT# was
deasserted when the timer expired, continued use of the bus is not allowed except when
using the Memory Write and Invalidate command (refer to Section 3.5.3.), which must
be stopped at the cacheline boundary. Termination then proceeds as normal. If TRDY#
is deasserted on clock 2, that data phase continues until TRDY# is asserted. FRAME#
must remain deasserted and IRDY# must remain asserted until the data phase completes.

The right-hand example shows a timer expiring on clock 1. Because the master is not
ready to transfer data (IRDY# is deasserted on clock 2), FRAME# is required to stay
asserted. FRAME# is deasserted on clock 3 because the master is ready (IRDY# is
asserted) to complete the transaction on clock 3. The master must be driving valid data
(write) or be capable of receiving data (read) whenever IRDY# is asserted. This delay in
termination should not be extended more than two or three clocks. Also note that the
transaction need not be terminated after timer expiration unless GNT# is deasserted.

Master-Abort termination, as shown in Figure 3-4, is an abnormal case (except for
configuration or Special Cycle commands) of master initiated termination. A master
determines that there will be no response to a transaction if DEVSEL# remains
deasserted on clock 6. (For a complete description of DEVSEL# operation, refer to
Section 3.7.1..) The master must assume that the target of the access is incapable of
dealing with the requested transaction or that the address was bad and must not repeat the
transaction. Once the master has detected the missing DEVSEL# (clock 6 in this
example), FRAME# is deasserted on clock 7 and IRDY# is deasserted on clock 8. The
earliest a master can terminate a transaction with Master-Abort is five clocks after
FRAME# was first sampled asserted, which occurs when the master attempts a single
data transfer. If a burst is attempted, the transaction is longer than five clocks. However,
the master may take longer to deassert FRAME# and terminate the access. The master
must support the FRAME# -- IRDY# relationship on all transactions including Master-
Abort. FRAME# cannot be deasserted before IRDY# is asserted and IRDY# must
remain asserted for at least one clock after FRAME# is deasserted even when the
transaction is terminated with Master-Abort.

Alternatively, IRDY# could be deasserted on clock 7, if FRAME# was deasserted as in
the case of a transaction with a single data phase. The master will normally not repeat a
transaction terminated with Master-Abort. (Refer to Section 3.8.2.2..) Note: If
DEVSEL# had been asserted on clocks 3, 4, 5, or 6 of this example, it would indicate

39

Revision 2.1

the request had been acknowledged by an agent and Master-Abort termination would not
be permissible.

The host bus bridge, in PC compatible systems, must return all 1’s on a read transaction
and discard data on a write transaction when terminated with Master-Abort. The bridge
is required to set the Master-Abort detected bit in the status register. Other master
devices may report this condition as an error by signaling SERR# when the master
cannot report the error through its device driver. A PCI-to-PCI bridge must support PC
compatibility as described for the host bus bridge. When the PCI-to-PCI bridge is used
in other systems, the bridge behaves like other masters and reports an error. Prefetching
of read data beyond the actual request by a bridge must be totally transparent to the
system. This means that when a prefetched transaction is terminated with Master-Abort,
the bridge must simply stop the transaction and continue normal operation without
reporting an error. This occurs when a transaction is not claimed by a target.

TRDY#

DEVSEL#

IRDY#

CLK

NO RESPONSE

ACKNOWLEDGE
FAST MED SLOW SUB

FRAME#

1 2 3 4 5 6 7 8

Figure 3-4: Master-Abort Termination

In summary, the following general rules govern FRAME# and IRDY# in all PCI
transactions:

1. FRAME# and its corresponding IRDY# define the Busy/Idle state of the bus; when
either is asserted, the bus is busy; when both are deasserted, the bus is Idle.

2. Once FRAME# has been deasserted, it cannot be reasserted during the same
transaction.

3. FRAME# cannot be deasserted unless IRDY# is asserted. (IRDY# must always be
asserted on the first clock edge that FRAME# is deasserted.)

4. Once a master has asserted IRDY#, it cannot change IRDY# or FRAME# until the
current data phase completes.

3.3.3.2. Target Initiated Termination

Under most conditions, the target is able to source or sink the data requested by the
master until the master terminates the transaction. But when the target is unable to
complete the request, it may use the STOP# signal to initiate termination of the
transaction. How the target combines STOP# with other signals will indicate to the
master something about the condition which lead to the termination.

40

Revision 2.1

The three types of target initiated termination are:

Retry refers to termination requested before any data is transferred because
the target is busy and temporarily unable to process the transaction.
This condition may occur, for example, because the device cannot
meet the initial latency requirement, is currently locked by another
master, or there is a conflict for a internal resource.

Retry is a special case of Disconnect without data being transferred on
the initial data phase.

The target signals Retry by asserting STOP# and not asserting
TRDY# on the initial data phase of the transaction. When the target
uses Retry, no data is transferred.

Disconnect refers to termination requested with or after data was transferred on
the initial data phase because the target is unable to respond within the
target subsequent latency requirement, and, therefore, is temporarily
unable to continue bursting. This might be because the burst crosses a
resource boundary or a resource conflict occurs. Data may or may not
transfer on the data phase where Disconnect is signaled. Notice that
Disconnect differs from Retry in that Retry is always on the initial
data phase, and no data transfers. If data is transferred with or before
the target terminates the transaction, it is a Disconnect. This may also
occur on the initial data phase because the target is not capable of
doing a burst.

Disconnect with data may be signaled on any data phase by asserting
TRDY# and STOP# together. This termination is used when the
target is only willing to complete the current data phase and no more.

Disconnect without data may be signaled on any subsequent data
phase (meaning data was transferred on the previous data phase) by
deasserting TRDY# and asserting STOP#.

Target-Abort refers to an abnormal termination requested because the target
detected a fatal error or the target will never be able to complete the
request. Although it may cause a fatal error for the application
originally requesting the transaction, the transaction completes
gracefully, thus, preserving normal operation for other agents. For
example, a master requests all bytes in an addressed DWORD to be
read, but the target owns only the lower two bytes of the addressed
DWORD. Since the target cannot complete the entire request, the
target terminates the request with Target-Abort.

Once the target has claimed an access by asserting DEVSEL#, it can
signal Target-Abort on any subsequent clock. The target signals
Target-Abort by deasserting DEVSEL# and asserting STOP# at the
same time.

Most targets will be required to implement at least Retry capability, but any other
versions of target initiated termination are optional for targets. Masters must be capable
of properly dealing with them all. Retry is optional to very simple targets that 1) do not
support exclusive (locked) accesses, 2) do not have a posted memory write buffer which
needs to be flushed to meet the PCI ordering rules, 3) cannot get into a state where they
may need to reject an access, and 4) can always meet target initial latency.

41

Revision 2.1

A target is permitted to signal Disconnect with data (assert STOP# and TRDY#) on the
initial data phase even if the master is not bursting; i.e., FRAME# is deasserted.

Cacheable targets must not disconnect a Memory Write and Invalidate command except
at cacheline boundaries, whether caching is currently enabled or not. Therefore, a
"snooping" agent may always assume a Memory Write and Invalidate command will
complete without being "disconnected" when the access is to a cacheable memory range.

3.3.3.2.1. Target Termination Signaling Rules

The following general rules govern FRAME#, IRDY#, TRDY#, STOP#, and
DEVSEL# while terminating transactions.

1. A data phase completes on any rising clock edge on which IRDY# is asserted and
either STOP# or TRDY# is asserted.

2. Independent of the state of STOP#, a data transfer takes place on every rising edge
of clock where both IRDY# and TRDY# are asserted.

3. Once the target asserts STOP#, it must keep STOP# asserted until FRAME# is
deasserted, whereupon it must deassert STOP#.

4. Once a target has asserted TRDY# or STOP#, it cannot change DEVSEL#,
TRDY#, or STOP# until the current data phase completes.

5. Whenever STOP# is asserted, the master must deassert FRAME# as soon as
IRDY# can be asserted.

6. If not already deasserted, TRDY#, STOP#, and DEVSEL# must be deasserted the
clock following the completion of the last data phase and must be tri-stated the next
clock.

Rule 1 means that a data phase can complete with or without TRDY# being asserted.
When a target is unable to complete a data transfer, it can assert STOP# without
asserting TRDY#.

When both FRAME# and IRDY# are asserted, the master has committed to complete
two data phases. The master is unable to deassert FRAME# until the current data phase
completes because IRDY# is asserted. Because a data phase is allowed to complete
when STOP# and IRDY# are asserted, the master is allowed to start the final data phase
by deasserting FRAME# and keeping IRDY# asserted. The master must deassert
IRDY# the clock after the completion of the last data phase.

Rule 2 indicates that data transfers regardless of the state of STOP# when both TRDY#
and IRDY# are asserted.

Rule 3 means that once STOP# is asserted, it must remain asserted until the transaction
is complete. The last data phase of a transaction completes when FRAME# is
deasserted, IRDY# is asserted, and STOP# (or TRDY#) is asserted. The target must not
assume any timing relationship between the assertion of STOP# and the deassertion of
FRAME#, but must keep STOP# asserted until FRAME# is deasserted and IRDY# is
asserted (the last data phase completes). STOP# must be deasserted on the clock
following the completion of the last data phase.

When both STOP# and TRDY# are asserted in the same data phase, the target will
transfer data in that data phase. In this case, TRDY# must be deasserted when the data
phase completes. As before, STOP# must remain asserted until the transaction ends
whereupon it is deasserted.

42

Revision 2.1

If the target requires wait states in the data phase where it asserts STOP# it must delay
the assertion of STOP# until it is ready to complete the data phase.

Rule 4 means the target is not allowed to change its mind once it has committed to
complete the current data phase. Committing to complete a data phase occurs when the
target asserts either TRDY# or STOP#. The target commits to:

• Transfer data in the current data phase and continue the transaction (if a burst) by
asserting TRDY# and not asserting STOP#

• Transfer data in the current data phase and terminate the transaction by asserting both
TRDY# and STOP#

• Not transfer data in the current data phase and terminate the transaction by asserting
STOP# and deasserting TRDY#

• Not transfer data in the current data phase and terminate the transaction with an error
condition (Target-Abort) by asserting STOP# and deasserting TRDY# and
DEVSEL#

The target has not committed to complete the current data phase while TRDY# and
STOP# are both deasserted. The target is simply inserting wait states.

Rule 5 means that when the master samples STOP# asserted, it must deassert FRAME#
on the first cycle thereafter in which IRDY# is asserted. The assertion of IRDY# and
deassertion of FRAME# should occur as soon as possible after STOP# is asserted,
preferably within one to three cycles. This assertion of IRDY# (and therefore FRAME#
deassertion) may occur as a consequence of the normal IRDY# behavior of the master
had the current transaction not been target terminated. Alternatively, if TRDY# is
deasserted (indicating there will be no further data transfer), the master may assert
IRDY# immediately (even without being prepared to complete a data transfer). If a
Memory Write and Invalidate transaction is terminated by the target, the master
completes the transaction (the rest of the cacheline) as soon as possible (adhering to the
STOP# protocol) using the Memory Write command (since the conditions to issue
Memory Write and Invalidate are no longer true).

Rule 6 requires the target to release control of the target signals in the same manner it
would if the transaction had completed using master termination. Retry and Disconnect
are normal termination conditions on the bus. Only Target-Abort is an abnormal
termination that may have caused an error. Because the reporting of errors is optional,
the bus must continue operating as though the error never occurred.

Examples of Target Termination

Retry

Figure 3-5 shows a transaction being terminated with Retry. The transaction starts with
FRAME# asserted on clock 2 and IRDY# asserted on clock 3. The master requests
multiple data phases because both FRAME# and IRDY# are asserted on clock 3. The
target claims the transaction by asserting DEVSEL# on clock 4.

The target also determines it cannot complete the master’s request and also asserts
STOP# on clock 4 while keeping TRDY# deasserted. The first data phase completes on
clock 4 because both IRDY# and STOP# are asserted. Since TRDY# was deasserted,
no data was transferred during the initial data phase. Because STOP# was asserted and
TRDY# was deasserted on clock 4, the master knows the target is unwilling to transfer
any data for this transaction. The master is required to deassert FRAME# as soon as
IRDY# can be asserted. In this case, FRAME# is deaserted on clock 5 because IRDY#

43

Revision 2.1

is asserted on clock 5. The last data phase completes on clock 5 because FRAME# is
deasserted and STOP# is asserted. The target deasserts STOP# and DEVSEL# on
clock 6 because the transaction is complete. This transaction consisted of two data
phases in which no data was transferred and the master is required to repeat the request
again.

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5 6

Figure 3-5: Retry

Disconnect With Data

Disconnect - A, in Figure 3-6, is where the master is inserting a wait state when the
target signals Disconnect with data. This transaction starts prior to clock 1. The current
data phase, which could be the initial or a subsequent data phase, completes on clock 3.
The master inserts a wait state on clocks 1 and 2, while the target inserts a wait state only
on clock 1. Since the target wants to complete only the current data phase, and no more,
it asserts TRDY# and STOP# at the same time. In this example, the data is transferred
during the last data phase. Because the master sampled STOP# asserted on clock 2,
FRAME# is deasserted on clock 3 and the master is ready to complete the data phase
(IRDY# is asserted). Since FRAME# is deasserted on clock 3, the last data phase
completes because STOP# is asserted and data transfers because both IRDY# and
TRDY# are asserted. Notice that STOP# remains asserted for both clocks 2 and 3. The
target is required to keep STOP# asserted until FRAME# is deasserted.

Disconnect - B, in Figure 3-6, is almost the same as Disconnect - A but TRDY# is not
asserted in the last data phase. In this example, data was transferred on clocks 1 and 2
but not during the last data phase. The target indicates that it cannot continue the burst
by asserting both STOP# and TRDY# together. When the data phase completes on
clock 2, the target is required to deassert TRDY# and keep STOP# asserted. The last
data phase completes, without transferring data, on clock 3 because TRDY# is deasserted
and STOP# is asserted. In this example, there are three data phases, two that transfer
data and one that does not.

44

Revision 2.1

STOP#

TRDY#

DEVSEL#

FRAME#

IRDY#

CLK

Disconnect - A Disconnect - B

1 2 3 4 1 2 3 4

Figure 3-6: Disconnect With Data

Figure 3-7 is an example of Master Completion termination where the target blindly
asserts STOP#. This is a legal termination where the master is requesting a transaction
with a single data phase and the target blindly asserts STOP# and TRDY# indicating it
can complete only a single data phase. The transaction starts like all transactions with
the assertion of FRAME#. The master indicates that the initial data phase is the final
data phase because FRAME# is deasserted and IRDY# is asserted on clock 3. The target
claims the transaction, indicates it is ready to transfer data, and requests the transaction to
stop by asserting DEVSEL#, TRDY#, and STOP# all at the same time.

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5

Figure 3-7: Master Completion Termination

45

Revision 2.1

Disconnect Without Data

Figure 3-8 shows a transaction being terminated with Disconnect without data. The
transaction starts with FRAME# being asserted on clock 2 and IRDY# being asserted on
clock 3. The master is requesting multiple data phases because both FRAME# and
IRDY# are asserted on clock 3. The target claims the transaction by asserting
DEVSEL# on clock 4.

The first data phase completes on clock 4 and the second on clock 5. On clock 6, the
master wants to continue bursting because FRAME# and IRDY# are still asserted.
However, the target cannot complete any more data phases and asserts STOP# and
deasserts TRDY# on clock 6. Since IRDY# and STOP# are asserted on clock 6, the
third data phase completes. The target continues to keep STOP# asserted on clock 7
because FRAME# is still asserted on clock 6. The fourth and final data phase completes
on clock 7 since FRAME# is deasserted (IRDY# is asserted) and STOP# is asserted on
clock 7. The bus returns to the Idle state on clock 8.

In this example, the first two data phases complete transferring data while the last two do
not. This might happen if a device accepted two DWORDs of data and then determined
that its buffers where full, or if the burst crossed a resource boundary. The target is able
to complete the first two data phases but cannot complete the third. When and if the
master continues the burst, the device that owns the address of the next untransferred
data will claim the access and continue the burst.

OM04045

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5 6 7 8

DATA
PHASE

DATA PHASE

D
A

TA
 T

R
A

N
S

F
E

R

D
A

T
A

 T
R

A
N

S
F

E
R

DATA
PHASE

DATA
PHASE

Figure 3-8: Disconnect-1 Without Data Termination

Figure 3-9 shows the same transaction as described in Figure 3-8 except that the master
inserts a wait state on clock 6. Since FRAME# was not deasserted on clock 5, the
master committed to at least one more data phase and must complete it. The master is
not allowed simply to transition the bus to the Idle state by deasserting FRAME# and
keeping IRDY# deasserted. This would be a violation of bus protocol. When the master
is ready to assert IRDY#, it deasserts FRAME# indicating the last data phase, which
completes on clock 7 since STOP# is asserted. This example only consists of three data
phases while the previous had four. The fact that the master inserted a wait state allowed
the master to complete the transaction with the third data phase. However, from a clock
count, the two transactions are the same.

46

Revision 2.1

OM04044

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5 6 7 8

DATA
PHASE

DATA PHASE DATA PHASE

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

Figure 3-9: Disconnect-2 Without Data Termination

Target-Abort

Figure 3-10 shows a transaction being terminated with Target-Abort. Target-Abort
indicates the target requires the transaction to be stopped and does not want the master to
repeat the request again. Sometime prior to clock 1, the master asserted FRAME# to
initiate the request and the target claimed the access by asserting DEVSEL#. Data
phases may or may not have completed prior to clock 1. The target determines that the
master has requested a transaction that the target is incapable of completing or has
determined that a fatal error has occurred. Before the target can signal Target-Abort,
DEVSEL# must be asserted for one or more clocks. To signal Target-Abort, TRDY#
must be deasserted when DEVSEL# is deasserted and STOP# is asserted, which occurs
on clock 2. If any data was transferred during the previous data phases of the current
transaction, it may have been corrupted. Because STOP# is asserted on clock 2 and the
master can assert IRDY# on clock 3, the master deasserts FRAME# on clock 3. The
transaction completes on clock 3 because IRDY# and STOP# are asserted. The master
deasserts IRDY# and the target deasserts STOP# on clock 4.

47

Revision 2.1

STOP#

TRDY#

DEVSEL#

FRAME#

IRDY#

CLK
1 2 3 4

Figure 3-10: Target-Abort

3.3.3.2.2. Requirements on a Master Because of Target Termination

Although not all targets will implement all forms of target termination, masters must be
capable of properly dealing with them all.

Deassertion of REQ# When Target Terminated

When the current transaction is terminated by the target either by Retry or Disconnect
(with or without data), the master must deassert its REQ# signal before repeating the
transaction. The master must deassert REQ# for a minimum of two clocks, one being
when the bus goes to the Idle state (at the end of the transaction where STOP# was
asserted) and either the clock before or the clock after the Idle state. If another master is
waiting to use the bus, the arbiter is required to grant a different master access to the bus
to prevent deadlocks. It also allows other masters to use the bus which would normally
be wasted since the master would attempt to complete the transaction that was terminated
by the target. The master is not required to deassert its REQ# when the target requests
the transaction to end by asserting STOP# in the last data phase. An example is
Figure 3-7 which is really Master Completion termination and not target termination.

Repeat Request Terminated With Retry

A master which is target terminated with Retry must unconditionally repeat the same
request until it completes; however, it is not required to repeat the transaction when
terminated with Disconnect. "Same transaction" means that the same address, same
command, same byte enables, and, if supported, LOCK# and REQ64# that were used
on the original request must be used when the access is repeated. "Unconditionally" in
the above rule means the master must repeat the same transaction that was terminated
with Retry independent of any subsequent events (except as noted below) until the
original transaction is satisfied.

This does not mean the master must immediately repeat the same transaction. In the
simplest form, the master would request use of the bus after the two clocks REQ# was
deasserted and repeat the same transaction. The master may perform other bus
transactions, but cannot require them to complete before repeating the original

48

Revision 2.1

transaction. If the device also implements target functionality, it must be able to accept
accesses during this time as well.

A multi-function device is a good example of how this works. Functions 1, 2, and 3 of a
single device are all requesting use of the interface. Function 1 requests a read
transaction and is terminated with Retry. Once Function 1 has returned the bus to an Idle
state, Function 2 may attempt a transaction (assuming GNT# is still active for the
device). After Function 2 releases the bus, Function 3 may proceed if GNT# is still
active. Once Function 3 completes, the device must deassert its REQ# for the two
clocks before reasserting it. As illustrated above, Function 1 is not required to complete
its transaction before another function can request a transaction. But Function 1 must
repeat its access regardless of how the transactions initiated by Function 2 or 3 are
terminated. The master of a transaction must repeat its transaction unconditionally
which means the repeat of the transaction cannot be gated by any other event or
condition.

This rule applies to all transactions that are terminated by Retry regardless of how many
previous transactions may have been terminated by Retry. In the example above, if
Function 2 attempted to do a transaction and was terminated by Retry, it must repeat that
transaction unconditionally just as Function 1 is required to repeat its transaction
unconditionally. Neither Function 1 nor Function 2 can depend on the completion of the
other function’s transaction or the success of any transaction attempted by Function 3 to
be able to repeat its original request.

A subsequent transaction (not the original request) could result in the assertion of
SERR#, PERR#, or being terminated with Retry, Disconnect, Target-Abort, or Master-
Abort. Any of these events would have no effect on the requirement that the master must
repeat an access that was terminated with Retry.

A master should repeat a transaction terminated by Retry as soon as possible preferably
within 33 clocks. However, there are a few conditions when a master is unable to repeat
the request. These conditions typically are caused when an error occurs; for example, the
system asserts RST#, the device driver resets, and then re-initializes the component, or
software disables the master by resetting the Bus Master bit (bit 2 in the Command
register). Refer to Section 3.3.3.3.3. for a description of how a target using Delayed
Transaction termination handles this error condition.

However, when the master repeats the transaction and finally is successful in transferring
data, it is not required to continue the transaction past the first data phase.

3.3.3.3. Delayed Transactions

Delayed Transaction termination is used by targets that cannot complete the initial data
phase within the requirements of this specification. There are two types of devices that
will use Delayed Transactions: I/O controllers and bridges (in particular PCI-to-PCI
bridges). In general, I/O controllers will handle only a single Delayed Transaction at a
time, while bridges may choose to handle multiple transactions to improve system
performance.

One advantage of a Delayed Transaction is that the bus is not held in wait states while
completing an access to a slow device. While the originating master rearbitrates for the
bus, other bus masters are allowed to use the bus bandwidth that would normally be
wasted holding the master in wait states. Another advantage is that all posted (memory
write) data is not required to be flushed before the request is accepted. The actual
flushing of the posted memory write data occurs before the Delayed Transaction

49

Revision 2.1

completes on the originating bus. This allows posting to remain enabled while a non-
postable transaction completes and still maintains the system ordering rules.

The following discussion will focus on the basic operation and requirements of a device
that supports a single Delayed Transaction at a time. The next section extends the basic
concepts from support of a single Delayed Transaction to the support of multiple
Delayed Transactions at a time.

3.3.3.3.1. Basic Operation of a Delayed Transaction

All bus commands that must complete on the destination bus before completing on the
originating bus may be completed as a Delayed Transaction. These include Interrupt
Acknowledge, I/O Read, I/O Write, Configuration Read, Configuration Write, Memory
Read, Memory Read Line, and Memory Read Multiple commands. Memory Write and
Memory Write and Invalidate commands can complete on the originating bus before
completing on the destination bus (i.e., can be posted). These commands are not
completed using Delayed Transaction termination and are normally posted. For I/O
controllers, the term “destination bus” refers to the internal bus where the resource
addressed by the transaction resides. For a bridge, the destination bus means the
interface that was not acting as the target of the original request. For example, the
secondary bus of a bridge is the destination bus when a transaction orginates on the
primary bus of the bridge and targets (addresses) a device attached to the secondary bus
of the bridge. However, a transaction that is moving in the opposite direction would
have the primary bus as the destination bus.

A Delayed Transaction progresses to completion in three phases:

1. Request by the master.

2. Completion of the request by the target.

3. Completion of the transaction by the master.

During the first phase, the master generates a transaction on the bus, the target decodes
the access, latches the information required to complete the access, and terminates the
request with Retry. The latched request information is referred to as a Delayed Request.
The master of a request that is terminated with Retry cannot distinguish between a target
which is completing the transaction using Delayed Transaction termination and a target
which simply cannot complete the transaction at the current time. Since the master
cannot tell the difference, it must reissue any request that has been terminated with Retry
until the request completes (refer to Section 3.3.3.2.2.).

During the second phase, the target independently completes the request on the
destination bus using the latched information from the Delayed Request. If the Delayed
Request is a read, the target obtains the requested data and completion status. If the
Delayed Request is a write, the target delivers the write data and obtains the completion
status. The result of completing the Delayed Request on the destination bus produces a
Delayed Completion, which consists of the latched information of the Delay Request and
the completion status (and data if a read request). The target stores the Delayed
Completion until the master repeats the initial request.

During the third phase, the master successfully rearbitrates for the bus and reissues the
original request. The target decodes the request and gives the master the completion
status (and data if a read request). At this point, the Delayed Completion is retired and
the transaction has completed. The status returned to the master is exactly the same as

50

Revision 2.1

the target obtained when it executed (completed) the Delayed Request (i.e., Master-
Abort, Target-Abort, parity error, normal, Disconnect, etc.).

3.3.3.3.2. Information Required to Complete a Delayed Transaction

The information that must be latched by the target to complete the access includes the
address, command and byte enables (parity bits may also be used if parity checking is
enabled), data (if a write transaction), and REQ64# (if a 64-bit transfer). LOCK# must
also be used if the target supports locked transactions. On a read transaction the address
and command are available during the address phase and the byte enables during the
following clock. (Byte enables are valid the entire data phase and are independent of
IRDY#.) On a write transaction, all information is valid the same time as a read, except
for the actual data which is valid only when IRDY# is asserted.

Note: Write data is only valid when IRDY# is asserted while byte
enables are always valid for the entire data phase regardless of the state
of IRDY#.

The target differentiates between transactions (by the same or different masters) by
comparing the current transaction with information latched previously (for both Delayed
Request(s) or Delayed Completion(s)). The byte enables are not required to be used as
part of the compare when the target returns all bytes when doing a read transaction
regardless of which byte enables are asserted. A target can only do this when there are
no read side-effects (pre-fetchable) when accessing the data. When the compare matches
a Delayed Request (already enqueued), the target does not enqueue the request again but
simply terminates the transaction with Retry indicating that the target is not yet ready to
complete the request. When the compare matches a Delayed Completion, the target
responds by signaling the status and provides the data if a read transaction.

The master must repeat the transaction exactly as the original request; otherwise, the
target will assume it is a new transaction. If the original transaction is never completed,
a deadlock may occur. Two masters could request the exact same transaction and the
target cannot and need not distinguish between them and will simply complete the
access.

3.3.3.3.3. Discarding a Delayed Transaction

A device is allowed to discard a Delayed Request from the time it is enqueued until it
has been attempted on the destination bus since the master is required to repeat the
request until it completes. Once a Request has been attempted on the destination bus, it
must continue to be repeated until it completes on the destination bus and cannot be
discarded. The master is allowed to present other requests. But if it attempts more than
one request, the master must continue to repeat all requests that have been attempted
unconditionally until they complete. The repeating of the requests is not required to be
equal, but is required to be fair.

When a Delayed Request completes on the destination bus, it becomes a Delayed
Completion. The target device is allowed to discard Delayed Completions in only two
cases. The first case is when the Delayed Completion is a read to a pre-fetchable region
(or the command was Memory Read Line or Memory Read Multiple). The second case
is for all Delayed Completions (read or write, pre-fetchable or not) when the master has
not repeated the request within 215 clocks. When this timer (referred to as the Discard
Timer) expires, the device is required to discard the data; otherwise, a deadlock may
occur.

51

Revision 2.1

Note: When the transaction is discarded, data may be destroyed. This
occurs when the discarded Delayed Completion is a read to a non-
prefetchable region.

When the Discard Timer expires, the device may choose to report or ignore the error.
When the data is prefetchable (case 1), it is recommended that the device ignore the error
since the system integrity is not affected. However, when the data is not prefetchable
(case 2), it is recommended that the device report the error to its device driver14 since
system integrity is affected.

3.3.3.3.4. Memory Writes and Delayed Transactions

While completing a Delayed Request, the target is also required to complete all memory
write transactions addressed to it. The target may, from time to time, Retry a memory
write while temporary internal conflicts are being resolved; for example, when all the
memory-write data buffers are full, or before the Delayed Request has completed on the
destination bus (but is guaranteed to complete). However, the target cannot require the
Delayed Transaction to complete on the originating bus before accepting the memory
write data; otherwise, a deadlock may occur. See Section 3.11, item 6, for additional
information. The following implementation note describes the deadlock.

Implementation Note: Deadlock When Memory Write Data is Not Accepted.

The deadlock occurs when the master and the target of a transaction reside on different
buses (or segments). The PCI-to-PCI bridge15 that connects the two buses together does
not implement Delayed Transactions. The master initiates a request that is forwarded to
the target by the bridge. The target responds to the request by using Delayed Transaction
termination (terminated with Retry). The bridge terminates the master’s request with
Retry (without latching the request). Another master (on the same bus segment as the
original master) posts write data into the bridge targeted at the same device as the read
request. Because it is designed to the previous version of this specification, before
Delayed Transactions, the bridge is required to flush the memory write data before the
read can be repeated. If the target that uses Delayed Transaction termination will not
accept the memory write data until the master repeats the initial read, a deadlock occurs
because the bridge cannot repeat the request until the target accepts the write data. To
prevent this from occurring, the target that uses Delayed Transaction to meet the initial
latency requirements is required to accept memory write even though the Delayed
Transaction has not completed.

3.3.3.3.5. Delayed Transactions and LOCK#

A locked transaction can be completed using Delayed Transaction termination. All the
rules of LOCK# still apply except the target must consider itself locked when it
enqueues the request even though no data has transferred. While in this state, the target
enqueues no new requests. After lock has been established, the target can only accept
requests from the lock master. Note: LOCK# must be latched and used in the compare
to determine when the request is being repeated. Note: The device cannot complete any

14 A bridge may assert SERR# since it does not have a device driver.
15 This is a bridge that is built to an earlier version of this specification.

52

Revision 2.1

access, including memory writes, to the locked resource except if initiated by the lock
master.

3.3.3.3.6. Supporting Multiple Delayed Transactions

This section takes the basic concepts of a single Delayed Transaction as described in the
previous section and extends them to support multiple Delayed Transactions at the same
time. Bridges (in particular a PCI-to-PCI bridge) are the most likely candidates to handle
multiple Delayed Transactions as a way to improve system performance and meet the
initial latency requirements. To assist in understanding the requirements of supporting
multiple Delayed Transactions, the following section focuses on a PCI-to-PCI bridge.
This focus allows the same terminology to be used when describing transactions initiated
on either interface of the bridge. Most other bridges (host bus bridge and standard
expansion bus bridge) will typically handle only a single Delayed Transaction.
Supporting multiple transactions is possible but the details may vary. The fundamental
requirements in all cases are that transaction ordering be maintained as described in
Section 3.2.5. and Section 3.3.3.3.4. and deadlocks be avoided.

Transaction Definitions

PMW - Posted Memory Write is a transaction that has completed on the originating bus
before completing on the destination bus and can only occur for Memory Write and
Memory Write and Invalidate commands.

DRR - Delayed Read Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be a I/O Read, Configuration Read,
Memory Read, Memory Read Line, or Memory Read Multiple commands. As
mentioned earlier, once a Request has been attempted on the destination bus, it must
continue to be repeated until it completes on the destination bus. Until that time, the
DRR is only a request and may be discarded at anytime to prevent deadlock or improve
performance since the master must repeat the request later.

DWR - Delayed Write Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be an I/O Write or Configuration Write
command. Note: Memory Write and Memory Write and Invalidate commands must be
posted (PMW) and not be completed as DWR. As mentioned earlier, once a Request has
been attempted on the destination bus, it must continue to be repeated until it completes.
Until that time, the DWR is only a request and may be discarded at anytime to prevent
deadlock or improve performance since the master must repeat the request later.

DRC - Delayed Read Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus to complete. The DRC contains the
data requested by the master and the status of the target (normal, Master-Abort, Target-
Abort, parity error, etc.,)

DWC - Delayed Write Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus. The DWC does not contain the data
of the access but only status of how it completed (normal, Master-Abort, Target-Abort,
parity error, etc.,). The write data has been written to the specified target.

53

Revision 2.1

Ordering Rules for Multiple Delayed Transactions

Table 3-1 represents the ordering rules when a bridge in the system is capable of
allowing multiple transactions to proceed in each direction at the same time. The
number of simultaneous transactions is limited by the implementation and not by the
architecture. Because there are five types of transactions that can be handled in each
direction, the following table has 25 entries. Of the 25 boxes in the table only 4 are
required No’s, 4 are required Yes’s, and the remaining 19 are don’t cares. The column of
the table represents an access that was accepted previously by the bridge, while the row
represents a transaction that was accepted subsequent to the access represented by the
column. A more detailed discussion of the following table is contained in Appendix E.

Table 3-1: Ordering Rules for Multiple Delayed Transactions

Row pass
Col.?

PMW (Col 2) DRR (Col 3) DWR (Col 4) DRC (Col 5) DWC (Col 6)

PMW (Row 1) No Yes Yes Yes Yes
DRR (Row 2) No Yes/No Yes/No Yes/No Yes/No
DWR (Row 3) No Yes/No Yes/No Yes/No Yes/No
DRC (Row 4) No Yes/No Yes/No Yes/No Yes/No
DWC (Row 5) Yes/No Yes/No Yes/No Yes/No Yes/No

No - indicates the subsequent transaction is not allowed to complete before the previous
transaction to preserve ordering in the system. The four No boxes are found in column 2
and maintain a consistent view of data in the system as described by the Producer -
Consumer Model found in Appendix E. These boxes prevent PMW data from being
passed by other accesses.

Yes - indicates the PMW must be allowed to complete before Delayed Requests or
Delayed Completions moving in the same direction or a deadlock can occur. The four
Yes boxes are found in row 1 and prevent deadlocks from occurring when Delayed
Transactions are used with devices designed to an earlier version of this specification. A
PMW cannot be delayed from completing because a Delayed Request or a Delayed
Completion was accepted prior to the PMW. The only thing that can prevent the PMW
from completing is gaining access to the bus or the target terminating the attempt with
Retry. Both conditions are temporary and will resolve independently of other events. If
the master continues attempting to complete Delayed Requests, it must be fair in
attempting to complete the PMW. There is no ordering violation when a subsequent
transaction completes before a prior transaction.

Yes/No - indicates the bridge may choose to allow the subsequent transaction to
complete before the previous transaction or not. This is allowed since there are no
ordering requirements to meet or deadlocks to avoid. How a bridge designer chooses to
implement these boxes may have a cost impact on the bridge implementation or
performance impact on the system.

Ordering of Delayed Transactions

The ordering of Delayed Transactions is established when the transaction completes on
the originating bus (i.e., the requesting master receives a response other than Retry).
Delayed Requests and Delayed Completions are intermediate steps in the process of
completing a Delayed Transaction, which occur prior to the completion of the transaction
on the originating bus. As a result, there are no ordering requirements for Delayed
Requests with respect to other Delayed Requests, Delayed Requests with respect to
Delayed Completions, or for Delayed Completions with respect to other Delayed

54

Revision 2.1

Completions. However, they do have ordering relationship with memory write
transactions which is described in Table 3-1.

In general, a master does not need to wait for one request to be completed before it issues
another request. As described in Section 3.3.3.2.2., a master may have any number of
requests terminated with Retry at one time, some of which may be serviced as Delayed
Transactions, and some not. However, if the master does issue a second request before
the first is completed, the master must continue to repeat each of the requests fairly, so
that each has a fair opportunity to be completed. If a master has a specific need for two
transactions to be completed in a particular order, it must wait for the first one to
complete before requesting the second.

3.4. Arbitration
In order to minimize access latency, the PCI arbitration approach is access-based rather
than time slot based. That is, a bus master must arbitrate for each access it performs on
the bus. PCI uses a central arbitration scheme, where each master agent has a unique
request (REQ#) and grant (GNT#) signal. A simple request-grant handshake is used to
gain access to the bus. Arbitration is "hidden," which means it occurs during the
previous access so that no PCI bus cycles are consumed due to arbitration, except when
the bus is in an Idle state.

An arbitration algorithm must be defined to establish a basis for a worst case latency
guarantee. However, since the arbitration algorithm is fundamentally not part of the bus
specification, system designers may elect to modify it, but must provide for the latency
requirements of their selected I/O controllers and for add-in cards. Refer to
Section 3.5.3. for information on latency guidelines. The bus allows back-to-back
transactions by the same agent and allows flexibility for the arbiter to prioritize and
weight requests. An arbiter can implement any scheme as long as it is fair and only a
single GNT# is asserted on any rising clock.

The arbiter is required to implement a fairness algorithm to avoid deadlocks. In general,
the arbiter must advance to a new agent when the current master deasserts its REQ#.
Fairness means that each potential master must be granted access to the bus independent
of other requests. However, this does not mean that all agents are required to have equal
access to the bus. By requiring a fairness algorithm, there are no special conditions to
handle when LOCK# is active (assuming a resource lock) or when cacheable memory is
located on PCI. A system that uses a fairness algorithm is still considered fair if it
implements a complete bus lock instead of resource lock. However, the arbiter must
advance to a new agent if the initial transaction attempting to establish the lock is
terminated with Retry.

55

Revision 2.1

Implementation Note: System Arbitration Algorithm

One example of building an arbiter to implement a fairness algorithm is when there are two
levels to which bus masters are assigned. In this example, the agents that are assigned to the
first level have a greater need to use the bus than agents assigned to the second level (i.e., lower
latency or greater throughput). Second level agents have equal access to the bus with respect to
other second level agents. However, the second level agents as a group have equal access to the
bus as each agent of the first level. An example of how a system may assign agents to a given
level is where devices such as video, ATM, or FDDI bus masters would be assigned to Level 1
while devices such as SCSI, LAN, or standard expansion bus masters would be assigned to the
second level.

The figure below is an example of a fairness arbitration algorithm that uses two levels of
arbitration. The first level consists of Agent A, Agent B, and Level 2, where Level 2 is the next
agent at that level requesting access to the bus. Level 2 consists of Agent X, Agent Y, and
Agent Z. If all agents on level 1 and 2 have their REQ# lines asserted and continue to assert
them, and if Agent A is the next to receive the bus for Level 1 and Agent X is the next for Level
2, then the order of the agents accessing the bus would be:

A, B, Level 2 (this time it is X)

A, B, Level 2 (this time it is Y)

A, B, Level 2 (this time it is Z)

and so forth.

If only Agent B and Agent Y had their REQ#’s asserted and continued to assert them, the order
would be:

B, Level 2 (Y),

B, Level 2 (Y).

By requiring a fairness arbitration algorithm, the system designer can balance the needs of high
performance agents such as video, ATM, or FDDI with lower performance bus devices like LAN
and SCSI. Another system designer may put only multimedia devices on arbitration Level 1 and
put the FDDI (or ATM), LAN, and SCSI devices on Level 2. These examples achieve the
highest level of system performance possible for throughput or lowest latency without possible
starvation conditions. The performance of the system can be balanced by allocating a specific
amount of bus bandwidth to each agent by careful assignment of each master to an arbitration
level and programming each agent’s Latency Timer appropriately.

Agent A

Agent B

Level 2

Level 1

Agent X

Agent Y

Agent Z

Level 2

56

Revision 2.1

3.4.1. Arbitration Signaling Protocol

An agent requests the bus by asserting its REQ#. Agents must only use REQ# to signal
a true need to use the bus. An agent must never use REQ# to "park" itself on the bus. If
bus parking is implemented, it is the arbiter that designates the default owner. When the
arbiter determines an agent may use the bus, it asserts the agent’s GNT#.

The arbiter may deassert an agent’s GNT# on any clock. An agent must ensure its
GNT# is asserted on the rising clock edge it wants to start a transaction. Note: A master
is allowed to start a transaction when its GNT# is asserted and the bus is in an Idle state
independent of the state of its REQ#. If GNT# is deasserted, the transaction must not
proceed. Once asserted, GNT# may be deasserted according to the following rules:

1. If GNT# is deasserted and FRAME# is asserted on the same clock, the bus
transaction is valid and will continue.

2. One GNT# can be deasserted coincident with another GNT# being asserted if the
bus is not in the Idle state. Otherwise, a one clock delay is required between the
deassertion of a GNT# and the assertion of the next GNT#, or else there may be
contention on the AD lines and PAR due to the current master doing address
stepping.

3. While FRAME# is deasserted, GNT# may be deasserted at any time in order to
service a higher priority16 master, or in response to the associated REQ# being
deasserted.

Figure 3-11 illustrates basic arbitration. Two agents are used to illustrate how an arbiter
may alternate bus accesses.

CLK

FRAME#

AD

REQ#-a

REQ#-b

GNT#-a

GNT#-b

ADDRESS DATA

71 2 3 5 64

ADDRESS DATA

access - A access - B

Figure 3-11: Basic Arbitration

REQ#-a is asserted prior to or at clock 1 to request use of the interface. Agent A is
granted access to the bus because GNT#-a is asserted at clock 2. Agent A may start a
transaction at clock 2 because FRAME# and IRDY# are deasserted and GNT#-a is
asserted. Agent A’s transaction starts when FRAME# is asserted on clock 3. Since

16 Higher priority here does not imply a fixed priority abitration, but refers to the agent that would win
arbitration at a given instant in time.

57

Revision 2.1

Agent A desires to perform another transaction, it leaves REQ#-a asserted. When
FRAME# is asserted on clock 3, the arbiter determines Agent B should go next and
asserts GNT#-b and deasserts GNT#-a on clock 4.

When agent A completes its transaction on clock 4, it relinquishes the bus. All PCI
agents can determine the end of the current transaction when both FRAME# and IRDY#
are deasserted. Agent B becomes the owner on clock 5 (because FRAME# and IRDY#
are deasserted) and completes its transaction on clock 7.

Notice that REQ#-b is deasserted and FRAME# is asserted on clock 6 indicating agent
B requires only a single transaction. The arbiter grants the next transaction to Agent A
because its REQ# is still asserted.

The current owner of the bus keeps REQ# asserted when it requires additional
transactions. If no other requests are asserted or the current master has highest priority,
the arbiter continues to grant the bus to the current master.

Implementation Note: Bus Parking

When no REQ#s are asserted, it is recommended not to remove the current master’s
GNT# to park the bus at a different master until the bus enters its Idle state. If the
current bus master’s GNT# is deasserted, the duration of the current transaction is
limited to the value of the Latency Timer. If the master is limited by the Latency Timer,
it must rearbitrate for the bus which would waste bus bandwidth. It is recommended to
leave GNT# asserted at the current master (when no other REQ#s are asserted) until the
bus enter its Idle state. When the bus is in the Idle state and no REQ#s are asserted, the
arbiter may park the bus at any agent it desires.

GNT# gives an agent access to the bus for a single transaction. If an agent desires
another access, it should continue to assert REQ#. An agent may deassert REQ#
anytime, but the arbiter may interpret this to mean the agent no longer requires use of the
bus and may deassert its GNT#. An agent should deassert REQ# in the same clock
FRAME# is asserted if it only wants to do a single transaction. When a transaction is
terminated by a target (STOP# asserted), the master must deassert its REQ# for a
minimum of two clocks, one being when the bus goes to the Idle state (at the end of the
transaction where STOP# was asserted) and the other being either the clock before or
the clock after the Idle state. For an exception, refer to Section 3.3.3.2.1.. This allows
another agent to use the interface while the previous target prepares for the next access.

The arbiter can assume the current master is "broken" if it has not started an access after
its GNT# has been asserted (its REQ# is also asserted) and the bus is in the Idle state for
16 clocks. The arbiter is allowed to ignore any “broken” master’s REQ# and may
optionally report this condition to the system. However, the arbiter may remove GNT#
at any time to service a higher priority agent. A master that has requested use of the bus
that does not assert FRAME# when the bus is in the Idle state and its GNT# is asserted
faces the possibility of losing its turn on the bus. Note: In a busy system, a master that
delays the assertion of FRAME# runs the risk of starvation because the arbiter may grant
the bus to another agent. For a master to ensure that it gains access to the bus, it must
assert FRAME# the first clock possible when FRAME# and IRDY# are deasserted and
its GNT# is asserted. The preceding discussion does not apply to a configuration
transaction since address stepping may be used.

58

Revision 2.1

3.4.2. Fast Back-to-Back Transactions

There are two types of fast back-to-back transactions that can be initiated by the same
master, those that access the same agent and those that do not. Fast back-to-back
transactions are allowed on PCI when contention on TRDY#, DEVSEL#, STOP#, or
PERR# is avoided.

The first type of fast back-to-back support places the burden of avoiding contention on
the master, while the second places the burden on all potential targets. The master may
remove the Idle state between transactions when it can guarantee that no contention
occurs. This can be accomplished when the master’s current transaction is to the same
target as the previous write transaction. This type of fast back-to-back transaction
requires the master to understand the address boundaries of the potential target;
otherwise, contention may occur. This type of fast back-to-back is optional for a master
but must be decoded by a target. The target must be able to detect a new assertion of
FRAME# (from the same master) without the bus going to the Idle state.

The second type of fast back-to-back support places the burden of no contention on all
potential targets. The Fast Back-to-Back Capable bit in the Status register may be
hardwired to a logical one (high) if, and only if, the device, while acting as a bus target,
meets the following two requirements:

1. The target must not miss the beginning of a bus transaction, nor lose the address,
when that transaction is started without a bus Idle state preceding the transaction.
In other words, the target is capable of following a bus state transition from a final
data transfer (FRAME# high, IRDY# low) directly to an address phase (FRAME#
low, IRDY# high) on consecutive clock cycles. Note: The target may or may not
be selected on either or both of these transactions, but must track bus states
nonetheless.17

2. The target must avoid signal conflicts on DEVSEL#, TRDY#, STOP#, and
PERR#. If the target does not implement the fastest possible DEVSEL# assertion
time, this guarantee is already provided. For those targets that do perform zero
wait state decodes, the target must delay assertion of these four signals for a single
clock, except in either one of the following two conditions:

a. The current bus transaction was immediately preceded by a bus Idle state;
that is, this is not a back-to-back transaction, or,

b. The current target had driven DEVSEL# on the previous bus transaction;
that is, this is a back-to-back transaction involving the same target as the
previous transaction.

Note: Delaying the assertion of DEVSEL# to avoid contention on fast back-to-back
transactions does not affect the decode speed indicated in the status register. A
device that normally asserts fast DEVSEL# still indicates “fast” in the status register
even though DEVSEL# is delayed by one clock in this case. The status bits
associated with decode time are used by the system to allow the subtractive decoding
agent to move in the time when it claims unclaimed accesses. However, if the

17 It is recommended that this be done by returning the target state machine (refer to Appendix B) from
the B_BUSY state to the IDLE state as soon as FRAME# is deasserted and the device’s decode time has
been met (a miss occurs) or when DEVSEL# is asserted by another target and not waiting for a bus Idle
state (IRDY# deasserted).

59

Revision 2.1

subtractive decode agent claims the access during medium or slow decode time
instead of waiting for the subtractive decode time, it must delay the assertion of
DEVSEL# when a fast back-to-back transaction is in progress; otherwise, contention
on DEVSEL#, STOP#, TRDY#, and PERR# may occur.

For masters that want to perform fast back-to-back transactions that are supported by the
target mechanism, the Fast Back-to-Back Enable bit in the Command register is required.
(This bit is only meaningful in devices that act as bus masters and is fully optional.) It is
a read/write bit when implemented. When set to a one (high), the bus master may start a
PCI transaction using fast back-to-back timing without regard to which target is being
addressed providing the previous transaction was a write transaction issued by the current
bus master. If this bit is set to a zero (low) or not implemented, the master may perform
fast back-to-back only if it can guarantee that the new transaction goes to the same target
as the previous one (master based mechanism).

This bit would presumably be set by the system configuration routine after ensuring that
all targets on the same bus had the Fast Back-to-Back Capable Bit set.

Note: The master based fast back-to-back mechanism does not allow these fast cycles to
occur with separate targets while the target based mechanism does.

If the target is unable to provide both of the guarantees specified above, it must not
implement this bit at all, and it will automatically be returned as a zero when the Status
register is read.

Fast back-to-back transactions allow agents to utilize bus bandwidth more effectively. It
is recommended that all new targets, and those masters that can improve bus utilization
should implement this feature, particularly since the implementation cost is negligible.
However, it is not recommended that existing parts be put through a redesign cycle
solely for this feature, as it will likely not benefit the utility of the part.

Under all other conditions, the master must insert a minimum of one Idle bus state.
(Also there is always at least one Idle bus state between transactions by different
masters.) Note: Multi-ported targets should only lock themselves when they are truly
locked during fast back-to-back transactions (refer to Section 3.6. for more information).

During a fast back-to-back transaction, the master starts the next transaction immediately
without an Idle bus state (assuming its GNT# is still asserted). If GNT# is deasserted,
the master has lost access to the bus and must relinquish the bus to the next master. The
last data phase completes when FRAME# is deasserted, and IRDY# and TRDY# (or
STOP#) are asserted. The current master starts another transaction on the clock
following the completion of the last data phase of the previous transaction.

It is important to note that agents not involved in a fast back-to-back transaction
sequence cannot (and generally need not) distinguish intermediate transaction boundaries
using only FRAME# and IRDY# (there is no bus Idle state). During fast back-to-backs
only, the master and target involved need to distinguish these boundaries. When the last
transaction is over, all agents will see an Idle state. However, those that do support the
target based mechanism must be able to distinguish the completion of all PCI
transactions and be able to detect all address phases.

In Figure 3-12, the master completes a write on clock 3 and starts the next transaction on
clock 4. The target must begin sampling FRAME# on clock 4 since the previous
transaction completed on clock 3; otherwise, it will miss the address of the next
transaction. A device must be able to decode back-to-back operations, to determine if it
is the current target, while a master may optionally support this function. A target is free
to claim ownership by asserting DEVSEL#, then Retry the request.

60

Revision 2.1

CLK

FRAME#

AD ADDRESS DATA ADDRESS DATA

GNT#

REQ#

71 2 3 5 64

IRDY#

TRDY#

Figure 3-12: Arbitration for Back-to-Back Access

3.4.3. Arbitration Parking

The term park implies permission for the arbiter to assert GNT# to a selected agent when
no agent is currently using or requesting the bus. The arbiter can select the default owner
any way it wants (fixed, last used, etc.) or can choose not to park at all (effectively
designating itself the default owner). When the arbiter asserts an agent’s GNT# and the
bus is in the Idle state, that agent must enable its AD[31::00], C/BE[3::0]#, and (one
clock later) PAR output buffers within eight clocks (required), while two-three clocks is
recommended. (Refer to Section 3.8.1. for a description of the timing relationship of
PAR to AD). The agent is not compelled to turn on all buffers in a single clock. This
requirement ensures that the arbiter can safely park the bus at some agent and know that
the bus will not float. (If the arbiter does not park the bus, the central resource device in
which the arbiter is embedded typically drives the bus.)

If the bus is in the Idle state and the arbiter removes an agent’s GNT#, the agent has lost
access to the bus except for one case. The one case is if the arbiter deasserted GNT#
coincident with the agent asserting FRAME#. In this case, the master will continue the
transaction. Otherwise, the agent must tri-state AD[31::00], C/BE#[3::0], and (one
clock later) PAR. Unlike above, the agent must disable all buffers in a single clock to
avoid possible contention with the next bus owner.

Given the above, the minimum arbitration latency achievable on PCI from the bus Idle
state is as follows:

• Parked: zero clocks for parked agent, two clocks for others.

• Not Parked: one clock for every agent.

When the bus is parked at an agent, the agent is allowed to start a transaction without
REQ# being asserted. (A master can start a transaction when the bus is in the Idle state
and GNT# is asserted.) When the agent needs to do multiple transactions, it should
assert REQ# to inform the arbiter that it intends to do multiple transactions. When a
master requires only a single transaction, it should not assert REQ#; otherwise, the
arbiter may continue to assert its GNT# when it does not require use of the bus.

61

Revision 2.1

3.5. Latency
PCI is a low latency, high throughput I/O bus. Both targets and masters are limited as to
the number of wait states they can add to a transaction. Furthermore, each master has a
programmable timer limiting its maximum tenure on the bus during times of heavy bus
traffic. Given these two limits and the bus arbitration order, bus acquisition latencies can
be predicted with relatively high precision for any PCI bus master. Even bridges to
standard expansion buses with long access times (ISA, EISA, or MC) can be designed to
have minimal impact on the PCI bus and still keep PCI bus acquisition latency
predictable.

3.5.1. Target Latency

Target latency is the number of clocks the target waits before asserting TRDY#.
Requirements on the initial data phase are different from those of subsequent data
phases.

3.5.1.1. Target Initial Latency

Target initial latency is the number of clocks from the assertion of FRAME# to the
assertion of TRDY# which completes the initial data phase, or to the assertion of
STOP# in the Retry and Target-Abort cases. This number of clocks varies depending
on whether the command is a read or write, and, if a write, whether it can be posted or
not. A memory write command should simply be posted by the target in a buffer and
written to the final destination later. In this case, the target initial latency is small
because the transaction was simply a register to register transfer. Meeting target initial
latency on read transactions is more difficult since this latency is a combination of the
access time of the storage media (e.g., disk, DRAM, etc.) and the delay of the interface
logic. Meeting initial latency on I/O and Configuration write transactions are similar to
read latency.

All targets are required to complete the initial data phase of a transaction (read or write)
within 16 clocks from the assertion of FRAME#. The target completes the initial data
phase by asserting TRDY# (to accept or provide the requested data) or by terminating
the request by asserting STOP# within the target initial latency requirement. All devices
are granted two exceptions to the initial latency rule during initialization time.
Initialization time begins when RST# is deasserted and completes when the POST code
has initialized the system. The time following the completion of the POST code is
considered Run-time. The following two exceptions have no upper bound on initial
latency and are granted during initialization time only. The target being accessed after
initialization time must adhere to the 16 clock initial latency requirements.

• POST code accessing the device’s configuration registers.

• POST code copying the expansion ROM image to memory.

Host bus bridges are granted an additional 16 clocks, to a maximum of 32 clocks, to
complete the initial data phase when the access hits a modified line in a cache. However,
the host bus bridge can never exceed 32 clocks on any initial data phase.

All new target devices must adhere to the 16 clock initial latency requirement except as
noted above. However, a new master should not depend on targets meeting the 16 clock
maximum initial access latency for functional operation (in the near term), but must

62

Revision 2.1

function normally (albeit with reduced performance) since systems and devices were
designed and built against an earlier version of this specification and may not meet the
new requirements. New devices should work with existing devices.

Three options are given to targets to meet the initial latency requirements. Most targets
will use either Option 1 or Option 2. Those devices unable to use Option 1 or Option 2
are required to use Option 3.

Option 1 is for a device that always transfers data (asserts TRDY#) within 16 clocks
from the assertion of FRAME#.

The majority of I/O controllers built before this revision will meet the initial latency
requirements using Option 1 and will require no modifications. In this case, the
target always asserts TRDY# to complete the initial data phase of the transaction
within 16 clocks of the assertion of FRAME#.

Option 2 is for devices that normally transfer data within 16 clocks, but under some
specific conditions will exceed the initial latency requirement. Under these conditions,
the device terminates the access with Retry within 16 clocks from the assertion of
FRAME#.

For devices that cannot use Option 1, a small modification may be required to meet
the initial latency requirements as described by Option 2. This option is used by a
target that can normally complete the initial data phase within 16 clocks (same as
Option 1), but occasionally will take longer and uses the assertion of STOP# to
meet the initial latency requirement. It then becomes the responsibility of the master
to attempt the transaction again at a later time. A target may only do this when there
is a high probability the target will be able to complete the transaction when the
master repeats the request; otherwise the target must use Option 3. For example, an
agent that is currently locked by the lock master should use Option 2 to terminate the
request with minimum delay but always before 16 clocks for all accesses not
initiated by the lock master.

Implementation Note: An Example of Option 2

Consider a simple graphic device that normally responds to a request within 16 clocks
but under special conditions, such as refreshing the screen, the internal bus is “busy” and
prevents data from transferring. In this case, the target terminates the access with Retry
knowing the master will repeat the transaction and the target will most likely be able to
complete the transfer then.

The device could have an internal signal that indicates to the bus interface unit that the
internal bus is busy and data cannot be transferred at this time. This allows the device to
claim the access (asserts DEVSEL#) and immediately terminate the access with Retry.
By doing this instead of terminating the transaction 16 clocks after the assertion of
FRAME#, other agents can use the bus.

Option 3 is for a device that frequently cannot transfer data within 16 clocks. This
option requires the device to use Delayed Transactions which are discussed in detail in
Section 3.3.3.3..

Those devices that cannot meet the requirements of Option 1 or 2 are required to use
Option 3. This option is used by devices that under normal conditions cannot meet
the initial latency requirements. An example could be an I/O controller that has
several internal functions contending with the PCI interface to access an internal
resource. Another example could be a device that acts like a bridge to another device
or bus where the initial latency to complete the access may be greater than 16 clocks.

63

Revision 2.1

The most common types of bridges are host bus bridges, standard expansion bus
bridges, and PCI-to-PCI bridges.

Implementation Note: Using More Than One Option to Meet Initial Latency

A combination of the different options may be used based on the access latency of a
particular device. For example, a graphics controller may meet the initial latency
requirements using Option 1 when accessing configuration or internal (I/O or memory
mapped) registers. However, it may be required to use Option 2 or in some cases
Option 3 when accessing the frame buffer.

3.5.1.2. Target Subsequent Latency

Target subsequent latency is the number of clocks from the assertion of IRDY# and
TRDY# for one data phase to the assertion of TRDY# or STOP# for the next data phase
in a burst transfer. The target is required to complete a subsequent data phase within 8
clocks from the completion of the previous data phase. This requires the target to
complete the data phase either by transferring data (TRDY# asserted), by doing target
Disconnect without data (STOP# asserted, TRDY# deasserted), or by doing Target-
Abort (STOP# asserted, DEVSEL# deasserted) within the target subsequent latency
requirement.

In most designs, the latency to complete a subsequent data phase is known when the
device is being designed. In this case, the target must manipulate TRDY# and STOP#
so as to end the transaction (subsequent data phase) upon completion of data phase "N"
(where N=1, 2, 3, ...), if incremental latency to data phase "N+1" is greater than eight
clocks. For example, assume a PCI master read from an expansion bus takes a minimum
of 15 clocks to complete each data phase. Applying the rule for N = 1, the incremental
latency to data phase 2 is 15 clocks; thus the target must terminate upon completion of
data phase 1 (i.e., a target this slow must break attempted bursts on data phase
boundaries).

For designs where the latency to complete a subsequent data phase cannot be determined
in advance, the target is allowed to implement a counter that causes the target to assert
STOP# before or during the eighth clock if TRDY# is not asserted. If TRDY# is
asserted before the count expires, the counter is reset and the target continues the
transaction.

3.5.2. Master Data Latency

Master data latency is the number of clocks the master takes to assert IRDY# indicating
it is ready to transfer data. All masters are required to assert IRDY# within eight clocks
of the assertion of FRAME# on the initial data phase and within eight clocks on all
subsequent data phases. Generally, there is no reason for a master to delay the assertion
of IRDY# more than one or two clocks for a write transaction and should never delay the
assertion of IRDY# on a read transaction. If the master has no buffer available to store
the read data, it should delay requesting use of the bus until a buffer is available. On a
write transaction, the master should have the data available before requesting the bus to
transfer the data. Data transfers on PCI should be done as register to register transfers to
maximize performance.

64

Revision 2.1

3.5.3. Arbitration Latency

Arbitration latency is the number of clocks from when a master asserts its REQ# until
the bus reaches an Idle state and the master’s GNT# is asserted. In a lightly loaded
system, arbitration latency will generally just be the time for the bus arbiter to assert the
master’s GNT#. If a transaction is in progress when the master’s GNT# is assserted, the
master must wait the additional time for the current transaction to complete.

The total arbitration latency for a master is a function of how many other masters are
granted the bus before it, and how long each one keeps the bus. The number of other
masters granted the bus is determined by the bus arbiter as discussed in Section 3.4..
Each master’s tenure on the bus is limited by its master Latency Timer when it’s GNT#
has been deasserted.

The master Latency Timer is a programmable timer in each master’s Configuration
Space (refer to Section 6.2.4.). It is required for each master which is capable of bursting
more than two data phases. Each master's Latency Timer is cleared and suspended
whenever it is not asserting FRAME#. When a master asserts FRAME#, it enables its
Latency Timer to count. The master’s behavior upon expiration of the Latency Timer
depends on what command is being used and the state of FRAME# and GNT# when the
Latency Timer expires.

• If the master deasserts FRAME# prior to or on the same clock that the counter
expires, the Latency Timer is meaningless. The cycle terminates as it normally
would when the current data phase completes.

• If FRAME# is asserted when the Latency Timer expires, and the command is not
Memory Write and Invalidate, the master must initiate transaction termination when
GNT# is deasserted, following the rules described in Section 3.3.3.1. In this case,
the master has committed to the target that it will complete the current data phase
and one more (the final data phase is indicated when FRAME# is deasserted).

• If FRAME# is asserted when the Latency Timer expires, the command is Memory
Write and Invalidate, and the current data phase is not transferring the last DWORD
of the current cache line when GNT# is deasserted, the master must terminate the
transaction at the end of the current cacheline (or when STOP# is asserted).

• If FRAME# is asserted when the Latency Timer expires, the command is Memory
Write and Invalidate, and the current data phase is transferring the last DWORD of
the current cache line when GNT# is deasserted, the master must terminate the
transaction at the end of the next cacheline. (This is required since the master
committed to the target at least one more data phase, which would be the beginning
of the next cacheline which it must complete, unless STOP# is asserted.)

In essence, the value programmed into the Latency Timer represents a minimum
guaranteed number of clocks allotted to the master, after which it must surrender tenure
as soon as possible after its GNT# is deasserted. The actual duration of a transaction
(assuming its GNT# is deasserted) can be from a minimum of the Latency Timer value
plus one clock to a maximum of the Latency Timer value plus the number of clocks
required to complete an entire cacheline transfer (unless the target asserts STOP#).

65

Revision 2.1

3.5.3.1. Bandwidth and Latency Considerations

In PCI systems, there is a tradeoff between the desire to achieve low latency and the
desire to achieve high bandwidth (throughput). High throughput is achieved by allowing
devices to use long burst transfers. Low latency is achieved by reducing the maximum
burst transfer length. The following discussion is provided (for a 32-bit bus) to illustrate
this tradeoff.

A given PCI bus master introduces latency on PCI each time it uses the PCI bus to do a
transaction. This latency is a function of the behavior of both the master and the target
device during the transaction as well as the state of the masters GNT# signal. The bus
command used, transaction burst length, master data latency for each data phase, and the
Latency Timer are the primary parameters which control the masters behavior. The bus
command used, target latency, and target subsequent latency are the primary parameters
which control the targets behavior.

A master is required to assert its IRDY# within eight clocks for any given data phase
(initial and subsequent). For the first data phase, a target is required to assert its TRDY#
or STOP# within 16 clocks from the assertion of FRAME# (unless the access hits a
modified cache line in which case 32 clocks are allowed for host bus bridges). For all
subsequent data phases in a burst transfer, the target must assert its TRDY# or STOP#
within eight clocks. If the effects of the Latency Timer are ignored, it is a
straightforward exercise to develop equations for the worst case latencies that a PCI bus
master can introduce from these specification requirements.

latency_max (clocks) = 32 + 8 * (n-1) if a modified cacheline is hit

(for a host bus bridge only)

or = 16 + 8 * (n-1) if not a modified cacheline

where n is the total number of data transfers in the transaction

However, it is more useful to consider transactions that exhibit typical behavior. PCI is
designed so that data transfers between a bus master and a target occur as register to
register transfers. Therefore, bus masters typically do not insert wait states since they
only request transactions when they are prepared to transfer data. Targets typically have
an initial access latency less than the 16 (32 for modified cache line hit for host bus
bridge) clock maximum allowed. Once targets begin transferring data (complete their
first data phase), they are typically able to sustain burst transfers at full rate (one clock
per data phase) until the transaction is either completed by the master or the target’s
buffers are filled. The target can use the target Disconnect protocol to terminate the burst
transaction early when its buffers fill during the transaction. Using these more realistic
considerations, the worst case latency equations can be modified to give a typical latency
(assuming that the targets initial data phase latency is 8 clocks) again ignoring the effects
of the Latency Timer.

latency_typical (clocks) = 8 + (n-1)

If a master were allowed to burst indefinitely to a target which could absorb the data
indefinitely, then there would be no upper bound on the latency which a master could
introduce into a PCI system. However, the master Latency Timer provides a mechanism
to constrain a master’s tenure on the bus (when other bus masters need to use the bus).

66

Revision 2.1

In effect, the Latency Timer controls the tradeoff between high throughput (higher
Latency Timer values) and low latency (lower Latency Timer values). Table 3-2 shows
the latency for different burst length transfers using the following assumptions. The
initial latency introduced by the master or target is eight clocks. There is no latency on
subsequent data phases (IRDY# and TRDY# are always asserted). The number of data
phases are powers of two because these are easy to correlate to cache line sizes. The
Latency Timer values were chosen to expire during the next to last data phase, which
allows the master to complete the correct number of data phases. For example, with a
Latency Timer of 14 and a target initial latency of 8, the Latency Timer expires during
the 7th data phase. The transaction completes with the 8th data phase.

Table 3-2: Latency for Different Burst Length Transfers

Data
Phases

Bytes
Transferred

Total
Clocks

Latency Timer
(clocks)

Bandwidth
(MB/S)

Latency
(µs)

8 32 16 14 60 .48

16 64 24 22 80 .72

32 128 40 38 96 1.20

64 256 72 70 107 2.16

Data Phases number of data phases completed during transaction

Bytes Transferred total number of bytes transferred during transaction (assuming

32-bit transfers)

Total Clocks total number of clocks used to complete the transfer

total_clocks = 8 + (n-1) + 1 (Idle time on bus)

Latency Timer Latency Timer value in clocks such that the Latency Timer

expires in next to last data phase

latency_timer = total_clocks - 2

Bandwidth calculated bandwidth in MB/s

bandwidth = bytes_transferred / (total clocks * 30 ns)

Latency latency in microseconds introduced by transaction

latency = total clocks * 30 ns

Table 3-2 clearly shows that as the burst length increases the amount of data transferred
increases. Note: The amount of data doubles between each row in the table, while the
latency increases by less than double. The amount of data transferred between the first
row and the last row increases by a factor of 8, while the latency increases by a factor of
4.5. The longer the transaction (more data phases) the more efficiently the bus is being
used. However, this increase in efficiency comes at the expense of larger buffers.

67

Revision 2.1

3.5.3.2. Determining Arbitration Latency

Arbitration latency is the number of clocks a master must wait after asserting its REQ#
before it can begin a transaction. This number is a function of the arbitration algorithm
of the system; i.e., the sequence in which masters are given access to the bus and the
value of the Latency Timer of each master. Since these factors will vary from system to
system, the best an individual master can do is to pick a configuration that is considered
the typical case and apply the latency discussion to it to determine the latency a device
will experience.

Arbitration latency is also affected by the loading of the system and how efficient the bus
is being used. The following two examples illustrate a lightly and heavily loaded system
where the bus (PCI) is 32-bit. The lightly loaded example is the more typical case of
systems today, while the second is more of a theoretical maximum.

Lightly Loaded System

For this example, assume that no other REQ#s are asserted and the bus is either in
the Idle state or that a master is currently using the bus. Since no other REQ#s are
asserted, as soon as Agent A’s REQ# is asserted the arbiter will assert its GNT# on
the next evaluation of the REQ# lines. In this case, Agent A’s GNT# will be
asserted within a few clocks. Agent A gains access to the bus when the bus is in the
Idle state (assuming its GNT# is still active).

Heavily Loaded System

This example will use the arbiter described in the implementation note in
Section 3.4. Assume that all agents have their REQ# lines asserted and all want to
transfer more data than their Latency Timers allow. To start the sequence, assume
that the next bus master is Agent A on level 1 and Agent X on level 2. In this
example, Agent A has a very small number of clocks before it gains access to the
bus, while Agent Z has the largest number. In this example, Agents A and B each
get a turn before an Agent at Level 2. Therefore, Agents A and B each get three
turns on the bus, and Agents X and Y each get one turn before Agent Z gets a turn.
Arbitration latency (in this example) can be as short as a few clocks for Agent A or
(assuming a Latency Timer of 22 clocks) as long as 176 clocks (8 masters * 22
clocks/master) for Agent Z. Just to keep this in perspective, the heavily loaded
system is constantly moving about 90 MB/s of data (assuming target initial latency
of eight clocks and target subsequent latency of one clock).

As seen in the example, a master experiences its maximum arbitration latency when all
the other masters use the bus up to the limits of their Latency Timers. The probability of
this happening increases as the loading of the bus increases. In a lightly loaded system,
fewer masters will need to use the bus or will use it less than their Latency Timer would
allow, thus allowing quicker access by the other masters.

How efficiently each agent uses the bus will also affect average arbitration latencies. The
more wait states a master or target inserts on each transaction, the longer each transaction
will take, thus increasing the probability that each master will use the bus up to the limit
of its Latency Timer.

68

Revision 2.1

The following two examples illustrate the impact on arbitration latency as the efficiency
of the bus goes down due to wait states being inserted. In both examples, the system has
a single arbitration level, the Latency Timer is set to 22 and there are five masters that
have data to move. A Latency Timer of 22 allows each master to move a 64-byte
cacheline if initial latency is only eight clocks and subsequent latency is one clock. The
high bus efficiency example illustrates that the impact on arbitration latency is small
when the bus is being used efficiently.

System with High Bus Efficiency

In this example, all master moves an entire 64-byte cacheline before the Latency
Timer expires. This example assumes that each master is ready to transfer another
cacheline just after it completes its current transaction. In this example, the Latency
Timer has no affect. It takes the master

[(1 idle clock) + (8 initial TRDY# clocks)+ (15 subsequent TRDY# clocks)]
 * 30 ns/clock = 720 ns

to complete each cacheline transfer.

If all five masters use the same number of clocks, then each master will have to wait
for the other four, or

720 ns/master * 4 other masters = 2.9 µs

between accesses. Each master moves data at about 90 MB/s.

The Low Bus Efficiency example illustrates the impact on arbitration latency as a result
of the bus being used inefficiently. The first affect is that the Latency Timer expires.
The second affect is that is takes two transactions to complete a single cacheline transfer
which causes the loading to increase.

System with Low Bus Efficiency

This example keeps the target initial latency the same but increases the subsequent
latency (master or target induced) from 1 to 2. In this example, the Latency Timer
will expire before the master has transferred the full 64-byte cacheline. When the
Latency Timer expires, GNT# is deasserted, and FRAME# is asserted, the master
must stop the transaction prematurely and completes the two data phases it has
committed to complete (unless a MWI command in which case it completes the
current cacheline). Each master’s tenure on the bus would be

[(1 idle clock) + (22 Latency Timer clocks)+
(2 * 2 subsequent TRDY# clocks)]
 * 30 ns/clock = 810 ns

and each master has to wait

810 ns/master * 4 other masters = 3.2 µs

between accesses. However, the master only took slightly more time than the High
Bus Efficiency example, but only completed nine data phases (36 bytes, just over
half a cacheline) instead of 16 data phases. Each master moves data at only about
44 MB/s.

The arbitration latency in the Low Bus Efficiency example stayed at the same 3 µs as the
High Bus Efficiency example; but it took the master two transactions to complete the
transfer of a single cacheline. This doubled the loading of the system without increasing

69

Revision 2.1

the data throughput. This resulted from simply adding a single wait state to each data
phase.

Also, note that the above description assumes that all five masters are in the same
arbitration level. When a master is in a lower arbitration level or resides behind a PCI-
to-PCI bridge, it will experience longer latencies between accesses when the primary PCI
bus is in use.

The maximum limits of a target and master data latency in this specification are provided
for instantaneous conditions while the recommendations are used for normal behavior.
An example of an instantaneous condition is when the device is unable to continue
completing a data phase on each clock. Rather than stopping the transfer (introducing
the overhead of re-arbitration and target initial latency), the target would insert a couple
of wait states and continue the burst by completing a data phase on each clock. The
maximum limits are not intended to be used on every data phase, but rather on those rare
occasions when data is temporarily unable to transfer.

The following discussion assumes that devices are compliant with the specification and
have been designed to minimize their impact on the bus. For example, a master is
required to assert IRDY# within eight clocks for all data phases; however, it is
recommended that it assert IRDY# within one or two clocks.

Example of a System

The following system configuration and the bandwidth each device requires are
generous and exceed the needs of current implementations. The system that will be
used for a discussion about latency is a workstation comprised of:

Host bus bridge (with integrated memory controller)
Graphics device (VGA and enhanced graphics)
Frame grabber (for video conferencing)
LAN connection
Disk (a single spindle, IDE or SCSI)
Standard expansion bus bridge (PCI to ISA)
A PCI-to-PCI bridge for providing more than three add-in slots

The graphics controller is capable of sinking 50 MB/s. This assumes that the host
bus bridge generates 30 MB/s and the frame grabber generates 20 MB/s.

The LAN controller requires only about 4 MB/s (100 Mb) on average (workstation
requirements) and is typically much less.

The disk controller can move about 5 MB/s.

The standard expansion bus provides a cost effective way of connecting standard I/O
controllers (i.e., keyboard, mouse, serial, parallel ports,etc.) and masters on this bus
place a maximum of about 4 MB/s (aggregate plus overhead) on PCI and will
decrease in future systems.

The PCI-to-PCI bridge,in and of itself, does not use PCI bandwidth, but a place
holder of 9 MB/s is allocated for devices that reside behind it.

The total bandwidth needs of the system is about 72 MB/s (50 + 4 + 5 + 4 + 9) if all
devices want to use the bus at the same time.

70

Revision 2.1

To show that the bus can handle all the devices, these bandwidth numbers will be
used in the following discussion. The probability of all devices requiring use of the
bus at the same time is extremely low and the typical latency will be much lower
than the worst cases number discussed. For this discussion, the typical numbers used
are at a steady state condition where the system has been operating for a while and
not all devices require access to the bus at the same time.

Table 3-3 lists the requirements of each device in the target system and how many
transactions each device must complete to sustain its bandwidth requirements within
10 µs time slices.

The first column identifies the device generating the data transfer.

The second column is the total bandwidth the device needs.

The third column is the approximate number of bytes that need to be transferred
during this 10 µs time slice.

The fourth column is the amount of time required to move the data.

The last column indicates how many different transactions that are required to move
the data. This assumes that the entire transfer cannot be completed as a single
transaction.

Table 3-3: Example System

Device Bandwidth
(MB/s)

Bytes/10 µs Time Used
(µs)

Number of
Transactions

per Slice

Notes

Graphics 50 500 6.15 10 1

LAN 4 40 0.54 1 2

Disk 5 50 0.63 1 3

ISA bridge 4 40 0.78 2 4

PCI-to PCI
bridge

9 90 1.17 2 5

Total 72 720 9.27 16

Notes:

1. Graphics is a combination of host bus bridge and frame grabber writing data to the frame buffer.
The host moves 300 bytes using five transactions with 15 data phases each, assuming eight clocks
of target initial latency. The frame grabber moves 200 bytes using five transactions with 10 data
phases each, assuming eight clocks of target initial latency.

2. The LAN uses a single transaction with 10 data phases with eight clocks of target initial latency.

3. The disk uses a single transaction with 13 data phases with eight clocks of target initial latency.

4. The ISA bridge uses two transactions with five data phases each, with eight clocks of target initial
latency.

5. The PCI-to-PCI bridge uses two transactions. One transaction is similar to the LAN and the second
is similar to the disk requirements.

71

Revision 2.1

If the targeted system only needs full motion video or a frame grabber but not both,
then replace the Graphics row in Table 3-3 with the appropriate row in Table 3-4. In
either case, the total bandwidth required on PCI is reduced.

Table 3-4: Frame Grabber or Full Motion Video Example

Device Bandwidth
(MB/s)

Bytes/10 µs Time Used
(µs)

Number of
Transactions

per Slice

Notes

Host
writing to
the frame
buffer

40 400 4.2 5 1

Frame
grabber

20 200 3.7 5 2

Notes

1. The host uses five transactions with 20 data phases each, assuming eight clocks of target initial
latency.

2. The frame grabber uses five transactions with 10 data phases each, assuming eight clocks of target
initial latency.

The totals for Table 3-3 indicate that within a 10 µs window all the devices listed in
the table move the data they required for that time slice. In a real system not all
devices need to move data all the time. But they maybe able to move more data in a
single transaction. When devices move data more efficiently, the latency each device
experiences is reduced.

If the above system supported the arbiter illustrated in the Arbitration Implementation
Note, the frame grabber (or graphics device when it is a master) and the PCI-to-PCI
bridge would be put in the highest level. All other devices would be put in the lower
level or level two. The table above it shows that if all devices provide 10 µs of
buffering, they would not experience underruns or overruns. However, for devices that
move large blocks of data and are generally given higher priority in a system, then a
latency of 3 µs is reasonable. (When only two agents are at the highest level, each
experiences about 2 µs of delay between transactions. The table assumes that the target
is able to consume all data as a single transaction.)

3.5.3.3. Determining Buffer Requirements

Each device that interfaces to the bus needs buffering to match the rate the device
produces or consumes data with the rate that it can move data across the bus. The size of
buffering can be determined by several factors based on the functionality of the device
and the rate at which it handles data. As discussed in the previous section, the arbitration
latency a master experiences and how efficiently data is transferred on the bus will affect
the amount of buffering a device requires.

In some cases, a small amount of buffering is required to handle errors, while more
buffering may give better bus utilization. For devices which do not use the bus very
much (devices which rarely require more than 5 MB/s) it is recommended that a
minimum of four DWORDs of buffering be supported to ensure that transactions on the
bus are done with reasonable efficiency. Moving data as entire cachelines is the
preferred transfer size. Transactions less than four DWORDs in length are inefficient

72

Revision 2.1

and waste bus bandwidth. For devices which use the bus a lot (devices which frequently
require more than 5 MB/s), it is recommended that a minimum of 32 DWORDs of
buffering be supported to ensure that transactions on the bus are done efficiently.
Devices that do not use the bus efficiently will have a negative impact on system
performance and a larger impact on future systems.

While these recommendations are minimums, the real amount of buffering a device
needs is directly proportional to the difficulty required to recover from an underrun or
overrun. For example, a disk controller would provide sufficient buffering to move data
efficiently across PCI, but would provide no additional buffering for underruns and
overruns (since they will not occur). When data is not available to write to the disk, the
controller would just wait until data is available. For reads, when a buffer is not
available it simply does not accept any new data.

A frame grabber must empty its buffers before new data arrives or data is destroyed. For
systems that require good video performance the system designer needs to provide a way
for that agent to be given sufficient bus bandwidth to prevent data corruption. This can
be accomplished by providing an arbiter that has different levels and/or adjusting the
Latency Timer of other masters to limit their tenure on the bus.

The key for future systems is to have all devices use the bus as efficiently as possible.
This means to move as much data as possible (preferably several cachelines) in the
smallest number of clocks (preferably one clock subsequent latency). As devices do this,
the entire system experiences greater throughput and lower latencies. Lower latencies
allow smaller buffers to be provided in individual devices. Future benchmarks will
allow system designers to distinguish between devices that use the bus efficiently and
those that do not. Those that do will enable systems to be built that meet the demands of
multimedia systems.

3.6. Exclusive Access
PCI provides an exclusive access mechanism which allows non-exclusive accesses to
proceed in the face of exclusive accesses. This is referred to as a resource lock. This
allows future processors to hold a hardware lock across several accesses without
interfering with non-exclusive, real-time data transfer, such as video. The mechanism is
based on locking only the PCI resource to which the original locked access was targeted.
This mechanism is fully compatible with existing software use of exclusion.

In general, LOCK# is to be used by bridges (host bus, PCI-to-PCI and standard
expansion bus) to provide backward compatibility for existing devices and to prevent
deadlocks. A host bus bridge may need to support LOCK# as a target to provide
backward compatibility with some existing add-in cards that reside behind standard
expansion bus bridges. A host bus bridge (as a master) may support LOCK# (or
software mechanism) to prevent deadlocks (i.e., 8-byte read) with PCI-to-PCI bridges
(refer to Section 3.11, item 5) and to provide compatibility with standard expansion bus
bridges that require it. PCI-to-PCI bridges support LOCK# on transactions that
originate on the primary bus of the bridge and have destination on the secondary bus of
the bridge. The bridge may optionally support LOCK# as a target on the secondary bus.
The use of LOCK# is not recommended for devices other than bridges or memory
controllers that support system memory.

LOCK# is recommended on any device providing system memory. Specifically, if the
device implements executable memory, then it should also implement LOCK#, and
guarantee complete access exclusion in that memory (i.e., if there is a master local to that
memory, it must also honor the lock). However, in some system architectures the host

73

Revision 2.1

bus bridge cannot guarantee exclusivity of the locked resource to a PCI master that uses
LOCK#. In these systems, device drivers that require exclusivity use a software
mechanism to guarantee exclusion and do not rely on LOCK#. To ensure exclusive
access to system memory in multiple host or processor architectures, it is recommended
that a PCI master utilize a software protocol and not LOCK#. Agents other than host
bus bridges that support executable memory must guarantee exclusivity of the locked
resource when LOCK# is used since this type of agent is independent of the host bus and
processor architecture. This type of agent (if multi-ported), must guarantee exclusivity to
memory from all agents whether PCI or non-PCI. A potential deadlock exists when
using PCI-to-PCI bridges in a system (refer to Section 3.11., item 5, for more details).

The LOCK# signal indicates an exclusive access is underway. The assertion of GNT#
does not guarantee control of LOCK#. Control of LOCK# is obtained under its own
protocol in conjunction with GNT#. When using resource lock, agents performing non-
exclusive accesses are free to proceed even while another master retains ownership of
LOCK#. However, when compatibility dictates, the arbiter can optionally convert a
resource lock into a "complete bus" lock by granting the agent that owns LOCK#
exclusive access of the bus until LOCK# is released. Refer to Section 3.6.6. for more
details about complete bus locks.

In a resource lock, exclusivity of an access is guaranteed by the target of the access, not
by excluding all other agents from accessing the bus. The granularity of the lock is
defined to be 16 bytes aligned. An exclusive access to any byte in the 16 byte block will
lock the entire 16 byte block. The master cannot rely on any addresses outside the
16 bytes to be locked. A target is required to lock a minimum of 16 bytes (aligned) and
up to a maximum of the entire resource. With this in mind, the following paragraphs
describe the behavior of master and target.

The rules of LOCK# will be stated for both the master and target. Following the rules, a
detailed description of how to start, continue, and complete an exclusive operation on
PCI will be discussed. A discussion of how a target behaves when it supports both
resource lock and write-back cacheable memory will follow the discussion of how
exclusive operations work on PCI. The concluding section will discuss how to
implement a complete bus lock on PCI.

A target that supports LOCK# on PCI must adhere to the following rules:

1. The target of an access locks itself when LOCK# is deasserted during the address
phase.

2. Once lock is established, the target remains locked until both FRAME# and LOCK#
are sampled deasserted or the target signals Target-Abort

3. Guarantee exclusivity to the owner of LOCK# (once lock is established) of a
minimum of 16 bytes (aligned) of the resource.18 This includes accesses that do not
originate on PCI for multiport devices.

18 The maximum is the complete resource.

74

Revision 2.1

Implementation Note: Multiport Devices and LOCK#

A multiport device is an agent that provides access to the same memory via different
buses or ports. For a host bus bridge, the use of LOCK# only guarantees exclusivity to
the owner of LOCK# for accesses that originate on the PCI bus. Any exclusivity beyond
PCI must be guaranteed by the architecture of the host bus bridge or by software. In
some system architectures, Rule 3 cannot be guaranteed by a host bus bridge because the
host bus does not use hardware based locks to ensure exclusivity, but relies on a software
mechanism. For a host bus bridge that uses a software mechanism to provide
exclusivity, Rule 3 is not required. Note: A device driver that requires LOCK# for
exclusivity may not work properly in some system architectures. A multi-function
device that is not a host bus bridge and implements LOCK# must adhere to Rule 3. This
type of multiport device must guarantee exclusivity from other agents (PCI or local
masters) when LOCK# is implemented by the agent.

All PCI targets that support exclusive accesses must sample LOCK# with address. If the
target of the access performs medium or slow decode, it must latch LOCK# during the
address phase to determine if the access is a lock operation when decode completes. The
target of a transaction marks itself locked if LOCK# is deasserted during the address
phase. If a target waits to sample LOCK# until it asserts DEVSEL#, it cannot
distinguish if the current access is a locked transaction or one that occurs concurrently
with a locked access. An agent may store "state" to determine if the access is locked but
this requires latching LOCK# on consecutive clocks and comparing to determine if the
access is locked. A simpler way is for the target to mark itself locked on any access it
claims where LOCK# is deasserted during the address phase. A locked target remains in
the locked state until both FRAME# and LOCK# are deasserted.

To allow a non-PCI agent to access the memory of a multiport device, the target may
sample LOCK# the clock following the address phase to determine if the device is really
locked. Note: Sampling LOCK# during the address phase is still required to determine
if the current transaction is a locked access or not. The status of LOCK# on the clock
after the address phase provides additional information to a multiported device,
identifying if the current transaction is really locked (this requires additional logic not
required for a single ported device). When LOCK# is deasserted during the address
phase and is asserted (the clock following the address phase), the multiport device is
locked and must ensure exclusivity to the PCI master. When LOCK# is deasserted
during the address phase and the clock following the address phase, the target is free to
respond to other requests and is not locked. A currently locked target may only accept
requests when LOCK# is deasserted during the address phase. A currently locked target
will respond by asserting STOP# with TRDY# deasserted (Retry) to all transactions that
access the locked address space when LOCK# is asserted during the address phase.

To summarize, a target of an access locks itself on any access it claims when LOCK# is
deasserted during the address phase. It unlocks itself anytime FRAME# and LOCK#
are both deasserted. It is a little confusing for the target to lock itself on a transaction
that is not locked. However, from an implementation point of view, it is a simple
mechanism that uses combinatorial logic and always works. The device will unlock
itself at the end of the transaction when it detects FRAME# and LOCK# both
deasserted. A target can also remember state (which is useful for a multiport device) to
determine if it is truly locked or not. (The target is truly locked when LOCK# is
deasserted during the address phase and asserted on the following clock.)

Existing software that does not support the PCI lock usage rules has the potential of not
working correctly. PCI resident memory (primarily system memory) that supports

75

Revision 2.1

LOCK# and desires to be backward compatible to existing software is recommended to
implement complete resource lock. Refer to Section 3.6.5. for details of how to avoid
the deadlock.

A master that uses LOCK# on PCI must adhere to the following rules:

1. A master can access only a single resource during a lock operation.

2. A lock cannot straddle a device boundary.

3. Sixteen bytes (aligned) is the maximum resource size a master can count on as being
exclusive during a lock operation. An access to any part of the 16 bytes locks the
entire 16 bytes.

4. The first transaction of a lock operation must be a read transaction.

5. LOCK# must be asserted the clock following the address phase and kept asserted to
maintain control.

6. LOCK# must be released if Retry is signaled before a data phase has completed and
the lock has not been established.19

7. LOCK# must be released whenever an access is terminated by Target-Abort or
Master-Abort.

8. LOCK# must be deasserted for a minimum of one Idle state between consecutive
lock operations.

3.6.1. Starting an Exclusive Access

When an agent needs to do an exclusive operation, it checks the internally tracked state
of LOCK# before asserting REQ#. The master marks LOCK# busy anytime LOCK# is
asserted (unless it is the master that owns LOCK#) and not busy when both FRAME#
and LOCK# are deasserted. If LOCK# is busy (and the master does not own LOCK#),
the agent must delay the assertion of REQ# until LOCK# is available.

While waiting for grant, the master continues to monitor LOCK#. If LOCK# is ever
busy, the master deasserts REQ# because another agent has gained control of LOCK#.

When the master is granted access to the bus and LOCK# is not busy, ownership of
LOCK# has occurred. The master is free to perform an exclusive operation when the
current transaction completes and is the only agent on the bus that can drive LOCK#.
All other agents must not drive LOCK#, even when they are the current master.

Figure 3-13 illustrates starting an exclusive access. LOCK# is deasserted during the
address phase to request a lock operation which must be initiated with a read command.
LOCK# must be asserted the clock following the address phase, which is on clock 3, or
the clock after FRAME# is asserted (for either SAC or DAC) to keep the target in the
locked state which allows the current master to retain ownership of LOCK# beyond the
end of the current transaction.

19 Once lock has been established, the master retains ownership of LOCK# when terminated with Retry
or Disconnect.

76

Revision 2.1

CLK

FRAME#

AD

LOCK#

ADDRESS DATA

1 2 3 54

IRDY#

TRDY#

DEVSEL#

Figure 3-13: Starting an Exclusive Access

A locked operation is not established on the bus until completion of the first data phase
of the first transaction (IRDY# and TRDY# asserted). If the target retries the first
transaction without a data phase completing, not only must the master terminate the
transaction but it must also release LOCK#. Once the first data phase completes, the
exclusive operation is established and the master keeps LOCK# asserted until either the
lock operation completes or an error (Master- or Target-Abort) causes an early
termination. Target termination of Retry and Disconnect are normal termination even
when a lock operation is established. When a master is terminated by the target with
Disconnect or Retry after the lock has been established, the target is indicating it is
currently busy and unable to complete the requested data phase. The target will accept
the access when it is not busy and continues to honor the lock by excluding all other
accesses. The master continues to control LOCK#. Non-exclusive accesses to unlocked
targets on PCI are allowed to occur while LOCK# is asserted. When the exclusive
access is complete, LOCK# is deasserted and other masters may vie for ownership.

3.6.2. Continuing an Exclusive Access

Figure 3-14 shows a master continuing an exclusive access. However, this access may or
may not complete the exclusive operation. When the master is granted access to the bus,
it starts another exclusive access to the target it previously locked. LOCK# is deasserted
during the address phase to re-establish the lock. The locked device accepts and
responds to the request. LOCK# is asserted on clock 3 to keep the target in the locked
state and allow the current master to retain ownership of LOCK# beyond the end of the
current transaction.

When the master is continuing the lock operation, it continues to assert LOCK#. When
the master completes the lock operation, it deasserts LOCK# after the last data phase
which occurs on clock 5 (refer to Section 3.6.4. for more information on completing an
exclusive access).

77

Revision 2.1

CLK

FRAME#

AD

LOCK#

ADDRESS DATA

IRDY#

TRDY#

1 2 3 54

Release

Continue

DEVSEL#

Figure 3-14: Continuing an Exclusive Access

3.6.3. Accessing a Locked Agent

Figure 3-15 shows a master trying a non-exclusive access to a locked agent. When
LOCK# is asserted during the address phase, and if the target is locked, it signals Retry
and no data is transferred. An unlocked target ignores LOCK# when deciding if it
should respond. Also, since LOCK# and FRAME# are asserted during the address
phase, an unlocked target does not go into a locked state.

CLK

FRAME#

AD

LOCK#

ADDRESS DATA

IRDY#

TRDY#

(driven low by master holding lock)

1 2 3 54

STOP#

DEVSEL#

Figure 3-15: Accessing a Locked Agent

78

Revision 2.1

3.6.4. Completing an Exclusive Access

During the final transfer of an exclusive operation, LOCK# is deasserted so the target
will accept the request, and then re-asserted until the exclusive access terminates
successfully. The master may deassert LOCK# at any time when the exclusive operation
has completed. However, it is recommended (but not required) that LOCK# be
deasserted with the deassertion of IRDY# following the completion of the last data phase
of the locked operation. Releasing LOCK# at any other time may result in a subsequent
transaction being terminated with Retry unnecessarily. A locked agent unlocks itself
whenever LOCK# and FRAME# are deasserted.

If a master wants to execute two independent exclusive operations on the bus, it must
ensure a minimum of one clock between operations where both FRAME# and LOCK#
are deasserted. (For example, the fast back-to-back case depicted in Figure 3-12 (clock
3) would be illegal.) This ensures any target locked by the first operation is released
prior to starting the second operation. (An agent must unlock itself when FRAME# and
LOCK# are both deasserted on one clock edge.)

3.6.5. Supporting LOCK# and Write-back Cache Coherency

The resource lock, as described earlier, has a potential deadlock when using write-back
cache coherency. A deadlock may occur if software allows locks to cross a cacheline
boundary when write-back caching is supported and a complete resource lock is used.
An example of this potential deadlock is where the lock spans cachelines n and n+1.
Cacheline n+1 has been modified by the cache. A master establishes a lock by reading
cacheline n. The lock operation continues by reading cacheline n+1. The snoop (of n+1)
results in HITM which indicates that a modified line was detected. The writeback of the
modified line fails because the target only accepts accesses from the owner of LOCK#.
This results in a deadlock because the read cannot occur until the modified line is written
back and the writeback cannot occur until LOCK# ownership is released.

This deadlock is avoided by requiring targets that support cacheable writeback memory
(and complete resource lock) to allow writebacks even when locked.

The target can distinguish between a writeback and other write transactions by the state
of SDONE and SBO# during the address phase (or the clock after the assertion of
SDONE when addresses are queued). When CLEAN is indicated during the address
phase, the current transaction is either CLEAN or a writeback. A transition from
STANDBY to CLEAN during the address phase indicates a line replacement, while a
transition from HITM to CLEAN during the address phase indicates a writeback caused
by a snoop. The target of a writeback caused by a snoop (HITM to CLEAN during the
address phase) must accept the writeback even when locked. The target may optionally
accept line replacements (STANDBY to CLEAN during the address phase) but is not
required when locked. All other transactions are terminated by the target with Retry
when locked. Note: The target of a writeback caused by a snoop cannot terminate the
transaction until the cacheline has been transferred. This means that Retry and
Disconnect are not allowed for writebacks caused by a snoop.

79

Revision 2.1

3.6.6. Complete Bus Lock

The PCI resource lock can be converted into a complete bus lock by having the arbiter
not grant the bus to any other agent while LOCK# is asserted. When the first access of
the locked sequence is retried, the master must deassert both its REQ# and LOCK#.
When the first access completes normally, the complete bus lock has been established
and the arbiter will not grant the bus to any other agent. If the arbiter granted the bus to
another agent when the complete bus lock was being established, the arbiter must remove
the other grant to ensure that complete bus lock semantics are observed. A complete bus
lock may have a significant impact on the performance of the system, particularly the
video subsystem. All non-exclusive accesses will not proceed while a locked operation
is in progress.

As with the complete resource lock and write-back cacheable memory, a potential
deadlock exists for complete bus lock. The arbiter that supports complete bus lock must
grant the bus to the cache to perform a writeback due to a snoop to a modified line when
a lock is in progress. (The target is required to accept a writeback when locked because
it cannot tell if complete bus or resource lock is being used.)

3.7. Other Bus Operations

3.7.1. Device Selection

DEVSEL# is driven by the target of the current transaction as shown in Figure 3-16 to
indicate that it is responding to the transaction. DEVSEL# may be driven one, two or
three clocks following the address phase. Each target indicates the DEVSEL# timing it
uses in its Configuration Space Status register described in Section 6.2.3.. DEVSEL#
must be asserted with or prior to the edge at which the target enables its TRDY#,
STOP#, and data if a read transaction. In other words, a target must assert DEVSEL#
(claim the transaction) issue any other target response. Once DEVSEL# has been
asserted, it cannot be deasserted until the last data phase has completed, except to signal
Target-Abort. Refer to Section 3.3.3.2 for more information.

TRDY#

DEVSEL#

IRDY#

CLK

NO RESPONSE

ACKNOWLEDGE
FAST MED SLOW SUB

FRAME#

1 2 3 4 5 6 7 8

Figure 3-16: DEVSEL# Assertion

80

Revision 2.1

If no agent asserts DEVSEL# within three clocks of FRAME#, the agent doing
subtractive decode may claim and assert DEVSEL#. If the system does not have a
subtractive decode agent, the master never sees DEVSEL# asserted and terminates the
transaction per the Master-Abort mechanism (refer to Section 3.3.3.1.).

A target must do a full decode before driving/asserting DEVSEL#, or any other target
response signal. It is illegal to drive DEVSEL# prior to a complete decode and then let
the decode combinationally resolve on the bus. (This could cause contention.) A target
must qualify the AD lines with FRAME# before DEVSEL# can be asserted on
commands other than configuration. A target must qualify IDSEL with FRAME# and
AD[1::0] before DEVSEL# can be asserted on a configuration command.

It is expected that most (perhaps all) target devices will be able to complete a decode and
assert DEVSEL# within one or two clocks of FRAME# being asserted (fast and
medium in the figure).

Accordingly, the subtractive decode agent may provide an optional device dependent
configuration register that can be programmed to pull in by one or two clocks the edge at
which it samples DEVSEL#, allowing faster access to the expansion bus. Use of such
an option is limited by the slowest positive decode agent on the bus.

If the first byte addressed by the transaction maps into the target’s address range, it
asserts DEVSEL# to claim the access. But if the master attempts to continue the burst
transaction across the resource boundary, the target is required to signal Disconnect.

When a target claims an I/O access and the byte enables indicate one or more bytes of the
access are outside the target’s address range, it must signal Target-Abort. (Refer to
Section 3.2.2. for more information.) To deal with this type of I/O access problem, a
subtractive decode device (expansion bus bridge) may do one of the following:

• Do positive decode (by including a byte map) on addresses for which different
devices share common DWORDs, additionally using byte enables to detect this
problem and signal Target-Abort.

• Pass the full access to the expansion bus, where the portion of the access that
cannot be serviced will quietly drop on the floor. (This occurs only when the first
addressed target resides on the expansion bus and the other is on PCI.)

3.7.2. Special Cycle

The Special Cycle command provides a simple message broadcast mechanism on PCI.
In addition to communicating processor status (as is done on Intel processor buses), it
may also be used for logical sideband signaling between PCI agents, when such
signaling does not require the precise timing or synchronization of physical signals.

A good paradigm for the Special Cycle command is that of a "logical wire" which only
signals single clock pulses; i.e., it can be used to set and reset flip flops in real time,
implying that delivery is guaranteed. This allows the designer to define necessary
sideband communication without requiring additional pins. As with sideband signaling
in general, implementation of Special Cycle command support is optional.

The Special Cycle command contains no explicit destination address, but is broadcast to
all agents on the same bus segment. Each receiving agent must determine whether the
message is applicable to it. PCI agents will never assert DEVSEL# in response to a
Special Cycle command.

81

Revision 2.1

Note: Special Cycle commands do not cross PCI-to-PCI bridges. If a master desires to
generate a Special Cycle command on a specific bus in the hierarchy, it must use a Type
1 configuration command to do so. Type 1 configuration commands can traverse PCI-to-
PCI bridges in both directions for the purpose of generating Special Cycles commands
on any bus in the hierarchy and are restricted to a single data phase in length. However,
the master must know the specific bus on which it desires to generate the Special Cycle
command and cannot simply do a broadcast to one bus and expect it to propagate to all
buses. Refer to Section 3.7.4. for more information.

A Special Cycle command may contain optional, message dependent data, which is not
interpreted by the PCI sequencer itself, but is passed, as necessary, to the hardware
application connected to the PCI sequencer. In most cases, explicitly addressed
messages should be handled in one of the three physical address spaces on PCI, and not
with the Special Cycle command.

Using a message dependent data field can break the logical wire paradigm mentioned
above, and create delivery guarantee problems. However, since targets only accept
messages they recognize and understand, the burden is placed on them to fully process
the message in the minimum delivery time (six bus clocks) or to provide any necessary
buffering for messages they accept. Normally this buffering is limited to a single flip-
flop. This allows delivery to be guaranteed. In some cases, it may not be possible to
buffer or process all messages that could be received. In this case, there is no guarantee
of delivery.

A Special Cycle command is like any other bus command where there is an address
phase and a data phase. The address phase starts like all other commands with the
assertion of FRAME# and completes like all other commands when FRAME# and
IRDY# are deasserted. The uniqueness of this command compared to the others is that
no agent responds with the assertion of DEVSEL# and the transaction concludes with a
Master-Abort termination. Master-Abort is the normal termination for Special Cycle
transactions and no errors are reported for this case of Master-Abort termination. This
command is basically a broadcast to all agents, and interested agents accept the
command and process the request.

The address phase contains no valid information other than the command field. There is
no explicit address, however, AD[31::00] are driven to a stable level and parity is
generated. During the data phase AD[31::00] contain the message type and an optional
data field. The message is encoded on the least significant 16 lines, namely
AD[15::00]. The optional data field is encoded on the most significant 16 lines, namely
AD[31::16], and is not required on all messages. The master of a Special Cycle
command can insert wait states like any other command while the target cannot (since no
target claimed the access by asserting DEVSEL#). The message and associated data are
only valid on the first clock IRDY# is asserted. The information contained in, and the
timing of, subsequent data phases is message dependent. When the master inserts a wait
state or transfers multiple data phases, it must extend the transaction to give potential
targets sufficient time to process the message. This means the master must guarantee the
access will not complete for at least four clocks (may be longer) after the last valid data
completes. For example, a master keeps IRDY# deasserted for two clocks for a single
data phase Special Cycle command. Because the master inserted wait states, the
transaction cannot be terminated with Master-Abort on the fifth clock after FRAME#
(the clock after subtractive decode time) like usual, but must be extended at least an
additional two clocks. When the transaction has multiple data phases, the master cannot
terminate the Special Cycle command until at (at least) four clocks after the last valid
data phase. Note: The message type or optional data field will indicate to potential

82

Revision 2.1

targets the amount of data to be transferred. The target must latch data on the first clock
IRDY# is asserted for each piece of data transferred.

During the address phase, C/BE[3::0]# = 0001 (Special Cycle command) and
AD[31::00] are driven to random values and must be ignored. During the data phase,
C/BE[3::0]# are asserted and AD[31::00] are as follows:

AD[15::00]

AD[31::16]

Encoded message

Message dependent (optional) data field

The PCI bus sequencer starts this command like all others and terminates it with a
Master-Abort. The hardware application provides all the information like any other
command and starts the bus sequencer. When the sequencer reports that the access
terminated with a Master-Abort, the hardware application knows the access completed.
In this case, the Received Master Abort bit in the configuration Status register
(Section 6.2.3.) must not be set. The quickest a Special Cycle command can complete is
five clocks. One additional clock is required for the turnaround cycle before the next
access. Therefore, a total of six clocks is required from the beginning of a Special Cycle
command to the beginning of another access.

There are a total of 64K messages. The message encodings are defined and described in
Appendix A.

3.7.3. Address/Data Stepping

The ability of an agent to spread assertion of qualified signals over several clocks is
referred to as stepping. This notion allows an agent with "weak" output buffers to drive
a set of signals to a valid state over several clocks (continuous stepping), thereby
reducing the ground current load generated by each buffer. An alternative approach
allows an agent with "strong" output buffers to drive a subset of them on each of several
clock edges until they are all driven (discrete stepping), thereby reducing the number of
signals that must be switched simultaneously. All agents must be able to handle address
and data stepping while generating it is optional. Refer to Section 4.2.4. for conditions
associated with indeterminate signal levels on the rising edge of CLK.

Either continuous or discrete stepping allows an agent to trade off performance for cost
(fewer power/ground pins). When using the continuous stepping approach, care must be
taken to avoid mutual coupling between critical control signals that must be sampled on
each clock edge and the stepped signals that may be transitioning on a clock edge.
Performance critical peripherals should apply this "permission" sparingly.

Stepping is only permitted on AD[31::00], AD[63::32], PAR, PAR64# (for 64-bit
data transfers but not for the DAC command), and IDSEL pins, because they are always
qualified by control signals; i.e., these signals are only considered valid on clock edges
for which they are qualified. ADs are qualified by FRAME# in address phases and by
IRDY# or TRDY# in data phases (depending on which direction data is being
transferred). PAR is implicitly qualified on each clock after which AD was qualified.
IDSEL is qualified by the combination of FRAME# and a decoded configuration
command.

Figure 3-17 illustrates a master delaying the assertion of FRAME# until it has
successfully driven all AD lines. The master is both permitted and required to drive AD
and C/BE# once ownership has been granted and the bus is in the Idle state. But it may

83

Revision 2.1

take multiple clocks to drive a valid address before asserting FRAME#. However, by
delaying assertion of FRAME#, the master runs the risk of losing its turn on the bus. As
with any master, GNT# must be asserted on the rising clock edge before FRAME# is
asserted. If GNT# were deasserted, on the clock edges marked "A", the master is
required to immediately tri-state its signals because the arbiter has granted the bus to
another agent. (The new master would be at a higher priority level.) If GNT# were
deasserted on the clock edges marked "B" or "C", FRAME# will have already been
asserted and the transaction continues.

FRAME#

CLK

AD

GNT#

IRDY#

ADDRESS DATA-0

A A CB

1 2 3 4 5 6 7 8 9

BUS CMD BE#'s-0C/BE#

Figure 3-17: Address Stepping

3.7.4. Configuration Cycle

The PCI definition provides for totally software driven initialization and configuration
via a separate Configuration Address Space. PCI devices are required to provide 256
bytes of configuration registers for this purpose. Register descriptions are provided in
Chapter 6. This section describes the PCI bus commands for accessing PCI
Configuration Space.

As previously discussed, each device decodes its own addresses for normal accesses.
However, accesses in the Configuration Address Space require device selection decoding
to be done externally, and to be signaled to the PCI device via the IDSEL pin, which
functions as a classical "chip select" signal. A PCI device is a target of a configuration
command (read or write) only if its IDSEL is asserted and AD[1::0] are "00" (indicating
a Type 0 configuration transaction) during the address phase of the command. Internal
addressing of the 64-DWORD register space is done by AD[7::2] and the byte enables.
The configuration commands, like other commands, allow data to be accessed using any
combination of bytes (including a byte, word, DWORD, or non-contiguous bytes) and
multiple data phases in a burst. The target is required to handle any combination of byte
enables.

When a configuration command has multiple data phases (burst) linear burst ordering is
the only addressing mode allowed, since AD[1::0] convey configuration access type and
not a burst addressing mode like Memory accesses. The implied address of each
subsequent data phase is one DWORD larger than the previous data phase. For example,
a transaction starts with AD[7::2] equal to 0000 00xxb, the sequence of a burst would
be: 0000 01xxb, 0000 10xxb, 0000 11xxb, 0001 00xxb (where xx indicate whether the

84

Revision 2.1

transaction is a Type 00 or Type 01 configuration access). The rest of the transaction is
the same as other commands, including all termination semantics. If no agent responds,
the request is terminated via Master-Abort (Section 3.3.3.1.). A standard expansion bus
bridge must not forward a configuration transaction to an expansion bus. Note: The
PCI-to-PCI Bridge Architecture Specification restricts Type 1 configuration cycles that
are converted into a Special Cycle command to a single data phase (no Special Cycle
bursts).

Implementation Note: System Generation of IDSEL

How a system generates IDSELs is system specific; however, if no other mapping is
required, the following example may be used. The IDSEL signal associated with Device
Number 0 is connected to AD16, IDSEL of Device Number 1 is connected to AD17,
and so forth until IDSEL of Device Number 16 is connected to AD31. For Device
Numbers 17-31, the host bridge should execute the transaction but not assert any of the
AD[31::16] lines but allow the access to be terminated with Master-Abort.

The binding between a device number in the CONFIG_ADDRESS register and the
generation of an IDSEL is not specified. Therefore, BIOS must scan all 32 device
numbers to ensure all components are located. Note: The hardware that converts the
device number to an IDSEL is required to ensure that only a single unique IDSEL line is
asserted for each device number. Configuration accesses that are not claimed by a device
are terminated with Master-Abort. The master that initiated this transaction sets the
received Master-Abort bit in the Status register.

Exactly how the IDSEL pin is driven is left to the discretion of the host/memory bridge
or system designer. IDSEL generation behind a PCI-to-PCI bridge is specified in the
PCI-to-PCI Bridge Architecture Specification. However, this select signal has been
designed to allow its connection to one of the upper 21 address lines, which are not
otherwise used in a configuration access. There is no known or standard way of
determining IDSEL from the upper 21 address bits; therefore, the IDSEL pin MUST be
supported. Devices must not make an internal connection between an AD line and an
internal IDSEL signal in order to save a pin. The only exception is the primary bus
bridge, since it defines how IDSELs are mapped. AD[31::00] lines must be actively
driven during the address phase. By connecting a different address line to each device,
and by asserting one of the AD[31::11] lines at a time, 21 different devices can be
uniquely selected for configuration accesses.

85

Revision 2.1

The issue with this approach (connecting one of the upper 21 AD lines to IDSEL) is an
additional load on the AD line. This can be mitigated by resistively coupling IDSEL to
the appropriate AD line. This does, however, create a very slow slew rate on IDSEL,
causing it to be in an invalid logic state most of the time, as shown in Figure 3- 18 with
the "XXXX" marks. However, since it is only used on the address phase of a
configuration cycle, the address bus can be pre-driven a few clocks before FRAME#20,
thus guaranteeing IDSEL to be stable when it needs to be sampled. For all other cycles,
IDSEL is undefined and may be at a non-deterministic level during the address phase.
Pre-driving the address bus is equivalent to address stepping as discussed in the previous
section.

FRAME#

CLK

TRDY#

IRDY#

AD

C/BE#

ADDRESS

BE#'s

DATA

CFG-RD

IDSEL

1 2 3 4 5 6

DEVSEL#

Figure 3-18: Configuration Read

To support hierarchical PCI buses, two types of configuration access are used. They
have the formats illustrated in Figure 3-19 which show the interpretation of AD lines
during the address phase of a configuration access.

20 The number of clocks the address bus should be pre-driven is determined from the RC time constant
on IDSEL.

86

Revision 2.1

031 10

Reserved

15 1278

Device
Number

16

 Bus
Number

Register
 Number

Function
 Number

2324

031

Reserved

1278

Register
 Number

Function
 Number 0

11

0

11 10

Type 0

Type 1

0 1

Figure 3-19: Configuration Access Formats

Type 1 and Type 0 configuration accesses are differentiated by the values on the
AD[1::0] pins. A Type 0 configuration cycle (when AD[1::0] = "00") is used to select a
device on the PCI bus where the cycle is being run. A Type 1 configuration cycle (when
AD[1::0] = "01") is used to pass a configuration request on to another PCI bus.

The Register Number and Function Number fields have the same meaning for both
configuration types, while Device Number and Bus Number are used only in Type 1
accesses. Reserved fields must be ignored by targets.

Register Number is an encoded value used to index a DWORD in Configuration
Space of the intended target.

Function Number is an encoded value used to select one of eight possible functions
on a multifunction device.

Device Number is an encoded value used to select one of 32 devices on a given
bus. (There are only 21 devices that can be selected by tying the
IDSEL to an AD (AD[31::11]) line.)

Bus Number is an encoded value used to select 1 of 256 buses in a system.

Bridges (both host and PCI-to-PCI) that need to generate a Type 0 configuration cycle
use the Device Number to select which IDSEL to assert. The Function Number is
provided on AD[10::08]. The Register Number is provided on AD[7::2]. AD[1::0]
must be "00" for a Type 0 configuration access.

Type 0 configuration accesses are not propagated beyond the local PCI bus and must be
claimed by a local device or terminated with Master-Abort.

If the target of a configuration access resides on another bus (not the local PCI bus), a
Type 1 configuration access must be used. Type 1 accesses are ignored by all targets
except PCI-to-PCI bridges. These devices decode the Bus Number field to determine if
the destination of the configuration access is residing behind the bridge. If the Bus
Number is not for a bus behind the bridge, the access is ignored. The bridge claims the
access if the access is to a bus behind the bridge. If the Bus Number is not to the
secondary bus of the bridge, the access is simply passed through unchanged. If the Bus
Number matches the secondary bus number, the bridge converts the access into a Type 0
configuration access. The bridge changes AD[1::0] to "00" and passes AD[10::02]
through unchanged. The Device Number is decoded to select one of 32 devices on the
local bus. The bridge asserts the correct IDSEL and initiates a configuration access.

87

Revision 2.1

Note: PCI-to-PCI bridges can also forward transactions upstream (refer to the PCI-to-
PCI Bridge Architecture Specification for more information).

Devices that respond to Type 0 configuration cycles are separated into two classes. The
first class (single function device) is defined for backward compatibility, and only uses
its IDSEL pin and AD[1::0] ("00") to determine whether or not to respond. The second
class of device (multi-function device) understands the Function Number field and uses
its IDSEL pin, AD[1::0] ("00") as well as the encoded value on AD[10::08] to
determine whether or not to respond. The two classes are differentiated by an encoding
in the Configuration Space header.

Multi-function devices are required to do a full decode on AD[10::08], and only respond
to the configuration cycle if they have implemented the Configuration Space registers for
the selected function. They are also required to always implement function 0 in the
device. Implementing other functions is optional and may be assigned in any order (i.e.,
a two-function device must respond to function 0, but can choose any of the other
possible function numbers (1-7) for the second function).

Configuration code will probe the bus in Device Number order (i.e. Function Number
will be 0). If a single function device is detected, no more functions for that Device
Number will be checked. If a multi-function device is detected, then all remaining
Function Numbers will be checked.

Generating Configuration Cycles

Systems must provide a mechanism that allows PCI configuration cycles to be generated
by software. This mechanism is typically located in the host bridge. For PC-AT
compatible systems, the mechanism for generating configuration cycles is defined and
specified below. A device driver should use the API provided by the operating system
to access the Configuration Space of its device and not directly by way of the hardware
mechanism. For other system architectures, the method of generating configuration
accesses is not defined in this specification.

For PC-AT compatible machines, there are two distinct mechanisms defined to allow
software to generate configuration cycles. These are referred to as Configuration
Mechanism #1 and Configuration Mechanism #2. Configuration Mechanism #1 is the
preferred implementation and must be provided by all future host bridges (and existing
bridges should convert if possible). Configuration Mechanism #2 is defined for
backward compatibility and must not be used by new designs21. Host bridges to be used
in PC-AT compatible systems must implement at least one of these mechanisms.

21 This mechanism adds a significant software burden and impacts performance when used in a multi-
processor system. The operating system and its device drivers must cooperate in order to guarantee
mutually exclusive access to the I/O address range of C000h-CFFFh for both configuration space and
device I/O accesses. A suitable synchronization mechanism is difficult to add into existing multi-
processor operating systems/drivers where drivers currently perform direct access to their allocated I/O
space.

88

Revision 2.1

3.7.4.1. Configuration Mechanism #1

Two DWORD I/O locations are used in this mechanism. The first DWORD location
(CF8h) references a read/write register that is named CONFIG_ADDRESS. The second
DWORD address (CFCh) references a register named CONFIG_DATA. The general
mechanism for accessing Configuration Space is to write a value (must be a DWORD
operation) into CONFIG_ADDRESS that specifies the PCI bus, the device on that bus,
and the configuration register in that device being accessed. Note: The host bridge
determines the configuration access type (1 or 0) based on the value of the bus number in
the CONFIG_ADDRESS register. The Enable bit (bit 31) in the CONFIG_ADDRESS
register must be set to access the CONFIG_DATA register; otherwise, the access is
passed through the bridge as an I/O transaction. A read or write to CONFIG_DATA will
then cause the bridge to translate that CONFIG_ADDRESS value to the requested
configuration cycle on the PCI bus. Accesses to CONFIG_DATA determine the size of
the access to the configuration register addressed by CONFIG_ADDRESS and can be
performed as a byte, word, or DWORD operation. For example, a host processor does a
word (host byte enables 1 and 0 asserted) access to CONFIG_DATA. The host bus
bridge drives the data stored in CONFIG_ADDRESS onto the AD lines during the
address phase. If a Type 0 access (AD0 = 0), then CONFIG_ADDRESS[10::00] are
passed unmodified onto AD[10::00] but AD[31::11] are decoded from
CONFIG_DATA[15::11]. If a Type 1 access (AD0 = 1), then
CONFIG_ADDRESS[23::00] are passed unmodified onto AD[23::01] but AD[31::24]
are driven to 0000 0000b. During the data phase, the bridge passes the byte enables from
the host bus to PCI by asserting C/BE#[3::0] = 1100. This will access the lower two
bytes of the configuration register in the device on the specific bus addressed by the
CONFIG_ADDRESS register.

The CONFIG_ADDRESS register is 32 bits with the format shown in Figure 3-20.
Bit 31 is an enable flag for determining when accesses to CONFIG_DATA should be
translated to configuration cycles on the PCI bus. Bits 30 to 24 are reserved, read-only,
and must return 0’s when read. Bits 23 through 16 choose a specific PCI bus in the
system. Bits 15 through 11 choose a specific device on the bus. Bits 10 through 8
choose a specific function in a device (if the device supports multiple functions). Bits 7
through 2 choose a DWORD in the device’s Configuration Space. Bits 1 and 0 are read-
only and must return 0’s when read.

Enable bit (’1’ = enabled, ’0’ = disabled)

031 10

Reserved

15 1278

Device
Number

16

 Bus
Number

Register
Number

Function
Number

2324 11

0 0

30

Figure 3-20: Layout of CONFIG_ADDRESS Register

Anytime a host bridge sees a full DWORD I/O write from the host to
CONFIG_ADDRESS, the bridge must latch the data into its CONFIG_ADDRESS
register. On full DWORD I/O reads to CONFIG_ADDRESS, the bridge must return the
data in CONFIG_ADDRESS. Any other types of accesses to this address (non-
DWORD) must be treated like a normal I/O access and no special action should be taken.
Therefore, the only I/O Space consumed by this register is a DWORD at the given
address. I/O devices using BYTE or WORD registers are not affected because they will
be passed on unchanged.

89

Revision 2.1

When a bridge sees an I/O access that falls inside the DWORD beginning at
CONFIG_DATA address, it checks the Enable bit and the Bus Number in the
CONFIG_ADDRESS register. If configuration cycle translation is enabled and the Bus
Number matches the bridge’s Bus Number or any Bus Number behind the bridge, a
configuration cycle translation must be done.

There are two types of translation that take place. The first, Type 0, is a translation
where the device being addressed is on the PCI bus connected to the bridge. The second,
Type 1, occurs when the device is on another bus somewhere behind this bridge.

For Type 0 translations (see Figure 3-21), the bridge does a decode of the Device
Number field to assert the appropriate IDSEL line22 and performs a configuration cycle
on the PCI bus where AD[1::0] = "00". Bits 10 - 8 of CONFIG_ADDRESS are copied
to AD[10::8] on the PCI bus as an encoded value which may be used by components
that contain multiple functions. AD[7::2] are also copied from the CONFIG_ADDRESS
register. Figure 3-21 shows the translation from the CONFIG_ADDRESS register to AD
lines on the PCI bus.

0 0
Register
Number

Device
Number

 Bus
Number

Reserved

1278111516232431 30 010

01011

Only One "1" 0 0

31

CONFIG_ADDRESS

PCI AD BUS

Function
Number

Figure 3-21: Bridge Translation for Type 0 Configuration Cycles

For Type 1 translations, the bridge directly copies the contents of the
CONFIG_ADDRESS register onto the PCI AD lines during the address phase of a
configuration cycle making sure that AD[1::0] is "01".

In both Type 0 and Type 1 translations, byte enables for the data transfers must be
directly copied from the processor bus.

For systems with peer bridges on the processor bus, one peer bridge would typically be
designated to always acknowledge accesses to the CONFIG_ADDRESS register. Other
bridges would snoop the data written to this register. Accesses to the CONFIG_DATA
register are typically handshaken by the bridge doing the configuration translation.

Host bridges typically require two Configuration Space registers whose contents are used
to determine when the bridge does configuration cycle translation. One register (Bus
Number) specifies the bus number of the PCI bus directly behind the bridge, and the
other register (Subordinate Bus Number) specifies the number of the last hierarchical bus

22 If the Device Number field selects an IDSEL line that the bridge does not implement, the bridge must
complete the processor access normally, dropping the data on writes and returning all ones on reads.
This is easily implemented by performing a Type 0 configuration access with no IDSEL asserted. This
will terminate with Master-Abort which drops write data and returns all ones on reads.

90

Revision 2.1

behind the bridge.23 A PCI-to-PCI bridge requires an additional register which is its
Primary Bus Number. POST code is responsible for initializing these registers to
appropriate values.

Generating Special Cycles with Configuration Mechanism #1

This section defines how host bridges that implement Configuration Mechanism #1 for
accessing Configuration Space should allow software to generate Special Cycles. Host
bridges are not required to provide a mechanism for allowing software to generate
Special Cycles.

When the CONFIG_ADDRESS register is written with a value such that the Bus
Number matches the bridge’s bus number, the Device Number is all 1’s, the Function
Number is all 1’s, and the Register Number has a value of zero, then the bridge is primed
to do a Special Cycle command the next time the CONFIG_DATA register is written.
When the CONFIG_DATA register is written, the bridge generates a Special Cycle
command encoding (rather than configuration write) on the C/BE[3::0]# pins during the
address cycle, and drives the data from the I/O write onto AD[31::00] during the first
data cycle. Reads to CONFIG_DATA, after CONFIG_ADDRESS has been set up this
way, have undefined results. The bridge can treat it as a normal configuration cycle
operation (i.e., generate a Type 0 configuration cycle on the PCI bus). This will
terminate with a Master-Abort and the processor will have all 1’s returned.

If the Bus Number field of CONFIG_ADDRESS does not match the bridge’s bus
number, then the bridge passes the write to CONFIG_DATA on through to PCI as a
Type 1 configuration cycle just like anytime the bus numbers do not match.

3.7.4.2. Configuration Mechanism #2

This mechanism for accessing PCI Configuration Space provides a mode that maps PCI
Configuration Space into 4K bytes of the CPU I/O Space. When the mode is set to
enable PCI Configuration Space mapping, any CPU access within I/O address range
C000h-CFFFh will be translated to a PCI configuration cycle. When the mode is set to
disable PCI Configuration Space mapping, all CPU I/O accesses in that range will be
routed to the appropriate I/O port in the system. This mechanism does not support peer
bridges on the processor bus.

Two registers are used in this mechanism. These registers are described below.

Configuration Space Enable Register

Configuration Space is mapped into I/O Space by writing to the Configuration Space
Enable (CSE) register located at I/O location CF8h. The fields in the CSE register are
shown in Figure 3-22.

23 Host bridges that do not allow peer bridges do not need either of these registers since the bus behind
the bridge is, by definition, bus 0 and all other PCI buses are subordinate to bus 0.

91

Revision 2.1

Function Number

01347

Key

Special Cycle Enable0000 = Normal Mode

Other = Config Mapping Enable

SCEI/O Port CF8h

Figure 3-22: Configuration Space Enable Register Layout

This register is a read/write I/O port that logically resides in the host bridge. Bit 0 is an
enable bit for generating PCI Special Cycle commands. This bit must be set to zero to
generate configuration cycles and set to one to generate Special Cycle commands.
Bits 1 to 3 provide the function number for the configuration cycle. These three bits are
transferred to AD[10::08] when a configuration cycle is generated. The key field is used
to enable the mapping function that maps reads/writes of I/O Space to reads/writes in the
PCI Configuration Space. The host bridge responds to a read of the CSE register by
returning the last data written to that register. All accesses of the CSE register must be
single byte operations.

After reset, the CSE register is cleared and the host bridge comes up in the default state
where it treats all I/O accesses normally.

Forward Register

The Forward register, located at I/O address CFAh, is used to specify which PCI bus is
being accessed. This register is read/write, initialized to 0 at reset, and returns the last
value written when read. When the Forward register is 00h, then the bus immediately
behind the bridge is being accessed and Type 0 configuration accesses are generated.
When the Forward register is non-zero, then Type 1 configuration accesses are generated
and the contents of the Forward register are mapped to AD[23::16] during the address
phase of the configuration cycle.

Configuration Space Mapping

When the bridge is enabled to do Configuration Space mapping (i.e. the Key field of the
CSE register is non-zero), the bridge must convert all I/O accesses in the range C000h-
CFFFh to PCI configuration cycles. Sixteen PCI devices (per bus) are addressable using
bits 11::8 of the I/O address. Bits 7::2 of the I/O address select a particular DWORD
within the device’s Configuration Space.

Figure 3-23 shows the translation made when the Forward register is zero. This indicates
that the device being accessed is on PCI bus 0 which is directly behind the bridge. The
translation produces a Type 0 configuration cycle.

92

Revision 2.1

From bits 3-1 of
CSE Register

Host Address [15::2]

1 1 0 0 1 of 16 Agents Register Index

Register Index 0 0Function NumberReservedOnly one "1"

2781115

012781011
15

16
31

Type 0 Configuration Cycle Address [31::0]

Figure 3-23: Translation to Type 0 Configuration Cycle

Figure 3-24 shows the translation made when the Forward register is non-zero. This
indicates that the device being accessed is on a PCI bus other than the one directly
behind the bridge. The bridge must generate a Type 1 configuration cycle and map the
Forward register onto AD[23::16] of the PCI bus.

From bits 3-1 of
CSE Register

From Forward
Register

0

Register Index

Register Index 0 1

1 1 0 0 1 of 16 Agents

1 of 16 Agents Function NumberBus NumberReserved

Host Address [15::2]

278111215

012781011141516232431

Type 1 Configuration Cycle Address [31::0]

Figure 3-24: Translation to Type 1 Configuration Cycle

Generating Special Cycles with Configuration Mechanism #2

This section defines how host bridges that implement Configuration Mechanism #2 for
accessing Configuration Space should allow software to generate Special Cycles. Host
bridges are not required to provide a mechanism for allowing software to generate
Special Cycles.

When the CSE register is setup so that bit 0 is a "1", the Function Number field is all
ones, and the key field is non-zero, then the bridge is enabled to do a Special Cycle or a
Type 1 configuration cycle on the PCI bus the next time a CPU I/O write access is made
to I/O location CF00h.

When Special Cycle generation is enabled and the CPU does a write access to I/O
address CF00h, the bridge compares the contents of the Forward register to 00h. If the
contents of Forward register are 00h, then the host bridge generates a PCI Special Cycle
on the PCI bus. During the address phase, the bridge generates the Special Cycle

93

Revision 2.1

encoding on C/BE[3::0]# and drives the data from the I/O write (to CF00h) on
AD[31::00] during the first data phase of the Special Cycle. If the contents of the
Forward register are not equal to "0", then the host bridge generates a Type 1
configuration cycle on the PCI bus with the Device Number and Function Number fields
as all 1’s (AD[15::08] being all 1’s) and the Register Number being 00h (AD[7::2] being
all 0’s) during the address phase of PCI configuration write cycle.

Read accesses to I/O addresses CXXXh while the CSE register is enabled for Special
Cycles will have undefined results. Write accesses to I/O addresses CXXXh (except for
CF00h) while the CSE register is enabled for Special Cycles will have undefined results.
In the CSE register, whenever the Special Cycle Enable (SCE) bit is set and the Function
Number field is not all 1’s, I/O accesses in the CXXXh range will have undefined results.

3.7.5. Interrupt Acknowledge

The PCI bus supports an Interrupt Acknowledge cycle as shown in Figure 3-25. This
figure illustrates an x86 Interrupt Acknowledge cycle on PCI where a single byte enable
is asserted and is presented only as an example. In general, the byte enables determine
which bytes are involved in the transaction. During the address phase, AD[31::00] do
not contain a valid address but must be driven with stable data, PAR is valid, and parity
may be checked. An Interrupt Acknowledge transaction has no addressing mechanism
and is implicitly targeted to the interrupt controller in the system. As defined in the PCI-
to-PCI Bridge Architecture Specification, the Interrupt Acknowledge command is not
forwarded to another PCI segment. The Interrupt Acknowledge cycle is like any other
transaction in that DEVSEL# must be asserted one, two, or three clocks after the
assertion of FRAME# for positive decode and may also be subtractively decoded by a
standard expansion bus bridge. Wait states can be inserted and the request can be
terminated, as discussed in Section 3.3.3.2. The vector must be returned when TRDY#
is asserted.

FRAME#

CLK

TRDY#

IRDY#

AD

C/BE#

1 2 3 4 5

VECTOR

BE#'s (1110)INT-ACK

NOT
VALID

Figure 3-25: Interrupt Acknowledge Cycle

Unlike the traditional 8259 dual cycle acknowledge, PCI runs a single cycle
acknowledge. Conversion from the processor’s two cycle format to the PCI one cycle
format is easily done in the bridge by discarding the first Interrupt Acknowledge request
from the processor.

94

Revision 2.1

3.8. Error Functions
PCI provides for parity and other system errors to be detected and reported. PCI error
coverage may range from devices that have no interest in errors (particularly parity
errors) to agents that detect, signal, and recover from errors. This allows agents that
recover from parity errors to avoid affecting the operation of agents that do not. To
allow this range of flexibility, the generation of parity is required on all transactions by
all agents. The detection and reporting of errors is generally required, with limited
exclusions for certain classes of PCI agents as listed in Section 3.8.2.

The discussion of errors is divided into the following two sections covering parity
generation and detection, and error reporting. Each section explains what is optional and
what is required for each function.

3.8.1. Parity

Parity on PCI provides a mechanism to determine transaction by transaction if the master
is successful in addressing the desired target and if data transfers correctly between them.
To ensure that the correct bus operation is performed, the four command lines are
included in the parity calculation. To ensure that correct data is transferred, the four byte
enables are also included in the parity calculation. The agent that is responsible for
driving AD[31::00] on any given bus phase is also responsible for driving even parity
on PAR. The following requirements also apply when the 64-bit extensions are used
(see Section 3.10 for more information).

During address and data phases, parity covers AD[31::00] and C/BE[3::0]# lines
regardless of whether or not all lines carry meaningful information. Byte lanes not
actually transferring data are still required to be driven with stable (albeit meaningless)
data and are included in the parity calculation. During configuration, Special Cycle, or
Interrupt Acknowledge commands some (or all) address lines are not defined but are
required to be driven to stable values and are included in the parity calculation.

Parity is generated according to the following rules:

• Parity is calculated the same on all PCI transactions regardless of the type or form.

• The number of "1"s on AD[31::00], C/BE[3::0]#, and PAR equals an even
number.

• Parity generation is not optional; it must be done by all PCI compliant devices.

On any given bus phase, PAR is driven by the agent that drives AD[31::00] and lags the
corresponding address or data by one clock. Figure 3-26 illustrates a read and write
transaction with parity. The master drives PAR for the address phases on clocks 3 and
7. The target drives PAR for the data phase on the read transaction (clock 5) while the
master drives PAR for the data phase on the write transaction (clock 8). Note: Other
than the one clock lag, PAR behaves exactly like AD[31::00] including wait states and
turnaround cycles.

95

Revision 2.1

FRAME#

CLK

AD ADDRESS

1 2 3 4 5 6 7 8 9

DATA ADDRESS DATA

PAR

PERR#

Figure 3-26: Parity Operation

Parity must be checked to determine if the master successfully addressed the desired
target and if data transferred correctly. Checking of parity on PCI is required except in
two classes of devices listed in Section 3.8.2. Agents that support parity checking must
always set the Detected Parity Error bit in the Configuration Space Status register (refer
to Section 6.2.3.) when a parity error is detected. Any additional action beyond setting
this bit is conditioned upon the Parity Error Response bit in the Configuration Space
Command register and is discussed in the error reporting section.

Any agent may check and signal an address parity error on SERR#. Only the master
may report a read data parity error and only the selected target may signal a write data
parity error.

3.8.2. Error Reporting

As previously mentioned, PCI provides for the detection and signaling of both parity and
other system errors. It is intended that parity errors be reported up through the access
and device driver chain whenever possible. This error reporting chain from target to bus
master to device driver to device manager to operating system is intended to allow error
recovery options to be implemented at any level. Since it is generally not possible to
associate system errors with a specific access chain, they are reported directly to the
system level.

Two signals (pins) are used in the PCI error reporting scheme. PERR# is used
exclusively for reporting data parity errors on all transactions except Special Cycle
commands. PERR# is a sustained tri-state signal that is bused to all PCI agents. Bus
protocol assures that PERR# will never be simultaneously driven by multiple bus agents
and that proper signal turn around times are observed to avoid any driver contention.

SERR# is used for other error signaling, including address parity and data parity on
Special Cycle commands, and may optionally be used on any other non-parity or system
errors. SERR# is an open drain signal that is wire-ORed with all other PCI agents and,
therefore, may be simultaneously driven by multiple agents. An agent reporting an error
on SERR# drives it active for a single clock and then tri-states it. (Refer to
Section 2.2.5. for more details.) Since open drain signaling cannot guarantee stable
signals on every rising clock edge, once SERR# is asserted its logical value must be
assumed to be indeterminate until the signal is sampled in the deasserted state on at least
two successive rising clock edges.

96

Revision 2.1

Both PERR# and SERR# are required pins since parity error signaling on PCI is
required. This requirement is waived, however, for these two classes of devices:

• Devices that are designed exclusively for use on the motherboard or planar; e.g., chip
sets. System vendors have control over the use of these devices since they will never
appear on add-in boards.

• Devices that never deal with or contain or access any data that represents permanent
or residual system or application state, e.g., human interface and video/audio
devices. These devices only touch data that is a temporary representation (e.g.,
pixels) of permanent or residual system or application state; and, therefore, are not
prone to create system integrity problems in the event of undetected failure.

Note: All agents are required to generate parity (no exclusions on this requirement). Use
of SERR# to signal non-parity errors is optional. It must be assumed, however, that
signaling on SERR# will generate an NMI and is, therefore, fatal. Consequently, care
should be taken in using SERR#.

The following sections cover the responsibility placed on each bus agent regarding
signaling on the PERR# and SERR# pins.

3.8.2.1. Parity Error Response and Reporting on PERR#

This section describes proper response to, and reporting of, data parity errors in all bus
operations except Special Cycle commands. All address parity errors, as well as Special
Cycle command data parity errors are reported on the SERR# signal, and are described
in the next section. All references to parity errors in this section are, by implication,
limited strictly to data parity (except Special Cycle commands).

PCI uses the PERR# pin to signal a data parity error between the current master and
target on PCI (except on Special Cycle commands). Only the master of a corrupted data
transfer is allowed to report parity errors to software, using mechanisms other than
PERR# (i.e., requesting an interrupt or asserting SERR#). On a write transaction, the
target always signals data parity errors back to the master on PERR#. On a read
transaction, the master asserts PERR# to indicate to the system that an error was
detected. In both cases, this gives the originator of the access, at each hardware or
software level, the prerogative of recovery.

97

Revision 2.1

Implementation Note: Reporting of Data Parity Errors

PCI allows for data parity error recovery but does not require it. Recovery can occur at
the device (lowest level), the device driver, or the operating system (highest level). This
means when a data parity is detected by a target and is reported to the master by PERR#
or the error is detected by the master, it is allowed to attempt recovery from the error. It
is recommended that the error be recovered at the lowest level possible and, if not
recoverable, the error must be reported (if enabled to do so) to the operating system. The
following are examples of how recovery may occur:

• Recovery by the master. If the master (of the transaction in which the parity error
was detected) has sufficient knowledge that the access can be repeated without side-
effects, then the master may simply repeat the access. If no error occurs on the
repeated access, reporting of the parity error (to the operating system or device
driver) is not required. When the master cannot or is not capable of recovering from
the data parity error, it must inform its device driver by generating an interrupt (or
modifying a status register or flag to mention a few options). When the master does
not have a device driver, it may report the error by asserting SERR#.

• Recovery by the device driver. The device driver may support an error recovery
mechanism such that the data parity error can be corrected and reporting the error is
not required. The driver may be able to repeat the entire block transfer by reloading
the master with the transfer size, source, and destination addresses of the data. If no
error occurs on the repeated transfer, then the error is not reported. When the device
driver does not have sufficient knowledge that the access can be repeated without
side-effects, it must report the error to the operating system.

• Recovery (or error handling) by the operating system. Once the data parity error
has been reported to the operating system, no other agent or mechanism can recover
from the error. How the operating system handles the data parity error is operating
system dependent.

Note: FIFOs and most registers (I/O or memory mapped) have side-effects when
accessed and, therefore, are not prefetchable and error recovery (by repeating the
transaction) is not possible by the master or low level software. The master cannot
recover from an error when a target reports a parity error by another mechanism, for
example, by asserting an interrupt or SERR#, other than PERR#.

The intent of the error signals is to provide a way for data parity errors to be detected
and, if allowed by the system, to recover from them; otherwise (if enabled), they are
simply reported to the operating system.

Except for setting the Detected Parity Error bit, all parity error signaling and response is
controlled by the Parity Error Response bit. This bit is required except in the previously
listed (excluded) devices. If the bit is cleared, the agent ignores all parity errors and
completes the transaction as though parity was correct. If the bit is set, the agent is
required to assert PERR# when a parity error is detected; additional error response is
device dependent. In all cases, the Detected Parity Error bit must be set.

An agent must always assert PERR# two clocks after a data transfer in which an error
occurred, as shown in Figure 3-26. The agent receiving data is free to assert PERR#
when a parity error is detected (which may occur before data is transferred).24 Once

24 On a write transaction, this can occur when IRDY# is asserted and the target is inserting wait states.
On a read transaction, this occurs when TRDY# is asserted and the master is inserting wait states.

98

Revision 2.1

PERR# is asserted, it must remain asserted until two clocks following the actual
transfer. A master knows a data parity error occurred anytime PERR# is asserted but
only knows the transfer was error free two clocks following the transfer.

In the case of multiple data transfers without intervening wait states, PERR# will be
qualified on multiple consecutive clocks accordingly, and may be asserted in any or all
of them. Since PERR# is a sustained tri-state signal, it must be actively driven to the
correct value on each qualified clock edge. To return it to nominal state at the end of
each bus operation, it must be actively driven high for one clock period, starting two
clocks after the AD bus turnaround cycle (e.g., clock 7 in Figure 3-26). The PERR#
turnaround cycle occurs one clock later (clock 8 in Figure 3-26). PERR# may never be
driven (enabled) for the current cycle until at least three clocks after the address phase
(SAC or DAC).

When a master detects a data parity error and asserts PERR# (on a read transaction) or
samples PERR# asserted (on a write transaction), it must set the Data Parity Error
Detected bit (Status register, bit 8), and can either continue the transaction or terminate
it. A target of a transaction that detects a parity error can either continue the operation or
cause it to be stopped via target termination. Targets never set the Data Parity Error
Detected bit. When PERR# is asserted, it is recommended that both the master and
target complete the transaction. PERR# is only an output signal for targets while
masters use PERR# as both an input and output.

When the master of the access becomes aware that a parity error has occurred on its
transaction, it is required to inform the system. It is recommended that the master inform
its device driver of the error by generating an interrupt (or modifying a status register or
flag to mention a few options). If none of these options is available to the device, it may,
as a last recourse, pass responsibility of the error to the operating system by asserting
SERR#. Note: The system designer may elect to report all parity errors to the operating
system by converting all PERR# error signals into SERR# error signals in the central
resource.

3.8.2.2. Error Response and Reporting on SERR#

SERR# is used to signal all address parity errors, data parity errors on Special Cycle
commands (since these are broadcast writes), and all errors other than parity errors. Any
agent can check and signal address parity errors on SERR#, regardless of the intended
master and target. SERR# may only be asserted when the SERR# Enable bit (bit 8) in
the Command register is set to a logical one (high), regardless of the error type. When
an agent asserts SERR# it is required to set the Signaled System Error bit (bit 14) in the
Configuration Space Status register, regardless of the error type. In addition, if the error
type is parity (e.g., address parity), the Detected Parity Error bit (bit 15) in the Status
register must be set in all cases, but reporting on SERR# is conditioned on the Parity
Error Response bit (bit 6) in the Command register.

A selected agent that detects an address parity error should do one of the following:
claim the cycle and terminate as though the address was correct, claim the cycle and
terminate with Target-Abort, or not claim the cycle and let it terminate with Master-
Abort. The target is not allowed to terminate with Retry or Disconnect because an
address parity error was detected.

99

Revision 2.1

SERR# has no timing relationship to any PCI transaction.25 However, errors should be
signaled as quickly as possible; preferably within two clocks of detection. The only
agent interested in SERR# (as an input) is the central resource that converts a low pulse
into a signal to the processor. How the central resource signals the processor is system
dependent, but could include generating an NMI, a high priority interrupt, or setting a
status bit or flag. However, the agent that asserts SERR# must be willing for the central
resource to generate an NMI; otherwise, the error should be reported by a different
mechanism (e.g., an interrupt, status register, or flag).

When the Parity Error Response bit is enabled, and the SERR# Enable bit is enabled, an
agent may assert SERR# under the following conditions:

• Address parity error or data parity error on Special Cycles detected.

• The detection of a parity error that is not reported by some other mechanism (current
bus master only).

When the SERR# Enable bit is enabled, an agent may assert SERR# under the
following conditions:

• The master (which does not have a driver) was involved in a transaction that was
abnormally terminated.

• A catastrophic error left the agent questioning its ability to operate correctly.

Note: Master-Abort is not an abnormal condition for bridges for configuration and
Special Cycle commands. SERR# should not be used for these conditions or for
normally recoverable cases. The assertion of SERR# should be done with deliberation
and care since the result may be an NMI. Target-Abort is generally an abnormal target
termination and may be reported (only by the master) as an error by signaling SERR#
when the master cannot report the error through its device driver.

3.9. Cache Support
In entry level or mobile systems, part or all of the system memory may be on PCI. This
may include read only program modules as well as DRAM, both of which must be
cacheable by the processor. The PCI cache support option provides a standard interface
between PCI memory agent(s) and the bridge (or caching agent), which allows the use of
a snooping cache coherency mechanism. This caching option assumes a flat address
space (i.e., a single address has a unique destination regardless of access origin) and a
single level bridge topology. Note: This support is optimized for simple, entry level
systems, rather than maximum processor/cache/memory performance.

Caching support for shared memory is implemented by two optional pins called SDONE
and SBO#. They transfer cache status information between the bridge/cache and the
target of the memory request. The bridge/cache snoops memory accesses on PCI, and
determines what response is required by the target to ensure system memory coherency.
To avoid a "snooping overload," the bridge may be programmed to signal a Clean Snoop
immediately on frequently accessed address ranges that are configured as noncacheable
(e.g., frame buffer).

Any PCI target that supports cacheable memory must monitor the PCI cache support pins
and respond appropriately. Targets configured to be noncacheable may ignore SDONE
and SBO#, as this may save a little access latency, depending on configuration.

25 Except for CLK.

100

Revision 2.1

Since PCI allows bursts of unlimited length, the cacheable target of the request must
disconnect accesses in a memory range that attempt to cross a cacheline boundary. This
means that any cacheable target must be aware of the cacheline size, either by
implementing the Cacheline Size register (refer to Section 6.2.4.)or by hardwiring this
parameter. If a burst is allowed to cross a cacheline boundary, the cache coherency may
"break." (Alternatively, the bridge/cache can monitor the transaction and generate the
next cacheline address for snooping.)

To enable efficient use of the PCI bus, the cacheable memory controller26 and the
cache/bridge are required to track bus operation. (When only a single address is latched,
a condition may occur when a cacheable transaction will be delayed. This occurs when a
noncacheable transaction is initiated when the cache is ready to snoop an address. When
the address is latched, the cache will start the snoop. Since the transaction is
noncacheable, it will complete regardless of the state of SDONE. When the next
transaction is initiated while the first snoop is still pending, a cacheable transaction is
required to be retried; otherwise, the cacheable address will not be snooped. If
noncacheable and cacheable transactions are interleaved, the cacheable transaction may
never complete.) To minimize Retry termination of cacheable transactions, due to
another snoop in progress, the agents involved in a cacheable transaction are required to
accept two addresses. This means while the first address is being snooped, the next
address presented on the bus will also be latched. When the first snoop completes, the
snoop of the second address will begin immediately. The maximum number of
addresses required to be latched is two. A third address can never appear on the bus
without either the completion of the snoop of the first address or the termination of the
second transaction. When either the snoop or the second transaction completes, the
cache and memory controller are ready to accept a new address. Hence, only two
addresses are ever required to be latched.

If the second transaction is cacheable, the memory controller is required to insert wait
states until the first snoop completes. When the snoop of the first transaction completes,
the memory controller continues with the transaction. If the second transaction is to a
noncacheable address, the target may complete the transaction since SDONE and SBO#
are not monitored. If the target of the second transaction asserts TRDY# (or STOP#)
before or with the assertion of SDONE, it implies a noncacheable transaction and the
cache will not snoop the address when TRDY# is asserted. Therefore, the maximum
number of addresses that can be outstanding at any time is two.

26 For the remainder of this section, cacheable memory controllers are simply referred to as memory
controllers.

101

Revision 2.1

3.9.1. Definition of Cache States

The PCI specification defines SDONE and SBO# to provide information between
agents that participate in the cache protocol. When SDONE is asserted, it indicates that
the snoop has completed. When SBO# is asserted, it indicates a hit to a modified line.
When SBO# is deasserted and SDONE is asserted, it indicates a "CLEAN" snoop
result.

There are three cache states that appear on PCI. The meaning of each state when driven
by the cache/bridge (which will be referred to hereafter as cache) and how a cacheable
memory controller should interpret them will be discussed next. The PCI cache signals
SDONE and SBO# will signal one of the following three states:

STANDBY 0x
CLEAN 11
HITM 10

3.9.1.1. Cache - Cacheable Memory Controller

When the cache drives the three states on the bus, the following is implied:

STANDBY -- indicates the cache is in one of three conditions. The first condition is
when the cache is not currently snooping an address but is ready to do so. The second
condition is when an address has been latched and the cache is currently snooping the
address and is ready to accept (latch) a second address if presented on the bus. The last
condition is when the cache is currently snooping and has latched a second address. The
cache will start the snoop of the second address (if still valid) when the snoop completes.
(Note: This state is signaled when SDONE is deasserted.) The memory controller must
track the PCI control signals to know which condition the cache is in. The memory
controller responds to a request as it chooses when an address is not being snooped. If a
snoop is in progress and the memory controller is the target of the second transaction, it
must insert wait states until the first address snoop completes. The memory controller
continues the second transaction when the snoop of the first address completes. If the
memory controller is not the target, it must monitor the bus to determine if the second
address is snooped or is discarded.

CLEAN -- indicates no cache conflict and the memory access may complete normally.
This implies a miss to the cache, or a hit to an unmodified line during a write transaction,
or a hit to a modified line during a Memory Write and Invalidate command. The
writebacks caused by the Memory Write and Invalidate command or a Memory Write to
an unmodified cacheline are not required. (This is permissible since the master of the
transaction guarantees that every byte will be modified and the target will not terminate
the transaction until the entire line is transferred.) The cache will signal CLEAN during
the address phase when it is the current bus master and it is writing back a modified line.

The cache may signal CLEAN on two consecutive clocks when two addresses have been
latched. The first clock that SDONE is asserted indicates the first snoop has completed.
If the first snoop is CLEAN and the second transaction was initiated by the cache, it may
continue to assert SDONE indicating that a snoop of this (second) address will result in
CLEAN. (The second consecutive CLEAN has the same meaning as during an address
phase -- a writeback operation or CLEAN snoop.) Otherwise, the cache signals
STANDBY after CLEAN to indicate the (second) snoop is in progress. In this case,

102

Revision 2.1

STANDBY (SDONE deasserted) would appear on the bus the clock following the
assertion of SDONE.

HITM -- indicates the snoop hit a modified line and the cache is required to writeback
the snooped line as its next operation. The cache will stay in this state until the
writeback occurs. All other cacheable transactions will be terminated with Retry by the
memory controller while HITM is signaled on the bus. (If any other potentially
cacheable transaction is required to complete before the writeback of the modified line, a
livelock will occur.) During a writeback of a modified line, the cache will transition
from HITM to CLEAN during the address phase.

The memory controller will "typically" terminate the transaction with Retry, allowing the
writeback to occur, and then the agent that was terminated with Retry will re-request the
transaction. All cacheable memory controllers will terminate all subsequent cacheable
transactions with Retry while HITM is signaled.

3.9.2. Supported State Transitions

[1] STANDBY --> CLEAN --> [CLEAN] --> STANDBY

[2] STANDBY --> HITM --> CLEAN --> [CLEAN] --> STANDBY

Sequence [1] is the normal case where the cache stays in STANDBY until the snoop
completes and then signals CLEAN to indicate the transaction should complete
normally. The cache transitions to STANDBY if a second address is not pending when
the snoop of the first transaction completes. If a second address has been latched and the
cache is not the master, it transitions to STANDBY indicating it is snooping. If the
cache is the master of the second transaction, it may continue to signal CLEAN (as
shown as an optional state) when the transaction is a writeback of a cacheline or knows
the snoop is CLEAN; otherwise, it will transition to STANDBY.

Sequence [2] is when a modified line is detected during the snoop. Once HITM is
signaled by the cache, it will continue in this state until the modified line is written back.
The cache will transition to CLEAN indicating it is performing the writeback. Following
CLEAN, the cache will signal STANDBY indicating the cache is ready to snoop a new
address. If the cache is the master of the second transaction, it may continue to signal
CLEAN (as shown as an optional state) when the transaction is a writeback of a
cacheline or knows the snoop is CLEAN; otherwise, it will transition to STANDBY.

3.9.3. Timing Diagrams

In the timing diagrams in this section, it is assumed that the bus starts in the Idle state in
clock 1.

The transaction in Figure 3-27 starts when an address is latched on clock 2. The target
keeps TRDY# deasserted (inserting wait states) until the snoop completes. The snoop
completes on clock 5 when SDONE is sampled asserted. Since SBO# was not asserted,
the snoop result indicates CLEAN.

103

Revision 2.1

ADDRESS

1 2 3 4 5 6

DATA

Figure 3-27: Wait States Inserted Until Snoop Completes

In Figure 3-28, the initial transaction starts on clock 2 with the address being latched.
The target of this transaction inserts wait states until SDONE is asserted. In this
example, the cache indicates that the snoop hit a modified line on clock 4 by asserting
SBO# and SDONE. (Once SBO# is asserted, it must remain asserted until SDONE is
asserted.) Since the target of the transaction is cacheable, it asserts STOP# to terminate
the transaction on clock 5. This allows the cache that is signaling HITM to write the
modified line back to memory. For read transactions, the memory controller must tri-
state the AD lines when HTIM is indicated. All transactions to cacheable targets are
terminated with Retry while HITM is signaled on the bus.

The slashed line indicates some amount of time has occurred since the snoop was
signaled on the first transaction. During this time, noncacheable transactions may
complete and cacheable transactions may start but are required to be terminated with
Retry since HITM is signaled. The writeback transaction starts on clock A. Notice the
cache transitions from HITM to CLEAN during the address phase. This indicates to the
memory controller that the snoop writeback is starting and it is required to accept the
entire line. (If the memory controller is not able to complete the transaction, it must
insert wait states until it is capable. This condition should only occur when the
cacheable target has an internal conflict; e.g., the refresh operation of the array.) (If the
target is locked, it accepts writebacks that are caused by snoops to modified lines;
otherwise, a deadlock occurs.) Both the cache and the memory controller may insert
wait states during a writeback. The memory controller is required to accept the entire
line in a single transaction and the cache will provide the entire line. Notice that the
cache transitions from CLEAN to STANDBY on clock B. The cache is now ready to
accept another address to snoop. Once the writeback completes, the bus returns to
normal operation where cacheable transactions will progress. The order of the writeback
is independent of the transaction that caused the writeback. In the figure, DATA-1 only
indicates the first data transfer and not the DWORD number.

104

Revision 2.1

ADDRESS

1 2 3 4 5

DATA-1 ADDRESS DATA-1 DATA-2

6 A B C7

Figure 3-28: Hit to a Modified Line Followed by the Writeback

Figure 3-29 is an example of a Memory Write and Invalidate command. The cache has
several options of how to handle this command. Since the master guarantees that every
byte in the cacheline will be modified, the cache could simply signal CLEAN even if the
line hits a modified line. In this example, the cache signals CLEAN on clock 5
indicating the snoop either resulted in a miss or a hit to a modified line that was
invalidated. Once the cache indicates CLEAN, it is ready to snoop the next address
presented on the bus. Therefore, the cache is required to wait until it is ready before
asserting SDONE.

If SBO# were asserted on clock 5, the snoop resulted in a hit to modified line and will
be written back. The cache may treat the Memory Write and Invalidate command like
any other command by allowing the HITM condition to appear on the bus. (The
writeback causes an extra transaction on the bus that is not required.) The cache could
wait a fixed number of clocks for TRDY# to be asserted before indicating the snoop
result. If TRDY# is asserted before the result, it is recommended that the cache discard
the line and signal CLEAN. If TRDY# has not been asserted, the cache continues by
providing the snoop result. However, the time waiting for TRDY# must be fixed
because the memory controller may always wait for SDONE to be asserted before
continuing the transaction.

105

Revision 2.1

ADDRESS

1 2 3 4 5 6

DATA-1

7

DATA-2 DATA-3 DATA-4 ADDRESS DATA-1

8

Figure 3-29: Memory Write and Invalidate Command

In Figure 3-30, the initial transaction starts on clock 2 and completes on clock 3. While
the snoop of the first transaction is in progress, another transaction starts on clock 5. The
second transaction is also short and completes on clock 6. The second transaction is
noncacheable if it completes while the snoop of the first transaction is still in progress.
On clock 7, the snoop of the first transaction completes. Once FRAME# has been
asserted, and a snoop is in progress, the state of SDONE and SBO# only has meaning
for the first address until SDONE is asserted. Once SDONE is asserted, the next time it
is asserted it applies to the second transaction. If in Figure 3-30, SDONE is asserted on
clock 5 instead of clock 7, the snoop result has no effect on the second transaction even
though it is signaled during the second transaction.

106

Revision 2.1

ADDRESS

1 2 3 4

DATA-1 ADDRESS DATA-1

A B C

ADDRESS DATA-1

5 6 7

Figure 3-30: Data Transfers - Hit to a Modified Line Signaled Followed by a Writeback

3.9.4. Write-through Cache Support

Support of a write-through cache is the same as a writeback cache except SBO# is not
used. The memory controller monitors the bus and tracks how many outstanding
addresses there are. Amaximum of two addresses can be outstanding. Each time
SDONE is asserted, the memory controller can allow another cacheable transaction to
complete.

The only state transitions supported in write-through mode are:

STANDBY --> CLEAN --> [CLEAN] --> STANDBY

Since SBO# is not used in the write-through mode, it can be tied high by the system
designer. Therefore, the only state transitions are between STANDBY and CLEAN. If
the cache is the master of the second transaction, it may continue to signal CLEAN (as
shown as an optional state) when the transaction is a writeback of a cacheline or knows
the snoop is CLEAN; otherwise, it will transition to STANDBY. It is recommended that
cacheable targets implement both SDONE and SBO#.

For each FRAME# that is asserted on the bus, the cache will assert SDONE when it has
snooped the address. If two assertions of FRAME# occur without an assertion of
SDONE, the second transaction cannot complete if cacheable. If the second access is
cacheable, the memory controller must insert wait states until the previous snoop
completes (SDONE asserted). If the second access is noncacheable, the access is
complete and the cache will not snoop the address. At this point, only a single address is
outstanding.

107

Revision 2.1

3.9.5. Arbitration Note

The arbiter is required to drop into some sort of fairness algorithm when HITM is
indicated on the bus, otherwise, a livelock can occur. The livelock occurs when the
cache that has the modified line is unable to perform the writeback because two higher
priority agents are accessing cacheable memory. When HITM is signaled on the bus, all
cacheable transactions are terminated with Retry.

It is recommended when a cache is present in a system, the arbiter may choose to connect
its REQ# to a fixed input so its priority level can be raised when HITM is signaled on
the bus. This insures that while the writeback is pending, the number of cacheable
transactions that are terminated with Retry is kept to a minimum and latency is also
minimized.

When a cache is used in the system (in particular a writeback cache), the latency
attributed to the target must be increased to account for the time it takes for a writeback
of a modified line. This value (addition) is dependent on the arbitration algorithm of
when the writeback can access the bus.

3.10. 64-Bit Bus Extension
PCI supports a high 32-bit bus, referred to as the 64-bit extension to the standard low
32-bit bus The 64-bit bus provides additional data bandwidth for agents that require it.
The high 32-bit extension for 64-bit devices needs an additional 39 signal pins:
REQ64#, ACK64#, AD[63::32], C/BE[7::4]#, and PAR64. These signals are
defined in Section 2.2.9. 32-bit agents work unmodified with 64-bit agents. 64-bit
agents must default to 32-bit mode unless a 64-bit transaction is negotiated. Hence, 64-
bit transactions are totally transparent to 32-bit devices. Note: A 64-bit data path is not
required to do 64-bit addressing (refer to Section 3.10.1).

64-bit transactions on PCI are dynamically negotiated (once per transaction) between the
master and target. This is accomplished by the master asserting REQ64# and the target
responding to the asserted REQ64# by asserting ACK64#. Once a 64-bit transaction is
negotiated, it holds until the end of the transaction. ACK64# must not be asserted
unless REQ64# was sampled asserted during the same transaction. REQ64# and
ACK64# are externally pulled up to ensure proper behavior when mixing 32- and 64-bit
agents. Refer to Section 4.3.3. for information on pull-ups.

At the end of reset, the central resource controls the state of REQ64# to inform the
64-bit device that it is connected to a 64-bit bus. If REQ64# is deasserted when RST#
is deasserted, the device is not connected to a 64-bit bus. If REQ64# is asserted when
RST# is deasserted, the device is connected to a 64-bit bus. Refer to Section 4.3.2. for
information on how a device behaves when RST# is deasserted.

During a 64-bit transaction, all PCI protocol and timing remain intact. Only Memory
commands make sense when doing 64-bit data transfers. Interrupt Acknowledge and
Special Cycle27 commands are basically 32-bit transactions and must not be used with a
REQ64#. The bandwidth requirements for I/O and Configuration commands cannot
justify the added complexity and, therefore, only Memory commands support 64-bit data
transfers.

27 Since no agent claims the access by asserting DEVSEL# and, therefore, cannot respond with
ACK64#.

108

Revision 2.1

All Memory commands and bus transfers are the same whether data is transferred 32- or
64-bits at a time. 64-bit agents can transfer from one to eight bytes per data phase, and
all combinations of byte enables are legal. As in 32-bit mode, byte enables may change
on every data phase. The master initiating a 64-bit data transaction must use a double
DWORD (Quadword or 8 byte) referenced address (AD2 must be "0" during the address
phase).

When a master requests a 64-bit data transfer (REQ64# asserted), the target has three
basic responses and each is discussed in the following paragraphs.

1. Complete the transaction using the 64-bit data path (ACK64# asserted).

2. Complete the transaction using the 32-bit data path (ACK64# deasserted).

3. Complete a single 32-bit data transfer (ACK64# deasserted, STOP# asserted).

The first option is where the target responds to the master that it can complete the
transaction using the 64-bit data path by asserting ACK64#. The transaction then
transfers data using the entire data bus and up to eight bytes can be transferred in each
data phase. It behaves like a 32-bit bus except more data transfers each data phase.

The second option occurs when the target cannot perform a 64-bit data transfer to the
addressed location (it may be capable in a different space). In this case, the master is
required to complete the transaction acting as a 32-bit master and not as a 64-bit master.
The master has two options when the target does not respond by asserting ACK64#
when the master asserts REQ64# to start a write transaction. The first option is that the
master quits driving the upper AD lines and only provides data on the lower 32 AD lines.
The second option is the master continues presenting the full 64-bits of data on each even
DWORD address boundary. On the odd DWORD address boundary, the master drives
the same data on both the upper and lower portions of the bus.

The third and last option is where the target is only 32-bits and cannot sustain a burst for
this transaction. In this case, the target does not respond by asserting ACK64#, but
terminates the transaction by asserting STOP#. If this is a Retry termination (STOP#
asserted and TRDY# deasserted) the master repeats the same request (as a 64 bit request)
at a later time. If this is a Disconnect termination (STOP# and TRDY# asserted), the
master must repeat the request as a 32-bit master since the starting address is now on a
odd DWORD boundary. If the target completed the data transfer such that the next
starting address would be a even DWORD boundary, the master would be free to request
a 64-bit data transfer. Caution should be used when a 64-bit request is presented and the
target transfers a single DWORD as a 32-bit agent. If the master were to continue the
burst with the same address, but with the lower byte enables deasserted, no forward
progress would be made because the target would not transfer any new data, since the
lower byte enables are deasserted. Therefore, the transaction would continue to be
repeated forever without making progress.

64-bit parity (PAR64) works the same for the high 32-bits of the 64-bit bus as the 32-bit
parity (PAR) works for the low 32-bit bus. PAR64 covers AD[63::32] and
C/BE[7::4]# and has the same timing and function as PAR (The number of "1"s on
AD[63::32], C/BE[7::4]#, and PAR64 equal an even number). PAR64 must be valid
one clock after each address phase on any transaction in which REQ64# is asserted (All
64-bit targets qualify address parity checking of PAR64 with REQ64#). 32-bit devices
are not aware of activity on 64-bit bus extension signals.

PAR64 must be additionally qualified with REQ64# and ACK64# for data phases by
the 64-bit parity checking device. PAR64 is required for 64-bit data phases; it is not an
option for a 64-bit agent.

109

Revision 2.1

In the following two figures, a 64-bit master requests a 64-bit transaction utilizing a
single address phase. This is the same type of addressing performed by a 32-bit master
(in the low 4 GB address space). The first, Figure 3-31, is a read where the target
responds with ACK64# asserted and the data is transferred in 64-bit data phases. The
second, Figure 3-32, is a write where the target does not respond with ACK64# asserted
and the data is transferred in 32-bit data phases (the transaction defaulted to 32-bit
mode). These two figures are identical to Figures 3-1 and 3-2 except that 64-bit signals
have been added and in Figure 3-31 data is transferred 64-bits per data phase. The same
transactions are used to illustrate that the same protocol works for both 32- and 64-bit
transactions.

AD[63::32] and C/BE[7::4]# are reserved during the address phase of a single address
phase bus command. AD[63::32] contain data and C/BE[7::4]# contain byte enables
for the upper four bytes during 64-bit data phases of these commands. AD[63::32] and
C/BE[7::4]# are defined during the two address phases of a dual address command
(DAC) and during the 64-bit data phases with a defined bus command (see
Section 3.10.1 for details).

Figure 3-31 illustrates a master requesting a 64-bit read transaction by asserting
REQ64# (which exactly mirrors FRAME#). The target acknowledges the request by
asserting ACK64# (which mirrors DEVSEL#). Data phases are stretched by both
agents deasserting their ready lines. 64-bit signals require the same turnaround cycles as
their 32-bit counterparts.

FRAME#

CLK

TRDY#

IRDY#

AD[31::00]

DEVSEL#

C/BE[3::0]#

ADDRESS

BUS CMD

DATA-3

BE#'s

1 2 3 4 5 6 7 8 9

D
AT

A
TR

AN
SF

ER

D
AT

A
 T

R
AN

SF
E

R

D
AT

A
TR

AN
SF

ER

 W
AI

T

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

 W
AI

T

DATA
PHASE

 W
AI

T

DATA-2

BE#'s

DATA-1 DATA-5

DATA-6DATA-4

REQ64#

AD[63::32]

C/BE[7::4]#

ACK64#

Figure 3-31: 64-bit Read Request with 64-bit Transfer

110

Revision 2.1

Figure 3-32 illustrates a master requesting a 64-bit transfer. The target does not
comprehend REQ64# and ACK64# is kept in the deasserted state with a pull-up. As
far as the target is concerned, this is a 32-bit transfer. The master converts the
transaction from 64- to 32-bits. Since the master is converting 64-bit data transfers into
32-bit data transfers, there may or may not be any byte enables asserted during any data
phase of the transaction. Therefore, all 32-bit targets must be able to handle data phases
with no byte enables asserted. The target should not use Disconnect or Retry because a
data phase is encountered that has no asserted byte enables, but should assert TRDY#
and complete the data phase. However, the target is allowed to use Retry or Disconnect
because it is internally busy and unable to complete the data transfer independent of
which byte enables are asserted. The master resends the data that originally appeared on
AD[63::32] during the first data phase on AD[31::00] during the second data phase.
The subsequent data phases appear exactly like the 32-bit transfer. (If you remove the
64-bit signals, Figure 3-32 and Figure 3-2 are identical.)

FRAME#

CLK

TRDY#

IRDY#

AD[31::00]

DEVSEL#

C/BE[3::0]#

ADDRESS

BUS CMD

1 2 3 4 5 6 7 8 9

ADDRESS
PHASE

DATA
PHASE

D
A

TA
 T

R
A

N
S

FE
R

D
AT

A
TR

AN
SF

ER

 W
A

IT

 W
A

IT

 W
AI

T

D
AT

A
TR

AN
SF

ER

DATA-2

DATA-1 DATA-2 DATA-3

C/BE[7::4]#

AD[63::32]

REQ64#

ACK64#

BE#'s-2 BE#'s-3BE#'s-1

BE#'s-2

DATA
PHASE

DATA
PHASE

Figure 3-32: 64-bit Write Request with 32-bit Transfer

Using a single data phase with 64-bit transfers may not be very effective. Since the
master does not know how the transaction will be resolved with ACK64# until
DEVSEL# is returned, it does not know the clock on which to deassert FRAME# for a
64-bit single data phase transaction. IRDY# must remain deasserted until FRAME#
signaling is resolved. The single 64-bit data phase may have to be split into two 32-bit
data phases when the target is only 32-bits, which means a two phase 32-bit transfer is at
least as fast as a one phase 64-bit transfer.

111

Revision 2.1

3.10.1. 64-bit Addressing on PCI

PCI supports addressing beyond the low 4 GB by defining a mechanism to transfer a 64-
bit address from the master of the transaction to the target. A master may generate a 64-
bit address independent of the 64-bit extensions. No additional pins are required for a
32- or 64-bit device to support 64-bit addressing. If both the master and target support a
64-bit data path, the entire 64-bit address can be provided in a single clock. Devices that
support only 32-bit addresses will work transparently with devices that can generate
64-bit addresses when mapped into the low 4 GB of the address space.

The standard PCI bus data command transaction supports a 32-bit address, Single
Address Cycle (SAC), where the address is valid for a single clock when FRAME# is
first sampled asserted. To support the transfer of a 64-bit address, a Dual Address Cycle
(DAC) bus command is used, accompanied with one of the defined bus commands to
indicate the desired data phase activity for the transaction. The DAC uses two clocks to
transfer the entire 64-bit address on the AD[31::00] signals. Masters that use address
stepping cannot implement 64-bit addressing since there is no mechanism for delaying or
extending the second address phase. When a 64 bit master uses DAC (64 bit
addressing), it must provide the upper 32-bits of the address on AD[63::32] and the
associated data command for the transaction on C/BE[7::4]# during both address phases
of the transaction to allow 64 bit targets additional time to decode the transaction.

Figure 3-33 illustrates a DAC for a read transaction. In a basic SAC read transaction, a
turnaround cycle follows the address phase. In the DAC read transaction, an additional
address phase is inserted between the standard address phase and the turnaround cycle.
In the figure, the first and second address phases occur on clock 2 and 3 respectively.
The turnaround cycle between the address and data phases is delayed until clock 4.
Note: FRAME# must be asserted during both address phases even for non bursting
single data phase transactions. To adhere to the FRAME# - IRDY# relationship,
FRAME# cannot be deasserted until IRDY# is asserted. IRDY# cannot be asserted until
the master provides data on a write transaction or is ready to accept data on a read
transaction.

A DAC is decoded by a potential target when a "1101" is present on C/BE[3::0]# during
the first address phase. If the target supports 64-bit addressing, it stores the address that
was transferred on AD[31::00] and prepares to latch the rest of the address on the next
clock. The actual command used for the transaction is transferred during the second
address phase on C/BE[3::0]#. Once the entire address is transferred and the command
is latched, the target determines if DEVSEL# is to be asserted. The target can do fast,
medium, or slow decode which is one clock delayed from SAC decoding. There is no
problem with this since a bridge implementing subtractive decode will ignore the entire
transaction if it does not support 64-bit addressing. If the bridge does support 64-bit
addressing, it will delay asserting its DEVSEL# by one clock. The master (of a DAC)
will also delay terminating the transaction with Master-Abort for one additional clock.

The execution of an exclusive access is the same for either DAC or SAC. In either case,
LOCK# is deasserted during the address phase (first clock) and asserted during the
second clock (which is the first data phase for SAC and the second address phase for a
DAC). Agents monitoring the transaction (either SAC or DAC aware) understand the
lock resource is busy and the target knows the master is requesting a locked operation.
For a target that supports both SAC and DAC, the logic that handles LOCK# is the
same.

112

Revision 2.1

FRAME#

CLK

TRDY#

IRDY#

AD[31::00]

DEVSEL#

C/BE[3::0]# BUS CMD BE#[3::0]

1 2 3 4 5 6 7 8

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

DATA-2

BE#[7::4]

DATA-4AD[63::32]

C/BE[7::4]#

HI - ADDRLO - ADDR DATA-3(2)DATA-1

 HI ADDR

DUAL AD

BUS CMD

 W
AI

T

F M S

D
AT

A
TR

AN
SF

ER

D
A

TA
 T

R
AN

SF
E

R

Optional

 W
AI

T

Figure 3-33. 64-Bit Dual Address Read Cycle

The shaded area in Figure 3-33 is used only when the master of the access supports a
64-bit bus. The master drives the entire address (lower address on AD[31::00] and
upper address on AD[63::32]) and both commands (DAC "1101" on C/BE[3::0]# and
the actual bus command on C/BE[7::4]#) all during the initial address phase. On the
second address phase, the master drives the upper address on AD[31::00] (and
AD[63::32]) while the bus command is driven on C/BE[3::0]# (and C/BE[7::4]#).
The master cannot determine if the target supports a 64-bit data path until the entire
address has been transferred and, therefore, must assume a 32-bit target while providing
the address.

If both the master and target support a 64-bit bus, then 64-bit addressing causes no
additional latency when determining DEVSEL#, since all required information for
command decoding was supplied in the first address phase. The second address phase
provides the additional time so that the target can perform a fast DEVSEL# decode for
DAC commands and has no performance impact. If either the master or the target does
not support a 64-bit data path, one additional clock of delay will be encountered.

A master that supports 64-bit addressing must generate a SAC, instead of a DAC, when
the upper 32 bits of the address are zero. This allows masters that can generate 64-bit
addresses to communicate with 32-bit addressable targets via SAC. The type of
addressing (SAC or DAC) is determined by the address (greater than 4 GB), not by the
target’s bus width capabilities.

A 64-bit addressable target must act like a 32-bit addressable target (respond to SAC
transactions) when mapped in the lower 4 GB address space. A 32-bit master must

113

Revision 2.1

support 64-bit addressing using DAC to access targets mapped above the lower 4 GB
address space.

3.11. Special Design Considerations
This section describes topics that merit additional comments or are related to PCI but are
not part of the basic operation of the bus.

1. Third Party DMA
Third party DMA is not supported on PCI since sideband signals are not supported
on the connector. The intent of PCI is to group together the DMA function in
devices that need master capability and, therefore, third party DMA is not supported.

2. Snooping PCI Transactions
Any transaction generated by an agent on PCI may be snooped by any other agent on
the same bus segment. Snooping does not work when the agents are on different PCI
bus segments. In general, the snooping agent cannot drive any PCI signal but must
be able to operate independently of the behavior of the current master or target.

3. Illegal Protocol Behavior
A device is not encouraged actively to check for protocol errors. However, if a
device does detect illegal protocol events (as a consequence of the way it is
designed) the design may return its state machines (target or master) to an Idle state
as quickly as possible in accordance with the protocol rules for deassertion and tri-
state of signals driven by the device.

4. VGA Palette Snoop
The active VGA device always responds to a read of the color palette, while either
the VGA or graphics agent will be programmed to respond to write transactions to
the color palette and the other will snoop it. When a device (VGA or graphics) has
been programmed to snoop a write to the VGA palette register, it must only latch the
data when IRDY# and TRDY# are both asserted on the same rising clock edge or
when a Master-Abort occurs. The first option is the normal case when a VGA and
graphics device are present in the same system. The second option occurs when no
device on the current bus has been programmed to positively respond to this range of
addresses. This occurs when the PCI segment is given the first right of refusal and a
subtractive decode device is not present. In some systems this access is still
forwarded to another bus which will complete the access. In this type of system a
device that has been programmed to snoop writes to the palette should latch the data
when the transaction is terminated with Master-Abort.

The palette snoop bit will be set by the system BIOS when it detects both a VGA
device and a graphics accelerator device that are on separate boards on the same bus
or on the same path but on different buses.

• When both agents are PCI devices that reside on the same bus, either device can
be set to snoop and the other will be set to positively respond.

• When both are PCI devices that reside on different buses but on the same path,
the first device found in the path will be set to snoop and the other device may be
set to positively respond or snoop the access. (Either option works in a PC-AT
compatible system since a write transaction on a PCI segment, other than the
primary PCI bus, that is terminated with Master-Abort is simply terminated and
the data is dropped and Master-Aborts are not reported.)

114

Revision 2.1

• When one device is on PCI and the other is behind the subtractive decode device,
such as an ISA, EISA, or Micro Channel bridge, the PCI device will be set to
snoop and the subtractive decode device will automatically claim the access and
forward it.

The only case where palette snooping would be turned off is when only a VGA
device (no graphics device) is present in the system, or both the VGA and graphics
devices are integrated together into single device or card.

Note: Palette snooping does not work when the VGA and graphics devices reside on
different buses that are not on the same path. This occurs because only a single
agent per bus segment may claim the access. Therefore, one agent will never see the
access because its bridge cannot forward the access. When a device has been
programmed to snoop the access, it cannot insert wait states or delay the access in
any way and, therefore, must be able to latch and process the data without delay.

For more information on PCI support of VGA devices, refer to Appendix A of the
PCI-to-PCI Bridge Architecture Specification.

5. Potential Deadlock Scenario When Using PCI-to-PCI Bridges
Warning: A Potential Deadlock will occur when all the following conditions exist in
a system:

1. When PCI-to-PCI bridges are supported in the system. (Note: If a PCI
add-in connector is supported, PCI-to-PCI bridges may be present in the
system.)

2. A read access (that originates on PCI or a different bus) targets a PCI
device that requires more than a single data phase to complete. (Eight-
byte transfer or an access that crosses a DWORD boundary when
targeting an agent that responds to this request as 32-bit agent, or resides
on a 32-bit PCI segment.)

3. Any device which blocks access as the target until it completes a read (or
any other transaction as a master) will cause the deadlock.

The deadlock occurs when the following steps are met:

A burst read is initiated on PCI and only the first data phase completes.
(This occurs because either the target or the bridge in the path terminates the
request with Disconnect.)

The request passes through a PCI-to-PCI bridge and the PCI-to-PCI bridge
allows posted write data (moving toward main memory) after the initial read
completes.

The agent that originated the read request blocks the path to main memory.

The deadlock occurs because the PCI-to-PCI bridge cannot allow a read to transverse
it while holding posted write data. The agent that initiated the PCI access cannot
allow the PCI-to-PCI bridge to flush data until it completes the second read, because
there is no way to “back-off” the originating agent without losing data. It must be
assumed the read data was obtained from a device that has destructive read side-
effects. Therefore, discarding the data and repeating the access is not an option.

If all three conditions are not met, the deadlock does not occur. If the system allows
all three conditions to exist, then the agent initiating the read request must use
LOCK# to guarantee that the access will complete without the deadlock conditions
being met. The fact that LOCK# is active for the transaction causes the PCI-to-PCI

115

Revision 2.1

bridge to turn-off posting until the lock operation completes. (A locked operation
completes when LOCK# is deserted when FRAME# is deasserted.) Note: The use
of LOCK# is only supported by PCI-to-PCI bridges moving downstream (away
from the processor). Therefore, this solution is only applicable to host bus bridges.

Another deadlock that is similar to the above deadlock occurs doing an I/O Write
access that straddles a odd DWORD boundary. The same condition occurs as the
read deadlock when the host bridge cannot allow access to memory until the I/O
write completes. However, LOCK# cannot be used to prevent this deadlock since
locked accesses must be initiated with a read access.

6. Potential Data Inconsistency When an Agent Uses Delayed Transaction
Termination

Delayed Completion transactions on PCI are matched by the target with the requester
by comparing addresses, bus commands, and byte enables. As a result, when two
masters access the same address with the same bus command and byte enables, it is
possible that one master will obtain the data which was actually requested by the
other master.

If no intervening write occurs between the two master’s reads, there is no data
consistency issue. However, if a master completes a memory write and then requests
a read of the same location, there is a possibility that the read will return a snapshot
of that location which actually occurred prior to the write (due to a Delayed Read
Request by another master queued prior to the write).

This is only a problem when multiple masters on one side of a bridge are polling the
same location on the other side of the bridge, and one of the masters also writes the
location. Although it is difficult to envision a real application with these
characteristics, consider the sequence below:

1. Master A attempts a read to location X and a bridge responds to the
request using Delayed Transaction semantics (queues a Delayed Read
Request).

2. The bridge obtains the requested read data and the Delayed Request is
now stored as a Delayed Completion in the bridge.

3. Before Master A is able to complete the read request (obtain the results
stored in the Delayed Completion in the bridge) Master B does a
memory write to Location X and the bridge posts the memory write
transaction.

4. Master B then reads location X using the same address, byte enables,
and bus command as Master A’s original request.

5. The bridge completes Master B’s read access and delivers read data
which is a snapshot of Location X prior to the memory write of Location
X by Master B.

Since both transactions are identical, the bridge provides the data to the wrong
master. If Master B takes action on the read data, then an error may occur, since
Master B will see the value before the write. However, if the purpose of the read by
Master B was to ensure that the write had completed at the destination, no error
occurs and the system is coherent since the read data is not used (dummy read). If
the purpose of the read is only to flush the write posted data, it is recommended that
the read be to a different DWORD location of the same device. Then the reading of
stale data does not exist. If the read is to be compared to decide what to do, it is

116

Revision 2.1

recommended that the first read be discarded and the decision be based on the second
read.

The above example applies equally to an I/O controller that uses Delayed
Transaction termination. In the above example, replace the word "bridge" with "I/O
controller" and the same potential problem exists.

A similar problem can occur if the two masters are not sharing the same location, but
locations close to each other, and one master begins reading at a smaller address than
the one actually needed. If the smaller address coincides exactly with the address of
the other master’s read from the near location, then the two master’s reads can be
swapped by a device using Delayed Transaction termination. If there is an
intervening write cycle, then the second master may receive stale data; i.e., the
results from the read which occurred before the write cycle. The result of this
example is the same as the first example since the start addresses are the same. To
avoid this problem, the master must address the data actually required and not start at
a smaller address.

In summary, this problem can only occur if two masters on one side of a bridge are
sharing locations on the other side of the bridge. Although typical applications are
not configured this way, the problem can be avoided if a master doing a read fetches
only the actual data it needs, and does not prefetch data before the desired data, or if
the master does a dummy read after the write to guarantee that the write completes.

117

Revision 2.1

118

Revision 2.1

Chapter 4
Electrical Specification

4.1. Overview
This chapter defines all the electrical characteristics and constraints of PCI components,
systems, and expansion boards, including pin assignment on the expansion board
connector. It is divided into major sections covering integrated circuit components
(Section 4.2.), systems or motherboards (Section 4.3.), and expansion boards
(Section 4.4.). Each section contains the requirements that must be met by the respective
product, as well as the assumptions it may make about the environment provided. While
every attempt was made to make these sections self-contained, there are invariably
dependencies between sections so that it is necessary that all vendors be familiar with all
three areas. The PCI electrical definition provides for both 5V and 3.3V signaling
environments. These should not be confused with 5V and 3.3V component technologies.
A "5V component" can be designed to work in a 3.3V signaling environment and vice
versa; component technologies can be mixed in either signaling environment. The
signaling environments cannot be mixed; all components on a given PCI bus must use
the same signaling convention of 5V or 3.3V.

4.1.1. 5V to 3.3V Transition Road Map

One goal of the PCI electrical specification is to provide a quick and easy transition from
5V to 3.3V component technology. In order to facilitate this transition, PCI defines two
expansion board connectors−one for the 5V signaling environment and one for the 3.3V
signaling environment−and three board electrical types, as shown in Figure 4-1. A
connector keying system prevents a board from being inserted into an inappropriate slot.

The motherboard (including connectors) defines the signaling environment for the bus,
whether it be 5V or 3.3V. The 5V board is designed to work only in a 5V signaling
environment and, therefore, can only be plugged into the 5V connector. Similarly, the
3.3V board is designed to work only in the 3.3V signaling environment. However, the
Universal board is capable of detecting the signaling environment in use, and adapting
itself to that environment. It can, therefore, be plugged into either connector type. All
three board types define connections to both 5V and 3.3V power supplies, and may
contain either 5V and/or 3.3V components. The distinction between board types is the
signaling protocol they use, not the power rails they connect to nor the component
technology they contain.

119

Revision 2.1

"5 volt" Connector "3.3 volt" Connector

Dual Voltage Signaling Board
I/O buffers powered on

connector dependent rail

"5 volt" Board
I/O buffers powered on

5 volt rail

"3.3 volt" Board
I/O buffers powered on

3.3 volt rail

Figure 4-1: PCI Board Connectors

PCI components on the Universal board must use I/O buffers that can be compliant with
either the 5V or 3.3V signaling environment. While there are multiple buffer
implementations that can achieve this dual environment compliance, it is intended that
they be dual voltage buffers - i.e., capable of operating from either power rail. They
should be powered from "I/O" designated power pins28 on PCI connectors that will
always be connected to the power rail associated with the signaling environment in use.
This means that in the 5V signaling environment, these buffers are powered on the 5V
rail. When the same board is plugged into a 3.3V connector, these buffers are powered
on the 3.3V rail. This enables the Universal board to be compliant with either signaling
environment.

The intent of this transition approach is to move 5V component technology into the 3.3V
signaling environment, rather than forcing 3.3V component technology to operate in a
5V signaling environment. While the latter can be done, it is more difficult and more
expensive, especially in an unterminated, modular bus environment. The preferred
alternative - moving 5V components into a 3.3V signaling environment - can be done
without any incremental cost, and has, in addition, some signal performance benefits.

Since the first PCI components will have only 5V I/O buffers, the 5V board is initially
necessary. However, all new component designs on 5V technology should use the dual
voltage buffers (which will become available in most ASIC libraries) and should be
designed into the Universal board. This allows expansions based on 5V component
technology to be used in both 5V and 3.3V systems, thus enabling the move to 3.3V
systems. By quickly getting to the point where most new PCI systems use the 3.3V
signaling environment, expansion components moving to 3.3V technology for green

28 While the primary goal of the PCI 5V to 3.3V transition strategy is to spare vendors the burden and
expense of implementing 3.3V parts that are "5V tolerant," such parts are not excluded. If a PCI
component of this type is used on the Universal Board, its I/O buffers may optionally be connected to the
3.3V rail rather than the "I/O" designated power pins; but high clamp diodes must still be connected to
the "I/O" designated power pins. (Refer to the last paragraph of Section 4.2.1.2 - "Clamping directly to
the 3.3V rail with a simple diode must never be used in the 5V signaling environment.") Since the
effective operation of these high clamp diodes may be critical to both signal quality and device
reliability, the designer must provide enough extra "I/O" designated power pins on a component to handle
the current spikes associated with the 5V maximum AC waveforms (Section 4.2.1.3).

120

Revision 2.1

machine or functional density reasons will be spared the cost and problems of 5V
tolerance.

As shown in Figure 4-2, this results in a short term positioning using only the 5V board
and 5V connector, and a long term positioning based on the 3.3V connector, with 5V
components on the universal board (using dual voltage buffers) and 3.3V components on
the 3.3V board. The transition between these uses primarily the universal board in both
5V and 3.3V connectors. The important step of this transition is moving quickly from
the 5V board to the Universal board. If the critical mass of 5V add-in technology is
capable of spanning 5V and 3.3V systems, it will not impede the move to the 3.3V
connector. After this step of the transition is accomplished (to the Universal board), the
rest of the transition should happen transparently, on a market-driven timetable.

5v Brd

Univ Brd

5v Conn

3.3v Conn

3.3v Brd

Introduction
Phase

Transition
Phase

Long Term
Phase

5 volt
technologies

3.3 volt
technologies

Figure 4-2: 5V and 3.3V Technology Phases

4.1.2. Dynamic vs. Static Drive Specification

The PCI bus has two electrical characteristics that motivate a different approach to
specifying I/O buffer characteristics. First, PCI is a CMOS bus, which means that steady
state currents (after switching transients have died out) are very minimal. In fact, the
majority of the DC drive current is spent on pull-up resistors. Second, PCI is based on
reflected wave rather than incident wave signaling. This means that bus drivers are sized
to only switch the bus half way to the required high or low voltage. The electrical wave
propagates down the bus, reflects off the unterminated end and back to the point of
origin, thereby doubling the initial voltage excursion to achieve the required voltage
level. The bus driver is actually in the middle of its switching range during this
propagation time, which lasts up to 10 ns, one third of the bus cycle time at 33 MHz.

PCI bus drivers spend this relatively large proportion of time in transient switching, and
the DC current is minimal, so the typical approach of specifying buffers based on their
DC current sourcing capability is not useful. PCI bus drivers are specified in terms of
their AC switching characteristics, rather than DC drive. Specifically, the voltage to
current relationship (V/I curve) of the driver through its active switching range is the
primary means of specification. These V/I curves are targeted at achieving acceptable
switching behavior in typical configurations of six loads on the motherboard and two
expansion connectors or two loads on the motherboard and four expansion connectors.
However, it is possible to achieve different or larger configurations depending on the
actual equipment practice, layout arrangement, loaded impedance of the motherboard,
etc.

121

Revision 2.1

4.2. Component Specification
This section specifies the electrical and timing parameters for PCI components, i.e.,
integrated circuit devices. Both 5V and 3.3V rail-to-rail signaling environments are
defined. The 5V environment is based on absolute switching voltages in order to be
compatible with TTL switching levels. The 3.3V environment, on the other hand, is
based on Vcc-relative switching voltages and is an optimized CMOS approach. The
intent of the electrical specification is that components connect directly together, whether
on the planar or an expansion board, without any external buffers or other "glue."

These specifications are intended to provide a design definition of PCI component
electrical compliance and are not, in general, intended as actual test specifications. Some
of the elements of this design definition cannot be tested in any practical way, but must
be guaranteed by design characterization. It is the responsibility of component designers
and ASIC vendors to devise an appropriate combination of device characterization and
production tests, correlated to the parameters herein, in order to guarantee the PCI
component complies with this design definition. All component specifications have
reference to a packaged component, and therefore include package parasitics. Unless
specifically stated otherwise, component parameters apply at the package pins, not at
bare silicon pads29 nor at card edge connectors.

The intent of this specification is that components operate within the "commercial"
range of environmental parameters. However, this does not preclude the option of other
operating environments at the vendor’s discretion.

PCI output buffers are specified in terms of their V/I curves. Limits on acceptable V/I
curves provide for a maximum output impedance that can achieve an acceptable first step
voltage in typical configurations, and for a minimum output impedance that keeps the
reflected wave within reasonable bounds. Pull-up and pull-down sides of the buffer have
separate V/I curves, which are provided with the parametric specification. The effective
buffer strength is primarily specified by an AC drive point, which defines an acceptable
first step voltage, both high going and low going, together with required currents to
achieve that voltage in typical configurations. The DC drive point specifies steady state
conditions that must be maintained, but in a CMOS environment these are minimal, and
do not indicate real output drive strength. The shaded areas on the V/I curves shown in
Figures 4-3 and 4-5 define the allowable range for output characteristics.

It is possible to use weaker output drivers that do not comply with the V/I curves or meet
the timing parameters in this chapter if they are set up to do continuous stepping as
described in Section 3.7.3.. However, this practice is strongly discouraged as it creates
violations of the input setup time at all inputs, as well as having significant negative
performance impacts. In any case, all output drivers must meet the turn off (float) timing
specification.

DC parameters must be sustainable under steady state (DC) conditions. AC parameters
must be guaranteed under transient switching (AC) conditions, which may represent up
to 33% of the clock cycle. The sign on all current parameters (direction of current flow)
is referenced to a ground inside the component; that is, positive currents flow into the
component while negative currents flow out of the component. The behavior of reset
(RST#) is described in Section 4.3.2. (system specification) rather than in this
(component) section.

29 It may be desirable to perform some production tests at bare silicon pads. Such tests may have
different parameters than those specified here and must be correlated back to this specification.

122

Revision 2.1

4.2.1. 5V Signaling Environment

4.2.1.1. DC Specifications

Table 4-1 summarizes the DC specifications for 5V signaling.

Table 4-1: DC Specifications for 5V Signaling

Symbol Parameter Condition Min Max Units Notes

Vcc Supply Voltage 4.75 5.25 V

Vih Input High Voltage 2.0 Vcc+0.5 V

Vil Input Low Voltage -0.5 0.8 V

Iih Input High Leakage
Current

Vin = 2.7 70 µA 1

Iil Input Low Leakage
Current

Vin = 0.5 -70 µA 1

Voh Output High Voltage Iout = -2 mA 2.4 V

Vol Output Low Voltage Iout = 3 mA, 6 mA 0.55 V 2

Cin Input Pin Capacitance 10 pF 3

Cclk CLK Pin Capacitance 5 12 pF

CIDSEL IDSEL Pin Capacitance 8 pF 4

Lpin Pin Inductance 20 nH 5

NOTES:

1. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.

2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have
6 mA; the latter include, FRAME#, TRDY#, IRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when
used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK) with an exception granted to
motherboard-only devices, which could be up to 16 pF, in order to accommodate PGA packaging. This
would mean, in general, that components for expansion boards would need to use alternatives to ceramic
PGA packaging (i.e., PQFP, SGA, etc.).

4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].

5. This is a recommendation, not an absolute requirement. The actual value should be provided with the
component data sheet.

The pins used for the extended data path, AD[63::32], C/BE[7::4]#, and PAR64,
require either pull-up resistors or input "keepers," because they are not used in
transactions with 32-bit devices, and may therefore float to the threshold level, causing
oscillation or high power drain through the input buffer. This pull-up or keeper function
must be part of the motherboard central resource (not the expansion board) to ensure a
consistent solution and avoid pull-up current overload. When the 64-bit data path is
present on a device but not connected (as in a 64-bit card plugged into a 32-bit PCI slot),
that PCI component is responsible to insure that its inputs do not oscillate and that there
is not a significant power drain through the input buffer. This can be done in a variety of

123

Revision 2.1

ways: e.g., biasing the input buffer; or actively driving the outputs continually (since
they are not connected to anything). External resistors on an expansion board or any
solution that violates the input leakage specification are prohibited. The REQ64# signal
is used during reset to distinguish between parts that are connected to a 64-bit data path
and those that are not (refer to Section 4.3.2.).

4.2.1.2. AC Specifications

Table 4-2 summarizes the AC specifications for 5V signaling.

Table 4-2: AC Specifications for 5V Signaling

Symbol Parameter Condition Min Max Units Notes

Ioh(AC) Switching
0<Vout<1.4 -44 mA 1

Current High 1.4<Vout<2.4 -44+(Vout-1.4)/0.024 mA 1, 2

3.1<Vout<Vcc Eqt’n
A

1, 3

(Test Point) Vout = 3.1 -142 mA 3

Iol(AC) Switching
Vout > 2.2 95 mA 1

Current Low 2.2>Vout>0.55 Vout/0.023 mA 1

0.71>Vout>0 Eqt’n
B

1, 3

(Test Point) Vout = 0.71 206 mA 3

Icl Low Clamp
Current

-5 < Vin ≤ -1 -25+(Vin+1)/0.015 mA

slewr Output Rise Slew
Rate

0.4V to 2.4V load 1 5 V / ns 4

slewf Output Fall Slew
Rate

2.4V to 0.4V load 1 5 V / ns 4

NOTES:

1. Refer to the V/I curves in Figure 4-3. Switching current characteristics for REQ# and GNT# are permitted to
be one half of that specified here; i.e., half size output drivers may be used on these signals. This
specification does not apply to CLK and RST# which are system outputs. "Switching Current High"
specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive
point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to
allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the first step voltage. Equations defining
these maximums (A and B) are provided with the respective diagrams in Figure 4-3. The equation defined
maxima should be met by design. In order to facilitate component testing, a maximum current test point is
defined for each side of the output driver.

124

Revision 2.1

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the
instantaneous rate at any point within the transition range. The specified load (diagram below) is optional;
i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local
Bus Specification. However, adherence to both maximum and minimum parameters is now required (the
maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior
to revision 2.1 of the specification, there may be components in the market for some time that have faster
edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this
specification could occur, and should ensure that signal integrity modeling accounts for this. Rise slew rate
does not apply to open drain outputs.

1K Ω
10 pF

output
buffer

pin 1/2 in. max.

Vcc

1K Ω

The minimum and maximum drive characteristics of PCI output buffers are defined by
V/I curves. These curves should be interpreted as traditional “DC” transistor curves with
the following exceptions: the “DC Drive Point” is the only position on the curves at
which steady state operation is intended, while the higher current parts of the curves are
only reached momentarily during bus switching transients. The “AC Drive Point” (the
real definition of buffer strength) defines the minimum instantaneous current curve
required to switch the bus with a single reflection. From a quiescent or steady state, the
current associated with the AC drive point must be reached within the output delay time,
Tval. Note, however, that this delay time also includes necessary logic time. The
partitioning of Tval between clock distribution, logic, and output buffer is not specified,
but the faster the buffer (as long as it does not exceed the max rise/fall slew rate
specification), the more time is allowed for logic delay inside the part. The “Test Point”
defines the maximum allowable instantaneous current curve in order to limit switching
noise, and is selected roughly on a 22Ω load line.

Current (mA)-44 -176

Vcc

V
ol

ta
ge

2.4

1.4

-2 Current (mA)95 380

Vcc

Vo
lta

ge

2.2

0.55

3, 6

DC drive
point

AC drive
point

Pull Up Pull Down

DC
drive point

AC drive
point

test
point

test
point

Equation A: Equation B:

Ioh = 11.9*(Vout-5.25)*(Vout+2.45) Iol = 78.5*Vout*(4.4-Vout)

for Vcc > Vout > 3.1v for 0v < Vout < 0.71v

Figure 4-3: V/I Curves for 5V Signaling

125

Revision 2.1

Adherence to these curves should be evaluated at worst case conditions. The minimum
pull up curve should be evaluated at minimum Vcc and high temperature. The minimum
pull down curve should be evaluated at maximum Vcc and high temperature. The
maximum curve test points should be evaluated at maximum Vcc and low temperature.

Inputs are required to be clamped to ground. Clamps to the 5V rail are optional, but may
be needed to protect 3.3V input devices (see "Maximum AC Ratings" below). Clamping
directly to the 3.3V rail with a simple diode must never be used in the 5V signaling
environment. When dual power rails are used, parasitic diode paths can exist from one
supply to another. These diode paths can become significantly forward biased
(conducting) if one of the power rails goes out of spec momentarily. Diode clamps to a
power rail, as well as to output pull-up devices, must be able to withstand short circuit
current until drivers can be tri-stated. Refer to Section 4.3.2. for more information.

4.2.1.3. Maximum AC Ratings and Device Protection

Maximum AC waveforms are included here as examples of worst case AC operating
conditions. It is recommended that these waveforms be used as qualification criteria,
against which the long term reliability of a device is evaluated. This is not intended to
be used as a production test; it is intended that this level of robustness be guaranteed by
design. This covers AC operating conditions only; DC conditions are specified in
Section 4.2.1.1..

The PCI environment contains many reactive elements and, in general, must be treated as
a non-terminated, transmission line environment. The basic premise of the environment
requires that a signal reflect at the end of the line and return to the driver before the
signal is considered switched. As a consequence of this environment, under certain
conditions of drivers, device topology, board impedance, etc., the "open circuit" voltage
at the pins of PCI devices will exceed the ground to Vcc voltage range expected by a
considerable amount. The technology used to implement PCI can vary from vendor to
vendor, so it cannot be assumed that the technology is naturally immune to these effects.
This under- over-voltage specification provides a synthetic worst case AC environment,
against which the long term reliability of a device can be evaluated.

All input, bi-directional, and tri-state outputs used on each PCI device should be capable
of continuous exposure to the following synthetic waveform which is applied with the
equivalent of a zero impedance voltage source driving a series resistor directly into each
input or tri-stated output pin of the PCI device. The waveform provided by the voltage
source (or open circuit voltage) and the resistor value are shown in Figure 4-4. The open
circuit waveform is a composite of simulated worst cases30; some had narrower pulse
widths, while others had lower voltage peaks. The resistor is calculated to provide a
worst case current into an effective (internal) clamp diode. Note that:

• The voltage waveform is supplied at the resistor shown in the evaluation setup, NOT
the package pin.

• With effective clamping, the waveform at the package pin will be greatly reduced.

30 Waveforms based on worst case (strongest) driver, maximum and minimum system configurations,
with no internal clamp diodes.

126

Revision 2.1

• The upper clamp is optional, but if used it MUST be connected to the 5V supply or
the VI/O plane of the add-in card, but NEVER31 the 3.3V supply.

• For devices built in “3 volt technology,” the upper clamp is, in practice, required for
device protection.

• In order to limit signal ringing in systems that tend to generate large overshoots,
motherboard vendors may wish to use layout techniques to lower circuit impedance.

4 nSec
(max)

11 v, p-to-p
(minimum)

11 nSec
(min)

62.5 nSec
(16 MHz)

Overvoltage Waveform
Voltage Source Impedance

R = 55 Ω

10.75 v, p-to-p
(minimum)

Undervoltage Waveform
Voltage Source Impedance

R = 25 Ω

+ 5.25 v

- 5.5 v

 + 11 v

 0 v

V
Evaluation

Setup

R
Input

Buffer

5v. supply

Figure 4-4: Maximum AC Waveforms for 5V Signaling

31 It is possible to use alternative clamps, such as a diode stack to the 3.3V rail or a circuit to ground, if it
can be insured that the I/O pin will never be clamped below the 5V level.

127

Revision 2.1

4.2.2. 3.3V Signaling Environment

4.2.2.1. DC Specifications

Table 4-3 summarizes the DC specifications for 3.3V signaling.

Table 4-3: DC Specifications for 3.3V Signaling

Symbol Parameter Condition Min Max Units Notes

Vcc Supply Voltage 3.0 3.6 V

Vih Input High Voltage 0.5Vcc Vcc + 0.5 V

Vil Input Low Voltage -0.5 0.3Vcc V

Vipu Input Pull-up Voltage 0.7Vcc V 1

Iil Input Leakage Current 0 < Vin < Vcc +10 µA 2

Voh Output High Voltage Iout = -500 µA 0.9Vcc V

Vol Output Low Voltage Iout = 1500 µA 0.1Vcc V

Cin Input Pin Capacitance 10 pF 3

Cclk CLK Pin Capacitance 5 12 pF

CIDSEL IDSEL Pin Capacitance 8 pF 4

Lpin Pin Inductance 20 nH 5

NOTES:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are
calculated to pull a floated network. Applications sensitive to static power utilization should assure that the
input buffer is conducting minimum current at this input voltage.

2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK) with an exception granted to
motherboard-only devices, which could be up to 16 pF, in order to accommodate PGA packaging. This
would mean in general that components for expansion boards would need to use alternatives to ceramic
PGA packaging - i.e., PQFP, SGA, etc.

4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].

5. This is a recommendation, not an absolute requirement. The actual value should be provided with the
component data sheet.

The pins used for the extended data path, AD[63::32], C/BE[7::4]#, and PAR64,
require either pull-up resistors or input "keepers," because they are not used in
transactions with 32-bit devices, and may therefore float to the threshold level, causing
oscillation or high power drain through the input buffer. This pull-up or keeper function
must be part of the motherboard central resource (not the expansion board) to ensure a
consistent solution and avoid pull-up current overload. When the 64-bit data path is
present on a device but not connected (as in a 64-bit card plugged into a 32-bit PCI slot),
that PCI component is responsible to insure that its inputs do not oscillate and that there
is not a significant power drain through the input buffer. This can be done in a variety of
ways, e.g., biasing the input buffer or actively driving the outputs continually (since they

128

Revision 2.1

are not connected to anything). External resistors on an expansion board or any solution
that violates the input leakage specification are prohibited. The REQ64# signal is used
during reset to distinguish between parts that are connected to a 64-bit data path, and
those that are not (refer to Section 4.3.2.).

4.2.2.2. AC Specifications

Table 4-4 summarizes the AC specifications for 3.3V signaling.

Table 4-4: AC Specifications for 3.3V Signaling

Symbol Parameter Condition Min Max Units Notes

Ioh(AC) Switching
0<Vout<0.3Vcc -12Vcc mA 1

Current High 0.3Vcc<Vout<0.9Vcc -17.1(Vcc-Vout) mA 1

0.7Vcc<Vout<Vcc Eqt’n C 1, 2

(Test Point) Vout = 0.7Vcc -32Vcc mA 2

Iol(AC) Switching
Vcc>Vout>0.6Vcc 16Vcc mA 1

Current Low 0.6Vcc>Vout>0.1Vcc 26.7Vout mA 1

0.18Vcc>Vout>0 Eqt’n D 1, 2

(Test Point) Vout = 0.18Vcc 38Vcc mA 2

Icl Low Clamp
Current

-3<Vin ≤ -1 -25+(Vin+1)/0.015 mA

Ich High Clamp
Current

Vcc+4>Vin ≥ Vcc+1 25+(Vin-Vcc-1)/0.015 mA

slewr
Output Rise Slew
Rate

0.2Vcc - 0.6Vcc load 1 4 V/ns 3

slewf
Output Fall Slew
Rate

0.6Vcc - 0.2Vccl load 1 4 V/ns 3

NOTES:

1. Refer to the V/I curves in Figure 4-5. Switching current characteristics for REQ# and GNT# are permitted to
be one half of that specified here; i.e., half size output drivers may be used on these signals. This
specification does not apply to CLK and RST# which are system outputs. "Switching Current High"
specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.

2. Maximum current requirements must be met as drivers pull beyond the first step voltage. Equations defining
these maximums (C and D) are provided with the respective diagrams in Figure 4-5. The equation defined
maxima should be met by design. In order to facilitate component testing, a maximum current test point is
defined for each side of the output driver.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the
instantaneous rate at any point within the transition range. The specified load (diagram below) is optional;
i.e., the designer may elect to meet this parameter with an unloaded output per the last revision of the PCI
specification. However, adherence to both maximum and minimum parameters is required (the maximum is
not simply a guideline). Rise slew rate does not apply to open drain outputs.

1K Ω
10 pF

output
buffer

pin 1/2 in. max.

Vcc

1K Ω

129

Revision 2.1

The minimum and maximum drive characteristics of PCI output buffers are defined by
V/I curves. These curves should be interpreted as traditional “DC” transistor curves with
the following exceptions: the “DC Drive Point” is the only position on the curves at
which steady state operation is intended, while the higher current parts of the curves are
only reached momentarily during bus switching transients. The “AC Drive Point” (the
real definition of buffer strength) defines the minimum instantaneous current curve
required to switch the bus with a single reflection. From a quiescent or steady state, the
current associated with the AC drive point must be reached within the output delay time,
Tval. Note however, that this delay time also includes necessary logic time. The
partitioning of Tval between clock distribution, logic, and output buffer is not specified;
but the faster the buffer (as long as it does not exceed the max rise/fall slew rate
specification), the more time is allowed for logic delay inside the part. The “Test Point”
defines the maximum allowable instantaneous current curve in order to limit switching
noise and is selected roughly on a 22Ω load line.

Adherence to these curves should be evaluated at worst case conditions. The minimum
pull up curve should be evaluated at minimum Vcc and high temperature. The minimum
pull down curve should be evaluated at maximum Vcc and high temperature. The
maximum curve test points should be evaluated at maximum Vcc and low temperature.

DC
drive point

Current (mA)
-12 Vcc

Vcc

Vo
lta

ge

0.9
Vcc

-0.5 16 Vcc

Vcc

1.5

0.1
Vcc

0.6
Vcc

64 Vcc

0.3
Vcc

Pull Up

-48 Vcc
Current (mA)

Vo
lta

ge

DC drive
point

AC drive
point

Pull Down

AC drive
point

test
point

test
point

0.5 Vcc

Equation C: Equation D:
Ioh = (98.0/Vcc)*(Vout-Vcc)*(Vout+0.4Vcc) Iol = (256/Vcc)*Vout*(Vcc-Vout)

for Vcc > Vout > 0.7 Vcc for 0v < Vout < 0.18 Vcc

Figure 4-5: V/I Curves for 3.3V Signaling

Inputs are required to be clamped to BOTH ground and Vcc (3.3V) rails. When dual
power rails are used, parasitic diode paths could exist from one supply to another. These
diode paths can become significantly forward biased (conducting) if one of the power
rails goes out of spec momentarily. Diode clamps to a power rail, as well as output pull-
up devices, must be able to withstand short circuit current until drivers can be tri-stated.
Refer to Section 4.3.2. for more information.

130

Revision 2.1

4.2.2.3. Maximum AC Ratings and Device Protection

Refer to the "Maximum AC Ratings" section in the 5V signaling environment.
Maximum AC waveforms are included here as examples of worst case AC operating
conditions. It is recommended that these waveforms be used as qualification criteria,
against which the long term reliability of a device is evaluated. This is not intended to
be used as a production test; it is intended that this level of robustness be guaranteed by
design. This covers AC operating conditions only; DC conditions are specified in
Section 4.2.2.1.

All input, bi-directional, and tri-state outputs used on each PCI device should be capable
of continuous exposure to the following synthetic waveform, which is applied with the
equivalent of a zero impedance voltage source driving a series resistor directly into each
input or tri-stated output pin of the PCI device. The waveform provided by the voltage
source (or open circuit voltage) and the resistor value are shown in Figure 4-6. The open
circuit waveform is a composite of simulated worst cases; some had narrower pulse
widths, while others had lower voltage peaks. The resistor is calculated to provide a
worst case current into an effective (internal) clamp diode. Note that:

• The voltage waveform is supplied at the resistor shown in the evaluation setup, NOT
the package pin.

• With effective clamping, the waveform at the package pin will be greatly reduced.

• In order to limit signal ringing in systems that tend to generate large overshoots,
motherboard vendors may wish to use layout techniques to lower circuit impedance.

4 nSec
(max)

7.1 v, p-to-p
(minimum)

11 nSec
(min)

62.5 nSec
(16 MHz)

Overvoltage Waveform
Voltage Source Impedance

R = 29 Ω

7.1 v, p-to-p
(minimum)

Undervoltage Waveform
Voltage Source Impedance

R = 28 Ω

+ 3.6 v

- 3.5 v

+ 7.1 v

0 v

V
Evaluation

Setup

R
Input

Buffer

3.3v. supply

Figure 4-6: Maximum AC Waveforms for 3.3V Signaling

131

Revision 2.1

4.2.3. Timing Specification

4.2.3.1. Clock Specification

The clock waveform must be delivered to each PCI component in the system. In the case
of expansion boards, compliance with the clock specification is measured at the
expansion board component, not at the connector slot. Figure 4-7 shows the clock
waveform and required measurement points for both 5V and 3.3V signaling
environments. Table 4-5 summarizes the clock specifications.

2.0 v

0.8 v

1.5 v

2.4 v

0.4 v

2 v, p-to-p
(minimum)

T_high

T_low

0.3 Vcc

T_cyc

0.5 Vcc

5 volt Clock

3.3 volt Clock

0.4 Vcc

0.6 Vcc

0.2 Vcc

0.4 Vcc, p-to-p
(minimum)

Figure 4-7: Clock Waveforms

132

Revision 2.1

Table 4-5: Clock and Reset Specifications

Symbol Parameter Min Max Units Notes

tcyc CLK Cycle Time 30 ∞ ns 1

thigh CLK High Time 11 ns

tlow CLK Low Time 11 ns

- CLK Slew Rate 1 4 V/ns 2

- RST# Slew Rate 50 - mV/ns 3

NOTES:

1. In general, all PCI components must work with any clock frequency between
nominal DC and 33 MHz. Device operational parameters at frequencies under
16 MHz may be guaranteed by design rather than by testing. The clock
frequency may be changed at any time during the operation of the system so
long as the clock edges remain "clean" (monotonic) and the minimum cycle and
high and low times are not violated. The clock may only be stopped in a low
state. A variance on this specification is allowed for components designed for
use on the system motherboard only. These components may operate at any
single fixed frequency up to 33 MHz, and may enforce a policy of no frequency
changes.

2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This
slew rate must be met across the minimum peak-to-peak portion of the clock
waveform as shown in Figure 4-7.

3. The minimum RST# slew rate applies only to the rising (deassertion) edge of the
reset signal, and ensures that system noise cannot render an otherwise
monotonic signal to appear to bounce in the switching range. RST# waveforms
and timing are discussed in Section 4.3.2.

133

Revision 2.1

4.2.3.2. Timing Parameters

Table 4-6 provides the timing parameters for 5V and 3.3V signaling environments.

Table 4-6: 5V and 3.3V Timing Parameters

Symbol Parameter Min Max Units Notes

tval CLK to Signal Valid Delay - bused signals 2 11 ns 1, 2, 3

tval(ptp) CLK to Signal Valid Delay - point to point 2 12 ns 1, 2, 3

ton Float to Active Delay 2 ns 1, 7

toff Active to Float Delay 28 ns 1, 7

tsu Input Set up Time to CLK - bused signals 7 ns 3, 4

tsu(ptp) Input Set up Time to CLK - point to point 10, 12 ns 3, 4

th Input Hold Time from CLK 0 ns 4

trst Reset Active Time After Power Stable 1 ms 5

trst-clk Reset Active Time After CLK Stable 100 µs 5

trst-off Reset Active to Output Float delay 40 ns 5, 6,7

trrsu REQ64# to RST# setup time 10*Tcyc ns

Trrh RST# to REQ64# hold time 0 50 ns

NOTES:

1. See the timing measurement conditions in Figure 4-8.

2. For parts compliant to the 5V signaling environment:
Minimum times are evaluated with 0 pF equivalent load; maximum times are evaluated with 50 pF
equivalent load. Actual test capacitance may vary, but results should be correlated to these
specifications. Note that faster buffers may exhibit some ring back when attached to a 50 pF lump
load, which should be of no consequence as long as the output buffers are in full compliance with slew
rate and V/I curve specifications.

For parts compliant to the 3.3V signaling environment:
Minimum times are evaluated with same load used for slew rate measurement (as shown in
Table 4-4, note 3); maximum times are evaluated with the following load circuits, for high-going
 and low-going edges respectively.

25 Ω
10 pF

Vcc

1/2 in. max.

25 Ω 10 pF

Tval(max) Rising Edge

1/2 in. max.

output
buffer

pin

Tval(max) Falling Edge

3. REQ# and GNT# are point-to-point signals, and have different output valid delay and input setup times than
do bused signals. GNT# has a setup of 10; REQ# has a setup of 12. All other signals are bused.

4. See the timing measurement conditions in Figure 4-9.

5. RST# is asserted and deasserted asynchronously with respect to CLK. Refer to Section 4.3.2. for more
information.

6. All output drivers must be asynchronously floated when RST# is active.

7. For purposes of Active/Float timing measurements, the Hi-Z or “off” state is defined to be when the total
current delivered through the component pin is less than or equal to the leakage current specification.

134

Revision 2.1

4.2.3.3. Measurement and Test Conditions

Figures 4-8 and 4-9 define the conditions under which timing measurements are made.
The component test guarantees that all timings are met with minimum clock slew rate
(slowest edge) and voltage swing. The design must guarantee that minimum timings are
also met with maximum clock slew rate (fastest edge) and voltage swing. In addition,
the design must guarantee proper input operation for input voltage swings and slew rates
that exceed the specified test conditions.

CLK

OUTPUT
DELAY

T_val

T_on

V_test

T_off

Tri-State
OUTPUT

V_test (5v. signaling)
V_step (3.3v. signaling)

output current ≤ leakage current

V_th

V_tl

Figure 4-8: Output Timing Measurement Conditions

INPUT
inputs
valid

V_th

V_tl

T_h
T_su

CLK

V_test

V_test

V_test V_max

V_th

V_tl

Figure 4-9: Input Timing Measurement Conditions

135

Revision 2.1

Table 4-7: Measure Condition Parameters

Symbol 5V Signaling 3.3V Signaling Units

Vth 2.4 0.6Vcc V (Note)

Vtl 0.4 0.2Vcc V (Note)

Vtest 1.5 0.4Vcc V

Vstep

(rising edge)

n/a 0.285Vcc V

Vstep

(falling edge)

n/a 0.615Vcc V

Vmax 2.0 0.4Vcc V (Note)

Input Signal
Edge Rate

1 V / ns

NOTE:

The input test for the 5V environment is done with 400 mV of overdrive
(over Vih and Vil); the test for the 3.3V environment is done with 0.1Vcc
of overdrive. Timing parameters must be met with no more overdrive
than this. Vmax specifies the maximum peak-to-peak waveform allowed
for measuring input timing. Production testing may use different voltage
values, but must correlate results back to these parameters.

4.2.4. Indeterminate Inputs and Metastability

At times, various inputs may be indeterminate. Components should avoid logical
operational errors and metastability by sampling inputs ONLY on "qualified" clock
edges. In general, synchronous signals may only be assumed to be valid and determinate
at the clock edge on which they are “qualified” (refer to Section 3.2.).

System designs must assure that floating inputs get biased away from the switching
region, in order to avoid logical, electrical, thermal, or reliability problems. In general, it
is not possible to avoid situations where low slew rate signals (e.g., resistively coupled
IDSEL) pass through the switching region at the time of a clock edge, but they should
not be allowed to remain at the threshold point for many clock periods. Frequently, a
pre-charged bus may be assumed to retain its state while not driven for a few clock
periods during bus turnaround.

There are specific instances when signals are known to be indeterminate. These should
be carefully considered in any design.

All AD[31::00], C/BE[3::0], and PAR pins are indeterminate when tri-stated for bus
turnaround. This may last for several cycles while waiting for a device to respond at the
beginning of a transaction.

The IDSEL pin is indeterminate at all times except during configuration cycles. If a
resistive connection to an AD line is used, it may tend to float around the switching
region much of the time.

136

Revision 2.1

The SERR# pin should be considered indeterminate for a number of cycles after it has
been deasserted.

Nearly all signals will be indeterminate for as long as RST# is asserted, and for a period
of time after it is released. Pins with pull-up resistors should eventually resolve high.

4.2.5. Vendor Provided Specification

In the time frame of PCI, many system vendors will do board-level electrical simulation
of PCI components. This will ensure that system implementations are manufacturable
and that components are used correctly. To help facilitate this effort, as well as provide
complete information, component vendors should make the following information
available: (It is recommended that component vendors make this information
electronically available in the IBIS model format.)

• Pin capacitance for all pins.

• Pin inductance for all pins.

• Output V/I curves under switching conditions. Two curves should be given for each
output type used: one for driving high, the other for driving low. Both should show
best-typical-worst curves. Also, "beyond-the-rail" response is critical, so the voltage
range should span -5V to 10V for 5V signaling and -3V to 7V for 3.3V signaling.

• Input V/I curves under switching conditions. A V/I curve of the input structure when
the output is tri-stated is also important. This plot should also show best-typical-
worst curves over the range of 0 to Vcc.

• Rise/fall slew rates for each output type.

• Complete absolute maximum data, including operating and non-operating
temperature, DC maximums, etc.

In addition to this component information, connector vendors should make available
accurate simulation models of PCI connectors.

4.2.6. Pinout Recommendation

This section provides a recommended pinout for PCI components. Since expansion
board stubs are so limited, layout issues are greatly minimized if the component pinout
aligns exactly with the board (connector) pinout. Components for use on motherboards
only should also follow this same signal ordering, to allow layouts with minimum stubs.
Figure 4-10 shows the recommended pinout for a typical PQFP PCI component. Note
that the pinout is exactly aligned with the signal order on the board connector (SDONE
and SBO# are not shown). Placement and number of power and ground pins is device-
dependent.

The additional signals needed in 64-bit versions of the bus should continue wrapping
around the component in a counter-clockwise direction in the same order they appear on
the 64-bit connector extension.

137

Revision 2.1

PCI Component

All PCI Shared Signals
Below this Line

{
JTAG

RST#
CLK
GNT
REQ

AD[31]
.
.

AD[24]
C/BE3#
IDSEL

C
/B

E
2#

FR
A

M
E

#
IR

D
Y

#
TR

D
Y

#
D

E
V

S
E

L#
S

TO
P

#
LO

C
K

#
P

E
R

R
#

S
E

R
R

#
P

A
R

C
/B

E
1#

A
D

[2
3]

.
A

D
[1

6]

A
D

[1
5]

. .
A

D
[8

]

AD[0]
.

AD[7]
C/BE0#

AD[32]
.
.

AD[63]
C/BE4#
C/BE5#
C/BE6#
C/BE7#

REQ64#
ACK64#

PCI Card Edge

PAR64

Figure 4-10: Suggested Pinout for PQFP PCI Component

Placing the IDSEL input as close as possible to AD[31::11] allows the option for a non-
resistive32 connection of IDSEL to the appropriate address line with a small additional
load. Note that this pin has a lower capacitance specification that could constrain its
placement in the package.

4.3. System (Motherboard) Specification

4.3.1. Clock Skew

The maximum allowable clock skew is 2 ns. This specification applies not only at a
single threshold point, but at all points on the clock edge that fall in the switching range
defined in Table 4-8 and Figure 4-11. The maximum skew is measured between any two
components33, not between connectors. To correctly evaluate clock skew, the system
designer must take into account clock distribution on the expansion board, which is
specified in Section 4.4..

32 Non-resistive connections of IDSEL to one of the AD[xx] lines create a technical violation of the
single load per add-in board rule. PCI protocol provides for pre-driving of address lines in configuration
cycles, and it is recommended that this be done, in order to allow a resistive coupling of IDSEL. In
absence of this, signal performance must be derated for the extra IDSEL load.
33 There may be an additional source of clock skew that the system designer may need to address. This
clock skew occurs between two components that have clock input trip points at opposite ends of the
Vil - Vih range. In certain circumstances, this can add to the clock skew measurement as described here.
In all cases, total clock skew must be limited to the specified number.

138

Revision 2.1

Table 4-8: Clock Skew Parameters

Symbol 5V Signaling 3.3V Signaling Units

Vtest 1.5 0.4 Vcc V

Tskew 2 (max) 2 (max) ns

CLK
(@Device #1)

CLK
(@Device #2)

V_test
V_ih

T_skew

T_skew

T_skew

V_test
V_il

V_il

V_ih

Figure 4-11: Clock Skew Diagram

4.3.2. Reset

The assertion and deassertion of the PCI reset signal (RST#) is asynchronous with
respect to CLK. The rising (deassertion) edge of the RST# signal must be monotonic
(bounce free) through the input switching range and must meet the minimum slew rate
specified in Table 4-5. The PCI specification does not preclude the implementation of a
synchronous RST#, if desired. The timing parameters for reset are contained in
Table 4-6, with the exception of the Tfail parameter. This parameter provides for system
reaction to one or both of the power rails going out of spec. If this occurs, parasitic
diode paths could short circuit active output buffers. Therefore, RST# is asserted upon
power failure in order to float the output buffers.

The value of Tfail is the minimum of:

• 500 ns (maximum) from either power rail going out of specification (exceeding
specified tolerances by more than 500 mV)

• 100 ns (maximum) from the 5V rail falling below the 3.3V rail by more than
300 mV.

The system must assert RST# during power up or in the event of a power failure. In
order to minimize possible voltage contention between 5V and 3.3V parts, RST# should
be asserted as soon as possible during the power up sequence. Figure 4-12 shows a
worst case assertion of RST# asynchronously following the "power good" signal.34

After RST# is asserted, PCI components must asynchronously disable (float) their
outputs, but are not considered reset until both Trst and Trst-clk parameters have been
met. Figure 4-12 shows RST# signal timing.

34 Component vendors should note that a fixed timing relationship between RST# and power sequencing
cannot be guaranteed in all cases.

139

Revision 2.1

) (

) (

100ms (typ)

Vnominal - X%POWER

PCI_CLK

PWR_GOOD

RST#

PCI
SIGNALS

tri-state

) (

T_rst-off

T_rst-clk

T_rst

T_fail

REQ64#

T_rrsu

T_rrh

Figure 4-12: Reset Timing35

The REQ64# signal is used during reset to distinguish between parts that are connected
to a 64-bit data path, and those that are not. The REQ64# signal is bused to all devices
on the motherboard (including PCI connector slots) that support a 64-bit data path. This
signal has a single pull-up resistor on the motherboard. On PCI expansion slots that do
not support the 64-bit data path, the REQ64# signal is NOT bused or connected, but has
its own, separate pull-up resistor. The central resource must drive REQ64# low
(asserted) during the time that RST# is asserted, according to the timing specification.
Devices that see REQ64# asserted during reset are connected to the 64-bit data path,
while those that do not see the REQ64# assertion are not connected. This information
may be used by the component to stabilize floating inputs during runtime, as described in
Sections 4.2.1.1. and 4.2.2.1..

During reset, REQ64# has setup and hold time requirements with respect to the
deasserting (high going) edge36 of RST#. REQ64# is asynchronous with respect to the
clock during reset.

35 This reset timing figure optionally shows the "PWR_GOOD" signal as a pulse which is used to time
the RST# pulse. In many systems "PWR_GOOD" may be a level, in which case the RST# pulse must
be timed in another way.
36 This allows REQ64# to be sampled on the deassertion edge of RST#.

140

Revision 2.1

4.3.3. Pull-ups

PCI control signals always require pull-up resistors on the motherboard (NOT the
expansion board) to ensure that they contain stable values when no agent is actively
driving the bus. This includes, FRAME#, TRDY#, IRDY#, DEVSEL#, STOP#,
SERR#, PERR#, LOCK#, INTA#, INTB#, INTC#, INTD#, and, when used,
REQ64#, and ACK64#. The point-to-point and shared 32-bit signals do not require
pull-ups; bus parking ensures their stability. The 64-bit data path expansion signals,
AD[63::32], C/BE[7::4]#, and PAR64, must also be pulled up when they are
connected. When they are left unconnected (as with a 64-bit board in a 32-bit connector)
the component itself must deal with the floating input as described in Sections 4.2.1.1.
and 4.2.2.1..

In addition, on any connector for which they are not connected, SBO# and SDONE
should be separately pulled up with an ∼5 KΩ resistor. Also, if boundary scan is not
implemented on the planar, TMS and TDI should be independently bused and pulled up
each with ~5 KΩ resistors, and TRST# and TCK should be independently bused and
pulled down, each with ~5 KΩ resistors. TDO should be left open.

The formulas for minimum and maximum pull-up resistors are provided below. Rmin is
primarily driven by Iol, the DC low output current; whereas the number of loads only has
a secondary effect. On the other hand, Rmax is primarily driven by the number of loads
present. The specification provides for a minimum R value that is calculated based on
16 loads (believed to be a worst case) and a typical R value that is calculated as the
maximum R value with 10 loads. The maximum R value is provided by formula only,
and will be the highest in a system with the smallest number of loads.

R Vcc V I Iol ol ilmin (max)[] / [()]= − + ⋅16 , where 16 = max number of loads

R Vcc V num loads Ix ihmax min= − ×[] / [_]() ,

where: V vx = 2 7. for 5V signaling, and V Vccx = 0 7. for 3.3V signaling.

Table 4-9 provides minimum and typical values for both 5V and 3.3V signaling
environments. The typical values have been derated for 10% resistors at nominal values.

Table 4-9: Minimum and Typical Pull-up Resistor Values

Signaling Rail Rmin Rtypical Rmax

5V 963 Ω 2.7 KΩ @ 10% see formula

3.3V 2.42 KΩ 8.2 KΩ @ 10% see formula

The central resource, or any component containing an arbitration unit, may require a
weak pull-up on each unconnected REQ# pin and each REQ# pin connected to a PCI
add-in slot in order to insure that these signals do not float. Values for this pull-up shall
be specified by the central resource vendor.

141

Revision 2.1

4.3.4. Power

4.3.4.1. Power Requirements

All PCI connectors require four power rails: +5V, +3.3V, +12V, and -12V. Systems
implementing the 3.3V signaling environment are always required to provide all four
rails in every system, with the current budget specified in Table 4-10. Systems
implementing the 5V signaling environment may either ship the 3.3V supply with the
system, or provide a means to add it afterward (i.e., bus and decouple all 3.3V power
pins) to support expansion boards that require it, but must provide the other three power
rails with each system. System vendors are nonetheless encouraged to provide 3.3V
power for PCI slots since boards with 3.3V parts are expected to appear soon. However,
in the 5V signaling environment, an expansion card may not currently depend on 3.3V
power being already available in the system. If a board used in the 5V signaling
environment requires 3.3V power, it must provide its own power from a source on or
associated with the expansion board, such as a regulator powered by either the 5V or
12V supplies.

Current requirements per connector for the two 12V rails are provided in Table 4-10.
There are no specific system requirements for current per connector on the 5V and 3.3V
rails; this is system dependent. The system provides a total power budget for PCI
expansion boards that can be distributed between connectors in an arbitrary way. The
PRSNTn# pins on the connector allow the system to optionally assess the power
demand of each board and determine if the installed configuration will run within the
total power budget. Refer to Section 4.4.1. for further details.

Table 4-10 specifies the tolerances of supply rails. Note that these tolerances are to be
guaranteed at the components, not the supply.

Table 4-10: Power Supply Rail Tolerances

Power Rail Expansion Cards (Short and Long)

5V ±5% 5A max. (system dependent)

3.3V ±0.3V 7.6A max. (system dependent)

12V ±5% 500 mA

-12V ±10% 100 mA

4.3.4.2. Sequencing

There is no specified sequence in which the four power rails are activated or deactivated.
They may come up and go down in any order. The system must assert RST# both at
power up and whenever either the 5V or 3.3V rails go out of spec (per Section 4.3.2.).
During reset, all PCI signals are driven to a "safe" state, as described in Section 4.3.2..

142

Revision 2.1

4.3.4.3. Decoupling

All power planes must be decoupled to ground in such a manner as to provide for
reasonable management of the switching currents (d I/d t) to which the plane and its
supply path are subjected. This is platform dependent and not detailed in the
specification.

The +3.3V pins in PCI connectors (even if they are not actually delivering power)
provide an AC return path and must be bused together on the motherboard, preferably on
a 3.3V power plane, and decoupled to ground in a manner consistent with high speed
signaling techniques. To ensure an adequate AC return path, it is recommended that 12
high-speed 0.01 µF capacitors be evenly spaced on the 3.3V plane.

4.3.5. System Timing Budget

When computing a total PCI load model, careful attention must be paid to maximum
trace length and loading of expansion boards, as specified in Section 4.4.3.. Also, the
maximum pin capacitance of 10 pF must be assumed for expansion boards, whereas the
actual pin capacitance may be used for planar devices.

The total clock period can be divided into four segments. Valid output delay (Tval) and
input setup time (Tsu) are specified by the component specification. Total clock skew
(Tskew) and maximum bus propagation time (Tprop) are system parameters. Tprop is
specified as 10 ns, but may be increased to 11 ns by lowering clock skew; that is, Tprop
plus Tskew together may not exceed 12 ns, however, under no circumstance may Tskew
exceed 2 ns. Furthermore, by using clock rates slower than 33 MHz, some systems may
build larger PCI topologies, having Tprop values larger than those specified here. Since
component times (Tval and Tsu) and clock skew are fixed, any increase in clock cycle
time allows an equivalent increase in Tprop. For example, at 25 MHz, (40 ns clock
period) Tprop may be increased to 20 ns. Note that this tradeoff affects systems
(motherboards) only; all add-in board designs must assume 33 MHz operation.

In 5V signaling environments, Tprop is measured as shown in Figure 4-13. It begins at
the time the output buffer would have crossed the threshold point (Vtest in Figure 4-13),
had it been driving the 50 pF lump load specified for Tval measurement. It ends when
the slowest input (probably the closest one) reaches Vth and does not ring back across
Vih (high going) or reaches Vtl and does not ring back across Vil (low going). Note that
input buffer timing is specified with a certain amount of overdrive (past Vih and Vil),
which may be needed to guarantee input buffer timings. This means the input is not
valid (and consequently Tprop time is still running) unless it goes up to V th and does not
ring back across Vih.

For 3.3V signaling environments (not shown in Figure 4-13), Tprop is measured in a
similar way, except that the output buffer driving the 25Ω lump load specified for Tval
measurement never moves beyond the first step voltage, and, therefore, never reaches the
threshold point. In this case, the measurement of Tprop begins at the time the output
buffer would have reached the Tval measurement specification (Vstep). The end of the
Tprop period is marked the same as in the 5V case.

Refer to Table 4-7 and the 5V and 3.3V DC parameter tables for the values of parameters
in Figure 4-13.

143

Revision 2.1

In many system layouts, correct PCI signal propagation relies on diodes embedded in
PCI components to limit reflections and successfully meet Tprop. In configurations
where unterminated trace ends propagate a significant distance from a PCI component
(e.g., a section of PCI unpopulated connectors), it may be necessary to add active (e.g.,
diode) termination at the unloaded end of the bus in order to insure adequate signal
quality. Note that since the signaling protocol depends on the initial reflection, passive
termination does not work.

V_ih

HIGH LOW

Driving PCI

Driving Tval
test load

T_prop

V_il

T_prop

V_th

V_tl

V_test (5v. signaling)
V_step (3.3v. signaling)

V_test (5v. signaling)
V_step (3.3v. signaling)

Figure 4-13: Measurement of Tprop

4.3.6. Physical Requirements

4.3.6.1. Routing and Layout of Four Layer Boards

The power pins have been arranged on the connector to facilitate layouts on four layer
motherboards. A "split power plane" may be used - creating a 3.3V island in the 5V
plane, which connects all the 3.3V PCI connector pins and may optionally have a power
distribution "finger" reaching to the power supply connector. Although this is a standard
technique, routing high speed signals directly over this plane split can cause signal
integrity problems. The split in the plane disrupts the AC return path for the signal
creating an impedance discontinuity.

A recommended solution is to arrange the signal level layouts so that no high speed
signal (e.g., 33 MHz) is referenced to both planes. Signal traces should either remain
entirely over the 3.3V plane or entirely over the 5V plane. Signals that must cross from
one domain to the other should be routed on the opposite side of the board so that they
are referenced to the ground plane, which is not split. If this is not possible, and signals
must be routed over the plane split, the two planes should be capacitively tied together
(5V plane decoupled directly to 3.3V plane) with 0.01 µF high-speed capacitors for each
four signals crossing the split and the capacitor should be placed not more that
0.25 inches from the point the signals cross the split.

This recommendation does not apply to slower speed signals such as ISA bus signals.

144

Revision 2.1

4.3.6.2. Motherboard Impedance

There is no bare board impedance specification for motherboards. The system designer
has two primary constraints in which to work:

• The length and signal velocity must allow a full round trip time on the bus within the
specified propagation delay of 10 ns. (Refer to Section 4.3.5..)

• The loaded impedance seen at any drive point on the network must be such that a
PCI output device (as specified by its V/I curve) can meet input device specifications
with a single reflection of the signal. This includes loads presented by expansion
boards.

Operating frequency may be traded off for additional round trips on the bus to build
configurations that might not comply with the two constraints mentioned above. This
option is neither recommended nor specifically precluded.

4.3.7. Connector Pin Assignments

The PCI connector contains all the signals defined for PCI components, plus two pins
that are related to the connector only. These pins, PRSNT1# and PRSNT2#, are
described in Section 4.4.1.. Motherboards must decouple both of these pins individually
to ground with 0.01 µF high-speed capacitors because one or both of the pins also
provide an AC return path. These pins may not be bused or otherwise connected to each
other on the motherboard. Further use of these pins on the motherboard is optional. If
the motherboard design accesses these pins to obtain board information, each pin must
have an appropriate pull-up resistor (of approximately 5 KΩ) on the motherboard. The
connector pin assignments are shown in Table 4-11. Pins labeled “Reserved” must be
left unconnected on all connectors.

Pin B49 is a special purpose pin that has logical significance in 66 MHz capable systems,
and in such it must be separately bused, pulled up, and decoupled as described in
Section 7.7.7. For all other PCI connectors, this pin must be treated in all respects as a
standard ground pin; i.e., the edge finger must be plated and connected to the ground
plane.

145

Revision 2.1

Table 4-11: PCI Connector Pinout

5V System Environment 3.3V System Environment

Pin Side B Side A Side B Side A Comments

1 -12V TRST# -12V TRST# 32-bit connector start

2 TCK +12V TCK +12V
3 Ground TMS Ground TMS
4 TDO TDI TDO TDI
5 +5V +5V +5V +5V
6 +5V INTA# +5V INTA#
7 INTB# INTC# INTB# INTC#
8 INTD# +5V INTD# +5V
9 PRSNT1# Reserved PRSNT1# Reserved

10 Reserved +5V (I/O) Reserved +3.3V (I/O)

11 PRSNT2# Reserved PRSNT2# Reserved
12 Ground Ground CONNECTOR KEY 3.3 volt key

13 Ground Ground CONNECTOR KEY 3.3 volt key

14 Reserved Reserved Reserved Reserved
15 Ground RST# Ground RST#
16 CLK +5V (I/O) CLK +3.3V (I/O)

17 Ground GNT# Ground GNT#
18 REQ# Ground REQ# Ground
19 +5V (I/O) Reserved +3.3V (I/O) Reserved
20 AD[31] AD[30] AD[31] AD[30]
21 AD[29] +3.3V AD[29] +3.3V
22 Ground AD[28] Ground AD[28]
23 AD[27] AD[26] AD[27] AD[26]
24 AD[25] Ground AD[25] Ground
25 +3.3V AD[24] +3.3V AD[24]
26 C/BE[3]# IDSEL C/BE[3]# IDSEL
27 AD[23] +3.3V AD[23] +3.3V
28 Ground AD[22] Ground AD[22]
29 AD[21] AD[20] AD[21] AD[20]
30 AD[19] Ground AD[19] Ground
31 +3.3V AD[18] +3.3V AD[18]
32 AD[17] AD[16] AD[17] AD[16]
33 C/BE[2]# +3.3V C/BE[2]# +3.3V
34 Ground FRAME# Ground FRAME#
35 IRDY# Ground IRDY# Ground
36 +3.3V TRDY# +3.3V TRDY#
37 DEVSEL# Ground DEVSEL# Ground
38 Ground STOP# Ground STOP#
39 LOCK# +3.3V LOCK# +3.3V
40 PERR# SDONE PERR# SDONE
41 +3.3V SBO# +3.3V SBO#
42 SERR# Ground SERR# Ground

146

Revision 2.1

Table 4-11: PCI Connector Pinout (continued)

5V System Environment 3.3V System Environment

Pin Side B Side A Side B Side A Comments

43 +3.3V PAR +3.3V PAR
44 C/BE[1]# AD[15] C/BE[1]# AD[15]
45 AD[14] +3.3V AD[14] +3.3V
46 Ground AD[13] Ground AD[13]
47 AD[12] AD[11] AD[12] AD[11]
48 AD[10] Ground AD[10] Ground
49 Ground AD[09] M66EN AD[09] 66 MHz / gnd

50 CONNECTOR KEY Ground Ground 5 volt key

51 CONNECTOR KEY Ground Ground 5 volt key

52 AD[08] C/BE[0]# AD[08] C/BE[0]#
53 AD[07] +3.3V AD[07] +3.3V
54 +3.3V AD[06] +3.3V AD[06]
55 AD[05] AD[04] AD[05] AD[04]
56 AD[03] Ground AD[03] Ground
57 Ground AD[02] Ground AD[02]
58 AD[01] AD[00] AD[01] AD[00]
59 +5V (I/O) +5V (I/O) +3.3V (I/O) +3.3V (I/O)

60 ACK64# REQ64# ACK64# REQ64#
61 +5V +5V +5V +5V
62 +5V +5V +5V +5V 32-bit connector end

CONNECTOR KEY CONNECTOR KEY 64-bit spacer

CONNECTOR KEY CONNECTOR KEY 64-bit spacer

63 Reserved Ground Reserved Ground 64-bit connector start

64 Ground C/BE[7]# Ground C/BE[7]#
65 C/BE[6]# C/BE[5]# C/BE[6]# C/BE[5]#
66 C/BE[4]# +5V (I/O) C/BE[4]# +3.3V (I/O)

67 Ground PAR64 Ground PAR64
68 AD[63] AD[62] AD[63] AD[62]
69 AD[61] Ground AD[61] Ground
70 +5V (I/O) AD[60] +3.3V (I/O) AD[60]
71 AD[59] AD[58] AD[59] AD[58]
72 AD[57] Ground AD[57] Ground
73 Ground AD[56] Ground AD[56]
74 AD[55] AD[54] AD[55] AD[54]
75 AD[53] +5V (I/O) AD[53] +3.3V (I/O)

76 Ground AD[52] Ground AD[52]
77 AD[51] AD[50] AD[51] AD[50]
78 AD[49] Ground AD[49] Ground
79 +5V (I/O) AD[48] +3.3V (I/O) AD[48]
80 AD[47] AD[46] AD[47] AD[46]
81 AD[45] Ground AD[45] Ground
82 Ground AD[44] Ground AD[44]

147

Revision 2.1

Table 4-11: PCI Connector Pinout (continued)

5V System Environment 3.3V System Environment

Pin Side B Side A Side B Side A Comments

83 AD[43] AD[42] AD[43] AD[42]
84 AD[41] +5V (I/O) AD[41] +3.3V (I/O)

85 Ground AD[40] Ground AD[40]
86 AD[39] AD[38] AD[39] AD[38]
87 AD[37] Ground AD[37] Ground
88 +5V (I/O) AD[36] +3.3V (I/O) AD[36]
89 AD[35] AD[34] AD[35] AD[34]
90 AD[33] Ground AD[33] Ground
91 Ground AD[32] Ground AD[32]
92 Reserved Reserved Reserved Reserved
93 Reserved Ground Reserved Ground
94 Ground Reserved Ground Reserved 64-bit connector end

Pins labeled "+5V (I/O)" and "+3.3V (I/O)" are special power pins for defining and driving
the PCI signaling rail on the Universal Board. On the motherboard, these pins are
connected to the main +5V or +3.3V plane, respectively.

Special attention must be paid to the connection of REQ64# and ACK64# on the
motherboard. The associated pull-up resistors are placed on the motherboard (not the
expansion board) to ensure that there is never more than a single pull-up of the
appropriate value connected to either of these pins. The 64-bit connector extension is not
always present on the motherboard, so these pins are located on the 32-bit section of the
connector. These signals must be bused together (with a single pull-up resistor on each
signal) on all connectors that provide the 64-bit data path. For 32-bit connectors, these
signals must remain "open." They must not be connected together, and each must have
its own pull-up resistor so that 64-bit boards plugged into 32-bit slots will operate
correctly. For specifics of REQ64# during reset, refer to Section 4.3.2..

148

Revision 2.1

4.4. Expansion Board Specification

4.4.1. Board Pin Assignment

The PCI connector contains all the signals defined for PCI components, plus two pins
that are related to the connector only. These are PRSNT1# and PRSNT2#. They are
used for two purposes: indicating that a board is physically present in the slot and
providing information about the total power requirements of the board. Table 4-12
defines the required setting of the PRSNT# pins for expansion boards.

Table 4-12: Present Signal Definitions

PRSNT1# PRSNT2# Expansion Configuration

Open Open No expansion board present

Ground Open Expansion board present, 25W maximum

Open Ground Expansion board present, 15W maximum

Ground Ground Expansion board present, 7.5W maximum

In providing a power level indication, the expansion board must indicate total maximum
power consumption for the board. The system must assume that the expansion board
could draw this power from either the 5V or 3.3V power rail. Furthermore, if the
expansion board is configurable (e.g., sockets for memory expansion, etc.), the pin
strapping must indicate the total power consumed by a fully configured board, which
may be more than that consumed in its shipping configuration.

Boards that do not implement JTAG Boundary Scan are required to connect TDI and
TDO (pins 4a and 4b) so the scan chain is not broken.

Pin B49 is a special purpose pin that has logical significance in 66 MHz capable add-in
boards, and in such it must be connected and decoupled as described in Section 7.8.. For
all other add-in boards, this pin must be treated in all respects as a standard ground pin;
i.e., the edge finger must be plated and connected to the ground plane of the add-in
board.

149

Revision 2.1

Table 4-13: PCI Board Pinout

5V Board Universal Board 3.3V Board

Pin Side B Side A Side B Side A Side B Side A Comments

1 -12V TRST# -12V TRST# -12V TRST# 32-bit start

2 TCK +12V TCK +12V TCK +12V
3 Ground TMS Ground TMS Ground TMS
4 TDO TDI TDO TDI TDO TDI
5 +5V +5V +5V +5V +5V +5V
6 +5V INTA# +5V INTA# +5V INTA#
7 INTB# INTC# INTB# INTC# INTB# INTC#
8 INTD# +5V INTD# +5V INTD# +5V
9 PRSNT1# Reserved PRSNT1# Reserved PRSNT1# Reserved

10 Reserved +5V Reserved +VI/O Reserved +3.3V
11 PRSNT2# Reserved PRSNT2# Reserved PRSNT2# Reserved
12 Ground Ground KEYWAY KEYWAY 3.3V key

13 Ground Ground KEYWAY KEYWAY 3.3V key

14 Reserved Reserved Reserved Reserved Reserved Reserved
15 Ground RST# Ground RST# Ground RST#
16 CLK +5V CLK +VI/O CLK +3.3V
17 Ground GNT# Ground GNT# Ground GNT#
18 REQ# Ground REQ# Ground REQ# Ground
19 +5V Reserved +VI/O Reserved +3.3V Reserved
20 AD[31] AD[30] AD[31] AD[30] AD[31] AD[30]
21 AD[29] +3.3V AD[29] +3.3V AD[29] +3.3V
22 Ground AD[28] Ground AD[28] Ground AD[28]
23 AD[27] AD[26] AD[27] AD[26] AD[27] AD[26]
24 AD[25] Ground AD[25] Ground AD[25] Ground
25 +3.3V AD[24] +3.3V AD[24] +3.3V AD[24]
26 C/BE[3]# IDSEL C/BE[3]# IDSEL C/BE[3]# IDSEL
27 AD[23] +3.3V AD[23] +3.3V AD[23] +3.3V
28 Ground AD[22] Ground AD[22] Ground AD[22]
29 AD[21] AD[20] AD[21] AD[20] AD[21] AD[20]
30 AD[19] Ground AD[19] Ground AD[19] Ground
31 +3.3V AD[18] +3.3V AD[18] +3.3V AD[18]
32 AD[17] AD[16] AD[17] AD[16] AD[17] AD[16]
33 C/BE[2]# +3.3V C/BE[2]# +3.3V C/BE[2]# +3.3V
34 Ground FRAME# Ground FRAME# Ground FRAME#
35 IRDY# Ground IRDY# Ground IRDY# Ground
36 +3.3V TRDY# +3.3V TRDY# +3.3V TRDY#
37 DEVSEL# Ground DEVSEL# Ground DEVSEL# Ground
38 Ground STOP# Ground STOP# Ground STOP#
39 LOCK# +3.3V LOCK# +3.3V LOCK# +3.3V
40 PERR# SDONE PERR# SDONE PERR# SDONE
41 +3.3V SBO# +3.3V SBO# +3.3V SBO#
42 SERR# Ground SERR# Ground SERR# Ground

150

Revision 2.1

Table 4-13: PCI Board Pinout (continued)

5V Board Universal Board 3.3V Board

Pin Side B Side A Side B Side A Side B Side A Comments

43 +3.3V PAR +3.3V PAR +3.3V PAR
44 C/BE[1]# AD[15] C/BE[1]# AD[15] C/BE[1]# AD[15]
45 AD[14] +3.3V AD[14] +3.3V AD[14] +3.3V
46 Ground AD[13] Ground AD[13] Ground AD[13]
47 AD[12] AD[11] AD[12] AD[11] AD[12] AD[11]
48 AD[10] Ground AD[10] Ground AD[10] Ground
49 Ground AD[09] M66EN AD[09] M66EN AD[09] 66 MHz /gnd

50 KEYWAY KEYWAY Ground Ground 5V key

51 KEYWAY KEYWAY Ground Ground 5V key

52 AD[08] C/BE[0]# AD[08] C/BE[0]# AD[08] C/BE[0]#
53 AD[07] +3.3V AD[07] +3.3V AD[07] +3.3V
54 +3.3V AD[06] +3.3V AD[06] +3.3V AD[06]
55 AD[05] AD[04] AD[05] AD[04] AD[05] AD[04]
56 AD[03] Ground AD[03] Ground AD[03] Ground
57 Ground AD[02] Ground AD[02] Ground AD[02]
58 AD[01] AD[00] AD[01] AD[00] AD[01] AD[00]
59 +5V +5V +VI/O +VI/O +3.3V +3.3V
60 ACK64# REQ64# ACK64# REQ64# ACK64# REQ64#
61 +5V +5V +5V +5V +5V +5V
62 +5V +5V +5V +5V +5V +5V 32-bit end

KEYWAY KEYWAY KEYWAY 64-bit spacer

KEYWAY KEYWAY KEYWAY 64-bit spacer

63 Reserved Ground Reserved Ground Reserved Ground 64-bit start

64 Ground C/BE[7]# Ground C/BE[7]# Ground C/BE[7]#
65 C/BE[6]# C/BE[5]# C/BE[6]# C/BE[5]# C/BE[6]# C/BE[5]#
66 C/BE[4]# +5V C/BE[4]# +VI/O C/BE[4]# +3.3V
67 Ground PAR64 Ground PAR64 Ground PAR64
68 AD[63] AD[62] AD[63] AD[62] AD[63] AD[62]
69 AD[61] Ground AD[61] Ground AD[61] Ground
70 +5V AD[60] +VI/O AD[60] +3.3V AD[60]
71 AD[59] AD[58] AD[59] AD[58] AD[59] AD[58]
72 AD[57] Ground AD[57] Ground AD[57] Ground
73 Ground AD[56] Ground AD[56] Ground AD[56]
74 AD[55] AD[54] AD[55] AD[54] AD[55] AD[54]
75 AD[53] +5V AD[53] +VI/O AD[53] +3.3V
76 Ground AD[52] Ground AD[52] Ground AD[52]
77 AD[51] AD[50] AD[51] AD[50] AD[51] AD[50]
78 AD[49] Ground AD[49] Ground AD[49] Ground
79 +5V AD[48] +VI/O AD[48] +3.3V AD[48]
80 AD[47] AD[46] AD[47] AD[46] AD[47] AD[46]
81 AD[45] Ground AD[45] Ground AD[45] Ground
82 Ground AD[44] Ground AD[44] Ground AD[44]

151

Revision 2.1

Table 4-13: PCI Board Pinout (continued)

5V Board Universal Board 3.3V Board

Pin Side B Side A Side B Side A Side B Side A Comments

83 AD[43] AD[42] AD[43] AD[42] AD[43] AD[42]
84 AD[41] +5V AD[41] +VI/O AD[41] +3.3V
85 Ground AD[40] Ground AD[40] Ground AD[40]
86 AD[39] AD[38] AD[39] AD[38] AD[39] AD[38]
87 AD[37] Ground AD[37] Ground AD[37] Ground
88 +5V AD[36] +VI/O AD[36] +3.3V AD[36]
89 AD[35] AD[34] AD[35] AD[34] AD[35] AD[34]
90 AD[33] Ground AD[33] Ground AD[33] Ground
91 Ground AD[32] Ground AD[32] Ground AD[32]
92 Reserved Reserved Reserved Reserved Reserved Reserved
93 Reserved Ground Reserved Ground Reserved Ground
94 Ground Reserved Ground Reserved Ground Reserved 64-bit end

Table 4-14: Pin Summary - 32 bit Board

Pin Type 5V Board Universal Board 3.3V Board

Ground 22 18 (Note) 22 (Note)
+5 V 13 8 8

+3.3 V 12 12 17
I/O pwr 0 5 0

Reserv’d 6 6 6

NOTE:

If the M66EN pin is implemented, the number of ground pins for a Universal
board is 17 and the number of ground pins for a 3.3V board is 21.

Table 4-15: Pin Summary - 64 bit Board (incremental pins)

Pin Type 5V Board Universal Board 3.3V Board

Ground 16 16 16
+5 V 6 0 0

+3.3 V 0 0 6
I/O pwr 0 6 0

Reserv’d 5 5 5

152

Revision 2.1

Pins labeled "+V I/O" are special power pins for defining and driving the PCI signaling
rail on the Universal Board. On this board, the PCI component’s I/O buffers must be
powered from these special power pins only37 -- not from the other +5V or +3.3V power
pins.

4.4.2. Power Requirements

4.4.2.1. Decoupling

Under typical conditions, the Vcc plane to ground plane capacitance will provide
adequate decoupling for the Vcc connector pins. The maximum trace length from a
connector pad to the Vcc/GND plane via shall be 0.25 inches (assumes a 20 mil trace
width).

However, on the Universal board, it is likely that the I/O buffer power rail will not have
adequate capacitance to the ground plane to provide the necessary decoupling. Pins
labeled "+V I/O" should be decoupled to ground with an average of 0.047 µF per pin.

Additionally, all +3.3V pins (even if they are not actually delivering power), and any
unused +5V and V I/O pins on the PCI edge connector provide an AC return path, and
must have plated edge fingers and be coupled to the ground plane on the add-in board as
described below to ensure they continue to function as efficient AC reference points:

1. The decoupling must average at least 0.01 µF (high-speed) per Vcc pin.

2. The trace length from pin pad to capacitor pad shall be no greater than 0.25 inches
using a trace width of at least 0.02 inches.

3. There is no limit to the number of pins that can share the same capacitor provided
that requirements 1 and 2 are met.

4.4.2.2. Power Consumption

The maximum power allowed for any PCI board is 25 watts, and represents the total
power drawn from all of the four power rails provided at the connector. In the worst
case, all 25 watts could be drawn from either the +5V or +3.3V rail.

It is anticipated that many systems will not provide a full 25 watt per connector power
budget for each power rail, because most boards will typically draw much less than this
amount. For this reason, PCI boards that consume more than 10 watts should power up
in and reset to a power saving state that consumes 10 watts or less, if possible. While in
this state, the board must provide full access to its PCI configuration space, and must

37 While the primary goal of the PCI 5V to 3.3V transition strategy is to spare vendors the burden and
expense of implementing 3.3V parts that are "5V tolerant," such parts are not excluded. If a PCI
component of this type is used on the Universal Board, its I/O buffers may optionally be connected to the
3.3V rail rather than the "I/O" designated power pins; but, high clamp diodes must still be connected to
the "I/O" designated power pins. (Refer to the last paragraph of Section 4.2.1.2 - "Clamping directly to
the 3.3V rail with a simple diode must never be used in the 5V signaling environment.") Since the
effective operation of these high clamp diodes may be critical to both signal quality and device
reliability, the designer must provide enough extra "I/O" designated power pins on a component to handle
the current spikes associated with the 5V maximum AC waveforms (Section 4.2.1.3).

153

Revision 2.1

perform required bootstrap functions, such as basic text mode on a video board. All
other board functions can be suspended if necessary. This power saving state can be
achieved in a variety of ways. For example:

• Clock rates on the board can be reduced, which reduces performance but does not
limit functionality.

• Power planes to non-critical parts could be shut off with an FET, which could limit
functional capability.

After the driver for the board has been initialized, it may place the board into a fully
powered, full function/performance state using a device dependent mechanism of choice
(probably register based). In advanced power managed systems, the device driver may
be required to report the target power consumption before fully enabling the board in
order to allow the system to determine if it has a sufficient power budget for all boards in
the current configuration. The driver must be able to accurately determine the maximum
power requirements for its board as currently configured and from which rail(s) this
power will be drawn.

Add-in boards must never source 3.3V power back to the system board, except in the
case where an add-in board has been specifically designed to provide a given system’s
3.3V. power. Boards capable of 3.3V PCI signaling may have multiple mechanisms that
indirectly source power back to the system. For example, boards containing components
with bus clamps to the 3.3V rail may create a “charge pump” which directs excess bus
switching energy back into the system board. Alternately, I/O output buffers operating
on the 3.3V rail, but used in a 5V signaling environment, may bleed the excess charge
off the bus and into the 3.3V power net when they drive the bus “high” after it was
previously driven to the 5V rail. Unintentional power sourcing by any such mechanism
must be managed by proper decoupling and sufficient local load on the 3.3V supply
(bleed resistor or otherwise) to dissipate any power “generated” on the add-in board.
This requirement does not apply to noise generated on the 3.3V power rail, as long as the
net DC current accumulated over any two clock periods is zero.

4.4.3. Physical Requirements

4.4.3.1. Trace Length Limits

Trace lengths from the top of the option card edge connector to the PCI device are as
follows:

• The maximum trace lengths for all 32-bit interface signals are limited to 1.5 inches
for 32-bit and 64-bit cards. This includes all signal groups (refer to Section 2.2.)
except those listed as, "System Pins," "Interrupt Pins," and "JTAG Pins."

• The trace lengths of the additional signals used in the 64-bit extension are limited to
2 inches on all 64-bit cards.

• The trace length for the PCI CLK signal is 2.5 inches ± 0.1 inches for 32-bit and
64-bit cards and must be routed to only one load.

154

Revision 2.1

4.4.3.2. Routing

The power pins have been arranged on the connector to facilitate layouts on four layer
boards. A "split power plane" may be used, as described in Section 4.3.6.1.. Although
this is a standard technique, routing high speed signals directly over this plane split can
cause signal integrity problems. The split in the plane disrupts the AC return path for the
signal creating an impedance discontinuity.

A recommended solution is to arrange the signal level layouts so that no high speed
signal (e.g., 33 MHz) is referenced to both planes. Signal traces should either remain
entirely over the 3.3V plane or entirely over the 5V plane. Signals that must cross from
one domain to the other should be routed on the opposite side of the board so that they
are referenced to the ground plane which is not split. If this is not possible, and signals
must be routed over the plane split, the two planes should be capacitively tied together
(5V plane decoupled directly to 3.3V plane) with 0.01 µF high-speed capacitors for each
four signals crossing the split and the capacitor should be placed not more that 0.25
inches from the point the signals cross the split.

4.4.3.3. Impedance

The unloaded characteristic impedance (Z0) of the shared PCI signal traces on the
expansion card shall be controlled to be in the 60Ω -100Ω range. The trace velocity
must be between 150 ps/inch and 190 ps/inch.

4.4.3.4. Signal Loading

Shared PCI signals must be limited to one load on the expansion card. Violation of
expansion board trace length or loading limits will compromise system signal integrity.
It is specifically a violation of this specification for expansion boards to:

• Attach an expansion ROM directly (or via bus transceivers) on any PCI pins.

• Attach two or more PCI devices on an expansion board, unless they are placed
behind a PCI-to-PCI bridge.

• Attach any logic (other than a single PCI device) that "snoops" PCI pins.

• Use PCI component sets that place more than one load on each PCI pin; e.g.,
separate address and data path components.

• Use a PCI component that has more than 10 pF capacitance per pin.

• Attach any pull-up resistors or other discrete devices to the PCI signals, unless they
are placed behind a PCI-to-PCI bridge.

155

Revision 2.1

156

Revision 2.1

Chapter 5
Mechanical Specification

5.1. Overview
The PCI expansion card is based on a raw card design (see Figures 5-1 to 5-6) that is
easily implemented in existing cover designs from multiple manufacturers. The card
design adapts to ISA, EISA, and MC systems. PCI expansion cards have two basic form
factors: standard length and short length. The standard length card provides 49 square
inches of real estate. The fixed and variable height short length cards were chosen for
panel optimization to provide the lowest cost for a function. The fixed and variable
height short cards also provide the lowest cost to implement in a system, the lowest
energy consumption, and allow the design of smaller systems. The interconnect for the
PCI expansion card has been defined for both the 32-bit and 64-bit interfaces.

PCI cards and connectors are keyed to manage the 5V to 3.3V transition. The basic
32-bit connector contains 120 pins. The logical numbering of pins shows 124 pin
identification numbers, but four pins are not present and are replaced by the keying
location. In one orientation, the connector is keyed to accept 5V system signaling
environment boards; turned 180 degrees the key is located to accept 3.3V system
signaling environment boards. Universal add-in cards, cards built to work in both 5V
and 3.3V system signaling environments, have two key slots so that they can plug into
either connector. A 64-bit extension, built onto the same connector molding, extends the
total number of pins to 184. The 32-bit connector subset defines the system signaling
environment. 32-bit cards and 64-bit cards are inter-operable within the system’s
signaling voltage classes defined by the keying in the 32-bit connector subset. A 32-bit
card identifies itself for 32-bit transfers on the 64-bit connector. A 64-bit card in a 32-bit
connector must configure for 32-bit transfers.

Maximum card power dissipation is encoded on the PRSNT1# and PRSNT2# pins of
the expansion card. This hard encoding can be read by system software upon
initialization. The system’s software can then make a determination whether adequate
cooling and supply current is available in that system for reliable operation at start-up
and initialization time. Supported power levels and their encoding are defined in
Chapter 4, "Electrical Specification."

The PCI expansion card includes a mounting bracket for card location and retention. The
backplate is the interface between the card and the system that provides for cable
escapement. The card has been designed to accommodate PCI brackets for both
ISA/EISA and MC systems. See Figures 5-8 and 5-9 for the ISA/EISA assemblies and
Figures 5-10 and 5-11 for the MC assemblies. Bracket kits for each card type must be
furnished with the PCI card so that end users may configure the card for their systems.

157

Revision 2.1

The ISA/EISA kit contains a PCI bracket, four 4-40 screws, and a card extender. The
assembled length of the PCI expansion board is that of an MC card. The extender
fastens to the front edge of the PCI card to provide support via a standard ISA card
guide. The MC bracket kit contains a riveted MC bracket-bracket brace assembly and
two pan head 4-40 screws.

The component side of a PCI expansion card is the opposite of ISA/EISA and MC cards.
The PCI card is a mirror image of ISA/EISA and MC cards. A goal of PCI is to enable
its implementation in systems with a limited number of expansion card slots. In these
systems, the PCI expansion board connector can coexist, within a single slot, with an
ISA/EISA or MC expansion connector. These slots are referred to as shared slots.
Shared slots allow the end user to install a PCI, ISA/EISA, or MC card. However, only
one expansion board can be installed in a shared slot at a time. For example, shared slots
in PCI systems with an ISA expansion bus can accommodate an ISA or a PCI expansion
board; shared slots in PCI systems with an MC expansion bus can accommodate an MC
or a PCI expansion board; etc.

5.2. Expansion Card Physical Dimensions and Tolerances
The maximum component height on the primary component side of the PCI expansion
card is not to exceed 0.570 inches (14.48 mm). The maximum component height on the
back side of the card is not to exceed 0.105 inches (2.67 mm). Datum A on the
illustrations is used to locate the PCI card to the planar and to the frame interfaces; the
back of the frame and the card guide. Datum A is carried through the locating key on the
card edge and the locating key on the connector.

See Figures 5-1 through 5-16 for PCI expansion card physical dimensions.

158

Revision 2.1

Figure 5-1: PCI Raw Card (5V)

159

Revision 2.1

Figure 5-2: PCI Raw Card (3.3V and Universal)

160

Revision 2.1

Figure 5-3: PCI Raw Variable Height Short Card (5V, 32-bit)

161

Revision 2.1

Figure 5-4: PCI Raw Variable Height Short Card (3.3V, 32-bit)

162

Revision 2.1

Figure 5-5: PCI Raw Variable Height Short Card (5V, 64-bit))

163

Revision 2.1

Figure 5-6: PCI Raw Variable Height Short Card (3.3V, 64-bit)

164

Revision 2.1

Figure 5-7: PCI Card Edge Connector Bevel

165

Revision 2.1

Figure 5-8: ISA Assembly (5V)

166

Revision 2.1

Figure 5-9: ISA Assembly (3.3V and Universal)

167

Revision 2.1

Figure 5-10: MC Assembly (5V)

Figure 5-11: MC Assembly (3.3V)

168

Revision 2.1

Figure 5-12: ISA Bracket

169

Revision 2.1

Figure 5-13: ISA Retainer

170

Revision 2.1

Figure 5-14: MC Bracket Brace

171

Revision 2.1

Figure 5-15: MC Bracket

172

Revision 2.1

Figure 5-16: MC Bracket Details

5.2.1. Connector Physical Description

The connectors that support PCI expansion cards are derived from those on the MC bus.
The MC connectors are well defined and have proven value and reliability. There are
four connectors that can be used depending on the PCI implementation. The differences
between connectors are 32 bit and 64 bit, and the 5V and 3.3V signaling environments.
A key differentiates the signaling environment voltages. The same physical connector is
used for the 32-bit signaling environments. In one orientation the key accepts 5V
boards. Rotated 180 degrees, the connector accepts 3.3V signaling boards. The pin
numbering of the connector changes for the different signaling environments to maintain
the same relative position of signals on the connector (see Figures 5-18, 5-19, 5-21, and
5-23 for board layout details).

In the connector drawings, the recommended board layout details are given as nominal
dimensions. Layout detail tolerancing should be consistent with the connector supplier’s
recommendations and good engineering practice.

173

Revision 2.1

See Figures 5-17 through 5-23 for connector dimensions and layout recommendations.
See Figures 5-24 through 5-30 for card edge connector dimensions and tolerances.
Tolerances for cards are given so that interchangeable cards can be manufactured.

Figure 5-17: 32-bit Connector

Figure 5-18: 5V/32-bit Connector Layout Recommendation

174

Revision 2.1

Figure 5-19: 3.3V/32-bit Connector Layout Recommendation

Figure 5-20: 5V/64-bit Connector

Figure 5-21: 5V/64-bit Connector Layout Recommendation

175

Revision 2.1

Figure 5-22: 3.3V/64-bit Connector

Figure 5-23: 3.3V/64-bit Connector Layout Recommendation

176

Revision 2.1

Figure 5-24: 5V/32-bit Card Edge Connector Dimensions and Tolerances

Figure 5-25: 5V/64-bit Card Edge Connector Dimensions and Tolerances

177

Revision 2.1

Figure 5-26: 3.3V/32-bit Card Edge Connector Dimensions and Tolerances

Figure 5-27: 3.3V/64-bit Card Edge Connector Dimensions and Tolerances

178

Revision 2.1

Figure 5-28: Universal 32-bit Card Edge Connector Dimensions and Tolerances

Figure 5-29: Universal 64-bit Card Edge Connector Dimensions and Tolerances

179

Revision 2.1

Figure 5-30: PCI Card Edge Connector Contacts

5.2.1.1. Connector Physical Requirements

Table 5-1: Connector Physical Requirements

Part Materials

Connector Housing High-temperature thermoplastic, UL flammability rating
94V-0, color: white.

Contacts Phosphor bronze.

Contact Finish 0.000030 inch minimum gold over 0.000050 inch
minimum nickel in the contact area. Alternate finish:
gold flash over 0.000040 inch (1 micron) minimum
palladium or palladium-nickel over nickel in the contact
area.

180

Revision 2.1

5.2.1.2. Connector Performance Specification

Table 5-2: Connector Mechanical Performance Requirements

Parameter Specification

Durability 100 mating cycles without physical damage or
exceeding low level contact resistance requirement
when mated with the recommended card edge.

Mating Force 6 oz. (1.7N) max. avg. per opposing contact pair using
MIL-STD-1344, Method 2013.1 and gauge per
MIL-C-21097 with profile as shown in add-in board
specification.

Contact Normal Force 75 grams minimum.

Table 5-3: Connector Electrical Performance Requirements

Parameter Specification

Contact Resistance (low signal level) 30 milliohms max. initial, 10 milliohms
max. increase through testing. Contact resistance, test
per MIL-STD-1344, Method 3002.1.

Insulation Resistance 1000 MΩ min. per MIL STD 202, Method 302,
Condition B.

Dielectric Withstand
Voltage

500 VAC RMS. per MIL-STD-1344, Method D3001.1
Condition 1.

Capacitance 2 pF max. @ 1 MHz.

Current Rating 1A, 30 °C rise above ambient.

Voltage Rating 125V.

Certification UL Recognition and CSA Certification required.

Table 5-4: Connector Environmental Performance Requirements

Parameter Specification

Operating Temperature -40 °C to 105 °C

Thermal Shock -55 °C to 85 °C, 5 cycles per MIL-STD-1344, Method
1003.1.

Flowing Mixed Gas Test Battelle, Class II. Connector mated with board and
tested per Battelle method.

181

Revision 2.1

5.2.2. Planar Implementation

Two types of planar implementations are supported by the PCI expansion card design:
expansion connectors mounted on the planar and expansion connectors mounted on a
riser card. For illustrative purposes, only the planar mounted expansion connectors are
detailed here. The basic principles may be applied to riser card designs. See
Figures 5-31, 5-32, and 5-33 for planar details for ISA, EISA, and MC cards,
respectively. The planar drawings show the relative locations of the PCI 5V and 3.3V
connector datums to the ISA, EISA, and MC connector datums. Both 5V and 3.3V
connectors are shown on the planar to concisely convey the dimensional information.
Normally, a given system would incorporate either the 5V or the 3.3V PCI connector,
but not both. Standard card spacing of 0.8 inches for ISA/EISA and 0.85 inches for MC
allows for only one shared slot per system. If more PCI expansion slots are required,
while using existing card spacing, additional slots must be dedicated to PCI. Viewing
the planar from the back of the system, the shared slot is located such that dedicated ISA,
EISA, or MC slots are located to the right and dedicated PCI slots are located to the left.

182

Revision 2.1

Figure 5-31: PCI Connector Location on Planar Relative to Datum on the ISA Connector

Figure 5-32: PCI Connector Location on Planar Relative to Datum on the EISA Connector

183

Revision 2.1

Figure 5-33: PCI Connector Location on Planar Relative to Datum on the MC Connector

184

Revision 2.1

Chapter 6
Configuration Space

This chapter defines the programming model and usage rules for the configuration
register space in PCI compliant devices. This chapter is limited to the definition of PCI
compliant components for a wide variety of system types. System dependent issues for
specific platforms, such as mapping various PCI address spaces into host CPU address
spaces, access ordering rules, requirements for host-to-PCI bus bridges, etc., are not
described in this chapter.

The intent of the PCI Configuration Space definition is to provide an appropriate set of
configuration "hooks" which satisfies the needs of current and anticipated system
configuration mechanisms, without specifying those mechanisms or otherwise placing
constraints on their use. The criteria for these configuration "hooks" are:

• Sufficient support to allow future configuration mechanisms to provide:

• Full device relocation, including interrupt binding

• Installation, configuration, and booting without user intervention

• System address map construction by device independent software

• Effective support of existing configuration mechanisms (e.g., EISA Configuration
Utility)

• Minimize the silicon burden created by required functions

• Leverage commonality with a template approach to common functions, without
precluding devices with unique requirements

All PCI devices must implement Configuration Space. Multifunction devices must
provide a Configuration Space for each function implemented (refer to Section 6.4).

185

Revision 2.1

6.1. Configuration Space Organization
This section defines the organization of Configuration Space registers and imposes a
specific record structure or template on the 256-byte space. This space is divided into a
predefined header region and a device dependent region.38 Devices implement only the
necessary and relevant registers in each region. A device’s Configuration Space must be
accessible at all times, not just during system boot.

The predefined header region consists of fields that uniquely identify the device and
allow the device to be generically controlled. The predefined header portion of the
Configuration Space is divided into two parts. The first 16 bytes are defined the same
for all types of devices. The remaining bytes can have different layouts depending on the
base function that the device supports. The Header Type field (located at offset 0Eh)
defines what layout is provided. Currently two Header Types are defined, 00h which has
the layout shown in Figure 6-1 and 01h which is defined for PCI-to-PCI bridges and is
documented in the PCI to PCI Bridge Architecture Specification.

System software may need to scan the PCI bus to determine what devices are actually
present. To do this, the configuration software must read the Vendor ID in each possible
PCI "slot." The host bus to PCI bridge must unambiguously report attempts to read the
Vendor ID of non-existent devices. Since 0FFFFh is an invalid Vendor ID, it is adequate
for the host bus to PCI bridge to return a value of all 1’s on read accesses to
Configuration Space registers of non-existent devices. (Note that these accesses will be
terminated with a Master-Abort.)

All PCI devices must treat Configuration Space write operations to reserved registers as
no-ops; that is, the access must be completed normally on the bus and the data discarded.
Read accesses to reserved or unimplemented registers must be completed normally and a
data value of 0 returned.

Figure 6-1 depicts the layout of a Type 00h predefined header portion of the 256-byte
Configuration Space. Devices must place any necessary device specific registers after
the predefined header in Configuration Space. All multi-byte numeric fields follow
little-endian ordering; that is, lower addresses contain the least significant parts of the
field. Software must take care to deal correctly with bit-encoded fields that have some
bits reserved for future use. On reads, software must use appropriate masks to extract the
defined bits, and may not rely on reserved bits being any particular value. On writes,
software must ensure that the values of reserved bit positions are preserved; that is, the
values of reserved bit positions must first be read, merged with the new values for other
bit positions and the data then written back. Section 6.2. describes the registers in the
Type 00h predefined header portion of the Configuration Space.

38 The device dependent region contains device specific information and is not described in this
document.

186

Revision 2.1

Figure 6-1: Type 00h Configuration Space Header

All PCI compliant devices must support the Vendor ID, Device ID, Command, Status,
Revision ID, Class Code, and Header Type fields in the header. Implementation of the
other registers in a Type 00h predefined header is optional (i.e., they can be treated as
reserved registers) depending on device functionality. If a device supports the function
that the register is concerned with, the device must implement it in the defined location
and with the defined functionality.

187

Revision 2.1

6.2. Configuration Space Functions
PCI has the potential for greatly increasing the ease with which systems may be
configured. To realize this potential, all PCI devices must provide certain functions that
system configuration software can utilize. This section also lists the functions that need
to be supported by PCI devices via registers defined in the predefined header portion of
the Configuration Space. The exact format of these registers (i.e., number of bits
implemented) is device specific. However, some general rules must be followed. All
registers must be capable of being read back and the data returned must indicate the
value that the device is actually using.

Configuration Space is intended for configuration, initialization, and catastrophic error
handling functions. Its use should be restricted to initialization software and error
handling software. All operational software must continue to use I/O and/or Memory
Space accesses to manipulate device registers.

6.2.1. Device Identification

Five fields in the predefined header deal with device identification. All PCI devices are
required to implement these fields. Generic configuration software will be able to easily
determine what devices are available on the system’s PCI bus(es). All of these registers
are read-only.

Vendor ID This field identifies the manufacturer of the device. Valid
vendor identifiers are allocated by the PCI SIG to ensure
uniqueness. 0FFFFh is an invalid value for Vendor ID.

Device ID This field identifies the particular device. This identifier is
allocated by the vendor.

Revision ID This register specifies a device specific revision identifier.
The value is chosen by the vendor. Zero is an acceptable
value. This field should be viewed as a vendor defined
extension to the Device ID.

Header Type This byte identifies the layout of the second part of the
predefined header (beginning at byte 10h in Configuration
Space) and also whether or not the device contains multiple
functions. Bit 7 in this register is used to identify a multi-
function device. If the bit is 0, then the device is single
function. If the bit is 1, then the device has multiple
functions. Bits 6 through 0 identify the layout of the second
part of the predefined header. The encoding 00h specifies the
layout shown in Figure 6-1. The encoding 01h is defined for
PCI-to-PCI bridges and is defined in the document PCI to
PCI Bridge Architecture Specification. All other encodings
are reserved.

188

Revision 2.1

Class Code The Class Code register is read-only and is used to identify
the generic function of the device and, in some cases, a
specific register-level programming interface. The register is
broken into three byte-size fields. The upper byte (at offset
0Bh) is a base class code which broadly classifies the type of
function the device performs. The middle byte (at offset 0Ah)
is a sub-class code which identifies more specificly the
function of the device. The lower byte (at offset 09h)
identifies a specific register-level programming interface (if
any) so that device independent software can interact with the
device. Table 6-1 shows the defined values for base classes
(i.e., the upper byte in the Class Code field).

Table 6-1: Class Code Register Encodings

Base Class Meaning

00h Device was built before Class Code
definitions were finalized.

01h Mass storage controller.

02h Network controller.

03h Display controller.

04h Multimedia device.

05h Memory controller.

06h Bridge device.

07h Simple communication controllers.

08h Base system peripherals.

09h Input devices.

0Ah Docking stations.

0Bh Processors.

0Ch Serial bus controllers.

0Dh - FEh Reserved.

FFh Device does not fit in any defined
classes.

Encodings for sub-class and programming interface are provided in Appendix D. All
unspecified encodings are reserved.

6.2.2. Device Control

The Command register provides coarse control over a device’s ability to generate and
respond to PCI cycles. When a 0 is written to this register, the device is logically
disconnected from the PCI bus for all accesses except configuration accesses. All
devices are required to support this base level of functionality. Individual bits in the
Command register may or may not be implemented depending on a devices
functionality. For instance, devices that do not implement an I/O Space probably will
not implement a writable element at bit location 0 of the Command register. Devices
typically power up with all 0’s in this register, but Section 6.6. explains some exceptions.

189

Revision 2.1

Figure 6-2 shows the layout of the register and Table 6-2 explains the meanings of the
different bits in the Command register.

01234

Reserved

515 678

IO Space

910

Fast Back-to-Back Enable
SERR# enable
Wait cycle control
Parity Error Response
VGA Palette snoop
Memory Write and Invalidate Enable
Special Cycles
Bus Master
Memory Space

Figure 6-2: Command Register Layout

Table 6-2: Command Register Bits

Bit Location Description

0 Controls a device’s response to I/O Space accesses. A value of 0
disables the device response. A value of 1 allows the device to
respond to I/O Space accesses. State after RST# is 0.

1 Controls a device’s response to Memory Space accesses. A value of
0 disables the device response. A value of 1 allows the device to
respond to Memory Space accesses. State after RST# is 0.

2 Controls a device’s ability to act as a master on the PCI bus. A value
of 0 disables the device from generating PCI accesses. A value of 1
allows the device to behave as a bus master. State after RST# is 0.

3 Controls a device’s action on Special Cycle operations. A value of 0
causes the device to ignore all Special Cycle operations. A value of 1
allows the device to monitor Special Cycle operations. State after
RST# is 0.

4 This is an enable bit for using the Memory Write and Invalidate
command. When this bit is 1, masters may generate the command.
When it is 0, Memory Write must be used instead. State after RST#
is 0. This bit must be implemented by master devices that can
generate the Memory Write and Invalidate command.

5 This bit controls how VGA compatible and graphics devices handle
accesses to VGA palette registers. When this bit is 1, palette
snooping is enabled (i.e., the device does not respond to palette
register writes and snoops the data). When the bit is 0, the device
should treat palette accesses like all other accesses. VGA
compatible devices should implement this bit. See Section 3.10 for
more details on VGA palette snooping.

190

Revision 2.1

Table 6-2: Command Register Bits (continued)

Bit Location Description

6 This bit controls the device’s response to parity errors. When the bit
is set, the device must take its normal action when a parity error is
detected. When the bit is 0, the device must ignore any parity errors
that it detects and continue normal operation. This bit’s state after
RST# is 0. Devices that check parity must implement this bit.
Devices are still required to generate parity even if parity checking is
disabled.

7 This bit is used to control whether or not a device does address/data
stepping. Devices that never do stepping must hardwire this bit to 0.
Devices that always do stepping must hardwire this bit to 1. Devices
that can do either, must make this bit read/write and have it initialize
to 1 after RST#.

8 This bit is an enable bit for the SERR# driver. A value of 0 disables
the SERR# driver. A value of 1 enables the SERR# driver. This bit’s
state after RST# is 0. All devices that have an SERR# pin must
implement this bit. This bit (and bit 6) must be on to report address
parity errors.

9 This optional read/write bit controls whether or not a master can do
fast back-to-back transactions to different devices. Initialization
software will set the bit if all targets are fast back-to-back capable. A
value of 1 means the master is allowed to generate fast back-to-back
transactions to different agents as described in Section 3.4.2. A
value of 0 means fast back-to-back transactions are only allowed to
the same agent. This bit’s state after RST# is 0.

10-15 Reserved.

6.2.3. Device Status

The Status register is used to record status information for PCI bus related events. The
definition of each of the bits is given in Table 6-3 and the layout of the register is shown
in Figure 6-3. Devices may not need to implement all bits, depending on device
functionality. For instance, a device that acts as a target, but will never signal Target-
Abort, would not implement bit 11.

Reads to this register behave normally. Writes are slightly different in that bits can be
reset, but not set. A bit is reset whenever the register is written, and the data in the
corresponding bit location is a 1. For instance, to clear bit 14 and not affect any other
bits, write the value 0100_0000_0000_0000b to the register.

191

Revision 2.1

Figure 6-3: Status Register Layout

Table 6-3: Status Register Bits

Bit Location Description

0-4 Reserved.

5 This optional read-only bit indicates whether or not this device is
capable of running at 66 MHz as defined in Chapter 7. A value of zero
indicates 33 MHz. A value of 1 indicates that the device is 66 MHz
capable.

6 This optional read-only bit indicates that this device supports User
Definable Features. This bit is required to be set when a device
function has device specific configuration selections that must be
presented to the user. Functions that do not support user selectable
configuration items would not implement this bit, and therefore return a
0 when read. Refer to Section 6.7. for a complete description of
requirements for setting this bit.

7 This optional read-only bit indicates whether or not the target is
capable of accepting fast back-to-back transactions when the
transactions are not to the same agent. This bit can be set to 1 if the
device can accept these transactions, and must be set to 0 otherwise.
Refer to Section 3.4.2. for a complete description of requirements for
setting this bit.

8 This bit is only implemented by bus masters. It is set when three
conditions are met: 1) the bus agent asserted PERR# itself or
observed PERR# asserted; 2) the agent setting the bit acted as the
bus master for the operation in which the error occurred; and 3) the
Parity Error Response bit (Command register) is set.

9-10 These bits encode the timing of DEVSEL#. Section 3.7.1. specifies
three allowable timings for assertion of DEVSEL#. These are
encoded as 00b for fast, 01b for medium, and 10b for slow (11b is
reserved). These bits are read-only and must indicate the slowest
time that a device asserts DEVSEL# for any bus command except
Configuration Read and Configuration Write.

192

Revision 2.1

Table 6-3: Status Register Bits (continued)

Bit Location Description

11 This bit must be set by a target device whenever it terminates a
transaction with Target-Abort. Devices that will never signal Target-
Abort do not need to implement this bit.

12 This bit must be set by a master device whenever its transaction is
terminated with Target-Abort. All master devices must implement this
bit.

13 This bit must be set by a master device whenever its transaction
(except for Special Cycle) is terminated with Master-Abort. All master
devices must implement this bit.

14 This bit must be set whenever the device asserts SERR#. Devices
who will never assert SERR# do not need to implement this bit.

15 This bit must be set by the device whenever it detects a parity error,
even if parity error handling is disabled (as controlled by bit 6 in the
Command register).

6.2.4. Miscellaneous Functions

This section describes the registers that are device independent and only need to be
implemented by devices that provide the described function.

CacheLine Size

This read/write register specifies the system cacheline size in units of 32-bit words. This
register must be implemented by master devices that can generate the Memory Write and
Invalidate command (refer to Section 3.1.1). The value in this register is also used by
master devices to determine whether to use Read, Read Line, or Read Multiple
commands for accessing memory (refer to Section 3.1.2).

Slave devices that want to allow memory bursting using cacheline wrap addressing mode
(refer to Section 3.2.2) must implement this register to know when a burst sequence
wraps to the beginning of the cacheline.

Devices participating in the caching protocol (refer to Section 3.8) use this field to know
when to Disconnect burst accesses at cacheline boundaries. These devices can ignore the
PCI cache support lines (SDONE and SBO#) when this register is set to 0.

This field must be initialized to 0 at RST#.

A device may limit the number of cacheline sizes that it can support. For example, it
may accept only powers of 2 less than 128. If an unsupported value is written to the
CacheLine Size register, the device should behave as if a value of 0 was written.

Latency Timer

This register specifies, in units of PCI bus clocks, the value of the Latency Timer for this
PCI bus master (refer to Section 3.5.). This register must be implemented as writable by
any master that can burst more than two data phases. This register may be implemented
as read-only for devices that burst two or fewer data phases, but the hardwired value
must be limited to 16 or less. A typical implementation would be to build the five high-
order bits (leaving the bottom three as read-only), resulting in a timer granularity of eight
clocks. At RST#, the register must be initialized to 0 (if programmable).

193

Revision 2.1

Built-in Self Test (BIST)

This optional register is used for control and status of BIST. Devices that do not support
BIST must always return a value of 0 (i.e., treat it as a reserved register). A device
whose BIST is invoked must not prevent normal operation of the PCI bus. Figure 6- 4
shows the register layout and Table 6-4 describes the bits in the register.

7 6 5 4 0123

Rsvd

Start BIST
BIST capable

Figure 6-4: BIST Register Layout

Table 6-4: BIST Register Bits

Bit Location Description

7 Return 1 if device supports BIST. Return 0 if the device is not BIST
capable.

6 Write a 1 to invoke BIST. Device resets the bit when BIST is
complete. Software should fail the device if BIST is not complete after
2 seconds.

5-4 Reserved. Device returns 0.

3-0 A value of 0 means the device has passed its test. Non-zero values
mean the device failed. Device-specific failure codes can be encoded
in the non-zero value.

CardBus CIS Pointer

This optional register is used by those devices that want to share silicon between
CardBus and PCI. The field is used to point to the Card Information Structure (CIS) for
the CardBus card.

For a detailed explanation of the CIS, refer to the PCMCIA v2.10 specification. The
subject is covered under the heading Card Metaformat and describes the types of
information provided and the organization of this information.

Interrupt Line

The Interrupt Line register is an eight-bit register used to communicate interrupt line
routing information. The register is read/write and must be implemented by any device
(or device function) that uses an interrupt pin. POST software will write the routing
information into this register as it initializes and configures the system.

The value in this register tells which input of the system interrupt controller(s) the
device’s interrupt pin is connected to. The device itself does not use this value, rather it
is used by device drivers and operating systems. Device drivers and operating systems

194

Revision 2.1

can use this information to determine priority and vector information. Values in this
register are system architecture specific.39

Interrupt Pin

The Interrupt Pin register tells which interrupt pin the device (or device function) uses.
A value of 1 corresponds to INTA#. A value of 2 corresponds to INTB#. A value of 3
corresponds to INTC#. A value of 4 corresponds to INTD#. Devices (or device
functions) that do not use an interrupt pin must put a 0 in this register. This register is
read-only. Refer to Section 2.2.6 for further description of the usage of the INTx# pins.

MIN_GNT and MAX_LAT

These read-only byte registers are used to specify the devices desired settings for Latency
Timer values. For both registers, the value specifies a period of time in units of ¼
microsecond. Values of 0 indicate that the device has no major requirements for the
settings of Latency Timers.

MIN_GNT is used for specifying how long of a burst period the device needs assuming a
clock rate of 33 MHz. MAX_LAT is used for specifying how often the device needs to
gain access to the PCI bus.

Devices should specify values that will allow them to most effectively use the PCI bus as
well as their internal resources.

Subsystem Vendor ID and Subsystem ID

These registers are used to uniquely identify the add-in board or subsystem where the
PCI device resides. They provide a mechanism for add-in card vendors to distinguish
their cards from one another even though the cards may have the same PCI controller on
them (and, therefore, the same Vendor ID and Device ID).

Implementation of these registers is optional and an all zero value indicates that the
device does not support subsystem identification. Subsystem Vendor IDs can be
obtained from the PCI SIG and are used to identify the vendor of the add-in board or
subsystem. Values for Subsystem ID are vendor specific. Values in these registers are
programmed during the manufacturing process or loaded from external logic (e.g.,
strapping options, serial ROMs, etc), prior to the system BIOS or any system software
accessing the PCI Configuration Space. Devices loading these values from external logic
are responsible for guaranteeing the data is valid before allowing reads to these registers
to complete. This can be done by responding to any accesses with a Retry until the data
is valid.

6.2.5. Base Addresses

One of the most important functions for enabling superior configurability and ease of use
is the ability to relocate PCI devices in the address spaces. At system power-up, device
independent software must be able to determine what devices are present, build a
consistent address map, and determine if a device has an expansion ROM. Each of these
areas is covered in the following sections.

39 For x86 based PCs, the values in this register correspond to IRQ numbers (0-15) of the standard dual
8259 configuration. The value 255 is defined as meaning "unknown" or "no connection" to the interrupt
controller. Values between 15 and 255 are reserved.

195

Revision 2.1

6.2.5.1. Address Maps

Power-up software needs to build a consistent address map before booting the machine to
an operating system. This means it has to determine how much memory is in the system,
and how much address space the I/O controllers in the system require. After determining
this information, power-up software can map the I/O controllers into reasonable locations
and proceed with system boot. In order to do this mapping in a device independent
manner, the base registers for this mapping are placed in the predefined header portion of
Configuration Space.

Bit 0 in all Base Address registers is read-only and used to determine whether the
register maps into Memory or I/O Space. Base Address registers that map to Memory
Space must return a 0 in bit 0 (see Figure 6-5). Base Address registers that map to I/O
Space must return a 1 in bit 0 (see Figure 6-6).

0

Base Address

1234

Prefetchable

Memory space indicator

 00 - locate anywhere in 32 bit address space
 01 - locate below 1 Meg
 10 - locate anywhere in 64 bit address space
 11 - reserved

0

Type

Set to one if there are no side effects on reads, the device returns all
bytes on reads regardless of the byte enables, and host bridges can
merge processor writes into this range without causing errors.
Bit must be set to zero otherwise.

Figure 6-5: Base Address Register for Memory

031

Base Address 10

IO space indicator
Reserved

12

Figure 6-6: Base Address Register for I/O

Base Address registers that map into I/O Space are always 32 bits wide with bit 0
hardwired to a 1, bit 1 is reserved and must return 0 on reads, and the other bits are used
to map the device into I/O Space.

Base Address registers that map into Memory Space can be 32 bits or 64 bits wide (to
support mapping into a 64-bit address space) with bit 0 hardwired to a 0. For Memory
Base Address registers, bits 2 and 1 have an encoded meaning as shown in Table 6-5.
Bit 3 should be set to 1 if the data is prefetchable and reset to 0 otherwise. A device can
mark a range as prefetchable if there are no side effects on reads, the device returns all
bytes on reads regardless of the byte enables, and host bridges can merge processor

196

Revision 2.1

writes (refer to Section 3.2.3.) into this range40 without causing errors. Bits 0-3 are read-
only.

Table 6-5: Memory Base Address Register Bits 2/1 Encoding

Bits 2/1 Meaning

00 Base register is 32 bits wide and mapping can be
done anywhere in the 32-bit Memory Space.

01 Base register is 32 bits wide but must be mapped
below 1M in Memory Space.

10 Base register is 64 bits wide and can be mapped
anywhere in the 64-bit address space.

11 Reserved

The number of upper bits that a device actually implements depends on how much of the
address space the device will respond to. A device that wants a 1 MB memory address
space (using a 32-bit base address register) would build the top 12 bits of the address
register, hardwiring the other bits to 0.

Power-up software can determine how much address space the device required by writing
a value of all 1’s to the register and then reading the value back. The device will return
0’s in all don’t-care address bits, effectively specifying the address space required.

This design implies that all address spaces used are a power of two in size, and are
naturally aligned. Devices are free to consume more address space than required, but
decoding down to a 4 KB space for memory is suggested for devices that need less than
that amount. For instance, a device that has 64 bytes of registers to be mapped into
Memory Space may consume up to 4 KB of address space in order to minimize the
number of bits in the address decoder. Devices that do consume more address space than
they use are not required to respond to the unused portion of that address space. Devices
that map control functions into I/O Space may not consume more than 256 bytes per I/O
Base Address register.

A type 00h predefined header has six DWORD locations allocated for Base Address
registers starting at offset 10h in Configuration Space. The first Base Address register is
always located at offset 10h. The second register may be at offset 14h or 18h depending
on the size of the first. The offsets of subsequent Base Address registers are determined
by the size of previous Base Address registers.

A typical device will require one memory range for its control functions. Some graphics
devices may use two ranges, one for control functions and another for a frame buffer. A
device that wants to map control functions into both memory and I/O Spaces at the same
time must implement two base registers (one Memory and one I/O). The driver for that
device might only use one space in which case the other space will be unused. Devices
should always allow control functions to be mapped into Memory Space.

40 Any device that has a range that behaves like normal memory, but doesn’t participate in PCI’s caching
protocol, should mark the range as prefetchable. A linear frame buffer in a graphics device is an example
of a range that should be marked prefetchable.

197

Revision 2.1

6.2.5.2. Expansion ROM Base Address Register

Some PCI devices, especially those that are intended for use on add-in modules in PC
architectures, require local EPROMs for expansion ROM (refer to Section 6.3. for a
definition of ROM contents). The four-byte register at offset 30h in a type 00h
predefined header is defined to handle the base address and size information for this
expansion ROM. Figure 6-7 shows how this word is organized. The register functions
exactly like a 32-bit Base Address register except that the encoding (and usage) of the
bottom bits is different. The upper 21 bits correspond to the upper 21 bits of the
Expansion ROM base address. The number of bits (out of these 21) that a device
actually implements depends on how much address space the device requires. For
instance, a device that requires a 64 KB area to map its expansion ROM would
implement the top 16 bits in the register, leaving the bottom 5 (out of these 21)
hardwired to 0. Devices that support an expansion ROM must implement this register.

Device independent configuration software can determine how much address space the
device requires by writing a value of all 1’s to the address portion of the register and then
reading the value back. The device will return 0’s in all don’t-care bits, effectively
specifying the size and alignment requirements. The amount of address space a device
requests must not be greater than 16 MB.

031
Expansion ROM Base Address

Address decode enable

Reserved

11011

(Upper 21 bits)

Figure 6-7: Expansion ROM Base Address Register Layout

Bit 0 in the register is used to control whether or not the device accepts accesses to its
expansion ROM. When this bit is 0, the device’s Expansion ROM address space is
disabled. When the bit is 1, address decoding is enabled using the parameters in the
other part of the base register. This allows a device to be used with or without an
expansion ROM depending on system configuration. The Memory Space bit in the
Command register has precedence over the Expansion ROM enable bit. A device must
respond to accesses to its expansion ROM only if both the Memory Space bit and the
Expansion ROM Base Address Enable bit are set to 1. This bit's state after RST# is 0.

In order to minimize the number of address decoders needed on a device, it may share a
decoder between the Expansion ROM Base Address register and other Base Address
registers.41 When expansion ROM decode is enabled, the decoder is used for accesses to
the expansion ROM and device independent software must not access the device through
any other Base Address registers.

41Note that it is the address decoder that is shared, not the registers themselves. The Expansion ROM
Base Address register and other Base Address registers must be able to hold unique values at the same
time.

198

Revision 2.1

6.2.5.3. Add-in Memory

A mechanism for handling add-in memory will be defined in a future revision of the
specification. The mechanism will define a new Header Type value and configuration
registers specific to add-in memory will be specified. These definitions will allow
automatic detection, sizing, and configuration of the add-in memory devices.

6.3. PCI Expansion ROMs
The PCI specification provides a mechanism where devices can provide expansion ROM
code that can be executed for device-specific initialization and, possibly, a system boot
function (refer to Section 6.2.5.2.). The mechanism allows the ROM to contain several
different images to accommodate different machine and processor architectures. This
section specifies the required information and layout of code images in the expansion
ROM. Note that PCI devices that support an expansion ROM must allow that ROM to
be accessed with any combination of byte enables. This specifically means that
DWORD accesses to the expansion ROM must be supported.

The information in the ROMs is laid out to be compatible with existing Intel x86
Expansion ROM headers for ISA, EISA, and MC adapters, but it will also support other
machine architectures. The information available in the header has been extended so that
more optimum use can be made of the function provided by the adapter and so that the
minimum amount of Memory Space is used by the runtime portion of the expansion
ROM code.

The PCI Expansion ROM header information supports the following functions:

• A length code is provided to identify the total contiguous address space needed by
the PCI device ROM image at initialization.

• An indicator identifies the type of executable or interpretive code that exists in the
ROM address space in each ROM image.

• A revision level for the code and data on the ROM is provided.

• The Vendor ID and Device ID of the supported PCI device are included in the ROM.

One major difference in the usage model between PCI expansion ROMs and standard
ISA, EISA, and MC ROMs is that the ROM code is never executed in place. It is always
copied from the ROM device to RAM and executed from RAM. This enables dynamic
sizing of the code (for initialization and runtime) and provides speed improvements when
executing runtime code.

6.3.1. PCI Expansion ROM Contents

PCI device expansion ROMs may contain code (executable or interpretive) for multiple
processor architectures. This may be implemented in a single physical ROM which can
contain as many code images as desired for different system and processor architectures
(see Figure 6-8). Each image must start on a 512-byte boundary and must contain the
PCI expansion ROM header. The starting point of each image depends on the size of
previous images. The last image in a ROM has a special encoding in the header to
identify it as the last image.

199

Revision 2.1

Image 0

Image 1

Image N

Figure 6-8: PCI Expansion ROM Structure

6.3.1.1. PCI Expansion ROM Header Format

The information required in each ROM image is split into two different areas. One area,
the ROM header, is required to be located at the beginning of the ROM image. The
second area, the PCI Data Structure, must be located in the first 64 KB of the image.
The format for the PCI Expansion ROM header is given below. The offset is a
hexadecimal number from the beginning of the image and the length of each field is
given in bytes.

Extensions to the PCI Expansion ROM Header and/or the PCI Data Structure may be
defined by specific system architectures. Extensions for PC-AT compatible systems are
described in Section 6.3.3.

Offset Length Value Description
0h 1 55h ROM Signature, byte 1
1h 1 AAh ROM Signature, byte 2

2h-17h 16h xx Reserved (processor architecture unique data)
18h-19h 2 xx Pointer to PCI Data Structure

ROM Signature The ROM Signature is a two-byte field containing a 55h in
the first byte and AAh in the second byte. This signature
must be the first two bytes of the ROM address space for
each image of the ROM.

Pointer to PCI Data
Structure

The Pointer to the PCI Data Structure is a two-byte pointer in
little endian format that points to the PCI Data Structure. The
reference point for this pointer is the beginning of the ROM
image.

200

Revision 2.1

6.3.1.2. PCI Data Structure Format

The PCI Data Structure must be located within the first 64 KB of the ROM image and
must be DWORD aligned. The PCI Data Structure contains the following information:

Offset Length Description
0 4 Signature, the string "PCIR"
4 2 Vendor Identification
6 2 Device Identification
8 2 Pointer to Vital Product Data
A 2 PCI Data Structure Length
C 1 PCI Data Structure Revision
D 3 Class Code
10 2 Image Length
12 2 Revision Level of Code/Data
14 1 Code Type
15 1 Indicator
16 2 Reserved

Signature These four bytes provide a unique signature for the PCI Data
Structure. The string "PCIR" is the signature with "P" being
at offset 0, "C" at offset 1, etc.

Vendor Identification The Vendor Identification field is a 16-bit field with the same
definition as the Vendor Identification field in the
Configuration Space for this device.

Device Identification The Device Identification field is a 16-bit field with the same
definition as the Device Identification field in the
Configuration Space for this device.

Pointer to Vital
Product Data

The Pointer to Vital Product Data (VPD) is a 16-bit field that
is the offset from the start of the ROM image and points to the
VPD. This field is in little-endian format. The VPD must be
within the first 64 KB of the ROM image. A value of 0
indicates that no Vital Product Data is in the ROM image.
Section 6.4 describes the format and information contained in
Vital Product Data.

PCI Data Structure
Length

The PCI Data Structure Length is a 16-bit field that defines
the length of the data structure from the start of the data
structure (the first byte of the Signature field). This field is in
little-endian format and is in units of bytes.

PCI Data Structure
Revision

The PCI Data Structure Revision field is an eight-bit field that
identifies the data structure revision level. This revision level
is 0.

Class Code The Class Code field is a 24-bit field with the same fields and
definition as the class code field in the Configuration Space
for this device.

Image Length The Image Length field is a two-byte field that represents the
length of the image. This field is in little-endian format, and
the value is in units of 512 bytes.

201

Revision 2.1

Revision Level The Revision Level field is a two-byte field that contains the
revision level of the code in the ROM image.

Code Type The Code Type field is a one-byte field that identifies the type
of code contained in this section of the ROM. The code may
be executable binary for a specific processor and system
architecture or interpretive code. The following code types
are assigned:

Type Description

0 Intel x86, PC-AT compatible
1 Open Firmware standard for PCI42

2-FF Reserved

Indicator Bit 7 in this field tells whether or not this is the last image in
the ROM. A value of 1 indicates "last image;" a value of 0
indicates that another image follows. Bits 0-6 are reserved.

6.3.2. Power-on Self Test (POST) Code

For the most part, system POST code treats add-in PCI devices identically to those that
are soldered on to the motherboard. The one exception is the handling of expansion
ROMs. POST code detects the presence of an option ROM in two steps. First the code
determines if the device has implemented an Expansion ROM Base Address register in
Configuration Space. If the register is implemented, the POST must map and enable the
ROM in an unused portion of the address space, and check the first two bytes for the
AA55h signature. If that signature is found, there is a ROM present; otherwise, no ROM
is attached to the device.

If a ROM is attached, POST must search the ROM for an image that has the proper code
type and whose Vendor ID and Device ID fields match the corresponding fields in the
device.

After finding the proper image, POST copies the appropriate amount of data into RAM.
Then the device’s initialization code is executed. Determining the appropriate amount of
data to copy and how to execute the device’s initialization code will depend on the code
type for the field.

6.3.3. PC-compatible Expansion ROMs

This section describes further requirements on ROM images and the handling of ROM
images that are used in PC-compatible systems. This applies to any image that specifies
Intel x86, PC-AT compatible in the Code Type field of the PCI Data Structure, and any
platform that is PC-compatible.

42 Open Firmware is a processor architecture and system architecture independent standard for dealing
with device specific option ROM code. Documentation for Open Firmware is available in the IEEE
1275-1994 Standard for Boot (Initialization, Configuration) Firmware Core Requirements and Practices.
A related document, PCI Bus Binding to IEEE 1275-1994 , specifies the application of Open Firmware to
the PCI local bus, including PCI-specific requirements and practices. This document may be obtained
using anonymous FTP to the machine playground.sun.com with the filename
/pub/p1275/bindings/postscript/PCI.ps.

202

Revision 2.1

6.3.3.1. ROM Header Extensions

The standard header for PCI Expansion ROM images is expanded slightly for PC-
compatibility. Two fields are added, one at offset 02h provides the initialization size for
the image. Offset 03h is the entry point for the expansion ROM INIT function.

Offset Length Value Description
0h 1 55h ROM Signature byte 1
1h 1 AAh ROM Signature byte 2
2h 1 xx Initialization Size - size of the code in units of

512 bytes.
3h 3 xx Entry point for INIT function. POST does a

FAR CALL to this location.
6h-17h 12h xx Reserved (application unique data)
18h-19h 2 xx Pointer to PCI Data Structure

6.3.3.1.1. POST Code Extensions

POST code in these systems copies the number of bytes specified by the Initialization
Size field into RAM, and then calls the INIT function whose entry point is at offset 03h.
POST code is required to leave the RAM area where the expansion ROM code was
copied to as writable until after the INIT function has returned. This allows the INIT
code to store some static data in the RAM area, and to adjust the runtime size of the code
so that it consumes less space while the system is running.

The PC-compatible specific set of steps for the system POST code when handling each
expansion ROM are:

1. Map and enable the expansion ROM to an unoccupied area of the memory address
space.

2. Find the proper image in the ROM and copy it from ROM into the compatibility area
of RAM (typically 0C0000h to 0E0000h) using the number of bytes specified by
Initialization Size.

3. Disable the Expansion ROM Base Address register.

4. Leave the RAM area writable and call the INIT function.

5. Use the byte at offset 02h (which may have been modified) to determine how much
memory is used at runtime.

Before system boot, the POST code must make the RAM area containing expansion
ROM code read-only.

POST code must handle VGA devices with expansion ROMs in a special way. The
VGA device’s expansion BIOS must be copied to 0C0000h. VGA devices can be
identified by examining the Class Code field in the device’s Configuration Space.

6.3.3.1.2. INIT Function Extensions

PC-compatible expansion ROMs contain an INIT function that is responsible for
initializing the I/O device and preparing for runtime operation. INIT functions in PCI
expansion ROMs are allowed some extended capabilities because the RAM area where
the code is located is left writable while the INIT function executes.

203

Revision 2.1

The INIT function can store static parameters inside its RAM area during the INIT
function. This data can then be used by the runtime BIOS or device drivers. This area of
RAM will not be writable during runtime.

The INIT function can also adjust the amount of RAM that it consumes during runtime.
This is done by modifying the size byte at offset 02h in the image. This helps conserve
the limited memory resource in the expansion ROM area (0C0000h - 0DFFFFh).

For example, a device expansion ROM may require 24 KB for its initialization and
runtime code, but only 8 KB for the runtime code. The image in the ROM will show a
size of 24 KB, so that the POST code copies the whole thing into RAM. Then when the
INIT function is running, it can adjust the size byte down to 8 KB. When the INIT
function returns, the POST code sees that the runtime size is 8 KB and can copy the next
expansion BIOS to the optimum location.

The INIT function is responsible for guaranteeing that the checksum across the size of
the image is correct. If the INIT function modifies the RAM area in any way, then a new
checksum must be calculated and stored in the image.

If the INIT function wants to completely remove itself from the expansion ROM area, it
does so by writing a zero to the Initialization Size field (the byte at offset 02h). In this
case, no checksum has to be generated (since there is no length to checksum across).

On entry, the INIT function is passed three parameters: the bus number, device number,
and function number of the device that supplied the expansion ROM. These parameters
can be used to access the device being initialized. They are passed in x86 registers, [AH]
contains the bus number, the upper five bits of [AL] contain the device number, and the
lower three bits of [AL] contain the function number.

Prior to calling the INIT function, the POST code will allocate resources to the device
(via the Base Address and Interrupt Line registers) and will complete any User Definable
Features handling (refer to Section 6.7).

6.3.3.1.3. Image Structure

A PC-compatible image has three lengths associated with it, a runtime length, an
initialization length, and an image length. The image length is the total length of the
image and it must be greater than or equal to the initialization length.

The initialization length specifies the amount of the image that contains both the
initialization and runtime code. This is the amount of data that POST code will copy
into RAM before executing the initialization routine. Initialization length must be
greater than or equal to runtime length. The initialization data that is copied into RAM
must checksum to 0 (using the standard algorithm).

The runtime length specifies the amount of the image that contains the runtime code.
This is the amount of data the POST code will leave in RAM while the system is
operating. Again, this amount of the image must checksum to 0.

204

Revision 2.1

The PCI Data structure must be contained within the runtime portion of the image (if
there is any) otherwise it must be contained within the initialization portion. Figure 6-9
shows the typical layout of an image in the expansion ROM.

Header

PCI Data structure
Runtime size

Initialization size

Checksum byte

Checksum byte

Image size

Figure 6-9: Typical Image Layout

6.4. Vital Product Data
Vital Product Data (VPD) is the information that uniquely defines items such as the
hardware, software, and microcode elements of a system. The VPD provides the system
with information on various FRUs (Field Replaceable Unit) including Part Number,
Serial Number, and other detailed information. VPD also provides a mechanism for
storing information such as performance and failure data on the device being monitored.
The objective, from a system point of view, is to collect this information by reading it
from the hardware, software, and microcode components.

Support of VPD within PCI adapters is optional depending on the manufacturer.
However, if VPD is implemented, the recommended fields should be included.
Conditionally recommended fields and additional fields may also be included depending
on the particular device. The definition of PCI VPD presents no impact to existing PCI
devices and minimal impact to future PCI devices which optionally include VPD.
Though support of VPD is optional, adapter manufacturers are encouraged to provide
VPD due to its inherent benefits for the adapter, system manufacturers, and for Plug and
Play.

6.4.1. Importance of Vital Product Data

The availability of configuration information and other VPD beyond what is currently
available in the PCI Configuration Space will help ensure a smooth transition to a true
plug and play environment. The availability of VPD on electronic devices allows a
system manufacturer to implement creative product delivery processes for systems and
feature upgrades by providing an ability to ship accurate and complete hardware orders to

205

Revision 2.1

their customers. Availability of VPD on electronic devices allows the component
manufacturer to obtain, and monitor information related to the field performance of their
product(s) with respect to failure rates and operational compatibility with other devices
in the machine. VPD can also be very effective for systems manufacturers in providing
on-line technical support by identifying systems configuration information.

6.4.2. VPD Location

Vital Product Data for PCI devices is located in the device’s expansion ROM. The VPD,
when provided, must be located in the first 64 KB of a ROM image. A value of 0 in the
pointer to VPD indicates that no VPD is in the ROM image (refer to Section 6.3.1.2 . If
no expansion ROM is present on a PCI device other than VPD, there will only be one
expansion ROM image (image 0), which will contain the VPD for that device. If
multiple expansion ROM images are present and VPD is also provided, each image will
contain VPD for the device. The VPD that describes the hardware may be a duplicate
copy in each image but the VPD information that pertains to software may be different
for each expansion ROM image.

6.4.3. VPD Data Structure Description

Vital Product Data is made up of Small and Large Resource Data Types as described in
the Plug and Play ISA Specification, Version 1.0a. Use of these data structures allows
leveraging of data types already familiar to the industry and minimizes the amount of
additional resources needed for support. This data format consists of a series of "tagged"
data structures. The data types from the Plug and Play ISA Specification, Version 1.0a
are reproduced in Tables 6-6 and 6-7.

Table 6-6: Small Resource Data Type Tag Bit Definitions

Offset Field

Byte 0 Tag Bit[7] Tag Bits[6:3] Tag Bits [2:0]

Type = 0 Small item name Length = n bytes

Bytes 1 to n Actual information

Table 6-7: Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte 0 Value = 1xxxxxxxB (Type = 1, Large item name = xxxxxxx)

Byte 1 Length of data items bits[7:0] (lsb)

Byte 2 Length of data items bits[15:8] (msb)

Bytes 3 to n Actual data items

Vital Product Data in PCI expansion ROM uses several of the predefined43 tag item
names and one new one defined specifically for PCI Vital Product Data. The existing
item names that are used are: Compatible Device ID (0x3), Vendor Defined (0xE), and
End Tag (0xF) for Small Resource Data Types; and Identifier String (0x2), and Vendor

43 Already defined in the Plug and Play ISA Specification, Version 1.0a .

206

Revision 2.1

Defined (0x4) for Large Resource Data Types. The new large resource item name for
Vital Product Data is VPD with a value of 0x10.

One or more VPD tags can be used to wrap the keywords described below. Other PnP
tags such as the Identifier String (0x02) may be included to provide additional product
information. The last tag must be the End Tag (0x0F) which provides a checksum across
all of the Vital Product Data. The checksum is correct if the sum of all bytes in the Vital
Product Data is zero. A small example of the resource data type tags used in a typical
VPD is shown below:

TAG Identifier String
TAG VPD containing one or more VPD keywords

... ...
TAG VPD containing one or more VPD keywords
TAG End Tag

6.4.4. VPD Format

Information fields within a VPD resource type consist of a three-byte header followed by
some amount of data (see Figure 6-10). The three-byte header contains a two-byte
keyword and a one-byte length. A keyword is two-character (ASCII) mnemonic that
uniquely identifies the information in the field. The last byte of the header is binary and
represents the length value (in bytes) of the data that follows.

Keyword Length Data
Byte 0 Byte 1 Byte 2 Bytes 3 through n

Figure 6-10: VPD Format

VPD keywords identified below are listed in three categories: Recommended Fields,
Conditionally Recommended Fields, and Additional Fields. Unless otherwise noted,
keyword data fields are provided as ASCII characters. Use of ASCII allows keyword
data to be moved across different enterprise computer systems without translation
difficulty.

207

Revision 2.1

6.4.4.1. Recommended Fields

Support of VPD is optional, but if implemented, the following fields are recommended
to be included. Note that OEM preference, or manufacturing process, may cause some
fields to be omitted (e.g., Serial Number).

PN Part Number of Assembly The characters are alphanumeric and represent
the Part Number for this device.

FN FRU Part Number The characters are alphanumeric and represent
the FRU Part Number (Field Replaceable Unit)
for this device.

EC EC Level of Assembly The characters are alphanumeric and represent
the Engineering Change for this board. This
field should not be confused with the Revision
ID in the Configuration Space Header shown in
Figure 6-1 which is a vendor defined extension
to the Device ID.

MN Manufacture ID This keyword may be optionally provided as an
extension to the Vendor ID in the Configuration
Space Header in Figure 6-1. This allows
vendors the flexibility to identify an additional
level of detail pertaining to the sourcing of this
device.

SN Serial Number The characters are alphanumeric and represent
the unique board Serial Number or Inventory
Identification Number.

6.4.4.1. Conditionally Recommended Fields

The conditionally recommended fields are needed only when the device or subassembly
supports or includes the related functionality.

LI Load ID The Load Identification is a part of the name of
the base "down load" which may be required by
an adapter to load it with the software necessary
to make it a functional device.

RL ROM Level This descriptor is used to identify the revision
level of any non-alterable ROM code on the
adapter.

RM Alterable ROM Level This descriptor is used to identify the part
number of any alterable ROM code on the
adapter.

208

Revision 2.1

NA Network Address This field is needed by those adapters that
require a unique network address for a local area
network. Adapters such as Token Ring,
Baseband, or Ethernet use this field. Data in the
field may be encoded in binary on the device but
is externalized in ASCII or a hexadecimal
representation of a binary value in ASCII.

DD Device Driver Level This field represents the minimum device driver
level required.

DG Diagnostic Level This field represents the minimum diagnostic
level required.

LL Loadable Microcode Level This field represents the minimum loadable
microcode level required. If this field is not
present, level zero is implied. Loadable
microcode is associated with a given Card ID
rather than Part Number/EC level. Therefore, as
changes are made to a particular adapter, a
corresponding microcode level may be required
for correct operation. This field is required if
loadable microcode is required for functional
operation of the adapter. Its presence notifies
the initialization code of this additional
requirement.

VI Vendor ID/Device ID The Vendor ID and Device ID as they appear in
the Configuration Space header. Only one VI
keyword may appear per VPD Tag. Data in this
field is binary encoded.

FU Function Number This field identifies which function in a
multifunction device the VPD data applies to.
Only one FU keyword may appear per VPD
Tag. Data in this field is binary encoded.

SI Subsystem Vendor
ID/Subsystem ID

The Subsystem Vendor ID and Subsystem ID as
they should appear in the type 00h
Configuration Space header. Data in this field is
binary encoded.

6.4.4.2. Additional Fields

Z0-ZZ User/Product Specific These fields are available for device specific
data for which no unique keyword has been
defined.

209

Revision 2.1

6.4.5. VPD Example

VPD keywords are wrapped by one or more large resource VPD tags. Each VPD item is
identified by a two-character ASCII code. The two-character VPD keyword is followed
by a one-byte data length field. The binary data length value (in bytes) identifies the
length of the keyword data only. Table 6-8 is an example of a VPD. Hexadecimal digits
are packed two per byte.

Table 6-8: VPD Example

Offset Item Value

0 Large Resource Type ID String Tag (0x02) 0x82

1 Length 0x0021

3 Data “ABC Super-Fast Widget
Controller”

36 Large Resource Type VPD Tag (0x10) 0x90

37 Length 0x0033

39 VPD Keyword “PN”

41 Length 0x08

42 Data “6181682A”

50 VPD Keyword “EC”

52 Length 0x0A

53 Data “4950262536”

63 VPD Keyword “SN”

65 Length 0x08

66 Data “00000194”

74 VPD Keyword “FN”

76 Length 0x06

77 Data “135722”

83 VPD Keyword “MN”

85 Length 0x04

86 Data “1037”

90 Large Resource Type VPD Tag (0x10) 0x90

91 Length 0x000A

93 VPD Keyword “DG”

95 Length 0x02

96 Data “01”

98 VPD Keyword “DD”

100 Length 0x02

101 Data “01”

103 Small Resource Type End Tag (0xF) 0x79

104 Data Checksum

210

Revision 2.1

6.5. Device Drivers
There are two characteristics of PCI devices that may make PCI device drivers different
from "standard" or existing device drivers. The first characteristic is that PCI devices are
relocatable (i.e., not hardwired) in the address spaces. PCI device drivers (and other
configuration software) should use the mapping information stored in the device’s
Configuration Space registers to determine where the device was mapped. This also
applies to determining interrupt line usage.

The second characteristic is that PCI interrupts are sharable. PCI device drivers are
required to support shared interrupts since it is very likely that system implementations
will connect more than one device to a single interrupt line. The exact method for
interrupt sharing is operating system specific and is not elaborated here.

Some systems may not guarantee that data is delivered to main memory before interrupts
are delivered to the CPU. If not handled properly, this can lead to data consistency
problems (loss of data). This situation is most often associated with the implementation
of posting buffers in bridges between the PCI bus and other buses.

There are three ways that data and interrupt consistency can be guaranteed:

1. The system hardware can guarantee that posting buffers are flushed before interrupts
are delivered to the processor.

2. The device signaling the interrupt can perform a read of the just-written data before
signaling the interrupt. This causes posting buffers to be flushed.

3. The device driver can perform a read to any register in the device before accessing
the data written by the device. This read causes posting buffers to be flushed.

Device drivers are ultimately responsible for guaranteeing consistency of interrupts and
data by assuring that at least one of the three Methods described above is performed in
the system. This means a device driver must do Method 3 unless it implicitly knows
Method 2 is done by its device or it is informed (by some means outside the scope of this
specification) that Method 1 is done by the system hardware.

6.6. System Reset
After system reset, the processor(s) must be able to access boot code and any devices
necessary to boot the machine. Depending on the system architecture, bridges may need
to come up enabled to pass these accesses through to the remote bus.

Similarly, devices on PCI may need to come up enabled to recognize fixed addresses to
support the boot sequence in a system architecture. Such devices are required to support
the Command register disabling function described in Section 6.2.2.. They should also
provide a mechanism (invoked through the Configuration Space) to re-enable the
recognition of fixed addresses.

211

Revision 2.1

6.7. User Definable Configuration Items
This section describes the mechanism to support the configuring of PCI adapters that
have User Definable Features (UDFs) using system configuration mechanisms (such as
the EISA Configuration Utility). UDFs are defined to be device configuration items that
are dependent on the environment into which the device is installed and whose settings
cannot be automatically determined by hardware or system software. For example, the
token ring speed setting for token ring network devices will be dependent on the specific
token ring network into which the device is installed. Therefore, the default value of
these configuration items may prevent successful system boot given the environment in
which it is installed and the user may be required to insure a proper configuration. UDFs
do not apply to devices that have a common compatible default configuration, such as
VGA compatible graphics adapters, since a successful system boot can be achieved using
the device’s default configuration.

6.7.1. Overview

Device UDFs are described in a text based "file" that is supplied with an adapter. This
file will be referred to as a PCI Configuration File, or PCF. The PCF will specify to the
system configuration mechanism the device specific user definable features (UDFs).
Adapters that do not support device specific UDFs are not required to supply a PCF.

Adapter vendors are required to supply a separate PCF for each adapter function that
supports device specific UDFs. The PCF can be supplied with an adapter on a 1.44 MB
diskette formatted with the PC/MS-DOS File Allocation Table (FAT) format. The
filename for the file containing the PCF must be XXXXYYYY.PCF, where XXXX is
the two-byte Vendor ID as specified in the device’s Configuration Space header
(represented as hexadecimal digits), and YYYY is the two-byte Device ID as specified in
the device’s Configuration Space header (represented as hexadecimal digits). The file
must be in the root directory on the diskette.

A function on an adapter is required to indicate that it has user definable features via the
UDF_Supported bit. This read-only UDF_Supported bit resides in the Status Register
and will be set when a device function has device specific configuration selections that
must be presented to the user. Functions that do not support user selectable
configuration items would not implement this bit, and, therefore, return a 0 when read.
Refer to Section 6.2.3. for a description of the Status register.

For devices where the UDF_Supported bit is set, system startup and/or configuration
software will recognize the function on the adapter as one that supports user definable
features. Systems are not required to be capable of interpreting a PCF. For such
systems, the user will need to rely on a vendor supplied device specific configuration
utility if the user requires the ability to alter user definable features of that device.

Systems that choose to support interpreting PCFs are also responsible for supplying non-
volatile storage (NVS) to hold the device specific configuration selected by the user. In
this scenario, system POST software will, at system boot time, copy the appropriate
values for each PCI adapter from the non-volatile storage to the appropriate
Configuration Space registers for each function. The mechanism for interpreting a PCF,
presenting the information to the user, and storing the selections in the NVS is system
specific. Note that when sizing NVS for a given system, the number of adapters
supported, the number of functions per adapter, and the number of bytes of configuration
information per function must be analyzed. In addition, the system will need to store

212

Revision 2.1

enough overhead information such that POST knows what address of which
device/function each configuration byte will be written to, masked appropriately as
specified in the PCF. It is recommended that system non-volatile storage be sized such
that an average of 32 bytes of configuration data (potentially non-contiguous) will be
written to each adapter device function. In addition, vendors should design adapters such
that they do not require more than 32 bytes of configuration information per function as a
result of PCF specified configuration options.

6.7.2. PCF Definition

6.7.2.1. Notational Convention

The PCF contains ISO Standard 8859-1 character set text, commonly referred to as Code
Page 850. The text includes keywords that aid the system configuration mechanism’s
interpretation of the PCF information, as well as provides generic text representing
device specific information. All text is case insensitive, unless otherwise noted. White
space, including spaces, tabs, carriage returns, and linefeeds, is ignored outside of quoted
strings. All PCF selections must be for device specific configuration options and be
targeted for the device specific portion (192 bytes) of the function’s Configuration Space.
The PCF cannot be used for requesting allocation of system level resources such as
interrupt assignments, or memory, I/O or expansion ROM address allocations. The PCF
cannot request writes to the PCI Configuration Space Header (addresses less than 40h).
This must be enforced by the system configuration mechanism.

System configuration software will use the PCF to present to the user the device specific
configuration options. User selections will be stored in system non-volatile storage,
presumably as values to be written to device specific Configuration Space addresses.
POST software will use the information stored in non-volatile memory to write
appropriate configuration settings into each device’s Configuration Space. The device’s
logic can use the information as loaded in Configuration Space, or require its expansion
ROM logic or device driver software to copy the device specific Configuration Space
values into appropriate I/O or memory based device registers at system initialization. In
addition, the device can choose to alias the device specific Configuration Space registers
into appropriate I/O or memory based device registers if needed. Any configuration
information required to be accessible after device initialization should not be accessible
exclusively via Configuration Space.

6.7.2.1.1. Values and Addresses

A value or address can be given in hexadecimal, decimal, or binary format. The radix, or
base identifier, is specified by attaching one of the following characters to the end of the
value or address:

H or h - Hexadecimal

D or d - Decimal

B or b - Binary

213

Revision 2.1

The radix character must be placed immediately after the value, with no space in
between. If no radix is specified, decimal is assumed.

Example: 1FOOh

Hexadecimal numbers beginning with a letter must have a leading zero.

Example: 0C000h

6.7.2.1.2. Text

Text fields contain information that is to be presented to the user. These fields are free
form and are enclosed in quotation marks. These text fields can be tailored to a specific
international market by using the Code Page 850 character set to support international
languages (see the LANG statement description below). Text field maximum lengths are
given for each instance. Text fields can contain embedded tabs, denoted by \t, and
embedded linefeeds, denoted by \n. Quotation marks and backslashes can also be placed
in the text using \" and \\ respectively.

Embedded tabs are expanded to the next tab stop. Tab length is eight characters (tab
stops are located at 9, 17, 25, etc.).

6.7.2.1.3. Internal Comments

Comments can be embedded in the PCF for annotational purposes. Comments are not
presented to the user. Comments can be placed on separate lines, or can follow other
PCF statements. Comments begin with a semi-colon (;) and continue through the end of
the line.

6.7.2.1.4. Symbols Used in Syntax Description

This description of the PCF syntax uses the following special symbols:

[] The item or statement is optional.

x|y Either x or y is allowed.

6.7.2.2. PCI Configuration File Outline

A PCF is structured as follows:

Device Identification Block

Function Statement Block(s)

[Device Identification Block

Function Statement Block(s)]

The Device Identification Block identifies the device by name, manufacturer, and ID.
The PCF must begin with this block.

The Function Statement Blocks define the user presentable configuration items
associated with the device.

The Device Identification Block and Function Statement Block set can optionally be
repeated within the PCF file to support multiple languages.

214

Revision 2.1

6.7.2.2.1. Device Identification Block

The Device Identification Block within the PCF is defined as follows:

BOARD
ID="XXXXYYYY"
NAME="text"
MFR="text"
SLOT=PCI
[VERSION=value]
[LANG=XXX]

The BOARD statement appears at the beginning of each PCF. This statement, along
with the other required statements, must appear before the optional statements contained
in brackets []. The statements should occur in the order shown.

ID is a required statement containing the Vendor and Device IDs, XXXXYYYY, where
XXXX is the two-byte Vendor ID as specified in the device’s Configuration Space
header (represented as hexadecimal digits), and YYYY is the two-byte Device ID as
specified in the device’s configuration header (represented as hexadecimal digits). The
ID must contain eight characters and must be placed within quotation marks.

NAME is a required statement that identifies the device. Vendor and product name
should be included. A maximum length of 90 characters is allowed. The first 55
characters are considered significant (i.e., only the first 55 characters will be shown if
truncation or horizontal scrolling is required).

MFR is a required statement that specifies the board manufacturer. A maximum length
of 35 characters is allowed.

SLOT=PCI is a required statement that identifies the device as PCI. This is included to
assist configuration utilities that must also parse EISA or ISA CFG files.

VERSION is an optional statement that specifies the PCF standard that this PCF was
implemented to. The syntax described by this section represents version 0. This
statement allows future revisions of the PCF syntax and format to be recognized and
processed accordingly by configuration utilities. Version 0 will be assumed when the
VERSION statement is not found in the Device Identification Block.

215

Revision 2.1

LANG is an optional statement that specifies the language used within the quote
enclosed text found within the given Device Identification Block/Function Statement
Block set. When no LANG statement is included, then the default language is English.
XXX can have the following values which are defined in the IS0-639 standard44:

CS Czech
DA Danish
NL Dutch
EN English (default)
FI Finnish
FR French
DE German
HU Hungarian
IT Italian
NO Norwegian
PL Polish
PT Portuguese
SK Slovak
ES Spanish
SV Swedish

6.7.2.2.2. Function Statement Block

Function Statement Blocks define specific configuration choices to be presented to the
user. A Function Statement Block is defined as follows:

FUNCTION="text"
[HELP="text"]
[SHOW=[YES|NO|EXP]}
Choice Statement Block
.
.
.
[Choice Statement Block]

The FUNCTION statement names a function of the device for which configuration
alternatives will be presented to the user. A maximum of 100 characters is allowed for
the function name.

HELP is an optional text field containing additional information that will be displayed to
the user if the user requests help while configuring the function. This text field can
contain a maximum of 600 characters.

SHOW is an optional statement used to specify whether this function is displayed or not.
YES is the default value and indicates that the function will be displayed. NO indicates
that the function will never be displayed. EXP indicates that the function will be
displayed only when the system is in expanded mode. This feature allows the
configuration utility to generate INIT statements that are not presented to the user
(SHOW=NO). In addition, more advanced features can be hidden from the casual user
(SHOW=EXP).

Each Choice Statement Block names a configuration alternative for the function and lists
the register addresses, sizes, and values needed to initialize that alternative. Each

44 The ISO-639 standard can be obtained from ANSI Customer Service, 13th Floor, 11 West 42nd Street,
New York City, New York 10036.

216

Revision 2.1

Function Statement Block must contain at least one Choice Statement Block. The first
choice listed for a given function will be the default choice used for automatic
configuration.

6.7.2.2.2.1. Choice Statement Block

CHOICE = "text"
[HELP="text"]
INIT Statement
.
.
.
[INIT Statement]

CHOICE statements are used to indicate configuration alternatives for the function.
Each FUNCTION must have at least one CHOICE statement, and can have as many as
necessary. A maximum of 90 characters is allowed for the choice name.

HELP is an optional text field containing additional information that will be displayed to
the user if the user requests help with the CHOICE. This text field can contain a
maximum of 600 characters.

A Choice Statement Block can contain one or more INIT statements. INIT statements
give the register addresses and values needed to initialize the configuration alternative
named by the CHOICE statement.

6.7.2.2.2.1.1. INIT Statements

INIT=PCI(address) [BYTE|WORD|DWORD] value

INIT statements provide the register addresses and values needed to initialize the device’s
vendor specific registers.

The PCI keyword is used to indicate that this is a PCI INIT statement. This is included
to assist configuration utilities that must also parse EISA or ISA CFG files.

Address is the register’s offset in the PCI Configuration Space. This address value must
be within the 192 bytes of device specific Configuration Space (offsets 64-255).

An optional BYTE, WORD, or DWORD qualifier can be used to indicate the size of the
register. The default is BYTE.

Value gives the value to be output to the register. Bit positions marked with an "r"
indicate that the value in that position is to be preserved. The "r" can only be used as a
bit position in a binary value, or as a hex digit (four bit positions) in a hex value. The
length of the value must be the same as the data width of the port: 8, 16, or 32 bits.

Examples:

INIT = PCI(58h) 11110000b

INIT = PCI(5Ah) 0000rr11b

INIT = PCI(0A6h) WORD R8CDh

INIT = PCI(48h) WORD RR0000001111RR11b

217

Revision 2.1

6.7.3. Sample PCF

BOARD
ID="56781234" ; Vendor is 5678h, Device is 1234h

; Filename would be "56781234.PCF"
NAME= "Super Cool Widget PCI Device"
MFR= "ABC Company"
SLOT= PCI
VERSION= 0

FUNCTION="Type of Widget Communications"
HELP="This choice lets you select which type of
communication you want this device to use."
 CHOICE="Serial"
 INIT=PCI(45h) rrr000rrb ;Default size is BYTE
 INIT=PCI(8Ch) DWORD 0ABCDRRRRh
 CHOICE="Parallel"
 INIT=PCI(45h) rrr010rrb
 INIT=PCI(8Ch) DWORD 1234abcdh
 CHOICE="Cellular"
 INIT=PCI(45h) rrr100rrb
 INIT=PCI(8Ch) DWORD 5678abcdh

FUNCTION="Communication Speed"
 CHOICE="4 Mbit/Sec" INIT=PCI(56h) WORD R12Rh
 CHOICE="16 Mbit/Sec" INIT=PCI(56h) WORD R4CRh
 CHOICE="64 Gbit/Sec" INIT=PCI(56h) WORD R00Rh

FUNCTION="Enable Super Hyper Turbo Mode"
HELP="Enable Super Hyper Turbo Mode only if the 64 Gbit
Speed has been selected."
 CHOICE="No" INIT=PCI(49h) rrrrr0rrb
 CHOICE="Yes" INIT=PCI(49h) rrrrr1rrb

FUNCTION="Widget Host ID"
 CHOICE="7" INIT=PCI (9Ah) rrrrr000b
 CHOICE="6" INIT=PCI (9Ah) rrrrr001b
 CHOICE="5" INIT=PCI (9Ah) rrrrr010b
 CHOICE="4" INIT=PCI (9Ah) rrrrr011b

218

Revision 2.1

Chapter 7
66 MHz PCI Specification

7.1. Introduction
The 66 MHz PCI bus is a compatible superset of PCI defined to operate up to a
maximum clock speed of 66 MHz. The purpose of 66 MHz PCI is to provide
connectivity to very high bandwidth devices in applications such as HDTV, 3D graphics,
and advanced video. The 66 MHz PCI bus is intended to be used by low latency, high
bandwidth bridges and peripherals. Systems may augment the 66 MHz PCI bus with a
separate 33 MHz PCI bus to handle lower speed peripherals.

Differences between 33 MHz PCI and 66 MHz PCI are minimal. Both share the same
protocol, signal definitions, and connector layout. To identify 66 MHz PCI devices, one
static signal is added by redefining an existing ground pin, and one bit is added to the
Configuration Status register. Bus drivers for the 66 MHz PCI bus meet the same DC
characteristics and AC drive point limits as 33 MHz PCI bus drivers; however, 66 MHz
PCI requires faster timing parameters and redefined measurement conditions. As a
result, 66 MHz PCI buses may support smaller loading and trace lengths.

A 66 MHz PCI device operates as a 33 MHz PCI device when it is connected to a
33 MHz PCI bus. Similarly, if any 33 MHz PCI devices are connected to a 66 MHz PCI
bus, the 66 MHz PCI bus will operate as a 33 MHz PCI bus.

The programming models for 66 MHz PCI and 33 MHz PCI are the same, including
configuration headers and class types. Agents and bridges include a 66 MHz PCI status
bit.

7.2. Scope
This chapter defines aspects of 66 MHz PCI that differ from those defined elsewhere in
this document, including information on device and bridge support. This chapter will
not repeat information defined elsewhere.

219

Revision 2.1

7.3. Device Implementation Considerations

7.3.1. Configuration Space

Identification of a 66 MHz PCI-compliant device is accomplished through the use of the
read-only 66MHZ_CAPABLE flag located in bit 5 of the PCI Status register. If set, this
bit signifies that the device is capable of operating in 66 MHz mode.

Figure 7-1: Status Register Layout

7.4. Agent Architecture
A 66 MHz PCI agent is defined as a PCI agent capable of supporting 66 MHz PCI.

All 66 MHz PCI agents must support a read-only 66MHZ_CAPABLE flag located in
bit 5 of the PCI Status register for that agent. If set, the 66MHZ_CAPABLE bit signifies
that the agent can operate in 66 MHz PCI mode.45

45 Configuration software may identify all agent capabilities when it probes the agents by checking the
66MHZ_CAPABLE bit in all Status registers. This includes both the primary and secondary Status
registers in a PCI to PCI bridge. This allows configuration software to detect a 33 MHz PCI agent on a
66 MHz PCI bus or a 66 MHz PCI agent on a 33 MHz PCI bus and issue a warning to the user describing
the situation.

220

Revision 2.1

7.5. Protocol

7.5.1. 66MHZ_ENABLE (M66EN) Pin Definition

An existing ground pin on the 33 MHz PCI connector (pin 49, Side B) has been
designated M66EN. A 66 MHz PCI planar segment must provide a single pullup
resistor to Vcc on the M66EN pin. Refer to Section 7.7.7. for the appropriate pullup
value. M66EN is bused to all 66 MHz PCI connectors and planar-only 66 MHz PCI
components that include the M66EN pin. The 66 MHz PCI clock generation circuitry
must connect to M66EN to generate the appropriate clock for the segment (33 to
66 MHz if M66EN is asserted, 0 to 33 MHz if M66EN is deasserted).

If a 66 MHz PCI agent requires clock speed information (for example, for a PLL bypass),
it may use M66EN as an input. If a 66 MHz PCI agent can run without any knowledge
of the speed, it may leave M66EN disconnected.

Note that pin 49, Side B is already bused as a ground in 33 MHz PCI systems. Refer to
the PCI Compliance Checklist for more information.

Table 7-1: Bus and Agent Combinations

Bus
66MHZ_CAPABLE46

Agent
66MHZ_CAPABLE Description

0 0 33 MHz PCI agent located on a
33 MHz PCI bus

0 1 66 MHz PCI agent located on a
33 MHz PCI bus47

1 0 33 MHz PCI agent located on a
66 MHz PCI bus47

1 1 66 MHz PCI agent located on a
66 MHz PCI bus

7.5.2. Latency

The 66 MHz PCI bus is intended for low latency devices. It is required that the first data
phase of a read transaction not exceed 16 clocks. For further information, system
designers should refer to the PCI Multimedia Design Guide.

46 The bus 66MHZ_CAPABLE status bit is located in a bridge.
47 This condition may cause the configuration software to generate a warning to the user stating that the
card is installed in an inappropriate socket and should be relocated.

221

Revision 2.1

7.6. Electrical Specification

7.6.1. Overview

This chapter defines the electrical characteristics and constraints of 66 MHz PCI
components, systems, and add-in boards, including connector pin assignments.

All electrical specifications from Chapter 4 of this document apply to 66 MHz PCI
except where explicitly superseded. Specifically:

• The 66 MHz PCI bus uses the 3.3V signaling environment.

• Timing parameters have been scaled to 66 MHz.

• AC test loading conditions have been changed.

7.6.2. Transition Roadmap to 66 MHz PCI

The 66 MHz PCI bus utilizes the PCI bus protocol; 66 MHz PCI simply has a higher
maximum bus clock frequency. Both 66 MHz and 33 MHz devices can coexist on the
same bus segment. In this case, the bus segment will operate as a 33 MHz segment.

To ensure compatibility with PCI, 66 MHz PCI devices have the same DC specifications
and AC drive point limits as 33 MHz PCI devices. However, 66 MHz PCI requires
modified timing parameters as described in the analysis of the timing budget shown in
Figure 7-2.

Tcyc ≥ Tval + Tprop + Tskew + Tsu

Tval =11 ns Tprop = 10 ns Tskew = 2ns Tsu=7ns

Tval Tprop Tskew Tsu
6 ns 5 ns 1 ns 3 ns

Tcyc = 30 ns

Tcyc = 15 ns

33 MHZ

66 MHZ

Figure 7-2: 33 MHz PCI vs. 66 MHz PCI Timing

Since AC drive requirements are the same for 66 MHz PCI and 33 MHz PCI, it is
expected that 66 MHz PCI devices will function on 33 MHz PCI buses. Therefore,
66 MHz PCI devices must meet both 66 MHz PCI and 33 MHz PCI requirements.

7.6.3. Signaling Environment

A 66 MHz PCI planar segment must use the PCI 3.3V keyed connector. Therefore,
66 MHz PCI planar segments accept either 3.3V or universal add-in boards; 5V add-in
boards are not supported.

While 33 MHz PCI bus drivers are defined by their V/I curves, 66 MHz PCI output
buffers are specified in terms of their AC and DC drive points, timing parameters, and
slew rate. The minimum AC drive point defines an acceptable first step voltage and

222

Revision 2.1

must be reached within the maximum Tval time. The maximum AC drive point limits
the amount of overshoot and undershoot in the system. The DC drive point specifies
steady state conditions. The minimum slew rate and the timing parameters guarantee
66 MHz operation. The maximum slew rate minimizes system noise. This method of
specification provides a more concise definition for the output buffer.

7.6.3.1. DC Specifications

Refer to Section 4.2.2.1.

7.6.3.2. AC Specifications

Table 7-2: AC Specifications

Symbol Parameter Condition Min Max Units Notes

IOH

(min)

Output high

Minimum current

Vout = 0.3Vcc -12Vcc - mA 1

IOH

(max)

Output high

Maximum current

Vout = 0.7Vcc - -32Vcc mA

IOL

(min)

Output low

Minimum current

Vout = 0.6Vcc 16Vcc - mA 1

IOL

(max)

Output low

Maximum current

Vout = 0.18Vcc - 38Vcc mA

VOH Output high voltage Iout = -0.5 mA 0.9Vcc - V 2

VOL Output low voltage Iout = 1.5 mA - 0.1Vcc V 2

Ich High clamp current Vcc + 4 > Vin ≥ Vcc + 1 25 + (Vin - Vcc - 1) / 0.015 - mA

Icl Low clamp current -3 < Vin ≤ -1 -25 + (Vin + 1) / 0.015 - mA

tr Output rise slew rate 0.3Vcc to 0.6Vcc 1 4 V/ns 3

tf Output fall slew rate 0.6Vcc to 0.3Vcc 1 4 V/ns 3

NOTES:
1. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size

drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs.
"Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open
drain outputs.

2. These DC values are duplicated from Section 4.2.2.1 and are included here for completeness.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range rather than the
instantaneous rate at any point within the transition range. The specified load (see Figure 7-8) is optional. The
designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI specification. However,
adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline).
The V/I curves define the minimum and maximum output buffer drive strength. These curves should be interpreted as
traditional DC curves with one exception; from a quiescent or steady state condition, the current associated with the AC
drive point must be reached within the output delay time, Tval. Note, however, that this delay time also includes
necessary logic time. The partitioning of Tval between clock distribution, logic, and output buffer is not specified, but
the faster the buffer (as long as it does not exceed the maximum rise/fall time specification), the more time allowed for
logic delay inside the part.

223

Revision 2.1

7.6.3.3. Maximum AC Ratings and Device Protection

Refer to Section 4.2.2.3.

7.6.4. Timing Specification

7.6.4.1. Clock Specification

The clock waveform must be delivered to each 66 MHz PCI component in the system.
In the case of add-in boards, compliance with the clock specification is measured at the
add-in board component, not at the connector slot. Figure 7-3 shows the clock waveform
and required measurement points for 3.3V signaling environments. Table 7-3
summarizes the clock specifications.

T_high

T_low

0.3 Vcc

T_cyc

0.5 Vcc

3.3 volt Clock

0.4 Vcc

0.6 Vcc

0.2 Vcc

0.4 Vcc, p-to-p
(minimum)

Figure 7-3: 3.3V Clock Waveform

Table 7-3: Clock Specifications

66 MHz 33 MHz4

Symbol Parameter Min Max Min Max Units Notes

tcyc CLK Cycle Time 15 30 30 ∞ ns 1,3

thigh CLK High Time 6 11 ns

tlow CLK Low Time 6 11 ns

- CLK Slew Rate 1.5 4 1 4 V/ns 2

NOTES:

1. In general, all 66 MHz PCI components must work with any clock frequency up to 66 MHz. Device
operational parameters at frequencies under 33 MHz will conform to the specifications in Chapter 4. The
clock frequency may be changed at any time during the operation of the system so long as the clock edges
remain "clean" (monotonic) and the minimum cycle and high and low times are not violated. The clock may
only be stopped in a low state. A variance on this specification is allowed for components designed for use
on the system planar only. For clock frequencies between 33 MHz and 66 MHz, the clock frequency may
not change except in conjunction with a PCI reset.

2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met
across the minimum peak-to-peak portion of the clock waveform as shown in Figure 7-3. Clock slew rate is
measured by the slew rate circuit shown in Figure 7-8.

3. The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system jitter.

4. These values are duplicated from Section 4.2.3.1 and included here for comparison.

224

Revision 2.1

7.6.4.2. Timing Parameters

Table 7-4: 66 MHz and 33 MHz Timing Parameters

66 MHz 33 MHz7

Symbol Parameter Min Max Min Max Units Notes

tval CLK to Signal Valid Delay -
bused signals

2 6 2 11 ns 1, 2, 3,
8

tval(ptp) CLK to Signal Valid Delay -
point to point signals

2 6 2 12 ns 1, 2, 3,
8

ton Float to Active Delay 2 2 ns 1, 8, 9

toff Active to Float Delay 14 28 ns 1, 9

tsu Input Set up Time to CLK -
bused signals

3 7 ns 3, 4

tsu(ptp) Input Set up Time to CLK -
point to point signals

5 10,12 ns 3, 4

th Input Hold Time from CLK 0 0 ns 4

trst Reset Active Time after
power stable

1 1 ms 5

trst-clk Reset Active Time after CLK
stable

100 100 µs 5

trst-off Reset Active to output float
delay

40 40 ns 5, 6

trrsu REQ64# to RST# setup time 10Tcyc 10Tcyc ns

trrh RST# to REQ64# hold time 0 50 0 50 ns

NOTES:

1. See the timing measurement conditions in Figure 7-4. It is important that all driven signal transitions drive to their
Voh or Vol level within one Tcyc.

2. Minimum times are measured at the package pin with the load circuit shown in Figure 7-8. Maximum times are
measured with the load circuit shown in Figures 7-6 and 7-7.

3. REQ# and GNT# are point-to-point signals and have different input setup times than do bused signals. GNT# and
REQ# have a setup of 5 ns at 66 MHz. All other signals are bused.

4. See the timing measurement conditions in Figure 7-5.

5. RST# is asserted and deasserted asynchronously with respect to CLK. Refer to Section 4.3.2 for more information.

6. All output drivers must be floated when RST# is active. Refer to Section 4.3.2 for more information.

7. These values are duplicated from Section 4.2.3.2 and are included here for comparison.

8. When M66EN is asserted, the minimum specification for Tval(min), Tval(ptp)(min), and Ton may be reduced to 1 ns
if a mechanism is provided to guarantee a minimum value of 2 ns when M66EN is deasserted.

9. For purposes of Active/Float timing measurements, the Hi-Z or “off” state is defined to be when the total current
delivered through the component pin is less than or equal to the leakage current specification.

225

Revision 2.1

7.6.4.3. Measurement and Test Conditions

CLK

OUTPUT
DELAY

T_fval

V_test

V_tfall

V_th

V_tl

T_on

Tri-State
OUTPUT

OUTPUT
DELAY

V_trise

T_rval

T_off

Figure 7-4: Output Timing Measurement Conditions

INPUT
inputs
valid

V_th

V_tl

T_h
T_su

CLK

V_test

V_test

V_test V_max

V_th

V_tl

Figure 7-5: Input Timing Measurement Conditions

226

Revision 2.1

Table 7-5: Measurement Condition Parameters

Symbol 3.3V Signaling Units Notes
Vth 0.6Vcc V 1

Vtl 0.2Vcc V 1

Vtest 0.4Vcc V

Vtrise 0.285Vcc V 2

Vtfall 0.615Vcc V 2

Vmax 0.4Vcc V 1

Input Signal
Slew Rate

1.5 V/ns 3

NOTES:

1. The test for the 3.3V environment is done with 0.1*Vcc of overdrive.
Vmax specifies the maximum peak-to-peak waveform allowed for
measuring input timing. Production testing may use different voltage
values, but must correlate results back to these parameters.

2. Vtrise and Vtfall are reference voltages for timing measurements only.
Developers of 66 MHz PCI systems need to design buffers that launch
enough energy into a 25Ω transmission line so that correct input levels
are guaranteed after the first reflection.

3. Outputs will be characterized and measured at the package pin with the
load shown in Figure 7-8. Input signal slew rate will be measured
between 0.3Vcc and 0.6Vcc.

25 Ω 10 pF

1/2 in. max.

output
buffer

pin

Figure 7-6: Tval(max) Rising Edge

25 Ω
10 pF

Vcc

1/2 in. max.

Figure 7-7: Tval(max) Falling Edge

227

Revision 2.1

1K Ω
10 pF

output
buffer

pin 1/2 in. max.

Vcc

1K Ω

Figure 7-8: Tval (min) and Slew Rate

7.6.5. Vendor Provided Specification

Refer to Section 4.2.5.

7.6.6. Recommendations

7.6.6.1. Pinout Recommendations

Refer to Section 4.2.6.

The 66 MHz PCI electrical specification and physical requirements must be met;
however, the designer may modify the suggested pinout shown in Figure 4-10 as
required.

7.6.6.2. Clocking Recommendations

This section describes a recommended method for routing the 66 MHz PCI clock signal.
Routing the 66 MHz PCI clock as a point-to-point signal from individual low-skew clock
drivers to both planar and add-in board components will greatly reduce signal reflection
effects and optimize clock signal integrity. This, in addition to observing the physical
requirements outlined in Section 4.4.3.1, will minimize clock skew.

Developers must pay careful attention to the clock trace length limits stated in
Section 4.4.3.1. and the velocity limits in Section 4.4.3.3. Figure 7-9 illustrates the
recommended method for routing the 66 MHz PCI clock signal.

228

Revision 2.1

Clock Source

PCI Add-in
Connector

Add-in Board

Device C
66 MHz

66 MHz
Device B

66 MHz
Device A

Figure 7-9: Recommended Clock Routing

7.7. System (Planar) Specification

7.7.1. Clock Uncertainty

The maximum allowable clock skew including jitter is 1 ns. This specification applies
not only at a single threshold point, but at all points on the clock edge that fall in the
switching range defined in Table 7-6 and Figure 7-10. The maximum skew is measured
between any two components,48 not between connectors. To correctly evaluate clock
skew, the system designer must take into account clock distribution on the add-in board
as specified in Section 4.4.

Developers must pay careful attention to the clock trace length limits stated in
Section 4.4.3.1. and the velocity limits in Section 4.4.3.3.

Table 7-6: Clock Skew Parameters

Symbol 66 MHz 3.3V Signaling 33 MHz 3.3V Signaling Units

Vtest 0.4Vcc 0.4Vcc V

Tskew 1 (max) 2 (max) ns

48 The system designer may need to address an additional source of clock skew. This clock skew occurs
between two components that have clock input trip points at opposite ends of the V il - Vih range. In
certain circumstances, this can add to the clock skew measurement as described here. In all cases, total
clock skew must be limited to the specified number.

229

Revision 2.1

CLK
(@Device #1)

CLK
(@Device #2)

V_test
V_ih

T_skew

T_skew

T_skew

V_test
V_il

V_il

V_ih

Figure 7-10: Clock Skew Diagram

7.7.2. Reset

Refer to Section 4.3.2.

7.7.3. Pullups

The 66 MHz PCI bus requires a single pullup resistor, supplied by the planar, on the
M66EN pin. Refer to Section 7.7.7 for the resistor value.

7.7.4. Power

7.7.4.1. Power Requirements

Refer to Section 4.3.4.1.

7.7.4.2. Sequencing

Refer to Section 4.3.4.2.

7.7.4.3. Decoupling

Refer to Section 4.3.4.3.

7.7.5. System Timing Budget

When computing a total 66 MHz PCI load model, designers must pay careful attention to
maximum trace length and loading of add-in boards. Refer to Section 4.4.3. Also, the
maximum pin capacitance of 10 pF must be assumed for add-in boards, whereas the
actual pin capacitance may be used for planar devices.

The total clock period can be divided into four segments. Valid output delay (Tval) and
input setup times (Tsu) are specified by the component specification. Total clock skew
(Tskew) and bus propagation times (Tprop) are system parameters. Tprop is a system
parameter that is indirectly specified by subtracting the other timing budget components
from the cycle time. Table 7-7 lists timing budgets for several bus frequencies.

230

Revision 2.1

Tprop is measured as shown in Figure 7-11. It begins at the time the output buffer
would have crossed the threshold point (Vtrise or Vtfall) had it been driving the specified
Tval(max) load. It ends when the slowest input crosses Vih (high going) or Vil (low
going) and never rings back across that level again. Care must be taken in evaluating
this exact timing point. Note that input buffer timing is tested with a certain amount of
overdrive (past Vih and Vil). This may be needed to guarantee input buffer timings. For
example, the input may not be valid (and consequently Tprop time is still running) unless
it goes up to Vth and does not ring back across Vih.

V_ih

V_trise

HIGH LOW

Driving 66 MHZ PCI

Driving
(test load)

T_prop

V_il

T_prop

V_tfall

V_th

V_tl

Figure 7-11: Measurement of Tprop

(refer to Table 7-5 for parameter values)

The relevant timing budget can be expressed by the equation:

Tcyc ≥ Tval + Tprop + Tsu + Tskew

The following table compares PCI timing budgets at various speeds.

Table 7-7: Timing Budgets

Timing Element 33 MHz 66 MHz 50 MHz1 Units Notes

Tcyc 30 15 20 ns

Tval 11 6 6 ns

Tprop 10 5 10 ns 2

Tsu 7 3 3 ns

Tskew 2 1 1 ns

NOTES:

1. The 50 MHz example is shown for example purposes only.

2. These times are computed. The other times are fixed. Thus, slowing down the bus clock enables the
system manufacturer to gain additional distance or add additional loads. The component specifications are
required to guarantee operation at 66 MHz.

231

Revision 2.1

7.7.6. Physical Requirements

7.7.6.1. Routing and Layout of Four Layer Boards

Refer to Section 4.3.6.1.

7.7.6.2. Planar Impedance

Refer to Section 4.3.6.2. Timing numbers are changed according to the tables in this
chapter.

7.7.7. Connector Pin Assignments

With the exception of the M66EN pin (side B, pin 49), the standard PCI connector
pinout is used. Refer to Section 4.3.7 for planar connectors. This pin is a normal ground
pin in implementations that are not capable of 66 MHz operation.

In implementations that are 66 MHz capable, the M66EN pin is bused between all
connectors49 within the single logical bus segment that is 66 MHz capable, and this net is
pulled up with a 5 KΩ resistor to Vcc. Also, this net may be connected to the M66EN
input pin of components located on the same logical bus segment of the system planar.
This signal is static, there is no stub length restriction.

To complete an AC return path, a 0.01 µF capacitor shall be located, within 0.25” of the
M66EN pin, to each such add-in connector and shall decouple the M66EN signal to
ground. Any attached component or installed add-in board that is not 66 MHz capable,
must pull the M66EN net to the Vil input level. The remaining components, add-in
boards, and the logical bus segment clock resource are, thereby, signaled to operate in
33 MHz mode.

7.8. Add-in Board Specifications
Refer to Section 4.4.

With the exception of the M66EN pin (side B, pin 49), the standard PCI edge-connector
pinout is used. Refer to Section 4.4.1 for the add-in board edge-connector. This pin is a
normal ground pin in implementations that are not capable of 66 MHz operation.

In implementations that are 66 MHz capable, the M66EN pin must be decoupled to
ground with a 0.01 µF capacitor, which must be located within 0.25 inches of the edge
contact to complete an AC return path. If the M66EN pin is pulled to the Vil input
level, it indicates that the add-in board shall operate in the 33 MHz mode.

49 As a general rule, there will be only one such connector, but more than one may be possible in certain
cases.

232

Revision 2.1

Appendix A
Special Cycle Messages

Special Cycle message encodings are defined in this appendix. The current list of
defined encodings is small, but it is expected to grow. Reserved encodings should not be
used.

Message Encodings

AD[15::0] Message Type

0000h SHUTDOWN
0001h HALT
0002h x86 architecture-specific
0003h Reserved

through
FFFFh Reserved

SHUTDOWN is a broadcast message indicating the processor is entering into a
shutdown mode.

HALT is a broadcast message from the processor indicating it has executed a halt
instruction.

The x86 architecture-specific encoding is a generic encoding for use by x86 processors
and chipsets. AD[31::16] determine the specific meaning of the Special Cycle message.
Specific meanings are defined by Intel Corporation and are found in product specific
documentation.

Use of Specific Encodings

Use or generation of architecture-specific encodings is not limited to the requester of the
encoding. Specific encodings may be used by any vendor in any system. These
encodings allow system specific communication links between cooperating PCI devices
for purposes which cannot be handled with the standard data transfer cycle types.

233

Revision 2.1

Future Encodings
PCI SIG member companies that require special encodings outside the range of currently
defined encodings should send a written request to the PCI SIG Steering Committee.
The Steering Committee will allocate and define special cycle encodings based upon
information provided by the requester specifying usage needs and future product or
application direction.

234

Revision 2.1

Appendix B
State Machines

This appendix describes master and target state machines. These state machines are for
illustrative purposes only and are included to help illustrate PCI protocol. Actual
implementations should not directly use these state machines. The machines are
believed to be correct; however, if a conflict exists between the specification and the
state machines the specification has precedence.

The state machines use three types of variables: states, PCI signals, and internal signals.
They can be distinguished from each other by:

State in a state machine = STATE
PCI signal = SIGNAL
Internal signal = Signal

The state machines assume no delays from entering a state until signals are generated and
available for use in the machine. All PCI signals are latched on the rising edge of CLK.

The state machines support some options (but not all) discussed in the PCI specification.
A discussion about each state and the options illustrated follows the definition of each
state machine. The target state machine assumes medium decode and therefore do not
describe fast decode. If fast decode is implemented, the state diagrams (and their
associated equations) will need to be changed to support fast decode. Caution needs to
be taken when supporting fast decode (Refer to Section 3.4.2.).

The bus interface consists of two parts. The first is the bus sequencer that performs the
actual bus operation. The second part is the backend or hardware application. In a
master, the backend generates the transaction and provides the address, data, command,
Byte Enables, and the length of the transfer. It is also responsible for the address when a
transaction is retried. In a target, the backend determines when a transaction is
terminated. The sequencer performs the bus operation as requested and guarantees the
PCI protocol is not violated. Note that the target implements a resource lock.

The state machine equations assume a logical operation where "*" is an AND function
and has precedence over "+" which is an OR function. Parentheses have precedence over
both. The "!" character is used to indicate the NOT of the variable. In the state machine
equations, the PCI SIGNALs represent the actual state of the signal on the PCI bus.
Low true signals will be true or asserted when they appear as !SIGNAL#, and will be
false or deasserted when they appear as SIGNAL#. High true signals will be true or
asserted when they appear as SIGNAL and will be false or deasserted when they appear

235

Revision 2.1

as !SIGNAL. Internal signals will be true when they appear as Signal and false when
they appear as !Signal. A few of the output enable equations use the "==" symbol to
refer to the previous state. For example:

OE[PAR] == [S_DATA * !TRDY# * (cmd=read)]

This indicates the output buffer for PAR is enabled when the previous state is S_DATA,
TRDY# is asserted, the transaction is a read. The first state machine presented is for the
target, the second is the master. Caution needs to be taken when an agent is both a
master and a target. Each must have its own state machine that can operate
independently of the other to avoid deadlocks. This means that the target state machine
cannot be affected by the master state machine. Although they have similar states, they
cannot be built into a single machine.

F R E E L O C K ED

ID LE B _ BU S Y

S _D AT A

TU R N _ AR

B A CK O F F

Target LOCK Machine

Target
Sequencer

Machine

IDLE or TURN_AR -- Idle condition or completed transaction on bus.

goto IDLE if FRAME#
goto B_BUSY if !FRAME# * !Hit

236

Revision 2.1

B_BUSY -- Not involved in current transaction.

goto B_BUSY if (!FRAME# + !D_done) * !Hit
goto IDLE if FRAME# * D_done + FRAME# * !D_done * !DEVSEL#
goto S_DATA if (!FRAME# + !IRDY#) * Hit * (!Term + Term * Ready)

* (FREE + LOCKED * L_lock#)
goto BACKOFF *if (!FRAME# + !IRDY#) * Hit

* (Term * !Ready + LOCKED * !L_lock#)

S_DATA -- Agent has accepted request and will respond.

goto S_DATA if !FRAME# * !STOP# * !TRDY# * IRDY#
+ !FRAME# * STOP# + FRAME# * TRDY# * STOP#

goto BACKOFF if !FRAME# * !STOP# * (TRDY# + !IRDY#)
goto TURN_AR if FRAME# * (!TRDY# + !STOP#)

BACKOFF -- Agent busy unable to respond at this time.

goto BACKOFF if !FRAME#
goto TURN_AR if FRAME#

Target LOCK Machine

FREE -- Agent is free to respond to all transactions.

goto LOCKED if !FRAME# * LOCK# * Hit * (IDLE + TURN_AR)
+ L_lock# * Hit * B_BUSY)

goto FREE if ELSE

LOCKED -- Agent will not respond unless LOCK# is deasserted during the address
phase.

goto FREE if FRAME# * LOCK#
goto LOCKED if ELSE

Target of a transaction is responsible to drive the following signals:50

OE[AD[31::00]] = (S_DATA + BACKOFF) * Tar_dly * (cmd = read)
OE[TRDY#] = BACKOFF + S_DATA + TURN_AR (See note.)

OE[STOP#] = BACKOFF + S_DATA + TURN_AR (See note.)

OE[DEVSEL#] = BACKOFF + S_DATA + TURN_AR (See note.)

OE[PAR] = OE[AD[31::00]] delayed by one clock
OE[PERR#] = R_perr + R_perr (delayed by one clock)

Note: If the device does fast decode, OE[PERR#] must be delayed one clock to avoid
contention.

50 When the target supports the Special Cycle command, an additional term must be included to ensure
these signals are not enabled during a Special Cycle transaction.

237

Revision 2.1

TRDY# = !(Ready * !T_abort * S_DATA * (cmd=write + cmd=read * Tar_dly))
STOP# = ![BACKOFF + S_DATA * (T_abort + Term)

* (cmd=write + cmd=read * Tar_dly)]
DEVSEL# = ![(BACKOFF + S_DATA) * !T_abort]
PAR = even parity across AD[31::00] and C/BE#[3::0] lines.
PERR# = R_perr

Definitions

These signals are between the target bus sequencer and the backend. They indicate how
the bus sequencer should respond to the current bus operation.

Hit = Hit on address decode.
D_done = Decode done. Device has completed the address decode.
T_abort = Target is in an error condition and requires the current transaction to stop.
Term = Terminate the transaction. (Internal conflict or > n wait states.)
Ready = Ready to transfer data.
L_lock# = Latched (during address phase) version of LOCK#.
Tar_dly = Turn around delay only required for zero wait state decode.
R_perr = Report parity error is a pulse of one PCI clock in duration.
Last_target = Device was the target of the last (prior) PCI transaction.

The following paragraphs discuss each state and describe which equations can be
removed if some of the PCI options are not implemented.

The IDLE and TURN_AR are two separate states in the state machine, but are combined
here because the state transitions are the same from both states. They are implemented
as separate states because active signals need to be deasserted before the target tri-states
them.

If the target cannot do single cycle address decode, the path from IDLE to S_DATA can
be removed. The reason the target requires the path from the TURN_AR state to
S_DATA and B_BUSY is for back-to-back bus operations. The target must be able to
decode back-to-back transactions.

B_BUSY is a state where the agent waits for the current transaction to complete and the
bus to return to the Idle state. B_BUSY is useful for devices that do slow address decode
or perform subtractive decode. If the target does neither of these two options, the path to
S_DATA and BACKOFF may be removed. The term "!Hit" may be removed from the
B_BUSY equation also. This reduces the state to waiting for the current bus transaction
to complete.

S_DATA is a state where the target transfers data and there are no optional equations.

BACKOFF is where the target goes after it asserts STOP# and waits for the master to
deassert FRAME#.

FREE and LOCKED refer to the state of the target with respect to a lock operation. If
the target does not implement LOCK#, then these states are not required. FREE
indicates when the agent may accept any request when it is the target. If LOCKED, the
target will retry any request when it is the target unless LOCK# is deasserted during the
address phase. The agent marks itself locked whenever it is the target of a transaction
and LOCK# is deasserted during the address phase. It is a little confusing for the target
to lock itself on a transaction that is not locked. However, from an implementation point
of view, it is a simple mechanism that uses combinatorial logic and always works. The
device will unlock itself at the end of the transaction when it detects FRAME# and
LOCK# both deasserted.

238

Revision 2.1

The second equation in the goto LOCKED in the FREE state can be removed if fast
decode is done. The first equation can be removed if medium or slow decode is done.
L_lock# is LOCK# latched during the address phase and is used when the agent’s decode
completes.

IDLE

S_TAR

TURN_AR

ADDR

M_DATA

DR_BUS

FREE BUSY

Master LOCK Machine

Master
Sequencer
Machine

Master Sequencer Machine

IDLE -- Idle condition on bus.

goto ADDR if (Request * !Step) * !GNT# * FRAME# * IRDY#
goto DR_BUS if (Request * Step + !Request) * !GNT# * FRAME# * IRDY#

goto IDLE if ELSE

ADDR -- Master starts a transaction.

goto M_DATA on the next rising edge of CLK.

239

Revision 2.1

M_DATA -- Master transfers data.

goto M_DATA if !FRAME# + FRAME# * TRDY# * STOP#
* !Dev_to

goto ADDR if (Request *!Step) * !GNT# * FRAME# * !TRDY# *
STOP# * L-cycle * (Sa +FB2B_Ena)

goto S_TAR if FRAME# * !STOP# + FRAME# * Dev_to
goto TURN_AR if ELSE

TURN_AR -- Transaction complete do housekeeping.

goto ADDR if (Request * !Step) * !GNT#
goto DR_BUS if (Request * Step + !Request) * !GNT#
goto IDLE if GNT#

S_TAR -- Stop was asserted, do turn around cycle.

goto DR_BUS if !GNT#
goto IDLE if GNT#

DR_BUS -- Bus parked at this agent or agent is using address stepping.

goto DR_BUS if (Request * Step + !Request)* !GNT#
goto ADDR if (Request * !Step) * !GNT#
goto IDLE if GNT#

Master LOCK Machine

FREE -- LOCK# is not in use (not owned).

goto FREE if LOCK# + !LOCK# * Own_lock
goto BUSY if !LOCK# * !Own_lock

BUSY -- LOCK# is currently being used (owned).

goto FREE if LOCK# * FRAME#
goto BUSY if !LOCK# + !FRAME#

240

Revision 2.1

The master of the transaction is responsible to drive the following signals:

Enable the output buffers:

OE[FRAME#] = ADDR + M_DATA
OE[C/BE#[3::0]] = ADDR + M_DATA + DR_BUS

if ADDR drive command
if M_DATA drive byte enables
if DR_BUS if (Step * Request) drive command else drive lines to a valid state.

OE[AD[31::00] = ADDR + M_DATA * (cmd=write) + DR_BUS
if ADDR drive address
if M_DATA drive data
if DR_BUS if (Step * Request) drive address else drive lines to a valid state.

OE [LOCK#] = Own_lock * M_DATA + OE [LOCK#] * (!FRAME# + !LOCK#)
OE[IRDY#] == [M_DATA + ADDR]
OE[PAR] = OE[AD[31::00]] delayed by one clock
OE[PERR#] = R_perr + R_perr (delayed by one clock)

The following signals are generated from state and sampled (not asynchronous) bus
signals.

FRAME# = !(ADDR + M_DATA * !Dev_to * {[!Comp
 * (!To + !GNT#) * STOP#] + !Ready })

IRDY# = ![M_DATA * (Ready + Dev_to)]
REQ# = ![(Request * !Lock_a + Request * Lock_a * FREE)

 *!(S_TAR * Last State was S_TAR)]

LOCK# = Own_lock * ADDR + Target_abort
 + Master_abort + M_DATA * !STOP# * TRDY# * !Ldt
 + Own_lock * !Lock_a * Comp * M_DATA * FRAME# * !TRDY#

PAR = even parity across AD[31::00] and C/BE#[3::0] lines.
PERR# = R_perr

Master_abort = (M_DATA * Dev_to)
Target_abort = (!STOP# * DEVSEL# * M_DATA * FRAME# * !IRDY#)
Own_lock = LOCK# * FRAME# * IRDY# * Request * !GNT# * Lock_a

 + Own_lock * (!FRAME# + !LOCK#)

241

Revision 2.1

Definitions

These signals go between the bus sequencer and the backend. They provide information
to the sequencer when to perform a transaction and provide information to the backend
on how the transaction is proceeding. If a cycle is retried, the backend will make the
correct modification to the affected registers and then indicate to the sequencer to
perform another transaction. The bus sequencer does not remember that a transaction
was retried or aborted but takes requests from the backend and performs the PCI
transaction.

Master_abort = The transaction was aborted by the master. (No DEVSEL#.)
Target_abort = The transaction was aborted by the target.
Step = Agent using address stepping, (wait in the state until !Step).
Request = Request pending.
Comp = Current transaction in last data phase.
L-cycle = Last cycle was a write.
To = Master timeout has expired.
Dev_to = Devsel timer has expired without DEVSEL# being asserted.
Sa = Next transaction to same agent as previous transaction.
Lock_a = Request is a locked operation.
Ready = Ready to transfer data.
Sp_cyc = Special Cycle command.
Own_lock = This agent currently owns LOCK#.
Ldt = Data was transferred during a LOCK operation.
R_perr = Report parity error is a pulse one PCI clock in duration.
FB2B_Ena = Fast Back-to-Back Enable (Configuration register bit).

The master state machine has many options built in that may not be of interest to some
implementations. Each state will be discussed indicating what affect certain options
have on the equations.

IDLE is where the master waits for a request to do a bus operation. The only option in
this state is the term "Step". It may be removed from the equations if address stepping is
not supported. All paths must be implemented. The path to DR_BUS is required to
insure that the bus is not left floating for long periods. The master whose GNT# is
asserted must go to the drive bus if its Request is not asserted.

ADDR has no options and is used to drive the address and command on the bus.

M_DATA is where data is transferred. If the master does not support fast back-to-back
transactions the path to the ADDR state is not required.

The equations are correct from the protocol point of view. However, compilers may give
errors when they check all possible combinations. For example, because of protocol,
Comp cannot be asserted when FRAME# is deasserted. Comp indicates the master is in
the last data phase and FRAME# must be deasserted for this to be true.

TURN_AR is where the master deasserts signals in preparation for tri-stating them. The
path to ADDR may be removed if the master does not do back-to-back transactions.

S_TAR could be implemented a number of ways. The state was chosen to clarify that
"state" needs to be remembered when the target asserts STOP#.

242

Revision 2.1

DR_BUS is used when GNT# has been asserted and the master either is not prepared to
start a transaction (for address stepping) or has none pending. If address stepping is not
implemented, then the equation in goto DR_BUS that has "Step" may be removed and
the goto ADDR equation may also remove "Step".

If LOCK# is not supported by the master, the FREE and BUSY states may be removed.
These states are for the master to know the state of LOCK# when it desires to do a
locked transaction. The state machine simply checks for LOCK# being asserted. Once
asserted, it stays BUSY until FRAME# and LOCK# are both deasserted signifying that
LOCK# is now free.

243

Revision 2.1

244

Revision 2.1

Appendix C
Operating Rules

This appendix is not a complete list of rules of the specification or should not be used as
a replacement for the specification. This appendix only covers the basic protocol and
requirements contained in Chapter 3. It is meant to be used as an aid or quick reference
to the basic rules and relationships of the protocol.

When Signals are Stable
1. The following signals are guaranteed to be stable on all rising edges of CLK once

reset has completed: LOCK#, IRDY#, TRDY#, FRAME#, DEVSEL#, STOP#,
REQ#, GNT#, REQ64#, ACK64#, SBO#, SDONE, SERR# (on falling edge
only), and PERR#.

2. Address/Data lines are guaranteed to be stable at the specified clock edge as follows:

a. Address -- AD[31::00] are stable regardless of whether some are logical don’t
cares on the first clock that samples FRAME# asserted.

b. Address -- AD[63::32] are stable and valid during the first clock after REQ64#
assertion when 32 bit addressing is being used (SAC), or the first two clocks
after REQ64# assertion when 64 bit addressing is used (DAC). When REQ64#
is deasserted the AD[63::32] are pulled up by the central resource.

c. Data -- AD[31::00] are stable and valid regardless which byte lanes are involved
in the transaction on reads when TRDY# is asserted and on writes when IRDY#
is asserted. At any other time they may be indeterminate. The AD lines cannot
change until the current data phase completes once IRDY# is asserted on a write
transaction or TRDY# is asserted on a read transaction.

d. Data -- AD[63::32] are stable and valid regardless which byte lanes are involved
in the transaction when ACK64# is asserted and either TRDY# is asserted on
reads, or IRDY# is asserted on writes. At any other time they may be
indeterminate.

e. Data -- Special cycle command -- AD[31::00] are stable and valid regardless
which byte lanes are involved in the transaction when IRDY# is asserted.

f. Do not gate asynchronous data directly unto PCI while IRDY# is asserted on a
write transaction and while TRDY# is asserted on a read transaction.

245

Revision 2.1

3. Command/Byte enables are guaranteed to be stable at the specified clock edge as
follows:

a. Command -- C/BE[3::0]# are stable and valid the first time FRAME# is
sampled asserted and contain the command codes. C/BE[7::4]# are stable and
valid during the first clock after REQ64# assertion when 32-bit addressing is
being used (SAC) and are reserved. C/BE[7::4]# are stable and valid during the
the first two clocks after REQ64# assertion when 64-bit addressing is used
(DAC) and contain the actual bus command. When REQ64# is deasserted the
C/BE[7::4]# are pulled up by the central resource.

b Byte Enables -- C/BE[3::0]# are stable and valid the clock following the
address phase or each completed data phase and remain valid every clock during
the entire data phase regardless if wait states are inserted and and indicate which
byte lanes contain valid data. C/BE[7::4]# have the same meaning as
C/BE[3::0]# except they cover the upper 4 bytes when REQ64# is asserted.

4. PAR is stable and valid one clock following the valid time of AD[31::00]. PAR64
is stable and valid one clock following the valid time of AD[63::32].

5. IDSEL is only stable and valid the first clock FRAME# is sampled asserted when
the access is a configuration command. IDSEL is non-deterministic at any other
time.

6. RST#, INTA#, INTB#, INTC#, and INTD# are not qualified or synchronous.

Master Signals
7. A transaction starts when FRAME# is sampled asserted for the first time.

8. The following govern FRAME# and IRDY# in all PCI transactions.

a. FRAME# and its corresponding IRDY# define the Busy/Idle state of the bus;
when either is asserted the bus is busy; when both are deasserted, the bus is in
the Idle state.

b. Once FRAME# has been deasserted, it cannot be reasserted during the same
transaction.

c. FRAME# cannot be deasserted unless IRDY# is asserted. (IRDY# must always
be asserted on the first clock edge that FRAME# is deasserted.)

d. Once a master has asserted IRDY# it cannot change IRDY# or FRAME# until
the current data phase completes.

9. When FRAME# and IRDY# are deasserted, the transaction has ended.

10. When the current transaction is terminated by the target either by Retry or
Disconnect (with or without data) the master must deassert its REQ# signal before
repeating the transaction. The master must deassert REQ# for a minimum of two
clocks, one being when the bus goes to the Idle state (at the end of the transaction
where STOP# was asserted) and either the clock before or the clock after the Idle
state.

11. A master that is target terminated with Retry must unconditionally repeat the same
request until it completes, however, it is not required to repeat the transaction when
terminated with Disconnect.

246

Revision 2.1

Target Signals
12. The following general rules govern FRAME#, IRDY#, TRDY#, and STOP# while

terminating transactions.

a. A data phase completes on any rising clock edge on which IRDY# is asserted
and either STOP# or TRDY# is asserted.

b. Independent of the state of STOP#, a data transfer takes place on every rising
edge of clock where both IRDY# and TRDY# are asserted.

c. Once the target asserts STOP#, it must keep STOP# asserted until FRAME# is
deasserted, whereupon it must deassert STOP#.

d. Once a target has asserted TRDY# or STOP#, it cannot change DEVSEL#,
TRDY#, or STOP# until the current data phase completes.

e. Whenever STOP# is asserted, the master must deassert FRAME# as soon as
IRDY# can be asserted.

f. If not already deasserted, TRDY#, STOP#, and DEVSEL# must be deasserted
the clock following the completion of the last data phase and must be tri-stated
the next clock.

13. An agent claims to be the target of the access by asserting DEVSEL#.

14. DEVSEL# must be asserted with or prior to the edge at which the target enables its
outputs (TRDY#, STOP#, or (on a read) AD lines).

15. Once DEVSEL# has been asserted, it cannot be deasserted until the last data phase
has completed, except to signal Target-Abort.

Data Phases
16. The source of the data is required to assert its xRDY# signal unconditionally when

data is valid (IRDY# on a write transaction, TRDY# on a read transaction).

17. Data is transferred between master and target on each clock edge for which both
IRDY# and TRDY# are asserted.

18. Last data phase completes when:

a. FRAME# is deasserted and TRDY# is asserted (normal termination) or

b. FRAME# is deasserted and STOP# is asserted (target termination) or

c. FRAME# is deasserted and the device select timer has expired (Master-Abort)

d. DEVSEL# is deasserted and STOP# is asserted (Target-Abort).

19. Committing to complete a data phase occurs when the target asserts either TRDY#
or STOP#. The target commits to:

a. Transfer data in the current data phase and continue the transaction (if a burst) by
asserting TRDY# and not asserting STOP#.

b. Transfer data in the current data phase and terminate the transaction by asserting
both TRDY# and STOP#.

c. Not transfer data in the current data phase and terminate the transaction by
asserting STOP# and deasserting TRDY#.

247

Revision 2.1

d. Not transfer data in the current data phase and terminate the transaction with an
error condition (Target-Abort) by asserting STOP# and deasserting TRDY# and
DEVSEL#.

20. The target has not committed to complete the current data phase while TRDY# and
STOP# are both deasserted. The target is simply inserting wait states.

Arbitration
21. When FRAME# and IRDY# are deasserted and GNT# is asserted, the agent may

start an access.

22. The arbiter may deassert an agent’s GNT# on any clock.

23. Once asserted, GNT# may be deasserted according to the following rules.

a. If GNT# is deasserted and FRAME# is asserted on the same clock, the bus
transaction is valid and will continue.

b. One GNT# can be deasserted coincident with another GNT# being asserted if
the bus is not in the Idle state. Otherwise, a one clock delay is required between
the deassertion of a GNT# and the assertion of the next GNT# or else there may
be contention on the AD lines and PAR.

c. While FRAME# is deasserted GNT# may be deasserted at any time in order to
service a higher priority51 master, or in response to the associated REQ# being
deasserted.

24. When the arbiter asserts an agent’s GNT# and the bus is in the Idle state, that agent
must enable its AD[31::00], C/BE[3::0]#, and (one clock later) PAR output buffers
within eight PCI clocks (required), while two-three clocks is recommended.

Latency
25. All targets are required to complete the initial data phase of a transaction (read or

write) within 16 clocks from the assertion of FRAME#.

26. The target is required to complete a subsequent data phase within 8 clocks from the
completion of the previous data phase.

27. A master is required to assert its IRDY# within 8 clocks for any given data phase
(initial and subsequent).

Exclusive Access
28. Ownership of LOCK# maybe obtained when LOCK# is deasserted, the bus is Idle

and the agent’s GNT# is asserted.

29. LOCK# must be released when the master is terminated with Retry before data is
transferred.

30. LOCK# is owned and only driven by a single agent and may be retained when the
bus is released.

51 Higher priority here does not imply a fixed priority arbitration, but refers to the agent that would win
arbitration at a given instant in time.

248

Revision 2.1

31. A target that supports LOCK# on PCI must adhere to the following rules:

a. The target of an access locks itself when LOCK# is deasserted during the
address phase.

b. Once lock is established, the target remains locked until it samples both
FRAME# and LOCK# deasserted together or it signals Target-Abort.

c. Guarantee exclusivity to the owner of LOCK# (once lock is established) of a
minimum of 16 bytes (aligned) of the resource.52 This includes accesses that do
not originate on PCI for multiport devices.

32. A master that uses LOCK# on PCI must adhere to the following rules:

a. A master can access only a single resource during a lock operation.

b. A lock cannot straddle a device boundary.

c. Sixteen bytes (aligned) is the maximum resource size a master can count on as
being exclusive during a lock operation. An access to any part of the 16 bytes
locks the entire 16 bytes.

d. First transaction of lock operation must be a read transaction.

e. LOCK# must be asserted the clock following the address phase and kept
asserted to maintain control.

f. LOCK# must be released if Retry is signaled before a data phase has completed
and the lock has not been established.53

g. LOCK# must be released whenever an access is terminated by Target-Abort or
Master-Abort.

h. LOCK# must be deasserted for a minimum of one Idle cycle between
consecutive lock operations.

Device Selection
33. A target must do a full decode before driving/asserting DEVSEL#, or any other

target response signal.

34. A target must assert DEVSEL# (claim the transaction) before it is allowed to issue
any other target response.

35. In all cases except Target-Abort, once a target asserts DEVSEL# it must not deassert
DEVSEL# until FRAME# is deasserted (IRDY# is asserted) and the last data phase
has completed.

36. A PCI device is a target of a type 0 configuration command (read or write) only if its
IDSEL is asserted and AD[1::0] are "00” during the address phase of the command.

52 The maximum is the complete resource.

53 Once lock has been established, the master retains ownership of LOCK# when terminated with Retry
or Disconnect.

249

Revision 2.1

Parity
37. Parity is generated according to the following rules:

a. Parity is calculated the same on all PCI transactions regardless of the type or
form.

b. The number of "1"s on AD[31::00], C/BE[3::0]#, and PAR equals an even
number.

c. The number of "1"s on AD[63::32], C/BE[7::4]#, and PAR64 equals an even
number.

d. Generating parity is not optional; it must be done by all PCI-compliant devices.

38. Only the master of a corrupted data transfer is allowed to report parity errors to
software, using mechanisms other than PERR# (i.e., requesting an interrupt or
asserting SERR#).

250

Revision 2.1

Appendix D
Class Codes

This appendix describes the current Class Code encodings. This list may be enhanced at
any time. Companies wishing to define a new encoding should contact the PCI SIG. All
unspecified values are reserved for SIG assignment.

Base Class 00h

This base class is defined to provide backward compatibility for devices that were built
before the Class Code field was defined. No new devices should use this value and
existing devices should switch to a more appropriate value if possible.

For class codes with this base class value, there are two defined values for the remaining
fields as shown in the table below. All other values are reserved.

Base Class Sub-Class Interface Meaning

00h
00h 00h All currently implemented devices

except VGA-compatible devices.
01h 00h VGA-compatible device.

Base Class 01h

This base class is defined for all types of mass storage controllers. Several sub-class
values are defined. The IDE controller class is the only one that has a specific register-
level programming interface defined.

Base Class Sub-Class Interface Meaning
00h 00h SCSI bus controller.
01h xxh IDE controller (see below).

01h 02h 00h Floppy disk controller.
03h 00h IPI bus controller.
04h 00h RAID controller.
80h 00h Other mass storage controller.

251

Revision 2.1

Figure D-1: Programming Interface Byte Layout for IDE Controller Class Code

The SIG document PCI IDE Controller Specification completely describes the layout
and meaning of bits 0 thru 3 in the Programming Interface byte. The document Bus
Master Programming Interface for IDE ATA Controllers describes the meaning of bit 7
in the Programming Interface byte. This document can be obtained via FAX by calling
(408)741-1600 and requesting document 8038.

Base Class 02h

This base class is defined for all types of network controllers. Several sub-class values
are defined. There are no register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h Ethernet controller.

02h 01h 00h Token Ring controller.
02h 00h FDDI controller.
03h 00h ATM controller.
80h 00h Other network controller.

Base Class 03h

This base class is defined for all types of display controllers. For VGA devices (Sub-
Class 00h), the programming interface byte is divided into a bit field that identifies
additional video controller compatibilities. A device can support multiple interfaces by
using the bit map to indicate which interfaces are supported. For the XGA devices (Sub-
Class 01h), only the standard XGA interface is defined.

Base Class Sub-Class Interface Meaning
00000000b VGA-compatible controller. Memory

addresses 0A0000h thru 0BFFFFh.
I/O addresses 3B0h to 3BBh and
3C0h to 3DFh and all aliases of these
addresses.

03h 00h 00000001b 8514-compatible controller -- 2E8h
and its aliases, 2EAh-2EFh.

01h 00h XGA controller.
80h 00h Other display controller.

252

Revision 2.1

Base Class 04h

This base class is defined for all types of multimedia devices. Several sub-class values
are defined. There are no register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h Video device.

04h 01h 00h Audio device.
80h 00h Other multimedia device.

Base Class 05h

This base class is defined for all types of memory controllers (refer to Section 6.2.5.3).
Several sub-class values are defined. There are no register-level programming interfaces
defined.

Base Class Sub-Class Interface Meaning
00h 00h RAM.

05h 01h 00h Flash.
80h 00h Other memory controller.

Base Class 06h

This base class is defined for all types of bridge devices. A PCI bridge is any PCI device
that maps PCI resources (memory or I/O) from one side of the device to the other.
Several sub-class values are defined. There are no register-level programming interfaces
defined.

Base Class Sub-Class Interface Meaning
00h 00h Host bridge.
01h 00h ISA bridge.
02h 00h EISA bridge.

06h 03h 00h MCA bridge.
04h 00h PCI-to-PCI bridge.
05h 00h PCMCIA bridge.
06h 00h NuBus bridge.
07h 00h CardBus bridge.
80h 00h Other bridge device.

253

Revision 2.1

Base Class 07h

This base class is defined for all types of simple communications controllers. Several
sub-class values are defined, some of these having specific well-known register-level
programming interfaces.

Base Class Sub-Class Interface Meaning
00h Generic XT-compatible serial

controller.
00h 01h 16450-compatible serial controller.

02h 16550-compatible serial controller.
07h 00h Parallel port.

01h 01h Bidirectional parallel port.
02h ECP 1.X compliant parallel port.

80h 00h Other communications device.

Base Class 08h

This base class is defined for all types of generic system peripherals. Several sub-class
values are defined, each of these having a specific well-known register-level
programming interface.

Base Class Sub-Class Interface Meaning
00h Generic 8259 PIC.

00h 01h ISA PIC.
02h EISA PIC.
00h Generic 8237 DMA controller.

01h 01h ISA DMA controller.
08h 02h EISA DMA controller.

00h Generic 8254 system timer
02h 01h ISA system timer.

02h EISA system timers (two timers).
03h 00h Generic RTC controller.

01h ISA RTC controller.
80h 00h Other system peripheral.

Base Class 09h

This base class is defined for all types of input devices. Several sub-class values are
defined. No specific register-level programming interfaces are defined.

Base Class Sub-Class Interface Meaning
00h 00h Keyboard controller.

09h 01h 00h Digitizer (pen).
02h 00h Mouse controller.
80h 00h Other input controller.

254

Revision 2.1

Base Class 0Ah

This base class is defined for all types of docking stations. No specific register-level
programming interfaces are defined.

Base Class Sub-Class Interface Meaning
0Ah 00h 00h Generic docking station.

80h 00h Other type of docking station.

Base Class 0Bh

This base class is defined for all types of processors. Several sub-class values are
defined corresponding to different processor types or instruction sets. There are no
specific register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h 386.
01h 00h 486.

0Bh 02h 00h Pentium.
10h 00h Alpha.
20h 00h PowerPC.
40h 00h Co-processor.

Base Class 0Ch

This base class is defined for all types of serial bus controllers. Several sub-class values
are defined. There are no specific register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00 00h FireWire (IEEE 1394).

0Ch 01h 00h ACCESS.bus.
02h 00h SSA.
03h 00h Universal Serial Bus (USB).
04h 00h Fibre Channel.

255

Revision 2.1

256

Revision 2.1

Appendix E
System Transaction Ordering

Many programming tasks, especially those controlling intelligent peripheral devices
common in PCI systems, require specific events to occur in a specific order. If the
events generated by the program do not occur in the hardware in the order intended by
the software, a peripheral device may behave in a totally unexpected way. PCI
transaction ordering rules are written to give hardware the flexibility to optimize
performance by rearranging certain events which do not affect device operation, yet
strictly enforce the order of events that do affect device operation.

One performance optimization that PCI systems are allowed to do is the posting of
memory write transactions. Posting means the transaction is captured by an intermediate
agent; e.g., a bridge from one bus to another, so that the transaction completes at the
source before it actually completes at the intended destination. This allows the source to
proceed with the next operation while the transaction is still making its way through the
system to its ultimate destination.

While posting improves system performance, it complicates event ordering. Since the
source of a write transaction proceeds before the write actually reaches its destination,
other events that the programmer intended to happen after the write, may happen before
the write. Many of the PCI ordering rules focus on posting buffers, requiring them to be
flushed to keep this situation from causing problems.

If the buffer flushing rules are not written carefully, however, deadlock can occur. The
rest of the PCI transaction ordering rules prevent the system buses from deadlocking
when posting buffers must be flushed.

The focus of the remainder of this appendix is on a PCI-to-PCI bridge. This allows the
same terminology to be used to describe a transaction initiated on either interface and is
easier to understand. To apply these rules to other bridges, replace a PCI transaction
type with its equivalent transaction type of the host bus (or other specific bus). While
the discussion focuses on a PCI-to-PCI bridge, the concepts can be applied to all bridges.

257

Revision 2.1

The ordering rules for a specific implementation may vary. This appendix covers the
rules for all accesses traversing a bridge assuming that the bridge can handle multiple
transactions at the same time in each direction. Simpler implementations are possible
but are not discussed here.

Producer - Consumer Ordering Model
The Producer - Consumer model for data movement between two masters is an example
of a system that would require this kind of ordering. In this model, one agent, the
Producer, produces or creates the data and another agent, the Consumer, consumes or
uses the data. The Producer and Consumer communicate between each other via a flag
and a status element. The Producer sets the flag when all the data has been written and
then waits for a completion status code. The Consumer waits until it finds the flag set,
then it resets the flag, consumes the data, and writes the completion status code. When
the Producer finds the completion status code, it clears it and the sequence repeats.
Obviously, the order in which the flag and data are written is important. If some of the
Producer’s data writes were posted, then without buffer-flushing rules it might be
possible for the Consumer to see the flag set before the data writes had completed. The
PCI ordering rules are written such that no matter which writes are posted, the Consumer
can never see the flag set and read the data until the data writes are finished. This
specification refers to this condition as “having a consistent view of data.” Notice that if
the Consumer were to pass information back to the Producer in addition to the status
code, the order of writing this additional information and the status code becomes
important, just as it was for the data and flag.

In practice, the flag might be a doorbell register in a device or it might be a main-
memory pointer to data located somewhere else in memory. And the Consumer might
signal the Producer using an interrupt or another doorbell register, rather than having the
Producer poll the status element. But in all cases the basic need remains the same, the
Producer’s writes to the data area must complete before the Consumer observes that the
flag has been set and reads the data.

This model allows the data, the flag, the status element, the Producer, and the Consumer
to reside anywhere in the system. Each of these can reside on different buses and the
ordering rules maintain a consistent view of the data. For example, in Figure E-1 the
agent producing the data, the flag, and the status element reside on Bus 1, while the
actual data and the Consumer of the data both reside on Bus 0. The Producer writes the
last data and the PCI-to-PCI bridge between Bus 0 and 1 completes the access by posting
the data. The Producer of the data then writes the flag changing its status to indicate that
the data is now valid for the Consumer to use. In this case, the flag has been set before
the final datum has actually been written (to the final destination). PCI ordering rules
require that, when the Consumer of the data reads the flag (to determine if the data is
valid), the read causes the PCI-to-PCI bridge to flush the posted write data to the final
destination before completing the read. When the Consumer determines the data is valid
by checking the flag, the data is actually at the final destination.

258

Revision 2.1

PCI-PCI
Bridge

Producer Flag

PCI Bus 1

PCI Bus 0

Consumer Data

Status

Figure E-1: Example Producer - Consumer Model

The ordering rules lead to the same results regardless of where the Producer, the
Consumer, the data, the flag, and the status element actually reside. The data is always
at the final destination before the flag can be read by the Consumer. This is true even
when all five reside on different bus segments of the system. In one configuration, the
data will be forced to the final destination when the flag is read by the Consumer. In
another configuration, the read of the flag occurs without forcing the data to its final
destination; however, the read request of the actual data pushes the final datum to the
final destination before completing the read.

A system may have multiple Producer - Consumer pairs operating simultaneously, with
different data - flag - status sets located all around the system. But since only one
Producer can write to a single data - flag set, there are no ordering requirements between
different masters. Writes from one master on one bus may occur in one order on one
bus, with respect to another master’s writes and occur in another order on another bus.
In this case, the rules allow for some writes to be rearranged; for example, an agent on
Bus 1 may see Transaction A from a master on Bus 1 complete first, followed by
Transaction B from another master on Bus 0. An agent on Bus 0 may see Transaction B
complete first followed by Transaction A. Even though the actual transactions complete
in a different order, this causes no problem since the different masters must be addressing
different data - flag sets.

259

Revision 2.1

Summary of PCI Ordering Rules

Following is a summary of the general PCI ordering rules presented in Section 3.2.5.
These rules apply to all PCI transactions, whether they are handled by a target or bridge
as Delayed Transactions or not.

General Rules

1. The order of a transaction is determined when it completes. Transactions terminated
with Retry are only requests, and can be handled by the system in any order.

2. Memory writes can be posted in both directions in a bridge. I/O and Configuration
writes are not posted. (I/O writes can be posted in the host bridge, but some
restrictions apply.) Read transactions (Memory, I/O, or Configuration) are not
posted.

3. Posted memory writes moving in the same direction through a bridge will complete
on the destination bus in the same order they complete on the originating bus.

4. Write transactions crossing a bridge in opposite directions have no ordering
relationship.

5. A read transaction must push ahead of it through the bridge any posted writes
originating on the same side of the bridge and posted before the read. Before the
read transaction can complete on its originating bus, it must pull out of the bridge
any posted writes that originated on the opposite side and were posted before the
read command completes on the read-destination bus

6. A device can never make the acceptance (posting) of a memory write transaction as a
target contingent on the prior completion of a non-posted transaction as a master.
Otherwise a deadlock may occur.

Following is a summary of the PCI ordering rules specific to Delayed Transactions,
presented in Section 3.3.3.3.

Delayed Transaction Rules

1. A target that uses Delayed Transactions may be designed to have any number of
Delayed Transactions outstanding at one time.

2. Only non-posted transactions can be handled as Delayed Transactions.

3. A master must repeat any transaction terminated with Retry since the target may be
using a Delayed Transaction.

4. Once a Delayed Request has been attempted on the destination bus, it must continue
to be repeated until it completes on the destination bus. Until that time, it is only a
request and may be discarded at anytime.

5. A Delayed Completion can only be discarded when it is a read from a prefetchable
region, or if the master has not repeated the transaction in 215 clocks.

6. A target must accept all memory writes addressed to it while completing a request
using Delayed Transaction termination.

260

Revision 2.1

7. Delayed Requests and Delayed Completions have no ordering requirements with
respect to themselves or each other. Only a Delayed Write Completion can pass a
Posted Memory Write. A Posted Memory Write must be given an opportunity to
pass everything accept another Posted Memory Write.

8. A single master may have any number of outstanding request terminated with Retry.
However, if a master requires one transaction to be completed before another, it
cannot attempt the second one on PCI until the first one has completed.

Ordering of Requests

A transaction is considered to be a request when it is presented on the bus. When the
transaction is terminated with Retry it is still considered a request. A transaction
becomes complete or a completion when data actually transfers (or is terminated with
Master-Abort or Target-Abort). The following discussion will refer to transactions as
being a request or completion depending on the success of the transaction.

A transaction that is terminated with Retry has no ordering relationship with any other
access. Ordering of accesses is only determined when an access completes (transfers
data). For example, four masters A, B, C, and D reside on the same bus segment and all
desire to generate an access on the bus. For this example, each agent can only request a
single transaction at a time and will not request another until the current access
completes. The order in which transactions complete is based on the algorithm of the
arbiter and the response of the target not the order in which each agent’s REQ# signal
was asserted. Assuming that some requests are terminated with Retry, the order in which
they complete is independent of the order they were first requested. By changing the
arbiter’s algorithm, the completion of the transactions can be any sequence (i.e., A, B, C,
and then D or B, D, C, and then A, and so on). Because the arbiter can change the order
in which transactions are requested on the bus, and, therefore, the completion of such
transactions, the system is allowed to complete them in any order it desires. This means
that a request from any agent has no relationship with a request from any other agent.
The only exception to this rule is when LOCK# is used, which is described later.

Take the same four masters (A, B, C, and D) used in the previous paragraph and
integrate them onto a single piece of silicon (a multi-function device). For a multi-
function device, the four masters operate independent of each other and each function
only present a single request on the bus for this discussion. The order their requests
complete is the same as if they where separate agents and not a multi-function device,
which is based on the arbitration algorithm. Therefore, multiple requests from a single
agent may complete in any order since they have no relationship to each other.

Another device, not a multi-function device, has multiple internal resources that can
generate transactions on the bus. If these different sources have some ordering
relationship, then the device must ensure that only a single request is presented on the
bus at any one time. The agent must not attempt a subsequent transaction until the
previous transaction completes. For example, a device has two transactions to complete
on the bus, Transaction A and Transaction B. Where A must complete before B to
preserve internal ordering requirements. In this case, the master cannot attempt B until A
has completed.

261

Revision 2.1

The following example would produce inconsistent results if it were allowed to occur.
Transaction A is to a flag that covers data and Transaction B accesses the actual data
covered by the flag. Transaction A is terminated with Retry because the addressed target
is currently busy or resides behind a bridge. Transaction B is to a target that is ready and
will complete the request immediately. Consider what happens when these two
transactions are allowed to complete in the wrong order. If the master allows
Transaction B to be presented on the bus after Transaction A was terminated with Retry,
Transaction B can complete before Transaction A. In this case, the data may be accessed
before it is actually valid. The responsibility to prevent this from occurring rests with the
master which must block Transaction B from being attempted on the bus until
Transaction A completes. A master presenting multiple transactions on the bus must
ensure that subsequent requests (that have some relationship to a previous request) are
not presented on the bus until the previous request has completed. The system is allowed
to complete multiple requests from the same agent in any order. When a master allows
multiple requests to be presented on the bus without completing, it must repeat each
request independent of how any of the other requests complete.

Ordering of Delayed Transactions

A Delayed Transaction progresses to completion in three phases:

1. Request by the master.

2. Completion of the request by the target.

3. Completion of the transaction by the master.

During the first phase, the master generates a transaction on the bus, the target decodes
the access, latches the information required to complete the access, and terminates the
request with Retry. The latched request information is referred to as a Delayed Request.
During the second phase, the target independently completes the request on the
destination bus using the latched information from the Delayed Request. The result of
completing the Delayed Request on the destination bus produces a Delayed Completion,
which consists of the latched information of the Delayed Request and the completion
status (and data if a read request). During the third phase, the master successfully
rearbitrates for the bus and reissues the original request. The target decodes the request
and gives the master the completion status (and data if a read request). At this point, the
Delayed Completion is retired and the transaction has completed.

The number of simultaneous Delayed Transactions a bridge is capable of handling is
limited by the implementation and not by the architecture. Table E-1 represents the
ordering rules when a bridge in the system is capable of allowing multiple transactions to
proceed in each direction at the same time. Each column of the table represents an
access that was accepted by the bridge earlier, while each row represents a transaction
just accepted. The contents of the box indicate what ordering relationship the second
transaction must have to the first.

PMW - Posted Memory Write is a transaction that has completed on the originating bus
before completing on the destination bus and can only occur for Memory Write and
Memory Write and Invalidate commands.

262

Revision 2.1

DRR - Delayed Read Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be a I/O Read, Configuration Read,
Memory Read, Memory Read Line or Memory Read Multiple commands. As mentioned
earlier, once a request has been attempted on the destination bus, it must continue to be
repeated until it completes on the destination bus. Until that time, the DRR is only a
request and may be discarded at anytime to prevent deadlock or improve performance
since the master must repeat the request later.

DWR - Delayed Write Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be a I/O Write or Configuration Write
commands. Note: Memory Write and Memory Write and Invalidate commands must be
posted (PMW) and not be completed as DWR. As mentioned earlier, once a request has
been attempted on the destination bus, it must continue to be repeated until it completes.
Until that time, the DWR is only a request and may be discarded at anytime to prevent
deadlock or improve performance since the master must repeat the request later.

DRC - Delayed Read Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus to complete. The DRC contains the
data requested by the master and the status of the target (normal, Master-Abort, Target-
Abort, parity error, etc.)

DWC - Delayed Write Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus. The DWC does not contain the data
of the access but only status of how it completed (Normal, Master-Abort, Target-Abort,
parity error, etc.). The write data has been written to the specified target.

No - indicates that the subsequent transaction is not allowed to complete before the
previous transaction to preserve ordering in the system. The four No boxes are found in
column 2 prevent PMW data from being passed by other accesses and thereby maintain a
consistent view of data in the system.

Yes - indicates that the subsequent transaction must be allowed to complete before the
previous one or a deadlock can occur. The four Yes boxes are found in row 1 and
prevent deadlocks from occurring when Delayed Transactions are used with devices
designed to an earlier version of this specification. For example, a Posted Memory Write
(PMW) transaction is being blocked by a Delayed Read Completion (DRC) or a Delayed
Write Completion (DWC). When blocking occurs, the PMW is required to pass the
DRC or the DWC. If the master continues attempting to complete Delayed Requests, it
must be fair in attempting to complete the PMW. There is no ordering violation when
these subsequent transactions complete before a prior transaction.

Yes/No - indicates that the bridge designer may choose to allow the subsequent
transaction to complete before the previous transaction or not. This is allowed since there
are no ordering requirements to meet or deadlocks to avoid. How a bridge designer
chooses to implement these boxes may have a cost impact on the bridge implementation
or performance impact on the system.

263

Revision 2.1

Table E-1: Ordering Rules for a Bridge

Row pass Col.?
PMW
(Col 2)

DRR
(Col 3)

DWR
(Col 4)

DRC
(Col 5)

DWC
(Col 6)

PMW (Row 1) No1 Yes5 Yes6 Yes7 Yes8

DRR (Row 2) No2 Yes/No Yes/No Yes/No Yes/No

DWR (Row 3) No3 Yes/No Yes/No Yes/No Yes/No

DRC (Row 4) No4 Yes/No Yes/No Yes/No Yes/No

DWC (Row 5) Yes/No Yes/No Yes/No Yes/No Yes/No

Col 2, Row 1 (Rule 1) -- A subsequent PMW cannot pass a previously accepted
PMW. Posted Memory write transactions must complete in the order they are
received. If the subsequent write is to the flag that covers the data, stale data may be
used by the Consumer if the writes are allowed to pass each other.

Col 2, Row 2 (Rule 2) -- A read transaction must push posted write data to maintain
ordering. For example, a memory write to a location and followed by an immediate
memory read of the same location returns the new value (refer to Section 3.10 item 6
for possible exceptions). Therefore, a memory read cannot pass posted write data.
An I/O read cannot pass a PMW because the read may be ensuring the write data
arrives at the final destination.

Col 2, Row 3 (Rule 3) -- A Delayed Write Request may be the flag that covers the
data previously written (PMW) and therefore cannot pass data that it potentially
covers.

Col 2, Row 4 (Rule 4) -- A read transaction must pull write data back to the
originating bus of the read transaction. For example, the read of a status register of
the device writing data to memory must not complete before the data is pulled back
to the originating bus otherwise stale data may be used.

Col 2, Row 5 -- There are no ordering requirements for this case. If the DWC is
allowed to pass a PMW or if it remains in the same order, there is no deadlock or
data inconsistencies in either case. The DWC data and the PMW data are moving in
opposite directions, initiated by masters residing on different buses accessing targets
on different buses.

Cols 3 and 4 -- The third and fourth columns are requests. Since requests have no
ordering relationship with any other request that has been presented on the bus, there
are no ordering requirements between them. Therefore, these two columns are don’t
cares, except the first row. The designer can (for performance or cost reasons) allow
or disallow other transactions to pass requests that have been enqueued.

Col 3 and 4, Row 1 (Rules 5 and 6) -- These boxes are required to be Yes to prevent
deadlocks. The deadlock can occur when bridges that support Delayed Transactions
are used with bridges that do not support Delayed Transactions.

264

Revision 2.1

Referring to Figure E-2, the deadlock occurs when Bridge Y (using Delayed
Transactions) is between Bridges X and Z (designed to a previous version of this
specification and not using Delayed Transactions). Master 1 initiates a read to
Target 1 that is forwarded through Bridge X and is queued as a Delayed Request in
Bridge Y. Master 3 initiates a read to Target 3 that is forwarded through Bridge Z
and is queued as a Delayed Request in Bridge Y. After Masters 1 and 3 are
terminated with Retry, Masters 2 and 4 begin long memory write transactions
addressing Targets 2 and 4 respectively, which are posted in the write buffers of
Bridges X and Z respectively. When Bridge Y attempts to complete the read in
either direction, Bridges X and Z must flush their posted write buffers before
allowing the Read Request to pass through it.

If the posted write buffers of Bridges X and Z are larger than those of Bridge Y,
Bridge Y’s buffers will fill. If posted write data is not allowed to pass the DRR, the
system will deadlock. Bridge Y cannot discard the read request since it has been
attempted and it cannot accept any more write data until the read in the opposite
direction is completed. Since this condition exists in both directions, neither DRR
can complete because the other is blocking the path. Therefore, the PMW data is
required to pass the DRR when the DRR blocks forward progress of PMW data. The
same condition exists when a DWR sits at the head of both queues, since some old
bridges also require the posting buffers to be flushed on a non-posted write cycle.

Col 5 and 6 -- The fifth and sixth columns are Delayed Transactions that have
completed on the destination bus and are moving toward the originating bus. Except
for the first row all, other rows are either requests or completions of requests and,
therefore, have no ordering associated with them. Because of this the system can
allow other accesses to pass them if an advantage in cost or performance can be had.

Col 5 and 6, Row 1 (Rules 7 and 8) -- These boxes are required to be Yes to prevent
deadlocks. This deadlock can also occur in the system configuration in Figure E-2.
In this case, however, a DRC sits at the head of the queues in both directions of
Bridge Y at the same time. Again the old bridges (X and Z) contain posted write
data from another master. The problem in this case, however, is that the read
transaction cannot be repeated until all the posted write data is flushed out of the old
bridge and the master is allowed to repeat its original request. Eventually, the new
bridge cannot accept any more posted data because its internal buffers are full and it
cannot drain them until the DRC at the other end completes. When this condition
exists in both directions, neither DRC can complete because the other is blocking the
path. Therefore, the PMW data is required to pass the DRC when the DRC blocks
forward progress of PMW data. The same condition exists when a DWC sits at the
head of both queues.

265

Revision 2.1

PCI-PCI
Bridge Y

(pre 2.1)

Master 2

PCI Bus N

PCI-PCI
Bridge X

Master 1 Target 3

(Rev. 2.1)

Master 3

PCI Bus P

PCI-PCI
Bridge Z

Master 4Target 2

(pre 2.1)

Target 1

Target 4

Figure E-2: Example System with PCI-to-PCI Bridges

Delayed Transactions and LOCK#
The bridge is required to support LOCK# when a transaction is initiated on its primary
bus (and is using the lock protocol) but is not required to support LOCK# on
transactions that are initiated on its secondary bus. When a locked transaction is initiated
on the primary bus, where the bridge is the target, the bridge must adhere to the lock
semantics defined by this specification. The bridge is required to complete (push) all
PMWs (accepted from the primary bus) onto the secondary bus before attempting the
lock on the secondary bus. The bridge may discard any requests enqueued, allow the
locked transaction to pass the enqueued requests, or simply complete all enqueued
transactions before attempting the locked transaction on the secondary interface. Once a
locked transaction has been enqueued by the bridge, the bridge cannot accept any other
transaction from the primary interface until the lock has completed except for a
continuation of the lock itself by the lock master. Until the lock is established on the
secondary interface, the bridge is allowed to continue enqueuing transactions from the
secondary interface, but not the primary interface. Once lock has been established on the
secondary interface, the bridge cannot accept any posted write data moving toward the
primary interface until LOCK# has been released (FRAME# and LOCK# deasserted on
the same rising clock edge). (In the simplest implementation, the bridge does not accept
any other transactions in either direction once lock is established on the secondary bus,
except for locked transactions from the lock master.) The bridge must complete PMW,
DRC, and DWC transactions moving toward the primary bus before allowing the locked
access to complete on the originating bus. The proceeding rules are sufficient for
deadlock free operation. However, an implementation may be more or less restrictive,
but, in all, cases must ensure deadlock free operation.

266

Revision 2.1

Error Conditions
A bridge is free to discard data or status of a transaction that was completed using
Delayed Transaction termination when the master has not repeated the request within 210

PCI clocks (about 30 µs). However, it is recommended that the bridge not discard the
transaction until 215 PCI clocks (about 983 µs) after it acquired the data or status. The
shorter number is useful in system where a master designed to a previous version of this
specification frequently fails to repeat a transaction exactly as first requested. In this
case, the bridge may be programmed to discard the abandoned Delayed Completion early
and allow other transactions to proceed. Normally, however, the bridge would wait the
longer time, in case the repeat of the transaction is being delayed by another bridge or
bridges designed to a previous version of this specification that did not support Delayed
Transactions.

When this timer (referred to as the Discard Timer) expires, the device is required to
discard the data; otherwise, a deadlock may occur.

Note: When the transaction is discarded, data may be destroyed. This
occurs when the discarded Delayed Completion is a read to a non-
prefetchable region.

When the Discard Timer expires, the device may choose to report or ignore the error.
When the data is prefetchable, it is recommended that the device ignore the error since
system integrity is not affected. However, when the data is not prefetchable, it is
recommended that the device report the error to its device driver since system integrity is
affected. A bridge may assert SERR# since it does not have a device driver.

267

Revision 2.1

268

Revision 2.1

Glossary

64-bit extension A group of PCI signals that support a 64-bit data path.

Address Spaces A reference to the three separate physical address
regions of PCI: Memory, I/O, and Configuration.

add-in board A circuit board that plugs into a motherboard and
provides added functionality.

agent An entity that operates on a computer bus.

arbitration latency The time that the master waits after having asserted
REQ# until it receives GNT# and the bus returns to
the idle state after the previous master’s transaction.

backplate The metal plate used to fasten an expansion board to
the system chassis.

BIST register An optional register in the header region used for
control and status of built-in self tests.

bridge The logic that connects one computer bus to another,
allowing an agent on one bus to access an agent on
the other.

burst transfer The basic bus transfer mechanism of PCI. A burst is
comprised of an address phase and one or more data
phases.

bus commands Signals used to indicate to a target the type of
transaction the master is requesting.

bus device A bus device can be either a bus master or target:

• master -- drives the address phase and transaction
boundary (FRAME#). The master initiates a
transaction and drives data handshaking (IRDY#)
with the target

• target -- claims the transaction by asserting
DEVSEL# and handshakes the transaction
(TRDY#) with the initiator.

269

Revision 2.1

central resources Bus support functions supplied by the host system,
typically in a PCI compliant bridge or standard
chipset.

clean snoop A snoop that does not result in a cache providing
modified data.

command See bus command.

Configuration Address Space A set of 64 registers (DWORDS) used for
configuration, initialization, and catastrophic error
handling. This address space consists of two regions:
a header region and a device-dependent region.

configuration cycle Bus cycles used for system initialization and
configuration via the configuration address space.

DAC Dual address cycle. A PCI transaction where a 64-bit
address is transferred across a 32-bit data path in two
clock cycles. See also SAC.

Delayed Transaction The process of a target latching a request and
completing it after the master was terminated with
Retry.

device dependent region The last 48 DWORDS of the PCI configuration space.
The contents of this region are not described in this
document.

DWORD A 32-bit block of data.

EISA Extended Industry Standard Architecture expansion
bus, based on the IBM PC AT bus, but extended to 32
bits of address and data.

expansion board See add-in board.

green machine A system designed for minimum power consumption.

header region The first 16 DWORDS of the PCI configuration
space. The header region consists of fields that
uniquely identify a PCI device and allow the device to
be generically controlled.
See also device dependent region.

hidden arbitration Arbitration that occurs during a previous access so
that no PCI bus cycles are consumed by arbitration,
except when the bus is idle.

host bus bridge A low latency path through which the processor may
directly access PCI devices mapped anywhere in the
memory, I/O, or configuration address spaces.

Idle state Any clock period that the bus is idle (FRAME# and
IRDY# deasserted).

ISA Industry Standard Architecture expansion bus built
into the IBM PC AT computer.

keepers Another name for pullup resistors that are only used
to sustain a signal state.

270

Revision 2.1

latency See arbitration latency, master data latency, target
initial latency, target subsequent latency.

Latency Timer A mechanism for ensuring that a bus master does not
extend the access latency of other masters beyond a
specified value.

livelock A condition in which two or more operations require
completion of another operation before they can
complete.

master An agent that initiates a bus transaction.

Master-Abort A termination mechanism that allows a master to
terminate a transaction when no target responds.

master data latency The number of PCI clocks until IRDY# is asserted
from FRAME# being asserted for the first data phase,
or from the end of the previous data phase.

MC The Micro Channel architecture expansion bus as
defined by IBM for its PS/2 line of personal
computers.

motherboard A circuit board containing the basic functions (e.g.,
CPU, memory, I/O, and expansion connectors) of a
computer.

NMI Non-maskable interrupt.

operation A logical sequence of transactions, e.g., Lock.

output driver An electrical drive element (transistor) for a single
signal on a PCI device.

PCI connector An expansion connector that conforms to the
electrical and mechanical requirements of the PCI
local bus standard.

PCI device A device (electrical component) conforms to the PCI
specification for operation in a PCI local bus
environment.

PGA Pin grid array component package.

phase One or more clocks in which a single unit of
information is transferred, consisting of:

• an address phase (a single address transfer in one
clock for a single address cycle and two clocks for
a dual address cycle)

• a data phase (one transfer state plus zero or more
wait states)

positive decoding A method of address decoding in which a device
responds to accesses only within an assigned address
range. See also subtractive decoding.

POST Power-on self test. A series of diagnostic routines
performed when a system is powered up.

271

Revision 2.1

pullups Resistors used to insure that signals maintain stable
values when no agent is actively driving the bus.

SAC Single address cycle. A PCI transaction where a
32-bit address is transferred across a 32-bit data path
in a single clock cycle. See also DAC.

shared slot An arrangement on a PCI motherboard that allows a
PCI connector to share the system bus slot nearest the
PCI bus layout with an ISA, EISA, or MC bus
connector. In an MC system, for example, the shared
slot can accommodate either an MC expansion board
or a PCI expansion board.

sideband signals Any signal not part of the PCI specification that
connects two or more PCI-compliant agents, and has
meaning only to those agents.

Special Cycle A message broadcast mechanism used for
communicating processor status and/or (optionally)
logical sideband signaling between PCI agents.

stale data Data in a cache-based system that is no longer valid
and, therefore, must be discarded.

stepping The ability of an agent to spread assertion of qualified
signals over several clocks.

subtractive decoding A method of address decoding in which a device
accepts all accesses not positively decoded by another
agents. See also positive decoding.

target An agent that responds (with a positive
acknowledgment by asserting DEVSEL#) to a bus
transaction initiated by a master.

Target-Abort A termination mechanism that allows a target to
terminate a transaction in which a fatal error has
occurred, or to which the target will never be able to
respond.

target initial latency The number of PCI clocks that the target takes to
assert TRDY# for the first data transfer.

target subsequent latency The number of PCI clocks that the target takes to
assert TRDY# from the end of the previous data
phase of a burst.

termination A transaction termination brings bus transactions to
an orderly and systematic conclusion. All
transactions are concluded when FRAME# and
IRDY# are deasserted (an idle cycle). Termination
may be initiated by the master or the target.

transaction An address phase plus one or more data phases.

transfer state Any bus clock, during a data phase, in which data is
transferred.

272

Revision 2.1

turnaround cycle A bus cycle used to prevent contention when one
agent stops driving a signal and another agent begins
driving it. A turnaround cycle must last one clock
and is required on all signals that may be driven by
more than one agent.

wait state A bus clock in which no transfer occurs.

273

Revision 2.1

274

Revision 2.1

Index

B5V to 3.3V transition, 119, 157
Base Address register64-bit addressing, 112

expansion ROM, 19864-bit bus extension, 108
I/O space, 19664-bit bus extension pins, 16
Memory space, 19666 MHz PCI specification, 219-32

broadcast mechanism, 8166MHZ_CAPABLE flag, 192, 220
Built-in Self Test (BIST) register, 19466MHZ_ENABLE pin, 16, 221
burst, 25

A bus commands

Configuration Read, 22ACK64#, 16, 108, 141, 148
Configuration Write, 22Acknowledge 64-bit Transfer, 16
Dual Address Cycle, 23AD[1::0], 27, 29
I/O Read, 22AD[31::00], 9
I/O Write, 22AD[63::32], 16, 108, 123, 128, 141
Interrupt Acknowledge, 21address and data pins, 9, 16
Memory Read, 22address decoding, 26
Memory Read Line, 23address map, 196
Memory Read Multiple, 22address phase, 25
Memory Write, 22address pins, 16
Memory Write and Invalidate, 23address stepping, 83
pins, 16arbitration, 55
Special Cycle, 22latency, 61, 68-72
usage rules, 23parking, 61

pins, 11

protocol, 57

 275

Revision 2.1

bus driving, 30 component electrical specification

bus transaction, 35 3.3V ac, 129

byte merging, 33 3.3V dc, 128

cacheline merging, 34 5V ac, 124

collapsing, 34 5V dc, 123

combining, 33 component pin-out, 137

Delayed, 49-55 Configuration Cycle, 84-94

ordering, 30-32 configuration mechanism #1, 89

read, 36 configuration mechanism #2, 91

termination, 38 Configuration Read, 22

write, 37 Configuration Space Enable (CSE) register,
91byte enables, 16
Configuration Space functions

C Built-in Self Test (BIST), 194

cache line size, 193
C/BE[3::0]#, 9

cacheline size, 193
C/BE[7::4]#, 16, 108, 123, 128, 141

device control, 190
cache coherency, 79

Command register, 190
Cache Line Size register, 193

device identification, 188
cache states, 102

Class Code, 189
CLEAN, 102

Device ID, 188
HITM, 103

Header Type, 188
STANDBY, 102

Revision ID, 188
timing diagrams, 103

Vendor ID, 188
transitions, 103

device status, 191
cache support, 100

interrupt line routing information, 195
cache support pins, 14

interrupt pin usage, 195
cacheable memory controller, 101

Latency Timer, 193, 195
Cacheline Size register, 28

Status register, 191
central resource functions, 19

Configuration Space header, 186
Class Code, 189

Configuration Write, 22
CLK, 8, 154

connector pinout, 145-48
CLKRUN#, 15

clock, 132, 224, 228

Command register, 189

complete bus lock, 80

276

Revision 2.1

connector(expansion board) DEVSEL#, 11, 80, 141

physical description Disconnect, 41, 44

3.3V/32-bit card, 178 Dual Address Cycle (DAC), 23, 112

3.3V/64-bit card, 178

E5V/32-bit card, 177

5V/64-bit card, 177 electrical specification

edge connector contacts, 180 3.3V components

Universal 32-bit card, 179 ac, 129

Universal 64-bit card, 179 dc, 128

connector(motherboard) 5V components

electrical performance, 181 ac, 124

environmental performance, 181 dc, 123

mechanical performance, 181 66 MHz PCI bus, 222-29

physical description, 173 components, 122

3.3V/32-bit connector, 175 pinout recommendation, 137

3.3V/64-bit connector, 176 timing parameters, 134

5V/32-bit connector, 174 vendor specification, 137

5V/64-bit connector, 175 system(expansion board)

physical requirements, 180 decoupling, 153

planar implementations, 182 impedance, 155

EISA, 183 physical requirements, 154

ISA, 183 power consumption, 153

MC, 184 power requirements, 153

Cycle Frame, 10 signal loading, 155

D
signal routing, 155

trace length, 154

data phase, 25 system(motherboard)

data pins, 16 clock skew, 138

data stepping, 83 connector pinout, 145, 146, 149

deadlock, 115 impedance, 145

Delayed Transactions, 49-55, 116 layout, 144

device drivers, 211 reset, 139

Device ID, 188 timing budget, 143

device identification, 188 error functions

Device Select, 11 error reporting, 96

device selection, 80 parity, 95

 277

Revision 2.1

error reporting pins, 12 F
exclusive access, 73-80 fast back-to-back transactions, 59

completing, 79 Forward register, 92
continuing, 77 FRAME#, 10, 40, 42, 141
starting, 76

Gexpansion board

physical dimensions
GNT#, 11

3.3V and Universal card, 160
Grant, 11

5V card, 159

Hcard edge connector bevel, 165

ISA 3.3V and Universal assembly,
167 Header Type, 188

I
ISA 5V assembly, 166

ISA bracket, 169

I/O Read, 22ISA retainer, 170

I/O Write, 22MC 3.3V assembly, 168

Idle state, 25MC 5V assembly, 168

IDSEL, 11MC bracket, 172, 173

Implementation NotesMC bracket brace, 171

An Example of Option 2, 63variable height short card (3.3V, 32-
bit, 162 Bus Parking, 58
variable height short card (3.3V, 64-
bit, 164

CLKRUN#, 16

Combining, Merging, and Collapsing, 35
variable height short card (5V, 32-bit,
161 Deadlock When Memory Write Data is

Not Accepted, 52
variable height short card (5V, 64-bit,
163 Deadlock When Posted Write Data is Not

Accepted, 32
pin-out, 149-52

Device Address Space, 26
expansion ROM, 199

Interrupt Routing, 14
contents, 199

Multiport Devices and LOCK#, 75
header, 200

PRSNT# Pins, 15
PC-compatible

System Arbitration Algorithm, 56
INIT function extensions, 203

Using More Than One Option to Meet
Initial Latency, 64POST code extensions, 203

PCI data structure, 201 Using Read Commands, 24
POST code, 202 Initialization Device Select, 11

Initiator Ready, 10

278

Revision 2.1

input signal, 8 P
INTA#, 13 PAR, 10
INTB#, 13 PAR64, 17, 108, 123, 128, 141
INTC#, 13 parity, 95
INTD#, 13 Parity Error, 12
interface control pins, 10 Parity Upper DWORD, 17
Interrupt Acknowledge, 21, 94, 108 parking, 61
Interrupt Line register, 194 PCI bridge, 3
Interrupt Pin register, 195 PCI component electrical specification, 122
interrupt pins, 13 pinout recommendation, 137
interrupt routing, 14 timing parameters, 134
interrupts, 13 vendor specification, 137
IRDY#, 10, 40, 42, 141 PCI data structure, 201

J
PCI Local Bus

applications, 2

JTAG/boundary scan pins, 17, 149 features, 4

L
overview, 3

PCI SIG, 6

PCI system electrical specificationlatency

clock skew, 138, 22966 MHz PCI bus, 221

connector pinout, 145, 146, 149, 232arbitration, 61, 65, 68-72

decoupling, 153master data, 64

impedance, 145, 155target, 62-65

layout, 144Latency Timer, 38, 65

physical requirements, 154Latency Timer register, 193

power consumption, 153LOCK#, 11, 73, 141

power requirements, 153

M reset, 139

signal loading, 155M66EN pin, 16, 221

signal routing, 155Master-Abort, 38

timing budget, 143, 230Memory Read, 22

trace length, 154Memory Read Line, 23

PERR#, 12, 96, 97, 141Memory Read Multiple, 22

Memory Write, 22

Memory Write and Invalidate, 23

MIN_GNT and MAX_LAT registers, 195

 279

Revision 2.1

physical address space signal types, 8

configuration, 26 Single Address Cycle (SAC), 112

I/O, 26 Snoop Backoff, 15

memory, 26 Snoop Done, 15

POST code, 202 snooping PCI transactions, 114

power Special Cycle, 22, 81, 108

decoupling, 143 Status register, 191

requirements, 142 STOP#, 10, 42, 141

Present, 15 sustained tri-state signal, 8

PRSNT1#, 15, 149, 157 System Error, 12

PRSNT2#, 15, 149, 157 system pins, 8

pullups, 123, 141 system reset, 211

R
system(expansion board) connector pinout,
150, 232

T
read transaction, 36

REQ#, 11
Target Ready, 10REQ64#, 16, 108, 124, 129, 140, 141, 148
Target-Abort, 47Request, 11
TCK, 17Request 64-bit Transfer, 16
TDI, 17, 149Reset, 9
TDO, 17, 149resource lock, 74, 80
Test Access Port (TAP), 17Retry, 41
Test Clock, 17Revision ID, 188
Test Data Input, 17RST#, 9, 139
Test Mode Select, 17

S Test Output, 17

Test Reset, 17
SBO#, 15, 102

third party DMA, 114
SDONE, 15, 102

timeout, 38
SERR#, 12, 96, 99, 141

TMS, 17
shared slot, 182

totem pole output signal, 8
sideband signals, 18, 81

trace lengths, 154
signal loading, 155

signal setup and hold aperture, 25

280

Revision 2.1

transaction termination TRST, 17

master initiated, 38 turnaround cycle, 30

completion, 38

UMaster-Abort, 38

rules, 40 user definable configuration, 212-18

timeout, 38

Vtarget initiated, 40

Disconnect, 41, 44, 46 Vendor ID, 188
examples, 43 VGA palette snoop, 114
Retry, 41, 43 Vital Product Data, 205-11
rules, 42

WTarget-Abort, 41, 47

TRDY#, 10, 42, 141
write transaction, 37

tri-state signal, 8
write-through cache, 107

 281

Revision 2.1

282

	PCI Local Bus Specification 2.1
	Contents
	Preface
	Specification Supersedes Earlier Documents
	Incorporation of Engineering Change Requests (ECRs)
	Document Conventions

	Chapter 1 Introduction
	1.1. Specification Contents
	1.2. Motivation
	1.3. PCI Local Bus Applications
	1.4. PCI Local Bus Overview
	1.5. PCI Local Bus Features and Benefits
	1.6. Administration

	Chapter 2 Signal Definition
	2.1. Signal Type Definition
	2.2. Pin Functional Groups
	2.2.1. System Pins
	2.2.2. Address and Data Pins
	2.2.3. Interface Control Pins
	2.2.4. Arbitration Pins (Bus Masters Only)
	2.2.5. Error Reporting Pins
	2.2.6. Interrupt Pins (Optional)
	Implementation Note: Interrupt Routing

	2.2.7. Cache Support Pins (Optional)
	2.2.8. Additional Signals
	Implementation Note: PRSNT# Pins
	Implementation Note: CLKRUN#

	2.2.9. 64-Bit Bus Extension Pins (Optional)
	2.2.10. JTAG/Boundary Scan Pins (Optional)

	2.3. Sideband Signals
	2.4. Central Resource Functions

	Chapter 3 Bus Operation
	3.1. Bus Commands
	3.1.1. Command Definition
	3.1.2. Command Usage Rules
	Implementation Note: Using Read Commands

	3.2. PCI Protocol Fundamentals
	3.2.1. Basic Transfer Control
	3.2.2. Addressing
	Implementation Note: Device Address Space

	3.2.3. Byte Alignment
	3.2.4. Bus Driving and Turnaround
	3.2.5. Transaction Ordering
	Implementation Note: Deadlock When Posted Write Data is Not Accepted

	3.2.6. Combining, Merging, and Collapsing
	Implementation Note: Combining, Merging, and Collapsing

	3.3. Bus Transactions
	3.3.1. Read Transaction
	3.3.2. Write Transaction
	3.3.3. Transaction Termination
	3.3.3.1. Master Initiated Termination
	3.3.3.2. Target Initiated Termination
	3.3.3.2.1. Target Termination Signaling Rules
	3.3.3.2.2. Requirements on a Master Because of Target Termination

	3.3.3.3. Delayed Transactions
	3.3.3.3.1. Basic Operation of a Delayed Transaction
	3.3.3.3.2. Information Required to Complete a Delayed Transaction
	3.3.3.3.3. Discarding a Delayed Transaction
	3.3.3.3.4. Memory Writes and Delayed Transactions
	Implementation Note: Deadlock When Memory Write Data is Not Accepted.

	3.3.3.3.5. Delayed Transactions and LOCK#
	3.3.3.3.6. Supporting Multiple Delayed Transactions

	3.4. Arbitration
	Implementation Note: System Arbitration Algorithm
	3.4.1. Arbitration Signaling Protocol
	Implementation Note: Bus Parking

	3.4.2. Fast Back-to-Back Transactions
	3.4.3. Arbitration Parking

	3.5. Latency
	3.5.1. Target Latency
	3.5.1.1. Target Initial Latency
	Implementation Note: An Example of Option 2
	Implementation Note: Using More Than One Option to Meet Initial Latency

	3.5.1.2. Target Subsequent Latency

	3.5.2. Master Data Latency
	3.5.3. Arbitration Latency
	3.5.3.1. Bandwidth and Latency Considerations
	3.5.3.2. Determining Arbitration Latency
	3.5.3.3. Determining Buffer Requirements

	3.6. Exclusive Access
	Implementation Note: Multiport Devices and LOCK#
	3.6.1. Starting an Exclusive Access
	3.6.2. Continuing an Exclusive Access
	3.6.3. Accessing a Locked Agent
	3.6.4. Completing an Exclusive Access
	3.6.5. Supporting LOCK# and Write-back Cache Coherency
	3.6.6. Complete Bus Lock

	3.7. Other Bus Operations
	3.7.1. Device Selection
	3.7.2. Special Cycle
	3.7.3. Address/Data Stepping
	3.7.4. Configuration Cycle
	Implementation Note: System Generation of IDSEL
	3.7.4.1. Configuration Mechanism #1
	3.7.4.2. Configuration Mechanism #2

	3.7.5. Interrupt Acknowledge

	3.8. Error Functions
	3.8.1. Parity
	3.8.2. Error Reporting
	3.8.2.1. Parity Error Response and Reporting on PERR#
	Implementation Note: Reporting of Data Parity Errors

	3.8.2.2. Error Response and Reporting on SERR#

	3.9. Cache Support
	3.9.1. Definition of Cache States
	3.9.1.1. Cache - Cacheable Memory Controller

	3.9.2. Supported State Transitions
	3.9.3. Timing Diagrams
	3.9.4. Write-through Cache Support
	3.9.5. Arbitration Note

	3.10. 64-Bit Bus Extension
	3.10.1. 64-bit Addressing on PCI

	3.11. Special Design Considerations

	Chapter 4 Electrical Specification
	4.1. Overview
	4.1.1. 5V to 3.3V Transition Road Map
	4.1.2. Dynamic vs. Static Drive Specification

	4.2. Component Specification
	4.2.1. 5V Signaling Environment
	4.2.1.1. DC Specifications
	4.2.1.2. AC Specifications
	4.2.1.3. Maximum AC Ratings and Device Protection

	4.2.2. 3.3V Signaling Environment
	4.2.2.1. DC Specifications
	4.2.2.2. AC Specifications
	4.2.2.3. Maximum AC Ratings and Device Protection

	4.2.3. Timing Specification
	4.2.3.1. Clock Specification
	4.2.3.2. Timing Parameters
	4.2.3.3. Measurement and Test Conditions

	4.2.4. Indeterminate Inputs and Metastability
	4.2.5. Vendor Provided Specification
	4.2.6. Pinout Recommendation

	4.3. System (Motherboard) Specification
	4.3.1. Clock Skew
	4.3.2. Reset
	4.3.3. Pull-ups
	4.3.4. Power
	4.3.4.1. Power Requirements
	4.3.4.2. Sequencing
	4.3.4.3. Decoupling

	4.3.5. System Timing Budget
	4.3.6. Physical Requirements
	4.3.6.1. Routing and Layout of Four Layer Boards
	4.3.6.2. Motherboard Impedance

	4.3.7. Connector Pin Assignments

	4.4. Expansion Board Specification
	4.4.1. Board Pin Assignment
	4.4.2. Power Requirements
	4.4.2.1. Decoupling
	4.4.2.2. Power Consumption

	4.4.3. Physical Requirements
	4.4.3.1. Trace Length Limits
	4.4.3.2. Routing
	4.4.3.3. Impedance
	4.4.3.4. Signal Loading

	Chapter 5 Mechanical Specification
	5.1. Overview
	5.2. Expansion Card Physical Dimensions and Tolerances
	5.2.1. Connector Physical Description
	5.2.1.1. Connector Physical Requirements
	5.2.1.2. Connector Performance Specification

	5.2.2. Planar Implementation

	Chapter 6 Configuration Space
	6.1. Configuration Space Organization
	6.2. Configuration Space Functions
	6.2.1. Device Identification
	6.2.2. Device Control
	6.2.3. Device Status
	6.2.3. Device Status
	6.2.4. Miscellaneous Functions
	6.2.5. Base Addresses
	6.2.5.1. Address Maps
	6.2.5.2. Expansion ROM Base Address Register
	6.2.5.3. Add-in Memory

	6.3. PCI Expansion ROMs
	6.3.1. PCI Expansion ROM Contents
	6.3.1.1. PCI Expansion ROM Header Format
	6.3.1.2. PCI Data Structure Format

	6.3.2. Power-on Self Test (POST) Code
	6.3.3. PC-compatible Expansion ROMs
	6.3.3.1. ROM Header Extensions
	6.3.3.1.1. POST Code Extensions
	6.3.3.1.2. INIT Function Extensions
	6.3.3.1.3. Image Structure

	6.4. Vital Product Data
	6.4.1. Importance of Vital Product Data
	6.4.2. VPD Location
	6.4.3. VPD Data Structure Description
	6.4.4. VPD Format
	6.4.4.1. Recommended Fields
	6.4.4.1. Conditionally Recommended Fields
	6.4.4.2. Additional Fields

	6.4.5. VPD Example

	6.5. Device Drivers
	6.6. System Reset
	6.7. User Definable Configuration Items
	6.7.1. Overview
	6.7.2. PCF Definition
	6.7.2.1. Notational Convention
	6.7.2.1.1. Values and Addresses
	6.7.2.1.2. Text
	6.7.2.1.3. Internal Comments
	6.7.2.1.4. Symbols Used in Syntax Description

	6.7.2.2. PCI Configuration File Outline
	6.7.2.2.1. Device Identification Block
	6.7.2.2.2. Function Statement Block
	6.7.2.2.2.1. Choice Statement Block
	6.7.2.2.2.1.1. INIT Statements

	6.7.3. Sample PCF

	Chapter 7 66 MHz PCI Specification
	7.1. Introduction
	7.2. Scope
	7.3. Device Implementation Considerations
	7.3.1. Configuration Space

	7.4. Agent Architecture
	7.5. Protocol
	7.5.1. 66MHZ_ENABLE (M66EN) Pin Definition
	7.5.2. Latency

	7.6. Electrical Specification
	7.6.1. Overview
	7.6.2. Transition Roadmap to 66 MHz PCI
	7.6.3. Signaling Environment
	7.6.3.1. DC Specifications
	7.6.3.2. AC Specifications
	7.6.3.3. Maximum AC Ratings and Device Protection

	7.6.4. Timing Specification
	7.6.4.1. Clock Specification
	7.6.4.2. Timing Parameters
	7.6.4.3. Measurement and Test Conditions

	7.6.5. Vendor Provided Specification
	7.6.6. Recommendations
	7.6.6.1. Pinout Recommendations
	7.6.6.2. Clocking Recommendations

	7.7. System (Planar) Specification
	7.7.1. Clock Uncertainty
	7.7.2. Reset
	7.7.3. Pullups
	7.7.4. Power
	7.7.4.1. Power Requirements
	7.7.4.2. Sequencing
	7.7.4.3. Decoupling

	7.7.5. System Timing Budget
	7.7.6. Physical Requirements
	7.7.6.1. Routing and Layout of Four Layer Boards
	7.7.6.2. Planar Impedance

	7.7.7. Connector Pin Assignments

	7.8. Add-in Board Specifications

	Appendix A Special Cycle Messages
	Message Encodings
	Use of Specific Encodings
	Future Encodings

	Appendix B State Machines
	Target LOCK Machine
	Master Sequencer Machine
	Master LOCK Machine

	Appendix C Operating Rules
	When Signals are Stable
	Master Signals
	Target Signals
	Data Phases
	Arbitration
	Latency
	Exclusive Access
	Device Selection
	Parity

	Appendix D Class Codes
	Base Class 00h
	Base Class 01h
	Base Class 02h
	Base Class 03h
	Base Class 04h
	Base Class 05h
	Base Class 06h
	Base Class 07h
	Base Class 08h
	Base Class 09h
	Base Class 0Ah
	Base Class 0Bh
	Base Class 0Ch

	Appendix E System Transaction Ordering
	Producer - Consumer Ordering Model
	Summary of PCI Ordering Rules
	General Rules
	Delayed Transaction Rules

	Ordering of Requests
	Ordering of Delayed Transactions
	Delayed Transactions and LOCK#
	Error Conditions

	Glossary
	Index

