3h~D0S
68K

USER’'S MANUAL

/f P.0O. BOX 209 - MT. KISCO, NY 10549 - 914/241-0287

M

SK*DOS®
68K User’s Manual

Peter A. Stark

Copyright © 1986, 1987, 1988
b

y
Peter A. Stark
and licensed to
Star-K Software Systems Corp.
P. O. Box 209
Mt. Kisco, NY 10549
(914) 241-0287

All rights reserved

®
SK*DOS 68K USER’S MANUAL

Copyright © 1986, 1987, 1988 by Peter A. Stark
All Star-K computer programs are licensed on an "as is” basis without warranty.

Star-K Software Systems Corp. shall have no liability or responsibility to customer or any other person or entity
with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by computer
equipment or programs sold by Star-K, including but not limited to any interruption of service, loss of business
or anticipatory profits or consequential damages resulting from the use or operation of such computer or
computer programs.

Good data processing procedure dictates that the user test the program, run and test sample sets of data, and run
the system in parallel with the system previously in use for a period of time adequate to insure that results of
operation of the computer or program are satisfactory.

SOFTWARE LICENSE

A. Star-K Software Systems Corp. grants to customer a non-exclusive, paid up license to use on customer’s
computer the Star-K computer software received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to customer, but not title to the software.

B. In consideration of this license, customer shall not reproduce copies of Star-K software except to reproduce
the number of copies required for use on customer’s computer and shall include the copyright notice on all
copies of software reproduced in whole or in part.

C. The provisions of this software license (paragraphs A, B, and C) shall also be applicable to third parties
purchasing such software from customer.

Wherever used in this manual, SK*DOS and HUMBUG are registered trademarks of Star-K Software Systems
Corp.

Some earlier versions of 6809 SK*DOS were formerly known as STAR-DOS.

This is revision 1.12 of the manual, last revised on June 11, 1988.

®
SK*DOS 68K USER’S MANUAL

CONTENTS
0. ABOUT THIS VERSION 0-1
1. INTRODUCTION 1-1
2. FOR THE IMPATIENT ... 21
3, FILE SPECIFICATIONS | 31
4. SK*DOS OVERVIEW 41
5. THE COMMAND PROCESSOR SYSTEM (CPS) 51
6. MEMORY RESIDENT COMMANDS 6-1
7. DISK RESIDENT COMMANDS 7-1
8. THE FILE CONTROL SYSTEM (FCS) 81
9. THE FILE CONTROL BLOCK 91
10. SK*DOS FUNCTIONS 10-1
11. USER-ACCESSIBLE VARIABLES 11-1
12. PROGRAMMING EXAMPLES 121
13, INFORMATION FOR ADVANCED PROGRAMMERS 13-1
14, 1/O REDIRECTION AND 1/0 DEVICES 141
APPENDICES

A. USER-ACCESSIBLE VARIABLES Al
B. THE FILE CONTROL BLOCK (FCB) B-1
C. NON-DISK FUNCTIONS C1
D. DISK FUNCTIONS D-1
E. SK*DOS ERROR CODES E-l
F. DEFAULT EXTENSION CODES F-1
G. SK*DOS COMMAND SUMMARY G-1
H. ADDENDA AND OTHER INFORMATION H-1
I ASM - THE 68000/68010 ASSEMBLER I-1

USER REGISTRATION AND UPDATE POLICY

®
SK*DOS 68K USER’S MANUAL

BEFORE STARTING

In general, it is important that you develop good habits when using any floppy disk system. It is important that you
make frequent backup disks, since it is very easy to lose a file, or even the data on an entire disk, due to a slippery
finger or careless mistake.

Since a Disk Operating System (DOS) is an extremely powerful program which allows you to access the disk on a
most elementary basis, exercising caution and making frequent backups is especially important.

If possible, you should make a backup of the SK*DOS system disk before doing anything else. If your SK*DOS was
supplied to you already configured for the disk controller and other hardware you now have, then making such a
backup is easy; if your hardware is different from what SK*DOS needs then it is not.

Assuming that your hardware is capable of running this version of SK*DOS as is, here is what to do to get a backup.

(1) Make sure the original SK*DOS disk is write-protected. On a five-inch disk you should place the write-protect
tab over the slot on one edge of the disk; on an eight-inch disk you should remove the write-protect tab from the disk.

(2) Place the SK*DOS disk into drive 0, close the door, and boot it.

(3) After SK*DOS is booted and you get the prompt, use the FORMAT command to initialize a blank disk in drive
1. See Appendix G for instructions on using FORMAT. Format the disk in double density, including track 0.

(4) Once a new disk is formatted, use the BACKUP command to copy the SK*DOS system disk onto the blank disk.
(See Appendix G for instructions on BACKUP.)

(5) Make several such backup disks, and put the original SK*DOS disk away into a safe place.

In any case, it might be a good idea to read this entire manual before proceeding.

v

®
SK*DOS 68K USER’S MANUAL

0. ABOUT THIS VERSION

As you know, SK*DOS /68K is a relatively new product. Many of our users have suggested changes and additions to
SK*DOS which we have been happy to receive and incorporate. In the process, we have also tried to keep the manual
current and complete at all times. Yet it is still quite possible that it lacks information on features in your version, or
that new features will be added to SK*DOS after you receive your program and manual. You should contact Star-K
Software Systems Corp. periodically (as described on the User Registration form) to check on possible updates to
your software. If possible, use the Star-K computer BBS to contact us for support and further information.

The standard 68K SK*DOS disk uses double density on all tracks. Note that this is different from 6809 SK*DOS
disks which may be single or double density, but whose track 0 is always single density. SK*DOS/68K will read and
write either single or double density disks, so interchanging disks with 6809 systems is no problem. Note, however,
that some 68K systems cannot boot from a single density disk, although they can use single density once booted.
Hence you should always format disks in double density if you intend to use them on your 68K system, and single
density if you intend to use them on a 6809 system.

To boot SK*DOS use the FD, WD, WA, or WB commands in the HUMBUG monitor (sec the HUMBUG manual)
or follow the prompts in your boot ROM.

0-1

SK*DOS ® 68K USER’S MANUAL

1. INTRODUCTION

The Disk Operating System, or DOS for short, is a program which acts as a file manager for a disk. The DOS
acts as a buffer between the disk hardware, and the software which uses that disk. Its primary function is to
maintain a disk directory on each disk, fetch program or data files from the disk as needed, and store programs
or data back on the disk.

SK*DOS consists of three major parts:

(1) The Command Processor System or CPS, which is the major interface to the user. When SK*DOS is active,
the CPS monitors the keyboard and waits for user commands. At that time, you can load and execute programs
from the disk and do certain other functions. In addition, the CPS has a number of routines which can be used by
other programs to simplify input and output for the terminal.

(2) The File Control System or FCS is the interface for programs running under SK*DOS. The FCS does the
actual work of managing the contents of the disk. It has various routines which can be called by user programs
for managing the disk contents.

(3) Memory- and disk-resident commands provide additional functions which work in conjunction with the CPS
and FCS to provide an easy way of maintaining the disk.

In addition to the various commands supplied with SK*DOS, there are other programs available from other
vendors which are designed to also work with SK*DOS. Furthermore, SK*DOS/68K floppy disks are
compatible with those used by 6809 SK*DOS and Flex (a trademark of Technical Systems Consultants), so text
and data files may be brought over from 6809 systems and used on your 68K system as well.

The interface between SK*DOS and user programs is similar to that standardized over a number of years on
earlier 6809 systems, and is fully documented in this manual.

Since a DOS must be customized to run on a particular system, Star-K Software Systems Corporation, in
conjunction with manufacturers who license SK*DOS, provides several different versions. Depending on the
hardware configuration you specified with your order, you may already have received a version which is
customized for your hardware, or you may have received a generic version which must still be adapted to your
particular hardware. In general, you will have one of the following two files on your disk:

SK*DOS.SYS is a bootable version (which is started with the appropriate boot command of your monitor) and
which is already configured for your hardware.

SK*DOS.COR is a generic version which lacks all console terminal and disk driver interfacing. In order to run
this version, you will have to provide your own interface routines. An SK*DOS Configuration Manual, available
from Star-K Software Systems Corp., describes the process of configuring SK*DOS for other hardware systems,
and shows sample interfacing routines which can be used as a guide.

SK*DOS ® 68K USER’S MANUAL

2. FOR THE IMPATIENT ...

If you’re anything like us, you want to try out a new program even before reading the manual, just to make sure
‘it works’. This is difficult to do with something as powerful as a DOS, but just to show you a bit of what
SK*DOS can do, this section shows you how to bring the system up and run it. (This is only possible at this time
if you have received a version of SK*DOS which is already configured for your specific hardware.)

After you finish trying it out, we suggest you put it away and go back to reading this manual.

To start, make sure that your disk is write-protected and place it into drive 0. Read Section 0, About This
Version, for information regarding how to boot SK*DOS on your system.

The computer will load the program and respond with

WELCOME TO
SK*DOS /68K

(C) 1986, 1988 BY PETER A. STARK

STAR-K SOFTWARE SYSTEMS CORP.

ENTER TODAY’S DATE (MM,DD,YY):
Respond with the date, using one or two digits for the month and day, and two digits for the year, as in 9,26,82,
and hit the ENTER key. (If your system has a calendar clock and it has been set to the correct date and time,
SK*DOS may take its date from the clock instead of asking you to enter it.) You will now get the prompt
SK*DOS:
SK*DOS is now running, and awaiting your further command. (You are looking at just the tip of SK*DOS - the
part which is visible to the user. There is much more to SK*DOS than this, but this is the only part which you can
see and experiment with without doing a bit more reading.)
You can now type in a variety of commands. Some commands will be immediately recognized by SK*DOS and
acted upon; these are called ‘'memory resident’ commands. Others are not recognized, and so SK*DOS will try to
find them on the disk; these are called *disk resident’ commands.
To try a memory resident command, type the word

XEQ

and hit ENTER. XEQ tells SK*DOS to execute the last program loaded in by SK*DOS. Of course, we haven’t
yet used SK*DOS to load anything, and so we get an error message which reads

ERROR 28 - MISSING TRANSFER ADDRESS

SK*DOS error codes are explained in Appendix E; in this case there is no transfer address so SK*DOS does not
know what to execute.

Let us next execute a disk-resident command:

ACAT 0

SK*DOS ® 68K USER’S MANUAL

The ACAT command prints an alphabetized catalog of the disk or current directory. (ACAT or ACAT 0 means
drive 0, ACAT 1 means drive 1, and so on). In response to the ACAT 0 command, SK*DOS loads the
ACAT.COM program from the disk and executes it, displaying a catalog of the disk in drive 0. (To halt the
listing, just press the ESC or escape key. Pressing ESC again will continue the catalog listing, or pressing CR or
RETURN will return to the SK*DOS prompt.)

Once the ACAT command is finished, you may repeat the entire command by pressing control-A. The control-A
displays the entire previous command line (ACAT 0) as if you had typed it again. At this point you may simply
perform that command by pressing CR, or may backspace and change all or part of the line. For example, you
may backspace to the 0 and replace it with a 1 (assuming you have a drive 1), thereby changing the command to
ACAT 1. Pressing the CR now would result in a catalog display of the disk in drive 1.

Another way of repeating a command is by using the XEQ command. XEQ tells SK*DOS to execute the last
program loaded by SK*DOS. In this case, the last disk-resident command loaded is ACAT, so XEQ repeats the
ACAT command.

There are two interesting points to note:

1. Running ACAT again by typing XEQ is faster than typing ACAT again, because typing ACAT loads the
program from disk and then executes it, whereas XEQ merely restarts the ACAT program without loading it
again.

2. Pressing control-A repeats an entire previous command line, including any arguments typed as part of that line
(for example, the 0 in ACAT 0 is the argument and specifies the drive number.) XEQ restarts a program but
does not supply any arguments; these must be entered after the XEQ (as in XEQ 0).

It is now time to return to reading the rest of this manual, so type the memory resident command

MON

This command exits SK*DOS and returns to the monitor (assuming that your computer has one.)

22

SK*DOS ® 68K USER’S MANUAL

3. FILE SPECIFICATIONS

The term File Specification or just file-spec refers to the four items required to completely specify a file on a
disk: the drive number, a directory name, the file name, and an extension.

The file-spec usually looks something like this:
0.A/FILENAME. EXT
In this example,

0 is the drive number. It is separated from the rest of the file-spec by a period, and is usually a number between
0 and 9, inclusive. The drive number (and its period) may not always appear; if it is missing, then SK*DOS uses
one of two default values (which may both be the same): it uses the system drive default value when loading
commands from a drive, and it uses the work drive default value for most everything else. The drive number may
either precede the rest of the file-spec, as above, or may follow it.

A is the directory name. An SK*DOS disk has a main directory, sometimes called a root directory, and may have
up to 26 smaller directories called subdirectories. The subdirectories are called A/ through Z/, while the root
directory is either called / or is not specified at all. The directory name (and its slash) may not always appear; if
it is missing, then SK*DOS uses either the system or work drive default directory.

FILENAME in the above example is a one- to eight-character long word which usually is chosen to identify the
contents of the file. It must begin with a letter, and the remaining characters may be either letters, numbers,
hyphens, asterisks ("stars"), or the underscore. The file name is the only absolutely required part of the file-spec
in every instance.

EXT in the above example is a one- to three-character abbreviation which usually identifies the type of file. It is
separated from the name by a period (and may also be followed by another period and the drive number). Like
file-names, extensions must begin with a letter, and the remaining characters may be either letters, numbers,
hyphens, asterisks ("stars"), or the underscore. Extensions are not always required if they are obvious, since
SK*DOS programs default to certain extensions for certain commands.

Each of the four parts of the file-spec needs some further clarifying details:

1. SK*DOS differentiates between physical drive numbers and logical drive numbers. The physical drive number is
the wired-in number determined by the hardware controller and the actual disk drive. For example, a given
floppy drive may have its DS0 (drive select 0) jumper installed, which gives that drive the physical number of
drive 0. This same drive also has a logical drive number, which may be different from the physical number. This
assignment is handled by the DRIVE command, which may assign any of the ten logical drive numbers to any
physical drive. The file-spec uses logical drive numbers, not physical drive numbers.

2. Floppy disks usually have only a root directory; most people use subdirectories only to split a large hard disk
into smaller, more easily manageable sections. Each subdirectory might then be used for a specific type of file.
(Incidentally, if you change the variable FNCASE to allow both upper and lower case file specs, you can then
have a total of 52 subdirectories on a disk, called A through Z and a through z.)

3. There are several file names which are reserved for SK*DOS’s own internal use. These fall into two
categories:

SK*DOS ® 68K USER’S MANUAL

a. The names DIR, GET, GETX, MON, RESET, SAVE, TRACE***, and XEQ are used for internal
‘memory-resident’ commands. While these names may also be used for file names, any command files bearing
these names will not be called since SK*DOS will use its internal commands instead.

b. The names CONS, PRTR, and NULL (and possibly a few others of your own choosing) apply to I/O devices
rather than files. These names can also be used for file names, but in certain cases SK*DOS will interpret them
as applying to a device rather than a file.

4. While files can have any valid extension, by convention certain kinds of files tend to have specified extensions.
These extensions are listed in Appendix F. Most programs and commands default to specific extensions unless
another extension is specified. For example, the EDLIN command is used to edit text files, and always assumes
that its text files use a .TXT extension if none is given. The GET command, on the other hand, is always used to
load binary files into memory, and so it automatically assumes a .BIN extension if none is given. You may
provide an extension when you use these commands, but it is usually not necessary.

Unlike default extensions, which are built into commands and programs, default drive numbers and directories
can be specified by the user by using the SYSTEM and WORK commands. When SK*DOS is first booted, it
defaults everything to the root directory of drive 0. You may keep these defaults, but specify different drive
numbers or directory names just when you need them, or you may set up a default drive or directory different
from the root directory of drive 0, which will then automatically be chosen for most commands - unless you
specify otherwise.

Here is a simple example. Suppose you wish to use the LIST.COM command to display a file called FILE.TXT.
Let’s assume that LIST is in directory C of drive 0, while FILE.TXT is in directory X of drive 3. One way to do
this would be to give the command

SK*DOS: 0.C/LIST.COM 3.X/FILE.TXT

But since SK*DOS automatically defaults to .COM extensions for commands, while LIST defaults to .TXT
extensions for text files, the command could have been shortened to

SK*DOS: 0.C/LIST 3.X/FILE

If you expect to use a lot of commands from drive 0 directory C, and perhaps a lot of text files from drive 3
directory X, then you could specify those as default values with

SK*DOS: SYSTEM 0.C/
SK*DOS: WORK 3.X/

These two commands would tell SK*DOS to use 0 and C/ for loading its system commands, and to use 3 and X/
as the work drive and directory. Once you do this, then the command to list the file would simply be

SK*¥DOS: LIST FILE
Subdirectories are generally used to organize the contents of a hard disk. For example, you might put all

assembler source files into the A/ subdirectory, put your Basic programs into B/, put C programs into C/, and
so on. ‘

Although it wastes space, it is possible to put separate copies of a file into more than one directory. For example,
to place a copy of the above 3.X/FILE.TXT into subdirectory Y, you could simply use the COPY command as
follows:

32

SK*DOS ® 68K USER’S MANUAL

SK*DOS: COPY 3.X/FILE.TXT 3.Y/FILE.TXT

To move a file from one directory into another, you use the RENAME command. Thus the command

SK*DOS: RENAME 3.X/FILE.TXT 3.Y/FILE.TXT

leaves only one file on the disk, but moves it from X/ to Y/. This is different from the COPY command, which

would leave two copies of the same file on the disk, one in X/ and another in Y/. Note that in this case, changing
one copy does not change the other.

33

sk*pos ® 68K USER’S MANUAL

4, SK*DOS OVERVIEW
The SK*DOS package consists of essentially two parts:
1. The SK*DOS program itself.

2. A set of disk-resident commands such as CAT and LIST. The disk-resident commands are described later; this
section deals with the SK*DOS program itself.

The SK*DOS program in turn consists of three parts:

1. The File Control System (or FCS for short) which maintains the disk directory and in general is responsible for
managing the disk contents. The FCS has various routines which may be called by other programs; some of these
routines actually handle the disk and its files, while other routines may handle peripheral functions (such as printing
out strings, or converting numbers to and from decimal). These routines are used by the FCS, but they are
documented in this manual and may also be used by application programs.

2. The Command Processor System (or CPS for short) which acts as an interface between a user and the FCS. When
SK*DOS is first loaded and executed, the CPS prints the SK*DOS: prompt and awaits further instructions. These
instructions may or may not involve the FCS.

3. The Basic Input/Output System (BIOS) which adapts SK*DOS to run on a particular hardware system. The BIOS
contains the software which interfaces with the keyboard, display, printer, and disk drives.

The FCS and CPS parts of SK*DOS are the same on all systems; the BIOS portion must be tailored for each
different computer. In some cases, the BIOS is provided either by Star-K or by a hardware manufacturer; in other
cases, you may have purchased a more generic version of SK*DOS and will have to provide your own BIOS if your
hardware is different from those systems currently supported.

Depending on the version, SK¥DOS (with all its hardware-dependent routines) occupies approximately 16K to 24K
of RAM. The exact location of SK*DOS varies from system to system, but in most systems it begins at $1000. Once
booted, however, it is not necessary to know exactly where SK*DOS is located in your memory, since SK*DOS is
called by application programs through ‘exception vectors’. Hence this manual describes the FCS and CPS portions
of SK*DOS from the point of view of a user or applications programmer. BIOS information, needed only by systems
programmers implementing SK*DOS on a new system, is provided in a separate (optional) Configuration Manual.

4-1

sk*pos ® 68K USER’S MANUAL

5. THE COMMAND PROCESSOR SYSTEM

When SK*DOS is first loaded and started, it responds with the SK*DOS: prompt and waits for a command to be
processed. At this point you may enter either a Memory Resident Command, a Disk Resident Command, or a Batch
Command. Depending on the command, sometimes several commands may be entered on one line, separated by
colons. Commands may consist of more than one part and may be up to 127 characters long, if necessary. The
various parts of a command may be separated by either spaces or commas, and the command should be followed by a
RETURN (which may be labelled ENTER or CR on some keyboards.)

Commands typed into the command processor (and other input which may be entered in user programs) are stored
in a line buffer (called LINBUF). If you type a control-A character while inputting a command or other input into
the line buffer, SK*DOS will add the remaining contents of the line buffer to the input you have just typed and
display it on your terminal. This is useful for repeating a command in jts entirety, or repeating just parts of it. For
example, suppose you have just completed the command

COPY 0.NAME1.TXT 1.NAME2.OLD

and then, upon completion of that command, you type a control-A. SK*DOS will display the entire previous line
again and position the cursor after the D in OLD. If you then press the RETURN key, you will perform the
command again. Alternatively, you may backspace and change any part of the command. For example, if you
backspaced to the beginning of NAME2 and typed in a new name such as NAMES3, then the line would read

COPY 0.NAME1.TXT 1.NAME3

At this point you could either press RETURN and execute the line as is, or again press control-A; the latter would
complete the line by adding the .OLD at the end.

Whenever you enter a command line, SK*DOS will first check whether you have typed the name of a memory-
resident command. If so, the command is immediately executed.

If no memory-resident command exists by that name, SK*DOS will try to find the command on the disk and execute
it. Disk resident commands are program files which have a .COM extension.

If no such .COM file is found, SK*DOS makes one more try - to find a Batch File. A batch file is a text file (having a
BAT extension) which itself contains one or more other memory- or disk-resident commands which should also be
executed.

For example, suppose a batch file called TWODIR.BAT has the following two text lines:

DIRO

DIR 1

Entering the command TWODIR would then display the disk directories of both drives 0 and 1.

If a command is given which is none of the above then SK¥*DOS will print a ‘file not found’ error message.

Note that a .BAT file should never have the same name as a .COM file, since SK*DOS will find and execute the
.COM file first, and never execute the .BAT file at all.

sk*pos ® 68K USER’S MANUAL

6. MEMORY RESIDENT COMMANDS
SK*DOS recognizes a number of Memory Resident Commands. These are commands which are integral parts of
SK*DOS, and are in memory at all times. They are therefore called by their names, and do not get either an
-extension or drive number.

Memory-resident commands include the following; more detailed descriptions are provided in Appendix G:

DIR Display the contents (directory) of a disk

GET Load a binary file from disk into memory

GETX Load a binary file from disk into memory

MON : Exit SK*DOS and return to a ROM monitor

RESET Exit SK*DOS and return to a ROM monitor

SAVE Save contents of memory to a binary disk file

TRACE*** Allow command tracing; sse TRACENAB in Appendix G.
XEQ Execute the last file loaded from disk

There are some differences between GET and GETX, and between MON and RESET:

GET and GETX both load a binary file from disk into memory, but GET checks the loading addresses and will
return an error message if the file would load outside the normal user-accessible memory (as defined by two
variables called OFFSET and MEMEND.) GETX does not check such loading addresses.

MON and RESET both exit SK*DOS and return to a ROM monitor, but in some systems MON will re-enter the
monitor without doing a complete system initialization; whereas RESET will completely initialize the system. This
distinction is important because RESET will initialize all exception vectors to the ROM monitor’s values, whereas
MON may not. (In some systems, RESET may not be operational.)

Although DIR will display the contents of a disk, you may prefer to use some of the other disk-resident commands
such as CAT, ACAT, SCAT, or TCAT, which provide more information than DIR.

Although, strictly speaking, Control-A is not a command, this may be a convenient place to discuss it. Pressing a
control-A while typing any command will repeat the remaining portion of any previous command, display it on the
screen, and ready it for execution. The control-A is a powerful feature, but it can also be misused if entered past the
end of the last previous command.

6-1

sk*pos ® 68K USER’S MANUAL

7. DISK RESIDENT COMMANDS

SK*DOS is supplied with a variety of disk-resident commands which are described in Appendix G. In addition, it is
relatively easy to write your own command files and store them on the disk for later execution.

Disk resident commands are supplied as binary, machine language files with .COM extensions. They are executed
simply by typing their names. For example, the CAT.COM command may be executed just by typing CAT after the
SK*DOS: prompt. This is equivalent to typing the sequence

SK*DOS: GET CAT.COM
SK*DOS: XEQ

since any unknown word (other than one recognized by SK*DOS as a memory resident command) is interpreted as
calling a disk command and executing it. A .COM extension is assumed, and the program is automatically executed as
soon as it is loaded.

Since SK*DOS automatically searches the disk for commands, it is possible for users to write their own Disk
Resident Commands. Arguments to be used by the command can be entered on the same line as the command
name, and then processed by the command with the aid of SK*DOS routines such as NEXTCH (get the next
character from the Line Buffer). The listing of the LIST command, later in this manual, will show how additional
commands can be written.

The disk-resident commands supplied with SK*DOS are described in Appendix G.

sk*pos ® ' 68K USER’S MANUAL

8. THE FILE CONTROL SYSTEM (FCS)
The FCS is the heart of SK*DOS, since it is responsible for reading, writing, and locating files on the disk. Although
the FCS system is working, it is invisible when you run some of the disk resident commands such as BUILD or LIST.
It is, however, heavily used by all programs which run under SK*DOS. The following explanation will assume that
you have the knowledge and need to examine the operation of SK*DOS on this detailed level.
When reading a file, the FCS looks up the file location in the system portion of the disk (track number 0 on the disk)
and then goes to read it. When writing a file to the disk, the FCS uses the system track to assign space to the file;
when the file is written, the FCS updates the system track so that the file can later be found.
Fortunately, though this process is rather complex in any disk system, the user need not be concerned with how it is
done, or where on the disk a given file is located. The SK*DOS FCS does all this automatically; the user need only
give the FCS a file name and a command as to what to do. This is done by setting up a File Control Block or FCB for
each file that is to be opened; a given program may use as many FCBs as desired. The FCB contains the file-spec,
assorted flags and variables which are used by the FCS to keep track of the file, and also the data read from, or about
to be written to, a single sector on the disk.

For example, to access the disk through the FCS to read text from a disk file, the sequence of operations would be
something like this:

1. Set up a File Control Block with a DS instruction.

2. Point the A4 register to the FCB, and call the SK*DOS FCS system to input a file name.
3. Call SK*DOS again to assign a default extension, if needed.

4, Call SK*DOS a third time to open the file.

5. Call SK*DOS to read a byte from the file and process it.

6. Repeat step S as long as needed, then

7. Call SK*DOS to close the file.

All of these operations use the FCB as a buffer, both to hold the contents of an entire sector of data read from or
written to the disk, as well as to keep track of the file name and location, and other pertinent data.

The FCB is discussed in the next Chapter.

R
sk*pos ® 68K USER’S MANUAL

9. THE FILE CONTROL BLOCK

The File Control Block, or FCB for short, is used for all communications between the File Control System (FCS) and
user programs. One FCB is required for each file that is opened by a program, although that FCB can be reused
again if a file is closed (thereby releasing the FCB) and another file is opened with the same FCB location.

The FCB is an area of memory 352 or 608 bytes long which must start on an even address. (Although only 352-byte
FCBs are used at this time, users should set aside 608 bytes for each FCB so as to be compatible with future versions
of SK*DOS.)

SK*DOS maintains several such FCBs for its internal use. One of these is called the User FCB, or USRFCB. 1t is
available for use by other programs. Although it is used by SK*DOS, this is done in a way which does not prevent its
use by those programs which also require a FCB.,

The FCB consists of 352 (or 608) bytes. Of these, the first 96 bytes are used for storage of various file parameters,
while the remaining 256 (or 512) bytes hold the data for one sector of disk data. During a disk read operation, these
bytes hold the contents of the last sector previously read; during a write operation, these bytes generally hold the
contents of the next sector to be written.

Not all of the first 96 bytes are used; the following descriptions cover those bytes that are used in SK*DOS.
Byte No. 0. Reserved

This byte is reserved for future expansion.
Byte No. 1. Error code (see Appendix E)

After the FCS is finished doing an FCB operation, it returns to the user program. If no error is found, then the Z bit
in the condition code register is a 1 and the content of this byte is irrelevant. But if an error is found, then the Z bit is
a 0 and this byte contains an error code. The status of the Z bit should be tested directly after returning from
SK*DOS with a BNE (to error routine) or BEQ (to normal continuation) instruction. The content of this error byte
is also stored in ERRTYP.

Byte No. 2. Read/Write/Update status

This byte indicates whether the file is open for reading, writing, or random file updating. SK*DOS checks the byte
-prior to reading or writing to make sure that the file is open for the appropriate operation. The values of this byte for

an open file are as follows:

1 = open for sequential reading

2 = open for sequential writing

3 = open for updating, but no changes have been made to current sector

83 = open for updating, and changes have been made to current sector (this is hexadecimal 83)

sk*pos ® 68K USER’S MANUAL

Byte No. 3. Logical drive number (0 through 9)

This byte contains the number of the drive being used for this file control block. The drive number will normally be a
number from 0 through 9, but when opening a file for reading or writing it may also be specified as $FF, in which
case SK*DOS will search your drives, beginning with drive 0, for a drive where the requested operation can be
completed. Then it will place the correct drive number into this byte and open the file. Since many disk drivers do
not provide a way of determining whether a 5" floppy disk is ready or not, SK*DOS may "hang up" if there is no disk
in a drive being searched, although the DRIVE command can be used to define non-existent drive numbers. (See
also Chapter 13 for I/O redirection and its use with the logical drive number.)

Bytes No. 4-11. File name (8 bytes)

These eight bytes contain the name of the file being used with this FCB. The first character of the name (always in
byte 4) must be a letter, and the remaining ones may be either letters, digits, hyphens, or underlines. If the name is
shorter than 8 characters, then the remaining bytes must be filled with zeroes.

Bytes No. 12-14. Extension (3 bytes)

These three bytes contain the extension that goes with the name in bytes 4 through 11. The extension obeys the same
rules as the name described above.

Byte No. 15. File attributes
This byte defines the type of user access permitted to this file. The bits are used as follows:
Bits 0-3 - reserved for future use (leave at 0)
Bit 4 - will not be listed by CAT utility
Bit 5 - Reading not permitted
Bit 6 - Deletion not permitted
Bit 7 - Writing not permitted
Bytes No. 16-17. Reserved

These bytes are reserved for future expansion.

Byte No. 18. First track of file
Byte No. 19. First sector of file

These two bytes point to the first sector of the file.
Bytes No. 20-21. Reserved
These bytes are reserved for future expansion.

Byte No. 22. Last track of file
Byte No. 23. Last sector of file

These two bytes point to the last sector of the file.

sk*pos ® 68K USER’S MANUAL

Bytes No. 24-25. Number of sectors in the file
These two bytes indicate the size of the file in sectors.
Byte No. 26. Random file indicator

This byte indicates whether the current file is a sequential file or a random file. A zero in this byte indicates a
sequential file, a nonzero indicates a random file. (See Chapter 13 for further information on random files.)

Byte No. 27. Time or sequence number
This byte normally contains either the file creation time (encoded as a one-byte number), or a sequence number.
Sequence numbers are sequential numbers, beginning with 1 when the system is first booted. Sequence numbers
indicate the order in which files are written on any particular day. (See INTIME in Chapter 13 for further
information.)
Byte No. 28. Month of file creation (1 through 12)
Byte No. 29. Day of file creation (1 through 31)
Byte No. 30. Year of file creation (last two digits)

These three bytes hold the date when the file was created. All three bytes are in binary, but only the last two decimal
digits of the year are stored. That is, in 1984 byte 30 stores a decimal 84, or a hexadecimal 54.

Byte No. 31. Reserved

This byte is reserved for use by SK*DOS.
Bytes No. 32-33. Reserved

These bytes are reserved for future expansion.

Byte No. 34. Current track number
Byte No. 35. Current sector number

These two bytes contain the track and sector number of the sector currently in the FCB. If the file is being read, then
they indicate where the data currently in the FCB came from; if the file is being written, then they indicate where this
data will go.
Bytes No. 36-46. Temporary name buffer 1
These eleven bytes are used to temporarily hold a file name and extension while the file is being renamed or deleted.
Byte No. 47. Reserved
This byte is reserved for use by SK*DOS.
Byte No. 48. Reserved

This byte is reserved for future expansion.

9-3

SK*DOS® 68K USER’S MANUAL

Byte No. 49. Sequential data pointer to next byte (4 through 255)

On all sequential read or write operations, this byte points to the next byte to be read or written into the sector buffer
portion of the FCB. The pointer is a 4 for the first byte, or 255 for the last byte. SK*DOS changes this byte
automatically; users will not normally touch it.

Byte No. 50. Reserved
This byte is reserved for future expansion.

Byte No. 51. Random data pointer to next byte (4 through 255)

On all random read or write operations, this byte points to the next byte to be read or written into the sector buffer
portion of the FCB. The pointer is a 4 for the first byte, or 255 for the last byte. Unlike the sequential data pointer
(byte 49), this byte is not changed by SK*DOS, but is to be set by user programs instead. (See Chapter 13 for further
information on random files.)

Bytes No. 52-62. Tempdrary name buffer 2
These eleven bytes hold the new name and extension of a file being renamed. The new name should be stored into
these bytes prior to calling the rename function of the FCS, using the same rules as apply to bytes 4 through 11 above.
(These bytes overlap with some of the bytes below, but there is no conflict as they are used at different times.)

Byte No. 58. Column Counter (for Basic)
This byte is used only by Basic to keep track of the current output column.

Byte No. 59. Space compression indicator
This byte indicates whether space compression is being done in reading or writing the current file. Values of 0
through 127 ($00 through $7F) indicate that space compression is being done, and the actual value represents the
number of spaces currently being compressed. A value of 255 ($FF) indicates that no space compression is being
done. SK*DOS initializes this byte to 00 upon opemng a file; it is up to the user to change it to $FF (after opemng the
file but before reading or writing) if space compression is not desired.

Byte No. 60. Number of sectors per track

This byte contains the number of sectors per track during random file operations. (See Chapter 13 for further
information on random files.)

Byte No. 63. Reserved
This byte is reserved for use by SK*DOS.
Bytes No. 64-67. Reserved

These bytes are reserved for future expansion.

9-4

SK*DOS® 68K USER’S MANUAL

Bytes No. 68-71. Next FCB pointer
These four bytes point to the next FCB, if any, which was opened after this one (or, more exactly, they point to the
corresponding bytes of the next FCB, not to the beginning of that FCB). This information is used by SK*DOS to
keep a list of all FCBs currently in use, so that they can be closed if an FCSCLS operation is requested. If this is the
last FCB in the chain, then these bytes contain zeroes.

Byte No. 72. Physical Drive Number

Using the DRIVE command, SK*DOS allows you to reassign logical drive numbers to different physical drives; this
byte contains the physical drive number actually used by the hardware in reading or writing a sector or file.

Byte No. 73. Reserved
These bytes are reserved for future expansion.

Byte No. 74. Directory track number
Byte No. 75. Directory sector number

These two bytes point to the location in the directory where the current file is listed. The directory begins on track 0
sector 5, but may extend to other tracks if track 0 is filled.

Bytes No. 76-77. Reserved
These bytes are reserved for future expansion.

Bytes Nos. 78-79. Current or desired sector number
This byte indicates the position of the current sector within the file. In sequential files, the first sector of a file is
sector number 1, and so on. In random files the first two sectors, which contain the file map, are number 0, and
sector 1 is the first data sector of the file. (See Chapter 13 for further information on random files.)

Bytes No. 80-95. Reserved
These bytes are reserved for future expansion.

Byte No. 96. Beginning of data area

The 256 bytes starting at byte 96 contain the data for an entire disk sector. (Use of a 608-byte FCB leaves another 256
bytes at the end of this data area, thereby allowing for future expansion to 512-byte sectors.)

9-5

SK*DOS® 68K USER’S MANUAL

10. SK*DOS FUNCTIONS

SK*DOS has a large number of subroutines and functions which can be called from user programs. Some of
these are actual part of the File Control System; others are simply routines which the FCS itself uses and which
are useful to the typical programmer.

This chapter documents these routines and shows how they are used. All of these routines are accessed through
the ‘exception vectors’ of the 68xxx processor.

68xxx processors have a number of ‘traps’ which trap undefined or illegal operations, and cause a return to a
Supervisor or operating system via a set of exception vectors in low memory. A full description of this system is
beyond the scope of this manual, and we suggest you get the Motorola literature for your processor, or one of
the many textbooks on 68xxx programming, for more information.

One of the undefined or illegal 68K operations which causes a trap is any machine language instruction
beginning with $A; Motorola literature refers to these as "Line 1010" instructions. Whenever any such
instruction is encountered, the 68K CPU does a trap, via one of its exception vectors, to SK*DOS. Thus
SK*DOS uses these instructions within user programs to call functions within SK*DOS.

Within SK*DOS, the second byte of each such instruction is used to select a particular function to be performed.
For example, the instruction $A001 is used to read a byte from a file, SA002 writes a byte, and so on. A user
program calls such a function with the instruction

DC SAOxx
where the xx is simply replaced by the number of the function desired.
To avoid the necessity of remembering the numeric code for each particular function, the SK*DOS disk includes
a file called SKEQUATE.TXT which provides a series of EQUates which define the exact numeric code for
each function. Hence only the function name given in the following descriptions need be remembered. This file
may be included as a library file in any user programs you write with the instruction

LIB SKEQUATE SKEQUATE file included as library
Once so defined, the names in the SKEQUATE file can be used in the DC line, as in

DC FREAD

Each of the functions listed in this chapter always preserves registers D0 through D4, and AQ through A4, and
generally never preserves registers D5 through D7 and AS through A6. Arguments passed to SK*DOS are
generally passed in D4 or A4, as applicable, and arguments passed back to the user program are generally in D5
or AS, as appropriate. In addition, all of the following functions always return with A6 pointing to the SK*DOS
user- accessible variable area (see Chapter 11 and VPOINT for a fuller explanation.)

The functions listed in this chapter are divided into two groups:

A. Functions which do not involve reading or writing to the disk

B. Functions which do involve writing or reading disks

SK*DOS® 68K USER’S MANUAL

GROUP A. NON-DISK FUNCTIONS

The following SK*DOS functions do not directly involve disk operations:

COLDST Cold start

COLDST is the only function which is not called through an §Axxx trap. Instead, it is the entry point that is used
when SK*DOS is first loaded from disk and executed. Entering at COLDST erases all pointers and completely
initializes SK*DOS to the beginning, User programs should not use this entry point, especially when files are
open, as entering at COLDST causes SK*DOS to ‘forget’ all its open files. This can corrupt the contents of a
disk or its directory. Nevertheless, COLDST may be useful in special applications. Keep in mind, however, that
the precise address of COLDST depends on the particular system SK*DOS is run on. You may determine the
appropriate address for your system by using the LOCATE command (with the - option) to determine the load
address of SK-DOS.SYS. COLDST should be entered with a JMP instruction.

WARMST $A01E Warm start

WARMST is the re-entry point to be used by user programs. Re-entering at WARMST closes all open files and
thus helps to insure the integrity of the directory. SK*DOS then prints its prompt and looks for a command to
be processed by the Command Processor System.

RENTER $A025 Re-enter SK*DOS
This routine re-enters the SK*DOS command processor system at the point where it processes a command line.
It is used when it is desired to continue processing the remainder of a command line (such as after the O or P
commands.)

VPOINT $A000 Point to SK*DOS variable area
This routine returns the address of the SK*DOS variable area in A6. Indexed addressing via A6 may then be
used to access those variables in SK*DOS of interest to user programs. VPOINT may not be needed in most
programs, since all SK*DOS function calls also return this address in A6. The variables which may be accessed
are listed in Chapter 11.

GETCH $A029 Get input character with echo

GETCH is used to get an input character from the keyboard; it returns with the character in D5. All valid

keyboard character codes can be input, but the parity bit (bit 7) is changed to a 0 for all input. The character is
echoed to the output.

10-2

SK*DOS® 68K USER’S MANUAL

INNOEC $A02A Get input character without echo
INNOE1 $A043 Get input character without echo (bypass typeahead)

INNOEC is just like GETCH, but characters are not echoed to the output, and the parity bit is not cleared.
Thus INNOEC can be used for 8-bit input, whereas GETCH only reads 7 bits. INNOEU1 is similar, but bypasses
typeahead (if implemented on the system - see Chapter 14.)

PUTCH $A033 Output character

PUTCH is used to output a character from D4 to the output terminal.

INLINE $A02C Input into line buffer

SK*DOS maintains a 128-byte line buffer which it uses to parse commands to its own Command Processor
System. The INLINE routine is used to enter an entire line of text from the keyboard into this line buffer, and
may also be used by user programs. A line is normally ended with a CR character ($0D), which is placed at the
end of the entered text. Hence the maximum text line which can be entered into the 128-byte buffer is 127 bytes
long. This routine permits erasing errors with the backspace key. The Control-X key erases an entire line and
starts over. The Control-A key re-displays the entire previous line in the line buffer, from the current cursor
position to the previous end of line (carriage return) and can be used to repeat all or any part of a previous line.

PSTRNG $A035 Print CR/LF and string
PSTRNG is used to output an entire string of text to the terminal. The string is preceded by a carriage return

and line feed, meaning that the text begins on a new line on the screen. On entry, A4 should point to the first
character to be printed, and the string should end with an 04 byte to denote end of data.

PNSTRN $A036 Print string (WITHOUT CR/LF)

PNSTRN is used to output an entire string of text to the terminal. Unlike PSTRNG, however, it is not preceded
by a carriage return and line feed. On entry, A4 should point to the first character to be printed, and the string
should end with an 04 byte to denote end of data.

CLASFY $AGE Classify alphanumeric characters

This routine is used to classify characters in D4. If the character is a letter or digit, then the C (carry) bit of the
condition code register is cleared; otherwise, it is set.

PCRLF $A034 Print CR/LF

This routine prints a carriage return / line feed; that is, it forces the cursor to the next line so that subsequent
input or output will occur at the beginning of a new line.

10-3

SK*DOS® 68K USER’S MANUAL

GETNXT $A02D Get next character from buffer

This routine is used to get the next character from the 128-byte input buffer used by SK*DOS. This character is
returned in DS and also placed in the CURRCH location in SK*DOS; the previous character which was in
CURRCH is placed into PREVCH so that user programs have access to the last two characters taken from the
line buffer. This routine automatically calls CLASFY, so that the carry bit can be used to indicate whether the
current character is alphanumeric or not. If the line buffer contains a string of spaces, then GETNXT will return
only one space. GETNXT will continue fetching characters until it gets to the end of the line, at which time it
will continue to output the end of line ($0D (CR) or ENDLIN) if it is called again, and will also set the carry bit
to indicate a non-alphanumeric character. This routine uses the LPOINT pointer to keep track of the next
character to be taken from the buffer. This pointer is normally set to the beginning of the buffer after a line is
input from the keyboard with INLINE, and is incremented by one each time a character is fetched from the
buffer, so that it always points to the next character to be fetched. At the end of a line, it always points to the CR
character. :

RESIO $A020 Reset I/O pointers

RESIO resets I/O vectors to their initial states. For example, if output is vectored to a disk file, a call to RESIO
returns output to the terminal. In general, RESIO resets console 1/O vectors to their normal conditions. RESIO
is called during WARMST so that SK*DOS always returns to a known state upon return from a user program.

RESTRP $A021 Reset trap vectors

RESTRP resets the 68K processor’s trap vectors to those initially used by SK*DOS at boot. (see TRPFLG for
further information.) RESTRP is called during WARMST so that SK*DOS always returns to a known state
upon return from a user program.

GETNAM $A023 Get file name into FCB

This routine is used to take a file specification from the input buffer and place it into the appropriate bytes of an
FCB. At entry, A4 should point to the FCB to be filled, and the LPOINT line buffer pointer should point to the
beginning of the file specification in the line buffer. As the file specification is parsed, the drive number will be
placed into the drive number location of the FCB (unless no drive number is specified, in which case the working
drive will be used). The directory name, file name and the extension, if present, will also be placed into the FCB;
if the directory name. is missing it will be replaced by the default directory, and a missing name or extension will
be replaced by zeroes. If the file specification has no errors, then the carry will be cleared; else it will be set.
The file specification in the line buffer may end with a space, comma, CR, or ENDLIN character; if a space or
comma, then LPOINT will point to the next character after it, if a CR or ENDLIN, then LPOINT will point to
the CR or ENDLIN character. Errors will place error code 21 (illegal file name) into the FCB and set the carry.

10-4

SK*DOS® 68K USER’S MANUAL

LOADML $A022 Load open machine language file

This routine is used to load a machine language file into memory at its normal load address (which is equal to
the address listed in the file, plus the OFFSET address, except that the OFFSET address is not added if
LASTRM contains a minus sign.) LOADML is normally used by the memory resident GET command to fetch
programs prior to execution. Prior to entering LOADML, the user program should use the USRFCB (user
FCB) to open the file to be loaded. The file is then loaded, and its transfer address is stored in the EXECAD
location. If there is no transfer then XFERFL is set to 0; else it is non-zero. Any transfer address found is stored
in the EXECAD location. Errors such as error 4 (file not found) cause an immediate return to the calling
program with a non-zero condition and the FCB indicating the error; read errors once a file is found immediate-
ly abort the program, close all files, and return to SK*DOS warm start.

DEFEXT $A024 Default extension
This routine is used to enter a default extension into an FCB if the file specification already in the FCB does not

contain one. Before entering, the user program should point A4 to the beginning of the FCB, and should place
into D4 a numeric code which indicates which default is desired. The codes are as follows:

0 = BIN 3 = BAS 6 = SCR 9 = DIR 12 = BAT
1=TXT 4 = SYS 7 = DAT 10 = PRT 13 = SRC
2 = COM 5 = BAK 8 = BAC 11 = OUT 14 = PIP

OUTSD $A038 Qutput 5 decimal digits
This routine outputs a decimal number of up to five digits. Before entering, the calling program should place

into D4 the unsigned binary word to be printed, and set D5 to zero if the number is to be printed without leading
spaces or zeroes, or to nonzero if the number is to be printed with leading spaces.

OUT10D $A039 Output 10 decimal digits
This routine outputs a decimal number of up to ten digits. Before entering, the calling program should place

into D4 the unsigned binary long-word to be printed, and set DS to zero if the number is to be printed without
leading spaces or zeroes, or to nonzero if the number is to be printed with leading spaces.

OUT2H $A03A Output 2 hex digits

This routine prints the two-digit hexadecimal number that is in the right-most byte of D4 on entry.

OUT4H $SA03B Output 4 hex digits

This routine prints the four-digit hexadecimal number that is in the right-most word of D4 on entry.

10-5

SK*DOS® 68K USER’S MANUAL

OUTSH $A03C Output 8 hex digits

This routine prints the eight-digit hexadecimal number that is in D4 on entry.

PERROR $A037 Print error code

When an error is encountered by the FCS while using an FCB, user programs should do a call to this routine to
print the error code. PERROR should be entered with A4 pointing to the beginning of the FCB, and the error
code in byte 1 of the FCB. The error codes are listed in Appendix E. The error code is printed as a number; in
addition, if the system disk contains the file ERRCODES.SYS, SK*DOS will read a one-line text description
from this file and print it alongside the numeric code to explain the error’s meaning.

TOUPPR $A031 Convert lower case to upper (in DS!)

Converts a lower case character in DS into upper case. Primarily for use right after GETCH or GETNXT, if
only upper case letters are desired.

HEXIN $A02F Input hexadecimal number

This routine inputs a hexadecimal number from the line buffer and places it in D5. Before entering, the calling
program should make sure that LPOINT points to the first digit of the number to be input; at the end, LPOINT
will be left pointing as described earlier for GETNAM. On output, D6 is non-zero if a number was actually
found, and the carry bit is set if an invalid character was found in the number. (It is possible for both D6 and the
carry to be zero if HEXIN encounters a delimiter such as a space, comma, CR, or ENDLIN immediately on
entry.) If a number is not found the number returned is zero; if the number is greater than $FFFFFFFF, then
only the last eight hex digits are returned.

DECIN $A030 Input decimal number

This routine is similar to HEXIN, but inputs a decimal number rather than a hexadecimal one.

EXECSD S$AOIF Execute a SK*DOS command

This entry point allows a user-written program to call SK*DOS as a subroutine and have it execute a command
line placed into the line buffer. On entry, A4 should point to the beginning of the command (usually at the
beginning of the line buffer), and the command should end with a CR or ENDLIN character. If the command
line in turn executes a disk-resident program, then that program should end with a DC WARMST instruction to
return to SK*DOS. SK*DOS, in turn, knowing that the program was called from another user program, will
return control to the user program. The user should be careful not to call a program which will overlay part of
the calling program in memory.

10-6

SK*DOS® 68K USER’S MANUAL

STATUS $A02B Check keyboard for character
STATU1 $A042 Check Keyboard for character (bypass typeahead)

This routine allows a user program to check whether a character is being entered from the keyboard. If no
character is being entered, the Z bit in the condition code register is set; if a character is being entered, then the
Z bit is clear. All other registers are preserved. STATUL is similar, but bypasses typeahead (if implemented -
see Chapter 14.) ' ;

INTDIS $A040 Disable Interrupts

This routine masks interrupts (to level 7), thereby preventing the CPU from being interrupted by level 0 through
6 interrupts. This SK*DOS call is intended only for use by advanced programmers, and then only in systems
programs such as FORMAT.

INTENA $A041 Re-Enable Interrupts

This routine restores interrupts to the same status as existed before the last previous INTDIS call. Make sure
not to use INTENA unless it has been preceded by a INTDIS. This SK*DOS call is intended only for use by
advanced programmers, and then only in systems programs such as FORMAT.

FINDEV $A012 Find device from name

This function converts a device name (such as CONS for console) to a device number (plus $10). For example,
to find out whether PRTR has been installed as a printer driver, place the name PRTR (followed by seven $00
bytes to erase the remaining name and extension bytes) into the file-name bytes of an FCB, and call FINDEV. If
PRTR is not installed, then SK*DOS will return error 4 (not found); if it is installed, then SK*DOS will place the
device number (plus $10) into the logical drive-number byte. For example, if PRTR is device 2, then FINDEV
will return $12 in byte 3 of the FCB.

GETDNT S$AO3F Getdate and time

If the system contains a clock/calendar IC, then this function returns the current date and time in D5 and D6 as
shown below:

D5: WWMMDDYY
| | | +-yearinhexadecimal
| | +-—dayinhex
| +---——-month in hex
+---—-——-- day of week (00=none, 01=Sunday, 02=Monday, ...)
Dé: 00HHMMSS
| I | +-secondsinhex
| | +-—-—-minutesin hex
| - hours in hex (24-hour time)
+omememeecene always zero
If no clock/calendar IC is available, then the day of week byte of DS, and all of D6, are zero, and only the date
(month/day/year) is returned (obtained from the date typed in by the user upon booting).

10-7

SK*DOS® 68K USER’S MANUAL

ICNTRL $A028 Input Control

OCNTRL $A032 Output Control
These two functions permit device driver selection, special characters to be passed to or from a device driver,
and other device functions. See Chapter 14 for a more complete explanation.

FLUSHT $A044 Flush Type-ahead buffer, if any.

This function flushes (empties) the keyboard typeahead buffer (if implemented - see Chapter 14.)

FNPRNT $A045 Print file-name

This function formats and prints the directory and file-name (but not drive number) pointed to by A4. In
memory, the name should consist of 11 bytes, 8 for the directory and name, and 3 for the extension, with no
period between them. In addition, D4.B is used to specify whether to provide spaces for missing items. If D4.B is
zero, then the name might be printed as just NAME.EXT; if D4.B is not zero, then there would be two spaces
before NAME (leaving space for a possible directory name), and four spaces between NAME and the period
(leaving space for an 8-character name). Furthermore, if the extension is missing (zero in memory) then using a
non-zero D4.B would leave three spaces after the period.

GROUP B. DISK FUNCTIONS

The following SK*DOS functions involve reading or writing disks.

FCSINI $A01B Initialize File Control System

This function should not normélly be used by user programs as it can result in corruption of the disk. It totally
initializes the system - disk drivers are initialized, all open files are forgotten and left open, etc.

FCSCLS $A009 Close all open files

This routine allows user-written programs to close all open files without actually knowing which they are. If
FCSCLS detects an error, then it prints error 13 (error in closing file), clears the Z bit in the condition code
register, and returns with A5 pointing to the FCB which was being closed when the error was detected. When
FCSCLS detects an error, it does not close the remaining files; hence its routine use to close files is not
encouraged. Instead, users should close each file separately.

10-8

SK*DOS® 68K USER’S MANUAL

The normal call to these functions is thus

LEA A4 Point to the File Control Block
DC <function> Call FCS to perform operation
BNE ERROR Go process error if detected

Note that it is required that A4 point to the beginning of the FCB when FCS is called. Since the contents of A0
through A4, and DO through D4, are preserved upon return from the FCS, so A4 will still be pointing to the FCB
upon return.

If the FCS is called with an unimplemented operation code, the FCS will print out an error message and return
to SK*DOS.

The following descriptions include typical error codes that may be generated on specific operations. In addition,
most of the operations may also result in disk read or write errors due to hardware problems.

In all cases, if no error occurs, then the FCS returns with the Z bit of the condition code register set. If an error
does occur, then the Z bit is cleared and byte 1 of the FCB (as well as location ERRTYP) contains the code for
the error that occurred. Error codes are listed in Appendix E.

FREAD $A001 Read the next byte from file
FWRITE $A002 Write the next byte to the file

Most FCS read or write operations are sequential; these functions are used to read or write the next sequential
byte or character in the file. During a read, the next byte from the file is read from the sector currently in the
FCB (using the data pointer in byte 49) and returned in D5, while during a write the character in D4 is written to
the file. Since the file is read or written on the disk an entire sector at a time, this function actually buffers the
data through the sector buffer (bytes 96- of the FCB). Hence no actual disk read or write will generally occur for
most FREAD or FWRITE 0 calls. When an actual disk read or write is required, SK*DOS will handle that
automatically without user intervention.

FOPENR $A005 Open a file for read

This function opens a file for reading. Before calling the FCS, the calling program must insert the drive number,
name, and extension of the desired file into bytes 3 through 14 of the FCB. The FCS will take care of initializing
all other parts of the FCB. If the requested file is not on the disk, the FCS will return error code 4 (file does not
exist). When the FCS is finished opening the file, it prepares the file for sequential reading next, and assumes
that space compression will be used.

10-9

SK*DOS® 68K USER’S MANUAL

FOPENW $A006 Open a file for write

This function opens a file for writing. Before calling the FCS, the calling program must insert the drive number,
name, and extension of the desired file into bytes 3 through 14 of the FCB. The FCS will take care of initializing
all other parts of the FCB. If the specified disk already has a file with the specified name, the FCS will return
error code 3 (file already exists). This function opens a sequential file, but it may be changed to a random file by
storing a non-zero number into byte 26 of the FCB after opening the file, but before writing any data into it. (See
Chapter 13 for further information on random files.)

FOPENU $A007 Open a file for update

This function opens a random file for reading or updating. Once the file is open, you may do one of the
following: '

a. Use FRRECD to position to a particular sector of the file.

b. Use FRBACK to backup to the preceding sector.

c. Use FRGET to read a particular byte from the currently selected sector.

d. Use FRPUT to write a particular byte to the currently selected sector.

e. Use FREAD to sequentially read the sector, starting with the first. You may read as many bytes as there are in
the file. (If executed after opening the file for update, FREAD will start reading at the beginning of the file.)

f. Use FRRECD to extend the file.

g. Use FCLOSE to close the file.

h. The only way to write past the end of a sector into the next sector is to use FRRECD to position to the next
sector.

(See Chapter 13 for further information on random files.)

FCLOSE $A008 Close file

This function closes a file currently opened for reading, writing, or updating. No operation is performed on read
files, or on write files which were never written to, other than removing them from the chain of file pointers.
When a write file is closed, any data remaining in the data area of the FCB is written out to the disk, and both
the directory and the file sector map are updated to indicate the correct track and sector numbers of the last
sector and the file size. The system information sector (SIS) on track 0 sector 3 is also updated. When a random
file open for updating is closed, the current sector is written out to disk if data has actually been written to it.

FREWIN S$A00A Rewind file
This function can only be performed on a file which is open for reading, and will result in Error 1 (FCS function

code error) if attempted on a file open for writing. The Rewind function is used to start reading a file from the
very beginning, and is equivalent to closing the file and then immediately opening it for reading again.

10-10

SK*DOS® 68K USER’S MANUAL

DIROPN $A00B Open directory file

This function prepares the current FCB to read directory entries with DSREAD. Before using this function, the
calling program should place the drive number into byte 3 of the FCB; no other initialization is required. This
function does not actually do any reading, but merely prepares the FCB for a subsequent read with DSREAD. It
is primarily used by the FCS itself, and will not usually be used by user programs.

SISOPN $A00C Open system information sector

This function prepares the current FCB to read the SIS with DSREAD. Before using this function, the calling
program should place the drive number into byte 3 of the FCB; no other initialization is required. This function
does not actually do any reading, but merely prepares the FCB for a subsequent read with DSREAD. It is
primarily used by the FCS itself, and will not usually be used by user programs.

DSREAD $AQOD Read directory or system information sector

This function must be preceded by either DIROPN (open directory) or SISOPN (open system information
sector) and reads the first (or next) entry in the directory or SIS, respectively, into the first 96 bytes of the FCB
(it also reads the entire sector into the sector buffer area of the FCB). When used on the SIS, only one read
should be performed since only one entry exists in the SIS; when used on the directory, up to ten reads can be
performed on any one sector since there are ten directory entries per sector. Upon the eleventh read, DSREAD
will automatically read the next sector of the directory. Error 8 (input past end of file) will be returned at the
end of the directory. Note that all entries are read, even deleted entries (indicated by a $FF as the first character
of the file name) or unused entries (indicated by a 00 as the first character.)

DSWRIT S$AOOE Write directory or SIS entry

This function writes a directory or SIS entry from the first 96 bytes of an FCB back into its appropriate position
in the sector buffer, and then writes the sector buffer back to the disk. Because of the need to properly set up a
number of pointers, this function should only be used after DSREAD, which in turn should only be used after
DIROPN or SISOPN.

FDELET S$AO0OF Delete a file

This function deletes a file name from the directory and returns its used sectors to the chain of free sectors
maintained in the System Information Sector (track 0 sector 3). Before using this function, the calling program
must place the drive number, file name, and file extension of the desired file into bytes 3 through 14 of the FCB.
It returns error 4 if the file name is not found, along with the Z bit of the condition code register cleared.

10-11

SK*DOS® 68K USER’S MANUAL

FRENAM $A010 Rename a file

This function renames an existing file; before calling the FCS, the user’s program must place the old file
specification into bytes 3 through 14 of the FCB, and the new name and extension into bytes 52-62 of the FCB
(temporary name buffer 2). If there is an error, the Z bit is cleared and the FCS returns one of the following
codes in byte 1 of the FCB: error 4 (old file does not exist), or error 3 (new file name already exists).

FSKIP $A011 Skip current sector

This function skips the current sector and goes to the next sector of the current file. When a file is being read,
the FCS simply skips the remaining data in the current sector and prepares to read the next sector. On writing,
the FCS fills the remainder of the current sector with zeroes, writes it out to the disk, and prepares to write into
the next sector; if, however, the FCS is already pointing to a new sector (but has not yet written into it) then this
function is ignored.

FRRECD $A014 Select a specified random sector

This function allows you to select a specified random sector of a random file. This function can only be used after
an existing random file is opened for update with FOPENU. To use this function code, place the two-byte sector
number of the desired sector into bytes 78 and 79 of the FCB and and then call the FCS. If the desired sector
number is 0, then the first sector of the file map will be read; if the desired sector number is larger than the
current size of the file, the file will be extended so that the desired sector is the last sector in the file, and all new
sectors will be filled with zeroes. (See Chapter 13 for further information on random files.)

FRBACK $A015 Backup to previous sector

This function allows you to backup to the previous random sector of a random file. Read the description of
FRRECD, as this function is similar. You cannot backup from sector 1 (the first data sector of the file) back to
sector O (the first file map sector), and any attempt to do so will generate error 24 (invalid sector number). (See
Chapter 13 for further information on random files.)

FRGET $A016 Read a random byte

This function allows you to read a specified random byte from a random file currently opened for update. To
select the byte, place its number, a value from 4 to 256, into byte 51 of the FCB. (Note that there are only 252
data bytes per sector, and they are numbered from 4 through 256.) The byte will then be read from the currently
selected sector. (See Chapter 13 for further information on random files.)

FRPUT $A017 Write a random byte

This function allows you to write a specified random byte to a random file currently opened for updating. To
select the byte, place its number, a value from 4 to 256, into byte 51 of the FCB. (Note that there are only 252
data bytes per sector, and they are numbered from 4 through 256.) The byte will then be written to the currently
selected sector. (See Chapter 13 for further information on random files.)

10-12

SK*DOS® 68K USER’S MANUAL

SREAD $A0IC Read a single sector

This function provides direct access to the disk read routine. The user program must provide the drive number
in byte 3 of the FCB, and the track and sector numbers in bytes 34-35. Upon exit, the data from the desired
sector begins at byte 96 of the FCB. If an error is encountered, the Z bit of the condition code register is cleared
and byte 1 of the FCB contains one of the following error codes: error 9 (disk read error), error 14 (disk seek
error), or error 16 (drive not ready).

SWRITE $A0ID Write a single sector

This operation provides direct access to the disk write routine. The user program must provide the drive number
in byte 3 of the FCB, the track and sector numbers in bytes 34-35, and the data to be written beginning at byte 96
of the FCB. If an error is encountered, the Z bit of the condition code register is cleared and byte 1 of the FCB
contains one of the following error codes: error 10 (disk write error), error 11 (write protected disk), error 14
(disk seek error), error 16 (drive not ready), or error 29 (disk verify error).

FDRIVE $A01A Find next drive number

This function is used to find the next available drive number. On entry, you must place either the number $FF or
a valid drive number into byte 3 (the drive number byte) of the FCB. The FCS will then return with the next
available drive number. The FCS will start with the next higher drive number; since $FF is equivalent to -1,
entering with this value will start with drive 0. Searching will continue up until the current value of MAXDRY; if
no ready drive is found, the FCS will return error 16 (drive not ready) in byte 1 of the FCB and also set the carry
bit; otherwise the carry bit is cleared.

DIREST $A026 Disk Restore

This function does a restore on the drive pointed to by the drive number in the current FCB; that is, the head on
the current drive is retracted to track 0. This function is only implemented for the floppy disk, and is used
specifically by the FORMAT routine; it should not be used by any other programs.

DISEEK $A027 Disk Seek

This function causes the drive indicated in the current FCB to seek (i.e., move the head to) the ‘current track
number’ given in the FCB. No checking is actually done, other than checking that the drive number is valid.
This function is only implemented for the floppy disk, and is used specifically by the FORMAT routine; it should
not be used by any other programs.

10-13

R
sk*pos ® 68K USER’S MANUAL

11. USER-ACCESSIBLE VARIABLES

Many of the SK*DOS variables are of use to a programmer writing programs to run under SK*DOS. These variables
are of two types:

1. User variables which are often needed by application programs running under SK*DOS. These are described in
this Chapter.

2. System variables which are generally needed only by systems programmers implementing SK*DOS on a new
system, or modifying major operating parameters. A few of these are described in Chapter 13, though most such
system variables are described in the optional Configuration Manual, not in this Users’ Manual.

The precise location of User variables may change between various versions of SK*DOS. Any call to an SK*DOS
function, however, returns in A6 a pointer to the beginning of this variable area. In particular, the call to VPOINT
(see Chapter 10) specifically exists to return the address of this variable area in A6. Each of the locations described
below can be referenced using indexed addressing with reference to A6. This may be done either by referring to the
numeric offset given in the descriptions below, or by using the SKEQUATE file on your SK*DOS disk as a library
file in your assembly language programs as follows:

LIB SKEQUATE SKEQUATE file included as library
Once this is done, you may refer to variables by their symbolic name. For example, the following two lines are

equivalent:

LEA 0(A6),A4 Uses absolute offset
LEA USRFCB(A6),A4 Uses offset defined in SKEQUATE

USRFCB 0(A6) User FCB (608 bytes)

This area is an FCB which is used by SK*DOS for its own internal operations. This is done in such a way, however,
that other programs which require an FCB can also use this 'user’ FCB without interfering with SK*DOS. This can
save the effort of having to declare memory for a separate FCB. (As mentioned earlier, the USRFCB is 608 bytes
long although at this time only 352 bytes are actually used. The extra 256 bytes are left for future expansion.)

LINBUF 608(A6) Line buffer (128 bytes)

The line buffer is a 128-byte buffer which is used by SK*DOS for holding and processing commands. It is, however,
also accessible to user programs through the INLINE routine (which enters text from the keyboard into the buffer)
and the GETNXT, GETNAM, and other routines (which take data from the buffer). In particular, note that
whenever a user program is called from the keyboard while in SK*DOS, any remaining text entered after the
program name in the command line is still in the line buffer, and may be recovered by the user program. For
example, when the LIST program is called from the keyboard with a

11-1

sk*pos ® 68K USER’S MANUAL

SK*DOS: LIST TEXT

command, when the LIST program begins, the line buffer pointer LPOINT points to the first letter of the word
TEXT. The LIST program can access the name with several subroutines, such as GETNAM. This is a convenient
way of getting and passing arguments to programs directly from the command line.

BACKSC 736(A6) Backspace character ($08)
DELETC 737(A6) Delete character ($18)
ENDLNC 738(A6) End of line character ($3A)
ESCAPC 746(A6) Escape char ($1B)
REPEAC 749(A6) Repeat character ($01)

These locations contain the backspace character ($08 or control H), delete character ($18 or control X), end of line
character ($3A or colon), escape ($1B), and repeat ($01 or control-A), respectively. These locations are used by
SK*DOS in console input routines, and can be changed by user programs or the DOSPARAM command. The
DELETC character may be used to delete an entire line and return to the beginning, while the ENDLNC character,
normally a colon, is accepted much the same as a carriage return ($0D) as an end-of-command delimiter. The
ENDLNC character, however, can also be used to separate multiple commands on one line. The ESCAPC character
is used to halt output to the terminal. Output may be restarted with another ESCAPC, or else may be aborted with a
carriage return (not ENDLNC). The REPEAC character, normally $01 or Control-A, is used to repeat the last-used
console command.

PLINES 3322+80*DN(A6) Number of printed lines per page

SLINES 3325+80*DN(A6) Number of skipped lines between pages
These two locations are initialized by SK*DOS at 0, which disables them. If PLINES is non-zero, then output to the
terminal will stop after PLINES continuous lines of output, skip SLINES blank lines, and then continue. A typical
application is to make PLINES equal to a decimal 56, and make SLINES equal to a decimal 10, for paged output to a
printer. Printed output would then have 56 continuous lines of print, and 10 skipped lines which step over the
perforation between pages. These constants may be changed with the DOSPARAM command.

PAUSEB 3326+80*DN(A6) Output pause control byte
If PAUSEB is non-zero, and PLINES is non-zero, then terminal output will pause after each PLINES lines, and

resume when the escape key is pressed on the keyboard. PAUSEB is normally initialized at $FF, thereby enabling the
pause, but since PLINES defaults to 0, no pause actually takes place.

11-2

SK*DOS ® 68K USER’S MANUAL

PWIDTH 3323+80*DN(A6) Page column width

This byte is used to control the page width of output to the terminal or printer. When output goes to the right of
the PWIDTH column on the terminal or printer, SK*DOS will issue a carriage return / line feed at the next
space character. PWIDTH may be set with the DOSPARAM command. SK*DOS normally initializes PWIDTH
to 0, which disables it. To use PWIDTH, you should set it to a value approximately 10 less than the actual screen
or paper width, so as to leave room for any long words at the end of the current line. (PWIDTH works in
conjunction with the OCOLUM and SPECIO variables described below.)

SPECIO 792(A6) Special 1/0 Indicator
When SPECIO is nonzero, the PWIDTH value is ignored by SK*DOS. SPECIO is initialized to zero at
warm-start and by RESIO.

OCOLUM 3328+80*DN(A6) Current output column
This byte indicates the current output column on the terminal or printer. It is used with the PWIDTH variable,
and reset to zero at the beginning of every line, or by the printing of any control character.

NULLWT 3324+ 80*DN(A6) Null wait constant
Some terminals or printers make errors if a carriage return or line feed character is immediately followed by
printable characters. In that case, NULLWT may be used to insert a short delay. It is normally initialized to 00 or
no delay, but may be changed by the user (via the DOSPARAM command). The wait delay depends on the CPU
clock speed, but is approximately equal to 0.01 second times the value of NULLWT.

SYSDIR 744(A6) System default directory

WRKDIR 745(A6) Working default directory
Both of these locations are initialized at 0. They are used as default directories. SYSDIR is used as the default
for loading any disk-resident command, while WRKDIR is used as a general default by the GETNAM routine
whenever a directory is not specified as part of a file spec. A value of 0 refers to the main or root directory, while
values of $41 through $5A refer to subdirectories A/ through Z/ (since these are the ASCII equivalents for the
letters A - Z.)

SYSTDR 747(A6) System default drive

WORKDR 748(A6) Working default drive
Both of these locations are initialized at 0. They are used as default drive numbers. SYSTDR is used as the

default for loading any disk-resident command, while WORKDR is used as a general default by the GETNAM
routine whenever a drive number is not specified as part of a file spec.

11-3

SK*DOS ® 68K USER’S MANUAL

CMONTH 750(A6) Current date - month
CDAY 751(A6) Current date - day
CYEAR 752(A6) Current date - year

The above three locations hold the month, day, and year entered from the keyboard when SK*DOS is first cold
started. This date is used by SK*DOS when writing files on the disk, and may also be accessed or changed by
user programs. All three bytes are binary numbers, and CYEAR contains only the last two digits of the year; for
example, in 1990 the registers contain 90, or a hexadecimal $5A.

LASTRM 753(A6) Last terminator

This byte contains the last terminator encountered by the GETNXT routine from the line input buffer.

COMTAB 754-757(A6) Pointer to command table (long word)

SK*DOS contains several memory-resident commands (such as XEQ and GET); users may add additional
memory-resident commands, and let SK*DOS know about them via COMTAB by putting into COMTAB a
pointer to a table which lists the added commands. This table is searched by SK*DOS after its own command
table, but before it looks for disk resident commands. Each entry in the user command table should consist of (a)
the command name of up to eight letters (with no extension), (b) a zero byte to signal the end of the name, and
(c) a four-byte address pointing to the command program. An extra zero byte at the very end signals the end of
the table. The command should end with either an RTS or DC WARMST instruction.

LPOINT 758-761(A6) Pointer to line buffer (long word)

LPOINT points to the next character to be obtained from the line buffer. When the buffer is first filled (with
INLINE), LPOINT points to the first character in the buffer. Each time another character is obtained from the
buffer, LPOINT is incremented so that it points to the next byte. When the pointer gets to the CR code at the
end of the line, it then remains pointing to the CR. When an entire name or number is fetched from the buffer,
such as by GETNAM, then at the end of the routine LPOINT points to the first character past the delimiter
(such as a space or comma), or to the delimiter itself (if CR).

BREAKA 762-765(A6) Break (Escape) address (long word)

As indicated earlier, terminal output can be interrupted by pressing the ESCAPE key, at which time SK*DOS
waits for a second character. If the second character is again an ESCAPE, then output resumes; if the second
character is a carriage return ($0D) character, then SK*DOS will abort the program. This return is handled
through the return address in BREAKA, which is initialized by SK*DOS to point to WARMST. User programs
may also use BREAKA to return to SK*DOS in that way. More commonly, user programs may store a different
address in BREAKA to force a return elsewhere when the return key is pressed.

114

SK*DOS ® 68K USER’S MANUAL

CURRCH 766(A6) Last character read from buffer

PREVCH 767(A6) Previous character read
As characters are fetched from the line buffer by SK*DOS routines (such as GETNXT), these two locations hold
the latest character fetched (CURRCH) and the previous character fetched (PREVCH).

EXECFL 774(A6) Execution address flag
This location is non-zero when location EXECAD contains a valid execution address for a machine language
program, and is zero when such a valid execution address does not exist. If a command such as XEQ is executed
when there is no valid address, then SK*DOS will print error 28 (missing transfer address.)

EXECAD 776-779(A6) ML execution address (long word)
These four bytes hold the transfer address obtained when a machine language file is loaded from the disk
(including the value of OFFSET, if used). This location is also used by the XEQ command to execute the
last-loaded program.

ERRTYP 782(A6) Error type

This byte contains the number of the last error detected by the File Control System.,

FOADDR 784-787(A6) File output address vector

FIADDR 788-791(A6) File input address vector
These two addresses are used.for redirection of standard output or input, respectively. If they are zero, no
redirection is done. If redirection is desired, then one (or both) of the above vectors may contain the address of
an FCB currently open for writing or reading, respectively.

CMFLAG 793(A6) Command flag
This location indicates whether the Command Processor System is processing a keyboard command (when 0) or
a command passed to it from a user program (when non-zero).

MEMEND 796-799(A6) Last usable memory address (long word)
When SK*DOS is initially booted, it does a memory test to determine how much memory is installed in the
system, and then stores the address of the last memory location in MEMEND. OFFSET and MEMEND
together therefore define the lower and upper limits, respectively, of free user memory. User programs can

check these locations to determine how much user memory is available, or can change the contents to set aside
memory for themselves.

11-5

SK*DOS ® . 68K USER’S MANUAL

ECHOFL 800(A6) Input echo flag

This location tells the character input routine whether to echo oufput to the output port. A non-zero value
(initialized to $FF at warm-start) enables echo.

FNCASE 801(A6) File Name case flag

This location determines whether lower-case file names are allowed either as disk-resident command names, or
as file names processed by the GETNAM function. The default value is $DF, which allows only upper-case
names (and lower-case names are automatically converted to upper case). Lower-case names will be allowed if
FNCASE is changed to $FF.

MAXDRYV 802(A6) Maximum drive number

This location is used to define the maximum drive number on the system. It is initialized to 03, and the maximum
number it may have is 09. SK*DOS will return a drive number error whenever a drive number is specified in a
file-spec which exceeds the value of MAXDRYV. If your system has more than four drives, then MAXDRV
should be increased correspondingly when the appropriate disk drivers are installed.

SEQNO 806(A6) Sequence Number

This byte holds the sequence number assigned to each file written. If the system does not contain a clock-
/calendar chip, then this number is written into the disk directory along with the date for the file; if a clock-
/calendar chip is interfaced to SK*DOS, then the sequence number is replaced by the time (although it is still
calculated and stored in SEQNO.) Since the sequence number is just a single byte, it has a maximum value of
255; then it returns back to 0 and repeats its cycle.

ERRVEC 834(A6) Alternate ERRCODES.SYS vector
ERRVEC allows SK*DOS to get its error messages from a file other than ERRCODES.SYS. If this long-word
contains 0, then the normal ERRCODES.SYS file is used; if it is non-zero, then it is assumed to hold a
long-word address pointing to an 11-character file specification containing the name and extension of another file
to be used. ERRVEC is initialized at 0 when SK*DOS is booted, but is not changed thereafter; hence user
programs should be careful to restore it when they are finished using other error files.

DOSORG 838-841(A6) Absolute ORG of SK*DOS

DOSORG contains the actual starting address of SK*DOS in the current system. This information is primarily
for systems programmers, as most users will have no need to know absolute memory addresses.

11-6

SK*DOS ® 68K USER’S MANUAL

OFFSET 770-773(A6) Offset load address (long word)
OFFINI DOSORG+$18 Initial OFFSET value (long word)

The contents of OFFSET is added to the load address and transfer (or execution) address for all machine
language programs loaded from disk by SK¥*DOS (unless LASTRM contains the ASCII code for a minus sign.)
Programs are thus loaded into the address specified in the disk file only if OFFSET is 0 or if LASTRM contains
a minus sign. Normally, OFFSET points just above SK*DOS, so that all user programs are loaded into free
memory above SK*DOS. Such programs can be executed as long as they are written to be position independent.
OFFSET and MEMEND together therefore define the lower and upper limits, respectively, of free user
memory.

Since user programs may change OFFSET as they run (to load another program into memory above themselves,
for example), SK*DOS resets OFFSET to the value stored in OFFINI each time it does a warm start (it actually
sets OFFSET to the next 256-byte boundary above OFFINI to make OFFSET a more convenient number.)
OFFSET is thus only a temporary value, valid for the duration of any given program; OFFINI is more
permanent.

DEVIN 3274(A6) Current Input device

DEVOUT 3275(A6) Current Qutput device

DEVERR 3276(A6) Current Error device
These three bytes specify the devices currently being used for input, output, and error displays. They default to
device 0 for input and output, and device 1 for the error device, all of which are normally the default CONS
console device. User programs can change DEVIN and DEVOUT to go to different devices, but DEVERR
should usually remain so that error messages still go to the console.

DEVTAB 3278(A6) Device Descriptor Table
The device descriptor table provides information on currently installed devices; more information is found in
Chapter 14.

BAUDRT 3329+80*DN(A6) Baud Rate/100
This byte specifies the baud rate for serial devices, and is not used for others. BAUDRT indicates the baud rate
divided by 100; for example, a baud rate of 110 is shown as 01. If no baud rate is specified, the driver may use its
own default value.

EOFILC 3330+80*DN(A6) End-Of-File Character

When a device rather than a file is used for input during input redirection, EOFILC defines which character will
generate error 8 (end of file). The default is $1A, which is control-Z.

11-7

SK*DOS ® 68K USER’S MANUAL

XOFFC 3331+80*DN(A6) X-Off Character
XONC 3332+80*DN(A6) X-On Character

These two bytes specify whether a serial port uses the X-On/X-Off protocol, and which characters it uses. When
these characters are 0 (the default), then no X-On/X-Off is used. When they are set to other values (usually $13
or control-S for X-Off, and $11 or control-Q for X-On) then the port will immediately stop all output upon
receipt of an X-Off, and will only resume upon receipt of an X-On. (Note that this is different from using
ESCape to halt and resume output, since ESC only works for device 0.)

11-8

sk*pos ®

12. PROGRAMMING EXAMPLES

68K USER’S MANUAL

This section shows several examples of how to use SK*DOS in writing programs which access the disk.

The LIST program is one of the utilities supplied with SK*DOS. 1t is called with a command line which includes the

THE LIST UTILITY

name of the file to be listed after the word LIST, as in

SK*DOS: LIST TEXT

The program reads the file name from the line buffer, opens the file, and reads and prints one character at a time.

The following listing shows how this is done.

000000

000000

000002

000004
000006
000008
00000A
00000C
00000E
000010

000016
000018
00001A

6002

0100

A034
4201
204E
284E
A023
640C
197¢C

A037
6142
AOlE

00000001
00004024
0000A008
0000A005
0000A001
00004023
00004034
0000A037
0000A033
0000AO1E

1000004

}00001C
0015 0001

}00005¢C

* LIST UTILITY FOR SK*DOS / 68K

* COPYRIGHT (C) 1986 BY PETER A. STARK

*

* EQUATES TO SK*DOS

*

* THE FOLLOWING WOULD NORMALLY BE IN SKEQUATE.TXT

FCBERR
DEFEXT
FCLOSE
FOPENR
FREAD
GETNAM
PCRLF
PERROR
PUTCH

WARMST
*

*

LIST

*

VER

*

* START
START

* ERROR

ERROR

EQU 1

EQU $A024
EQU $A008
EQU $A005
EQU $A001
EQU $A023
EQU $A034
EQU $A037
EQU $A033
EQU SAO1E
ORG $0000
BRA.S START
DC.W $0100
OF ACTUAL PROGRAM
DC PCRLF
CIR.B D1
MOVE.L A6,A0
MOVE.L A6,A4
DC GETNAM
BCC.S NAMEOK
MOVE.B #21,FCBERR(A4)
ROUTINE

DC PERROR
BSR.S CLOSE
DC WARMST

12-1

ERROR BYTE
DEFAULT EXTENSION
CLOSE A FILE

OPEN FILE FOR READ
READ NEXT BYTE

GET FILE NAME
PRINT CR/LF

PRINT ERROR MSG
OUTPUT NEXT CHAR
RETURN TO SK*DOS

GO TO START

VERSION NUMBER

START ON NEW LINE
PREV CHAR WAS NONE
SAVE POINTER
POINT TO USER FCB
GET FILE SPEC

IF FILE NAME OK
ELSE IT’S ERR 21

PRINT ERROR CODE
CLOSE THE FILE
RETURN TO SK*DOS

sk*pDos ®

00001C
000020

000022
000024

000026
000028
00002A

00002C
000032
000034
000036

000038
00003C
00003E
000040
000042
000046
000048
060004A
00004C
00004E
000052
000054
000058
00005A

00005¢C
00005E
000060

183C
A024

A005
66F0

2848
A001
670C

0c2c
66E2
6126
AO1E

0C05
660A
1co1l
1205
0co6
67DE
1205
1805
A033
0C04
66D2
183C
A033
60CA

2848
A008
4E75

0001

0008

000A

000D

000D

000A

1000016

}000038

0001
}000016
}00005C

}000048

1000026

}000026

1000026

68K USER’S MANUAL
* FILE SPEC WAS OK; DEFAULT TO .TXT
NAMEOK MOVE.B #1,D4 DEFAULT EXT
DC DEFEXT DEFAULT TO .TXT

*

* NOW ACTUALLY OPEN THE FILE
DC FOPENR
BNE.S ERROR

OPEN FOR READ
IF NOT ZERO
*

* MAIN LOOP TO READ AND PRINT EACH CHARACTER

MAIN MOVE.L AOQ,A4 POINT TO SYS FCB
DC FREAD GO READ NEXT CHAR
BEQ.S CHAROK GO ON IF NO ERROR

*
* IF THERE WAS AN ERROR, SEE IF END OF FILE

CMP.B #8,FCBERR(A4) END OF FILE?
BNE.S ERROR NOT END OF FILE
BSR.S CLOSE CLOSE ON EOF
DC WARMST RETURN TO SK*DOS

*
* CONTINUE IF CHARACTER IS OK

CHAROK CMP.B #S$0A,D5 IS IT LINE FEED?
BNE.S PRNTIT NO, PRINT IT
MOVE.B D1,D6 YES, GET PREV
MOVE.B D5,D1 SAVE CURRENT
CMP.B #$0D,D6 WAS PREV A CR?
BEQ.S MAIN YES, SO SWALLOW IT

PRNTIT MOVE.B DS5,D1 SAVE CHARACTER
MOVE.B D5,D&4 READY FOR PRINTING
DC PUTCH AND PRINT IT
CMP.B #$0D,D4 WAS IT RETURN?
BNE.S MAIN NO, SO CONTINUE
MOVE.B #$0A,D4
DC PUTCH ADD LINE FEED
BRA.S MAIN AND ALSO CONTINUE

*

* CLOSE SUBROUTINE

*

CLOSE MOVE.L AO,A4 POINT TO FCB
DC FCLOSE CLOSE FILE
RTS RETURN

*
END LIST

The above example shows a variety of techniques. Note especially how it checks for the end of file. When the read
routine detects an error, the error code is fetched from byte 1 of the FCB and examined. If it is an 8 (end of file),
then the program simply finishes up. If it is any other error, then it goes to an error routine.

Note also that the program is ORG’ed at $0000. When loaded, however, it will be relocated upward by the current
value of OFFSET, so that it resides in memory just above SK*DOS. '

12-2

sk*pos ®

THE BUILD UTILITY

68K USER’S MANUAL

The following example shows how to open a file for writing and actually proceed to write into it.

000000

000000

000002

000004
000006
000008
00000A
00000C

00000E
000012

000014
000016

000018
00001C
00001E
000020
000024
000026

6002

0100

A000
204E
284E
A023
652E

183C
A024

A006
662A

49FA
A035
A02C
2668
181B
0Cco4

00000001
000002F6

0000A024
0000A009
0000AOOF
0000A006
00004002
0000A029
00004023
0000A02C
0000A037
0000A035
0000A000
0000AO1E

1000004

100003C

0001

1000042

005€)000076

02F6

0023

* BUILD UTILITY FOR SK*DOS / 68K
* COPYRIGHT (C) 1986 BY PETER A.
*
* EQUATES TO SK*DOS
*
FCBERR EQU 1
LPOINT EQU $2F6
* THE FOLLOWING WOULD NORMALLY
DEFEXT EQU $A024
FCSCLS EQU $A009
FDELET EQU $AOOF
FOPENW EQU $A006
FWRITE EQU $A002
GETCH EQU $A029
GETNAM EQU $A023
INLINE EQU $A02C
PERROR EQU $A037
PSTRNG EQU $A035
VPOINT EQU $A000
WARMST EQU SAO1E
*
ORG $0000

BUILD BRA.S START
DC.W $0100

* ACTUAL START OF PROGRAM
START DC VPOINT
MOVE.L A6,AQ
MOVE.L A6,A4
DC GETNAM

BCS.S ERROR
*

STARK

ERROR BYTE

LINE BUFR PTR

BE IN SKEQUATE.TXT
DEFAULT EXTENSION
CLOSE ALL FILES
DELETE A FILE
OPEN FOR WRITE
WRITE A BYTE

GET CHAR

GET FILE NAME
INPUT TEXT LINE
PRINT ERROR MSG
CR/LF AND STRING
PT TO VAR AREA
WARM START

VERSION

GET POINTER

SAVE POINTER
POINT TO SYS FCB
GET FILE SPEC
ON ERROR

* IF NAME WAS OK, DO DEFAULT EXTENSION

MOVE.B #1,D4
DC DEFEXT
*

* NOW OPEN FILE FOR WRITE

OPEN DC FOPENW
BNE.S OPENNG
* .
NXTLIN LEA PROMPT(PC) , A4
DC PSTRNG
DC INLINE

MOVE.L LPOINT(AO),A3
MOVE.B (A3)+,D4
CMP.B #$23,D4

12-3

CODE FOR DEFAULT
GO DEFAULT IT

OPEN FILE
IF ERROR

PRINT PERIOD
PRINT IT
INPUT A LINE
POINT TO NEXT
GET CHAR
CHECK FOR #

sk*pos ®

00002A
00002C
00002E
000030
000032
000036
000038
00003A

00003C
00003E
000040

000042
000048

00004A
00004E
000050
000052
000056
00005A
00005C
000060
000062
000064
000068
00006C

00006E
000070
000072
000074

000076
000077
000078

0000AF
0000BO
0000D1

6712
2848
A002
660A
0C04
67E0
181B
60F2

}00003E

}00003C
000D
}000018

}00002E
A037

A009
AOlE

0c2c
66F2

0003 0001
}00003¢C

49FA
A035
A029
0205
0C05
66E2
49FA
A035
A029
0205
0C05
66D0

002C)000078

OODF

0059
}00003E

0052}0000B0O

OODF
0059
}OOO03E

2848
AOOF
66C8
609E

}00003C
1000014

2E
04
5448 4154 2046

04
4152 4520 594F
04

BEQ.S QUIT
MOVE.L AO,A4

NEXTL1L DC FWRITE
BNE.S ERROR
CMP.B #$0D,D4
BEQ.S NXTLIN
MOVE.B (A3)+,D4
BRA.S NEXTL1

*

* PROCESS ERRORS

ERROR DC PERROR

QUIT DC FCSCLS
DC WARMST

*

* ERROR HANDLING ON OPENING FILE

OPENNG CMP.B

#3 ,FCBERR (A4)

68K USER’S MANUAL

YES, SO GO QUIT
POINT TO FCB
GO OUTPUT CHAR
ON ERROR

END OF LINE?
YES, START LINE
GET CHAR

AND REPEAT

ALREADY EXISTS?
NO, REAL ERROR

ASK TO DELETE

GET ANSWER

CVT TO UPPER CASE
IS IT YES?

QUIT IF NOT

ASK IF HE’'S SURE
GET ANSWER

CVTI TO UPPER CASE
IS IT YES?

QUIT IF NOT

POINT TO FCB
DELETE THE FILE
ON ERROR

OPEN FILE AGAIN

"THAT FILE ALREADY EXISTS ...
DO YOU WISH TO DELETE IT? "

"ARE YOU SURE YOU REALLY WANT TO? "

BNE.S ERROR
*
% IF FILE EXISTS, DELETE IT?
LEA ASKDEL(PC) ,A4
DC PSTRNG
DC GETCH
AND.B #$DF,D5
CMP.B #$59,D5
BNE.S QUIT
LEA ASKSUR(PC) ,A4
DC PSTRNG
DC GETCH
AND.B #$DF,D5
CMP.B #859,D5
BNE.S QUIT
* DELETE FILE IF OK WITH USER
MOVE.L AO,A&4
DC FDELET
BNE.S ERROR
BRA OPEN
*
* TEXT STRINGS
PROMPT DC.B "o
DC.B 4
ASKDEL DC.B
DC.B 4
ASKSUR DC.B
DC.B 4
*
END BUILD

12-4

sk*pos ® 68K USER’S MANUAL

Although it is not immediately obvious from the above examples, all user-written programs must be written in
position - independent code (although see the description of the binary file format in Chapter 13 for possible
exceptions.) To write position - independent programs for 68xxx processors, generally follow the following rules:

1. Do not use JMP and JSR instructions - use BRA and BSR instead. In general, there should be no JMPs or JSRs in
your programs at all.

2. Refer to variables within your program using PC-relative addressing. For example, the instruction MOVE.B
NUMBER(PC),D4 would move the quantity NUMBER into D4, but the (PC) tells the assembler to use PC-relative
addressing. Unfortunately, the 68xxx does not allow PC-relative addressing as a destination; that is, the instruction
MOVE.B D4,NUMBER(PC) is illegal. Hence this instruction has to be replaced by a two-instruction sequence such
as

LEA NUMBER(PC),AS
MOVE.B D4, (AS)

While this adds an extra instruction every time you store to a local variable, we suggest that you avoid the alternative
shortcut of setting one address register to point to your data area and then doing all stores relative to that register.
Although this makes your program a bit shorter and faster, it generates code which causes PICTEST to signal an
error even though there is none. (PICTEST, explained later in the manual, is used to check a program to make sure
it is position independent.)

The assembly language examples in this chapter are intended only as gnides for those users who intend to write their
own assembly language programs. If you wish to try them out, proceed as follows: (1) Type the command EDLIN
SAMPLE to edit a sample file. (2) When EDLIN returns with a # prompt, give it the I command to start inserting
text. (3) Enter the LIST program (the first program in this chapter). Examine the listing to note that the first line of
the program begins with an asterisk; type in only the material to the right of that column. For example, begin the first
line with * LIST ...; begin the 7th line with FCBERR EQU ... (4) When you finish typing in the program, enter a # at
the beginning of a new line, and then use the S command to exit EDLIN. (5) Give the command ASM SAMPLE to
assemble the sample from assembly language to machine language. You will now see that the assembler added all of
the machine language code which you did not type in. (6) Assuming there are no errors (correct the program if there
are), then give the command SAMPLE SAMPLE. The computer will then use the SAMPLE.COM file generated by
the assembler to print out the SAMPLE.TXT file you typed. SAMPLE.COM does exactly the same thing as the LIST
command supplied with SK*DOS, except that it does not have the *help’ feature.

12-5

SK*DOS ® 68K USER’S MANUAL

13. INFORMATION FOR ADVANCED PROGRAMMERS

This chapter gives additional information for systems or advanced programmers. It describes the disk format,
structure of files, and information regarding customization.

DISK FORMAT

A typical disk, whether hard or floppy, is divided into tracks; each track is then divided into sectors. The number
of tracks and sectors on a disk depends on the type of disk and drive - a 5-1/4" floppy disk might have as few as
35 tracks with 10 sectors per track, or a Winchester hard disk might have as many as 256 tracks with 32 or more
sectors per track. In addition, the disk drive might be able to use both sides of a disk, or a Winchester disk might
have multiple disks spinning on the same shaft.

As far as SK*DOS is concerned, the exact number of sides, tracks and sectors is unimportant as long as there are
at most 256 logical tracks (numbered 0 through 255) per drive and 256 logical sectors (numbered 0 through 255)
per track. (For compatibility with 6809 SK*DOS, sector numbering begins with 1 for floppy disks.)

The exact positioning of those sectors and tracks is controlled by the disk drivers and FORMAT routine, not by
SK*DOS itself. On floppy disks, the physical placement of these tracks and sectors on the disk would most likely -
agree with their logical numbering; on hard disks they might physically be placed elsewhere on the disk. That is
why the previous paragraph uses the word logical in describing track and sector number - a logical address is
where SK*DOS thinks the sector is located; the physical address is the actual location on the disk where the disk
drivers place it.

Depending on the system, SK*DOS floppy disks may be either single- or double density, and single- or
double-sided. In addition, double-density disks may have either a single- or double-density directory track. As
long as disks are used only on a single system, the particular floppy disk format is not important.

Standard SK*DOS / 68K disks will generally be double density throughout, and may be single or double-sided.
Disks intended to be interchanged with 6809 SK*DOS systems, however, should be formatted and used in
single-density, single-sided format, since 6809 SK*DOS requires that track 0 always be in single density.

Each sector of an SK*DOS disk contains 256 bytes of data. Of these 256 bytes, the first four are used for system
information, and the remaining 252 bytes are usable for file data.

SK*DOS uses a linked-chain disk format. That is, the sectors used in files, as well as sectors which are in the
so-called free chain are linked to each other much like the links in a chain. Each sector contains a two-byte
pointer which points to the next sector in that chain (unless it is 0, which indicates the end of that chain.) This
pointer occupies the first two bytes of every sector. In addition, the sector also has a number, which occupies the
third and fourth byte, and which counts the sectors within a file.

Thus the sector format looks like this:
Bytes 1 and 2 - pointer to next sector
Bytes 3 and 4 - sector counter

Bytes 5 through 256 - 252 bytes of data

Some sectors have a slightly different format, and may omit the pointer or sector counter.

SK*DOS ® 68K USER’S MANUAL

All the tracks on a disk can be used for storing data and program files except for track 0. The sectors on this
track have special uses as follows:

Sector 1 on track 0 holds the super-boot program. This is a program which is loaded by the boot program in the
system ROM monitor, and which in turn loads the rest of SK*DOS into memory. (This sector has 256 bytes of
data, as the first four bytes of the sector are used for regular data storage rather than being used as pointer and
sector count bytes.) On some systems, the boot procedure may be different, and so this sector may not be needed
on those systems.

Sector 2 is often empty. It has been set aside as an extension of sector 1 in case more than 256 bytes are needed
for booting.

Sector 3 is the System Information Sector or SIS. It contains the disk name and number, the date when the disk
was formatted, the number of tracks and sectors on the disk, and three pieces of information about the free
sector chain on the disk: the track and sector numbers of the first sector in the chain, the track and sector
numbers of the last sector in the chain, and the total number of sectors in the chain.

Sector 4 is usually empty, although the COPY utility places a copy of the SIS into this sector to verify that the
disk is available for writing.

Sector 5 begins the directory, which extends to the last sector of track 0. Each directory entry requires 24 bytes,
so there is room for 10 entries in each sector with 16 bytes empty. For example, on a 5-14" single density, single
sided disk, there are 10 sectors in track 0. Hence there are six sectors in the directory, numbered from 5 to 10,
for a total of 60 directory entries. The six sectors are linked (through the first two bytes in each sector, and the
last sector has a pointer of 00-00. When the directory is filled up, however, SK*DOS will take a sector from the
free chain and add it to the directory, so that the directory can be expanded to make room for more entries
(although this may greatly slow down the operation of the system if the added directory sector is on one of the
inner tracks of the disk since the disk head will have to step in and out each time it accesses the directory.)

SEQUENTIAL FILES

Most SK*DOS files are of the sequential type (as opposed to random files, discussed next). Sequential files are
intended to be read in order, from beginning to end. Such files generally are of two types - text or binary. :

Text File Format

SK*DOS text files consist simply of ASCII text, usually separated into lines of text by CR ($0D) characters; LF
characters ($0A) are not included. Most text files use space compression, where two or more consecutive spaces
are instead replaced by the TAB character ($09), followed by a byte representing a space count between 2 and
127, inclusive. Strings of spaces of length greater than 127 are broken up into smaller pieces, each of length 127
or less.

No special character is used to denote the end of text, although the last line of text will generally end with a CR.
Any space remaining in the last sector of a text file is filled with NULL ($00) bytes. When SK*DOS reads a
space-compressed file, it does not return any NULL characters to the calling program; hence it will generate an
end-of-file error immediately after the last character of the text.

Text files may consist of any characters except for NULL ($00) and TAB ($09).

13-2

SK*DOS ® 68K USER’S MANUAL

Binary File Format

SK*DOS binary files are non-space-compressed files which contain binary data along with additional information
which specifies where in memory that data is to be loaded and/or executed.

A typical binary file will generally consist of several segments, each of which begins with an identification byte
which describes what the segment consists of. There are ten such identification bytes:

$02 marks the beginning of a relatively short segment containing binary data to be loaded into memory. The $02
is followed by a two-byte load address, a one-byte count which specifies how many bytes are to be loaded, and a
number of bytes equal to the count. The count is a number between 1 and 255, and the load address is a number
between $0000 and $FFFF. During loading, SK*DOS adds the current value of OFFSET to load addresses
specified in the file (unless the - option is used in the command line).

$03 is similar to $02 in that it also marks the beginning of data to be loaded into memory, but it is followed by a
four-byte load address and a two-byte count. It is therefore used for memory addresses above $FFFF, or for
loading data longer than 255 bytes (although such data is often split into a number of shorter $02 segments.) As
with the $02 segment, SK*DOS adds the current value of OFFSET to load addresses specified in the file (unless
the - option is used in the command line).

$16 marks the beginning of a two-byte transfer address; that is, the address where the file just loaded should be
executed. The current value of OFFSET is added to the address specified in the file.

$17 marks the beginning of a four-byte transfer address, used if the transfer address is above $FFFF. The current
value of OFFSET is added to the address specified in the file.

$04, $05, $18, and $19 are similar to $02, $03, $16, and $17, respectively, except that the current value of OFFSET
is NOT added to the specified address in the file. Note, however, that load addresses are still checked against
OFFSET and MEMEND limits unless the GETX command is used (see the descriptions of GET and GETX
later in this manual). These four codes are provided for special applications, and should not normally be used as
they may cause the system to crash in future multi-tasking versions of SK*DOS.

$OF and $10 are special codes used for programs which are not written in the normal position independent code
(PIC). They are used to allow SK*DOS to modify an address while loading a position - dependent program. The
$0F is to be followed by a single word address (relative to OFFSET), and the $10 is to be followed by a single
long-word address (relative to OFFSET), which specifies the address of a long-word address which is to be
modified by adding the current value of OFFSET to it. For example, suppose the current value of OFFSET is
$5000 and the disk file contains the sequence $OF 12 34 or the sequence $10 00 00 12 34. Either of these two
segments tells SK*DOS to add $5000 to the contents of address $6234 (which is presumed to have been
previously loaded.) This code would normally be used only with assemblers or compilers which generate non -
position - independent code.

With one exception, all of the loading and transfer addresses referred to above are merely relative addresses;
they are added to the current value of OFFSET (see Chapter 11) when used. For example, if OFFSET currently
has a value of $5000, and a file has a loading address of $1000 and a transfer address of $1004, then it will
actually be loaded into memory at $6000 and executed starting at $6004. The exception is SK*DOS itself. Since
SK*DOS is loaded by the bootstrap program at a time when OFFSET has not yet been defined, it contains
absolute loading and transfer addresses rather than relative ones. Hence you can determine the absolute address
where your SK*DOS is loaded into memory by examining the SK*DOS.SYS (or SK*DOS.COR) file with the

13-3

SK*DOS ® 68K USER’S MANUAL

LOCATE command (using the - option so the OFFSET is not added by LOCATE). Since COLDST is located at
the very beginning of SK*DOS, this method is also used to find the address of COLDST in your system.

Note that segments do not contain any kind of checksum; it is assumed that any disk errors will be caught by
CRC or other error checking in the disk hardware or drivers. As in text files, the last segment of a binary file is
generally followed by NULLS so as to fill out the last sector of a file.

RANDOM FILES

The directory for each file only gives the track and sector numbers of the first and last sector of the file; it does
not contain any information as to which other sectors the file uses. Since the sectors of a file need not necessarily
be consecutive on the disk - they could lie anywhere on the disk if the disk has been much used and its free space
is not all in one place - the file itself contains information linking one sector to the next. This is done by the first
two bytes in each sector, which contain the track and sector number of the next sector in the file. In a sequential
file, we normally start reading or writing at the beginning of a file and then continue through the file, following
these two-byte links until we get to the end.

As pointed out earlier, the third and fourth bytes of a data sector contain a two-byte (four hex-digit) sector count
which numbers the sectors of a file. For example, the first data sector of a file has the number 0001, the second
is numbered 0002, and the seventh would be numbered 0007. Don’t confuse these numbers with the physical
location of the sector on the disk, which is sometimes called the sector’s disk address, and which consists of a
track number and a sector number. The sector count could be used to make sure we read the sectors of a file in
the right order, but in practice is almost never used with sequential files. Though we have used the term sector
count above, in the rest of this discussion we will simply call it the sector number. Some people also call it the
record number, but this is a bit confusing since the word record can also be applied to a part of a sector.

Although sequential files are most common, we often need random or direct access files. These are files which
allow us to read or write data in the middle of a file without necessarily reading or writing all the data before it.
For example, at some point we might need to read data located in sector 0007, followed by sector 0104, followed
by sector 0025, and so on. This is accomplished by the random file capabilities of SK*DOS.

In order to allow us to rapidly locate a particular sector number in a file, without reading all the sectors before it,
SK*DOS provides for a special random file format which contains an extra two sectors. These two sectors, which
are always at the very beginning of a random file, contain a file map of the file, which maps out the placement of
the file on the disk and helps us to find a specific sector. These two sectors always have a sector number of 0000.

Thus the very first data sector of any file is always sector number 0001, but in a sequential file this is the first
actual sector of a file, whereas in a random file it is actually the third sector. (If you try to do a sequential read of
a random file, SK*DOS skips the first two sectors and so you will never know they are there.)

Few application programs actually need random files, but if they do, they will take care of generating and
manipulating them automatically, through SK*DOS. Nevertheless, here is information on how this is done.

There is only one way to generate a random file:
1. Open a file for writing with FOPENW.
2. After opening, but before writing anything to it, change byte 26 of the FCB to a non-zero number.

3. Now write sequentially to the file using FWRITE.
4. When done, close the file with FCLOSE.

13-4

SK*DOS ® 68K USER’S MANUAL

SK*DOS will automatically put a two-sector file map at the beginning of the file, and will update it as data is
written to the file. Note that the file map is customized for the particular placement of the file sectors on the
disk. If you copy a file from one disk to another, the two file map sectors will be different since the copy will most
likely be in a different place on the disk. But you need not concern yourself with this since SK*DOS does this
automatically.

Once the file is written, it can be read or updated (the data in it can be modified), or lengthened. But random
files are usually made oversize to begin with, so there is room for adding more data at a later time without
increasing the file size later.

The file can be read sequentially just like any sequential file. If it is opened (with FOPENR) and then read (with
FREAD), it will look like any sequential file, since SK*DOS will automatically skip the file map sectors and read
only the data sectors.

Things are a bit more complex - and interesting - if the file is opened for updating. We now have a number of
options, which are listed in the description of the Open for Update operation, FOPENU. The most important
concept is that, by use of FRRECD, we can locate any sector number (that is, a sector with a desired sector
count) in the file in a short time. For example, we can tell SK*DOS to read sector number 0104 of a file. Given a
sector number, SK*DOS will look it up in the file map, calculate the exact location of that sector, and then go
directly to it.

Once we have located the specific sector, we can specify an exact byte of that sector, and either read it (with
FRGET) or write it (with FRPUT). Knowing that there are 252 data bytes in each sector, we could thus locate
any particular byte in a file after some fairly simple calculations. For example, to locate byte N in a file, we could
use the following two BASIC lines:

Sector number = INT(N/252) + 1
Byte number = N - INT(N/252)*252 + 4

N in these equations is assumed to start with 0; the 4 in the second equation is due to the fact that the first data
byte in a sector is actually numbered 4. For example, the 253rd byte in a file (which would actually be numbered
252) would be byte number 4 (the first byte) in sector 0002.

OTHER USEFUL ADDRESSES
There are some additional addresses which will be of interest only to programmers who wish to customize
SK*DOS for their specific systems. These are located at fixed offsets above COLDST; see the SEQUENTIAL
FILES part of this chapter for a description of how to find COLDST.
Warmstart COLDST+$06 Warm Start SK*DOS

If you exit SK*DOS to a ROM monitor or other debugging tool and wish to return, you may do a jump to this
Warmstart location. (Don’t confuse this location with the WARMST trap described in Chapter 10.)

SK*DOS ® 68K USER’S MANUAL

GETDAT COLDST+$0C Get boot date

At GETDAT there is a JMP instruction which points to the routine which asks you for the date when booting
SK*DOS. If there is a clock/calendar IC in your system, you may replace this JMP with a call to your own
routine which reads the date from this IC. You must preserve all registers.

INTIME COLDST+$12 Add time to directory entry

INTIME normally contains three RTS instructions. Each time that SK*DOS opens a file for writing, it places the
next sequence number for the file into D35, does a JSR to the INTIME trap (with an immediate RTS because
INTIME normally contains six bytes of RTS), and upon return stores the contents of D35 into byte 27 of the
current FCB. DS normally contains the sequence number, but a user may replace the RTS bytes with a jump into
a user-written routine which may replace the byte in D5 with a time of day byte. One byte is not enough to
indicate a precise time down to the minute, but it can be used to represent time in tenths of hours, resulting in
6-minute resolution. A byte of 00 means no sequence number or time is present; 01 is a time from 12:00
midnight to 12:05 a.m.; 02 is 12:06 a.m. through 12:11 a.m., and so on. (User programs using INTIME must
preserve all registers except for DS.)

OFFINI COLDST+$18 Initial OFFSET value

OFFINI generally points to an even location just above SK*DOS; on each cold-start or warm-start, SK*DOS
reads OFFINI and then initializes OFFSET at the next even 256 byte address above OFFINI. (For example, if
OFFINI is $49EA, then OFFSET will become $4A00.) See the next section for a discussion on how to use
OFFINI, OFFSET, and MEMEND to reserve space for custom routines.

MEMINI COLDST+$1C Initial MEMEND value

When SK*DOS is initially booted, it does a memory sense to determine how much memory is installed in the
system; it then uses this information to set MEMEND. MEMINI sets the highest address that SK*DOS will try
during that test. This is essential in those systems which may not return a buss error if non-existent addresses are
accessed, but can also be used to set aside an area of memory which SK*DOS will never use.

SECTRD COLDST+$20 Secondary sector read routine trap

SECTRD normally contains 10 RTS instructions (a total of 20 bytes) which are called each time SK*DOS calls
the SREAD routine to read a sector. A4 at this time points to the FCB being used for the read. A user may
substitute up to three alternate sector read routines by inserting JSR instructions which point to these other
routines. This allows the simple addition of a cache, RAM disk, or alternate disk controllers. Such routines must
preserve AQ through A4 and DO through D4. When such JSR instructions are added, they will normally go to a
routine which analyzes the drive number in the specified FCB. If the drive number is different from the one
handled by this secondary disk read routine, then it should perform an RTS to return to SK*DOS; if the drive
number matches, then the routine should perform the requested read, remove from the stack the extra return
address placed there by the added JSR, and then RTS directly back to the calling program.

13-6

SK*DOS ® 68K USER’S MANUAL

SECTWR COLDST+$34 Secondary sector write routine trap

SECTWR normally contains 10 RTS instructions (a total of 20 bytes) which are called each time SK*DOS
executes the SWRITE routine to write a sector. A4 at this time points to the FCB being used for the write. A
user may substitute up to three alternate sector write routines by inserting JSR instructions which point to these
other routines. This allows the simple addition of a cache, RAM disk, or alternate disk controllers. The program
must preserve AQ through A4 and DO through D4.

SECCOL COLDST+$48 Secondary cold-start initialization

SECCOL normally contains 10 RTS instructions (a total of 20 bytes) which are called during cold start. This area
would normally be used for initializing any drivers used with SECTRD or SECTWR. A user may call up to three
initialization routines by inserting JSR instructions which point to these other routines. j The program must
preserve AO through A4 and DO through D4,

SECWAR COLDST+$5C Secondary warm-start initialization

SECWAR normally contains 10 RTS instructions (a total of 20 bytes) which are called during warm start. This
area would normally be used for initializing any drivers used with SECTRD or SECTWR. A user may call up to
three initialization routines by inserting JSR instructions which point to these other routines. The program must
preserve AQ through A4 and DO through D4.

SECCHK COLDST+$70 Secondary disk ready check

SECCHK normally contains 10 RTS instructions (a total of 20 bytes) which are called to check whether the
secondary disk drivers are ready when SK*DOS is searching for the next ready drive. At that time, A4 points to
an FCB which contains the drive number, and the drive number is also in D5. The called routine should return a
zero condition if the requested drive is ready, or non-zero if it is not ready. The program must preserve A0
through A4 and D0 through D5.

SECFL1 COLDST+$84 Secondary Flag 1

SECFL2 COLDST+$8A Secondary Flag 2

SECFL3 COLDST+$90 Secondary Flag3

These are three six-byte areas which may be used by secondary drivers as general purpose flags.

TRPFLG COLDST+$C0 Trap Initialization Flag

TRPFLG determines whether SK*DOS will initialize only the "Line 1010" trap (if TRPFLG = 0) or all the traps
(if TRPFLG is non-zero) each time that RESTRP is called. This decision is largely based on the type of system,
and should not normally be changed by the user. If TRPFLG is zero, then traps (such as bus error etc.) will be
handled by the monitor; if TRPFLG is non-zero, then traps will be handled by SK*DOS .

13-7

SK*DOS ® 68K USER’S MANUAL

RESERVING MEMORY WITH OFFSET AND MEMEND

Since OFFSET and MEMEND point to the beginning and end, respectively, of free user memory, they can be
used to set aside memory for other programs which should co-exist with SK*DOS without interfering with it.

When SK*DOS is initially booted, it is loaded with initial values of OFFINI and MEMINL. It first checks
memory, starting with OFFINI up through the value of MEMINI, looking for a memory address which fails to
store a memory pattern stored into it, or which generates a bus error. Once such an address is found, SK*DOS
stores into MEMEND the top address of the last 4K block of memory found to be working. This value of
MEMEND then remains there unless changed by user programs; SK*DOS does not itself change it at any time
(although programs such as RAMDISK may.)

Following the above, at every warm-start SK*DOS sets OFFSET to the next even 256-byte boundary above the
current OFFINI. Since OFFINI at boot-up normally points just above SK*DOS and its drivers, OFFSET is thus
initialized to the next 256-byte boundary above SK*DOS.

PROCESSOR STATE AND STACK USE

Since user programs call SK*DOS with traps, SK*DOS obviously runs in supervisor state. User programs,
utilities, and application programs, however, run in user state.

The system stack pointer is initialized at COLDST, with the user stack pointer initialized at COLDST-$0200. For
example, if COLDST is at $1000, then the user stack will go from $0E00 down, while the system (DOS) stack will
go from $1000 down. The system stack will never extend down as far as the user stack, so data on the user stack
is preserved during DOS calls. Between them, OFFSET (through OFFINI) and MEMEND (through MEMINI)
therefore delimit the current user memory.

User programs (and SK*DOS utilities) can subsequently change these values to reserve memory for themselves.
A program which wants to reserve permanent memory for itself (such as a RAM disk) can be loaded into
memory at OFFSET, and then point OFFINI above itself, or can move itself to the top of memory and then
point MEMEND just below itself. Either way, its memory will then be protected permanently, since SK*DOS
does not itself move these boundaries.

It is also possible to reserve memory just temporarily; for example, a program might be needed only for a while.
Such a program can then be loaded into low memory, and OFFSET adjusted to point to an even address above
the program. OFFSET will then remain at this value only until the next warm start, at which time it will go back
to the previous value as determined by OFFINI. (Note that OFFSET must always be even.)

USER-INSTALLED MEMORY-RESIDENT COMMANDS

Users may add their own memory-resident commands to the list normally contained within SK*DOS. The
program code for such commands may be left in memory and protected from SK*DOS in one of several ways:

1. The program can be placed at the bottom of user memory and then OFFINI set to point above the program’s
top memory address, or

2. The program can be placed at the top of user memory and then MEMEND set to point just below the
program’s bottom address, or

13-8

SK*DOS ® | 68K USER’S MANUAL

3. The program can be placed into some other memory area which SK*DOS does not use and does not know
about.

To add the command to SK*DOS’s command list, a table of command names and starting addresses must be
placed somewhere in memory and identified to SK*DOS. The following is an example of such a table:

CMDTAB DC.B ’'DIR’ Command name
DC.B O delimiter to signal end of name
DC.L DIR Starting address of command
DC.B 'GET' Command name
DC.B 0 delimiter to signal end of name
DC.L GET Starting address of command

DC.B O End of table flag

Finally, to tell SK*DOS where this table is located, its starting address (i.c., the address of the first DC.B) must
be placed as a long word into location COMTAB.

(The astute reader may note that, depending on the length of the command name, the assembler may insert an
extra empty byte between the DC.B command name delimiter and the DC.L which holds its address so as to
make sure that the DC.L starts on an even address. This is irrelevant to SK*DOS.)

TRACING PROGRAMS

If you have a ROM system monitor, such as HUMBUG, which supports tracing programs, you may use
SK*DOS’s TRACE*** command to enter a program in the trace mode (TRACE*** has three asterisks so that
you will not accidentally type in the command when you don’t mean to.)
TRACE*** is generally used just before you load in and execute a new program being tested. It sets the trace
bit in the user status register, so that SK*DOS enters the new program in the trace mode. The 68xxx CPU will
then execute the first instruction and trap to the ROM monitor, generally to display a register dump. You may
then use the facilities of the monitor to trace further, insert breakpoints, or do other debugging.
When using TRACE*** with HUMBUG, you must first execute the TRACENAB command, which tells
HUMBUG that you will be using TRACE*** and initializes one of its memory locations.

SYSTEM INFORMATION SECTOR FORMAT

The System Information Sector (SIS) contains the following data; all unused bytes are 00.

Bytes 16-26 Disk name (and extension)

Bytes 29-30 Track and sector number of first free sector
Bytes 31-32 Track and sector number of last free sector
Bytes 33-34 Number of free sectors

Bytes 35-37 Month, day, and year of disk creation

Byte 38 Number of logical tracks on the disk - 1

SK*DOS ® : 68K USER’S MANUAL

Byte 39 ‘ Number of logical sectors per track
DIRECTORY STRUCTURE

The directory of a disk occupies track 0 of every disk, beginning at sector 5 and extending to the end of the track.
This area of a disk is reserved for the directory when the disk is initially formatted, but SK*DOS will extend the
directory, one sector at a time, if additional space is needed. Like any other file, the duectory is a linked chain; if
additional sectors are needed, they may be anywhere on the disk.

Within each sector, the first two bytes are a link pointer and the next 14 bytes are empty (filled with zeroes); the
remaining 240 bytes are split into ten groups of 24, with each set of 24 bytes being one file entry. These bytes are
used as follows:

Bytes 0-10 File name and extension

Byte 11 File attribute

Byte 12 File protection

Bytes 13-14 Track and sector number of first sector

Bytes 15-16 Track and sector number of last sector

Bytes 17-18 File size in sectors

Byte 19 Sequential /random flag

Byte 20 Time of file creation / update

Bytes 21-23 Month, day, and year of file creation / update

The first character of the file name (byte 0) is replaced by $FF when a file is deleted, but the remaining bytes are
unaltered. Hence the CAT command (using its N option) can display data on deleted files. When the directory is
first established, all bytes in the empty directory are written as zeroes; hence when SK*DOS searches the
directory for a file, it stops searching when it gets to an entry whose first character is still 00.

Although logically an SK*DOS disk can hold one root directory and 26 (or more) subdirectories, physically all of
the files are listed in one master directory, which is stored as a flat file as described above. Within this directory,
files are coded as to which subdirectory (A/ through Z/) they belong into by storing the directory code in bit 7 of
bytes 0 through 7 of the directory entry.

As with all ASCII text in SK*DOS, file names are stored as 7-bit ASCII characters, with the left-most, eighth or
parity bit, normally a 0. Bit 7 of bytes 0-7 (the eight bytes of the file name) would therefore normally be zeroes.
Instead, they are now used to hold the directory code letter. For example, here are some sample file-name bytes:

File TEXT in the root directory:

54 45 58 54 00 00 00 00 <- ASCII for "TEXT" plus four nulls
0O 0 0 O O 0 O O <- parity bits; 00 means root

File TEXT in directory U/:

54 C5 58 D4 00 80 00 80 <- ASCII for "TEXT" plus four nulls
0 1 0 1 0 1 0 1 <- parity bits; $55 means "U"

While at first glance this seems like an awkward way of coding subdirectories, in practice just a few extra
instructions are required to process these parity bits. SK¥*DOS routines GETNAM and FNPRNT do the
processing automatically for input and output of file specifications. The advantages, on the other hand, greatly
outweigh the disadvantages: the directory structure is totally compatible with earlier versions of SK*DOS, same
routines which differentiate between file names also diferentiate between directory names without any extra

13-10

SK*DOS ® 68K USER’S MANUAL

programming or. time, it becomes easy to move a file from one directory to another without rewriting it, the

directory remains a manageable size, and for most situations, the entire directory for an entire disk is still
contained in just one track, thereby minimizing disk access time.

13-11

SK*DOS® 68K USER’S MANUAL

14. I/0 REDIRECTION AND I/O DEVICES
This chapter gives additional information on the entire interrelated (and inter-twined) subject of I/O redirection,
device drivers, printers, communications, and the like. It supplements information given for the DEVICE
command in Appendix G. In particular, it describes the differences between ‘device names’, ‘device numbers’,
and “‘device drivers’.
Before continuing, it is important to explain our use of the word device. In SK*DOS, a device is any I/O port
other than a disk drive or RAMDISK. This includes character-oriented devices such as the console, terminals,
modems, or printers. For the sake of the discussion in this chapter, we will differentiate between disks and
devices, even though many people would classify a disk as one type of device. In fact, SK*DOS allows devices
and disks to be treated in similar ways. Nevertheless, for our purposes it is easier to separate the concepts.

COMMAND LINE REDIRECTION

In its simplest form, I/O redirection simply means sending output to a different place, or accepting input from a
different place, than normal. It can be accomplished directly from the command line by using the symbols > and
<. For example, the command
CAT
normally displays a catalog of a disk on the screen. On the other hand, the command
CAT >CATFILE

sends the catalog listing to a diskfile called CATFILE.PIP, rather than displaying it on the screen. Furthermore,
the command

CAT >PRTR
would send the catalog listing to the printer (if a PRTR printer driver is installed; otherwise it will go to a disk
file called PRTR.PIP. You can also force output to a PRTR file, even when a PRTR device is installed, smply by
including the extension.)

Input redirection is handled with the < symbol. For example, the command

BUILD FILE

is generally used to input text from the keyboard into FILE. The command

BUILD FILE <ANOTHER

would also send text to FILE, but would take the text from another file called ANOTHER.PIP. Alternatively. if
there is a device called COM1 on the system, then

BUILD FILE <COM1

would take the text from this input device.

14-1

SK*DOS® 68K USER’S MANUAL

Think of < and > as being arrows. The > in >FILE points to FILE, so data goes to FILE, whereas <FILE
points away from FILE so data comes from FILE. Note also that file names used in redirection default to .PIP
extensions (which stands for ‘pipe’), though this can easily be changed by specifying a different extension.

DEVICE NAMES AND DEFAULTS

In the above examples, PRTR and COM1 were ‘device names’, as opposed to ‘file names’. Device names are
similar to file names, but (a) must have exactly four characters, and (b) are not allowed any extensions.
Whenever you use a device name, SK*DOS checks whether such a device exists. If it does, then it uses the
device. If not, then it uses the same name as a file name. That’s why in the above example >PRTR went to a
printer if such a device existed, but to a disk file otherwise.

When SK*DOS is initially booted, it has just two devices; these are called the ‘default’ devices:
CONS is the console keyboard and screen. It is used for normal input and output.

NULL is a ‘null device’ which is used when you want to do a function but want no output whatsoever. For
example, the command

ASM PROG >NULL

would assemble a file but provide absolutely no output - not even assembler error messages.

Even though it starts with just two devices, SK*DOS can have up to eight. The others must, however, be
specifically ‘installed’, either by a command from the keyboard, or by commands included in a STARTUP.BAT
file, by reading in ‘device drivers’ from a disk. If you wish, you can substitute other devices instead of the default
ones as well.

DEVICE NUMBERS

In addition to having names, devices also have device numbers. When using I/o redirection, you will always refer
to them by name; programs, on the other hand, may refer to them by either name or number. The DEVICE
command lets you see (and change) the correspondence between device names and numbers. If you execute the
DEVICE command just after booting up SK*DOS, you will get a display like this:

Normal Device Device Driver
use number name

Terminal 0 CONS Default driver

Error device 1 CONS Default driver

Printer 2 CONS Default driver
3 CONS Default driver
4 CONS Default driver
5 CONS Default driver
6 CONS Default driver

Null device 7 NULL Default driver

This tells us that devices 0 through 6 are currently the CONS console default driver, while device 7 is the NULL
default driver. Furthermore, it also tells us that device 0 is normally the terminal (which is used to control

14-2

SK*DOS® 68K USER’S MANUAL

SK*DOS), device 1 is the error device (where most error messages go), device 2 is usually the printer (although
right now printer output would go to the console instead), and device 7 is usually the null device.

As you can see, at this point CONS has several device numbers. That means that output sent to any one of those
numbers would really go to the console.

The assignments shown in the above tables can be changed at any time by using the DEVICE command.
DEVICE is most often used to substitute a disk-resident device driver for one of the default drivers.

DEVICE DRIVERS

In most systems there will be just one console, but there could be several printers. Moreover, a printer could
require either a serial interface or a parallel interface. Hence the software to drive a printer, as well as other
devices, must be changeable so it can fit the hardware. This is done by using disk-resident programs to interface
with other devices. These programs are called ‘device drivers’, and usually have a .DVR extension on the disk.
Depending on your system, you may already have one or more such drivers supplied with your SK*DOS, or else
you may just have one or more files of driver source code which you will have to customize and assemble to fit
your own hardware.

Device drivers must be ‘installed’ with the DEVICE command. For example, the command
DEVICE PARALLEL AT 2 AS PRTR

would install a driver called PARALLEL.DVR at device 2, and give it the name PRTR. The DEVICE display
would then say

Normal Device Device Driver
use number name
Printer 2 PRTR PARALLEL.DVR

The DEVICE command can be used to change devices as often as desired; you may also return back to a default
driver by using the name DEFAULT instead of a file name, as in

DEVICE DEFAULT AT 2 AS CONS

which would restore device 2 as the default device CONS. Note that driver names default to .DVR, but
DEFAULT has no default extension: DEFAULT refers to the normal default driver, whereas DEFAULT.DVR
would be needed in the command line if you had an actual DEFAULT.DVR driver on a disk.

REMOTE CONSOLE OPERATION

It is possible to operate SK*DOS from a device other than the default console device. For example, if there is a
serial device on the system and a driver for it, then you may install that driver as devices 0 and 1. All normal
console 1/O would then go to that device instead. Note that it’s necessary to install that driver at both number 0
and 1 so that error messages go to the new device. The order of assigning device numbers also makes a

14-3

SK*DOS® 68K USER’S MANUAL

difference - if you assign number 0 first, then you will have to use the remote keyboard to assign number 1, as the
console keyboard will no longer be active.

DRIVER MEMORY ASSIGNMENT

When a new driver is loaded from disk, DEVICE checks to see whether the driver is smaller than the driver
currently installed under that device number. If so, then the new driver simply overlays the current driver. If not,
then the new driver has new memory assigned to it just above the current value of OFFSET, and then OFFSET
and OFFINI are moved up above the new driver. (The default CONS and NULL drivers have zero size, and so
will never be overlaid.) If the same driver is used under various device numbers, several copies of the driver will
exist in memory at the same time, one for each device number.

This is important to remember for several reasons. First, it means that new drivers can only be installed from the
keyboard (or from a .BAT file), not from another program, because memory may not be available for the new
driver while another program is running, Second, it means that each copy of a driver maintains its own variables
such as PLINES (see below) even when it applies to the same hardware device.

DEVICE DESCRIPTOR TABLE

Information on device assignments is stored in the Device Descriptor Table called DEVTAB. This table consists
of 640 bytes, (80 bytes for each of the 8 device numbers) plus an additional 80 bytes for the default CONS driver.
The CONS information is copied into the rest of DEVTAB during booting; the DEVICE command then
modifies the contents of DEVTAB when it installs other drivers.

Each device number has an 80-byte device descriptor within the table. These bytes contain the following:

Bytes Description
00-03 Logical name, such as CONS or PRTR
04-07 Pointer to the first address of the driver, 0000 if in BIOS
08-11 Length of the driver in bytes, 0000 if in BIOS
12-15 Pointer to driver initialization routine
16-19 Pointer to input status check routine in driver
20-23 Pointer to get input character with echo routine
24-27 Pointer to get input character without echo routine
28-31 Pointer to input channel control routine (for ICNTRL)
32-35 Pointer to output status check routine
36-39 Pointer to output character routine
40-43 Pointer to output channel control routine (for OCNTRL)
44 Print lines (PLINES) constant
45 Page width constant (PWIDTH)
46 Null wait constant (NULLWT)
47 Skip lines constant (SLINES)
48 Pause flag (PAUSEB)
49 Line counter counts lines per page
50 Column counter (OCOLUM)
51 Serial device baud rate (BAUDRT)
52 End-of-file character (EOFILC)

14-4

SK*DOS® 68K USER’S MANUAL

53 X-Off character (XOFFC)

54 X-On character (XONC)

55 Reserved for future use
56-59 Pointer to input status check routine (bypass typeahead)
60-63 Pointer to get input char w/o echo routine (bypass typeahead)
64-67 Pointer to routine to flush typeahead buffer
68-79 Reserved for future use

All of the above pointers and numbers are distinct for each device number. The constants from PLINES down
can be displayed or changed with the DOSPARAM command.

- DEVIN, DEVOUT, AND DEVERR

DEVIN, DEVOUT, and DEVERR are three bytes which indicate the current input, output, and error device
number, respectively. Normally, DEVIN and DEVOUT contain the number 0, indicating that they use device 0,
while DEVERR contains the number 1, indicating that error messages from PERROR normally go to device 1.

I/0 REDIRECTION FROM PROGRAMS

Temporary I/O redirection from the keyboard can only be done one way - by using the > and < symbols on the
command line. Permanent redirection can be done by installing another driver.

I/0 redirection is done by programs in a totally different way (since programs cannot install new drivers). In
general, there are several methods available to programs for accessing different I/O devices. Moreover,
programs can access devices through file control blocks, or can access files through device numbers.

1. Normal console I/O functions such as PUTCH, GETCH, PSTRNG, INLINE, OUT5D, HEXIN, and the like,
are all steered through DEVIN in the case of input functions, or DEVOUT in the case of output functions.
Programs can change DEVIN, or DEVOUT to different device numbers to use different devices for these
functions. For example, when a program wants to output to a printer, it can change DEVOUT from 0 to 2 -
assuming that a PRTR or similar driver is installed. If not, then output will still go to the console. It is also
possible to input from one device but output to another by changing DEVIN and DEVOUT accordingly.

2. An indirect way of changing DEVIN and DEVOUT is through ICNTRL and OCNTRL calls $FFFx (sce the
next section.)

3. PERROR output is done via DEVERR, and programs can change this byte to steer error output to different
devices. '

4. All of the above can also be sent to a disk file, or input from a disk file, by opening the appropriate file and
placing the FCB address into FIADDR (for input) or FOADDR (for output), and then setting DEVIN or
DEVOUT to device number 8. Note that physical I/0O devices are only numbered 0 through 7; number 8 applies
only to disk files. If the file is not open, or if SK*DOS encounters an error while using the file, it will print an
error message, reset the device number to 0, and continue using device 0 for input or output. (You may then use
the EOFILC, usually control-Z, to indicate an end of file on input.)

5. Conversely, an FCB can be used to access an I/O device simply by using the four-letter device name when
opening the file. Just be careful not to try to input from an output device such as a printer.

14-5

SK*DOS® 68K USER’S MANUAL

The process would go like this: First place a four-letter device name into the name bytes of the FCB. Do not use
an extension or SK*DOS will assume you mean a file, although you should call DEFEXT to put in a default
extension just in case (DEFEXT will not add an extension if it detects that a device exists with the specified
name.) Then call FOPENR or FOPENW to open the file for reading or writing. If the specified driver does not
exist, SK*DOS will open the file normally (that’s why it is good to have a default extension). If it does exist, then
SK*DOS will use the device for subsequent reads or writes instead of a file. Note that the device can only be
used sequentially - random file operations will not work and may give undesired results.

SK*DOS accesses devices through an FCB by substituting ‘fake drive numbers’. Normally, only drive numbers 0
through 9 are valid disk drive numbers; when you open an FCB to a device, SK*DOS uses drive numbers $10
through $17 to refer to devices 0 through 7 respectively. If you know the name of a device but not its number,
then it is easiest to open the file with that name. If you already know the number, then it is not even necessary to
open the file - just set up an FCB, put in a drive number equal to $10 plus the desired device number, and use
FREAD or FWRITE to read or write.

6. Before doing any of the above, a program may check whether a given driver is installed by using FINDEV.

7. GETNAM recognizes device names and substitutes the device number plus $10 when the specified device is
installed.

ICNTRL and OCNTRL

ICNTRL and OCNTRL are two SK*DOS system calls which pass data and commands to and from device
drivers without going through the normal GETCH and PUTCH calls. For example, when a user program calls
ICNTRL with the instructions

MOVE.B #$10,D4
DC ICNTRL

the value of $10 is passed through SK*DOS to the ICNTRL entry point of the appropriate driver.

The need for ICNTRL and OCNTRL is based on the need for consistency when SK*DOS is implemented on a
variety of very different computers. Some of these use conventional terminals, but some (such as the Atari.or
Amiga 68000 computers) will have built-in video and graphics interfaces. Since each of these provides different
output modes and screen display codes, it is important to standardize input and output so that a given program
may run on any of these and still provide a common output format.

All 68K SK*DOS calls to GETCH and PUTCH (as well as related calls such as PNSTRN or INLINE) are sent
to the specified driver routine through a portion of SK*DOS called IOSEL or 1/0 Selector. As explained above,
the usual device assignments are

0 - console (both keyboard and screen)

1 - error device (usually also the console)
2 - printer

3-6 - user-defined

7 - the '‘null’ device

One function of ICNTRL and OCNTRL is to choose which driver is active at any time. When you call ICNTRL

or OCNTRL with the word $FFFx in D4, this selects driver x for input or output, respectively. All following I/O
calls via PUTCH, GETCH, etc., (as well as ICNTRL or OCNTRL) are then vectored to that driver until you

14-6

SK*DOS® 68K USER’S MANUAL

change the driver assignment with another call to ICNTRL or OCNTRL (or changed DEVIN or DEVOUT).
On initial cold start, 68K SK*DOS initializes both input and output to $FFFO so that the system defaults to using
device 0 - the console keyboard and screen. Hence the casual user need not generally be concerned with
ICNTRL or OCNTRL.

The second function of ICNTRL and OCNTRL is to pass special arguments to the selected device, or input
special key characters from the device. The important requirement is that all SK*DOS users agree on these
arguments, so that all drivers and all I/O devices will respond in the same way, regardless of which computer is
being used. The following sections describe this feature.

ICNTRL Assignments

ICNTRL is used by placing a command code into D4, and doing a DC ICNTRL instruction. The device driver
may then return an argument in register D5. The current command codes are as follows:

$0000 Return number of current driver (0-7) in D5
0001 Return the name of current driver (such as CONS) in D5
0002 Return a raw 8-bit character from the device
0003 Enable keyboard's function keys
0004 Disable keyboard’s function keys
0005 Return a special character from the device
FFFx Switch to driver x
Additional other commands may be defined in the future.

Some device drivers will contain an input translation table and code which allows the driver to convert special
key characters or sequences into a single byte which will be returned in D5. For example, suppose a given
terminal has a row of ten function keys, which generate a two-byte sequence such as "ESCape followed by $30"
for key FO, and so on. Using GETCH, we would get back two separate characters, a $1B for the ESCape, and a
$30 for the 0. The problem here is that we have no way of knowing whether this sequence came from function
key FO, or whether the user really typed an ESCape and then the digit 0. (The command 0002 of ICNTRL would
return the same two characters, but with the parity bits intact, if any.)

ICNTRL command 0005 works a bit differently. After it detects the ESCape code, ICNTRL waits for
approximately one-half character time. If it receives the $30 during that time, then it assumes that the
combination came from a single FO function key, and returns a special code which signifies the FO key. If the $30
is not received during that time, then ICNTRL returns the ESCape first, and then picks up the next character on
the next pass. (The next character may also be returned by GETCH). (This description assumes a serial
terminal keyboard; computers with an integral keyboard may return a special function key code directly.)

In order to generate the same special FO code with different terminals or computers, the device driver has a
translation table which converts any specific combination of one or more keys into an FO code which would be
common to all systems. The supplied ADM-3A driver shows how this is done.

When ICNTRL command 0005 receives a regular ASCII character, it simply returns it as a single byte in D5,
with bits 8-15 of D5 equal to 0. But a special keyboard character is identified by making bits 8-15 non-zero; in
other words, special characters are represented by the words $0100 and higher.

The following table shows the key codes for an implementation using a PC-compatible keyboard:

14-7

SK*DOS® 68K USER’S MANUAL

KEYBOARD (1) (2) (3) (4)
KEY NO. KEY NORMAL SHIFT CONTROL NUM LOCK
1 ESCAPE 1B/001B 1B/001B 1B/001B
2 1t 31/0031 2170021 --/0431
3 2 @ 32/0032 4070040 00,0100
4 3 # 33/0033 2370023 --/0433
5 4 % 34/0034 24/0024 -- /0434
6 5 % 35/0035 25/0025 --/0435
7 6 " 36/0036 SE/005SE 1E/OOLE
8 7 & 37/0037 26/0026 --/0437
9 8 * 38/0038 2A/002A --/0438
10 9 (39/0039 2870028 --/0439
11 0) 30/0030 2970029 --/0430
12 - 2D/002D S5F/005F 1F/001F
13 -+ 3D/003D 2B/002B --/043D

14 BACKSPACE 08,0008 08,0008 7F/007F

ok X X X ok ok % ok o F ok ok ok % H ok F F b F H K % * ¥ ¥ *

15 TAB 09/0009 --/021F --/031F

16 q Q 71/0071 5170051 1170011

17 w W 77/0077 5770057 17/0017

18 e E 65/0065 45/0045 05/0005

19 r R 72/0072 52/0052 12/0012

20 t T 74/0074 54/0054 14/0014

21 y Y 79/0079 59,0059 19/0019

22 uvu 75/0075 5570055 15/0015

23 i1 69/0069 49/0049 09/0009

24 o 0 6F/006F 4F/004F OF/O00F

25 p P 70/0070 50,0050 10,0010

26 [7B/007B 5B/005B 1B/001B

27 1) 7D/007D 5D/005D 1D/001D

28 RETURN 0D/000D 0D/000D 0D/000D

29 CONTROL S J-mn- - J---n - J----
30 aA 61/0061 41,0041 01,0001 *
31 s S 73/0073 5370053 13/0013 *
32 d D 64/0064 4470044 04/0004 *
33 £F 66/0066 46/0046 06/0006 *
34 g G 67/0067 47/0047 07/0007 *
35 h H 68/0068 48/0048 08/0008 *
36 jJ 6A/006A 4A/004A OA/000A *
37 k K 6B/006B 4B/004B OB/000B *
38 1L 6C/006C 4C/004C 0C/000C *
39 ;o 3B/003B 3A/003A --/043B *
40 'om 27/0027 2270022 --/0427 *
41 . 60/0060 7E/OO7E -- /0460 *
42 LEFT SHIFT --/---- -- J-mn - J-m-- - J----
43 \ | 5C/005C 7C/007C 1C/001C *
4 z Z 7A/007A 5A/005A 1A/001A *
45 x X 78/0078 58,0058 18,0018 *
46 c C 63/0063 4370043 0370003 *
47 vV 76/0076 56,0056 16/0016 *
48 b B 62/0062 4270042 02/0002 *
49 n N 6E/006E 4E/O04E OE/OOOE *

14-8

SK*DOS® 68K USER’S MANUAL

50 m

M 6D/006D 4D/004D 0D/000D *
51 , < 2C/002C 3C/003C --/042C *
52 . > 2E/002E 3E/O03E --/042E *
53] ? 2F/002F 3F/003F --/042F *
54 RIGHT SHIFT --/---- -- Jmme e feeee - /-
55 PRT SCR * 2A/011D 2A/002A --/031D 2A/002A
56 ALT cefmmmn - J-mem - J-mn - J-n-
57 SPACE 2070020 20/0020 20,/0020 *
58 CAPS LOCK =--/--=- -- J-mn - 2 J----
59 F1 --/0101 --/0201 --/0301 *
60 F2 --/0102 --/0202 --/0302 *
61 F3 --/0103 --/0203 --/0303 *
62 F4 --/0104 --/0204 --/0304 *
63 F5 --/0105 --/0205 --/0305 *
64 F6 --/0106 --/0206 --/0306 *
65 F7 --/0107 --/0207 --/0307 *
66 F8 --/0108 --/0208 --/0308 *
67 F9 --/0109 --/0209 --/0309 *
68 F10 --/010A --/020A --/030A *
69 NUM LOCK cefemme -- [-- [- J----
70 SCROLL LOCK --/011E --/021E --/031E *
71777 HOME = --/0120 37/0037 --/0320 37/0037
72 UP ARROW 0B/0125 38/0038 --/0325 38,0038
73 PG UP --/0123 39/0039 --/0323 39,0039
74 GREY MINUS 2D/002D 2D/002D --/032D 2D/002D
75 LEFT ARROW 08/0128 34/0034 --/0328 34/0034
76 5 --/0127 35/0035 --/0327 3570035
77 RIGHT ARROW 09,0126 36/0036 --/0326 36/0036
78 GREY PLUS 2B/002B 2B/002B --/033B 2B/002B
79 END --/0122 31/0031 --7/0322 3170031

v e TR G R R

80 DOWN ARROW 0A/0127 32,0032 --/0327 32/0032

81 PG DN . --/0124 33/0033 --/0324 3370033

82 INSERT --/012A 30/0030 --/032A 30/0030

83 DEL --/012B 2E/002E --/032B 2E/002E
NOTES:

1. All codes in columns (1) through (4) are hex numbers.

2. The notation AA/BBCC means that the code AA is generated using the normal character input routine
(INCHS in HUMBUG; GETCH, INNOEC, or ICNTRL function 0002 in SK*DOS), and BBCC is generated
using ICNTRL (in HUMBUG, or ICNTRL function 0005 in SK*DOS)

3. If BB is 00, then CC is the standard ASCII code for that key, and is equal to AA. With some exceptions, BB
codes of 01 stand for unshifted characters, 02 stand for shifted characters, 03 stand for control characters, and 04
stand for characters which do not fit any of the above groups.

4. -- or ---- means that no key code is generated for that key.

5. Items labelled * are not affected by the NUM LOCK key; their key codes are indicated in the other three
columns at all times.

6. CAPS LOCK affects only the alpha keys A-Z. For these keys, it reverses the meanings of columns (1) and (2).
7. The ALTernate key adds $80 (or $0080) to all codes shown.

8. The precedence is (a) ALT affects all codes, (b) NUM LOCK codes are not affected by SHIFT or
CONTROL, (c) CONTROL is not affected by SHIFT.

14-9

SK*DOS® 68K USER’S MANUAL

9. Codes for unshifted PRT SCRN, and up, down, left, and right arrows were changed from -- to their current
values in SK*DOS version 2.4.

OCNTRL Assignments

OCNTRL is the opposite of ICNTRL - it is used to send special arguments to an output device and its driver. Its
main purpose is to allow a program to drive a variety of output devices in a common way, without having to be
concerned with the particular type of output device being used.

Interfacing to a variety of output devices is again done via a translation table. For example, when a program
places the code $0002 into D4 and then calls OCNTRL, the driver uses the translation table to convert the $0001
into whatever character (or sequence of characters) is needed to erase the screen on the current output device.

OCNTRL expects a 16-bit word as an argument and, depending on the exact I/O device, will recognize the
following:

$0000 Return number of current driver (0-7) in DS

0001 Return the name of current driver (such as CONS) in D5
0002 Erase screen

0003 Home cursor

0004 Cursor up

0006 - Cursor right

0007 Bell (may also use $07 in data stream)

0008 Cursor left (may also use $08 in data stream)
0009 Horizontal tab

000A Line feed (may also use $0A in data stream) / cursor down
000B Clear current line

000C Erase screen and home cursor (form feed on printer)
000D Carriage return {may also use $0D in data stream)
000E Mask output of character in D5

000F Permit output of character in D5

0010 Return size of text screen in (D5, D6)

0011 Move cursor to position (D5, D6)

0012 Return cursor position in (D5, D6)

0013 Return character under cursor in D5

0014 Clear to end of line

0015 Clear to end of screen

0016 Erase screen

0017 Home cursor

0018 Insert line before current line

0019 Delete current line and close up

0020 Switch to normal print / normal intensity

0021 Switch to condensed print

0022 Switch to expanded print

0023 Switch to double strike / bold / double intensity
0024 Switch to enhanced print mode

0025 Switch to italics

0026 Switch to character spacing in D5

0027 Switch to line spacing in D5

0040 Switch to graphics mode in D5

14-10

SK*DOS® 68K USER’S MANUAL

0041 Switch to text mode
0042 Choose color in D5

0043 Draw to position (D5, D6)
FFFx Switch to driver x

Arguments $0000, 0001, and $FFFx (and 0002 for ICNTRL) are handled internally by SK*DOS; all other
arguments are passed directly to the ICNTRL or OCNTRL section of the appropriate driver (except for the
default console driver in the BIOS, which simply ignores the control codes.)

CUSTOM DEVICE DRIVERS
The SK*DOS system disk includes source code for three device drivers, called SERIAL.TXT, PARALLEL.TXT,

and ADM-3A.TXT. These drivers demonstrate the exact format of a device dnver, and should be used as
examples in case you need to write your own.

SERIAL and PARALLEL are simple drivers for a serial port using a 68681 DUART, and a parallel port using a
68230 PI/T or 6821 PIA, respectively. ADM-3A is an expanded serial driver which shows how ICNTRL and
OCNTRL functions are implemented with translation tables.

KEYBOARD TYPEAHEAD BUFFER

Some SK*DOS implementations (depending on the BIOS or device drivers) may implement a keyboard
typeahead buffer; hence there are three DOS calls (STATU1, INNOEL1, and FLUSHT) specifically dealing with
the operation of such a buffer. If a typeahead buffer is not implemented, then STATU1 and INNOE1 behave
exactly the same as STATUS and INNOEC, respectively, while FLUSHT does nothing.

If a typeahead buffer is implemented, then either the BIOS or the device driver, or both, may contain a buffer
area which holds incoming characters from the keyboard or other device. This buffer, which is typically 64 bytes
but may be larger or smaller, acts as a FIFO or first-in, first-out memory. As characters come in, they go into
one end of the buffer; as SK*DOS or a user program needs them, they come out the other end of the buffer.
Think of the FIFO as a pipe - characters go in one end and come out the other in the exact same order as they
went in. In this way, characters that came in while the system is doing other tasks are held until they are needed.
This allows you to type ahead of the computer, for example, giving it commands before they are needed.

When typeahead is implemented, normal input (via GETCH, INNOEC, or INLINE, for example) goes through
the buffer. Hence normal programs need not even know whether such a buffer exists or not. Occasionally,
however, it is useful to be able to bypass the buffer - when immediate response to an ESCape or control-C is
needed, for example - or even to be able to empty the buffer (such as when asking "OK to delete - Y or N?", and
you wish to make sure that a previously-entered Y does not get used as an answer.) This is where the three
typeahead operations come in. Let us discuss them one by one.

When typeahead is implemented, GETCH and INNOEC input the first character in the buffer (i.e., the character
that has been in the buffer the longest), whereas INNOEL1 inputs the /ast character (the most recent one).

14-11

SK*DOS® 68K USER’S MANUAL

INNOE1 should therefore be used if you are checking for control-C or ESCape, in which case you want to
bypass any characters preceding it and act on it immediately. Note that using INNOE1 to get the last character
does not remove it from the buffer - it is still there, and still in its correct sequence.

GETCH, INNOEC, and INNOEL1 will all wait for a character to be typed if none exists when they are called.
Hence we need a way of checking whether there is a character there. STATUS is therefore used to test whether
there is any character in the typeahead buffer, whereas STATU1 tests whether a last character exists. Note: when
there is a single character in the buffer, it becomes both the first and last character, and STATUS and STATU1
will both return a ’true’ when tested. If the character is obtained with GETCH or INNOEC, then both STATUS
and STATU1 will go ’false’. But if it is obtained with INNOE1, STATU1 will go *false’ but STATUS will still be
’true’, indicating that it is still in the buffer as well.

Finally, FLUSHT is a function which empties the entire buffer so that both STATUS and STATUT1 return *false’.
FLUSHT should always be used after INNOEL1 returns a break or ESCape character, and may also be used
when you want to make sure that some left-over character in the buffer does not provide an undesired answer (as
when asking a "Y or N" question.)

The following example shows how these DOS calls are used inside UBASIC to check for a control-C or ESCape.
Although checking for ESCape is normally done by SK*DOS internal routines, note that here UBASIC does its
own checking. This is needed since it would otherwise remove the ESCape from the buffer before SK*DOS has a
chance to check it.

Each time UBASIC outputs a character, or each time it finishes interpreting the current statement, it calls the
- following BREAK routine:

BREAK DC STATS1 Check 'last’ character
BEQ.S BREAK1 exit if nothing there
DC INNOEl else get the last character
BREAKO CMP.B #3,D5 is it control-C?
BEQ.S CNTRLC Yes, go process it
CMP.B ESCAPC(A6),D5 is it an ESCape?
BEQ.S ESCAP Yes, go process it
BREAK1 RTS Neither, so exit
CNTRLC DC FLUSHT on control-C, flush buffer
BRA.L READY and go to READY prompt
ESCAP DC FLUSHT On ESCape, flush buffer
ESCAP1 DC INNOEC Then get the next character
CMP.B ESCAPC(A6),D5 is it another ESCape?
BEQ.S BREAK1l Yes, so RTS to continue
CMP.B #$0D,D5 is it carriage return?
BEQ.L READY Yes, so go to READY prompt
BRA.S ESCAP1 No, so wait for another char

Note how the typeahead buffer is flushed only after either the control-C or ESCape is identified; any other
character‘is left in the buffer.

14-12

SK*DOS ®

68K USER’S MANUAL

APPENDIX A. USER-ACCESSIBLE VARIABLES

SK*DOS variables of interest to the machine language programmer are listed below. They should be addressed
using indexed addressing with A6.

BACKSC
BREAKA
BSECHO
CDAY
CMFLAG
CMONTH
COMTAB
CURRCH
CYEAR
DELETC
DEVERR
DEVIN
DEVOUT
DEVTAB
DOSORG
ECHOFL
ENDLNC
ENVRON
ERRTYP
ERRVEC
ESCAPC
EXECAD
EXECFL
FCBPTR
FIADDR
FNCASE
FOADDR
LASTRM
LINBUF
LPOINT
MAXDRV
MEMEND
NULLWT
OCOLUM
OFFSET
PAUSEB
PLINES
PREVCH
PWIDTH
REPEAC
SEQNO
SLINES

LISTED IN ORDER BY VARIABLE NAME

ADDRESSES
736 (A6)
762-765(A6)
743 (A6)

751 (A6)

793 (A6)

750 (A6)
754-757 (A6)
766 (A6)

752 (A6)
737(A6)
3276 (A6)
3274(A6)
3275(A6)
3278(A6)

838 (A6)

800 (A6)

738 (A6)
4074 (A6)

782 (A6)

834 (A6)

746 (A6)
776-779(A6)
774(A6)
4006 (A6)
788-791(A6)
801(A6)
784-787(A6)
753(A6)

608 (A6)
758-761(A6)
802 (A6)
796-799(A6)
3324 (A6)
3328(A6)
770-773(A6)
3326(A6)
3322 (A6)

767 (A6)
3323(A6)

749 (A6)

806 (A6)
3325(A6)

FUNCTION

Backspace character ($08)

Break (Escape) address (long word)
Backspace echo ($08)

Current date - day

Command flag

Current date - month

Pointer to command table (long word)
Last character read from buffer
Current date - year

Delete character ($18)

Current error device (1)

Current input device (0)

Current output device (0)

I1/0 device descriptor table

Absolute ORG of SK*DOS

Input echo flag

End of line character ($3A)

1K of environment space

Error type

Alternate ERRCODES.SYS vector

Escape char ($1B)

ML execution address (long word)
Execution address flag

Pointer to first open FCB (long word)
File input address vector (long word)
File Name case flag

File output address vector (long word)
Last terminator

Line buffer (128 bytes)

Pointer to line buffer (long word)
Maximum drive number

Last usable memory address (long word)
Null wait constant

Current output column

Offset load address (long word)
Output pause control byte

Number of printed lines per page
Previous character read

Page column width

Repeat character ($01)

Sequence number

Number of skipped lines between pages

A-1

SK*DOS ®

SPECIO
SYSDIR
SYSTDR
USRFCB
USRSPC
WORKDR
WRKDIR

USRFCB
LINBUF
BACKSC
DELETC
ENDLNC
BSECHO
SYSDIR
WRKDIR
ESCAPC
SYSTDR
WORKDR
REPEAC
CMONTH
CDAY
CYEAR
LASTRM
COMTAB
LPOINT
BREAKA
CURRCH
PREVCH
OFFSET
EXECFL
EXECAD
ERRTYP
FOADDR
FIADDR
SPECIO
CMFLAG
MEMEND
ECHOFL
FNCASE
MAXDRV
SEQNO
ERRVEC
DOSORG
PLINES
PWIDTH
NULLWT

792 (A6)
744.(A6)
747 (A6)
0(A6)
4010(A6)
748(A6)
745(A6)

ADDRESSES

0(46)
608 (A6)
736 (A6)
737(A6)
738(46)
743 (A6)
744 (A6)
745 (A6)
746 (A6)
747 (A6)
748 (A6)
749 (A6)
750 (A6)
751(A6)
752(A6)
753(A6)
754-757 (A6)
758-761(A6)
762-765(A6)
766 (A6).
767 (A6)
770-773(A6)
774 (A6)
776-779 (A6)
782 (A6)
784-787(A6)
788-791(A6)
792 (A6)
793(A6)
796-799 (A6)
800 (A6)
801 (A6)
802 (A6)
806 (A6)
834 (A6)
838(A6)
3322(A6)
3323(A6)
3324 (A6)

68K USER’S MANUAL

Special I/0 Indicator

System default directory

System default drive

User FCB (608 bytes)

64 bytes of free space for user programs
Working default drive

Working default directory

LISTED IN ORDER BY ADDRESS

FUNCTION

User FCB (608 bytes)

Line buffer (128 bytes)

Backspace character ($08)

Delete character ($18)

End of line character ($3A)
Backspace echo ($08)

System default directory

Working default directory

Escape char ($1B)

System default drive

Working default drive

Repeat character ($01)

Current date - month

Current date - day

Current date - year

Last terminator

Pointer to command table (long word)
Pointer to line buffer (long word)
Break (Escape) address (long word)
Last character read from buffer
Previous character read

Offset load address (long word)
Execution address flag

ML execution address (long word)
Error type

File output address vector (long word)
File input address vector (long word)
Special I/0 Indicator

Command flag

Last usable memory address (long word)
Input echo flag

File Name case flag

Maximum drive number

Sequence number

Alternate ERRCODES.SYS vector
Absolute ORG of SK*DOS

Number of printed lines per page
Page column width

Null wait constant

A-2

SK*DOS ®

SLINES
PAUSEB
OCOLUM
DEVIN

DEVOUT
DEVERR
DEVTAB
FCBPTR
USRSPC
ENVRON

3325(A6)
3326 (A6)
3328 (A6)
3274 (A6)
3275(A6)
3276(A6)
3278(A6)
4006 (A6)
4010(A6)
4074 (A6)

68K USER’S MANUAL

Number of skipped lines between pages
Output pause control byte

Current output column

Current input device (0)

Current output device (0)

Current error device (1)

I/0 device descriptor table

Pointer to first open FCB (long word)

64 bytes of free space for user programs
1K of environment space

A3

SK*DOS ®

68K USER’S MANUAL

APPENDIX B. THE FILE CONTROL BLOCK (FCB)

The first 96 bytes of an FCB (numbered 0 through 95 for this discussion) hold the following information:

FCBERR
FCBRW

FCBDRV
FCBNAM
FCBEXT
FCBATT

FCBFTR
FCBFSE

FCBLTR
FCBLSE
FCBSIZ
FCBRAN
FCBTIM
FCBMON
FCBDAY
FCBYR

FCBCTR
FCBCSE
FCBNMB

FCBDPT
FCBRIN
FCBNMS
FCBCOL

FCBSCF
FCBSPT

FCBLST

FCBPHY

FCBDIT
FCBDIS

FCBCRN

FCBDAT

BYTE(S)

31-33

36-46
47-48
49
50
51
52-62
58
59
60
61-63
64-67
68-71
72
73
74
75
76-77
78-79
80-95
96

CONTENTS

Reserved for future use

Error code (see Appendix E)

Read / Write / Update status

Drive number (0 through 9)

File name (8 bytes)

Extension (3 bytes)

File attributes

Reserved for future use

First track of file

First sector of file

Reserved for future use

Last track of file

Last sector of file

Number of sectors in the file
Random file indicator

Time or sequence number

Month of file creation (1 through 12)
Day of file creation (1 through 31)
Year of file creation (last two digits)
Reserved for future use

Current track number

Current sector number

Temporary name buffer 1

Reserved for future use

Sequential data pointer to next byte (4 through 255)
Reserved for future use

Random data pointer to next byte (4 through 255)
Temporary name buffer 2

Column position (for use by Basic)
Space compression indicator

Number of sectors per track
Temporary storage

Reserved for future use

Next FCB pointer

Physical drive number

Reserved for future use

Directory track number

Directory sector number

Reserved for future use

Current or desired sector number
Reserved for future use

Beginning of data area

The names listed in the above table are those used in the SKEQUATE file; it is convenient to use these names rather
than numbers when referring to specific FCB bytes in user programs.

SK*DOS ®

The following chart gives a concise summary of this data:

[O] 1] 2| 3] 4] 5] 6] 7] 8| 9| A| B] C| D] E| F|

| |Ex|RWIDx| | | | | | | | |
$00 |* |ro|Co|iv|<-- File Name
| lx fdeje#| | | | | | | | |

|Ra|Ti|Mo|Da|Ye| |

|First| |Last | |

| lAt]

->|<- Ext->|tr|

| 1ib]

P I
$10 |* |* |Tr & |* |* |Tr & |Size |nd|me|nt|y |ar|* |
(. |

|Sectr|

| |Curre] | | | | | | | |
$20 |* |* |nt Tr|<- Second File Name
I

|& Sec| (Temp name buffer 1) |

| ISel [Ral | | | | | | | |
$30 |* |qP|* |nP|<- Delete File Name
I

|ltr| |tr| (Temp name buffer 2) | | | | |

| | | | | Next open |Ph| |Direc| | |Curr.|

$40 |* |* |* |* |<- FCB ->|Dr|* |Tr & | |* |Recrd|
I 1 | | | pointer |No| |Sectr| | |Numbr|

A N Y A N N A N A A A A A I A

$50 |<---mmcmmei i LR L E LR T >|

I S T T T I I R O
$60 |<-- Sector buffer begins here

Bytes marked with * are reserved for future use.

|Sectr| | Jom| |h |

->|<- Ext->|* |

->|<- EXt->|* |

68K USER’S MANUAL

SK*DOS ® 68K USER’S MANUAL

APPENDIX C. NON-DISK FUNCTIONS

This appendix lists the non-disk function calls for SK*DOS. They are listed twice, once in order by name and
once by op code.

LISTED IN ORDER BY FUNCTION NAME

NAME OP CODE FUNCTION

CLASFY SAO2E Classify alphanumeric characters

DECIN $A030 Input decimal number

DEFEXT SA024 Default extension

EXECSD SAO1F Execute a SK*DOS command

FINDEV $A012 Find device number from name

FLUSHT $A044 Flush Type-ahead buffer, if any.

FNPRNT $A045 Print file directory/name.extension
GETCH -$A029 Get input character with echo

GETDNT SAQ3F Get date and time into

GETNAM $A023 Get file name into FCB

GETNXT $A02D Get next character from buffer

HEXIN $AQ2F Input hexadecimal number

ICNTRL $A028 Input control (see Chapter 14)

INLINE $A02C Input into line buffer

INNOEC $SA02A Get input character without echo (with TA)
INNOE1 $A043 Get input character without echo (bypass TA)
INTDIS $A040 Disable interrupts

INTENA $AO041 Re-enable interrupts to previous status
LOADML $A022 Load open machine language file

OCNTRL $A032 OQutput control (see Chapter 14)

OUT10D $A039 Output 5 decimal digits

OUT2H $AO3A Output 2 hex digits

OUT4H $A03B Output 4 hex digits

OUTSD $A038 Output 5 decimal digits

OUT8H $A03C Output 8 hex digits

PCRLF $A034 Print CR/LF

PERROR $A037 Print error code

PNSTRN $A036 Print string (Without CR/LF)

PSTRNG $A035 Print CR/LF and string

PUTCH $A033 Output character

RENTER $A025 Re-enter SK*DOS

RESIO $A020 Reset I/0 pointers

RESTRP $A021 Reset trap vectors

STATUS $A02B Check keyboard for character (with TA)
STATUL $A042 Check keyboard for character (bypass TA)
TOUPPR $A031 Convert lower case to upper (in D5!)
VPOINT $A000 Point to SK*DOS variable area

WARMST SAQO1E Warm start

SK*DOS ® . 68K USER’S MANUAL

LISTED IN ORDER BY OP CODE

NAME OP CODE FUNCTION

VPOINT $A000 Point to SK*DOS variable area

FINDEV $A012 Find device number from name

WARMST $AOLlE Warm start

EXECSD $AOLF Execute a SK*DOS command

RESIO $A020 Reset I/0 pointers

RESTRP $A021 Reset trap vectors

LOADML $A022 Load open machine language file

GETNAM $A023 Get file name into FCB

DEFEXT $A024 Default extension

RENTER $A025 Re-enter SK*DOS

ICNTRL $A028 Input control (see Chapter 14)

GETCH $A029 Get input character with echo

INNOEC SAO02A Get input character without echo (with TA)
STATUS $A02B Check keyboard for character (with TA)
INLINE $A02C Input into line buffer

GETNXT $A02D Get next character from buffer

CLASFY $AO2E Classify alphanumeric characters

HEXIN SAQO2F Input hexadecimal number

DECIN $A030 Input decimal number

TOUPPR $A031 Convert lower case to upper (in D5!)
OCNTRL $A032 Output control (see Chapter 14)

PUTCH $A033 Output character

PCRLF $A034 Print CR/LF

PSTRNG $A035 Print CR/LF and string

PNSTRN $A036 Print string (Without CR/LF)

PERROR $A037 Print error code

OUTSD $A038 Output 5 decimal digits

OUT10D $A039 Output 5 decimal digits

OUT2H $A03A Output 2 hex digits

OUT4H $SAO3B Output 4 hex digits

OUT8H $A03C Output 8 hex digits

GETDNT $AO3F Get date and time

INTDIS $A040 Disable interrupts

INTENA $A041 Re-enable interrupts to previous status
STATU1 $A042 Check keyboard for character (without TA)
INNOE1 $A043 Get input character without echo (without TA)
FLUSHT $A044L Flush Type-ahead buffer, if any.

FNPRNT $A045 Print file directory/name.extension

C-2

sk*pos ® 68K USER’S MANUAL

APPENDIX D. DISK FUNCTIONS

This appendix lists the disk function calls for SK*DOS. They are listed twice, once in order by name and once by op
code.

LISTED IN ORDER BY NAME
NAME OP CODE FUNCTION
DIROPN SAOOB Open directory file
DIREST SA026 Disk restore to track O
DISEEK $A027 Disk seek
DSREAD $A00D Read directory or system information sector
DSWRIT $AOOE Write directory or SIS entry
FCLOSE $A008 Close file
FCSCLS $A009 Close all open files
FCSINI $SAO1B Initialize File Control System
FDELET SAOOF Delete a file
FDRIVE $AO01A Find next drive number
FOPENR $A005 Open a file for read
FOPENU $A007 Open a file for update
FOPENW $A006 Open a file for write
FRBACK $A015 Backup to previous sector
FREAD $A001 Read the next byte from file
FRENAM $A010 Rename a file
FREWIN SAQ00A Rewind file
FRGET $AO1l6 Read a random byte
FRPUT $A017 Write a random byte
FRRECD $A014 Select a specified random sector
FSKIP $A011 Skip current sector
FWRITE $A002 Write the next byte to the file
SISOPN $A00C Open system information sector
SREAD $AO01C Read a single sector
SWRITE $A01D Write a single sector

D-1

sk*pos ® , 68K USER’S MANUAL

LISTED IN ORDER BY OP CODE
NAME OP CODE FUNCTION
FREAD $A001 Read the next byte from file
FWRITE $A002 Write the next byte to the file
FOPENR $A005 Open a file for read
FOPENW $A006 Open a file for write
FOPENU $A007 Open a file for update
FCLOSE $A008 Close file
FCSCLS $A009 Close all open files
FREWIN $AO00A Rewind file
DIROPN $AO0B Open directory file
SISOPN $A00C Open system information sector '
DSREAD $A00D Read directory or system information sector
DSWRIT $SAOOE Write directory or SIS entry
FDELET SAOQF Delete a file
FRENAM $A010 Rename a file
FSKIP $A011 Skip current sector
FRRECD $A014 Select a specified random sector
FRBACK $A015 Backup to previous sector
FRGET $A016 Read a random byte
FRPUT $A017 Write a random byte
FDRIVE $A01A Find next drive number
FCSINI $AO1B Initialize File Control System
SREAD $A01C Read a single sector
SWRITE $A01D Write a single sector
DIREST $A026 Disk restore to track O
DISEEK $A027 Disk seek

sk*pos ® 68K USER’S MANUAL

APPENDIX E. SK*DOS ERROR CODES

SK*DOS uses the following error codes; in addition, user programs may use other error codes which are documented
in their respective manuals.

NUMERIC MEANING
CODE
1 FCS operation code error
2 File already open or in use
3 File already exists
4 File does not exist
5 Directory Error
7 Disk is full
8 Input past end of file
9 Disk read error
10 Disk write error
11 Disk is write protected

12 Protected file

13 Error in closing file

14 Disk seek error

15 Invalid drive number

16 Drive not ready

18 This FCS operation not permitted on this file
19 : Random file operation not allowed

20 Disk I/0 error

21 Illegal or missing file name or extension

22 Can’t Close error

23 Random file map overflow

24 Specified random sector number is invalid

25 Random sector number does not match file contents
26 SK*DOS command syntax error

28 Missing transfer address

29 Disk has been switched while file was open
30 File not open

Internally, SK*DOS errors are represented by one-byte numbers which are generally placed into byte 1 (the second
byte) of a file control block by the File Control System. User programs should test for these by their numbers.

Error messages are generally printed out by using the PERROR routine, which prints out the error number, usually
followed by a one-line explanation of the error.

Error 1 (FCS operation code error) is treated a bit differently from the others. When it is encountered, SK*DOS
immediately prints an error message and asks whether you wish to continue anyway. If you answer Y, then it will
return error 1 to the calling program and continue; any other answer will immediately abort the program, close all
files, and return to SK*DOS.

The one-line explanations of errors are obtained from the ERRCODES.SYS file, and will only be obtained if this file
is on the system disk; otherwise only the error number will appear. (The ERRCODES.SYS file also contains
explanations for 68xxx exceptions. If the processor hits an exception, such as a buss error, it will print error 1xx -
where xx is the CPU exception vector number - followed by an explanation taken from the ERRCODES.SYS file.)

sk*pos ® 68K USER’S MANUAL

APPENDIX F. DEFAULT EXTENSION CODES
The following default extension codes are used by the DEFEXT routine.

= ,BIN Binary program file
= .TXT Text file

= .COM Command file

= .BAS Basic language file
.SYS SK*DOS system file

= _BAK Backup file

= .SCR Scratch (temporary) file
= _DAT Data file

= .BAC Basic compiled file
= ,DIR Directory

10 = .PRT Printer file

11 = .OUT Output file

12 = .BAT Batch file

13 = _SRC Assembler source file
14 = .PIP Pipe

WoONOTULPFWNREO
i

sk*pos ® 68K USER’S MANUAL

APPENDIX G. SK*DOS COMMAND SUMMARY

This Appendix describes the commands currently supplied with SK*DOS. From time to time, however, we may
add other commands which may not be described here. Most commands will provide you with information on
their proper usage if you type the command name, a space, and a question mark, as in

BUILD ?
This Appendix describes the following commands:

Disk-resident commands

ACAT FIND PROMPT
APPEND FORMAT PROTECT
BACKUP FROMSDOS RAMDISK
BEEP FTOH REDOFREE
BUILD HDFORMAT RENAME
CACHE HELP SCAT

CAT HTOF SEQUENCE
CHECKSUM LINK SK*D0OS09
COMPARE LIST STEPRATE
COPY LOCATE SYSTEM
DAMON MAKEMPTY TCAT
DELETE NOBEEP TOMSDOS
DEVICE PARK TRACENAB
DIFF PDELETE UBASIC
DISKNAME PEEK UNDELETE
DOSPARAM POKE VERIFY
DRIVE VERSION
EDLIN WORK

Memory-resident commands

DIR

MON TRACE#***
GET RESET XEQ
GETX SAVE
Other supplied programs
PICTEST S1TOCOM

SK*DOS ® ’ 68K USER’S MANUAL

ACAT

The ACAT command displays a fully alphabetized catalog listing of a disk or a directory. It is similar to CAT,
except that it does not support all of the options that CAT does.

To use ACAT, type the word ACAT, followed by an optional drive number and directory specifier (which
defaults to the work drive if not entered). You may follow this with a match-list - additional information if you
want only certain files listed. The general format is to enter

ACAT <where> <what>

where the <where> can be cither a drive number such as 0 or 1, or a drive number and directory letter such as
1.C/; a * may be used in place of a directory letter to scan all directories on the disk.

The <what> in the above example is the match-list specifying which files are to be listed. The following
examples show some possibilities:

ACAT catalogs all files on the current work drive and its default directory

ACAT 1 catalogs all files on drive 1

ACAT 1 TX catalogs all files on drive 1 whose file names begins with the letters TX

ACAT . COM catalogs all files with .COM extensions

ACAT TX.COM catalogs all files whose file name begins with TX AND which also have .COM extensions

ACAT TX*E.COM catalogs all files whose file name begins with TX*E, (where * stands for any character) AND
which also have .COM extensions

ACAT TX .COM catalogs all files whose name begins TX, and also all files which have .COM extensions.

ACAT 2.C/ TX .COM catalogs all files whose name begins TX, and also all files which have .COM extensions,
but only on drive 2 directory C.

ACAT 2.%/ TX catalogs all files whose name begins TX in all directories of drive 2.

Note how a * is a wild-card character which stands for any character in the middle of a file-spec, and stands for
any directory when used in a drive.directory specifier.

Note also that when a drive number is not specified, ACAT defaults to the default work drive and its default

subdirectory; if a drive number is specified without a directory code (even if the drive number happens to be the
same as the current work drive) then ACAT will search the root directory.

ACAT-1

sk*pos ® 68K USER’S MANUAL

APPEND

The APPEND command is used to combine several ‘source’ files together to make a single large ‘destination’ file.
For example, it can combine a number of text files together into a large file, or can combine several machine
language programs into one large program. APPEND writes a new destination file, with the original source files left
unchanged.

To use this command, type the word APPEND followed by the names of the source files to be combined, followed by
the name of the resulting destination file. For example, the command

SK*DOS: APPEND PROGL.BIN PROG2.BIN 2.PROG3.BIN 1.PROG.COM

would combine PROG1.BIN, PROG2.BIN, and 2. PROG3.BIN, in that order, into a new file called PROG.COM on
drive 1. (All of the source files must exist, and the destination file must not exist.)

Although files of any type may be appended, usually all the files will be of the same type. The extension of the first
source file defaults to .TXT if not specified otherwise, and the extensions of all succeeding files (source and
_destination) default to the same extension as the first file.

When machine language program files having transfer addresses are appended, the transfer addresses are carried
forward into the destination file, but the SK*DOS load routine uses only the last transfer address given.

APPEND-1

sk*pos ® 68K USER’S MANUAL

BACKUP
The BACKUP command is used to make an exact backup of a disk. This command requires two drives.

If BACKUP encounters an error on either the source disk or the destination disk, it will display an error message but
continue copying until it finishes the disk. To call BACKUP, enter the command BACKUP followed by the drive
numbers of the source and destination drives, as in

SK*DOS: BACKUP 0 1

This command would copy from drive 0 to drive 1. (The two drive numbers must be entered and must be different.)
Note carefully - BACKUP copies from the first drive specified to the second drive.

Before BACKUP can be used, you must format the destination disk with the FORMAT command. Furthermore, the
destination disk must have at least as many tracks and sectors as the source disk. If it has fewer tracks or sectors,
then BACKUP will display an error message and stop.

After BACKUP is finished, the destination disk will have the same apparent number of tracks and sectors as the
source disk. For example: suppose you BACKUP a 35-track single density 5-1/4" disk (ten sectors per track) onto a
77-track double density double sided 8" disk. The destination disk will have only 35 tracks and ten sectors per track.
(In reality, the remaining tracks and sectors will still be there, but will be completely inaccessible to SK*DOS from
then on.)

BACKUP-1

sk*pos ® 68K USER’S MANUAL

BEEP
NOBEEP

Assuming that your terminal supports the BELL character (ASCII $07), the BEEP command will sound the bell (or
beep) at each SK*DOS: prompt from then on. This is a useful function if you like to walk away from your computer
while it is doing a lengthy task.

Once the BEEP command is given, the bell will sound until the computer is rebooted, or until the NOBEEP
command is used to cancel BEEP,

BEEP & NOBEEP-1

sk*pos ® 68K USER’S MANUAL

BUILD

BUILD is used to generate a text file on the disk. BUILD is not intended to replace a more general purpose editor;
instead, BUILD might be used for testing or generating simple files.

The BUILD command line must include the name of the file to be generated. This is usually done by including a file
specification after the word BUILD, as in this example:

BUILD TEXT

The file specification defaults to a .TXT extension unless specified otherwise, and also assumes the current working
drive.

While entering text with the BUILD command, you may correct any line by backspacing and retyping a character. Or,
while still in the middle of a line, you may erase the entire line and start it over by hitting the control-X key. Once
the line is entered by hitting the carriage return key, however, it is stored and cannot be changed. In other words,
BUILD is not an editor.

The BUILD program ignores control characters, and is limited to a maximum line length of 127 characters.

To end entering text, type a # character at the beginning of a new line.

BUILD-1

sk*pos ® 68K USER’S MANUAL

CACHE
The CACHE command is used to set up a disk cache; that is, a memory area which stores data read from or written
to a floppy disk. When SK*DOS tries to subsequently read that data again, it reads it from the cache memory rather
than reading it from the physical disk itself. This significantly speeds up disk operations.
There are three ways of calling the CACHE command:
SK*DOS: CACHE NEW <memory size in K>

sets up a new cache memory of the specified size. For example, the command CACHE NEW 320K would set up a
320K cache memory area. The specified cache memory can range from 32K to 1024K (actually 1 megabyte) in size.

Another way of calling CACHE is with

SK*DOS: CACHE <drive number>

which erases (‘flushes’) all data from the cache which corresponds to the specified logical drive number.
Finally, the command

SK*DOS: CACHE STATUS

displays a status report of the cache memory, including the memory size, the number of sectors it can store, the
number of sectors currently empty, and the actual number of sectors currently stored for each floppy drive.

Note that CACHE only saves data for floppy disks; it does not store data for the RAM disk (since that would just
duplicate data already in RAM) or a hard disk (since hard disks are generally almost as fast as the cache memory).
Hence the memory assigned to CACHE is used only for floppy disk data.

The CACHE program can be used in addition to RAMDISK, but if both are used together, then the RAMdisk must
be set up first. The reason for this requirement is that this allows the RAMdisk memory to be above the cache
memory. If SK*DOS is subsequently rebooted, there is a greater chance of the RAMdisk data being preserved since
it is in higher memory. The cache memory, on the other hand, is always erased when rebooting. (This also serves to
explain why the cache memory size can be changed while RAMdisk memory size cannot.)

Although CACHE can use anywhere from 32K to 1024K (i.e., one megabyte) of memory, the actual size chosen
depends on the application. If you merely intend to use a floppy disk for a few files, then 32K or 64K might be
sufficient. If, on the other hand, you intend to do extensive processing with one disk, then the size should be about
20% larger than the size of the floppy disk (since CACHE needs some extra memory for its data storage and for
‘elbow room’.) If you have several floppy drives, then the cache memory should be large enough to accommodate all
of the expected floppy disk operations on all drives.

CACHE-1

sk*Dos P 68K USER’S MANUAL

When you intend to use a single floppy for extensive operations, you can greatly speed up processing by reading the
entire floppy into the cache at the beginning (assuming that the cache memory is large enough to hold the disk’s
contents.) This is easily done by doing a CHECKSUM on the disk, which reads the entire disk and (coincidentally)
stores it in the cache memory. Once this is done, SK*DOS will no longer need to read that disk at all; it will only
access the disk for writing.

Note that CACHE only stores floppy data; in fact, it goes by the physical drive number rather than the logical drive
number. Hence if you use the DRIVE command to reassign a drive’s logical drive number (but don’t swap diskettes
in the drive) CACHE will “follow’ the diskette to its new logical drive number.

CACHE-2

SK*DOS ® 68K USER’S MANUAL

CAT
CAT is used to display the contents (‘catalog’) of a disk or directory.

At its simplest, invoking the CAT command can be as simple as typing the word CAT , or it can be followed by a
number of parameters. A more complex command might be in the form

CAT <how> <where> <what>

All of these parameters are optional; any of them can be used, but if you use more than one then they must be in
the order shown above: how, where, what. All parameters are entered on the command line. If you have trouble
remembering what to do, the CAT help list can be displayed by entering a command of CAT ?.

<How> Options

The so-called "how” options consist of one or more option letters preceded by a + sign, and should follow after
the word CAT, as in

CAT +SDF1l

The available options are:

A Alpha Alphabetize output by 1st letter

D Date Display file Date

F File No. Display File number

M Maximum Full listing with all options

N Non-existent Display Deleted files with (-)

P Paging Paging with printer column width

R Repeat Repeat CAT as listed on command line
S Size Display file Size in sectors

CAT normally defaults to the M or Maximum option when none is specified. Entering any option letter on the
command line will turn that option on, but all others are turned OFF. Hence you must enter ALL options you
want if you enter any at all.

The following gives more information on specific options:

A - This option will group the listing by the first letter, rather than provide a fully alphabetized list (such as
provided by ACAT). When the "A" option is used you cannot use any match strings.

D - This option will display the file’s creation date. If the month is zero or over 12, CAT will display the month as
"BAD".

CAT-1

SK*DOS ® 68K USER’S MANUAL

F - This option will list the actual directory number.

M - The "M" option will provide information on track-sector data and the protect file code information. The "M"
option turns on the D,F and S options plus routines needed for the header, track and sector, and protect codes.

N - This option will display deleted file entries that exist in the directory. The actual file may not exist on the disk
- it may have been over-written when it was part of the list of free sectors. You cannot assume a deleted file is
intact unless you know it was recently deleted and you have not written enough new files on the disk to reuse the
deleted file’s sectors. CAT will display a dash (-) as the first character of the file name. This option is useful if
you intend to try to rescue a d