
TM

*
I
'-'

68K

USER~S MANUAL

P.O. BOX 209· MT. KISCO, NY 10549 . 914/241 ·0287 J
~~~~~~~~~~~~~~~~ 



SK*DOS@ 
68K User's Manual 

Peter A. Stark 

Copyright 0 1986, 1987, 1988 
by 

Peter A. Stark 
and licensed to 

Star-K Software Systems Corp. 
P. O. Box 209 

Mt. Kisco, NY 10549 
(914) 241-0287 

All rights reserved 



@ 

SK*DOS 

Copyright @ 1986, 1987, 1988 by Peter A. Stark 

All Star-K computer programs are licensed on an "as is" basis without warranty. 

68K USER'S MANUAL 

Star-K Software Systems Corp. shall have no liability or responsibility to customer or any other person or entity 
with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by computer 
equipment or programs sold by Star-K, including but not limited to any interruption of service, loss of business 
or anticipatory profits or consequential damages resulting from the use or operation of such computer or 
computer programs. 

Good data processing procedure dictates that the user test the program, run and test sample sets of data, and run 
the system in parallel with the system previously in use for a period of time adequate to insure that results of 
operation of the computer or program are satisfactory. 

SOFIWARE LICENSE 

A. Star-K Software Systems Corp. grants to customer a non-exclusive, paid up license to use on customer's 
computer the Star-K computer software received. Title to the media on which the software is recorded (cassette 
and/or disk) or stored (ROM) is transferred to customer, but not title to the software. 

B. In consideration of this license, customer shall not reproduce copies of Star-K software except to reproduce 
the number of copies required for use on customer's computer and shall include the copyright notice on all 
copies of software reproduced in whole or in part. 

C. The provisions of this software license (paragraphs A, B, and C) shall also be applicable to third parties 
purchasing such software from customer. 

Wherever used in this manual, SK*DOS and HUMBUG are registered trademarks of Star-K Software Systems 
Corp. 

Some earlier versions of 6809 SK*DOS were formerly known as STAR-DOS. 

This is revision 1.12 of the manual, last revised on June 11, 1988. 

ii 



® 
SK*DOS 

o. 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 

A. 
B. 
C. 
D. 
E. 
F. 
G. 
H. 
I. 

CONTENTS 

ABOUT THIS VERSION 
INTRODUCTION 
FOR THE IMPATIENT ... 
FILE SPECIFICATIONS 
SK*DOS OVERVIEW 
THE COMMAND PROCESSOR SYSTEM (CPS) 
MEMORY RESIDENT COMMANDS 
DISK RESIDENT COMMANDS 
THE FILE CONTROL SYSTEM (FCS) 
THE FILE CONTROL BLOCK 
SK*DOS FUNCTIONS 
USER-ACCESSIBLE VARIABLES 
PROGRAMMING EXAMPLES 
INFORMATION FOR ADVANCED PROGRAMMERS 
I/O REDIRECTION AND I/O DEVICES 

APPENDICES 
USER-ACCESSIBLE VARIABLES 
THE FILE CONTROL BLOCK (FCB) 
NON-DISK FUNCTIONS 
DISK FUNCTIONS 
SK*DOS ERROR CODES 
DEFAULT EXTENSION CODES 
SK*DOS COMMAND SUMMARY 
ADDENDA AND OTHER INFORMATION 
ASM - THE 68000/68010 ASSEMBLER 

USER REGISTRATION AND UPDATE POLICY 

iii 

68K USER'S MANUAL 

0-1 
1-1 
2-1 
3-1 
4-1 
5-1 
6-1 
7-1 
8-1 
9-1 
10-1 
11-1 
12-1 
13-1 
14-1 

A-1 
B-1 
C-1 
D-1 
E-1 
F-1 
G-1 
H-1 
1-1 



® 
SK*DOS 

BEFORE STARTING 

68K USER'S MANUAL 

In general, it is important that you develop good habits when using any floppy disk system. !tis important that you 
make frequent backup disks, since it is very easy to lose a ftIe, or even the data on an entire disk, due to a slippery 
fmger or careless mistake. 

Since a Disk Operating System (DOS) is an extremely powerful program which allows you to access the disk on a 
most elementary basis, exercising caution and making frequent backups is especially important. 

If possible, you should make a backup of the SK*DOS system disk before doing anything else. If your SK*DOS was 
supplied to you already configured for the disk controller and other hardware you now have, then making such a 
backup is easy; if your hardware is different from what SK*DOS needs then it is not. 

Assuming that your hardware is capable of running this version of SK*DOS as is, here is what to do to get a backup. 

(1) Make sure the original SK*DOS disk is write-protected. On a five-inch disk you should place the write-protect 
tab over the slot on one edge of the disk; on an eight-inch disk you should remove the write-protect tab from the disk. 

(2) Place the SK*DOS disk into drive 0, close the door, and boot it. 

(3) After SK*DOS is booted and you get the prompt, use the FORMAT command to initialize a blank disk in drive 
1. See Appendix G for instructions on using FORMAT. Format ~ disk in double density. including track ~ 

(4) Once a new disk is formatted, use the BACKUP command to copy the SK*DOS system disk onto the blank disk. 
(See Appendix G for instructions on BACKUP.) 

(5) Make several such backup disks, and put the original SK*DOS disk away into a safe place. 

In any case, it might be a good idea to read this entire manual before proceeding. 

iv 



@ 

SK*DOS 

o. ABOUT THIS VERSION 

68K USER'S MANUAL 

As you know, SK*DOS/68K is a relatively new product. Many of our users have suggested changes and additions to 
SK*DOS which we have been happy to receive and incorporate. In the process, we have also tried to keep the manual 
current and complete at all times. Yet it is still quite possible that it lacks information on features in your version, or 
that new features will be added to SK*DOS after you receive your program and manual. You should contact Star-K 
Software Systems Corp. periodically (as described on the User Registration form) to check on possible updates to 
your software. If possible, use the Star-K computer BBS to contact us for support and further information. 

The standard 68K SK*DOS disk uses double density on all tracks. Note that this is different from 6809 SK*DOS 
disks which may be single or double density, but whose track 0 is always single density. SK*DOS/68K will read and 
write either single or double density disks, so interchanging disks with 6809 systems is no problem. Note, however, 
that some 68K systems cannot boot from a single density disk, although they can use single density once booted. 
Hence you should always format disks in double density if you intend to use them on your 68K system, and single 
density if you intend to use them on a 6809 system. 

To boot SK*DOS use the PO, WD, WA, or WB commands in the HUMBUG monitor (see the HUMBUG manual) 
or follow the prompts in your boot ROM. 

0-1 



SK*DOS® 68K USER'S MANUAL 

1. INTRODUCTION 

The Disk Operating System, or DOS for short, is a program which acts as a file manager for a disk. The DOS 
acts as a buffer between the disk hardware, and the software which uses that disk. Its primary function is to 
maintain a disk directory on each disk, fetch program or data files from the disk as needed, and store programs 
or data back on the disk. 

SK*DOS consists of three major parts: 

(1) The Command Processor System or CPS, which is the major interface to the user. When SK*DOS is active, 
the CPS monitors the keyboard and waits for user commands. At that time, you can load and execute programs 
from the disk and do certain other functions. In addition, the CPS has a number of routines which can be used by 
other programs to simplify input and output for the terminal. 

(2) The File Control System or FCS is the interface for programs running under SK*DOS. The FCS does the 
actual work of managing the contents of the disk. It has various routines which can be called by user programs 
for managing the disk contents. 

(3) Memory- and disk-resident commands provide additional functions which work in conjunction with the CPS 
and FCS to provide an easy way of maintaining the disk. 

In addition to the various commands supplied with SK*DOS, there are other programs available from other 
vendors which are designed to also work with SK*DOS. Furthermore, SK*DOS/68K floppy disks are 
compatible with those used by 6809 SK*DOS and Flex (a trademark of Technical Systems Consultants), so text 
and data fIles may be brought over from 6809 systems and used on your 68K system as well. 

The interface between SK*DOS and user programs is similar to that standardized over a number of years on 
earlier 6809 systems, and is fully documented in this manual. 

Since a DOS must be customized to run on a particular system, Star-K Software Systems Corporation, in 
conjunction with manufacturers who license SK*DOS, provides several different versions. Depending on the 
hardware configuration you specified with your order, you may already have received a version which is 
customized for your hardware, or you may have received a generic version which must still be adapted to your 
particular hardware. In general, you will have one of the following two files on your disk: 

SK*DOS.SYS is a bootable version (which is started with the appropriate boot command of your monitor) and 
which is already configured for your hardware. 

SK*DOS.COR is a generic version which lacks all console terminal and disk driver interfacing. In order to run 
this version, you will have to provide your own interface routines. An SK*DOS Configuration Manual, available 
from Star-K Software Systems Corp., describes the process of configuring SK*DOS for other hardware systems, 
and shows sample interfacing routines which can be used as a guide. 

1-1 



SK*DOS@ 68K USER'S MANUAL 

2. FOR THE IMPATIENT ••• 

If you're anything like us, you want to try out a new program even before reading the manual, just to make sure 
'it works'. This is difficult to do with something as powerful as a DOS, but just to show you a bit of what 
SK*DOS can do, this section shows you how to bring the system up and run it. (This is only possible at this time 
if you have received a version of SK*DOS which is already configured for your specific hardware.) 

After you finish trying it out, we suggest you put it away and go back to reading this manual. 

To start, make sure that your disk is write-protected and place it into drive o. Read Section 0, About This 
Version, for information regarding how to boot SK*DOS on your system. 

The computer will load the program and respond with 

WELCOME TO 
SK*DOS/68K 

(C) 1986, 1988 BY PETER A. STARK 
STAR-K SOFTWARE SYSTEMS CORP. 

ENTER TODAY'S DATE (MM,DD,yy): 

Respond with the date, using one or two digits for the month and day, and two digits for the year, as in 9,26,82, 
and hit the ENTER key. (If your system has a calendar clock and it has been set to the correct date and time, 
SK*DOS may take its date from the clock instead of asking you to enter it.) You will now get the prompt 

SK*DOS: 

SK*DOS is now running, and awaiting your further command. (You are looking at just the tip of SK*DOS - the 
part which is visible to the user. There is much more to SK*DOS than this, but this is the only part which you can 
see and experiment with without doing a bit more reading.) 

You can now type in a variety of commands. Some commands will be immediately recognized by SK*DOS and 
acted upon; these are called 'memory resident' commands. Others are not recognized, and so SK*DOS will try to 
fmd them on the disk; these are called' disk resident' commands. 

To try a memory resident command, type the word 

XEa 

and hit ENTER. XEQ tells SK*DOS to execute the last program loaded in by SK*DOS. Of course, we haven't 
yet used SK*DOS to load anything, and so we get an error message which reads 

ERROR 28 - MISSING TRANSFER ADDRESS 

SK*DOS error codes are explained in Appendix E; in this case there is no transfer address so SK*DOS does not 
know what to execute. 

Let us next execute a disk-resident command: 

ACATO 

2-1 



SK*DOS@ 68K USER'S MANUAL 

The ACAT command prints an alphabetized catalog of the disk or current directory. (ACA T or ACA T 0 means 
drive 0, ACAT 1 means drive 1, and so on). In response to the ACAT 0 command, SK*DOS loads the 
ACAT.COM program from the disk and executes it, displaying a catalog of the disk in drive o. (To halt the 
listing, just press the ESC or escape key. Pressing ESC again will continue the catalog listing, or pressing CR or 
RETURN will return to the SK*DOS prompt.) 

Once the ACAT command is finished, you may repeat the entire command by pressing control-A. The control-A 
displays the entire previous command line (ACAT 0) as if you had typed it again. At this point you may simply 
perform that command by pressing CR, or may backspace and change all or part of the line. For example, you 
may backspace to the 0 and replace it with a 1 (assuming you have a drive 1), thereby changing the command to 
ACAT 1. Pressing the CR now would result in a catalog display of the disk in drive 1. 

Another way of repeating a command is by using the XEQ command. XEQ tells SK*DOS to execute the last 
program loaded by SK*DOS. In this case, the last disk-resident command loaded is ACAT, so XEQ repeats the 
ACAT command. 

There are two interesting points to note: 

1. Running ACAT again by typing XEQ is faster than typing ACAT again, because typing ACAT loads the 
program from disk and then executes it, whereas XEQ merely restarts the ACAT program without loading it 
again. 

2. Pressing control-A repeats an entire previous command line, including any arguments typed as part of that line 
(for example, the 0 in ACAT 0 is the argument and specifies the drive number.) XEQ restarts a program but 
does not supply any arguments; these must be entered after the XEQ (as in XEQ 0). 

It is now time to return to reading the rest of this manual, so type the memory resident command 

MON 

This command exits SK*DOS and returns to the monitor (assuming that your computer has one.) 

2-2 



SK*DOS@ 68K USER'S MANUAL 

3. FILE SPECIFICATIONS 

The term File Specification or just file-spec refers to the four items required to completely specify a rue on a 
disk: the drive number, a directory name, the file name, and an extension. 

The rue-spec usually looks something like this: 

O.A/FILENAME.EXT 

In this example, 

o is the drive number. It is separated from the rest of the file-spec by a period, and is usually a number between 
o and 9, inclusive. The drive number (and its period) may not always appear; if it is missing, then SK*DOS uses 
one of two default values (which may both be the same): it uses the system drive default value when loading 
commands from a drive, and it uses the work drive default value for most everything else. The drive number may 
either precede the rest of the rue-spec, as above, or may follow it. 

A is the directory name. An SK*DOS disk has a main directory, sometimes called a root directory, and may have 
up to 26 smaller directories called subdirectories. The subdirectories are called AI through ZI, while the root 
directory is either called I or is not specified at all. The directory name (and its slash) may not always appear; if 
it is missing, then SK*DOS uses either the system or work drive default directory. 

FILENAME in the above example is a one- to eight-character long word which usually is chosen to identify the 
contents of the m.e. It must begin with a letter, and the remaining characters may be either letters, numbers, 
hyphens, asterisks ("stars"), or the underscore. The file name is the only absolutely required part of the file-spec 
in every instance. 

EXT in the above example is a one- to three-character abbreviation which usually identifies the type of rue. It is 
separated from the name by a period (and may also be followed by another period and the drive number). Like 
rue-names, extensions must begin with a letter, and the remaining characters may be either letters, numbers, 
hyphens, asterisks ("stars"), or the underscore. Extensions are not always required if they are obvious, since 
SK*DOS programs default to certain extensions for certain commands. 

Each of the four parts of the file-spec needs some further clarifying details: 

1. SK*DOS differentiates between physical drive numbers and logical drive numbers. The physical drive number is 
the wired-in number determined by the hardware controller and the actual disk drive. For example, a given 
floppy drive may have its DSO (drive select 0) jumper installed, which gives that drive the physical number of 
drive o. This same drive also has a logical drive number, which maybe different from the physical number. This 
assignment is handled by the DRIVE command, which may assign any of the ten logical drive numbers to any 
physical drive. The file-spec uses }Qa.ig! drive numbers, not physical drive numbers. 

2. Floppy disks usually have only a root directory; most people use subdirectories only to split a large hard disk 
into smaller, more easily manageable sections. Each subdirectory might then be used for a specific type of rue. 
(Incidentally, if you change the variable FNCASE to allow both upper and lower case file specs, you can then 
have a total of 52 subdirectories on a disk, called A through Z and a through z.) 

3. There are several rue names which are reserved for SK*DOS's own internal use. These fall into two 
categories: 

3-1 



SK*DOS@ 68K USER'S MANUAL 

a. The names PIR, GET, GETX, MON, RESET, SAVE, TRACE***, and XEQ are used for internal 
'memory-resident' commands. While these names may also be used for file names, any command files bearing 
these names will not be called since SK*DOS will use its internal commands instead. 

b. The names CONS, PRTR, and NULL (and possibly a few others of your own choosing) apply to I/O devices 
rather than fIles. These names can also be used for ftIe names, but in certain cases SK*DOS will interpret them 
as applying to a device rather than a file. 

4. While files can have any valid extension, by convention certain kinds of ftIes tend to have specified extensions. 
These extensions are listed in Appendix F. Most programs and commands default to specific extensions unless 
another extension is specifted. For example, the EDLIN command is used to edit text ftIes, and always assumes 
that its text files use a .TXT extension if none is given. The GET command, on the other hand, is always used to 
load binary ftles into memory, and so it automatically assumes a .BIN extension if none is given. You may 
provide an extension when you use these commands, but it is usually not necessary. 

Unlike default extensions, which are built into commands and programs, default drive numbers and directories 
can be specifIed by the. user by using the SYSTEM and WORK commands. When SK*DOS is fIrst booted, it 
defaults everything to the root directory of drive O. You may keep these defaults, but specify different drive 
numbers or directory names just when you need them, or you may set up a default drive or directory different 
from the root directory of drive 0, which will then automatically be chosen for most commands - unless you 
specify otherwise. 

Here is a simple example. Suppose you wish to use the LIST.COM command to display a file called FILE.TXT. 
Let's assume that LIST is in directory C of drive 0, while FILE.TXT is in directory X of drive 3. One way to do 
this would be to give the command 

SK*DOS: O.G/LIST.COM 3.X/FILE.TXT 

But since SK*DOS automatically defaults to .COM extensions for commands, while LIST defaults to .TXT 
extensions for text ftles, the command could have been shortened to 

SK*DOS: O.G/LIST 3.X/FILE 

If you expect to use a lot of commands from drive 0 directory C, and perhaps a lot ~f text files from drive 3 
directory X, then you could specify those as default values with 

SK*DOS: SYSTEM O.C/ 
SK*DOS: WORK 3.X/ 

These two commands would ten SK*DOS to use 0 and C/ for loading its system commands, and to use 3 and X/ 
as the work drive and directory. Once you do this, then the command to list the ftle would simply be 

SK*DOS: LIST FILE 

Subdirectories are generally used to organize the contents of a hard disk. For example, you might put all 
assembler source ftles into the A/ subdirectory, put your Basic programs into B/, put C programs into C/, and 
soon. 

Although it wastes space, it is possible to put separate copies of a file into more than one directory. For example, 
to place a copy of the above 3.x/FILE.TXT into subdirectory Y, you could simply use the COpy command as 
fonows: 

3-2 



SK*DOS@ 68K USER'S MANUAL 

SK*DOS: COpy 3.X/FILE.TXT 3.Y/FILE.TXT 

To move a rue from one directory into another, you use the RENAME command. Thus the command 

SK*DOS: RENAME 3.X/FILE.TXT 3.Y/FILE.TXT 

leaves only one file on the disk, but moves it from XI to Y I. This is different from the COpy command, which 
would leave two copies of the same file on the disk, one in XI and another in Y I. Note that in this case, changing 
one copy does not change the other. 

3-3 



SK*DOS (R) 68K USER'S MANUAL 

4. SK*DOS OVERVIEW 

The SK*DOS package consists of essentially two parts: 

1. The SK*DOS program itself. 

2. A set of disk-resident commands such as CAT and LIST. The disk-resident commands are described later; this 
section deals with the SK*DOS program itself. 

The SK*DOS program in turn consists of three parts: 

1. The Pile Control System (or PCS for short) which maintains the disk directory and in general is responsible for 
managing the disk contents. The PCS has various routines which may be called by other programs; some of these 
routines actually handle the disk and its files, while other routines may handle peripheral functions (such as printing 
out strings, or converting numbers to and from decimal). These routines are used by the PCS, but they are 
documented in this manual and may also be used by application programs. 

2. The Command Processor System (or CPS for short) which acts as an interface between a user and the PCS. When 
SK*DOS is first loaded and executed, the CPS prints the SK*DOS: prompt and awaits further instructions. These 
instructions mayor may not involve the PCS. 

3. The Basic Input/Output System (BIOS) which adapts SK*DOS to run on a particular hardware system. The BIOS 
contains the software which interfaces with the keyboard, display, printer, and disk drives. 

The PCS and CPS parts of SK*DOS are the same on all systems; the BIOS portion must be tailored for each 
different computer. In some cases, the BIOS is provided either by Star-K or by a hardware manufacturer; in other 
cases, you may have purchased a more generic version of SK*DOS and will have to provide your own BIOS if your 
hardware is different from those systems currently supported. 

Depending on the version, SK*DOS (with all its hardware-dependent routines) occupies approximately 16K to 24K 
of RAM. The exact location of SK*DOS varies from system to system, but in most systems it begins at $1000. Once 
booted, however, it is not necessary to know exactly where SK*DOS is located in your memory, since SK*DOS is 
called by application programs through 'exception vectors'. Hence this manual describes the PCS and CPS portions 
of SK*DOS from the point of view of a user or applications programmer. BIOS information, needed only by systems 
programmers implementing SK*DOS on a new system, is provided in a separate (optional) Configuration Manual. 

4-1 



SK*DOS (R) 68K USER'S MANUAL 

5. THE COMMAND PROCESSOR SYSTEM 

When SK*DOS is fIrst loaded and started, it responds with the SK*DOS: prompt and waits for a command to be 
processed. At this point you may enter either a Memory Resident Command, a Disk Resident Command, or a Batch 
Command. Depending on the command, sometimes several commands may be entered on one line, separated by 
colons. Commands may consist of more than one part and may be up to 127 characters long, if necessary. The 
various parts of a command may be separated by either spaces or commas, and the command should be followed by a 
RETURN (which may be labelled ENTER or CR on some keyboards.) 

Commands typed into the command processor (and other input which may be entered in user programs) are stored 
in a line buffer (called LINBUF). If you type a control-A character while inputting a command or other input into 
the line buffer, SK*DOS will add the remaining contents of the line buffer to the input you have just typed and 
display it on your terminal. This is useful for repeating a command in its entirety, or repeating just parts of it. For 
example, suppose you have just completed the command 

COpy O.NAME1.TXT 1.NAME2.0LD 

and then, upon completion of that command, you type a control-A. SK*DOS will display the entire previous line 
again and position the cursor after the D in OLD. If you then press the RETURN key, you will perform the 
command again. Alternatively, you may backspace and change any part of the command. For example, if you 
backspaced to the beginning of NAME2 and typed in a new name such as NAME3, then the line would read 

COpy O.NAME1.TXT 1.NAME3 

At this point you could either press RETURN and execute the line as is, or again press control-A; the latter would 
complete the line by adding the .OLD at the end. 

Whenever you enter a command line, SK*DOS will fIrst check whether you have typed the name of a memory­
resident command. If so, the command is immediately executed. 

If no memory-resident command exists by that name, SK*DOS will try to fmd the command on the disk and execute 
it. Disk resident commands are program fIles which have a .COM extension. 

If no such .COM file is found, SK*DOS makes one more try - to fInd a Batch File. A batch fue is a text fue (having a 
.BAT extension) which itself contains one or more other memory- or disk-resident commands which should also be 
executed. 

For example, suppose a batch fue called TWODIR.BAT has the following two text lines: 

DIRO 
DIR 1 

Entering the command TWODIR would then display the disk directories of both drives 0 and 1. 

If a command is given which is none of the above then SK*DOS will print a 'fue not found' error message. 

Note that a .BAT fue should never have the same name as a .COM fue, since SK*DOS will fmd and execute the 
.COM fue fIrst, and never execute the .BAT file at all. 

5-1 



SK*DOS (R) 68K USER'S MANUAL 

6. MEMORY RESIDENT COMMANDS 

SK*DOS recognizes a number of Memory Resident Commands. These are commands which are integral parts of 
SK*DOS, and are in memory at all times. They are therefore called by their names, and do not get either an 
extension or drive number. 

Memory-resident commands include the following; more detailed descriptions are provided in Appendix G: 

DIR 
GET 
GETX 
MON 
RESET 
SAVE 
TRACE*** 
XEQ 

Display the contents (directory) of a disk 
Load a binary file from disk into memory 
Load a binary file from disk into memory 
Exit SK*DOS and return to a ROM monitor 
Exit SK*DOS and return to a ROM monitor 
Save contents of memory to a binary disk file 
Allow command tracing; see TRACENAB in Appendix G. 
Execute the last fIle loaded from disk 

There are some differences between GET and GETX, and between MON and RESET: 

GET and GETX both load a binary fIle from disk into memory, but GET checks the loading addresses and will 
return an error message if the file would load outside the normal user-accessible memory (as defined by two 
variables called OFFSET and MEMEND.) GETX does not check such loading addresses. 

MON and RESET both exit SK*DOS and return to a ROM monitor, but in some systems MON will re-enter the 
monitor without doing a complete system initialization; whereas RESET will completely initialize the system. This 
distinction is important because RESET will initialize all exception vectors to the ROM monitor's values, whereas 
MON may not. (In some systems, RESET may not be operational.) 

~though DIR will display the contents of a disk, you may prefer to use some of the other disk-resident commands 
such as CAT, ACAT, SCAT, or TCAT, which provide more information than DIR. 

Although, strictly speaking, Control-A is not a command, this may be a convenient place to discuss it. Pressing a 
control-A while typing any command will repeat the remaining portion of any previous command, display it on the 
screen, and ready it for execution. The control-A is a powerful feature, but it can also be misused if entered past the 
end of the last previous command. 

6-1 



SK*DOS (R) 68K USER'S MANUAL 

7. DISK RESIDENT COMMANDS 

SK*DOS is supplied with a variety of disk-resident commands which are described in Appendix G. In addition, it is 
relatively easy to write your own command files and store them on the disk for later execution. 

Disk resident commands are supplied as binary, machine language ftIes with .COM extensions. They are executed 
simply by typing their names. For example, the CAT.COM command may be executed just by typing CAT after the 
SK*DOS: prompt. This is equivalent to typing the sequence 

SK*DOS: GET CAT.COM 

SK*DOS: XEQ 

since any unknown word (other than one recognized by SK*DOS as a memory resident command) is interpreted as 
calling a disk command and executing it. A .COM extension is assumed, and the program is automatically executed as 
soon as it is loaded. 

Since SK*DOS automatically searches the disk for commands, it is possible for users to write their own Disk 
Resident Commands. Arguments to be used by the command can be entered on the same line as the command 
name, and then processed by the command with the aid of SK*DOS routines such as NEXTCH (get the next 
character from the Line Buffer). The listing of the liST command, later in this manual, will show how additional 
commands can be written. 

The disk-resident commands supplied with SK*DOS are described in Appendix G. 

7-1 



SK*DOS (R) 68K USER'S MANUAL 

8. THE FILE CONTROL SYSTEM (FCS) 

The FCS is the heart of SK*DOS, since it is responsible for reading, writing, and locating files on the disk. Although 
the FCS system is working, it is invisible when you run some of the dis~ resident commands such as BUILD or LIST. 
It is, however, heavily used by all programs which run under SK*DOS. The following explanation will assume that 
you have the knowledge and need to examine the operation of SK*DOS on this detailed level. 

When reading a file, the FCS looks up the file location in the system portion of the disk (track number 0 on the disk) 
and then goes to read it. When writing a ftle to the disk, the FCS uses the system track to assign space to the file; 
when the file is written, the FCS updates the system track so that the file can later be found. 

Fortunately, though this process is rather complex in any disk system, the user need not be concerned with how it is 
done, or where on the disk a given file is located. The SK*DOS Fes does all this automatically; the user need only 
give the FCS a file name and a command as to what to do. This is done by setting up a File Control Block or FCB for 
each ftle that is to be opened; a given program may use as many FCBs as desired. The FCB contains the file-spec, 
assorted flags and variables which are used by the Fes to keep track of the file, and also the data read from, or about 
to be written to, a single sector on the disk. 

For example, to access the disk through the FCS to read text from a disk ftle, the sequence of operations would be 
something like this: 

1. Set up a File Control Block with a OS instruction. 

2. Point the A4 register to the FCB, and call the SK*DOS Fes system to input a file name. 

3. Call SK*DOS again to assign a default extension, if needed. 

4. Call SK*DOS a third time to open the ftle. 

5. Call SK*DOS to read a byte from the rtle and process it. 

6. Repeat step 5 as long as needed, then 

7. Call SK*DOS to close the me. 

All of these operations use the FCB as a buffer, both to hold the contents of an entire sector of data read from or 
written to the disk, as well as to keep track of the file name and location, and other pertinent data. 

The FCB is discussed in the next Chapter. 

8-1 



SK*DOS (R) 68K USER'S MANUAL 

9. THE FILE CONTROL BLOCK 

The File Control Block, or FCB for short, is used for all communications between the File Control System (FCS) and 
user programs. One FCB is required for each fIle that is opened by a program, although that FCB can be reused 
again if a me is closed (thereby releasing the FCB) and another ftle is opened with the same FCB location. 

The FCB is an area of memory 352 or 608 bytes long which must .§1m:1 on an even address. (Although only 352-byte 
FCBs are used at this time, users should set aside 608 bytes for each FCB so as to be compatible with future versions 
ofSK*DOS.) 

SK*DOS maintains several such FCBs for its internal use. One of these is called the User FCB, or USRFCB. It is 
available for use by other programs. Although it is used by SK*DOS, this is done in a way which does not prevent its 
use by those programs which also require a FCB. 

The FCB consists of 352 (or 608) bytes. Of these, the fust 96 bytes are used for storage of various ftle parameters, 
while the remaining 256 (or 512) bytes hold the data for one sector of disk data. During a disk read operation, these 
bytes hold the contents of the last sector previously read; during a write operation, these bytes generally hold the 
contents of the next sector to be written. 

Not all of the fIrst 96 bytes are used; the following descriptions cover those bytes that are used in SK*DOS. 

Byte No. O. Reserved 

This byte is reserved for future expansion. 

Byte No.1. Error code (see Appendix E) 

After the FCS is fmished doing an FCB operation, it returns to the user program. If no error is found, then the Z bit 
in the condition code register is a 1 and the content of this byte is irrelevant. But if an error is found, then the Z bit is 
a 0 and this byte contains an error code. The status of the Z bit should be tested directly after returning from 
SK*DOS with a BNE (to error routine) or BEQ (to normal continuation) instruction. The content of this error byte 
is also stored in ERRTYP. 

Byte No.2. Read/Write/Update status 

This byte indicates whether the fIle is open for reading, writing, or random fIle updating. SK*DOS checks the byte 
. prior to reading or writing to make sure that the fIle is open for the appropriate operation. The values of this byte for 
an open ftle are as follows: 
1 = open for sequential reading 
2 = open for sequential writing 
3 = open for updating, but no changes have been made to current sector 
83 = open for updating, and changes have been made to current sector (this is hexadecimal 83) 

9-1 



SK*DOS (R) 68K USER'S MANUAL 

Byte No.3. Logical drive number (0 through 9) 

This byte contains the number of the drive being used for this fIle control block. The drive number will normally be a 
number from 0 through 9, but when opening a file for reading or writing it may also be specified as SFF, in which 
case SK*DOS will search your drives, beginning with drive 0, for a drive where the requested operation can be 
completed. Then it will place the correct drive number into this byte and open the file. Since many disk drivers do 
not provide a way of determining whether a 5" floppy disk is ready or not, SK*DOS may "hang up" if there is no disk 
in a drive being searched, although the DRIVE command can be used to define non-existent drive numbers. (See 
also Chapter 13 for I/O redirection and its use with the logical drive number.) 

Bytes No.4-II. File name (8 bytes) 

These eight bytes contain the name of the fIle being used with this FCB. The fIrst character of the name (always in 
byte 4) must be a letter, and the remaining ones may be either letters, digits, hyphens, or underlines. If the name is 
shorter than 8 characters, then the remaining bytes must be filled with zeroes. 

Bytes No. 12-14. Extension (3 bytes) 

These three bytes contain the extension that goes with the name in bytes 4 through 11. The extension obeys the same 
rules as the name described above. 

Byte No. IS. File attributes 

This byte defmes the type of user access permitted to this ftIe. The bits are used as follows: 
Bits 0-3 - reserved for future use (leave at 0) 
Bit 4 - will not be listed by CAT utility 
Bit 5 - Reading not permitted 
Bit 6 - Deletion not permitted 
Bit 7 - Writing not permitted 

Bytes No. 16-17. Reserved 

These bytes are reserved for future expansion. 

Byte No. 18. First track of file 
Byte No. 19. First sector of tile 

These two bytes point to the fust sector of the file. 

Bytes No. 20-21. Rese"ed 

These bytes are reserved for future expansion. 

Byte No. 22. Last track of file 
Byte No. 23. Last sector of file 

These two bytes point to the last sector of the fIle. 

9-2 



SK*DOS (R) 68K USER'S MANUAL 

Bytes No. 24-25. Number of sectors in the tile 

These two bytes indicate the size of the ftIe in sectors. 

Byte No. 26. Random tile indicator 

This byte indicates whether the current fue is a sequential rue or a random rtIe. A zero in this byte indicates a 
sequential ftIe, a nonzero indicates a random ftIe. (See Chapter 13 for further information on random files.) 

Byte No. 27. Time or sequence number 

This byte normally contains either the rtIe creation time (encoded as a one-byte number), or a sequence number. 
Sequence numbers are sequential numbers, beginning with 1 when the system is fIrst booted. Sequence numbers 
indicate the order in which files are written on any particular day. (See INTIME in Chapter 13 for further 
information. ) 

Byte No. 28. Month of file creation (1 through 12) 
Byte No. 29. Day of file creation (1 through 31) 
Byte No. 30. Year of tile creation (last two digits) 

These three bytes hold the date when the ftIe was created. All three bytes are in binary, but only the last two decimal 
digits of the year are stored. That is, in 1984 byte 30 stores a decimal 84, or a hexadecimal 54. 

Byte No. 31. Reserved 

This byte is reserved for use by SK*DOS. 

Bytes No. 32·33. Reserved 

These bytes are reserved for future expansion. 

Byte No. 34. Current track number 
Byte No. 35. Current sector number 

These two bytes contain the track and sector number of the sector currently in the FCB. If the file is being read, then 
they indicate where the data currently in the FCB came from; if the file is being written, then they indicate where this 
data will go. 

Bytes No. 36-46. Temporary name butTer 1 

These eleven bytes are used to temporarily hold a file name and extension while the ftIe is being renamed or deleted. 

Byte No. 47. Reserved 

This byte is reserved for use by SK*DOS. 

Byte No. 48. Reserved 

This byte is reserved for future expansion. 

9-3 



68K USER'S MANUAL 

Byte No. 49. Sequential data pointer to next byte (4 through 25S) 

On all sequential read or write operations, this byte points to the next byte to be read or written into the sector buffer 
portion of the FCB. The pointer is a 4 for the first byte, or 255 for the last byte. SK"'DOS changes this byte 
automatically; users will not normally touch it. 

Byte No. 50. Reserved 

This byte is reserved for future expansion. 

Byte No. 51. Random data pointer to next byte (4 through 255) 

On all random read or write operations, this byte points to the next byte to be read or written into the sector buffer 
portion of the FCB. The pointer is a 4 for the first byte, or 255 for the last byte. Unlike the sequential data pointer 
(byte 49), this byte is not changed by SK"'DOS, but is to be set by user programs instead. (See Chapter 13 for further 
information on random ftIes.) 

Bytes No. 52-62. Temporary name butter 2 

These eleven bytes hold the new name and extension of a ftIe being renamed. The new name should be stored into 
these bytes prior to calling the rename function of the FCS, using the same rules as apply to bytes 4 through 11 above. 
(These bytes overlap with some of the bytes below, but there is no conflict as they are used at different times.) 

Byte No. 58. Column Counter (for Basic) 

This byte is used only by Basic to keep track of the current output column. 

Byte No. 59. Space compression indicator 

This byte indicates whether space compression is being done in reading or writing the current file. Values of 0 
through 127 ($00 through $7F) indicate that space compression is being done, and the actual value represents the 
number of spaces currently being compressed. A value of 255 ($FF) indicates that no space compression is being 
done. SK"'DOS initializes this byte to 00 upon opening a file; it is up to the user to change it to $FF (after opening the 
file but before reading or writing) if space compression is not desired. 

Byte No. 60. Number of sectors per track 

This byte contains the number of sectors per track during random flle operations. (See Chapter 13 for further 
information on random files.) 

Byte No. 63. Reserved 

This byte is reserved for use by SK*DOS. 

Bytes No. 64-67. Reserved 

These bytes are reserved for future expansion. 

9-4 



SK*DOS@ 68K USER'S MANUAL 

Bytes No. 68-71. Next FCB pointer 

These four bytes point to the next FCB, if any, which was opened after this one (or, more exactly, they point to the 
corresponding bytes of the next FCB, not to the beginning of that FCB). This information is used by SK*DOS to 
keep a list of all FCBs currently in use, so that they can be closed if an FCSCLS operation is requested. If this is the 
last FCB in the chain, then these bytes contain zeroes. 

Byte No. 72. Physical Drive Number 

Using the DRIVE command, SK*DOS allows you to reassign logical drive numbers to different physical drives; this 
byte contains the physical drive number actually used by the hardware in reading or writing a sector or fue. 

Byte No. 73. Reserved 

These bytes are reserved for future expansion. 

Byte No. 74. Directory track number 
Byte No. 75. Directory sector number 

These two bytes point to the location in the directory where the current file is listed. The directory begins on track 0 
sector 5, but may extend to other tracks if track 0 is filled. 

Bytes No. 76-77. Reserved 

These bytes are reserved for future expansion. 

Bytes Nos. 78-79. Current or desired sector number 

This byte indicates the position of the current sector within the file. In sequential files, the first sector of a fue is 
sector number 1, and so on. In random files the f1l'st two sectors, which contain the file map, are number 0, and 
sector 1 is the f1l'st data sector of the fue. (See Chapter 13 for further information on random files.) 

Bytes No. 80-95. Reserved 

These bytes are reserved for future expansion. 

Byte No. 96. Beginning of data area 

The 256 bytes starting at byte 96 contain the data for an entire disk sector. (Use of a 608-byte FCB leaves another 256 
bytes at the end of this data area, thereby allowing for future expansion to 512-byte sectors.) 

9-5 



SK*DOS8 68K USER'S MANUAL 

10. SK*DOS FUNCTIONS 

SK"'DOS has a large number of subroutines and functions which can be called from user programs. Some of 
these are actual part of the File Control System; others are simply routines which the FCS itself uses and which 
are useful to the typical programmer. 

This chapter documents these routines and shows how they are used. All of these routines are accessed through 
the 'exception vectors' of the 68xxx processor. 

68xxx processors have a number of 'traps' which trap undefined or illegal operations, and cause a return to a 
supervisor or operating system via a set of exception vectors in low memory. A full description of this system is 
beyond the scope of this manual, and we suggest you get the Motorola literature for your processor, or one of 
the many textbooks on 68xxx programming, for more information. 

One of the undefined or illegal 68K operations which causes a trap is any machine language instruction 
beginning with SA; Motorola literature refers to these as "Line 1010" instructions. Whenever any such 
instruction is encountered, the 68K CPU does a trap, via one of its exception vectors, to SK*DOS. Thus 
SK"'DOS uses these instructions within user programs to call functions within SK*DOS. 

Within SK*DOS, the second byte of each such instruction is used to select a particular function to be performed. 
For example, the instruction SAOO1 is used to read a byte from a file, SAOO2 writes a byte, and so on. A user 
program calls such a function with the instruction 

DC $AOxx 

where the xx is simply replaced by the number of the function desired. 

To avoid the necessity of remembering the numeric code for each particular function, the SK*DOS disk includes 
a file called SKEQUATE.TXT which provides a series of EQUates which define the exact numeric code for 
each function. Hence only the function name given in the following descriptions need be remembered. This me 
may be included as a library file in any user programs you write with the instruction 

LIB SKEQUATE SKEQUATE file included as library 

Once so defined, the names in the SKEQUATE ftle can be used in the DC line, as in 

DC FREAD 

Each of the functions listed in this chapter always preserves registers DO through 04, and AO through A4, and 
generally never preserves registers 05 through 07 and AS through A6. Arguments passed to SK*DOS are 
generally passed in D4 or A4, as applicable, and arguments passed back to the user program are generally in D5 
or AS, as appropriate. In addition, all of the following functions always return with A6 pointing to the SK*DOS 
user- accessible variable area (see Chapter 11 and VPOINT for a fuller explanation.) 

The functions listed in this chapter are divided into two groups: 

A. Functions which do not involve reading or writing to the disk 

B. Functions which do involve writing or reading disks 



SK*DOS@ 68K USER'S MANUAL 

GROUP A. NON-DISK FUNCTIONS 

The following SK*DOS functions do not directly involve disk operations: 

COLDST Cold start 

COLDST is the only function which is not called through an $Axxx trap. Instead, it is the entry point that is used 
when SK*DOS is fIrst loaded from disk and executed. Entering at COLDST erases all pointers and completely 
initializes SK*DOS to the beginning. User programs should not use this entry point, especially when flIes are 
open, as entering at COLDST causes SK*DOS to 'forget' all its open flIes. This can corrupt the contents of a 
disk or its directory. Nevertheless, COLDST may be useful in special applications. Keep in mind, however, that 
the precise address of COLDST depends on the particular system SK*DOS is run on. You may determine the 
appropriate address for your system by using the LOCATE command (with the - option) to determine the load 
address of SK-DOS.SYS. COLDST should be entered with a JMP instruction. 

W ARMST $A01E Warm. start 

W ARMST is the re-entry point to be used by user programs. Re-entering at W ARMST closes all open mes and 
thus helps to insure the integrity of the directory. SK*DOS then prints its prompt and looks for a command to 
be processed by the Command Processor System. 

RENTER $A025 Re-enter SK*DOS 

This routine re-enters the SK*OOS command processor system at the point where it processes a command line. 
It is used when it is desired to continue processing the remainder of a command line (such as after the 0 or P 
commands.) 

VPOINT $AOOO Point to SK*DOS variable area 

This routine returns the address of the SK*OOS variable area in A6. Indexed addressing via A6 may then· be 
used to access those variables in SK*DOS of interest to user programs. VPOINT may not be needed in most 
programs, since all SK*OOS function calls also return this address in A6. The variables which may be accessed 
are listed in Chapter 11. 

GETCR $A029 Get input character with echo 

GETCH is used to get an input character from the keyboard; it returns with the character in 05. All valid 
keyboard character codes can be input, but the parity bit (bit 7) is changed to a 0 for all input. The character is 
echoed to the output. 

10-2 



SK*DOS@ 

INNOEC 
INNOEI 

$A02A 
$A043 

68K USER'S MANUAL 

Get input character without echo 
Get input character without echo (bypass typeahead) 

INNOEC is just like GETCH, but characters are not echoed to the output, and the parity bit is not cleared. 
Thus INNOEC can be used for 8-bit input, whereas GETCH only reads 7 bits. INNOE1 is similar, but bypasses 
typeahead (if implemented on the system - see Chapter 14.) 

PUTCR $A033 Output character 

PUTCH is used to output a character from D4 to the output terminal. 

INLINE $A02C Input into line butTer 

SK*DOS maintains a 128-byte line buffer which it uses to parse commands to its own Command Processor 
System. The INLINE routine is used to enter an entire line of text from the keyboard into this line buffer, and 
may also be used by user programs. A line is normally ended with a CR character (SOD), which is placed at the 
end of the entered text. Hence the maximum text line which can be entered into the 128-byte buffer is 127 bytes 
long. This routine permits erasing errors with the backspace key. The Control-X key erases an entire line and 
starts over. The Control-A key re-displays the entire previous line in the line buffer, from the current cursor 
position to the previous end of line (carriage return) and can be used to repeat all or any part of a previous line. 

PSTRNG $A035 Print CR/LF and string 

PSTRNG is used to output an entire string of text to the terminal. The string is preceded by a carriage return 
and line feed, meaning that the text begins on a new line on the screen. On entry, A4 should point to the frrst 
character to be printed, and the string should end with an 04 byte to denote end of data. 

PNSTRN $A036 Print string (WImOUT CR/LF) 

PNSTRN is used to output an entire string of text to the terminal. Unlike PSTRNG, however, it is not preceded 
by a carriage return and line feed. On entry, A4 should point to the first character to be printed, and the string 
should end with an 04 byte to denote end of data. 

CLASFY $AOZE Classify alphanumeric characters 

This routine is used to classify characters in D4. If the character is a letter or digit, then the C (carry) bit of the 
condition code register is cleared; otherwise, it is set. 

PCRLF $A034 PrintCR/LF 

This routine prints a carriage return / line feed; that is, it forces the cursor to the next line so that subsequent 
input or output will occur at the beginning of a new line. 

10-3 



SK*OOS@ 68K USER'S MANUAL 

GETNXT $A02D Get next character from butTer 

This routine is used to get the next character from the 128-byte input buffer used by SK*OOS. This character is 
returned in 05 and also placed in the CURRCH location in SK*OOS; the previous character which was in 
CURRCH is placed into PREVCH so that user programs have access to the last two characters taken from the 
line buffer. This routine automatically calls ClASFY, so that the carry bit can be used to indicate whether the 
current character is alphanumeric or not. If the line buffer contains a string of spaces, then GETNXT will return 
only one space. GETNXT will continue fetching characters until it gets to the end of the line, at which time it 
will continue to output the end of line (SOD (CR) or ENDLIN) if it is called again, and will also set the carry bit 
to indicate a non-alphanumeric character. This routine uses the LPOINT pointer to keep track of the next 
character to be taken from the buffer. This pointer is normally set to the beginning of the buffer after a line is 
input from the keyboard with INLlNE, and is incremented by one each time a character is fetched from the 
buffer, so that it always points to the next character to be fetched. At the end of a line, it always points to the CR 
character. 

RES 10 $A020 Reset I/O pointers 

RESIO resets I/O vectors to their initial states. For example, if output is vectored to a disk me, a call to RESIO 
returns output to the terminal. In general, RESIO resets console I/O vectors to their normal conditions. RESIO 
is called during W ARMST so that SK*OOS always returns to a known state upon return from a user program. 

RESTRP $A021 Reset trap vectors 

RESTRP resets the 68K processor's trap vectors to those initially used by SK*OOS at boot. (see TRPFLG for 
further information.) RESTRP is called during WARMST so that SK*OOS always returns to a known state 
upon return from a user program. 

GETNAM $A023 Get tile name into FeB 

This routine is used to take a fIle specification from the input buffer and place it into the appropriate bytes of. an 
FCB. At entry, A4 should point to the FCB to be filled, and the LPOINT line buffer pointer should point to the 
beginning of the me specification in the line buffer. As the ftle specification is parsed, the drive number will oe 
placed into the drive number location of the FCB (unless no drive number is specified, in which case the working 
drive will be used). The directory name, me name and the extension, if present, will also be placed into the FCB; 
if the directory name. is missing it will be replaced by the default directory, and a missing name or extension will 
be replaced by zeroes. If the file specification has no errors, then the carry will be cleared; else it will be set. 
The file specification in the line buffer may end with a space, comma, CR, or ENDUN character; if a space or 
comma, then LPOINT will point to the next character after it, if a CR or ENDLIN, then LPOINT will point to 
the CR or ENDUN character. Errors will place error code 21 (illegal file name) into the FCB and set the carry. 

10-4 



SK"'OOS@ 68K USER'S MANUAL 

LOADML $A022 Load open machine language file 

This routine is used to load a machine language file into memory at its normal load address (which is equal to 
the address listed in the file, plus the OFFSET address, except that the OFFSET address is not added if 
LASTRM contains a minus sign.) LOADML is normally used by the memory resident GET command to fetch 
programs prior to execution. Prior to entering LOADML, the user program should use the USRFCB (user 
FCB) to open the file to be loaded. The file is then loaded, and its transfer address is stored in the EXECAD 
location. If there is no transfer then XFERFL is set to 0; else it is non-zero. Any transfer address found is stored 
in the EXECAD location. Errors such as error 4 (file not found) cause an immediate return to the calling 
program with a non-zero condition and the FCB indicating the error; read errors once a file is found immediate­
ly abort the program, close all files, and return to SK"'OOS warm start. 

DEFEXT $A024 Default extension 

This routine is used to. enter a default extension into an FCB if the file specification already in the FCB does not 
contain one. Before entering, the user program should point A4 to the beginning of the FCB, and should place 
into D4 a numeric code which indicates which default is desired. The codes are as follows: 

0= BIN 
1 = TXT 
2=COM 

OUTSD SA038 

3 = BAS 
4 = SYS 
5 = BAK 

6 = SCR 
7= DAT 
8= BAC 

Output 5 decimal digits 

9=DIR 
10 = PRT 
11 = OUT 

12 = BAT 
13 = SRC 
14 = PIP 

This routine outputs a decimal number of up to five digits. Before entering, the calling program should place 
into 04 the unsigned binary word to be printed, and set D5 to zero if the number is to be printed without leading 
spaces or zeroes, or to nonzero if the number is to be printed with leading spaces. 

OUTtOD SA039 Output 10 decimal digits 

This routine outputs a decimal number of up to ten digits. Before entering, the calling program should place 
into D4 the unsigned binary long-word to be printed, and set D5 to zero if the number is to be printed without 
leading spaces or zeroes, or to nonzero if the number is to be printed with leading spaces. 

OunH SA03A Output 2 hex digits 

This routine prints the two-digit hexadecimal number that is in the right-most byte ofD4 on entry. 

OUT4H $A03B Output 4 hex digits 

This routine prints the four-digit hexadecimal number that is in the right-most word of D4 on entry. 

10-5 



SK*DOS@ 68K USER'S MANUAL 

OUTS" $Ame Output 8 hex digits 

This routine prints the eight-digit hexadecimal number that is in D4 on entry. 

PERROR $A037 Print error code 

When an error is encountered by the FCS while using an FCB, user programs should do a call to this routine to 
print the error code. PERROR should be entered with A4 pointing to the beginning of the FCB, and the error 
code in byte 1 of the FCB. The error codes are listed in Appendix E. The error code is printed as a number; in 
addition, if the system disk contains the me ERRCODES.SYS, SK*DOS will read a one-line text description 
from this ftle and print it alongside the numeric code to explain the error's meaning. 

TOUPPR $A031 Convert lower case to upper (in DS!) 

Converts a lower case character in DS into upper case. Primarily for use right after GETCH or GETNXT, if 
only upper case letters are desired. 

HEXIN $A02F Input hexadecimal number 

This routine inputs a hexadecimal number from the line buffer and places it in D5. Before entering, the calling 
program should make sure that LPOINT points to the fust digit of the number to be input; at the end, LPOINT 
will be left pointing as described earlier for GETNAM. On output, D6 is non-zero if a number was actually 
found, and the carry bit is set if an invalid character was found in the number. (It is possible for both D6 and the 
carry to be zero if HEXIN encounters a delimiter such as a space, comma, CR, or ENDLIN immediately on 
entry.) If a number is not found the number returned is zero; if the number is greater than $FFFFFFFF, then 
only the last eight hex digits are returned. 

DECIN $A030 Input decimal number 

This routine is similar to HEXIN, but inputs a decimal number rather than a hexadecimal one. 

EXECSD $A01F Execute a SK*DOS command 

This entry point allows a user-written program to call SK*DOS as a subroutine and have it execute a command 
line placed into the line buffer. On entry, A4 should point to the beginning of the command (usually at the 
beginning of the line buffer), and the command should end with a CR or ENDLIN character. If the command 
line in turn executes a disk-resident program, then that program should end with a DC W ARMST instruction to 
return to SK*DOS. SK*DOS, in turn, knowing that the program was called from another user program, will 
return control to the user program. The user should be careful not to call a program which will overlay part of 
the calling program in memory. 

10-6 



SK*OOS@ 

STATUS 
STATUI 

$A02B 
$A042 

68K USER'S MANUAL 

Check keyboard for character 
Check Keyboard for character (bypass typeahead) 

This routine allows a user program to check whether a character is being entered from the keyboard. If no 
character is being entered, the Z bit in the condition code register is set; if a character is being entered, then the 
Z bit is clear. All other registers are preserved. STATU1 is similar, but bypasses typeahead (if implemented -
see Chapter 14.) 

INTDIS $A04O Disable Interrupts 

This routine masks interrupts (to level 7), thereby preventing the CPU from being interrupted by level 0 through 
6 interrupts. This SK*OOS call is intended only for use by advanced programmers, and then only in systems 
programs such as FORMAT. 

INTENA $A041 Re-Enable Interrupts 

This routine restores interrupts to the same status as existed before the last previous INTDIS call. Make sure 
not to use INTENA unless it has been preceded by a INTDIS. This SK*OOS call is intended only for use by 
advanced programmers, and then only in systems programs such as FORMAT. 

FINDEV $A012 Find device from name 

This function converts a device name (such as CONS for console) to a device number (plus $10). For example, 
to fmd out whether PRTR has been installed as a printer driver, place the name PRTR (followed by seven $00 
bytes to erase the remaining name and extension bytes) into the file-name bytes of an FCB, and call FINDEV. If 
PRTR is not installed, then SK*OOS will return error 4 (not found); if it is installed, then SK*OOS will place the 
device number (plus $10) into the logical drive-number byte. For example, if PRTR is device 2, then FINDEV 
will return $12 in byte 3 of the FCB. 

GETDNT $A03F Get date and time 

If the system contains a clock/calendar IC, then this function returns the current date and time in 05 and 06 as 
shown below: 

05: WWMMOOYV 
I I I + - year In hexadecimal 
I I +-daylnhex 
I + ---month In hex 
+-------day of week (00= none, 01 = Sunday, 02= Monday, ... ) 

06: OOHHMMSS 
I I I + - seconds in hex 
I I + ---- minutes In hex 
I + --------- hours in hex (24-hour time) 
+ ------------- always zero 

If no clock/calendar IC is available, then the day of week byte of 05, and all of 06, are zero, and only the date 
( month/ day/year) is returned (obtained from the date typed in by the user upon booting). 

10-7 



SK*DOS@ 68K USER'S MANUAL 

ICNTRL $A028 Input Control 

OCNTRL $A032 Output Control 

These two functions permit device driver selection, special characters to be passed to or from a device driver, 
and other device functions. See Chapter 14 for a more complete explanation. 

FLUSHT $A044 Flush Type-ahead butTer, if any. 

This function flushes (empties) the keyboard typeahead buffer (if implemented - see Chapter 14.) 

FNPRNT $A045 Print file-name 

This function formats and prints the directory and flIe-name (but not drive number) pointed to by A4. In 
memory, the name should consist of 11 bytes, 8 for the directory and name, and 3 for the extension, with no 
period between them. In addition, D4.B is used to specify whether to provide spaces for missing items. If D4.B is 
zero, then the name might be printed as just NAME.EXT; if D4.B is not zero, then there would be two spaces 
before NAME (leaving space for a possible directory name), and four spaces between NAME and the period 
(leaving space for an 8-character name). Furthermore, if the extension is missing (zero in memory) then using a 
non-zero D4.B would leave three spaces after the period. 

GROUP B. DISK FUNCTIONS 

The following SK*DOS functions involve reading or writing disks. 

FCSINI $AOIB Initialize File Control System 

This function should not normally be used by user programs as it can result in corruption of the disk. It totally 
initializes the system - disk drivers are initialized, all open flIes are forgotten and left open, etc. 

FCSCLS $AOO9 Close aU open files 

This routine allows user-written programs to close all open mes without actually knowing which they are. If 
FCSCLS detects an error, then it prints error 13 (error in closing me), clears the Z bit in the condition code 
register, and returns with AS pointing to the FCB which was being closed when the error was detected. When 
FCSCLS detects an error, it does not close the remaining flIes; hence its routine use to close mes is not 
encouraged. Instead, users should close each ftle separately. 

10-8 



SK*DOS@ 

The normal call to these functions is thus 

LEA 
DC 
BNE 

,A4 
<function> 
ERROR 

Point to the File Control Block 
Call FCS to perform operation 
Go process error if detected 

68K USER'S MANUAL 

Note that it is required that A4 point to the beginning of the FCB when FCS is called. Since the contents of AO 
through A4, and DO through D4, are preserved upon return from the Fes, so A4 will still be pointing to the FCB 
upon return. 

If the FCS is called with an unimplemented operation code, the Fes will print out an error message and return 
toSK*DOS. 

The following descriptions include typical error codes that may be generated on specific operations. In addition, 
most of the operations may also result in disk read or write errors due to hardware problems. 

In all cases, if no error occurs, then the Fes returns with the Z bit of the condition code register set. If an error 
does occur, then the Z bit is cleared and byte 1 of the FCB (as well as location ERR TYP) contains the code for 
the error that occurred. Error codes are listed in Appendix E. 

FREAD $AOOI Read the next byte from tile 

FWRITE $AOO2 Write the next byte to the tile 

Most FCS read or write operations are sequential; these functions are used to read or write the next sequential 
byte or. character in the file. During a read, the next byte from the ftle is read from ~e sector currently in the 
FCB (using the data pointer in byte 49) and returned in D5, while during a write the character in D4 is written to 
the fIle. Since the fIle is read or written on the disk an entire sector at a time, this function actually buffers the 
data through the sector buffer (bytes 96- of the FCB). Hence no actual disk read or write will generally occur for 
most FREAD or FWRITE 0 calls. When an actual disk read or write is required, SK*DOS will handle that 
automatically without user intervention. 

FOPENR $AOO5 Open a me for read 

This function opens a file for reading. Before calling the Fes, the calling program must insert the drive number, 
name, and extension of the desired file into bytes 3 through 14 of the FCB. The Fes will take care of initializing 
all other parts of the FCB. If the requested ftle is not on the disk, the Fes will return error code 4 (fIle does not 
exist). When the FCS is finished opening the file, it prepares the file for sequential reading next, and assumes 
that space compression will be used. 

10-9 



SK*DOS@ 68K USER'S MANUAL 

FOPENW $AOO6 Open a file for write 

This function opens a file for writing. Before calling the FCS, the calling program must insert the drive number, 
name, and extension of the desired ftIe into bytes 3 through 14 of the FCB. The FCS will take care of initializing 
all other parts of the FCB. If the specified disk already has a ftIe with the specified name, the FCS will return 
error code 3 (ftIe already exists). This function opens a sequential file, but it may be changed to a random file by 
storing a non-zero number into byte 26 of the FCB after opening the file, but before writing any data into it. (See 
Chapter 13 for further information on random files.) 

FOPENU $AOO7 Open a file for update 

This function opens a random ftIe for reading or updating. Once the file is open, you may do one of the 
following: 
a. Use FRRECD to position to a particular sector of the ftIe. 
h. Use FRBACK to backup to the preceding sector. 
c. Use FRGET to read a particular byte from the currently selected sector. 
d. Use FRPUT to write a particular byte to the currently selected sector. 
e. Use FREAD to sequentially read the sector, starting with the first. You may read as many bytes as there are in 
the ftIe. (If executed after opening the ftIe for update, FREAD will start reading at the beginning of the file.) 
f. Use FRRECD to extend the ftIe. 
g. Use FCLOSE to close the ftIe. 
h. The only way to write past the end of a sector into the next sector is to use FRRECD to position to the next 
sector. 

(See Chapter 13 for further information on random files.) 

FCLOSE $AOO8 Close file 

This function closes a ftIe currently opened for reading, writing, or updating. No operation is performed on read 
ftIes, or on write ftIes which were never written to, other than removing them from the chain of file pointers. 
When a write ftIe is closed, any data remaining in the data area of the FCB is written out to the disk, and both 
the directory and the file sector map are updated to indicate the correct track and sector numbers of the last 
sector and the ftIe size. The system information sector (SIS) on track 0 sector 3 is also updated. When a random 
ftIe open for updating is closed, the current sector is written out to disk if data has actually been written to it. 

FREWIN $AOOA Rewind me 

This function can only be performed on a ftIe which is open for reading, and will result in Error 1 (FCS function 
code error) if attempted on a ftIe open for writing. The Rewind function is used to start reading a ftIe from the 
very beginning, and is equivalent to closing the ftIe and then immediately opening it for reading again. 

10-10 



68K USER'S MANUAL 

DIROPN $AOOB Open directory file 

This function prepares the current FCB to read directory entries with DSREAD. Before using this function, the 
calling program should place the drive number into byte 3 of the FCB; no other initialization is required. This 
function does not actually do any reading, but merely prepares the FCB for a subsequent read with DSREAD. It 
is primarily used by the FCS itself, and will not usually be used by user programs. 

SISOPN $AOOC Open system information sector 

This function prepares the current FCB to read the SIS with DSREAD. Before using this function, the calling 
program should place the drive number into byte 3 of the FCB; no other initialization is required. This function 
does not actually do any reading, but merely prepares the FCB for a subsequent read with DSREAD. It is 
primarily used by the FCS itself, and will not usually be used by user programs. 

DSREAD $AOOD Read directory or system information sector 

This function must be preceded by either DIROPN (open directory) or SISOPN (open system information 
sector) and reads the first (or next) entry in the directory or SIS, respectively, into the first 96 bytes of the FCB 
(it also reads the entire sector into the sector buffer area of the FCB). When used on the SIS, only one read 
should be performed since only one entry exists in the SIS; when used on the directory, up to ten reads can be 
performed on anyone sector since there are ten directory entries per sector. Upon the eleventh read, DSREAD 
will automatically read the next sector of the directory. Error 8 (input past end of file) will be returned at the 
end of the directory. Note that all entries are read, even deleted entries (indicated by a $FF as the first character 
of the file name) or unused entries (indicated by a 00 as the first character.) 

DSWRIT $AOOE Write directory or SIS entry 

This function writes a directory or SIS entry from the fllst 96 bytes of an FCB back into its appropriate position 
in the sector buffer, and then writes the sector buffer back to the disk. Because of the need to properly set up a 
number of pointers, this function should only be used after DSREAD, which in turn should only be used after 
DIROPN or SISOPN. 

FDELET $AOOF Delete a file 

This function deletes a file name from the directory and returns its used sectors to the chain of free sectors 
maintained in the System Information Sector (track 0 sector 3). Before using this function, the calling program 
must place the drive number, file name, and file extension of the desired file into bytes 3 through 14 of the FCB. 
It returns error 4 if the file name is not found, along with the Z bit of the condition code register cleared. 

10-11 



SK*DOS@ 68K USER'S MANUAL 

FRENAM SAOI0 Rename a file 

This function renames an existing file; before calling the FCS, the user's program must place the old me 
specification into bytes 3 through 14 of the FCB, and the new name and extension into bytes 52-62 of the FCB 
(temporary name buffer 2). If there is an error, the Z bit is cleared and the FCS returns one of the following 
codes in byte 1 of the FCB: error 4 (old file does not exist), or error 3 (new fue name already exists). 

FSKIP SA011 Skip current sector 

This function skips the current sector and goes to the next sector of the current file. When a fue is being read, 
the FCS simply skips the remaining data in the current sector and prepares to read the next sector. On writing, 
the FCS fills the remainder of the current sector with zeroes, writes it out to the disk, and prepares to write into 
the next sector; if, however, the FCS is already pointing to a new sector (but has not yet written into it) then this 
function is ignored. 

FRRECD SA014 Select a specified random sector 

This function allows you to select a specified random sector of a random file. This function can only be used after 
an existing random fue is opened for update with FOPENU. To use this function code, place the two-byte sector 
number of the desired sector into bytes 78 and 79 of the FCB and and then call the FCS. If the desired sector 
number is 0, then the first sector of the file map will be read; if the desired sector number is larger than the 
current size of the fue, the fue will be extended so that the desired sector is the last sector in the file, and all new 
sectors will be filled with zeroes. (See Chapter 13 for further information on random files.) 

FRBACK SA015 Backup to previous sector 

This function allows you to backup to the previous random sector of a random file. Read the description of 
FRRECD, as this function is similar. You cannot backup from sector 1 (the first data sector of the file) back to 
sector 0 (the fIrst fue map sector), and any attempt to do so will generate error 24 (invalid sector number). (See 
Chapter 13 for further information on random fues.) 

FRGET SA016 Read a random byte 

This function allows you to read a specified random byte from a random file currently opened for update. To 
select the byte, place its number, a value from 4 to 256, into byte 51 of the FCB. (Note that there are only 252 
data bytes per sector, and they are numbered from 4 through 256.) The byte will then be read from the currently 
selected sector. (See Chapter 13 for further information on random files.) 

FRPUT SA017 Write a random byte 

This function allows you to write a specified random byte to a random fue currently opened for updating. To 
select the byte, place its number, a value from 4 to 256, into byte 51 of the FCB. (Note that there are only 252 
data bytes per sector, and they are numbered from 4 through 256.) The byte will then be written to the currently 
selected sector. (See Chapter 13 for further information on random files.) 

10-12 



SK*DOS@ 68K USER'S MANUAL 

SREAD SAOle Read a single sector 

This function provides direct access to the disk read routine. The user program must provide the drive number 
in byte 3 of the FCB, and the track and sector numbers in bytes 34-35. Upon exit, the data from the desired 
sector begins at byte 96 of the FCB. If an error is encountered, the Z bit of the condition code register is cleared 
and byte 1 of the FCB contains one of the following error codes: error 9 (disk read error), error 14 (disk seek 
error), or error 16 (drive not ready). 

SWRITE SAOID Write a single sector 

This operation provides direct access to the disk write routine. The user program must provide the drive number 
in byte 3 of the FCB, the track and sector numbers in bytes 34-35, and the data to be written beginning at byte 96 
of the FCB. If an error is encountered, the Z bit of the condition code register is cleared and byte 1 of the FCB 
contains one of the following error codes: error 10 (disk write error), error 11 (write protected disk), error 14 
(disk seek error), error 16 (drive not ready), or error 29 (disk verify error). 

FDRIVE SAOIA Find next drive number 

This function is used to fmd the next available drive number. On entry, you must place either the number $FF or 
a valid drive number into byte 3 (the drive number byte) of the FCB. The FCS will then return with the next 
available drive number. The FCS will start with the next higher drive number; since $FF is equivalent to -1, 
entering with this value will start with drive O. Searching will continue up until the current value ofMAXDRV; if 
no ready drive is found, the FCS will return error 16 (drive not ready) in byte 1 of the FCB and also set the carry 
bit; otherwise the carry bit is cleared. 

DIREST SAOZ6 Disk Restore 

This function does a restore on the drive pointed to by the drive number in the current FCB; that is, the head on 
the current drive is retracted to track O. This function is only implemented for the floppy disk, and is used 
specifically by the FORMAT routine; it should not be used by any other programs. 

DISEEK SA027 Disk Seek 

This function causes the drive indicated in the current FCB to seek (i.e., move the head to) the 'current track 
number' given in the FCB. No checking is actually done, other than checking that the drive number is valid. 
This function is only implemented for the floppy disk, and is used specifically by the FORMAT routine; it should 
not be used by any other programs. 

10-13 



SK"'DOS (R) 68K USER'S MANUAL 

11. USER-ACCESSIBLE VARIABLES 

Many of the SK*DOS variables are of use to a programmer writing programs to run under SK"'DOS. These variables 
are of two types: 

1. User variables which are often needed by application programs running under SK*DOS. These are described in 
this Chapter. 

2. System variables which are generally needed only by systems programmers implementing SK"'DOS on a new 
system, or modifying major operating parameters. A few of these are described in Chapter 13, though most such 
system variables are described in the optional Configuration Manual, not in this Users' Manual. 

The precise location of User variables may change between various versions of SK*DOS. Any call to an SK*DOS 
function, however, returns in A6 a pointer to the beginning of this variable area. In particular, the call to VPOINT 
(see Chapter 10) specifically exists to return the address of this variable area in A6. Each of the locations described 
below can be referenced using indexed addressing with reference to A6. This may be done either by referring to the 
numeric offset given in the descriptions below, or by using the SKEQUATE file on your SK*DOS disk as a library 
fIle in your assembly language programs as follows: 

LIB SKEQUATE SKEQUATE file included as library 

Once this is done, you may refer to variables by their symbolic name. For example, the following two lines are 
equivalent: 

LEA O(A6),A4 Uses absolute offset 
LEA USRFCB(A6),A4 Uses offset defined in SKEQUATE 

USRFCB o (A6) User FCB (608 bytes) 

This area is an FCB which is used by SK*DOS for its own internal operations. This is done in such a way, however, 
that other programs which require an FCB can also use this 'user' FCB without interfering with SK*DOS. This can 
save the effort of having to declare memory for a separate FCB. (As mentioned earlier, the USRFCB is 608 bytes 
long although at this time only 352 bytes are actually used. The extra 256 bytes are left for future expansion.) 

LINBUF 608 (A6) Line buffer (128 bytes) 

The line buffer is a 128-byte buffer which is used by SK*DOS for holding.and processing commands. It is, however, 
also accessible to user programs through the INLINE routine (which enters text from the keyboard into the buffer) 
and the GETNXT, GETNAM, and other routines (which take data from the buffer). In particular, note that 
whenever a user program is called from the keyboard while in SK*DOS, any remaining text entered after the 
program name in the command line is still in the line buffer, and may be recovered by the user program. For 
example, when the LIST program is called from the keyboard with a 

11-1 



SK*DOS (R) 68K USER'S MANUAL 

SK*DOS: LIST TEXT 

command, when the UST program begins, the line buffer pointer LPOINT points to the r11'st letter of the word 
TEXT. The LIST program can access the name with several subroutines, such as GETNAM. This is a convenient 
way of getting and passing arguments to programs directly from the command line. 

BACKSC 736(A6) Backspace character ($08) 

DELETC 737 (A6) Delete character ($18) 

ENDLNC 738(A6) End of line character ($3A) 

ESCAPC 746(A6) Escape char ($lB) 

REPEAC 749(A6) Repeat character ($01) 

These locations contain the backspace character ($08 or control H), delete character ($18 or control X), end of line 
character ($3A or colon), escape ($lB), and repeat (SOl or control-A), respectively. These locations are used by 
SK*DOS in console input routines, and can be changed by user programs or the DOSP ARAM command. The 
DELETC character may be used to delete an entire line and return to the beginning, while the ENDLNC character, 
normally a colon, is accepted much the same as a carriage return (SOD) as an end-of-command delimiter. The 
ENDLNC character, however, can also be used to separate multiple commands on one line. The ESCAPC character 
is used to halt output to the terminal. Output may be restarted with another ESCAPC, or else may he aborted with a 
carriage return (not ENDLNC). The REPEAC character, normally $01 or Control-A, is used to repeat the last-used 
console command. 

PLINES 3322 + 80*DN (A6) Number of printed lines per page 

SLINES 3325 + 8O*DN (A6) Number of skipped lines between pages 

These two locations are initialized by SK*DOS at 0, which disables them. If PLINES is non-zero, then output to the 
terminal will stop after PLINES continuous lines of output, skip SLINES blank lines, and then continue. A typical 
application is to make PLINES equal to a decimal 56, and make SLINES equal to a decimal 10, for paged output to a 
printer. Printed output would then have 56 continuous lines of print, and 10 skipped lines which step over the 
perforation between pages. These constants may be changed with the DOSP ARAM command. 

PAUSEB 3326+8O*DN{A6) Output pause control byte 

If PAUSEB is non-zero, and PLINES is non-zero, then terminal output will pause after each PLINES lines, and 
resume when the escape key is pressed on the keyboard. PAUSEB is normally initialized at $FF, thereby enabling the 
pause, but since PLINES defaults to 0, no pause actually takes place. 

11-2 



SK*DOS ~ 68K USER'S MANUAL 

PWIDTH 3323 +8O*DN(A6) Page column width 

This byte is used to control the page width of output to the terminal or printer. When output goes to the right of 
the PWIDTH column on the terminal or printer, SK*DOS will issue a carriage return I line feed at the next 
space character. PWIDTH may be set with the DOSPARAM command. SK*DOS normally initializes PWIDTH 
to 0, which disables it. To use PWIDTH, you should set it to a value approximately 10 less than the actual screen 
or paper width, so as to leave room for any long words at the end of the current line. (PWIDTH works in 
conjunction with the OCOLUM and SPECIO variables described below.) 

SPECIO 792(A6) Special I/O Indicator 

When SPECIO is nonzero, the PWIDTH value is ignored by SK*DOS. SPECIO is initialized to zero at 
warm-start and by RESIO. 

OCOLUM 3328+ 8O*DN (A6) Current output column 

This byte indicates the current output column on the terminal or printer. It is used with the PWIDTH variable, 
and reset to zero at the beginning of every line, or by the printing of any control character. 

NULLWf 3324+80*DN(A6) Null wait constant 

Some terminals or printers make errors if a carriage return or line feed character is immediately followed by 
printable characters. In that case, NULLWT may be used to insert a short delay. It is normally initialized to 00 or 
no delay, but may be changed by the user (via the DOSP ARAM command). The wait delay depends on the CPU 
clock speed, but is approximately equal to 0.01 second times the value of NULL WT. 

SYSDIR 744(A6) System deCault directory 

WRKDIR 745(A6) Working deCault directory 

Both of these locations are initialized at o. They are used as default directories. SYSDIR is used as the default 
for loading any disk-resident command, while WRKDIR is used as a general default by the GETNAM routine 
whenever a directory is not specified as part of a file spec. A value of 0 refers to the main or root directory, while 
values of $41 through $5A refer to subdirectories AI through ZI (since these are the ASCII equivalents for the 
letters A - Z.) 

SYSTDR 747(A6) System deCault drive 

WORKDR 748(A6) Working deCault drive 

Both of these locations are initialized at O. They are used as default drive numbers. SYSTDR is used as the 
default for loading any disk-resident command, while WORKDR is used as a general default by the GETNAM 
routine whenever a drive number is not specified as part of a fIle spec. 

11-3 



SK*DOS @ 68K USER'S MANUAL 

CMONTH 750(A6) Current date - month 

CDAY 751(A6) Current date - day 

CYEAR 752(A6) Current date - year 

The above three locations hold the month, day, and year entered from the keyboard when SK*DOS is first cold 
started. This date is used by SK*DOS when writing mes on the disk, and may also be accessed or changed by 
user programs. All three bytes are binary numbers, and CYEAR contains only the last two digits of the year; for 
example, in 1990 the registers contain 90, or a hexadecimal $SA. 

LASTRM 753(A6) Last terminator 

This byte contains the last terminator encountered by the GETNXT routine from the line input buffer. 

COMTAB 754-757 (A6) Pointer to command table (long word) 

SK*DOS contains several memory-resident commands (such as XEQ and GET); users may add additional 
memory-resident commands, and let SK*DOS know about them via COMTAB by putting into COMTAB a 
pointer to a table which lists the added commands. This table is searched by SK*DOS after its own command 
table, but before it looks for disk resident commands. Each entry in the user command table should consist of (a) 
the command name of up to eight letters (with no extension), (b) a zero byte to signal the end of the name, and 
( c) a four-byte address pointing to the command program. An extra zero byte at the very end signals the end of 
the table. The command should end with either an RTS or DC W ARMST instruction. 

LPOINT 758-761(A6) Pointer to line butTer (long word) 

LPOINT.points to the next character to be obtained from the line buffer. When the buffer is first mIed (with 
INLlNE), LPOINT points to the fust character in the buffer. Each time another character is obtained from the 
buffer, LPOINT is incremented so that it points to the next byte. When the pointer gets to the CR code at the 
end of the line, it then remains pointing to the CR. When an entire name or number is fetched from the buffer, 
such as by GETNAM, then at the end of the routine LPOINT points to the first character past the delimiter 
(such as a space or comma), or to the delimiter itself (if CR). 

BREAKA 762-765(A6) Break (Escape) address (long word) 

As indicated earlier, terminal output can be interrupted by pressing the ESCAPE key, at which time SK*DOS 
waits for a second character. H the second character is again an ESCAPE, then output resumes; if the second 
character is a carriage return (SOD) character, then SK*DOS will abort the program. This return is handled 
through the return address in BREAKA, which is initialized by SK*DOS to point to W ARMST. User programs 
may also use BREAKA to return to SK*DOS in that way. More commonly, user programs may store a different 
address in BREAKA to force a return elsewhere when the return key is pressed. 

11-4 



SK"'DOS ® 68K USER'S MANUAL 

CURRCR 766(A6) Last character read from butTer 

PREVCR 767 (A6) Previous character read 

As characters are fetched from the line buffer by SK"'DOS routines (such as GETNXT), these two locations hold 
the latest character fetched (CURRCH) and the previous character fetched (PREVCH). 

EXECFL 774(A6) Execution address Oag 

This location is non-zero when location EXECAD contains a valid execution address for a machine language 
program, and is zero when such a valid execution address does not exist. If a command such as XEQ is executed 
when there is no valid address, then SK"'DOS will print error 28 (missing transfer address.) 

EXECAD 776-779 (A6) ML execution address (long word) 

These four bytes hold the transfer address obtained when a machine language file is loaded from the disk 
(including the value of OFFSET, if used). This location is also used by the XEQ command to execute the 
last-loaded program. 

ERR1YP 782 (A6) Error type 

This byte contains the number of the last error detected by the File Control System. 

FOADDR 784-787(A6) File output address vector 

FIADDR 7S8-791(A6) File input address vector 

These two addresses are used. for redirection of standard output or input, respectively. If they are zero, no 
redirection is done. If redirection is desired, then one (or both) of the above vectors may contain the address· of 
an FCB currently open for writing or reading, respectively. 

CMFLAG 793(A6) Command nag 

This location indicates whether the Command Processor System is processing a keyboard command (when 0) or 
a command passed to it from a user program (when non-zero). 

MEMEND 796-799(A6) Last usable memory address (long word) 

When SK"'DOS is initially booted, it does a memory test to determine how much memory is installed in the 
system, and then stores the address of the last memory location in MEMEND. OFFSET and MEMEND 
together therefore defme the lower and upper limits, respectively, of free user memory. User programs can 
check these locations to determine how much user memory is available, or can change the contents to set aside 
memory for themselves. 

11-5 



SK*OOS ® 68K USER'S MANUAL 

ECHOFL 800(A6) Input echo nag 

This location tells the character input routine whether to echo output to the output port. A non-zero value 
(initialized to SFF at warm-start) enables echo. 

FNCASE 801 (A6) File Name case nag 

This location determines whether lower-case ftle names are allowed either as disk-resident command names, or 
as ftle names processed by the GETNAM function. The default value is SOF, which allows only upper-case 
names (and lower-case names are automatically converted to upper case). Lower-case names will be allowed if 
FNCASE is changed to SFF. 

MAXDRV 802 (A6) Maximum drive number 

This location is used to defme the maximum drive number on the system. It is initialized to 03, and the maximum 
number it may have is 09. SK*OOS will return a drive number error whenever a drive number is specified in a 
fue-spec which exceeds the value of MAXDRV. If your system has more than four drives, then MAXDRV 
should be increased correspondingly when the appropriate disk drivers are installed. 

SEQNO 806 (A6) Sequence Number 

This byte holds the sequence number assigned to each fue written. If the system does not contain a clock­
/calendar chip, then this number is written into the disk directory along with the date for the file; if a clock­
/ calendar chip is interfaced to SK*DOS, then the sequence number is replaced by the time (although it is still 
calculated and stored in SEQNO.) Since the sequence number is just a single byte, it has a maximum value of 
255; then it returns back to 0 and repeats its cycle. 

ERRVEC 834 (A6) Alternate ERRCODES.sYS vector 

ERRVEC allows SK*DOS to get its error messages from a fue other than ERRCODES.SYS. If this long-word 
contains 0, then the normal ERRCODES.SYS file is used; if it is non-zero, then it is assumed to hold a 
long-word address pointing to an l1-character file specification containing the name and extension of another fue 
to be used. ERR VEC is initialized at 0 when SK*DOS is booted, but is not changed thereafter; hence user 
programs should be careful to restore it when they are fmished using other error files. 

DOSORG 838-841(A6) Absolute ORG of SK*DOS 

DOSORG contains the actual starting address of SK*DOS in the current system. This information is primarily 
for systems programmers, as most users will have no need to know absolute memory addresses. 

11-6 



SK"'DOS@ 68K USER'S MANUAL 

OFFSET 770-773(A6) Offset load address (long word) 

OFFINI DOSORG+$18 Initial OFFSET value (long word) 

The contents of OFFSET is added to the load address and transfer (or execution) address for all machine 
language programs loaded from disk by SK*DOS (unless LASTRM contains the ASCII code for a minus sign.) 
Programs are thus loaded into the address specified in the disk rue only if OFFSET is 0 or if LASTRM contains 
a minus sign. Normally, OFFSET points just above SK*DOS, so that all user programs are loaded into free 
memory above SK"'DOS. Such programs can be executed as long as they are written to be position independent. 
OFFSET and MEMEND together therefore derme the lower and upper limits, respectively, of free user 
memory. 

Since user programs may change OFFSET as they run (to load another program into memory above themselves, 
for example), SK*DOS resets OFFSET to the value stored in OFFINI each time it does a warm start (it actually 
sets OFFSET to the next 256-byte boundary above OFFINI to make OFFSET a more convenient number.) 
OFFSET is thus only a temporary value, valid for the duration of any given program; OFFINI is more 
permanent. 

DEVIN 3274 (A6) Current Input device 

DEVOUT 327S(A6) Current Output device 

DEVERR 3276 (A6) Current Error device 

These three bytes specify the devices currently being used for input, output, and error displays. They default to 
device 0 for input and output, and device 1 for the error device, all of which are normally the default CONS 
console device. User programs can change DEVIN and DEVOUT to go to different devices, but DEVERR 
should usually remain so that error messages still go to the console. 

DEVTAB 3278 (A6) Device Descriptor Table 

The device descriptor table provides information on currently installed devices; more information is found in 
Chapter 14. 

BAUDRT 3329+80*DN(A6) Baud Rate/l00 

This byte specifies the baud rate for serial devices, and is not used for others. BAUDRT indicates the baud rate 
divided by 100; for example, a baud rate of 110 is shown as 01. If no baud rate is specified, the driver may use its 
own default value. 

EOFIL~ 3330+80*DN(A6) End-Of-File Character 

When a device rather than a file is used for input during input redirection, EOFILC defines which character will 
generate error 8 (end of file). The default is $1A, which is control-Z. 

11-7 



SK*DOS@ 68K USER'S MANUAL 

XOFFC 3331 + 8O*DN (A6) X-OtT Character 

XONC 3332+80*DN(A6) X-On Character 

These two bytes specify whether a serial port uses the X-On/X-Off protocol, and which characters it uses. When 
these characters are 0 (the default), then no X-On/X-Off is used. When they are set to other values (usually $13 
or control-S for X-Off, and $11 or control-Q for X-On) then the port will immediately stop all output upon 
receipt of an X-Off, and will only resume upon receipt of an X-On. (Note that this is different from using 
ESCape to halt and resume output, since ESC only works for device 0.) 

11-8 



SK*DOS (R) 68K USER'S MANUAL 

12. PROGRAMMING EXAMPLES 

This section shows several examples of how to use SK*DOS in writing programs which access the disk. 

THE LIST UTILITY 

The LIST program is one of the utilities supplied with SK*DOS. It is called with a command line which includes the 
name of the fde to be listed after the word LIST, as in 

SK*DOS: LIST TEXT 

The program reads the fde name from the line buffer, opens the file, and reads and prints one character at a time. 
The following listing shows how this is done. 

000000 

000000 6002 

000002 0100 

000004 A034 
000006 4201 
000008 204E 
OOOOOA 284E 
OOOOOC A023 
OOOOOE 640C 
000010 197C 

000016 A037 
000018 6142 
00001A A01E 

* LIST UTILITY FOR SK*DOS / 68K 
* COPYRIGHT (C) 1986 BY PETER A. STARK 

* * EQUATES TO SK*DOS 

* 
* THE FOLLOWING WOULD NORMALLY BE IN SKEQUATE.TXT 

00000001 FCBERR EQU 1 
0000A024 DEFEXT EQU $A024 
0000A008 FCLOSE EQU $A008 
0000A005 FOPENR EQU $A005 
OOOOAOOI FREAD EQU $A001 
0000A023 GETNAM EQU $A023 
0000A034 PCRLF EQU $A034 
0000A037 PERROR EQU $A037 
0000A033 PUTCH EQU $A033 
0000A01E WARMST EQU $A01E 

* 
ORG $0000 

* 
}000004 LIST BRA.S START 

* 
VER DC.W $0100 
* 
* START OF ACTUAL PROGRAM 
START DC PCRLF 

CLR.B D1 
MOVE.L A6,AO 
MOVE.L A6,A4 
DC GETNAM 

}OOOOlC BCC.S NAMEOK 
0015 0001 MOVE.B #21, FCBERR(A4) 

* 
* ERROR ROUTINE 
* 
ERROR DC PERROR 

}00005C BSR.S CLOSE 
DC WARMST 

* 

12-1 

ERROR BYTE 
DEFAULT EXTENSION 
CLOSE A FILE 
OPEN FILE FOR READ 
READ NEXT BYTE 
GET FILE NAME 
PRINT CR/LF 
PRINT ERROR MSG 
OUTPUT NEXT CHAR 
RETURN TO SK*DOS 

GO TO START 

VERSION NUMBER 

START ON NEW LINE 
PREV CHAR WAS NONE 
SAVE POINTER 
POINT TO USER FCB 
GET FILE SPEC 
IF FILE NAME OK 
ELSE IT'S ERR 21 

PRINT ERROR CODE 
CLOSE THE FILE 
RETURN TO SK*DOS 



SK*DOS (R) 

. " 

00001C 183C 0001 
000020 A024 

000022 A005 
000024 66FO }000016 

68K USER'S MANUAL 

* FILE SPEC WAS OK; DEFAULT TO .TXT 
NAMEOK MOVE.B #1,D4 DEFAULT EXT 

DC DEFEXT DEFAULT TO .TXT 

* * NOW ACTUALLY OPEN THE FILE 
DC FOPENR 
BNE.S ERROR 

* 

OPEN FOR READ 
IF NOT ZERO 

* MAIN LOOP TO READ AND PRINT EACH CHARACTER 
MAIN MOVE.L AO,A4 POINT TO SYS FCB 

DC FREAD GO READ NEXT CHAR 
000026 2848 
000028 A001 
00002A 670C }000038 BEQ.S CHAROK GO ON IF NO ERROR 

00002C OC2C 0008 0001 
000032 66E2 }000016 
000034 6126 }OOOOSC 
000036 A01E 

000038 OC05 OOOA 
00003C 660A } 000048 
00003E 1C01 
000040 1205 
000042 OC06 OOOD 
000046 67DE }000026 
000048 1205 
00004A 1805 
00004C A033 
00004E OC04 OOOD 
000052 66D2 }000026 
000054 183C OOOA 
000058 A033 
00005A 60CA }000026 

00005C 2848 
00005E A008 
000060 4E75 

* * IF THERE WAS AN ERROR, SEE IF END OF FILE 
CMP.B #8, FCBERR(A4) END OF FILE? 
BNE.S ERROR NOT END OF FILE 

* 

BSR.S 
DC 

CLOSE 
WARMST 

* CONTINUE IF CHARACTER IS OK 
CHAROK CMP.B #$OA,D5 

BNE.S PRNTIT 
MOVE.B D1,D6 
MOVE.B D5,01 
CMP.B #$OD,D6 
BEQ.S MAIN 

PRNTIT MOVE.B 05,D1 
MOVE.B D5,D4 
DC PUTCH 
CMP.B #$0~,D4 
BNE.S MAIN 
MOVE.B #$OA,D4 
DC PUTCH 
BRA.S MAIN 

* * CLOSE SUBROUTINE 

* CLOSE MOVE.L AO,A4 
DC FCLOSE 
RTS 

* END LIST 

CLOSE ON EOF 
RETURN TO SK*DOS 

IS IT LINE FEED? 
NO, PRINT IT 
YES, GET PREV 
SAVE CURRENT 
WAS PREV A CR? 
YES, SO SWALLOW IT 
SAVE CHARACTER 
READY FOR PRINTING 
AND PRINT IT 
WAS IT RETURN? 
NO, SO CONTINUE 

ADD LINE FEED 
AND ALSO CONTINUE 

POINT TO FCB 
CLOSE FILE 
RETURN 

The above example shows a variety of techniques. Note especially how it checks for the end of fIle. When the read 
routine detects an error, the error code is fetched from byte 1 of the FCB and examined. If it is an 8 (end of fue) , 
then the program simply finishes up. If it is any other error, then it goes to an error routine. 

Note also that the program is ORG'ed at $0000. When loaded, however, it will be relocated upward by the current 
value of OFFSET, so that it resides in memory just above SK*DOS. 

12-2 



SK*DOS (R) 68K USER'S MANUAL 

THE BUILD UTILI'IY 

The following example shows how to open a me for writing and actually proceed to write into it. 

000000 

000000 6002 

000002 0100 

000004 AOOO 
000006 204E 
000008 284E 
OOOOOA A023 
OOOOOC 652E 

* BUILD UTILITY FOR SK*DOS / 68K 
* COPYRIGHT (C) 1986 BY PETER A. STARK 

* * EQUATES TO SK*DOS 

* 00000001 FCBERR EQU 1 ERROR BYTE 
000002F6 LPOINT EQU $2F6 LINE BUFR PTR 

* THE FOLLOWING WOULD NORMALLY BE IN SKEQUATE.TXT 
0000A024 DEFEXT EQU $A024 DEFAULT EXTENSION 
0000A009 FCSCLS EQU $A009 CLOSE ALL FILES 
OOOOAOOF FDELET EQU $AOOF DELETE A FILE 
0000A006 FOPENW EQU $A006 OPEN FOR WRITE 
0000A002 FWRITE EQU $A002 WRITE A BYTE 
0000A029 GETCH EQU $A029 GET CHAR 
0000A023 GETNAM EQU $A023 GET FILE NAME 
0000A02C INLINE EQU $A02C INPUT TEXT LINE 
0000A037 PERROR EQU $A037 PRINT ERROR MSG 
0000A035 PSTRNG EQU $A035 CR/LF AND STRING 
OOOOAOOO VPOINT EQU $AOOO PT TO VAR AREA 
0000A01E WARMST EQU $A01E WARM START 

* ORG $0000 

* }000004 BUILD BRA.S START 

* DC.W $0100 

* 
* ACTUAL START OF PROGRAM 
START DC VPOINT 

MOVE.L A6,AO 
MOVE.L A6,A4 
DC GETNAM 

}00003C BCS.S ERROR 

* 

VERSION 

GET POINTER 
SAVE fOINTER 
POINT TO SYS FCB 
GET FILE SPEC 
ON ERROR 

* IF NAME WAS OK, DO DEFAULT EXTENSION 
OOOOOE 183C 0001 
000012 A024 

MOVE.B #1,D4 CODE FOR DEFAULT 
DC DEFEXT GO DEFAULT IT 

000014 A006 
000016 662A 

* * NOW OPEN FILE FOR WRITE 
OPEN DC FOPENW 

}000042 BNE.S OPENNG 

* 000018 49FA 005C}000076 NXTLIN LEA 
DC 

PROMPT(PC),A4 
PSTRNG 00001C A035 

00001E A02C 
000020 2668 02F6 
000024 181B 
000026 OC04 0023 

DC 
MOVE.L 
MOVE.B 
CMP.B 

INLINE 
LPOINT(AO),A3 
(A3)+,D4 
#$23,D4 

12-3 

OPEN FILE 
IF ERROR 

PRINT PERIOD 
PRINT IT 
INPUT A LINE 
POINT TO NEXT 
GET CHAR 
CHECK FOR # 



SK*DOS (R) 

00002A 6712 }00003E 
00002C 2848 
00002E A002 
000030 660A }00003C 
000032 OC04 OOOD 
000036 67EO }000018 
000038 181B 
00003A 60F2 }00002E 

00003C A037 
00003E A009 
000040 A01E 

BEQ.S QUIT 
MOVE.L AO,A4 

NEXTL1 DC FWRITE 
BNE.S ERROR 
CMP.B #$OD,D4 
BEQ.S NXTLIN 
MOVE.B (A3)+,D4 
BRA.S NEXTL1 

* * PROCESS ERRORS 
ERROR DC PERROR 
QUIT DC FCSCLS 

DC WARMST 

* * ERROR HANDLING ON OPENING FILE 

68K USER'S MANUAL 

YES, SO GO QUIT 
POINT TO FCB 
GO OUTPUT CHAR 
ON ERROR 
END OF LINE? 
YES, START LINE 
GET CHAR 
AND REPEAT 

000042 OC2C 0003 0001 OPENNG CMP.B #3,FCBERR(A4) ALREADY EXISTS? 
000048 66F2 }00003C BNE.S ERROR NO, REAL ERROR 

00004A 49FA 002C}000078 
00004E A035 
000050 A029 
000052 0205 OODF 
000056 OC05 0059 
00005A 66E2 }00003E 
00005C 49FA 0052}0000BO 
000060 A035 
000062 A029 
000064 0205 OODF 
000068 OC05 0059 
00006C 66DO 

00006E 2848 
000070 AOOF 
000072 66C8 
000074 609E 

000076 2E 
000077 04 

}00003E 

}00003C 
}000014 

000078 5448 4154 2046 

OOOOAF 04 
OOOOBO 4152 4520 594F 
OOOODI 04 

* * IF FILE EXISTS, DELETE IT? 
LEA ASKDEL(PC),A4 
DC PSTRNG ASK TO DELETE 
DC GETCH GET ANSWER 
AND.B #$DF,D5 CVT TO UPPER CASE 
CMP.B #$59,D5 IS IT YES? 
BNE.S QUIT QUIT IF NOT 
LEA ASKSUR(PC),A4 
DC PSTRNG ASK IF HE'S SURE 
DC GETCH GET ANSWER 
AND.B #$DF,D5 CVT TO UPPER CASE 
CMP.B #$59,D5 IS IT YES? 
BNE.S QUIT QUIT IF NOT 

* DELETE FILE IF OK WITH USER 
MOVE.L 
DC 
BNE.S 
BRA 

* * TEXT STRINGS 
PROMPT DC.B 

DC.B 
ASKDEL DC.B 

DC.B 
ASKSUR DC.B 

DC.B 

* 

AO,A4 POINT TO FCB 
FDELET DELETE THE FILE 
ERROR ON ERROR 
OPEN OPEN FILE AGAIN 

" " 
4 
"THAT FILE ALREADY EXISTS 

DO YOU WISH TO DELETE IT? " 
4 
"ARE YOU SURE YOU REALLY WANT TO? " 
4 

END BUILD 

12-4 



SK"'DOS (R) 68K USER'S MANUAL 

Although it is not immediately obvious from the above examples, all user-written programs must be written in 
position - independent code (although see the description of the binary ftIe format in Chapter 13 for possible 
exceptions.) To write position - independent programs for 68xxx processors, generally follow the following rules: 

1. Do not use JMP and JSR instructions - use BRA and BSR instead. In general, there should be no JMPs or JSRs in 
your programs at all. 

2. Refer to variables within your program using PC-relative addressing. For example, the instruction MOVE.B 
NUMBER(PC),D4 would move the quantity NUMBER into D4, but the (PC) tells the assembler to use PC-relative 
addressing. Unfortunately, the 68xxx does not allow PC-relative addressing as a destination; that is, the instruction 
MOVE.B D4,NUMBER(PC) is illegal. Hence this instruction has to be replaced by a two-instruction sequence such 
as 

LEA NUMBER(PC) ,AS 
MOVE.B D4, (AS) 

While this adds an extra instruction every time you store to a local variable, we suggest that you avoid the alternative 
shortcut of setting one address register to point to your data area and then doing all stores relative to that register. 
Although this makes your program a bit shorter and faster, it generates code which causes PICl'EST to signal an 
error even though there is none. (PICfEST, explained later in the manual, is used to check a program to make sure 
it is position independent.) 

The assembly language examples in this chapter are intended only as guides for those users who intend to write their 
own assembly language programs. If you wish to try them out, proceed as follows: (1) Type the command EDLIN 
SAMPLE to edit a sample file. (2) When EDLIN returns with a :# prompt, give it the I command to start inserting 
text. (3) Enter the LIST program (the fIrst program in this chapter). Examine the listing to note that the first line of 
the program begins with an asterisk; type in only the material to the right of that column. For example, begin the frrst 
line with'" LIST ... ; begin the 7th line with FCBERR EQU ... (4) When you finish typing in the program, enter a :# at 
the beginning of a new line, and then use the S command to exit EDLIN. (5) Give the command ASM SAMPLE to 
assemble the sample from assembly language to machine language. You will now see that the assembler added all of 
the machine language code which you did not type in. (6) Assuming there are no errors (correct the program if there 
are), then give the command SAMPLE SAMPLE. The computer will then use the SAMPLE. COM file generated by 
the assembler to print out the SAMPLE.TXT rtIe you typed. SAMPLE.COM does exactly the same thing as the LIST 
command supplied with SK"'DOS, except that it does not have the 'help' feature. 

12-5 



SK*DOS® 68K USER'S MANUAL 

13. INFORMATION FOR ADVANCED PROGRAMMERS 

This chapter gives additional information for systems or advanced programmers. It describes the disk format, 
structure of files, and information regarding customization. 

DISK FORMAT 

A typical disk, whether hard or floppy, is divided into tracks; each track is then divided into sectors. The number 
of tracks and sectors on a disk depends on the type of disk and drive - a 5-1/4" floppy disk might have as few as 
35 tracks with 10 sectors per track, or a Winchester hard disk might have as many as 256 tracks with 32 or more 
sectors per track. In addition, the disk drive might be able to use both sides of a disk, or a Winchester disk might 
have multiple disks spinning on the same shaft. 

As far as SK*DOS is concerned, the exact number of sides, tracks and sectors is unimportant as long as there are 
at most 256 logical tracks (numbered 0 through 255) per drive and 256 logical sectors (numbered 0 through 255) 
per track. (For compatibility with 6809 SK*DOS, sector numbering begins with 1 for floppy disks.) 

The exact positioning of those sectors and tracks is controlled by the disk drivers and FORMAT routine, not by 
SK*DOS itself. On floppy disks, the physical placement of these tracks and sectors on the disk would most likely 
agree with their logical numbering; on hard disks they might physically be placed elsewhere on the disk. That is 
why the previous paragraph uses the word logical in describing track and sector number - a logical address is 
where SK*DOS thinks the sector is located; the physical address is tile actual location on the disk where the disk 
drivers place it. 

Depending on the system, SK*DOS floppy disks may be either single- or double density, and single- or 
double-sided. In addition, double-density disks may have either a single- or double-density directory track. As 
long as disks are used only on a single system, the particular floppy disk format is not important. 

Standard SK*DOS / 68K disks will generally be double density throughout, and may be single or double-sided. 
Disks intended to be interchanged with 6809 SK*DOS systems, however, should be formatted and used in 
single-density, single-sided format, since 6809 SK*DOS requires that track 0 always be in single density. 

Each sector of an SK*DOS disk contains 256 bytes of data. Of these 256 bytes, the frrst four are used for system 
information, and the remaining 252 bytes are usable for file data. 

SK*DOS uses a linked-chain disk format. That is, the sectors used in files, as well as sectors which are in the 
so-called free chain are linked to each other much like the links in a chain. Each sector contains a two-byte 
pointer which points to the next sector in that chain (unless it is 0, which indicates the end of that chain.) This 
pointer occupies the first two bytes of every sector. In addition, the sector also has a number, which occupies the 
third and fourth byte, and which counts the sectors within a fue. 

Thus the sector format looks like this: 

Bytes 1 and 2 - pointer to next sector 
Bytes 3 and 4 - sector counter 
Bytes 5 through 256 - 252 bytes of data 

Some sectors have a slightly different format, and may omit the pointer or sector counter. 

13-1 



SK*DOSf> 68K USER'S MANUAL 

All the tracks on a disk can be used for storing data and program fues except for track O. The sectors on this 
track have special uses as follows: 

Sector 1 on track 0 holds the super-boot program. This is a program which is loaded by the boot program in the 
system ROM monitor, and which in turn loads the rest of SK*DOS into memory. (This sector has 256 bytes of 
data, as the first four bytes of the sector are used for regular data storage rather than being used as pointer and 
sector count bytes.) On some systems, the boot procedure may be different, and so this sector may not be needed 
on those systems. 

Sector 2 is often empty. It has been set aside as an extension of sector 1 in case more than 256 bytes are needed 
for booting. 

Sector 3 is the System Information Sector or SIS. It contains the disk name and number, the date when the disk 
was formatted, the number of tracks and sectors on the disk, and three pieces of information about the free 
sector chain on the disk: the track and sector numbers of the first sector in the chain, the track and sector 
numbers of the last sector in the chain, and the total number of sectors in the chain. 

Sector 4 is usually empty, although the COpy utility places a copy of the SIS into this sector to verify that the 
disk is available for writing. 

Sector 5 begins the directory, which extends to the last sector of track O. Each directory entry requires 24 bytes, 
so there is room for 10 entries in each sector with 16 bytes empty. For example, on a 5-14" single density, single 
sided disk, there are 10 sectors in track O. Hence there are six sectors in the directory, numbered ·from 5 to 10, 
for a total of 60 directory entries. The six sectors are linked (through the first two bytes in each sector, and the 
last sector has a pointer of 00-00. When the directory is filled up, however, SK*OOS will take a sector from the 
free chain and add it to the directory, so that the directory can be expanded to make room for more entries 
(although this may greatly slow down the operation of the system if the added directory sector is on one of the 
inner tracks of the disk since the disk head will have to step in and out each time it accesses the directory.) 

SEQUENTIAL FILES 

Most SK*OOS files are of the sequential type (as opposed to random fues, discussed next). Sequential ftIes are 
intended to be read in order, from beginning to end. Such fues generally are of two types - text or binary. 

Text File Format 

SK*OOS text files consist simply of ASCII text, usually separated into lines of text by CR (SOO) characters; LF 
characters (SOA) are not included. Most text ftIes use space compression, where two or more consecutive spaces 
are instead replaced by the TAB character ($09), followed by a byte representing a space count between 2 and 
127, inclusive. Strings of spaces of length greater than 127 are broken up into smaller pieces, each of length 127 
or less. 

No special character is used to denote the end of text, although the last line of text will generally end with a CR. 
Any space remaining in the last sector of a text fue is filled with NULL ($00) bytes. When SK*OOS reads a 
space-compressed fue, it does not return any NULL characters to the calling program; hence it will generate an 
end-of-fue error immediately after the last character of the text. 

Text fues may consist of any characters except for NULL ($00) and TAB ($09). 

13-2 



SK*DOS@ 68K USER'S MANUAL 

Binary File Format 

SK*DOS binary files are non-space-compressed files which contain binary data along with additional information 
which specifies where in memory that data is to be loaded and/or executed. 

A typical binary fIle will generally consist of several segments, each of which begins with an identification byte 
which describes what the segment consists of. There are ten such identification bytes: 

$02 marks the beginning lof a relatively short segment containing binary data to be loaded into memory. The $02 
is followed by a two-byte load address, a one-byte count which specifies how many bytes are to be loaded, and a 
number of bytes equal to the count. The count is a number between 1 and 255, and the load address is a number 
between $0000 and $FFFF. During loading, SK*DOS adds the current value of OFFSET to load addresses 
specified in the file (unless the - option is used in the command line). 

$03 is similar to $02 in that it also marks the beginning of data to be loaded into memory, but it is followed by a 
four-byte load address and a two-byte count. It is therefore used for memory addresses above $FfFF, or for 
loading data longer than 255 bytes (although such data is often split into a number of shorter $02 segments.) As 
with the $02 segment, SK*DOS adds the current value of OFFSET to load addresses specified in the file (unless 
the - option is used in the command line). 

$16 marks the beginning of a two-byte transfer address; that is, the address where the fIle just loaded should be 
executed. The current value of OFFSET is added to the address specified in the rde. 

$17 marks the beginning of a four-byte transfer address, used if the transfer address is above $FFFF. The current 
value of OFFSET is added to the address specified in the file. 

$04, $05, $18, and $19 are similar to $02, $03, $16, and $17, respectively, except that the current value of OFFSET 
is NOT added to the specified address in the file. Note, however, that load addresses are still checked against 
OFFSET and MEMEND limits unless the GETX command is used (see the descriptions of GET and GETX 
later in this manual). These four codes are provided for special applications, and should not normally be used as 
they may cause the system to crash in future multi-tasking versions of SK*DOS. 

$OF and $10 are special codes used for programs which are not written in the normal position independent code 
(PIC). They are used to allow SK*DOS to modify an address while loading a position - dependent program. The 
$OF is to be followed by a single word address (relative to OFFSET), and the $10 is to be followed by a single 
long-word address (relative to OFFSET), which specifies the address of a long-word address which is to be 
modified by adding the current value of OFFSET to it. For example, suppose the current value of OFFSET is 
$5000 and the disk file contains the sequence $OF 12 34 or the sequence $10 00 00 12 34. Either of these two 
segments tells SK*DOS to add $5000 to the contents of address $6234 (which is presumed to have been 
previously loaded.) This code would normally be used only with assemblers or compilers which generate non -
position - independent code. 

With one exception, all of the loading and transfer addresses referred to above are merely relative addresses; 
they are added to the current value of OFFSET (see Chapter 11) when used. For example, if OFFSET currently 
has a value of $5000, and a fde has a loading address of $1000 and a transfer address of $1004, then it will 
actually be loaded into memory at $6()()() and executed starting at $6004. The exception ~ SK*DOS itself. Since 
SK*DOS is loaded by the bootstrap program at a time when OFFSET has not yet been defIned, it contains 
absolute loading and transfer addresses rather than relative ones. Hence you can determine the absolute address 
where your SK*DOS is loaded into memory by examining the SK*DOS.SYS (or SK*DOS.COR) file with the 

13-3 



SK*DOS@ 68K USER'S MANUAL 

LOCATE command (using the - option so the OFFSET is not added by LOCATE). Since COLDST is located at 
the very beginning of SK*DOS, this method is also used to fmd the address of COLDST in your system. 

Note that segments do not contain any kind of checksum; it is assumed that any disk errors will be caught by 
CRC or other error checking in the disk hardware or drivers. As in text files, the last segment of a binary file is 
generally followed by NULLs so as to fill out the last sector of a file. 

RANDOM FILES 

The directory for each file only gives the track and sector numbers of the first and last sector of the file; it does 
not contain any information as to which other sectors the file uses. Since the sectors of a file need not necessarily 
be consecutive on the disk - they could lie anywhere on the disk if the disk has been much used and its free space 
is not all in one place - the fue itself contains information linking one sector to the next. This is done by the first 
two bytes in each sector, which contain the track and sector number of the next sector in the fue. In a sequential 
file, we normally start reading or writing at the beginning of a fue and then continue through the file, following 
these two-byte links until we get to the end. 

As pointed out earlier, the third and fourth bytes of a data sector contain a two-byte (four hex-digit) sector count 
which numbers the sectors of a file. For example, the fust data sector of a file has the number 0001, the second 
is numbered 0002, and the seventh would be numbered 0007. Don't confuse these numbers with the physical 
location of the sector on the disk, which is sometimes called the sector's disk address, and which consists of a 
track number and a sector number. The sector count could be used to make sure we read the sectors of a file in 
the right order, but in practice is almost never used with sequential files. Though we have used the term sector 
count above, in the rest of this discussion we will simply call it the sector number. Some people also call it the 
record number, but this is a bit confusing since the word record can also be applied to a part of a sector. 

Although sequential fues are most common, we often need random or direct access fues. These are fues which 
allow us to read or write data in the middle of a file without necessarily reading or writing all the data before it. 
For example, at some point we might need to read data located in sector 0007, followed by sector 0104, followed 
by sector 0025, and so on. This is accomplished by the random fue capabilities of SK*DOS. 

In order to allow us to rapidly locate a particular sector number in a file, without reading all the sectors before it, 
SK*DOS provides for a special random rue format which contains an extra two sectors. These two sectors, which 
are always at the very beginning of a random file, contain a file map of the tile, which maps out the placement of 
the rue on the disk and helps us to find a specific sector. These two sectors always have a sector number of 0000. 

Thus the very fust data sector of any tile is always sector number 0001, but in a sequential fue this is the fust 
actual sector of a rue, whereas in a random rue it is actually the third sector. (If you try to do a sequential read of 
a random file, SK*DOS skips the first two sectors and so you will never know they are there.) 

Few application programs actually need random files, but if they do, they will take care of generating and 
manipulating them automatically, through SK*DOS. Nevertheless, here is information on how this is done. 

There is only one way to generate a random rue: 

1. Open a fue for writing with FOPENW. 
2. After opening, but before writing anything to it, change byte 26 of the FCB to a non-zero number. 
3. Now write sequentially to the fue using FWRITE. 
4. When done, close the file with FCLOSE. 

13-4 



SK*DOS® 68K USER'S MANUAL 

SK*DOS will automatically put a two-sector me map at the beginning of the me, and will update it as data is 
written to the me. Note that the fue map is customized for the particular placement of the me sectors on the 
disk. If you copy a file from one disk to another, the two me map sectors will be different since the copy will most 
likely be in a different place on the disk. But you need not concern yourself with this since SK*DOS does this 
automatically. 

Once the file is written, it can be read or updated (the data in it can be modified), or lengthened. But random 
files are usually made oversize to begin with, so there is room for adding more data at a later time without 
increasing the me size later. 

The fue can be read sequentially just like any sequential file. If it is opened (with FOPENR) and then read (with 
FREAD), it will look like any sequential ftle, since SK*DOS will automatically skip the fue map sectors and read 
only the data sectors. 

Things are a bit more complex - and interesting - if the file is opened for updating. We now have a number of 
options, which are listed in the description of the Open for Update operation, FOPENU. The most important 
concept is that, by use of FRRECD, we can locate any sector number (that is, a sector with a desired sector 
count) in the ftle in a short time. For example, we can tell SK*DOS to read sector number 0104 of a file. Given a 
sector number, SK*DOS will look it up in the ftle map, calculate the exact location of that sector, and then go 
directly to it. 

Once we have located the specific sector, we can specify an exact byte of that sector, and either read it (with 
FRGET) or write it (with FRPUT). Knowing that there are 252 data bytes in each sector, we could thus locate 
any particular byte in a me after some fairly simple calculations. For example, to locate byte N in a file, we could 
use the following two BASIC lines: 

Sector number 
Byte number 

INT(N/252) + 1 
N - INT(N/252)*252 + 4 

N in these equations is assumed to start with 0; the 4 in the second equation is due to the fact that the first data 
byte in a sector is actually numbered 4. For example, the 253rd byte in a fue (which would actually be numbered 
252) would be byte number 4 (the fust byte) in sector 0002. 

OTHER USEFUL ADDRESSES 

There are some additional addresses which will be of interest only to programmers who wish to customize 
SK*DOS for their specific systems. These are located at fixed offsets above COLDST; see the SEQUENTIAL 
FILES part of this chapter for a description of how to find COLDST. 

Warmstart COLDST+$06 Warm Start SK*DOS 

If you exit SK*DOS to a ROM monitor or other debugging tool and wish to return, you may do a jump to this 
Warmstart location. (Don't confuse this location with the WARMST trap described in Chapter 10.) 

13-5 



SK*OOS @ 68K USER'S MANUAL 

GETDAT COLDST+SOC Get boot date 

At GETDAT there is a JMP instruction which points to the routine which asks you for the date when booting 
SK*OOS. If there is a clock/calendar IC in your system, you may replace this JMP with a call to your own 
routine which reads the date from this IC. You must preserve all registers. 

INTIME COLDST+$12 Add time to directory entry 

INTIME normally contains three RTS instructions. Each time that SK*OOS opens a fue for writing, it places the 
next sequence number for the file into 05, does a JSR to the INTIME trap (with an immediate RTS because 
INTIME normally contains six bytes of RTS), and upon return stores the contents of 05 into byte 27 of the 
current FCB. 05 normally contains the sequence number, but a user may replace the RTS bytes with a jump into 
a user-written routine which may replace the byte in 05 with a time of day byte. One byte is not enough to 
indicate a precise time down to the minute, but it can be used to represent time in tenths of hours, resulting in 
6-minute resolution. A byte of 00 means no sequence number or time is present; 01 is a time from 12:00 
midnight to 12:05 a.m.; 02 is 12:06 a.m. through 12:11 a.m., and so on. (User programs using INTIME must 
preserve all registers except for 05.) 

OFFINI COLDST+$18 Initial OFFSET value 

OFFINI .generally points to an even location just above SK*OOS; on each cold-start or warm-start, SK*OOS 
reads OFFINI and then initializes OFFSET at the next even 256 byte address above OFFINI. (For example, if 
OFFINI is $49EA, then OFFSET will become $4AOO.) See the next section for a discussion on how to use 
OFFINI, OFFSET, and MEMEND to reserve space for custom routines. 

MEMINI COLDST+$lC Initial MEMEND value 

When SK*OOS is initially booted, it does a memory sense to determine how much memory is installed in the 
system; it then uses this information to set MEMEND. MEMINI sets the highest address that SK*OOS will try 
during that test. This is essential in those systems which may not return a buss error if n~n-existent addresses are 
accessed, but can also be used to set aside an area of memory which SK*OOS will never use. 

SECTRD COLDST+$20 Secondary sector read routine trap 

SECfRO normally contains 10 RTS instructions (a total of 20 bytes) which are called each time SK*OOS calls 
the SREAD routine to read a sector. A4 at this time points to the FCB being used for the read. A user may 
substitute up to three alternate sector read routines by inserting JSR instructions which point to these other 
routines. This allows the simple addition of a cache, RAM disk, or alternate disk controllers. Such routines must 
preserve AO through A4 and DO through 04. When such JSR instructions are added, they will normally go to a 
routine which analyzes the drive number in the specified FCB. If the drive number is different from the one 
handled by this secondary disk read routine, then it should perform an RTS to return to SK*OOS; if the drive 
number matches, then the routine should perform the requested read, remove from the stack the extra return 
address placed there by the added JSR, and then RTS directly back to the calling program. 

13-6 



SK*OOS @ 68K USER'S MANUAL 

SEC1WR COLDST+$34 Secondary sector write routine trap 

SECTWR normally contains 10 RTS instructions (a total of 20 bytes) which are called each time SK*DOS 
executes the SWRITE routine to write a sector. A4 at this time points to the FCB being used for the write. A 
user may substitute up to three alternate sector write routines by inserting JSR instructions which point to these 
other routines. This allows the simple addition of a cache, RAM disk, or alternate disk controllers. The program 
must preserve AO through A4 and DO through 04. 

SECCOL COLDST+ $48 Secondary cold-start initialization 

SEC COL normally contains 10 RTS instructions (a total of 20 bytes) which are called during cold start. This area 
would normally be used for initializing any drivers used with SEcrRO or SECTWR. A user may call up to three 
initialization routines by inserting JSR instructions which point to these other routines. j The program must 
preserve AO through A4 and DO through 04. 

SECW AR COLDST+$SC Secondary warm-start initialization 

SECW AR normally contains 10 R TS instructions (a total of 20 bytes) which are called during warm start. This 
area would normally be used for initializing any drivers used with SEcrRO or SECTWR. A user may call up to 
three initialization routines by inserting JSR instructions which point to these other routines. The program must 
preserve AO through A4 and DO through D4. 

SECCHK COLDST+$70 Secondary disk ready check 

SECCHK normally contains 10 RTS instructions (a total of 20 bytes) which are called to check whether the 
secondary disk drivers are ready when SK*DOS is searching for the next ready drive. At that time, A4 points to 
an FCB which contains the drive number, and the drive number is also in 05. The called routine should return a 
zero condition if the requested drive is ready, or non-zero if it is not ready. The program must preserve AO 
through A4 and DO through 05. 

SECFLI COLDST+$84 Secondary Flag 1 

SECFU COLDST+$8A Secondary Flag 1 

SECFL3 COLDST+S90 Secondary Flag 3 

These are three six-byte areas which may be used by secondary drivers as general purpose flags. 

TRPFLG COLDST+$CO Trap Initialization Flag 

TRPFLG determines whether SK*DOS will initialize only the "Line 1010" trap (if TRPFLG = 0) or all the traps 
(if TRPFLG is non-zero) each time that RESTRP is called. This decision is largely based on the type of system, 
and should not normally be changed by the user. If TRPFLG is zero, then traps (such as bus error etc.) will be 
handled by the monitor; if TRPFLG is non-zero, then traps will be handled by SK*DOS • 

13-7 



SK"'DOS@ 68K USER'S MANUAL 

RESERVING MEMORY WITH OFFSET AND MEMEND 

Since OFFSET and MEMEND point to the beginning and end, respectively, of free user memory, they can be 
used to set aside memory for other programs which should co-exist with SK"'DOS without interfering with it. 

When SK*DOS is initially booted, it is loaded with initial values of OFFINI and MEMINI. It first checks 
memory, starting with OFFINI up through the value of MEMINI, looking for a memory address which fails to 
store a memory pattern stored into it, or which generates a bus error. Once such an address is found, SK*DOS 
stores into MEMEND the top address of the last 4K block of memory found to be working. This value of 
MEMEND then remains there unless changed by user programs; SK*DOS does not itself change it at any time 
(although programs such as RAMDISK may.) 

Following the above, at every warm-start SK*DOS sets OFFSET to the next even 256-byte boundary above the 
current OFFINI. Since OFFINI at boot-up normally points just above SK*DOS and its drivers, OFFSET is thus 
initialized to the next 256-byte boundary above SK*DOS. 

PROCESSOR STATE AND STACK USE 

Since user programs call SK*DOS with traps, SK*DOS obviously runs in supervisor state. User programs, 
utilities, and application programs, however, run in user state. 

The system stack pointer is initialized at COLDST, with the user stack pointer initialized at COLDST -$0200. For 
example, if COLDST is at $1000, then the user stack will go from SOEOO down, while the system (DOS) stack will 
go from $1000 down. The system stack will never extend down as far as the user stack, so data on the user stack 
is preserved during DOS calls. Between them, OFFSET (through OFFINI) and MEMEND (through MEMINI) 
therefore delimit the current user memory. 

User programs (and SK*DOS utilities) can subsequently change these values to reserve memory for themselves. 
A program which wants to reserve permanent memory for itself (such as a RAM disk) can be loaded into 
memory at OFFSET, and then point OFFINI above itself, or can move itself to the top of memory and then 
point MEMEND just below itself. Either way, its memory will then be protected permanently, since SK"'DOS 
does not itself move these boundaries. 

It is also possible to reserve memory just temporarily; for example, a program might be needed only for a while. 
Such a program can then be loaded into low memory, and OFFSET adjusted to point to an even address above 
the program. OFFSET will then remain at this value only until the next warm start, at which time it will go back 
to the previous value as determined by OFFINI. (Note that OFFSET must always be even.) 

USER·INSTALLED MEMORY·RESIDENT COMMANDS 

Users may add their own memory-resident commands to the list normally contained within SK"'DOS. The 
program code for such commands may be left in memory and protected from SK*DOS in one of several ways: 

1. The program can be placed at the bottom of user memory and then OFFINI set to point above the program's 
top memory address, or 

2. The program can be placed at the top of user memory and then MEMEND set to point just below the 
program's bottom address, or 

13-8 



SK*DOS@ 68K USER'S MANUAL 

3. The program can be placed into some other memory area which SK*DOS does not use and does not know 
about. 

To add the command to SK*DOS's command listt a table of command names and starting addresses must be 
placed somewhere in memory and identified to SK*DOS. The following is an example of such a table: 

CMDTAB DC.B 'DIR' Command name 
DC.B 0 delimiter to signal end of name 
DC.L DIR Starting address of command 
DC.B 'GET' Command name 
DC.B 0 delimiter to signal end of name 
DC.L GET Starting address of command 

DC.B 0 End of table flag 

Finally, to tell SK*DOS where this table is located, its starting address (i.e., the address of the fIrst DC.B) must 
be placed as a long word into location COMTAB. 

(The astute reader may note that, depending on the length of the command name, the assembler may insert an 
extra empty byte between the DC.B command name delimiter and the DC.L which holds its address so as to 
make sure that the DC.L starts on an even address. This is irrelevant to SK*DOS.) 

TRACING PROGRAMS 

If you have a ROM system monitor, such as HUMBUG, which supports tracing programs, you may use 
SK*DOS's TRACE*** command to enter a program in the trace mode (TRACE*** has three asterisks so that 
you will not accidentally type in the command when you don't mean to.) 

TRACE*** is generally used just before you load in and execute a new program being tested. It sets the trace 
bit in the user status register, so that SK*DOS enters the new program in the trace mode. The 68xxx CPU will 
then execute the first instruction and trap to the ROM monitor, generally to display a register dump. You may 
then use the facilities of the monitor to trace further, insert breakpointst or do other debugging. 

When using TRACE*** with HUMBUGt you must first execute the TRACENAB command, which tells 
HUMBUG that you will be using TRACE*·· and initializes one of its memory locations. 

SYSTEM INFORMATION SECTOR FORMAT 

The System Information Sector (SIS) contains the following data; all unused bytes are 00. 

Bytes 16-26 
Bytes 29-30 
Bytes 31-32 
Bytes 33-34 
Bytes 35-37 
Byte 38 

Disk name (and extension) 
Track and sector number of first free sector 
Track and sector number of last free sector 
Number of free sectors 
Montht day, and year of disk creation 
Number of logical tracks on the disk - 1 

13-9 



SK*DOS@ 68K USER'S MANUAL 

Byte 39 Number of logical sectors per track 

DIRECTORY STRUCTURE 

The directory of a disk occupies track 0 of every disk, beginning at sector 5 and extending to the end of the track. 
This area of a disk is reserved for the directory when the disk is initially formatted, but SK*DOS will extend the 
directory, one sector at a time, if additional space is needed. Like any other file, the directory is a linked chain; if 
additional sectors are needed, they may be anywhere on the disk. 

Within each sector, the fust two bytes are a link pointer and the next 14 bytes are empty (filled with zeroes); the 
remaining 240 bytes are split into ten groups of 24, with each set of 24 bytes being one file entry. These bytes are 
used as follows: 

Bytes 0-10 File name and extension 
Byte 11 File attribute 
Byte 12 File protection 
Bytes 13-14 Track and sector number of first sector 
Bytes 15-16 Track and sector number of last sector 
Bytes 17-18 File size in sectors 
Byte 19 Sequential/random flag 
Byte 20 Time of file creation / update 
Bytes 21-23 Month, day, and year of file creation / update 
The fust character of the ftIe name (byte 0) is replaced by $FF when a ftIe is deleted, but the remaining bytes are 
unaltered. Hence the CAT command (using its N option) can display data on deleted files. When the directory is 
fust established, all bytes in the empty directory are written as zeroes; hence when SK*DOS searches the 
directory for a file, it stops searching when it gets to an entry whose rust character is still 00. 

Although logically an SK*DOS disk can hold one root directory and 26 ( or more) subdirectories, physically all of 
the fIles are listed in one master directory, which is stored as a flat file as described above. Within this directory, 
fIles are coded as to which subdirectory (A/ through Z/) they belong into by storing the directory code in bit 7 of 
bytes 0 through 7 of the directory entry. 

As with all ASCII text in SK*DOS, ftIe names are stored as 7-bit ASCII characters, with the left-most, eighth or 
parity bit, normally a O. Bit 7 of bytes 0-7 (the eight bytes of the ftIe name) would therefore normally be zeroes. 
Instead, they are now used to hold the directory code letter. For example, here are some sample file-name bytes: 

File TEXT in the root directory: 

54 45 58 54 00 00 00 00 <- ASCII for "TEXT" plus four nulls 
a a a 0 a 0 a a <- parity bits; 00 means root 

File TEXT in directory U /: 

54 C5 58 D4 00 80 00 80 <- ASCII for "TEXT" plus four nulls 
a 1 a I a 1 a 1 <- parity bits; $55 means "U" 

While at fust glance this seems like an awkward way of coding subdirectories, in practice just a few extra 
instructions are required to process these parity bits. SK*DOS routines GETNAM and FNPRNT do the 
processing automatically for input and output of ftIe specifications. The advantages, on the other hand, greatly 
outweigh the disadvantages: the directory structure is totally compatible with earlier versions of SK*DOS, same 
routines which differentiate between ftIe names also diferentiate between directory names without any extra 

13-10 



SK*DOS® 68K USER'S MANUAL 

programming 01: time, it becomes easy to move a me from one directory to another without rewriting it, the 
directory remains a manageable size, and for most situations, the entire directory for an entire disk is still 
contained in just one track, thereby minimizing disk access time. 

13-11 



SK*DOS@ 68K USER'S MANUAL 

14. I/O REDIRECTION AND I/O DEVICES 

This chapter gives additional information on the entire interrelated (and inter-twined) subject of I/O redirection, 
device drivers, printers, communications, and the like. It supplements information given for the DEVICE 
command in Appendix G. In particular, it describes the differences between 'device names', 'device numbers', 
and 'device drivers'. 

Before continuing, it is important to explain our use of the word device. In SK*DOS, a device is any I/O port 
other than ~ disk drive or RAMDISK. This includes character-oriented devices such as the console, terminals, 
modems, or printers. For the sake of the discussion in this chapter, we will differentiate between disks and 
devices, even though many people would classify a disk as one type of device. In fact, SK*DOS allows devices 
and disks to be treated in similar ways. Nevertheless, for our purposes it is easier to separate the concepts. 

COMMAND LINE REDIRECTION 

In its simplest form, I/O redirection simply means sending output to a different place, or accepting input from a 
different place, than normal. It can be accomplished directly from the command line by using the symbols > and 
<. For example, the command 

CAT 

normally displays a catalog of a disk on the screen. On the other hand, the command 

CAT >CATFILE 

sends the catalog listing to a diskfue called CATFILE.PIP, rather than displaying it on the screen. Furthermore, 
the command 

CAT >PRTR 

would send the catalog listing to the printer (if a PRTR printer driver is installed; otherwise it will go to a disk 
rue called PRTR.PIP. You can also force output to a PRTR rue, even when a PRTR device is installed, simply by 
including the extension.) 

Input redirection is handled with the < symbol. For example, the command 

BUILD FILE 

is generally used to input text from the keyboard into FILE. The command 

BUILD FILE <ANOTHER 

would also send text to FILE, but would take the text from another rue called ANOTHER.PIP. Alternatively. if 
there is a device called COM1 on the system, then 

BUILD FILE <COM1 

would take the text from this input device. 

14-1 



68K USER'S MANUAL 

Think of < and > as being arrows. The > in > FILE points to FILE, so data goes 1.Q FILE, whereas < FILE 
points away from FILE so data comes from FILE. Note also that file names used in redirection default to .PIP 
extensions (which stands for 'pipe'), though this can easily be changed by specifying a different extension. 

DEVICE NAMES AND DEFAULTS 

In the above examples, PRTR and COM1 were 'device names', as opposed to 'fIle names'. Device names are 
similar to file names, but (a) must have exactly four characters, and (b) are not allowed any extensions. 
Whenever you use a device name, SK*DOS checks whether such a device exists. If it does, then it uses the 
device. If not, then it uses the same name as a file name. That's why in the above example > PRTR went to a 
printer if such a device existed, but to a disk file otherwise. 

When SK*DOS is initially booted, it has just two devices; these are called the 'default' devices: 

CONS is the console keyboard and screen. It is used for normal input and output. 

NULL is a 'null device' which is used when you want to do a function but want no output whatsoever. For 
example, the command 

ASM PROG > NULL 

would assemble a file but provide absolutely no output - not even assembler error messages. 

Even though it starts with just two devices, SK*DOS can have up to eight. The others must, however, be 
specifically 'installed', either by a command from the keyboard, or by commands included in a STARTUP.BAT 
fIle, by reading in 'device drivers' from a disk. If you wish, you can substitute other devices instead of the default 
ones as well. 

DEVICE NUMBERS 

In addition to having names, devices also have device numbers. When using 110 redirection, you will always refer 
to them by name; programs, on the other hand, may refer to them by either name or number. The DEVICE 
command lets you see (and change) the correspondence between device names and numbers. If you execute the 
DEVICE command just after booting up SK*DOS, you will get a display like this: 

Normal Device Device Driver 
use number name 

------ ------ ------ ---------
Terminal 0 CONS Default driver 
Error device 1 CONS Default driver 
Printer 2 CONS Default driver 

3 CONS Default driver 
4 CONS Default driver 
5 CONS Default driver 
6 CONS Default driver 

Null device 7 NULL Default driver 

This tells us that devices 0 through 6 are currently the CONS console default driver, while device 7 is the NULL 
default driver. Furthermore, it also tells us that device 0 is normally the terminal (which is used to control 

14-2 



SK*DOS8 68K USER'S MANUAL 

SK*DOS), device 1 is the error device (where most error messages go), device 2 is usually the printer (although 
right now printer output would go to the console instead), and device 7 is usually the null device. 

As you can see, at this point CONS has several device numbers. That means that output sent to anyone of those 
numbers would really go to the console. 

The assignments shown in the above tables can be changed at any time by using the DEVICE command. 
DEVICE is most often used to substitute a disk-resident device driver for one of the default drivers. 

DEVICE DRIVERS 

In most systems there will be just one console, but there could be several printers. Moreover, a printer could 
require either a serial interface or a parallel interface. Hence the software to drive a printer, as well as other 
devices, must be changeable so it can fit the hardware. This is done by using disk-resident programs to interface 
with other devices. These programs are called 'device drivers', and usually have a .DVR extension on the disk. 
Depending on your system, you may already have one or more such drivers supplied with your SK*DOS, or else 
you may just have one or more files of driver source code which you will have to customize and assemble to fit 
your own hardware. 

Device drivers must be 'installed' with the DEVICE command. For example, the command 

DEVICE PARALLEL AT 2 AS PRTR 

would install a driver called PARALLEL.DVR at device 2, and give it the name PRTR. The DEVICE display 
would then say 

Normal 
use 

Printer 

Device Device Driver 
number name 

2 PRTR PARALLEL.DVR 

The DEVICE command can be used to change devices as often as desired; you may also return back to a default 
driver by using the name DEFAULT instead of a file name, as in 

DEVICE DEFAULT AT 2 AS CONS 

which would restore device 2 as the default device CONS. Note that driver names default to .DVR, but 
DEFAULT has no default extension: DEFAULT refers to the normal default driver, whereas DEFAUL T.DVR 
would be needed in the command line if you had an actual DEFAULT.DVR driver on a disk. 

REMOTE CONSOLE OPERATION 

It is possible to operate SK*DOS from a device other than the default console device. For example, if there is a 
serial device on the system and a driver for it, then you may install that driver as devices 0 and 1. All normal 
console I/O would then go to that device instead. Note that it's necessary to install that driver at both number 0 
and 1 so that error messages go to. the new device. The order of assigning device numbers also makes a 

14-3 



SK*DOS@ 68K USER'S MANUAL 

difference - if you assign number 0 r11"st, then you will have to use the remote keyboard to assign number 1, as the 
console keyboard will no longer be active. 

DRIVER MEMORY ASSIGNMENT 

When a new driver is loaded from disk, DEVICE checks to see whether the driver is smaller than the driver 
currently installed under that device number. If so, then the new driver simply overlays the current driver. If not, 
then the new driver has new memory assigned to it just above the current value of OFFSET, and then OFFSET 
and OFFINI are moved up above the new driver. (The default CONS and NULL drivers have zero size, and so 
will never be overlaid.) If the same driver is used under various device numbers, several copies of the driver will 
exist in memory at the same time, one for each device number. 

This is important to remember for several reasons. First, it means that new drivers can only be installed from the 
keyboard (or from a .BAT fIle), not from another program, because memory may not be available for the new 
driver while another program is running. Second, it means that each copy of a driver maintains its own variables 
such as PLINES (see below) even when it applies to the same hardware device. 

DEVICE DESCRIPTOR TABLE 

Information on device assignments is stored in the Device Descriptor Table called DEVTAB. This table consists 
of 640 bytes, (SO bytes for each of the 8 device numbers) plus an additional SO bytes for the default CONS driver. 
The CONS information is copied into the rest of DEVTAB during booting; the DEVICE command then 
modifies the contents ofDEVTAB when it installs other drivers. 

Each device number has an SO-byte device descriptor within the table. These bytes contain the following: 

Bytes Description 
00-03 Logical name, such as CONS or PRTR 
04-07 Pointer to the first address of the driver, 0000 if in BIOS 
08-11 Length of the driver in bytes, 0000 if in BIOS 
12-15 Pointer to driver initialization routine 
16-19 Pointer to input status check routine in driver 
20-23 Pointer to get input character with echo routine 
24-27 Pointer to get input character without echo routine 
28-31 Pointer to input channel control routine (for ICNTRL) 
32-35 Pointer to output status check routine 
36-39 Pointer to output character routine 
40-43 Pointer to output channel control routine (for OCNTRL) 

44 Print lines (PLINES) constant 
45 Page width constant (PWIDTH) 
46 Null wait constant (NULLWT) 
47 Skip lines constant (SLINES) 
48 Pause flag (PAUSEB) 
49 Line counter counts lines per page 
50 Column counter (OCOLUM) 
51 Serial device baud rate (BAUDRT) 
52 End-of-file character (EOFILC) 

14-4 



SK*DOS@ 68K USER'S MANUAL 

53 
54 
55 

56-59 
60-63 
64-67 
68-79 

X-Off character (XOFFC) 
X-On"character (XONC) 
Reserved for future use 
Pointer to input status check routine (bypass typeahead) 
Pointer to get input char w/o echo routine (bypass typeahead) 
Pointer to routine to flush typeahead buffer 
Reserved for future use 

All of the above pointers and numbers are distinct for each device number. The constants from PLlNES down 
can be displayed or changed with the DOSP ARAM command . 

. DEVIN, DEVOUT, AND DEVERR 

DEVIN, DEVOUT, and DEVERR are three bytes which indicate the current input, output, and error device 
number, respectively. Normally, DEVIN and DEVOUT contain the number 0, indicating that they use device 0, 
while DEVERR contains the number 1, indicating that error messages from PERROR normally go to device 1. 

I/O REDIRECTION FROM PROGRAMS 

Temporary I/O redirection from the keyboard can only be done one way - by using the > and < symbols on the 
command line. Permanent redirection can be done by installing another driver. 

I/O redirection is done by programs in a totally different way (since programs cannot install new drivers). In 
general, there are several methods available to programs for accessing different I/O devices. Moreover, 
programs can access devices through ftle control blocks, or can access ftles through device numbers. 

1. Normal console I/O functions such as PUTCH, GETCH, PSTRNG, lNUNE, OUT5D, HEXIN, and the like, 
are all steered through DEVIN in the case of input functions, or DEVOUT in the case of output functions. 
Programs can change DEVIN, or DEVOUT to different device numbers to use different devices for these 
functions. For example, when a program wants to output to a printer, it can change DEVOUT from 0 to 2 -
assuming that a PR TR or similar driver is installed. If not, then output will still go to the console. It is also 
possible to input from one device but output to another by changing DEVIN and DEVOUT accordingly. 

2. An indirect way of changing DEVIN and DEVOUT is through ICNTRL and OCNTRL calls $FFFx (see the 
next section.) 

3. PERROR output is done via DEVERR, and programs can change this byte to steer error output to different 
devices. 

4. All of the above can also be sent to a disk file, or input from a disk ftle, by opening the appropriate me and 
placing the FCB address into FIADDR (for input) or FOADDR (for output), and then setting DEVIN or 
DEVOUT to device number 8. Note that physical I/O devices are only numbered 0 through 7; number 8 applies 
only to disk fdes. If the file is not open, or if SK*DOS encounters an error while using the file, it will print an 
error message, reset the device number to 0, and continue using device 0 for input or output. (You may then use 
the EOFILC, usually control-Z, to indicate an end off tie on input.) 

5. Conversely, an FCB can be used to access an I/O device simply by using the four-letter device name when 
opening the file. Just be careful not to try to input from an output device such as a printer. 

14-5 



SK*DOS@ 68K USER'S MANUAL 

The' process would go like this: First place a four-letter device name into the name bytes of the FCB. Do not use 
an extension or SK*DOS will assume you mean a fIle, although you should call DEFEXT to put in a default 
extension just in case (DEFEXT will not add an extension if it detects that a device exists with the specifIed 
name.) Then call FOPENR or FOPENW to open the rtle for reading or writing. If the specifted driver does not 
exist, SK*DOS will open the rtle normally (that's why it is good to have a default extension). If it does exist, then 
SK*DOS will use the device for subsequent reads or writes instead of a fIle. Note that the device can only be 
used sequentially - random file operations will not work and may give undesired results. 

SK*DOS accesses devices through an FCB by substituting 'fake drive numbers'. Normally, only drive numbers 0 
through 9 are valid disk drive numbers; when you open an FCB to a device, SK*DOS uses drive numbers $10 
through $17 to refer to devices 0 through 7 respectively. If you know the name of a device but not its number, 
then it is easiest to open the rtle with that name. If you already know the number, then it is not even necessary to 
open the file - just set up an FCB, put in a drive number equal to $10 plus the desired device number, and use 
FREAD or FWRITE to read or write. 

6. Before doing any of the above, a program may check whether a given driver is installed by using FINDEV. 

7. GETNAM recognizes device names and substitutes the device number plus $10 when the specifted device is 
installed. 

ICNTRL and OCNTRL 

ICNTRL and OCNTRL are two SK*DOS system calls which pass data and commands to and from device 
drivers without going through the normal GETCH and PUTCH calls. For example, when a user program calls 
ICNTRL with the instructions 

MOVE.B 
DC 

#$10,D4 
ICNTRL 

the value of $10 is passed through SK*DOS to the ICNTRL entry point of the appropriate driver. 

The need for ICNTRL and OCNTRL is based on the need for consistency when SK*DOS is implemented on a 
variety of very different computers. Some of these use conventional terminals, but some (such as the Atari. or 
Amiga 68000 computers) will have built-in video and graphics interfaces. Since each of these provides different 
output modes and screen display codes, it is important to standardize input and output so that a given program 
may run on any of these and still provide a common output format. 

All 68K SK*DOS calls to GETCH and PUTCH (as well as related calls such as PNSTRN or INLlNE) are sent 
to the specifted driver routine through a portion of SK*DOS called 10SEL or I/O Selector. As explained above, 
the usual device assignments are 

o - console (both keyboard and screen) 
1 - error device (usually also the console) 
2 - printer 
3-6 - user-defined 
7 - the 'null' device 

One function of ICNTRL and OCNTRL is to choose which driver is active at any time. When you call ICNTRL 
or OCNTRL with the word $FFFxin D4, this selects driver x for input or output, respectively. All following I/O 
calls via PUTCH, GETCH, etc., (as well as ICNTRL or OCNTRL) are then vectored to that driver until you 

14-6 



SK*DOS@ 68K USER'S MANUAL 

change the driver assignment with another call to ICNTRL or OCNTRL (or changed DEVIN or DEVOUT). 
On initial cold start, 68K SK*DOS initializes both input and output to $FFFO so that the system defaults to using 
device 0 - the console keyboard and screen. Hence the casual user need not generally be concerned with 
ICNTRL or OCNTRL. 

The second function of ICNTRL and OCNTRL is to pass special arguments to the selected device, or input 
special key characters from the device. The important requirement is that all SK*DOS users agree on these 
arguments, so that all drivers and all I/O devices will respond in the same way, regardless of which computer is 
being used. The following sections describe this feature. 

ICNTRL Assignments 

ICNTRL is used by placing a command code into 04, and doing a DC ICNTRL instruction. The device driver 
may then return an argument in register DS. The current command codes are as follows: 

$0000 Return number of current driver (0-7) in 05 
0001 Retum the name of current driver (such as CONS) in 05 
0002 Return a raw a-bit character from the device 
0003 Enable keyboard's function keys 
0004 Disable keyboard's function keys 
0005 Return a special character from the device 
FFFx Switch to driver x 

Additional other commands may be defined in the future. 

Some device drivers will contain an input translation table and code which allows the driver to convert special 
key characters or sequences into a single byte which will be returned in DS. For example, suppose a given 
terminal has a row of ten function keys, which generate a two-byte sequence such as "ESCape followed by $30" 
for key PO, and so on. Using GETCH, we would get back two separate characters, a $1B for the ESCape, and a 
$30 for the O. The problem here is that we have no way of knowing whether this sequence came from function 
key PO, or whether the user really typed an ESCape and then the digit O. (The command 0002 of ICNTRL would 
return the same two characters, but with the parity bits intact, if any.) 

ICNTRL command OOOS works a bit differently. After it detects the ESCape code, ICNTRL waits for 
approximately one-half character time. If it receives the $30 during that time, then it assumes that the 
combination came from a single PO function key, and returns a special code which signifies the PO key. If the $30 
is not received during that time, then ICNTRL returns the ESCape first, and then picks up the next character on 
the next pass. (The next character may also be returned by GETCH). (This description assumes a serial 
terminal keyboard; computers with an integral keyboard may return a special function key code directly.) 

In order to generate the same special PO code with different terminals or computers, the device driver has a 
translation table which converts any specific combination of one or more keys into an PO code which would be 
common to all systems. The supplied ADM-3A driver shows how this is done. 

When ICNTRL command OOOS receives a regular ASCII character, it simply returns it as a single byte in D5, 
with bits 8-15 of D5 equal to O. But a special keyboard character is identified by making bits 8-15 non-zero; in 
other words, special characters are represented by the words $0100 and higher. 

The following table shows the key codes for an implementation using a PC-compatible keyboard: 

14-7 



SK*DOS@ 68K USER'S MANUAL 

KEYBOARD (1) (2) (3) (4) 
KEY NO. KEY NORMAL SHIFT CONTROL NUM LOCK 
-------- ------- ------- ------- -------

1 ESCAPE 1B/001B 1B/001B 1B/001B * 2 1 ! 31/0031 21/0021 - -/0431 * 3 2 @ 32/0032 40/0040 00/0100 * 4 3 # 33/0033 23/0023 --/0433 * 5 4 $ 34/0034 24/0024 - -/0434 * 6 5 % 35/0035 25/0025 --/0435 * 7 6 " 36/0036 5E/005E 1E/001E * 8 7 eSc 37/0037 26/0026 - -/0437 * 9 8 * 38/0038 2A/002A - -/0438 * 10 9 ( 39/0039 28/0028 - -/0439 * 11 o ) 30/0030 29/0029 - -/0430 * 12 2D/002D 5F/005F 1F/001F * -
13 - + 3D/003D 2B/002B --/043D * 14 BACKSPACE 08/0008 08/0008 7F/007F * 15 TAB 09/0009 - - /021F - -/031F * 16 q Q 71/0071 51/0051 11/0011 * 17 wW 77/0077 57/0057 17/0017 * 18 e E 65/0065 45/0045 05/0005 * 19 r R 72/0072 52/0052 12/0012 * 20 t T 74/0074 54/0054 14/0014 * 21 Y Y 79/0079 59/0059 19/0019 * 22 uU 75/0075 55/0055 15/0015 * 23 i I 69/0069 49/0049 09/0009 * 24 o 0 6F/006F 4F/004F OF/OOOF * 25 p P 70/0070 50/0050 10/0010 * 26 [ { 7B/007B 5B/005B 1B/001B * 27 ] } 7D/007D 5D/005D 1D/001D * 28 RETURN OD/OOOD OD/OOOD 00/0000 * 29 CONTROL --/---- --/---- --/---- --/----
30 a A 61/0061 41/0041 01/0001 * 31 s S 73/0073 53/0053 13/0013 * 32 d D 64/0064 44/0044 04/0004 * 33 f F 66/0066 46/0046 06/0006 * 34 g G 67/0067 47/0047 07/0007 * 35 h H 68/0068 48/0048 08/0008 * 36 j J 6A/006A 4A/004A OA/OOOA * 37' kK 6B/006B 4B/004B OB/OOOB * 38 1 L 6C/006C 4C/004C OC/OOOC * 39 ; : 3B/003B 3A/003A - -/043B * 40 ' " 27/0027 22/0022 --/0427 * 41 ' - 60/0060 7E/007E --/0460 * 42 LEFT SHIFT --/---- --/---- --/---- --/----
43 \ I 5C/005C 7C/007C 1C/001C * 44 z Z 7A/007A 5A/005A 1A/001A * 45 x X 78/0078 58/0058 18/0018 * 46 c C 63/0063 43/0043 03/0003 * 47 v V 76/0076 56/0056 16/0016 * 48 b B 62/0062 42/0042 02/0002 * 49 nN 6E/006E 4E/004E OE/OOOE * 

14-8 



SK*DOS@ 68K USER'S MANUAL 

50 mM 60/0060 40/0040 00/0000 * 51 , < 2C/002C 3C/003C - -/042C * 52 . > 2E/002E 3E/003E - -/042E * 53 / ? 2F/002F 3F/003F --/042F * 54 RIGHT SHIFT --/---- --/---- --/---- --/----
55 PRT SCR * 2A/0110 2A/002A - -/0310 2A/OO2A 
56 ALT --/---- --/---- --/---- --/----
57 SPACE 20/0020 20/0020 20/0020 * 58 CAPS LOCK --/---- --/---- --/---- --/----
59 F1 --/0101 --/0201 - - /0301 * 60 F2 - - /0102 --/0202 - -/0302 * 61 F3 - - /0103 --/0203 --/0303 * 62 F4 --/0104 --/0204 - - /0304 * 63 F5 - - /0105 --/0205 - - /0305 * 64 F6 --/0106 --/0206 - - /0306 * 65 F7 - - /0107 --/0207 - - /0307 * 66 F8 - - /0108 --/0208 - - /0308 * 67 F9 --/0109 --/0209 - - /0309 * 68 FlO - - /010A --/020A - -/030A * 69 NUM LOCK --/---- --/---- --/---- --/----
70 SCROLL LOCI< - -/OllE --/021E - - /031E * ~~~ .• ~~ ,>td-

71 HOME - - /0120 37/0037 - - /0320 37/0037 
72 UP ARROW OB/0125 38/0038 - - /0325 38/0038 
73 PG UP - - /0123 39/0039 - -/0323 39/0039 
74 GREY MINUS 20/0020 20/0020 --/0320 20/0020 
75 LEFT ARROW 08/0128 34/0034 - -/0328 34/0034 
76 5 --/0127 35/0035 --/0327 35/0035 
77 RIGHT ARROW 09/0126 36/0036 - - /0326 36/0036 
78 GREY PLUS 2B/002B 2B/002B - - /033B 2B/002B 
79 ENO - - /0122 31/0031 - - /0322 31 031 

j 

80 OOWN OA/0127 32/0032 - - /0327 32/0032 
81 PG DN - - /0124 33/0033 - -/0324 33/0033 
82 INSERT - - /012A 30/0030 - -/032A 30/0030 
83 OEL - - /012B 2E/002E - -/032B 2E/002E 

NOTES: 
1. All codes in columns (1) through (4) are hex numbers. 
2. The notation AA/BBCC means that the code AA is generated using the normal character input routine 
(INCH8 in HUMBUG; GETCH, INNOEC, or ICNTRL function 0002 in SK*DOS), and BBCC is generated 
using ICNTRL (in HUMBUG, or ICNTRL function 0005 in SK*DOS) 
3. If BB is 00, then CC is the standard ASCII code for that key, and is equal to AA. With some exceptions, BB 
codes of 01 stand for unshifted characters, 02 stand for shifted characters, 03 stand for control characters, and 04 
stand for characters which do not fit any of the above groups. 
4. -- or ---- means that no key code is generated for that key. 
5. Items labelled * are not affected by the NUM LOCK key; their key codes are indicated in the other three 
columns at all times. 
6. CAPS LOCK affects only the alpha keys A-Z. For these keys, it reverses the meanings of columns (1) and (2). 
7. The ALTernate key adds $80 (or $00(0) to all codes shown. 
8. The precedence is (a) ALT affects all codes, (b) NUM LOCK codes are not affected by SHIFf or 
CONTROL, (c) CONTROL is not affected by SHIFf. 

14-9 



SK*DOS@ 68K USER'S MANUAL 

9. Codes for ~ed PRT SCRN, and up, down, left, and right arrows were changed from -- to their current 
values in SK*DOS version 2.4. 

OCNTRL Assignments 

OCNTRL is the opposite of ICNTRL - it is used to send special arguments to an output device and its driver. Its 
main purpose is to allow a program to drive a variety of output devices in a common way, without having to be 
concerned with the particular type of output device being used. 

Interfacing to a variety of output devices is again done via a translation table. For example, when a program 
places the code $0002 into D4 and then calls OCNTRL, the driver uses the translation table to convert the $0001 
into whatever character (or sequence of characters) is needed to erase the screen on the current output device. 

OCNTRL expects a 16-bit word as an argument and, depending on the exact I/O device, will recognize the 
following: 

$0000 
0001 
0002 
0003 
0004 
0006· 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
0000 
OOOE 
OOOF 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0040 

Return number of current driver (0-7) in 05 
Return the name of current driver (such as CONS) in 05 
Erase screen 
Home cursor 
Cursor up 
Cursor right 
Bell (may also use $07 in data stream) 
Cursor left (may also use $08 in data stream) 
Horizontal tab 
Line feed (may also use $OA in data stream) / cursor down 
Clear current line 
Erase screen and home cursor (form feed on printer) 
Carriage return (may also use $00 in data stream) 
Mask output of character in 05 
Permit output of character in 05 
Return size of text screen in (OS, 06) 
Move cursor to position (OS, 06) 
Return cursor position in (OS, 06) 
Return character under cursor in 05 
Clear to end of line 
Clear to end of screen 
Erase screen 
Home cursor 
Insert line before current line 
Delete current line and close up 
Switch to normal print / normal intensity 
Switch to condensed print 
Switch to expanded print 
Switch to double strike / bold / double intensity 
Switch to enhanced print mode 
Switch to italics 
Switch to character spacing in 05 
Switch to line spacing in 05 
Switch to graphics mode in 05 

14-10 



0041 
0042 
0043 
FFFx 

Switch to text mode 
Choose color in 05 
Draw to position (05. 06) 
Switch to driver x 

68K USER'S MANUAL 

Arguments $0000, 0001, and $FFFx (and 0002 for ICNTRL) are handled internally by SK*DOS; all other 
arguments are passed directly to the ICNTRL or OCNTRL section of the appropriate driver (except for the 
default console driver in the BIOS, which simply ignores the control codes.) 

CUSTOM DEVICE DRIVERS 

The SK*DOS system disk includes source code for three device drivers, called SERIAL.TXT, P ARALLEL.TXT, 
and ADM-3A.TXT. These drivers demonstrate the exact format of a device driver, and should be used as 
examples in case you need to write your own. 

SERIAL and PARALLEL are simple drivers for a serial port using a 68681 DUART, and a parallel port using a 
68230 PI/T or 6821 PIA, respectively. ADM-3A is an expanded serial driver which shows how ICNTRL and 
OCNTRL functions are implemented with translation tables . 

. ::' : ::)::::::::t:::':':':';::(7:? .': •. ': '.' ':;.' .•• :-:'. :.,-:. :: •..•. ,: .:.": .•.• ' .• :." •... . :h.: :.'.-:-'.-:-::' : .. : ::{., :.::: .:<':' •....•. >.: :.): ........ ' .• ': :.:.>.: ':': {: ::::. ii:. ::.:. : i i.· ... i:. :. ',:",,:,.,:, : .. :. :. : : :. : .. :. ! :. i : .. i : .•. :.: '. :.·:1 :. : ..•. :. :' .. :.::.:: ;.:' .. :. :.: .' .. :. :. :'. :.:' : .. ' : ..... ;. :.'. :.~.{:.l.:=: .>.:. :.·.m : .. i.· •. 
'.' '. ' ... ' .• -::': '.:. ':: '.:. . ..::::::::::::::::::::::::.::»}: ••• ::": •. ' '.: '.::).))/: ...•. :.:): • 

KEYBOARD 1YPEAHEAD BUFFER 

Some SK*DOS implementations (depending on the BIOS or device drivers) may implement a keyboard 
typeahead buffer; hence there are three DOS calls (STATU1, INNOE1, and FLUSHT) specifically dealing with 
the operation of such a buffer. If a typeahead buffer is not implemented, then STATU1 and INNOE1 behave 
exactly the same as STATUS and INNOEC, respectively, while FLUSHT does nothing. 

If a typeahead buffer is implemented, then either the BIOS or the device driver, or both, may contain a buffer 
area which holds incoming characters from the keyboard or other device. This buffer, which is typically 64 bytes 
but may be larger or smaller, acts as a FIFO or fIrst-in, fIrst-out memory. As characters come in, they go into 
one end of the buffer; as SK*DOS or a user program needs them, they come out the other end of the buffer. 
Think of the FIFO as a pipe - characters go in one end and come out the other in the exact same order as they 
went in. In this way, characters that came in while the system is doing other tasks are held until they are needed. 
This allows you to type ahead of the computer, for example, giving it commands before they are needed. 

When typeahead is implemented, normal input (via GETCH, INNOEC, or INLINE, for example) goes through 
the buffer. Hence normal programs need not even know whether such a buffer exists or not. Occasionally, 
however, it is useful to be able to bypass the buffer - when immediate response to an ESCape or control-C is 
needed, for example - or even to be able to empty the buffer (such as when asking "OK to delete - Y or N?", and 
you wish to make sure that a previously-entered Y does not get used as an answer.) This is where the three 
typeahead operations come in. Let us discuss them one by one. 

When typeahead is implemented, GETCH and INNOEC input the first character in the buffer (i.e., the character 
that has been in the buffer the longest), whereas INNOE1 inputs the last character (the most recent one). 

14-11 



SK*DOS@ 68K USER'S MANUAL 

INNOEl should therefore be used if you are checking for control-C or ESCape, in which case you want to 
bypass any characters preceding it and act on it immediately. Note that using INNOEl to get the last character 
does not remove it from the buffer - it is still there, and still in its correct sequence. 

GETCH, INNOEC, and INNOEl will all wait for a character to be typed if none exists when they are called. 
Hence we need a way of checking whether there is a character there. STATUS is therefore used to test whether 
there is any character in the typeahead buffer, whereas STATUl tests whether a last character exists. Note: when 
there is a single character in the buffer, it becomes both the first and last character, and STATUS and STATUl 
will both return a 'true' when tested. If the character is obtained with GETCH or INNOEC, then both STATUS 
and STATUl will go 'false'. But if it is obtained with INNOE1, STATUl will go 'false' but STATUS will still be 
'true', indicating that it is still in the buffer as well. 

Finally, FLUSHT is a function which empties the entire buffer so that both STATUS and STATU1 return 'false'. 
FLUSHT should always be used after INNOEl returns a break or ESCape character, and may also be used 
when you want to make sure that some left-over character in the buffer does not provide an undesired answer (as 
when asking a "Y or N" question.) 

The following example shows how these DOS calls are used inside UBASIC to check for a control-C or ESCape. 
Although checking for ESCape is normally done by SK*DOS internal routines, note that here UBASIC does its 
own checking. This is needed since it would otherwise remove the ESCape from the buffer before SK*DOS has a 
chance to check it. 

Each time UBASIC outputs a character, or each time it fmishes interpreting the current statement, it calls the 
following BREAK routine: 

BREAK 

BREAKO 

BREAKI 

CNTRLC 

ESCAP 
ESCAPI 

DC STATSI 
BEQ. S BREAKI 
DC INNOEI 
CMP.B #3,DS 
BEQ.S CNTRLC 
CMP.B ESCAPC(A6),DS 
BEQ.S ESCAP 
RTS 

DC FLUSHT 
BRA.L READY 

DC FLUSHT 
DC INNOEC 
CMP.B ESCAPC{A6),DS 
BEQ. S BREAKI 
CMP.B #$OD,DS 
BEQ.L READY 
BRA.S ESCAPI 

Check 'last' character 
exit if nothing there 
else get the last character 
is it control-C? 

Yes, go process it 
is it an ESCape? 

Yes, go process it 
Neither, so exit 

on control-C, flush buffer 
and go to READY prompt 

On ESCape, flush buffer 
Then get the next character 
is it another ESCape? 

Yes, so RTS to continue 
is it carriage return? 

Yes, so go to READY prompt 
No, so wait for another char 

Note how the typeahead buffer is flushed only after either the control-C or ESCape is identified; any other 
character is left in the buffer. 

14-12 



SK*DOS@ 68K USER'S MANUAL 

APPENDIX A. USER-ACCESSIBLE VARIABLES 

SK*DOS variables of interest to the machine language programmer are listed below. They should be addressed 
using indexed addressing with A6. 

NAME 

BACKSC 
BREAKA 
BSECHO 
CDAY 
CMFLAG 
CMONTH 
COMTAB 
CURRCH 
CYEAR 
DELETC 
DEVERR 
DEVIN 
DEVOUT 
DEVTAB 
DOSORG 
ECHOFL 
ENDLNC 
ENVRON 
ERRTYP 
ERRVEC 
ESCAPC 
EXECAD 
EXECFL 
FCBPTR 
FIADDR 
FNCASE 
FOADDR 
LASTRM 
LINBUF 
LPOINT 
MAXDRV 
MEMEND 
NULLWT 
OCOLUM 
OFFSET 
PAUSEB 
PLINES 
PREVCH 
PWIDTH 
REPEAC 
SEQNO 
SLINES 

LISTED IN ORDER BY VARIABLE NAME 

ADDRESSES 

736(A6) 
762-765(A6) 
743(A6) 
751(A6) 
793(A6) 
750(A6) 
754-757(A6) 
766(A6) 
752(A6) 
737(A6) 

3276(A6) 
3274(A6) 
3275(A6) 
3278(A6) 
838(A6) 
800(A6) 
738(A6) 

4074(A6) 
782(A6) 
834(A6) 
746(A6) 
776-779(A6) 
774(A6) 

4006(A6) 
788-791(A6) 
801(A6) 
784-787(A6) 
753(A6) 
608(A6) 
758-761(A6) 
802(A6) 
796-799(A6) 

3324(A6) 
3328(A6) 

770-773(A6) 
3326(A6) 
3322(A6) 

767(A6) 
3323(A6) 

749(A6) 
806(A6) 

3325(A6) 

FUNCTION 

Backspace character ($08) 
Break (Escape) address (long word) 
Backspace echo ($08) 
Current date - day 
Command flag 
Current date - month 
Pointer to command table (long word) 
Last character read from buffer 
Current date - year 
Delete character ($18) 
Current error device (1) 
Current input device (0) 
Current output device (0) 
I/O device descriptor table 
Absolute ORG of SK*DOS 
Input echo flag 
End of line character ($3A) 
1K of environment space 
Error type 
Alternate ERRCODES.SYS vector 
Escape char ($lB) 
ML execution address (long word) 
Execution address flag 
Pointer to first open FCB (long word) 
File input address vector (long word) 
File Name case flag 
File output address vector (long word) 
Last terminator 
Line buffer (128 bytes) 
Pointer to line buffer (long word) 
Maximum drive number 
Last usable memory address (long word) 
Null wait constant 
Current output column 
Offset load address (long word) 
Output pause control byte 
Number of printed lines per page 
Previous character read 
Page column width 
Repeat character ($01) 
Sequence number 
Number of skipped lines between pages 

A-I 



SK*DOS@ 

SPECIO 
SYSDIR 
SYSTDR 
USRFCB 
USRSPC 
WORKDR 
WRKDIR 

NAME 

USRFCB 
LINBUF 
BACKSC 
DELETC 
ENDLNC 
BSECHO 
SYSDIR 
WRKDIR 
ESCAPC 
SYSTDR 
WORKDR 
REPEAC 
CMONTH 
CDAY 
CYEAR 
LASTRM 
COMTAB 
LPOINT 
BREAKA 
CURRCH 
PREVCH 
OFFSET 
EXECFL 
EXECAD 
ERRTYP 
FOADDR 
FIADDR 
SPECIO 
CMFLAG 
MEMEND 
ECHOFL 
FNCASE 
MAXDRV 
SEQNO 
ERRVEC 
DOSORG 
PLINES 
PWIDTH 
NULLWT 

792(A6) 
744(A6) 
747(A6) 

0(A6) 
4010(A6) 

748(A6) 
745(A6) 

ADDRESSES 

0(A6) 
608(A6) 
736(A6) 
737(A6) 
738(A6) 
743(A6) 
744(A6) 
745(A6) 
746(A6) 
747(A6) 
748(A6) 
749(A6) 
750(A6) 
751(A6) 
752(A6) 
753(A6) 
754~757(A6) 
758-761(A6) 
762-765(A6) 
766 (A6), 
767(A6) 
770-773(A6) 
774(A6) 
776-779(A6) 
782(A6) 
784-787(A6) 
788-791(A6) 
792(A6) 
793(A6) 
796-799(A6) 
800(A6) 
801(A6) 
802(A6) 
806(A6) 
834(A6) 
838(A6) 

3322(A6) 
3323(A6) 
3324(A6) 

Special I/O Indicator 
System default directory 
System default drive 
User FCB (608 bytes) 

68K USER'S MANUAL 

64 bytes of free space for user programs 
Working default drive 
Working default directory 

LISTED IN ORDER BY ADDRESS 

FUNCTION 

User FCB (608 bytes) 
Line buffer (128 bytes) 
Backspace character ($08) 
Delete character ($18) 
End of line character ($3A) 
Backspace echo ($08) 
System default directory 
Working default directory 
Escape char ($lB) 
System default drive 
Working default drive 
Repeat character ($01) 
Current date - month 
Current date - day 
Current date - year 
Last terminator 
Pointer to command table (long word) 
Pointer to line buffer (long word) 
Break (Escape) address (long word) 
Last character read from buffer 
Previous character read 
Offset load address (long word) 
Execution address flag 
ML execution address (long word) 
Error type 
File output address vector (long word) 
File input address vector (long word) 
Special I/O Indicator 
Command flag 
Last usable memory address (long word) 
Input echo flag 
File Name case flag 
Maximum drive number 
Sequence number 
Alternate ERRCODES.SYS vector 
Absolute ORG of SK*DOS 
Number of printed lines per page 
Page column width 
Null wait constant 

A-2 



SK*DOS@ 

SLINES 
PAUSEB 
OCOLUM 
DEVIN 
DEVOUT 
DEVERR 
DEVTAB 
FCBPTR 
USRSPC 
ENVRON 

3325(A6) 
3326(A6) 
3328(A6) 
3274(A6) 
3275(A6) 
3276(A6) 
3278(A6) 
4006(A6) 
4010(A6) 
4074(A6) 

68K USER'S MANUAL 

Number of skipped lines between pages 
Output pause control byte 
Current output column 
Current input device (0) 
Current output device (0) 
Current error device (1) 
I/O device descriptor table 
Pointer to first open FCB (long word) 
64 bytes of free space for user programs 
1K of environment space 

A-3 



SK*DOS@ 68K USER'S MANUAL 

APPENDIX B. THE FILE CONTROL BLOCK (FCB) 

The fIrst 96 bytes of an FCB (numbered 0 through 95 for this discussion) hold the following information: 

NAME 

FCBERR 
FCBRW 
FCBDRV 
FCBNAM 
FCBEXT 
FCBATT 

FCBFTR 
FCBFSE 

FCBLTR 
FCBLSE 
FCBSIZ 
FCBRAN 
FCBTIM 
FCBMON 
FCBDAY 
FCBYR 

FCBCTR 
FCBCSE 
FCBNMB 

FCBDPT 

FCBRIN 
FCBNMS 
FCBCOL 
FCBSCF 
FCBSPT 

FCBLST 
FCBPHY 

FCBDIT 
FCBDIS 

FCBCRN 

FCBDAT 

BYTE(S) 

o 
1 
2 
3 
4-11 
12-14 
15 
16-17 
18 
19 
20-21 
22 
23 
24-25 
26 
27 
28 
29 
30 
31-33 
34 
35 
36-46 
47-48 
49 
50 
51 
52-62 
58 
59 
60 
61-63 
64-67 
68-71 
72 
73 
74 
75 
76-77 
78-79 
80-95 
96 

CONTENTS 

Reserved for future use 
Error code (see Appendix E) 
Read / Write / Update status 
Drive number (0 through 9) 
File name (8 bytes) 
Extension (3 bytes) 
File attributes 
Reserved for future use 
First track of file 
First sector of file 
Reserved for future use 
Last track of file 
Last sector of file 
Number of sectors in the file 
Random file indicator 
Time or sequence number 
Month of file creation (1 through 12) 
Day of file creation (1 through 31) 
Year of file creation (last two digits) 
Reserved for future use 
Current track number 
Current sector number 
Temporary name buffer 1 
Reserved for future use 
Sequential data pointer to next byte (4 through 255) 
Reserved for future use 
Random data pointer to next byte (4 through 255) 
Temporary name buffer 2 
Column position (for use by Basic) 
Space compression indicator 
Number of sectors per track 
Temporary storage 
Reserved for future use 
Next FCB pointer 
Physical drive number 
Reserved for future use 
Directory track number 
Directory sector number 
Reserved for future use 
Current or desired sector number 
Reserved for future use 
Beginning of data area 

The names listed in the above table are those used in the SKEQUATE file; it is convenient to use these names rather 
than numbers when referring to specific FCB bytes in user programs. 

B-1 



SK*DOS@ 

The following chart gives a concise summary of this data: 

\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 71 81 91 AI BI CI DI EI FI 

\ IErlRWIDrl I 
$00 1* IroIColivl<-­

I I r I de \ e# I \ 

I I I I 
File Name 

I I I I 

I I I I IAtl 
->1<- Ext->Itrl 

I I \ I lib 

1 I IFirstl 1 ILast \ 1 IRalTilMolDalYel 
$10 1* 1* ITr & 1* 1* ITr & ISize Indlmelntly larl* 

I I ISectrl I ISectrl I loml Ih I I \ 

I I I Curre I 1 I 1 I I 1 1 1 1 I 1 
$20 1* 1* Int Trl<- Second File Name ->1<- Ext->I* 

I I 1& Secl (Temp name buffer 1) I I I I 

I ISel IRal I I I 1 I I I I 1 I I 
$30 1* IqPI* InPI<- Delete File Name ->1<- Ext->I* 

I Itrl Itrl (Temp name buffer 2) 1 I I I 

\ I \ \ \ Next open \Ph\ IDirecl 
$40 \* \* 1* \* 1<- FCB ->IDrl* ITr & I 

I I 1 1 1 pointer INol ISectrl 

I ICurr. 
1* IRecrd 
I I Numbr I 

1 I I I I I I I I I I I I I I I I 
$50 1<---------------------*----------------------->\ 

I I 1 1 I I 1 I 1 1 I I 1 I I I I 

1 I I I I I I I I I I 
$60 1<-- Sector buffer begins here 

Bytes marked with * are reserved for future use. 

B-2 

68K USER'S MANUAL 



SK*DOS@ 68K USER'S MANUAL 

APPENDIX C. NON-DISK FUNCrIONS 

This appendix lists the non-disk function calls for SK*DOS. They are listed twice, once in order by name and 
once by op code. 

NAME 

ClASFY 
DECIN 
DEFEXT 
EXECSD 
FINDEV 
FLUSHT 
FNPRNT 
GETCH 
GETDNT 
GETNAM 
GETNXT 
HEXIN 
ICNTRL 
INLINE 
INNOEC 
INNOEI 
INTDIS 
INTENA 
LOADML 
OCNTRL 
OUTIOD 
OUT2H 
OUT4H 
OUTSD 
OUT8H 
PCRLF 
PERROR 
PNSTRN 
PSTRNG 
PUTCH 
RENTER 
RESIO 
RESTRP 
STATUS 
STATUI 
TOUPPR 
VPOINT 
WARMST 

OP CODE 

$A02E 
$A030 
$A024 
$AOIF 
$A012 
$A044 
$A04S 

'$A029 
$A03F 
$A023 
$A02D 
$A02F 
$A028 
$A02C 
$A02A 
$A043 
$A040 
$A04l 
$A022 
$A032 
$A039 
$A03A 
$A03B 
$A038 
$A03C 
$A034 
$A037 
$A036 
$A03S 
$A033 
$A02S 
$A020 
$A02l 
$A02B 
$A042 
$A03l 
$AOOO 
$AOIE 

LISTED IN ORDER BY FUNCTION NAME 

FUNCTION 

Classify alphanumeric characters 
Input decimal number 
Default extension 
Execute a SK*DOS command 
Find device number from name 
Flush Type-ahead buffer, if any. 
Print file directory/name.extension 
Get input character with echo 
Get date and time into 
Get file name into FCB 
Get next character from buffer 
Input hexadecimal number 
Input control (see Chapter 14) 
Input into line buffer 
Get input character without echo (with TA) 
Get input character without echo (bypass TA) 
Disable interrupts 
Re-enable interrupts to previous status 
Load open machine language file 
Output control (see Chapter 14) 
Output S decimal digits 
Output 2 hex digits 
Output 4 hex digits 
Output S decimal digits 
Output 8 hex digits 
Print CR/LF 
Print error code 
Print string (Without CR/LF) 
Print CR/LF and string 
Output character 
Re-enter SK*DOS 
Reset I/O pointers 
Reset trap vectors 
Check keyboard for character (with TA) 
Check keyboard for character (bypass TA) 
Convert lower case to upper (in DS!) 
Point to SK*DOS variable area 
Warm start 

C-l 



SK"'DOS@ 

NAME 

VPOINT 
FINDEV 
WARMST 
EXECSD 
RESIO 
RESTRP 
LOADML 
GETNAM 
DEFEXT 
RENTER 
ICNTRL 
GETCH 
INNOEC 
STATUS 
INLINE 
GETNXT 
CLASFY 
HEXIN 
DECIN 
TOUPPR 
OCNTRL 
PUTCH 
PCRLF 
PSTRNG 
PNSTRN 
PERROR 
OUT5D 
OUT10D 
OUT2H 
OUT4H 
OUT8H 
GETDNT 
INTDIS 
INTENA 
STATUl 
INNOEl 
FLUSHT 
FNPRNT 

OP CODE 

$AOOO 
$A012 
$A01E 
$A01F 
$A020 
$A02l 
$A022 
$A023 
$A024 
$A025 
$A028 
$A029 
$A02A 
$A02B 
$A02C 
$A02D 
$A02E 
$A02F 
$A030 
$A03l 
$A032 
$A033 
$A034 
$A035 
$A036 
$A037 
$A038 
$A039 
$A03A 
$A03B 
$A03C 
$A03F 
$A040 
$A04l 
$A042 
$A043 
$A044 
$A045 

LISTED IN ORDER BY OP CODE 

FUNCTION 

Point to SK*DOS variable area 
Find device number from name 
Warm start 
Execute a SK*DOS command 
Reset I/O pointers 
Reset trap vectors 
Load open machine language file 
Get file name into FCB 
Default extension 
Re-enter SK*DOS 
Input control (see Chapter 14) 
Get input character with echo 

68K USER'S MANUAL 

Get input character without echo (with TA) 
Check keyboard for character (with TA) 
Input into line buffer 
Get next character from buffer 
Classify alphanumeric characters 
Input hexadecimal number 
Input decimal number 
Convert lower case to upper (in D5!) 
Output control (see Chapter 14) 
Output character 
Print CR/LF 
Print CR/LF and string 
Print string (Without CR/LF) 
Print error code 
Output 5 decimal digits 
Output 5 decimal digits 
Output 2 hex digits 
Output 4 hex digits 
Output 8 hex digits 
Get date and time 
Disable interrupts 
Re-enable interrupts to previous status 
Check keyboard for character (without TA) 
Get input character without echo (without TA) 
Flush Type-ahead buffer, if any. 
Print file directory/name.extension 

C-2 



SK*OOS (R) 68K USER'S MANUAL 

APPENDIX D. DISK FUNCTIONS 

This appendix lists the disk function calls for SK*OOS. They are listed twice, once in order by name and once by op 
code. 

NAME 

DIROPN 
DIREST 
DISEEK 
DSREAD 
DSWRIT 
FCLOSE 
FCSCLS 
FCSINI 
FDELET 
FDRIVE 
FOPENR 
FOPENU 
FOPENW 
FRBACK 
FREAD 
FRENAM 
FREWIN 
FRGET 
FRPUT 
FRRECD 
FSKIP 
FWRITE 
SISOPN 
SREAD 
SWRITE 

OP CODE 

$AOOB 
$A026 
$A027 
$AOOD 
$AOOE 
$AOOS 
$A009 
$AOIB 
$AOOF 
$AOIA 
$AOOS 
$A007 
$A006 
$AOIS 
$AOOI 
$AOIO 
$AOOA 
$AOI6 
$AOI7 
$AOI4 
$AOII 
$A002 
$AOOC 
$AOIC 
$AOID 

LISTED IN ORDER BY NAME 

FUNCTION 

Open directory file 
Disk restore to track 0 
Disk seek 
Read directory or system information sector 
Write directory or SIS entry 
Close file 
Close all open files 
Initialize File Control System 
Delete a file 
Find next drive number 
Open a file for read 
Open a file for update 
Open a file for write 
Backup to previous sector 
Read the next byte from file 
Rename a file 
Rewind file 
Read a random byte 
Write a random byte 
Select a specified random sector 
Skip current sector 
Write the next byte to the file 
Open system information sector 
Read a single sector 
Write a single sector 

0-1 



SK*OOS (R) 

NAME 

FREAD 
FWRITE 
FOPENR 
FOPENW 
FOPENU 
FCLOSE 
FCSCLS 
FREWIN 
DIROPN 
SISOPN 
DSREAD 
DSWRIT 
FDELET 
FRENAM 
FSKIP 
FRRECD 
FRBACK 
FRGET 
FRPUT 
FDRIVE 
FCSINI 
SREAD 
SWRITE 
DIREST 
DISEEK 

OP CODE 

$AOOl 
$A002 
$A005 
$A006 
$A007 
$A008 
$A009 
$AOOA 
$AOOB 
$AOOC 
$AOOD 
$AOOE 
$AOOF 
$AOlO 
$AOll 
$AOl4 
$AOl5 
$AOl6 
$AOl7 
$AOlA 
$AOlB 
$AOlC 
$AOlD 
$A026 
$A027 

LISTED IN ORDER BY OP CODE 

FUNCTION 

Read the next byte from file 
Write the next byte to the file 
Open a file for read 
Open a file for write 
Open a file for update 
Close file 
Close all open files 
Rewihd file 
Open directory file 
Open system information sector 

68K USER'S MANUAL 

Read directory or system information sector 
Write directory or SIS entry 
Delete a file 
Rename a file 
Skip current sector 
Select a specified random sector 
Backup to previous sector 
Read a random byte 
Write a random byte 
Find next drive number 
Initialize File Control System 
Read a single sector 
Write a single sector 
Disk restore to track 0 
Disk seek 

0-2 



SK*DOS (R) 68K USER'S MANUAL 

APPENDIX E. SK*DOS ERROR CODES 

SK*DOS uses the following error codes; in addition, user programs may use other error codes which are documented 
in their respective manuals. 

NUMERIC 
CODE 

1 
2 
3 
4 
5 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
18 
19 
20 
21 
22 
23 
24 
25 
26 
28 
29 
30 

MEANING 

FCS operation code error 
File already open or in use 
File already exists 
File does not exist 
Directory Error 
Disk is full 
Input past end of file 
Disk read error 
Disk write error 
Disk is write protected 
Protected file 
Error in closing file 
Disk seek error 
Invalid drive number 
Drive not ready 
This FCS operation not permitted on this file 
Random file operation not allowed 
Disk I/O error 
Illegal or missing file name or extension 
Can't Close error 
Random file map overflow 
Specified random sector number is invalid 
Random sector number does not match file contents 
SK*DOS command syntax error 
Missing transfer address 
Disk has been switched while file was open 
File not open 

Internally, SK*DOS errors are represented by one-byte numbers which are generally placed into byte 1 (the second 
byte) of a fue control block by the File Control System. User programs should test for these by their numbers. 

Error messages are generally printed out by using the PERROR routine, which prints out the error number, usually 
followed by a one-line explanation of the error. 

Error 1 (FCS operation code error) is treated a bit differently from the others. When it is encountered, SK*DOS 
immediately prints an error message and asks whether you wish to continue anyway. If you answer Y, then it will 
return error 1 to the calling program and continue; any other answer will immediately abort the program, close all 
fues, and return to SK*DOS. 

The one-ooe explanations of errors are obtained from the ERRCODES.SYS file, and will only be obtained if this fue 
is on the system disk; otherwise only the error number will appear. (The ERRCODES.SYS file also contains 
explanations for 68xxx exceptions. If the processor hits an exception, such as a buss error, it will print error !xx -
where xx is the CPU exception vector number - followed by an explanation taken from the ERRCODES.SYS file.) 

E-l 



SK*DOS (R) 68K USER'S MANUAL 

APPENDIX F. DEFAULT EXTENSION CODES 

The following default extension codes are used by the DEFEXT routine. 

o - .BIN Binary program file 
1 - . TXT Text file 
2 ... . COM Command file 
3 - . BAS Basic language file 
4 - .SYS SK*DOS system file 
5 .. . BAK Backup file 
6 - .SCR Scratch (temporary) file 
7 ... . DAT Data file 
8 - .BAC Basic compiled file 
9 =- .DIR Directory 

10 - .PRT Printer file 
11 = . OUT Output file 
12 - . BAT Batch file 
13 -= .SRC Assembler source file 
14 - .PIP Pipe 

F-l 



SK"'DOS (R) 68K USER'S MANUAL 

APPENDIX G. SK*DOS COMMAND SUMMARY 

This Appendix describes the commands currently supplied with SK"'DOS. From time to time, however, we may 
add other commands which may not be described here. Most commands will provide you with information on 
their proper usage if you type the command name, a space, and a question mark, as in 

BUILD ? 

This Appendix describes the following commands: 

Disk-resident commands 

ACAT FIND 
APPEND FORMAT 
BACKUP FROMSDOS 
BEEP FTOH 
BUILD HDFORMAT 
CACHE HELP 
CAT HTOF 
CHECKSUM LINK 
COMPARE LIST 
COPY LOCATE 
DAMON MAKEMPTY 
DELETE NOBEEP 
DEVICE PARK 
DIFF PDELETE 
DISKNAME PEEK 
DOSPARAM POKE 
DRIVE 
EDLIN 

Memory-resident commands 

DIR 
GET 
GETX 

MON 
RESET 
SAVE 

Other supplied programs 

PICTEST SlTOCOM 

G-l 

PROMPT 
PROTECT 
RAMDISK 
REDO FREE 
RENAME 
SCAT 
SEQUENCE 
SK*DOS09 
STEPRATE 
SYSTEM 
TCAT 
TOMS DOS 
TRACENAB 
UBASIC 
UNDELETE 
VERIFY 
VERSION 
WORK 

TRACE*** 
XEQ 



SK*DOS@ 68K USER'S MANUAL 

ACAT 

The ACAT command displays a fully alphabetized catalog listing of a disk or a directory. It is similar to CAT, 
except that it does not support all of the options that CAT does. 

To use ACAT, type the word ACAT, followed by an optional drive number and directory specifier (which 
defaults to the work drive if not entered). You may follow this with a match-list - additional information if you 
want only certain fIles listed. The general format is to enter 

ACAT <where> <what> 

where the < where> can be either a drive number such as 0 or 1, or a drive number and directory letter such as 
1.C/; a * may be used in place of a directory letter to scan all directories on the disk. 

The < what> in the above example is the match-list specifying which fIles are to be listed. The following 
examples show some possibilities: 

ACAT catalogs all fIles on the current work drive and its default directory 

ACAT 1 catalogs all fIles on drive 1 

ACAT 1 TX catalogs all fIles on drive 1 whose fIle names begins with the letters TX 

ACAT . COM catalogs all fIles with .COM extensions 

ACAT TX. COM catalogs all fIles whose ftIe name begins with TX AND which also have .COM extensions 

ACAT TX*E. COM catalogs all fIles whose fIle name begins with TX*E, (where * stands for any character) AND 
which also have .COM extensions 

ACAT TX . COM catalogs all fIles whose name begins TX, and also all ftIes which have .COM extensions. 

ACAT 2. C/ TX . COM catalogs all fIles whose name begins TX, and also all ftIes which have .COM extensions, 
but only on drive 2 directory C. 

ACAT 2. * / TX catalogs all files whose name begins TX in all directories of drive 2. 

Note how a * is a wild-card character which stands for any character in the middle of a file-spec, and stands for 
any directory when used in a drive.directory specifier. 

Note also that when a drive number is not specified, ACAT defaults to the default work drive and its default 
subdirectory; if a drive number is specifted without a directory code (even if the drive number happens to be the 
same as the current work drive) then ACAT will search the root directory. 

ACAT-l 



SK*DOS (R) 68K USER'S MANUAL 

APPEND 

The APPEND command is used to combine several 'source' fIles together to make a single large ~destination' fue. 
For example, it can combine a number of text fIles together into a large fIle, or can combine several machine 
language programs into one large program. APPEND writes a new destination ftIe, with the original source mes left 
unchanged. 

To use this command, type the word APPEND followed by the names of the source fIles to be combined, followed by 
the name of the resulting destination fIle. For example, the command 

SK*DOS: APPEND PROGl.BIN PROG2.BIN 2.PROG3.BIN l.PROG.COM 

would combine PROG1.BIN, PROG2.BIN, and 2.PROG3.BIN, in that order, into a new fIle called PROG.COM on 
drive 1. (All of the source fues must exist, and the destination fue must not exist.) . 

Although fIles of any type may be appended, usually all the fIles will be of the same type. The extension of the fIrst 
source fue defaults to .TXT if not specified otherwise, and the extensions of all succeeding ftles (source and 

. destination) default to the same extension as the first fIle. 

When machine language program fues having transfer addresses are appended, the transfer addresses are carried 
forward into the destination ftIe, but the SK*DOS load routine uses only the last transfer address given. 

APPEND-! 



SK*DOS (R) 68K USER'S MANUAL 

BACKUP 

The BACKUP command is used to make an exact backup of a disk. This command requires two drives. 

If BACKUP encounters an error on either the source disk or the destination disk, it will display an error message but 
continue copying until it fInishes the disk. To call BACKUP, enter the command BACKUP followed by the drive 
numbers of the source and destination drives, as in 

SK*DOS: BACKUP 0 1 

This command would copy from drive 0 to drive 1. (The two drive numbers must be entered and must be different.) 
Note carefully - BACKUP copies from the fIrst drive specifted to the second drive. 

Before BACKUP can be used, you must format the destination disk with the FORMAT command. Furthermore, the 
destination disk must have at least as many tracks and sectors as the source disk. If it has fewer tracks or sectors, 
then BACKUP will display an error message and stop. 

After BACKUP is fmished, the destination disk will have the same apparent number of tracks and sectors as the 
source disk. For example: suppose you BACKUP a 35-track single density 5-1/4" disk (ten sectors per track) onto a 
77-track double density double sided 8" disk. The destination disk will have only 35 tracks and ten sectors per track. 
(In reality, the remaining tracks and sectors will still be there, but will be completely inaccessible to SK*DOS from 
then on.) 

BACKUP-! 



SK*DOS (R) 

BEEP 
NOBEEP 

68K USER'S MANUAL 

Assuming that your terminal supports the BELL character (ASCII $07), the BEEP command will sound the bell (or 
beep) at each SK*DOS: prompt from then on. This is a useful function if you like to walk away from your computer 
while it is doing a lengthy task. 

Once the BEEP command is given, the bell will sound until the computer is rebooted, or until the NOBEEP 
command is used to cancel BEEP. . 

BEEP & NOBEEP-l 



SK*DOS (R) 68K USER'S MANUAL 

BUILD 

BUILD is used to generate a text file on the disk. BUILD is not intended to replace a more general purpose editor; 
instead, BUILD might be used for testing or generating simple ftIes. 

The BUILD command line must include the name of the ftIe to be generated. This is usually done by including a file 
specification after the word BUILD, as in this example: 

BUILD TEXT 

The ftIe specification defaults to a .TXT extension unless specified otherwise, and also assumes the current working 
drive. 

While entering text with the BUILD command, you may correct any line by backspacing and retyping a character. Or, 
while still in the middle of a line, you may erase the entire line and start it over by hitting the control-X key. Once 
the line is entered by hitting the carriage return key, however, it is stored and cannot be changed. In other words, 
BUILD is not an editor. 

The BUILD program ignores control characters, and is limited to a maximum line length of 127 characters. 

To end entering text, type a # character at the beginning of a new line. 

BUILD-l 



SK*DOS (R) 68K USER'S MANUAL 

CACHE 

The CACHE command is used to set up a disk cache; that is, a memory area which stores data read from or written 
to a floppy disk. When SK*DOS tries to subsequently read that data again, it reads it from the cache memory rather 
than reading it from the physical disk itself. This significantly speeds up disk operations. 

There are three ways of calling the CACHE command: 

SK*DOS : CACHE NEW <memory size in K> 

sets up a new cache memory of the specified size. For example, the command CACHE NEW 320K would set up a 
320K cache memory area. The specified cache memory can range from 32K to 1024K (actually 1 megabyte) in size. 

Another way of calling CACHE is with 

SK*DOS : CACHE <drive number> 

which erases (,flushes') all data from the cache which corresponds to the specified logical drive number. 

Finally, the command 

SK*DOS: CACHE STATUS 

displays a status report of the cache memory, including the memory size, the number of sectors it can store, the 
number of sectors currently empty, and the actual number of sectors currently stored for each floppy drive. 

Note that CACHE only saves data for floppy disks; it does not store data for the RAM disk (since that would just 
duplicate data already in RAM) or a hard disk (since hard disks are generally almost as fast as the cache memory). 
Hence the memory assigned to CACHE is used only for floppy disk data. 

The CACHE program can be used in addition to RAMDISK, but if both are used together, then the RAMdisk must 
be set up first. The reason for this requirement is that this allows the RAMdisk memory to be above the cache 
memory. If SK*DOS is subsequently rebooted, there is a greater chance of the RAMdisk data being preserved since 
it is in higher memory. The cache memory, on the other hand, is always erased when rebooting. (This also serves to 
explain why the cache memory size can be changed while RAMdisk memory size cannot.) 

Although CACHE can use anywhere from 32K to 1024K (i.e., one megabyte) of memory, the actual size chosen 
depends on the application. If you merely intend to use a floppy disk for a few files, then 32K or 64K might be 
sufficient. If, on the other hand, you intend to do extensive processing with one disk, then the size should be about 
20% larger than the size of the floppy disk (since CACHE needs some extra memory for its data storage and for 
'elbow room'.) If you have several floppy drives, then the cache memory should be large enough to accommodate all 
of the expected floppy disk operations on all drives. 

CACHE-l 



SK*DOS (R) 68K USER'S MANUAL 

When you intend to use a single floppy for extensive operations, you can greatly speed up processing by reading the 
entire floppy into the cache at the beginning (assuming that the cache memory is large enough to hold the disk's 
contents.) This is easily done by doing a CHECKSUM on the disk, which reads the entire disk and (coincidentally) 
stores it in the cache memory. Once this is done, SK*DOS will no longer need to read that disk at all; it will only 
access the disk for writing. 

Note that CACHE only stores floppy data; in fact, it goes by the physical drive number rather than the logical drive 
number. Hence if you use the DRIVE command to reassign a drive's logical drive number (but don't swap diskettes 
in the drive) CACHE will 'follow' the diskette to its new logical drive number. 

: ... /) : 

::::::::: 

::: :: :::~~v:>::>:{: :::: : . : ':-:07::7: 

...... ) • .•. }.;:t· •.• ·IL?iiii ;; .·0 ••.. ... . 
'.' .................... ::::::.:·:ccc'c: 

.' ,'... ... . 

: :::::::::.:::::::: n::%\::: :::: <j:: 

CACHE-2 



SK*DOS 4i) 68K USER'S MANUAL 

CAT 

CAT is used to display the contents ('catalog') of a disk or directory. 

At its simplest, invoking the CAT command can be as simple as typing the word CAT, or it can be followed by a 
number of parameters. A more complex command might be in the form 

CAT <how> <where> <what> 

All of these parameters are optional; any of them can be used, but if you use more than one then they must be in 
the order shown above: how, where, what. All parameters are entered on the command line. If you have trouble 
remembering what to do, the CAT help list can be displayed by entering a command of CAT? 

< How> Options 

The so-called "how" options consist of one or more option letters preceded by a + sign, and should follow after 
the word CAT, as in 

CAT +SDFI 

The available options are: 

A Alpha Alphabetize output by 1st letter 

D Date Display file Date 

F File No. Display File number 

M Maximum Full listing with all options 

N Non-existent Display Deleted files with (-) 

P Paging Paging with printer column width 

R Repeat Repeat CAT as listed on command line 

S Size Display file Size in sectors 

CAT normally defaults to the M or Maximum option when none is specified. Entering any option letter on the 
command line will turn that option on, but all others are turned OFF. Hence you must enter ALL options you 
want if you enter any at all. 

The following gives more information on specific options: 

A - This option will group the listing by the first letter, rather than provide a fully alphabetized list (such as 
provided by ACAT). When the "A" option is used you cannot use any match strings. 

D - This option will display the file's creation date. If the month is zero or over 12, CAT will display the month as 
"BAD". 

CAT-1 



SK*DOS@ 68K USER'S MANUAL 

F - This option will list the actual directory number. 

M - The "M" option will provide information on track-sector data and the protect fue code information. The "M" 
option twns on the D,F and S options plus routines needed for the header, track and sector, and protect codes. 

N - This option will display deleted fue entries that exist in the directory. The actual me may not exist on the disk 
- it may have been over-written when it was part of the list of free sectors. You cannot assume a deleted me is 
intact unless you know it was recently deleted and you have not written enough new mes on the disk to reuse the 
deleted fue's sectors. CAT will display a dash (-) as the fIrst character of the me name. This option is useful if 
you intend to try to rescue a deleted fue with the COpy command. 

P - This option will enable a paging subroutine to place blank lines on the top and bottom of the page. This is 
handy when listing a disk with a large number of meso The printer width equate is picked up and used to 
calculate the number of columns allowed for each form of the printed listing. 

R - The "R" option allows CAT to re-start. A prompt will appear at the end of each CAT; enter "E" to exit to 
SK*DOS, or hit any other key to do another CAT as originally listed on the command line. This option will 
allow you to change disks and do a CAT without re-entering the data on the command line. The user can select 
CAT options to control the type of information listed in the disk fue. 

S - The "S" option will enable the sector size of mes to be displayed. 

Since the M option is the normal default, the typical CAT display will look like the following: 

Drive: 2 Dir: AI Disk: SOURCE 4 Created: 31-May-82 

Fi1e# Name Type Begin End Size Date Prt 
2 COPY99 . TXT 29-03 II-OF 128 21-Jun-82 D 
12 RANDOM .SYS R 01-01 01-03 3 3-Nov-81 

Fi1es-21 Biggest-206 Tota1-131/1029 Free-Ill 

The top line of this display provides the drive number, directory, disk name, disk number, and disk creation date. 

A separate line describes each fue, and provides its number within the disk directory sectors, the name and 
extension, beginning and ending tracks and sectors, size, and creation date. Random files are identified by the 
letter R to the right of the extension. The three SK·DOS protect codes are indicated by letters (although the 
catalog protect bit is not honored by CAT): C = catalog protect; D = delete protect; W = write protect. 

The last line indicates the total number of mes on the disk, the size of the biggest fue on the disk, the total size of 
the displayed files as compared with the total size of all fues on that disk, and the number of free sectors. 

<Where> Parameter 

The "where" parameter specifies which disk or directory to display. This parameter can be either a plain drive 
number (such as 1) or a drive number, period, directory letter, and a slash (as in 1.C/). An asterisk (*) can be 
used to mean "all directories" (as in I.·/). 

It is not possible to enter a directory without a drive number preceding it. If no "where" information is entered, 
then the default work drive and directory are chosen; if only a drive number is entered, then the root directory of 
that drive is chosen. 

CAT-2 



SK*DOS8 68K USER'S MANUAL 

. <What> Parameters 

The "what" parameter specifies a match-list which is compared against the files in the directory, and only those 
flIes matching the match-list are displayed. The match-list can contain one or more rue-names and/or extensions, 
or portions of names and extensions. The asterisk (*) is a wild-card character in a match-list which will match 
against any character in a ftle name. 

Here is an example of an elaborate CAT command: 

CAT +AM I.C/ AD .TXT J*M.BAK 

The A and M options specify an alphabetized maximum listing of files in the C directory of drive 1. Only files 
satisfying one of the following three criteria will be shown: (1) any file whose name begins with AD, (2) any file 
having a .TXT extension, or (3) any ftle whose name begins with J, whose third letter is an M, and which have a 
.BAK extension. 

(The original CA T program and documentation were written by, and provided through the courtesy of, Bnmo D. 
Puglia and Leo E. Taylor.) 

CAT-3 



SK*DOS (R) 68K USER'S MANUAL 

CHECKSUM 

CHECKSUM is used to generate and display a sum of all the bytes on a disk. The check sum is shown as an 8-digit 
hex number. 

CHECKSUM is used simply to verify that the content of a disk has not changed over some period of time. Although 
it can be used with floppy or hard disks, we find it most useful to use with the RAMDISK program. Whenever we 
walk away from the computer for an extended length of time while the RAM disk is in use, we run CHECKSUM on 
leaving, and then again when we return. This makes sure that the contents of the RAM have not accidentally 
changed, perhaps due to a momentary power interruption while we were gone. . 

To use CHECKSUM, simply follow it with the drive number, as in 

SK*DOS: CHECKSUM 1 

CHECKSUM-l 



SK*DOS (R) 68K USER'S MANUAL 

COMPARE 

The COMPARE command requires two drives, and does an exact, byte by byte, comparison of two disks. It is thus 
useful for checking whether a disk has been backed up correctly (although the disk will be verified during BACKUP.) 

To use COMPARE, type the word COMPARE followed by the drive numbers of the two drives holding your disks, 
as in 

SK*DOS: COMPARE 0 1 

which would compare the disks in drives 0 and 1. 

If you want to check whether a single disk is readable, you may also specify the same dJ:ive number for both disks, as 
in 

SK*DOS: COMPARE 0 0 

This mode reads a single disk twice, and checks not only that it is readable, but also that the same data is read both 
times. 

COMPARE-1 



SK*DOS8 68K USER'S MANUAL 

COpy 

COpy is used to copy files from disk to disk, or from directory to directory. It can copy just one file, a group of 
files, an entire directory, or an entire disk. It can also retrieve deleted files (although UNDELETE is generally 
easier to use), alphabetize while copying, and more. 

In its simplest form, the COpy command is used by entering the word COpy, the file-spec of the ftle to be 
copied, and the file-spec of the destination. For example, 

COPY O.PROG.TXT 1.NEWPROG.ABC 

would copy PROG.TXT from drive 0 to a new ftle called NEWPROGABC on drive 1. 

But there are many other possible ways of calling COPY. Although there are some exceptions, the most common 
form of a COpy command looks like this: 

COpy <how> <from where> <to where> <since date> <match-list> 

We will leave the how and since date for later, and begin with the from where. 

The < from where> parameter 

This item describes where the ftle( s) will come from. It may be 

(a) a plain drive number, such as 0 or 2, in which case the current default directory is assumed (except when the 
F option is used - see later), 

(b) a drive number and directory, such as lA/ (or 2. * / where the asterisk would mean all directories), or 

(c) a ftle name and extension, possibly preceded by a drive number and directory. If such a specific file-spec is 
supplied, then a match-list would not be used. An extension is always required in this case, as this option must 
narrow down the copy function to a specific file. If a drive and directory are not supplied, then the current default 
will be used. 

The < to where> parameter 

This item describes where the ftle( s) will be copied to. It may be anyone of the three formats described under 
< from where> above. If the < to where> information is incomplete, then the drive and directory will come from 
the default work values, and the ftle name will be taken from the "from" list. For example, if the command is 

COPY O.A/FlLE2.TXT 2 

then the file wiD be copied to the default directory on drive 2 and will still be called FILE2.TXT. Any other 
directory would have to be specifically called out. If the "to" directory is specified as * /, then the ftle will be 
copied to the same directory as it was on the source disk. 

The < match·list> parameter 

In those cases where the "from" parameter does not provide enough data to specify a specific file, the match list 
can be used to narrow down the field to a specific ftle or group of rues. This list is essentially a list of one or more 
rue names and/or extensions, or portions thereof. COpy will copy only those files which match the match-list. 

COPY-l 



SK*DOS@ 68K USER'S MANUAL 

If, for example, the match-list consists of the word UN, then any rtle whose name begins with UN will be copied; 
if it consists of .TXT then any file with a .TXT extension will be copied. If the match-list item is UN.TXT, then 
rtles must both have a name beginning with UN and also must have a .TXT extension. An asterisk can be used as 
a wild-card character inside a name or extension, as in U*D, which would match with any name such as UAD or 
UBD or even USD. 

As mentioned earlier, the match-list is optional; if absent, then any rtle satisfying the <from where> parameter 
will be copied. 

For example, COpy 0 1 PROG. TXT would copy PROG.TXT (and all other files whose name begins with the 
letters PROG and which have.TXT extensions) from drive 0 to drive 1. 

COpy 0 1. Dj A B . BIN would copy all rtles whose names begin with A or B, or which have a .BIN 
extension, from drive 0 to directory 1.0/. 

The < how> parameter 

The < how> parameter describes how the copy is to be done, and allows a variety of variations on the basic 
COpy command. It is specified by including one or more option letters between the word COpy and the < from 
where> parameter, which must always begin with a drive number (so COpy can tell where the option letters 
end and the < from where> parameter begins. The following option letters are allowed: 

A 
C 
o 
E 
F 
K 
L 
M 
N 
o 
P 
R 
S 
T 
U 
W 
Z 

copy in Alphabetical order 
allow Corrupt flies to be copied 
copy flies with newer Date 
delete Existing destination file 
copy by File number (alpha not allowed) 
Kill duplicate rtle on source 
List rtles without copying 
Make random rtle 
copy rtles Not on destination 
turn Off defaults 
Prompt before copying file 
Recover from track-sector 
copy Since a specffied date 
Track zero protection override 
Use current SK*DOS date 
Wait for disk change 
Zap source rtle after copying 

Here are short explanations of these options: 

The A option will alphabetize the source directory before rtles are selected to be copied. 

The C option will enable you to copy a file that is damaged by a CRe error or record sequence error. This is a 
slightly dangerous option which should only be used if you don't have an alternate copy of a file. 

The D option will rmd rtles that are on both disks and compare their creation dates and times or sequence 
numbers. If the source me is newer it will be copied as a replacement for the older destination rtle. 

COPY-2 



SK*DOS8 68K USER'S MANUAL 

The E option is used when you want to replace a me on the destination disk. This option will suppress the 
prompt for whether you wish to delete the existing me. It will often be used along with 0 to update a disk with 
newer versions of programs. 

The F option changes copy's parameters from a match string list to a list of file numbers. Follow the drive 
numbers with a list of me numbers for those files that you want to copy. Fde numbers can be found with CAT. 
A group of fdes can be specified as a starting and ending number separated by a dash. The command COpy F 
0,1 5 13 -18 9 will copy me 5, mes 13 through 18, and fde 9, all to the root directory of drive 1. The "from" 
drive number always refers to all directories, but you must append . * / if you wish the files copied to the 
corresponding directories of the "to" drive. This option is useful for copying the contents of a large disk to two or 
more smaller ones. 

The K option is VERY dangerous. This command isn't really a copy; rather it uses the directory compare 
routines to delete files from the source disk that appear on the destination. This allows you to clear off extra 
copies of programs not needed on the source disk. It operates very fast and will clear off a number of mes faster 
than you can hit reset. As with all dangerous options it is protected with an ARE YOU SURE prompt. COpy K 
1,0 is most effective in killing fdes on drive 1 when they exist on drive o. COpy KD 1, 0 will kill the me on 
drive 1 when it is older than the me on drive o. Use COPY KDL 1,0 to preview what me~ will be deleted. 

The L option disables the fde copy subroutine. This is used to display a list of fdes that would have been copied 
if you hadn't used option L. This can be used with other options to check disks for duplicate fues, newer dates, 
bad fIles, etc. 

The M option is used to convert a SK*DOS sequential file into a random me. This option is also used with R to 
recover a random fIle by track and sector. NOTE: this option is not used for normal fIle copying; if the source 
fIle is random COpy will automatically make the destination fIle random. 

The N option is used to copy the fIles on the source disk that are not already on the destination disk. This can be 
used to add all new mes to a backup disk. 

The 0 option is a dummy character used to turn off all default options if you do not want any options. If used 
with any other option letters it has no effect. 

The P option enables this prompt: Prompt off (P); SK*DOS (S); copy (YIN)? You should respond 
with P if you want to continue copying without the prompt or S to return to SK*DOS or Y to copy this file. N or 
any other character will skip to the next file. This is useful for scanning through a disk copying only certain fIles. 
Another use is skipping down to a certain me on a disk and copying all mes after that. 

The R option is used to read a me without using the directory. If the directory of a disk has been destroyed but 
the user knows the file's starting address, the file can be recovered. The command COpy R 1 2B 5 
O.NEWFILE will read from drive 1, track $2B, sector $5 until encountering an end of fIle or a record out of 
sequence. The write flle extension will default to .SCR. A second use for this option is to recover a deleted file 
(the fIrst sector of a deleted me can be found with the N option of CAT.) If the fIle has not been over-written, 
COpy can recover it. Record sequence checking eliminates UNDELETE's restriction that the fde be the last 
file deleted. Provision was made to start copying in the middle of a fue. This is a somewhat dangerous option 
since it allows the user to override the SK*DOS File Control System. The command must be typed as shown 
with three numbers and a file name. Only a few other options can be used with R. See M if the original me was 
random. 

The S option is used to copy only fdes generated on or after the date specified in the "since date" parameter. For 
example, the command COpy SOl 6 - 28 - 88 would copy all those fIles dated June 28th, 1988 or later. 

COPY-3 



SK*DOSfJ> 68K USER'S MANUAL 

Since no directory is specified, only fIles in the root directory would be copied in this case. The S option can, 
however, also be combined with several other COpy command features to make more complex commands. The 
S option can not be combined with the F (copy by fIle number) option, since the F option will take precedence. 
(The F and S options are often used for backing up a hard disk to floppy disks. F is used for a complete backup 
to copy groups of files at a time to separate floppy disks; S is useful in making incremental backups of just those 
fIles which have been changed or newly generated in the last few days.) 

The T option is used only for those systems that store data fIles on track zero. COpy normally prevents a file 
from linking to track zero. Some hard disk systems include track zero as part of their free sector chain; in that 
case, COpy will switch to the T option automatically. 

The U option is used when you want the destination fIle to have the present SK*DOS date rather than the date 
of the source file being copied. This may be useful if you know the source file has an erroneous date. 

The W option loads COpy, but then waits for any key to be pressed before continuing. This allows you to switch 
disks before actually copying. (Note that the same effect can be achieved by using GET to load COpy, switching 
disks, and then using XEO (plus appropriate arguments) to execute it.) 

The Z option is somewhat dangerous. It is used to delete the fIle from the source disk after it is copied. 
Essentially the fIle is moved from one disk to the other. 

Option letters are often used in combinations; here are some examples of popular combinations: 

DN - Updates the destination with all fIles from the source that are not on the destination or have an older date 
on the destination. 

EZ - Moves fIle P.COM from source to destination no matter what. 

KD - Kill the file on drive 1 when it is older than the file on drive o. 

LNA - Alphabetically lists those fIles on the source that are not on the destination. 

The < Since date> parameter 

This parameter is used only with the S option, and specifies the date used for copying; only fIles dated on or after 
this date will actually be copied. The month, day, and year must appear in that order, and may be separated by 
hyphens or slashes, as in 6-28-88 or 6/113/88. Note that the date must appear after the "to where" parameter, but 
before the "match-list", if used. 

General Comments 

It is important to realize that if you get an error while writing a fIle to the destination disk the new file may be 
defective. The file may appear in the directory but usually it is incomplete. 

The most common error message is DATE BAD. This occurs when the user does not enter a valid date when 
SK*DOS is booted or by failure of a hardware clock when used for setting the SK*DOS date. COpy will check 
the date on all fIles when it reads the disk directory and report any dates outside a reasonable range. This 
reduces the chance that a bad date will be passed on to the new fIle. There are two alternatives when the BAD 
DATE message appears. You can answer Y indicating that you approve of bad dates or answer N and not copy 
the fIle. After returning to SK*DOS you can re-enter COpy using option U which will assign the current 
SK*DOS date to the file or use the DATE command to set the fIle date to the day the file was made. 

COPY-4 



SK*DOS@ 68K USER'S MANUAL 

In order to check that the destination disk exists and is not write protected, COpy reads the SIS (track 0 sector 
3) of the destination disk and then duplicates it on sector 4 (which is an unused sector). If the disk is protected or 
not ready the program will exit immediately. 

(The original COpy program and documentation were written by, and provided through the courtesy of, Bruno D. 
Puglia and Leo E. Taylor.) 

COPY-5 



SK*DOS (R) 68K USER'S MANUAL 

DAMON 

DAMON is a trouble-shooting program which displays the drive, track, and sector number of each sector being 
written or read by SK*DOS, and the address of the current File Control Block. You might use it whenever you want 
to follow SK*DOS disk accesses to see what it is doing. 

DAMON substantially slows down the operation of the disk system, since each sector read or written is accompanied 
by a display of its number on the screen. Moreover, once activated, the only way to turn it off is to reboot the system. 
Hence it is a specialty program, to be used only when needed to debug a program. 

DAMON-! 



SK*DOS@ 68K USER'S MANUAL 

DELETE 

DELETE is used to delete a disk fIle from a disk. 

To delete a fIle, enter the command DELETE followed by the fIle name, as in 

DELETE TEXT.TXT 

The extension is required. The command defaults to the default directory on the work drive. 

You may delete several fIles with one DELETE command by specifying more than one fIle name. The maximum 
length of the entire DELETE command, however, is limited to 128 characters. 

DELETE-1 



SK*DOS (R) 68K USER'S MANUAL 

DEVICE 

DEVICE is used to display or install device drivers. To display the current device assignments, simply type the 
command 

SK*DOS: DEVICE 

and you will get a display similar to the following: 

The current I/O device assignments are: 
Normal Device Device Driver 

use number name 
------ ------ ------ ---------

Terminal 0 CONS Default driver 
Error device 1 CONS Default driver 
Printer 2 CONS Default driver 

3 CONS Default driver 
4 CONS Default driver 
5 CONS Default driver 
6 CONS Default driver 

Null device 7 NULL Default driver 

To install a new driver, use the format 

SK*DOS: DEVICE <driver name> AS <device name> AT <device number> 

where 
... the < driver name> is the name of a device driver rtle (with a default extension of .DSK) or, alternatively, the word 
DEFAULT for the default console driver, 
... the <device name> is a four-character name such as CONS or PRTR which will be assigned to the device 
... the < device number> is a number from 0 to 7 that will be assigned to the driver. 

Additional information on DEVICE usage maybe found in Chapter 14. 

DEVICE-1 



SK*DOS® 68K USER'S MANUAL 

DIFF 

DIFF is used to compare the contents of two text flIes and print out any differences between them. 

The correct syntax for using DIFF is 

SK*DOS: DIFF <file-name-l> <file-name-2> 

where the ftIe-names are of the two ftIes being compared. 

DIFF compares the two fIles on a line-by-line basis, so two fIles having the same text but formatted into different 
lines will be shown as different. Each time DIFF finds lines which are different, it displays them, and continues until 
it fmds two lines which again match. 

DIFF has several characteristics which should be noted. If the two lines are of different lengths, then DIFF will stop 
at the end of the shorter fIle and print out the message "No further similarities found". So as to avoid resynchronizing 
on blank lines, it ignores them. When looking forward for another pair of matching lines, it stops after 50 lines. 
Hence if there are more than 50 consecutive different lines in the two fIles, DIFF may not be able to resynchronize at 
the very end of the dissimilar texts. 

DIFF-l 



SK*DOS® 68K USER'S MANUAL 

DIR 

DIR is used to display the contents (directory or catalog) of an entire disk, including all its subdirectories. 

DIR is not as useful, and does not provide as much information as some of the other 'catalog' utilities such as 
ACAT, CAT, SCAT, or TCAT. It is, however, memory-resident, so it can be used without having a system disk 
with another 'cat' utility installed in a drive. Except for an optional drive number, DIR accepts no other options 
or match list arguments. 

In addition to providing a list of fues on a disk, DIR provides one additional piece of information which the other 
programs do not provide - a list of subdirectories used on the disk. This is done in the form of a display like this: 

Subdirectories used: < ABCDEFGHIJKLMNOPQRSTUVWXYZ > 

Only those letters which are used as subdirectories appear. The symbols < and > appear only in those cases 
where subdirectories exist with ASCII codes either below A or above Z. Such names are normally illegal, but 
may still exist if written by programs. 

DIR-l 



SK*DOS (R) 68K USER'S MANUAL 

DISKNAME 

The DISKNAME command is used to change the name, number, or date of a disk. Simply type the command 
DISKNAME, followed by the logical drive number, as in 

SK*DOS: DrSKNAME 2 

D ISKNAME will then print out the current values, and allow you to enter new values. You may leave the old name 
or number unchanged by pressing ENTER, or may leave the date unchanged by answering N to the question. 

DISKNAME-l 



SK*DOS (R) 68K USER'S MANUAL 

DOSPARAM 

The DOSP ARAM command can be used to display or change a number of DOS parameters. 

To display the current DOS parameters, use the command 

SK*DOS: DOSPARAM [<device number>] 

where the < device number> is optional and will default to 0 if not given. DOSP ARAM will then print out several 
system-wide parameters, as well as parameters for the specified device number, as shown in this example: 

SK*DOS PARAMETERS (COMMON TO ENTIRE SYSTEM): 
BS Backspace - $08 - Control-H BE BS echo - $08 =- Control-H 
DL Delete $18 - Control-X EL Endline - $3A =-
TB Tab - $00 (none) ES Escape - $lB - Control-[ 
RP Repeat - $01 - Control-A MD Max drive no- 1 
OF OFFSET = $OOOOSBOO ME MEMEND - $OOOBFFFF 

SK*DOS PARAMETERS FOR DEVICE NUMBER 0 
PL Print lines - 0 SL Skip lines - 0 
WD Width = 0 NL Null wait - 0 
PS Pause - NO EF End of File - $lA - Control-Z 
BR Baud rate - 0 XF X-OFF Char - $00 (none) 
XN X-ON Char - $00 (none) 

To use DOSPARAM to change one or more parameters, type DOSPARAM, followed by an optional device number, 
followed by the two-letter abbreviation for the parameter to be changed (see below), followed by an equals sign, and 
then followed by the new value. 

Several parameters can be changed in one command line, as in 

SK*DOS: DOSPARAM 2 WO-64 BS-$08 PS-N 

The PAUSE value is either YES, NO, ON, or OFF; all other values are decimal except those identified with a $ .. 

See the chapter on 'User-Accessible Variables' for "the explanation of these parameters. 

DOSPARAM-l 



SK*DOS (R) 68K USER'S MANUAL 

DRIVE 

DRIVE is used to reassign different 'logical' drive numbers to the actual 'physical' drives of your system, or display 
the current drive assignment, or write-protect a drive. For example, since most users prefer to work with 'drive 0' as 
their main drive, this allows them to use different physical drives as their 'drive 0'. 

There are two ways of using DRIVE. Just a plain 

SK*DOS: DRIVE 

will display the current assignment. On the other hand, the command may also be of the form 

SK*DOS: DRIVE Lx= Ty[P or Uj [LD-MDj 

which would assign logical drive x to become Type y. x and y can be numbers from 0 through 9, and T can be N for 
None, F for Floppy, H for Hard, 0 for Other, or R for RAM Disk. (There can only be one RAM disk.) Multiple 
assignments can be made on one line. 

There are two options which can be specified, as shown in brackets above. First, any assignment can be followed by 
the letter P to write-protect that drive, or U to un-protect the drive. Second, the syntax LD = MD would cause 
DRIVE to set the MAXDRV variable equal to the last drive number currently in use, if it is not already so set. 

For example, after the command 

SK*DOS: DRIVE LO-FO LI-HOP L2-N LO-MD 

floppy drive 0 would become logical drive 0, hard drive 0 would become logical drive 1 (and write-protected), and 
logical drive 2 would be disabled. Furthermore, MAXDRV would be set to 1, assuming that there were no other 
active drives (set via earlier DRIVE statements or by default.) 

One physical drive cannot be assigned two logical drive numbers; if you attempt to do so, DRIVE will print an error 
message and ignore the entire command. 

Although DRIVE can be useful with floppy drives, its main use comes with hard (Winchester) disks, for it allows a 
hard disk to be used as logical drive 0; this is especially useful when SK*DOS is booted from a hard disk rather than a 
floppy. It is also essential in systems where a hard disk is partitioned into two or more 'partitions'; it then allows any 
combination of disk partitions to be assigned logical drive numbers, and also allows some of them to be write -
protected. (If you have a hard disk, then see the HDFORMAT description for further information on hard disk 
partitions.) 

DRIVE-l 



SK*DOS@ 68K USER'S MANUAL 

EDLIN 

EDLIN is a simple line editor for generating or modifying text fIles. It is not intended as a replacement for a full 
screen editor or word processing program; rather, it is designed to perform simple editing functions for users who do 
not have a more complex editor program. 

In keeping with its simplicity, EDLIN has several limitations. It cannot handle a line longer than 79 characters, and it 
is limited to working with text fIles which fIt wholly into memory. This may be a problem if you only have a few K of 
free memory, but should not be a limitation in most 68K systems. It does not provide a full screen display, but limits 
you to working with one line at a time. 

EDLIN is called with the command 

SK*DOS: EDLIN <fIle-spec> 

where the < flie-spec > is the name of the me to be generated or modifIed. If not specified, the extension defaults to 
.TXT. If the fde already exists, it will be read into EDLIN's memory and can then be edited. When you exit, EDLIN 
will rename the old rde to an extension of .BAK (deleting an old .BAK tile if it exists), and rewrite the new me with 
the same name as the old. 

EDLIN is a line editor. That is, it works on lines of text. Each line of the rde has a line number; these numbers are 
dynamic in the sense that they automatically change as new lines are added or deleted. Each time a line is printed 
out, its current number is printed with a colon at the left, as in 

5: THIS LINE IS NOW LINE 5 OF THE 'FILE 

At any time, you work on a so-called cu"ent line, which is your base of operations. You can move up or down from 
that line, but many operations can only be performed on this one current line. 

EDLIN has two operating modes: 'command' mode and 'insert line' mode. In command mode, its prompt is a # sign, 
often followed by the current line number; in insert mode, its prompt is an = sign. 

The command mode supports one-character editing commands such as P for Print or I for Insert. Such commands 
can be preceded by a line number if you wish to change to a different current line. For example, the command lOP 
would tell EDLIN to go to line 10 and then print it. (Do not insert a space between a command letter and any of the 
arguments before or after it.) 

The following EDLIN commands can be used: 

C - Change a string on current line 

The letter C is followed by a delimiter, the old string, the same delimiter, the new string, and the same delimiter. Any 
character can serve as the delimiter. For example, the command lOC/Hence/Thus/ would go to line 10 and then 
change Hence to Thus. The command may optionally be followed by an asterisk, as in lOC/Hence/Thus/*, which 
makes the command a global command, changing all occurrences of Hence to Thus from the current line down to the 
end of the me. 

D - Delete the current line 

This command deletes the current line, and renumbers all of the following lines. 

EDLIN-l 



SK*DOS@ 68K USER'S MANUAL 

F - Find a string below current line 

The letter F is followed by a delimiter, the string to be found, and the same delimiter, as in F /this string/. The 
command may optionally be followed by an asterisk, as in F /this string/*, which makes the command a global 
command; it will then display every line from the current line down to the end of the me containing the specified 
string. 

G - Go to a line 

The G command is used to go to a new curtent line. It is followed by one of the following: line number, as in G20; 
the letter T to go to the top of the me; or the letter B, as in GB, to go to the bottom. 

I - Insert a new line after the current line 

Use the I command to insert one or more new lines after the current line by typing in an I and a carriage return (or 
enter). The prompt will now switch to an = sign, and you can enter one or more new lines. To switch from enter 
mode back to command mode, type a # sign at the beginning of a new line. 

P - Print 

The P command prints one or more lines, beginning at the current line. It may be followed by one of several 
arguments, as in these examples: 

P Prints the current line 
P 5 Prints 5 lines beginning with the current line 
P# 5 Prints from the current line down to line number 5 
P ! Prints from the current line to the bottom of the me 

Q - Quit without saving 

The Q command exits back to SK*DOS without saving any text on the disk, and is used primarily if you wish to 
abandon all the work you have edited. 

S - Save and then exit to SK*DOS 

The S command saves the current text to the disk and then returns to SK*DOS. If, as explained above, EDLIN is 
modifying an existing rue, then·it renames the old rue to .BAK before saving the new text. 

? - Print a help message 

Prints a brief summary of EDLIN commands. 

EDLIN-2 



SK*DOS (R) 

FIND 

FIND may be used to fmd specific occurrences of a string within a text ftIe. The syntax is 

SK*DOS : FIND <file-speC> <search string> 

For example, the command 

SK*DOS: FIND SKEQUATE END 

will display the line number and text of every line which contains the string END. 

FIND-1 

68K USER'S MANUAL 



SK*DOS (R) 68K USER'S MANUAL 

FORMAT 

FORMAT is used to initialize a blank disk and prepare it for use with SK*DOS. It completely erases a disk, writes 
the System Information Sector on the disk, initializes an empty directory, and sets up the remainder of the disk as 
free space. 

This section describes the FORMAT command in general terms; the particular FORMAT command provided for 
your particular disk controller may be slightly different, but the general operation will be the same. (There may be 
additional information supplied with this manual describing FORMAT in greater detail.) 

To format a disk, enter the command FORMAT followed by the drive number. For example, 

SK*DOS: FORMAT 1 

would format the disk in drive 1. FORMAT will then ask 

HOW MANY TRACKS? 

to which you may answer any number from 2 through SO. Be sure not to specify more tracks than your drives can 
handle. You will normally answer 35 or 40, but formatting fewer tracks is often convenient when you wish to save 
time and don't need as much space on the disk. 

If your disk controller supports double-sided or double density operation, the next questions will be 

SINGLE OR DOUBLE SIDED? 
SINGLE OR DOUBLE DENSITY? 
SINGLE OR DOUBLE DENSITY TRACK O? 

Answer with an S or D, as appropriate. (The track 0 question will only be asked if you had specified double density 
for the disk itself.) 

You should specify a single-density track 0 only if you intend to be compatible with 6809 versions of SK*DOS; the 
standard SK*DOS/68K format is double density, including a double-density track o. Although SK*DOS can read 
and write single-density disks, note that a "boot disk" (i.e., a disk which will be used for booting SK*DOS) must be 
double density throughout. 

You will next be prompted 

ENTER DISK NAME: 
ENTER DISK NUMBER: 

The disk name must conform to standard file-name rules (and may have an extension) and the number may go from 
o through 65535. 

FORMAT-1 



SK*DOS (R) 68K USER'S MANUAL 

While formatting the disk, FORMAT will let you know its progress, and may display messages if errors are 
encountered. 

Most of FORMAT's time is spent checking each sector written to make sure it is readable. Unreadable sectors are 
removed from the chain of free sectors, and at the end of the formatting process, FORMAT displays the number of 
good free sectors available on the disk. Any number of defective sectors can be thus bypassed, but formatting will be 
aborted if an error is discovered in several crucial sectors of track 0 (sectors 1, 2, 3, or 5). 

You may also specify an optional interleave factor on the command line, as in 

SK*DOS: FORMAT 1 5 

which would establish an interleave of 5. Allowable values are from 1 to 9 for single-density, 1 to 17 for double 
density; if no interleave is specified, a default value of 3 is chosen. Changing the interleave constant may speed up 
some operations but slow down others; the value of 3 seems a good compromise for most uses. 

(See also the LINK command description). 

FORMAT-2 



SK"'DOS (R) 68K USER'S MANUAL 

FROMSDOS and TOMS DOS 

These two commands are used for transferring text fues between SK"'DOS/68K and mM-compatible PC's running 
MS/PC-DOS, using the 180K disk format (one side of a standard 360K disk). 

To transfer a disk between an MS/PC-DOS system and a SK*DOS system, proceed as follows: 

1. First use the MS/PC-DOS FORMAT command to generate a special single-sided transfer disk. The command is 

FORMAT A: /1 

(which assumes that the disk is in drive A:). It is important to start with a fresh, newly-formatted disk. Then do one of 
the following: 

2a. To transfer a text fue from MS/PC-DOS to SK*DOS, simply copy it to this disk and then convert it to SK"'DOS 
format with FROMSDOS. Note that only one fue may be copied to this disk. If you have more than one ftle, you 
must use a fresh disk for each. The syntax for using FROMSDOS is 

FROMSDOS <MS/PC-DOS drive number> <SK"'DOS file spec> 

For example, to copy a fue from an MS/PC-DOS disk in drive 1 to FILE.TXT in drive 0, the command would be 

FROMSDOS 1 FILE 

The SK*DOS fue specification defaults to the working drive and a.TXT extension, unless specified otherwise, so the 
fue goes to O.FlLE.TXT if drive 0 is the working drive. 

2b. To transfer a fue from SK*DOS to MS/PC-DOS, take the disk formatted above to your PC system and run the 
following Basic program using the PC's Basic or GWBasic (it takes a minute or two): 

10 OPEN "A:TEXT.TXT" FOR OUTPUT AS 1 
20 PRINT #1, "GARBAGE" 
30 GOTO 20 

This initializes the disk directory in a special way. Now take the disk to your SK"'DOS system and run TOMSDOS to 
copy the desired fue to the disk. Only one file can be copied to this disk; if you have more than one, you must start 
with another formatted disk. The syntax for using TOMSDOS is 

TOMSDOS <SK"'DOS file spec> <MS/PC-DOS drive number> 

For example, 

TOMSDOS FILE 1 

would copy O.FlLE.TXT to the previously formatted MS/PC-DOS disk in drive 1. If you get a warning message, 
make sure that you have specified the correct drive number for the MS-DOS disk. 

The disk can now be read on your MS/PC-DOS system. If you wish to copy the fue to another disk, you must use the 
/A option of MS/PC-DOS's COPY command. For example, to copy the file to a hard disk, the command would be 

COPY /A A:TEXT.TXT C: 

FROMSDOS & TOMSDOS-l 



SK*DOS (R) 

FrOH 
HTOF 

68K USER'S MANUAL 

These two programs are used to do a floppy disk backup on systems which only have one floppy drive, but which have 
either a hard disk or a large enough RAM disk to store the entire floppy disk contents. 

FfOH is used to copy an entire floppy disk (including boot sectors, directory, and even empty sectors) to a disk fue 
on a hard disk or RAM disk. The syntax is 

SK*DOS : FTOH <floppy drive number> <hard disk file spec> 

HTOF is then used to do the opposite - copy the disk contents from the hard disk or RAM disk file to the floppy disk. 
The syntax is 

SK*DOS : HTOF <hard disk fue spec> <floppy drive number> 

In both cases, only a floppy drive number is specified as the entire disk is copied, but a hard disk (or RAM disk) me 
name is needed since the floppy disk contents occupies only a single me on the hard disk or RAM disk. 

FfOH & HTOF-l 



SK*DOS (R) 68K USER'S MANUAL 

GET&GETX 

GET and GETX are memory-resident commands used to load a binary file into memory. The word GET (or GETX) 
is followed by the file-name of the file to be loaded. An extension of .BIN is assumed, and the current work drive is 
used, unless specified otherwise. 

For example, the command GET CAT. BIN or just GET CAT would load a binary program called CAT.BIN from 
drive 0 and place it in memory. 

GET and GETX usually add the current value of OFFSET (see Chapter 11) to both the load address and execution 
address of the program loaded. Most often, this will result in the program being loaded into memory directly above 
SK *DOS itself. 

For special uses, the addition of OFFSET can be defeated by (a) specifying the full name and extension of the me to 
be loaded, and (b) immediately following it by a - (minus) sign, without a space between the extension and the minus. 
Note, however, that this is not normally done and may create some problems; read the discussion of the SA VB to see 
the implications.) 

The difference between GET and GETX has to do with error checking. As GET loads a binary fde, it checks the 
loading address of every byte. It will not allow a byte to be loaded below the current value of OFFSET, or above the 
current value of MEMEND; if any such invalid address is found, GET prints an error message and aborts loading. 
GETX, on the other hand, does no such checking. In general, you should therefore always use GET rather than 
GETX; GETX should be reserved only for special (and well thought out!) purposes. 

GET&GETX-1 



SK*DOS (R) 68K USER'S MANUAL 

HDFORMAT 

HDFORMAT lets you format a hard disk for use with SK*DOS (as opposed to FORMAT, which is strictly for 
floppy disks). This command will work slightly differently for different systems, and you may have received an 
addendum which describes any such differences for your system configuration. (The following describes the 
command as used with the WD1OO2 controller.) 

HDFORMAT is called with the simple command line 

SK*DOS: HDFORMAT 

and then proceeds to ask for the information it needs to properly format the hard disk. It's important to answer these 
correctly, and so we will discuss these questions and their answers at length. The first question is 

Which drive - A or B? 

In most instances, only one drive is present and so the choice is A. (The WD1002-HDO controller used on some 
computers allows three hard drives, which it calls drives 0, 1, and 2, but SK*DOS supports only drives "1" and "2". To 
avoid confusion with drive numbers under SK*DOS we therefore call these two drives A and B instead of 1 and 2. 
SK*DOS does not allow what the WD-1002-HDO calls "drive 0" because the WD-1002-HDO switches to this drive 
number upon powering up, and not putting an actual drive on this port avoids the possibility of the disk being 
corrupted when powering up or down.) 

The next four questions have to do with the size and configuration of the disk, which requires some explanation first. 

Hard ("Winchester") drives typically contain several 'platters' which rotate on a common shaft. Each platter has two 
sides, with a head on each side to read and write data. The heads are all mounted on a common assembly so they 
move in and out together. At anyone time, each head is positioned over a circular track on its surface. All of those 
tracks together make up a 'cylinder'. The data on each track is divided into 'sectors', with typically thirty two 256-byte 
sectors per track; the number of sectors per cylinder is then equal to the number per track times the number of 
tracks per cylinder. 

For example, a MiniScribe 3425 drive has two platters with four heads. There are 615 tracks on each platter (so there 
are 615 cylinders) and 32 sectors on each track. Beyond the 615th track, however, this drive has additional tracks 
which, though not good for storing data, are specially set up as a 'parking area' - an area designed for letting the 
heads land when power is shut off. The drive instructions specify that the parking area is on cylinder 656. 

Winchester drives also use 'write precompensation' to reduce write errors. Precompensation is only needed on inner 
tracks, and different drives need it on different tracks. Many drives start precompensation on track 128, but you 
should consult the drive manual for the correct number to enter. 

Using this information, the next four questions (and their answers for this sample drive) would be 

Number of cylinders (Tracks/Side) to use on drive? 615 
Which cylinder should the drive be parked on? 656 
Which cylinder to start precompensation? 128 
How many heads on the drive? 4 
(There are 32 sectors per track/side.) 

HDFORMAT-l 



SK*DOS (R) 68K USER'S MANUAL 

The park cylinder is not actually used by HDFORMAT; instead, it is saved and used by the PARK command.) Even 
when a specific parking area is not suggested by the disk manufacturer, we recommend that you reserve some 
cylinders for that purpose, and subtract that number of cylinders from the total capacity of the drive. 

In some cases, you may want to use only part of a hard disk for SK*DOS, leaving the remainder for some other DOS. 
In that case, simply specify either a smaller number of heads or a smaller number of cylinders. For example, you 
could specify 309 cylinders, which would leave the other 306 for use by the other DOS. 

SK*DOS next asks 

Enter the required code for drive step rate -
o if buffered, 1 to 15 for 0.5 to 7.5 msec respectively: 

The step rate determines how fast the drive will move the heads from one track to the next. In the buffered mode, 
the controller tells the drive to move as fast as it can, and simply waits until the head movement is fmished; in the 
other modes, stepping signals are sent at ftxed intervals from 0.5 to 7.5 milliseconds apart, until the drive is at the 
requested cylinder. You will have to consult your disk drive manual to determine its capabilities. Like most modern 
drives, the MiniScribe drive described above is capable of either buffered stepping, or any fIXed rate of 3 msec or 
more. Hence you may enter either a 0 for buffered, or a 6 for 3.0 msec stepping (the above code numbers are 
specified by the disk controller, and the number to enter is equal to twice the speed in milliseconds.) Given the 
choice, buffered stepping will always be faster. 

HDFORMA T will now use the data you have entered and compute the total capacity of the disk as specified. If you 
have entered a smaller number of heads or cylinders because you wish to reserve part of the disk for use by another 
DOS, then only the usable part of the disk will be used in this calculation. For the above example, HDFORMAT 
would print out 

Total disk capacity is 19680 K 

which is a bit over 19 megabytes. 

Because of the structure of SK*DOS, each logical drive is at this time limited to a maximum of 16 megabytes, so the 
above example shows that this particular Winchester drive has more capacity than SK*DOS can handle as a single 
drive. It will therefore print out the message 

THIS EXCEEDS THE MAXIMUM LOGICAL DRIVE CAPACITY; you must 
therefore partition the disk into 2 to 4 partitions. 
Would you like to partition the disk (YIN)? 

In order to use the full 19 + megabyte disk, you must partition it into at least two partitions. Each of these partitions 
becomes a separate logical drive, and there is a maximum of four partitions allowed per hard disk. (Even if a drive 
does not exceed 16 megabytes, you may still partition it even though you do not need to; in our particular example 
you must answer Y to the last question since the drive is just too big for one partition.) Assuming a Y answer, 
HDFORMAT then asks 

How many partitions would you like? 

Still assuming our previous example, suppose you answer 3 to make three partitions. Then the next series of 
messages is 

You will now partition the disk by Cylinders (Tracks). The 
TOTAL number of usable cylinders on this drive is 615. 

HDFORMAT-2 



SK*DOS (R) 

The MAXIMUM number of cylinders allowed in anyone 
partition is 512. 

The MINIMUM number of cylinders allowed in anyone 
partition is 5. 

Decide how you would like to split up the TOTAL number of 
cylinders and enter the counts: 

Cylinders for Partition HO: 205 
Cylinders for Partition Hl: 205 
Cylinders for Partition H2: 205 

68K USER'S MANUAL 

In this example we split the disk evenly by assigning 205 cylinders to each partition. Although there is no need to 
make the partitions equal, it may be convenient if you intend to use BACKUP to quickly copy one partition to 
another. 

Assuming no further errors, the next message will be 

READY TO FORMAT HARD DRIVE 
ARE YOU SURE YOU WANT TO GO AHEAD? 

which should be answered with Y. 

There are a number of self-explanatory error messages which may come up during the above procedure. For 
example, selecting a partition size that is too small or too large, or selecting partition sizes which do not add up to the 
total number of cylinders on the disk, will give an error message and allow you to re-enter the data. 

Once formatting starts, HDFORMA T will print out status information so you can see what it is doing. If the disk has 
defective sectors, their locations will be displayed and they will be deleted from the free space on the disk. A 
relatively large number of defective sectors can be tolerated on a disk without a problem, except that logical track 0 
sectors 0, 3, and 5 must always be good on every partition - errors in any of these will cause an immediate "Fatal 
Error" message and HDFORMAT will quit. If this occurs in partition 0 of a disk, then the hard disk is not usable. If 
it occurs in another partition, however, then it will generally be possible to move these defective sectors to some 
other track by partitioning the disk differently, and then reformat the disk without problem. 

Different disk partitions can be assigned different logical drive numbers with the DRIVE command. Partitions are 
called HO through H7, as follows: 

Drive A has HO through H3 
Drive B has H4 through H7 

Finally, some notes about how HDFORMAT works. Most hard disks arrive from the factory with one or more 
defects; on a brand new disk drive these will generally be carefully documented on a test printout enclosed with the 
drive. Most such errors involve just a few bits on isolated tracks; because most modem hard disk controllers use 
error correction, they are able to correct such minor errors and therefore hide them. As HDFORMAT verifies the 
disk, however, it writes and then reads each sector. If the sector was not read correctly, then it is obviously bad; even 
when read correctly, however, HDFORMAT still checks whether a sector required error correction. If so, 
HDFORMA T tries to read that sector once more. If it still requires error correction (even though it may have been 
read correctly both times), HDFORMAT still flags that sector as defective. This will hopefully avoid future errors. 

You may note that the number of free sectors displayed in a directory printout is always lower than the number 
calculated from the number of cylinders. Part of this is due, of course, to the fact that the free sector printout does 
not include those in the directory and system information sector. In addition, HDFORMAT always formats the disk 

HDFORMAT-3 



SK*DOS (R) 68K USER'S MANUAL 

so that each track has the same number of sectors. In some cases the partitions are such that HDFORMAT has to 
discard a few sectors so as to make the logical tracks all the same length. 

Finally, we leave the space below so you can record the characteristics for your hard drive( s) to make future 
reformatting easier. 

Drive Number Start Number Sectors Step 
Manufacturer of Park Precomp of per Rate 

and Type Cylinders Cylinder on Cyl. Heads Track Code 
-------------+-----------+----------+---------+--------+---------+-----

HDFORMAT-4 



SK*DOS (R) 68K USER'S MANUAL 

HELP 

HELP is simple program which merely reminds you how to get help with other SK*DOS commands - simply type 
their name, a space, and a question mark. 

HELP-l 



SK*DOS (R) 68K USER'S MANUAL 

LINK 

LINK is one of the commands used to generate a 'boot able' SK*DOS system disk on some systems. It tells the 
super-boot program where to fmd the SK*DOS program on the disk. 

Here is a short explanation of why LINK is needed. To start SK*DOS, you usually use a monitor command. In 
systems which contain HUMBUG or another customized monitor, this command may boot SK*DOS directly. In 
simpler systems, however, this monitor command may only be capable of reading one sector from a disk. In that 
case, it loads a 'super-boot' program from track 0 sector 1 of the disk into memory. The super-boot program then 
reads the rest of SK*DOS and executes it. Since SK*DOS could be anywhere on the disk, the super-boot needs a 
quick way of rmding it. This is accomplished by using LINK to store the disk address of SK*DOS directly into the 
super-boot program itself. 

LINK is only necessary when you want to generate a 'bootable' system disk; data disks which do not contain a copy of 
SK*DOS and which will never be booted do not need LINK. 

There are three basic ways of generating a bootable system disk: 

1. Use BACKUP to do a mirror-image copy of an existing bootable system disk onto another formatted disk. Since 
BACKUP does an exact copy of a disk, the resulting disk will be exactly like the original and will also be bootable. 
(But if the original disk has unneeded flies or defects, so will the new disk.) 

2. Use HTOF to restore a disk image (previously stored with FTOH) of a bootable disk onto a floppy disk. 

3. Use FORMAT to initialize a blank disk, then use COpy to copy SK*DOS to it, and then use LINK to give its 
address to the super-boot program. In this way it is possible to copy only needed mes to the new disk. Use of COpy 
instead of BACKUP also compacts the disk and rearranges the mes to make disk access faster. 

To link a disk, enter the command LINK followed by the SK*DOS IDe name. For example, 

SK*DOS: LINK 1.SK*DOS.SYS 

would tell the super-boot in drive 1 where to fmd the fIle SK*DOS.SYS. You must enter the extension. The drive 
number is optional, and will default to the working drive if omitted. 

Incidentally, self-contained programs (those which use the monitor but not SK*DOS itself) can also be linked to the 
super-boot. In that case, they will be loaded and executed directly upon booting the system. 

UNK-l 



SK*DOS (R) 68K USER'S MANUAL 

LIST 

The LIST command will list the contents of a disk text file to the screen or printer. 

The LIST command, in turn, requires the name of a fue to list. It assumes that the required file name has been 
entered on the same line, separated from the word LIST by either a comma or a space. For example, 

SK*DOS: LIST TEXT 

would list the contents of the fue called TEXT. Since LIST is intended for listing text fues, it assumes a .TXT 
extension unless told otherwise. Hence LI ST TEXT means the same as LI ST TEXT. TXT. 

LIST-l 



SK"'DOS (R) 68K USER'S MANUAL 

LOCATE 

LOCATE is used to identify the memory locations into which a binary ftle will load, and to provide the transfer (or 
starting) address. 

To use it, type the command LOCATE, followed by the name of the file desired, as in 

SK*DOS: LOCATE FILE.COM <-> 

The ftle name defaults to a .BIN extension if not supplied. 

The above example shows an optional - (minus) sign at the end of the command line. This affects the displayed 
addresses as follows: 

If the - is omitted (the default), LOCATE will print the message ADDRESSES, AS IF LOADED WITH 
CURRENT OFFSET: and display the actual addresses the ftle would use if loaded or executed with the current 
OFFSET. (These addresses consist of the addresses stored as part of the disk ftle, plus the current value of 
OFFSET.) 

If the - is present, LOCATE will print the message ADDRESSES t AS SAVED ON DISK WITHOUT OFFSET 
and will display the disk fue addresses as they exist on the disk ftle, without adding the current value of OFFSET. 
This option describes the fue, but does not provide the information as to where the fue would load in the current 
system. 

Note that LOCATE's printout does not necessarily specify all of the memory used by a particular program, since the 
program may use memory areas without actually loading anything into them from disk. 

When several binary programs are appended together, they may contain more than one transfer address. Although 
LOCATE will indicate them separately, keep in mind that only the last transfer address will actually be used by 
SK*DOS. 

LOCATE-l 



SK*DOS (R) 68K USER'S MANUAL 

MAKEMPlY 

MAKEMPTY is a command which generates an empty file. 

Perhaps a bit of an explanation is in order. SK*DOS does not normally like empty files. When a program asks 
SK*DOS to open a ftIe for writing, but does not actually write anything into it, SK*DOS does not actually put the file 
on the disk. In other words, it will not generally create a real, but empty, file on the disk (unless you reset the 
computer or remove a disk while a ftIe is open for writing, which is something you should never do!) 

Nevertheless, there are times when an empty ftIe would be useful- for example, to initialize a data ftIe which is to be 
read by a Basic program, updated with more data, and then rewritten. That is precisely what MAKEMPTY does. 

To use MAKEMPTY, follow the command with a ftIe name, as in 

SK*DOS: MAKEMPTY DATAFILE 

This command would create an empty ftIe called DATAFILE.DAT on your working drive, since a default extension 
of .DAT is assumed unless specified otherwise. 

The resulting empty ftIe contains all zeroes, which is interpreted by Basic as well as text editors as truly empty; an 
attempt to read this ftIe will result in an immediate end-of-file indication. 

MAKEMTPY-l 



SK*DOS (R) 68K USER'S MANUAL 

MON&RESET 

MON and RESET are used to exit SK*DOS and return back to the system monitor (if there is one in your computer 
system). Both of these are memory-resident commands. 

Not all systems have both MON and RESET; sometimes only one or the other may be available. The difference 
between them has to do with their treatment of exception vectors (traps). 

When running, SK*DOS always resets the "line 1010" exception vector of the 68xxx CPU to its own value. In 
addition, depending on the state of TRPFLG, SK*DOS may also reset all of the other exception vectors as well. If 
both MON and RESET exist on a system, then 

MON will return to the monitor at a point where the ROM monitor will leave the exception vectors as they were set 
up by SK*DOS. 

RESET will return to the monitor at a point where the monitor will do a complete reset, including reinitializing all of 
the exception vectors. . 

MON & RESET-l 



SK*DOS (R) 68K USER'S MANUAL 

PARK 

The PARK command is used for parking the heads of hard drives (Winchester drives). It is called simply with 

SK*DOS: PARK 

and takes its parameters from the data stored on the disk during formatting. Parking the heads of a hard disk drive 
moves them to a section of the disk which is not used, and prevents possible damage to the usable portion of the disk 
surface or to the data stored on it. 

Parking the heads before moving a disk drive is generally regarded as desirable, although there is some disagreement 
among users as to whether parking heads is necessary when just shutting the system off. Nevertheless, it is our 
opinion that devoting a part of the disk to a parking area and then always parking the heads in that area before 
shutting off the power is a sensible precaution, despite the fact that it may slightly reduce the disk capacity. 

The literature accompanying some drives specifies a park cylinder to be used; if so, then the choice is simple. In 
other cases, however, the choice may not be so clear. 

PARK-l 



SK*DOS@ 68K USER'S MANUAL 

PDELETE 

The PDELETE command is used to rapidly delete one or more mes from a disk. Its advantage over DELETE 
is that you need not type in individual me names, since PDELETE will prompt you with the me names. 

The syntax for using PDELETE is 

SK*DOS: PDELETE <drive number & directory> <optional match list> 

The fust parameter must include a drive number and may also include a directory name. If only a drive number 
is specified, then the current default directory of that drive is used; if both a drive number and directory are 
specified (such as l.DI) then only the fues in that directory may be deleted. An asterisk (*) used as the directory 
(as in 1. * I) would refer to all directories of the specified drive. 

The match list works like that of CAT, COPY, or TCAT. If not given, then PDELETE will prompt with the 
names of all the fues on the specified disk or directory, one at a time. If given, then only mes which match the 
match list will be prompted. For example, the command 

SK*DOS: PDELETE 1 TX .eMD 

would prompt with the names of all mes whose names begin with TX, or which have .CMD extensions. In each 
case, you will be asked whether to delete, and can answer Y (yes), N (no), or Q (quit). 

PDELETE-l 



SK*DOS (R) 

PEEK 
POKE 

68K USER'S MANUAL 

The PEEK and POKE commands are similar to the same commands of Basic. These commands can be used to 
make minor modifications to SK*DOS or other programs. 

To use PEEK, give the command PEEK followed by a hexadecimal address. The contents of that address will be 
printed out. 

To use POKE, enter the command POKE followed by the hexadecimal address of the location to be poked and the 
hexadecimal number to be poked into that location. The POKE command will print out both the old and the new 
contents as a check. 

When PEEKing or POKEing non-existent memory locations, you may get undesirable results. On some systems 
(which do not generate bus errors), the system may totally die. If the hardware properly generates bus errors, then 
you will get an error message, either from SK*DOS (if TRPFLG is non-zero so that SK*DOS handles all excep­
tions), or from the monitor (if TRPFLG is zero so exceptions are handled by the monitor). 

PEEK & POKE-l 



SK*DOS (R) 68K USER'S MANUAL 

PICTEST.BAS 

PICfEST.BAS is a Basic program which helps to check that an assembly language program written for use with 
SK*DOS is indeed relocatable. The version supplied is specifically written for use with TSC XBASIC on 6809 
systems used for development, but can be easily modified for use with other Basic interpreters. 

Although it is somewhat difficult to test an assembly language source file for position independent (relocatable) 
coding, it is easy to test the machine language object code. The trick is to simply assemble the same program twice, 
once with an ORG of $0000, and once with a different ORG (such as $1(00). If the program is truly relocatable, then 
the two object codes should be exactly identical (although certain programming techniques may result in slight 
differences.) Then it is only necessary to compare the two object files for differences. PICTEST.BAS does this job by 
reading the Motorola S1-type fIles output by an assembler such as TSC's 68000 Cross-assembler. 

Before using PICTEST.BAS, assemble the program to be tested with two different ORG statements as described 
above. Then execute your Basic interpreter and load PICTEST.BAS. When it is executed, PICTEST.BAS will ask 
for the names of the two binary flIes to be compared. If any differences are found between the two programs, 
PICTEST.BAS will print out the address where the difference was found. 

Once such a list of addresses is found, you should check these against a listing of the program being tested. Some 
differences may be valid, depending on your programming style; others may be caused by errors, such as perhaps 
forgetting to use BSR instead of JSR, or forgetting to use (PC) after a variable name. 

PICfEST-1 



SK*DOS (R) 68K USER'S MANUAL 

PROMPr 

PROMPT allows you to change the system prompt from the normal SK*DOS: to any other string. For example, 
users who feel more at home with a shorter prompt such as, perhaps, three plus signs, can change the prompt with 
the command 

SK*DOS: PROMPT +++ 

The new prompt may be up to 10 characters long, and may include any printable character. 

PROMPT only changes the prompt currently in memory - it does not change the prompt string on the boot disk. 
Hence the original SK*DOS: prompt will return the next time you boot the system. Moreover, PROMPT may only 
be used once; that is, once PROMPT changes the current prompt it cannot change it again unless you reboot the 
system. 

PROMPT-1 



SK*DOS (R) 68K USER'S MANUAL 

PROTECT 

Files may be assigned one or more kinds of protection codes as follows: 

a. CATALOG protected flIes will not appear in a catalog or directory listing (although the commands supplied with 
SK*DOS ignore this kind of protection.) 
b. DELETE protected fIles cannot be deleted. 
c. WRITE protected fIles cannot be written over. 

The PROTECT command is used to assign protection codes to a fIle. To use PROTECT, give the command 
PROTECT, followed by the rue name, followed by one or more of the following codes: 

C = Catalog protect 
D = Delete protect 
W = Write protect 
X = Cancel protection. 

For example, the command 

PROTECT SK*DOS.SYS YD 

would prevent SK*DOS.SYS from being deleted or written over. 

PROTECT LIST. COM XD 

would cancel whatever protection LIST.COM currently has and instead substitute delete protection. 

If protection codes contradict each other, the rightmost codes take precedence. For example, the code CDWXC 
would assign catalog, delete and write protection, then cancel them all, and instead provide only catalog protection. 

PROTECT-l 



SK*DOS (R) 68K USER'S MANUAL 

RAMDISK 

RAMDISK allows you to set aside a fixed area of your RAM memory as a RAM disk (also called a virtual disk.) The 
RAM disk is an area of RAM which is used exactly like a real (or physical) disk drive. It has a drive number, is 
accessed exactly the same as a real disk, has a directory like a real disk, and can store programs or data flIes like a 
real disk. The main disadvantage of a RAM disk as compared with a real disk is that the RAM disk becomes erased 
when power is turned off (or if there is a power outage.) Hence any important data on a RAM disk should be copied 
to a real disk before power is turned off, and perhaps at frequent intervals between. 

RAM disk is enabled with the command 

SK*DOS: RAMDISK <drive number> [<RAM disk size>] 

where 

the < drive number> may be any number from 0 through 9, which then becomes the drive number of the RAM disk. 
If the drive number coincides with that of a real disk drive, then the real drive becomes inactive and the RAM disk 
takes its place. (A drive number must be supplied.) If the RAMDISK drive number is larger than any other existing 
drive, the value of MAXDRV will automatically be changed to reflect the RAM disk drive number. Since most 
systems will not have the maximum number of ten drives allowed by SK*DOS, it will usually be possible to place the 
RAM disk above other real drive numbers. 

the < RAM disk size> is the size, in increments of 4K, of the memory to be devoted to the RAM disk, with a 
minimum of 8K. If the amount entered is not a multiple of 4K, then the next lower 4K multiple will be used. It can be 
entered either as just a plain number (such as 16) or followed by the K (as in 16K). When RAMDISK is mst called, 
a size must be specmed, but no size need be entered if the RAMDISK command is used to reassign the drive number 
of an existing RAM disk. When initializing a new RAM disk, the RAMDISK program will calculate the amount of 
user memory left, and abort if less than 16K would be left. Otherwise, it will display the amount left and ask whether 
to proceed. If you do not answer with a Y, it will abort without setting up the RAM disk. Make sure not to allocate 
so much RAM to the RAM disk that not enough is left for other uses. 

While RAMDISK is initializing, it will print out a row of periods, one for each "track" being initialized. Note that the 
RAMDISK program checks for the existence of enough memory, but does not check whether that memory is 
working correctly. 

Once the RAM disk has been initialized, it may be reassigned to a different drive number by again typing the 
RAMDISK command, followed by the new drive number (but without a size). Its size, however, cannot be changed. 

Both the RAMDISK program, as well as the extended disk memory, contain flags which indicate the status of the 
RAM disk. If you reboot SK*DOS (without powering down the system), the newly booted SK*DOS will not know 
about the RAM disk, but the RAM disk contents in memory will be retained as long as it is not overwritten with 
other data. If you immediately enter the RAMDISK command, the RAMDISK program will reenable the RAM disk, 
but will print the message RAM DISK WAS FORMATTED EARLIER rather than erasing it and formatting it again. 
Hence your data will be retained in the RAM disk (still assuming, of course, that power has not been turned off in 
the meantime or that the RAM disk memory has not been overwritten with other data.) 

If you do wish to actually erase all data on the RAM disk, insert the word NEW into the command, as in 

SK*DOS: RAMDISK NEW x 

which will totally erase the RAM disk and then reformat it as drive x. 

RAMDISK-1 



SK*DOS (R) 68K USER'S MANUAL 

RAMDISK changes both the OFFSET and MEMEND pointers. The RAMDISK program itself is loaded beginning 
at the current value of OFFSET, and then OFFSET and OFFINI are changed to point above the program so that 
subsequent programs are loaded above the RAMDISK program. The virtual disk memory itself, into which RAM 
disk data is stored, is placed at the top of user memory just under the initial value of MEMEND, and MEMEND is 
then reset to point just under it. 

This has a bearing on what happens if SK*DOS is exited and rebooted while a RAM disk exists. After rebooting, the 
RAMDISK program will no longer exist in memory, but the RAM disk data should still exist at the top of memory 
below the current value of MEMEND. As long as no program is run which uses more than 16K of RAM, this data 
will continue to exist and the RAMDISK can be reinstated by another RAMDISK command without data being lost. 

RAMDISK-2 



SK*DOS (R) 68K USER'S MANUAL 

REDOFREE 

REDOFREE is used to rearrange the sequence of the free sectors of a disk so they go in order from the outside of 
the disk toward the inside. The sectors are in this sequence on a fresh disk, but gradually become disordered as a 
disk is used because each time that a ftIe is deleted, its sectors are added to the end of the free space. The space 
from deleted ftIes is thus scattered around the disk, with the result that the free space also wanders all around the 
disk. 

The syntax for using REDO FREE is 

SK*DOS : REDO FREE <drive number> 

REDO FREE then prints a number of basic parameters about the disk, reads all the sectors in the free space, sorts 
them into numeric order, and fmally rewrites the sector linkages to place them into numeric order. (After each of 
these steps, REDO FREE asks whether to proceed, so you may stop it at any point.) 

REDOFREE provides the option of printing a listing of free sector segments both before and after they are sorted. 
If the listing is selected, each line may be followed by one of two marks: 

1. Before the segments are sorted, a caret mark indicates that the current segment points backward, and thus the free 
chain goes backward. This will be corrected after sorting. 

2. After the segments are sorted, a comma indicates that the current segment is contiguous to the next, and that these 
two segments will be combined into one if the free space is relinked. 

REDOFREE-l 



SK*DOS8 68K USER'S MANUAL 

RENAME 

RENAME is used to rename a disk file. To use this command, enter the word RENAME, followed by the old 
name and the new name, as in 

RENAME OLDNAME. TXT NEWNAME. ABC 

No quotes are needed, but the extension must be supplied for both names. 

Optional drive numbers and/or directory names may be supplied for one or both fIles, as in 

RENAME 1.F/OLDNAME.TXT 1.A/NEWNAME.TXT 

If not supplied for the old file, the drive and directory names default to the current work drive and directory. If 
not supplied for the new rue, they are the same as the old file. 

RENAME-l 



SK*DOS (R) 68K USER'S MANUAL 

SITOCOM 

S1TOCOM is a program which converts a binary fde in Motorola S1-S9 format into a binary fde in SK*DOS format. 
It is used to convert the output of some 68000 assemblers into a format which can be loaded and executed by 
SK*DOS. 

S1TOCOM is supplied in two forms - S1TOCOM.COM is the 68K version, while S1TOCOM.CMD is a 6809 version 
intended for systems programmers who may be using a 6809 system for software development. 

The syntax for using S1 TOCOM is 

SK*DOS: SITOCOM <fdename> [-] 

where the fde name is the name of the binary S1 fde to convert. The input file defaults to a .BIN extension, while the 
output fde will have the same name but with a .COM extension. If a .COM file already exists, S1TOCOM will delete 
it without any prompt; after it is fInished, S1 TOCOM will delete the input me, again without any prompt. 

If the optional "_" sign does not follow the fde name, then the loading and transfer addresses in the output file will be 
exactly the same as those in the input me. If the "_" sign is entered, then the current value of OFFSET will be 
subtracted from the addresses given in the input fde. The "_" option is primarily for programmers who wish to convert 
a non-position independent me to SK*DOS operation, and have assembled that file to lie in a memory location 
known to be available. But note that this option can lead to great problems if the value of OFFSET at the time the 
conversion to binary is done is not the same as the value when the converted program is executed. It would be much 
safer to use S1TOCOM without the "_" option, and then use the "_" option of GET, followed by XEQ to execute the 
fmal program. 

S1TOCOM-1 



SK*DOS (R) 68K USER'S MANUAL 

SAVE 

This memory-resident command saves binary data from memory to disk. For example, the command 

SAVE PROGRAM 9000 AOOO 9004 

would save a m.e called PROGRAM from memory locations $9000 through "000, and assign a transfer (starting) 
address of $9004. 

All addresses are hexadecimal, the ftle name extension defaults to .BIN if not given, and the transfer address is 
omitted if not given. 

Once called, the SAVE command asks the following question: 

SAVE OPTIONS: 
1. USE ABOVE ADDRESSES (IGNORING OFFSET), OR 
2. SUBTRACT OFFSET FROM ABOVE ADDRESSES 

CHOOSE 1 OR 2: 

These options affect only the addresses stored on the disk as part of the file, not the address of the memory area 
saved to disk, as follows: 

Option 1 - Use Above Addresses. The addresses specified (9000, AOOO, and 9004 in the above example) are stored 
on the disk as the load and transfer addresses. In other words, the addresses saved as part of the file correspond 
exactly with the area of memory saved to disk. In general, however, if this file is subsequently loaded back into 
memory, it will usually go back into a different location, since most loading is done by adding the current value of 
OFFSET to the addresses actually stored as part of the disk ftle. If you desire to load this file back into exactly the 
same memory locations it came from, you must use the - (minus) option of GET. 

Option 2 - Subtract OFFSET From Above Addresses. In this case, the current value of OFFSET is subtracted from 
the specified addresses before they are written to the disk. For example, if the current OFFSET is $8000, then the 
file stored in the above example would contain addresses 1000, 2000, and 1004. When loaded back into memory with 
GET, however, these addresses would be added back to OFFSET, so that the file would go back into the same 
memory area it was saved from (assuming OFFSET remained the same). Option 2 cannot be used, however, if 
OFFSET is larger than any of the specified addresses; in this case SAVE will print an error message and abort before 
fmishing the ftle. 

You should try saving a few ftles and then examining them with LOCATE to get a feeling for these two options. 

SAVE-1 



SK*DOS@ 68K USER'S MANUAL 

SCAT & SEQUENCE 

SCAT is similar to CAT, but differs in three ways: 

(1) SCAT prints both the date of each rtIe as well as its sequence number (if one has been assigned to the rtIe) , 

(2) The catalog listmg is sorted by date and sequence number so that the most recent files appear fust, 

(3) SCAT does not allow all of the options used by the CAT command. 

SCAT is designed for systems which do not have a clock IC installed. (If you do have a clock, then you should 
read the description of the TCAT command which, along with time stamping, provides greater capabilities.) 
When a clock is not installed and interfaced with SK*DOS, as described under TCAT, then SK*DOS automati­
cally assigns a 'sequence number' to each file as it is written or updated. This number starts with 1 when the 
system is booted, and increments by 1 each time a new file is written. When your disk contains a number of mes 
all having the same date, the sequence number tells you what order the files were written in. The SCAT 
command then prints the catalog, but sorted by date and sequence number so that the most recent me appears 
on top. 

Obviously, if your system has a clock, then using time-stamping and TCA T provides the actual time rather than 
just a sequence number, but the sequence number is a good second best if no clock is available. It has three 
characteristics you should keep in mind: 

1. Each time the system is powered up, the sequence number starts with 1. In other words, if you turn off the 
power and then restart, the sequence number will return back to 1. To avoid having multiple mes with the same 
date and sequence number, you may want to get in the habit of manually updating the sequence number if you 
restart the system, so that it continues with the next higher number. The SEQUENCE command is used for this 
purpose. For example, to change the number to 7, use the command 

SK*DOS: SEQUENCE 7 

Typingjust SEQUENCE without a number will print out the current sequence number. 

2. The sequence number is incremented by 1 for every me written or updated. This includes rtIes being copied, 
even though copied mes are not assigned a new number. In other words, each time you copy a me, the sequence 
will appear to skip a number; this is the number that would have been assigned to the copied file if it had not 
kept its old number. 

3. Since the sequence number is just a single byte, the maximum number is 255, after which it returns to O. 

SCAT arguments are the same as those for ACAT. 

SCAT & SEQUENCE-1 



SK*DOS@ 68K USER'S MANUAL 

SK*DOS09 

SK*DOS09 is 6809 SK*DOS along with a 6809 CPU simulator which allows you to run 6809 SK*DOS programs 
on your 68K computer. This allows you to run programs which may not be available for the 68000, though at 
reduced speed. 

To run SK*DOS09, simply type the command 

SK*DOS: SK*DOS09 

As soon as the program runs, you will be greeted by the familiar SK*DOS signon, except that this time it will be 
6809 SK*DOS that is running on your computer and the prompt will change to SK*D09: 

Since your 68K computer is essentially interpreting 6809 instructions, you will notice a slight slowdown in 
operation. On input and output (such as listing a disk directory) you will hardly notice a difference, whereas on 
heavy computing there may be a significant slowdown, depending on the program being run. Even so, you may 
want to do certain operations (such as copying a disk) in 68K mode since that will always be faster. 

SK*DOS09 will run most 6809 software, although there may be some programs which do not work. This will 
generally include those which access I/O hardware or other machine parameters directly, bypassing DOS. This 
includes, for example, programs which require interrupts, such as some text editors with type-ahead buffers. It 
also means that you cannot use a 6809 FORMAT program to format the disk - you must use the 68K FORMAT 
instead. Furthermore, although you might be tempted to use the 6809 SK*DOS's TIY command, don't bother; 
I/O is handled by the 68K SK*DOS, and so use its IOCONFIG instead. There may be other programs which 
don't run as well - programs which use some particular characteristic of the 6809 CPU which is difficult or 
impossible to simulate on the 68K CPU. If you do run across some such example, let us know and we will try to 
suggest some other approach. 

While running SK*DOS09, the ESCape key works normally to temporarily pause output; if you follow it with CR 
(or RETURN or ENTER, whichever it is called on your terminal), you will return to either SK*DOS09 or, in 
some cases, to the application program running under SK*DOS09. 

Just as the MON command in normal SK*DOS/68K brings you 'back out one level' to the program which called 
it (namely the monitor or boot ROM), so MON in SK*DOS09 brings you out one level to the 68K SK*DOS 
when you want to exit. 

Finally, a few technical details. SK*DOS09 requires a minimum 128K system, and devotes the entire second 64K 
of that system, from $1()()()() to $1FFFF, to simulating the 6809 environment. Each location of that 64K 
'pseudo-memory' corresponds to the equivalent location of a normal 6809 computer system. (For example, the 
warm start location of 6809 SK*DOS is $CD03, while in SK*DOS09 it is located at $lCD03. The initial "1" is, 
however, totally transparent to 6809 software, which simply addresses that location as $CD03 as it always has 
done since the address translation is done entirely by SK*DOS09.) Just as in a true 6809 system, though, only the 
fust 56K is actually used; the last 8K, which would normally be taken up by 6809 I/O and monitor, is empty and 
available RAM. 

In addition, SK*DOS09 also requires approximately 8K of user memory for its 6809 interpreter program. This 
normally starts at the current value of OFFSET. 

SK*DOS09 uses your normal 68K I/O devices, and can access all your 68K disk drives, including RAM disk, 
although you must make sure that your RAM disk memory does not conflict with the memory used by 

SK*DOS09-1 



SK*DOS@ 68K USER'S MANUAL 

SK*DOS09. If!t does, then SK*DOS09 will print an error message when it is started, indicating that there is not 
enough memory for it to function. 

Since the disk formats for both 6809 and 68K SK*DOS versions are identical, 6809 and 68K ft.les can coexist on 
the same disk. You will note, however, that 68K command fIles have the extension .COM, whereas 6809 
command ft.les use the .CMD extension. Hence typing a common command such as CAT or DELETE will 
always call the correct program. (Incidentally, both SK*DOSes will use the same ERRCODES.SYS fIle, since 
the error numbers are identical. Further, 6809 SK*DOS ignores .BAT fIles.) 

Finally, SK*DOS09 can only access root directories (i.e., unnamed directories) of drives, since multiple 
directories were not available on 6809 SK*DOS systems. 

SK*DOS09-2 



SK*DOS (R) 68K USER'S MANUAL 

STEPRAn: 

The STEPRA TE command is used to set the speed at which SK*DOS commands disk drives to step from track to 
track. (Depending on your disk controller and disk drivers, this command may not exist, or may be slightly different. 

For 5-1/4" disk drives, the allowable step rates are 6, 12,20, or 30 milliseconds (ms) per step (with most floppy disk 
controllers), or 2, 3, 12, or 20 ms (with the Western Digital 1772 controller). The step rate is specified after the word 
STEPRATE as in 

SK*DOS: STEPRATE 30 

Each time STEPRA TE is called it responds by displaying the new step rate setting; if no step rate is specified in the 
command or an invalid number is specified, then the step rate remains the same and the current value is displayed. 

(For those users more at ease with programming floppy disk controllers, the values 0 through 3 {which are the values 
actually given to the floppy disk controller} may also be specified as follows: 
0= 6ms 
1 = 12ms 
2 = 20 ms 
3 = 30 ms.) 

Smaller step rates will produce faster operation, but you should be careful not to specify a value smaller than your 
disk drives can handle since that may lead to errors. If in doubt, it is better to err on the conservative side. 

STEPRATE-1 



SK*DOS@ 

SYSTEM 
WORK 

68K USER'S MANUAL 

The SYSTEM and WORK commands are used to specify the system and working drives and directories. When 
SK*DOS is frrst booted, the root directory of drive 0 becomes the default system and working drive; that is, all 
programs will be loaded from this system drive/directory, and all ftles being worked on will be loaded from this 
working drive/directory. The default drive and directory selection can be changed with these two commands. For 
example, the command 

SK*DOS: SYSTEM 1 

would make drive 1 the default system drive, while 

SK*DOS: WORK B.C/ 

would make drive 8, directory C, the default working drive and directory. 

Entering the SYSTEM or WORK command without a valid drive number following causes the current drive and 
directory to be displayed. Entering a drive number without a directory name switches to the root directory of 
that drive; it is not possible to enter a directory without a drive number to go with it. 

In addition, the system drive (not the work drive) can also be specified as SYSTEM ALL. In this case, SK*DOS 
will search the root directories of all drives, in numeric order starting with drive 0, until it finds the requested ftle. 
If SYSTEM ALL is used, it is important to make sure that MAXDRV is properly set, so that SK*DOS does not 
try to search drives which do not exist. Use the DOSPARAM command to inspect or change MAXDRV. 

SYSTEM & WORK-l 



SK*DOS8 68K USER'S MANUAL 

TeAT 

TCAT is similar to CAT, but differs in three ways: 

(1) TCAT prints both the date of each fde as well as the time (if one has been assigned to the fde), 

(2) The catalog listing is sorted by date and time so that the most recent fIles appear frrst, 

(3) TCAT does not allow all of the options used by the regular CAT command. 

Although TCAT is provided primarily for those users who have a clock/calendar installed, it is also useful to 
others because of its ability to sort directory entries by date to display the latest fIles frrst. 

Here are a few examples of how to use TCAT: 

TCAT 
TCAT5 
TCAT5FS 
TCAT5A/FS 

TCAT 5.*/FS 

TCAT 5 FS.T .COM 

TCAT 5 F*S.T .COM 

prints a catalog of the default directory of the work disk 
prints a catalog of the root directory of drive 5 
prints a catalog of all fIles on drive 5 which have names beginning with FS 
prints a catalog of all files on drive 5 subdirectory A which have names beginning 
with FS 
prints a catalog of all fIles in all subdirectories on drive 5 which have names 
beginning with FS 
prints a catalog of all fIles on drive 5 which have fde names beginning with FS and 
also have extensions beginning with .T, and of all fdes on drive 5 which have the 
extension .COM 
prints a catalog of all fdes on drive 5 which have file names beginning with F*S 
(where * stands for any character) and also have extensions beginning with .T, 
AND of all fdes on drive 5 which have the extension .COM 

The possible options for TCAT are the same as for ACAT and SCAT. (Try TCAT on the SK*DOS disk to see 
what it does.) 

If your system has a clock/calendar IC but your version of SK*DOS does not already have time stamping 
implemented, information on adding time stamping is provided in the 68K SK*DOS Configuration Manual. 

SK*DOS's COpy command carries the old date and time along with the fde. Hence copies of your fIles will 
have the same date and time as the original. 

The time code is based on a 24-hour clock, and is given in tenths of an hour, ranging from 00 to 239. For 
example, a code of 123 means 12.3 hours, or 3/10 of an hour (18 minutes) past noon. The TCAT program would 
display this as 12:18. If the time code is 00, which is the case for mes without a time, then TCAT will omit the 
time printout. 

TCAT-l 



SK*DOS (R) 68K USER'S MANUAL 

TIME 

If your system has a clock/calendar Ie, then the TIME utility may be supplied with your SK*DOS. It allows you to 
read and set this clock. 

The command 

SK*DOS: TIME 

is used to display the current time in the format 

DAY MM-DD-YY HH:MM:SS AM 

The command 

SK*DOS: TIME S 

is used when you want to set the clock. Simply answer the questions asked to set the clock, making sure to use 
two-digit numbers as requested. 

TIME-I 



SK*DOS (R) 

TRACE··· 
TRACENAB 

68K USER'S MANUAL 

TRACE**· is a memory-resident command which allows you to enter a user program with the CPU in trace mode, 
so that the program can be debugged. This mode requires a monitor ROM, such as HUMBUG, which supports the 
trace mode. 

The TRACE··* command (which has three asterisks as part of the name to avoid the possibility of its being called 
accidentally) is used just before the command which loads and executes the program being debugged. For example, 
to debug a program called NEWPROG.CMD, the commands would be 

SK*DOS: 
SK*DOS: 

TRACE*** 
NEWPROG 

The TRACENAB command is needed only when tracing with HUMBUG and no previous tracing has been done 
since turning on the power. When HUMBUG traces a program, it saves the contents of the 68xxx processor's trace 
trap, places its own trap address into the trap, and then goes to a user program; after returning, it replaces the 
original address in the trap. When tracing is begun with SK*DOS's TRACE*·· command rather than via 
HUMBUG, HUMBUG's trace routines are entered in the middle and hence HUMBUG does not have a chance to 
save the previous contents of the trap location. It therefore restores the wrong value into the trap location. 
TRACENAB corrects that problem. The correct syntax is 

SK*DOS : TRACENAB HUMBUG 

TRACE*** & TRACENAB-l 



SK*DOS (R) 68K USER'S MANUAL 

UBASIC 

UBASIC is not intended to replace a full-featured Basic, but does suffice for some applications. It currently supports 
the following Basic operations: 

FOR ... TO ... (STEP) GO TO RUN INT( ) 
ON ..... GOTO IF ..... GO TO LIST TAB ( ) 
ON ..... GOSUB IF ..... THEN NEW ABS( ) 
PRINT LET STOP CHR$( ) 
INPUT REM DIM LOAD 
READ DATA GOSUB SAVE 
RESTORE NEXT RETURN LPRINT 
POKE dec. addr, byte PEEK(dec. addr) DOS LLIST 

Decimal addresses in the above can be 0 through 16777215, but note that trying to PEEK or POKE a nonexistent 
address may lead to a BUS ERROR. 

Although this Basic allows string constants (as in PRINT "HI"), it does not allow string variables (such as AS). Only 
one statement per line is allowed, the arithmetic is floating point BCD with nine significant digits, and no exponentia­
tion is allowed. Variable names can be A through Z, .and AO through Z9, but array names can only be AO through 
ZO; one or two dimensions of 1 through 255 are allowed, but sUbscripts start with 1, not o. 

LPRINT and LLIST are similar to Print and List, respectively, but output to device 3 instead of the current output 
device (DEVOUT, usually 0). 

This Basic is a modification of the (by now almost classical) 4K Basic written by Robert H. Uiterwyk for the first 
6800 machines in the mid seventies. The Basic 6800 version of the interpreter is in the public domain and the original 
Version 2.1 source code is available in the book "Best of Interface Age, Volume 1: Software in BASIC", published in 
1979 by dilithium Press, P.O. Box 92, Forest Grove OR 97116. We greatly recommend this book for further 
information about this interpreter. 

Basic error messages are printed in the form 

ERROR: ....... IN LINE xxxx 

A description of the error replaces the periods, and the line number identifies the location of the error in the 
program. If no line number is given, the error occurred in a command or direct execution statement. 

UBASIC-1 



SK*DOS (R) 68K USER'S MANUAL 

UNDELETE 

UNDELETE is used to restore files which have been accidentally deleted. UNDELETE can only undelete one file at 
a time - the last file deleted - but it can be used again to undelete the rue before that, and so on. 

The syntax for using this command is 

SK*DOS: UNDELETE <drive-number.file-name.extension> 

where the drive number and rue name are required, but the extension defaults to .SCR if not given. If you do not 
know the correct name of the file, assign some dummy name, undelete the rue, and then examine it to see what to 
rename it to. In any case, undeleted rues should be examined to check that they are the desired file. 

Depending on the size of the rue and the size of the free space, the file may exist in the free space for a long time, or 
it may be written over quite soon. Hence rues should be undeleted as soon as possible. In any case, once the free 
space of a disk is reorganized with REDO FREE, fIles can no longer be undeleted. 

UNDELETE-! 



SK*DOS® 68K USER'S MANUAL 

VERIFY 

VERIFY is used to tum floppy disk verification on or off. The correct syntax is 

SK*DOS: VERIFY ON 

or 

SK*DOS: VERIFY OFF 

Normally, SK*DOS defaults to verifying all sectors it writes to a floppy disk. Disk operation, however, will be much 
faster if verification is turned off. 

We feel that verification is desirable - after all, disks do occasionally make errors - and therefore SK*DOS normally 
has verification enabled unless you specifically turn it off. There are, however, some major manufacturers who feel 
that verification is not necessary, and whose systems default to verification off. 

Although we do not recommend turning verification off, you may wish to do so for specific applications - for example, 
while using HTOF or while doing a backup. These are cases where you can easily check the accuracy of the new disk 
by doing a CHECKSUM on it. 

For example, here is a way to do a very fast hard disk backup onto floppies by turning off verification: 

(1) Use VERIFY OFF to turn off verification. 

(2) Enable the disk CACHE, making sure it is large enough to contain the entire destination disk. For example, use a 
750K cache for a 700K disk. 

(3) FORMAT a fresh floppy disk once the empty cache is set up. This reads the entire empty disk into the cache. 

(4) COPY files to the destination disk using the A option of COpy to copy in alphabetic order. 

(5) Once the disk is full, use CHECKSUM on the destination disk. Since the data is still in the cache, you are actually 
checksumming the data in RAM, not the data on the disk. 

(6) Use CACHE <drive-number> to flush the data from the cache, and CHECKSUM the disk again. The new 
checksum, which uses data actually read off the disk, must match the checksum in step 5. 

(7) If there is more to backup from the hard disk, flush the cache again and go back to step 3. This time, however, 
give COpy appropriate arguments so it continues backing up files from where it stopped the previous time. 

VERIFY-1 



SK*DOS (R) 68K USER'S MANUAL 

VERSION 

VERSION is used to determine the version number of a binary me (if that ftIe has a version number included). All 
SK*DOS utilities, and most other programs, begin with the sequence of instructions 

START 

S TART 1 

BRA.S 
DC.W 

START1 
$0102 
actual program begins here 

so that the third and fourth bytes of the program are the version number (0102 in the above example, which is printed 
as 1.2). VERSION can be used to check that version code. To use it, type the command VERSION followed by the 
name of the ftIe, as in 

SK*DOS: VERSION COPY 

If not entered, the rue name defaults to a .COM extension. 

VERSION· 1 



SK*DOS (R) 68K USER'S MANUAL 

XEQ 

XEQ is a memory-resident command used to execute a program previously loaded by SK*DOS using the execution 
address loaded with the file from the disk (as modified by OFFSET). 

If the program requires arguments as part of the calling line, these arguments can be placed after the XEQ. For 
example, suppose the command CAT 0 is used to display a catalog of a disk in drive 1; the command XEQ 1 would 
then repeat CAT, but would give it the argument 1 to specify drive 1. 

Note that XEQ can only be used to repeat disk-resident programs, not memory-resident programs. 

XEQ-1 



SK*DOS (R) 68K USER'S MANUAL 

APPENDIX H. ADDENDA AND OTHER INFORMATION 

My favorite law (which I affectionately call Stark's First Law of Computerdom) says "A program without bugs must 
be so simple that it probably wasn't worth writing in the first place." 

It is quite likely that somewhere within SK*DOS lie one or more bugs which have yet to be discovered. H you fmd 
one, please let us know and we will exterminate it at once. In any case, be sure to follow the instructions on the User 
Registration page to be sure that we can contact you with updates if required. 

This Appendix provides additional information about SK*DOS which does not seem to fit any other section, as well 
as addenda or corrections to the manual which are discovered after the remainder of the manual is printed. 

1. When SK*DOS is fust booted, it looks on the boot disk for a text file called STARTUP.BAT. This batch file may 
have a command which will be immediately executed as if it had come from the keyboard. For example, if this file 
contains the text 

LIST READ-ME 

then SK*DOS will list the contents of the file READ-ME.TXT after it asks for the date, just before it prints its fust 
prompt. 

2. To save memory space (as well as to allow some customization of messages), the one-line explanations printed 
with error messages are contained in a fue called ERRCODES.SYS. Whenever PERROR prints out an error code, 
it looks on the current system drive for the ERRCODES.SYS file. If that file is present, then PERROR searches for 
the appropriate error number in that file and prints the text immediately following that number. You may LIST 
ERRCODES.SYS to see the file format, and may make changes with any editor to suit your taste. 

The ERRCODES.SYS fue contains error codes above 100, although SK*DOS itself only uses error codes through 30. 
These higher codes are used for 68K exception vectors. Each line of the file begins with a two-character error code 
number; in order to allow error codes through 240 to be represented with just two characters, the first digit of codes 
above 99 must be replaced by its corresponding Ascn character. For example, code 100 is represented by :0 since 
the colon comes after the 9 in the Ascn code, and thus the colon represents the digits 10. 

H-l 



SK*DOS (R) 

APPENDIX I. ASM:THE 68000/68010 ASSEMBLER 

by Edgar M. (Bud) Pass, Ph.D. 

Supplied with SK*DOS/68K by arrangement with, and 
Cop~ght(C)I987by 

Computer Systems Consultants, Inc. 
1454 Latta Lane, Conyers, GA 30207 

Telephone Number 404-483.1717/4570 

Cop~ght Notice 

68K USER'S MANUAL 

ASM, the 68000/68010 Assembler, and this appendix are copyrighted and should not be reproduced in any form, 
except as described here, without prior written consent of an officer of Computer Systems Consultants, Inc. The 
accompanying diskette may be duplicated for backup purposes by the original license purchaser. Protecting the 
software from unauthorized use will protect your access to new good software in the future. Programs such as the 
68000/68010 Assembler would cost each user many hours or many thousands of dollars to develop individually. They 
may be priced so low only because of the expected large volume of sales. So let your friends pay for their software, 
too! 

Limited Warranty Statement 

Computer Systems Consultants, Inc., and its agents, makes no express or implied warranties concerning the 
applicability of the 68000/68010 Assembler to a particular purpose. Liability is limited to the original license cost. 
This warranty is presented expressly in lieu of all other warranties, expressed or implied, including those of 
merchantability and fitness for use and of all other obligations on the part of Computer Systems Consultants, Inc. and 
its agents. 

Problems and Improvements 

Users are encouraged to submit problems and to suggest or to provide improvements for the ASM Assembler. Such 
input will be processed on a best effort basis. Computer Systems Consultants reserves the right to make program 
corrections or improvements on an individual or wholesale basis, as required. The company is under no obligation to 
provide corrections or improvements to all users of ASM. In the case of specific situations requiring extensions to 
ASM or major assistance in its use, consulting is available on a pre-arranged, for-fee basis. 

Introduction 

The ASM assembler is used to convert 68000/68010 assembler language mnemonics and expressions to 68000/68010 
machine language. The syntax of the assembler language which it accepts is compatible with the standard language 
as implemented in the Motorola 68010 Resident Structured Assembler. 

It may also be used to produce machine language for any of the other processors in the 680xx family, although with 
some limitations. For those processors with instruction sets which are supersets of the 68010 instruction set, such as 
the 68020 and 68030, only those instructions common to the 68010 and to the superset processor may be generated 
directly by ASM. For those processors with instruction sets which are subsets of the 68010 instruction set, such as the 
68000 and 68008, only those instructions common to the 68010 and to the subset processor may be correctly 
generated by ASM; those instructions not in the subset will be treated as invalid instructions by the subset processor. 
The MO option may be specified on the command line to inhibit the incorrect generation of code for subset 
processors. 

1-1 



SK*DOS (R) 68K USER'S MANUAL 

The ASM assembler provides an absolute assembler capability, and produces object code directly, without the use of 
a link-editor. It supports conditional assembly, the use of complex arithmetic expressions, and the inclusion of 
auxiliary source files. It produces an optional formatted listing of the program being compiled, including a sorted 
cross-reference of the symbols declared and used in the program, and generates English language error messages. A 
macro pre-processor is available with the full package. 

Invocation of The 68000/68010 Assembler 

The ASM assembler is invoked with a command line formatted as follows: 

ASM program[.ext] [+/-options] 

in which the following symbols are used: 

program specifies the main program source rue name; it must meet all requirements for a legal rue name in 
SK*DOS. 

ext represents an optional me extension; by default, ASM expects a source me name to have extension ".txt", if none 
is specified. 

options represents optional assembler options, as described beloW; multiple options may be separated or may be 
joined together; the '+' or '-' symbol must be used to start each group of options; for example, the following string 
could represent a properly-formed set of options: 

+blt4000d -Ml 

The following options are allowed: 

+B, +b, -B, or-b 

inhibits the construction of the output object me, which is produced by default; this file has the same me name as the 
main program source rue, except that it has suffix ".mxt" (formatted as S-records) or ".com" or ".bin" (formatted as 
binary records), the details of which are described later. 

+ F, +f, -F, or -f 

inhibits the generation of word-alignment bytes generated when DC.B directives are not followed immediately by 
DC.B directives. 

+ Hxxx, + hxxx, -Hxxx, or ·hxxx 

sets listing pagination mode and sets page length to decimal xxx, which may not be less than 24 or greater than 130. 

+L, +1, -L, or·1 

inhibits the generation of the formatted source listing; the source listing may be redirected to disk or printer with 
command line parameters, as supported by SK*DOS/68K; vertically formatted and paginated listings may be created 
with the H option or with auxiliary programs. 

1-2 



SK*DOS (R) 68K USER'S MANUAL 

+ Mx, + mx, -Mx, or -lOX 

indicates the type of processor for which code is to be generated: x is 0 for 68000, 1 for 68010, 2 for 68020, 3 for 
68030 (2 and 3 are treated identically to 1, which is usually the default option). 

+ Ox, + ox, -Ox, or -ox 

indicates type of object fue to be produced: x is 0 for S3, 1 for S2, 2 for 02,3 for 03,5 for 05 (3 is the default option.) 

+Pxxx, +pxxx, -Pxxx, or -pxxx 

sets width of formatted output lines to decimal XXX; the default is SO, but it may be set to any value between 50 and 
132; setting the output line width less than 64 will inhibit output formatting. 

+S, +s, -S, or-s 

inhibits the generation of the formatted and sorted symbol table listing produced at the end of the source listing on 
other than minimum systems. 

+ Txxxx, + txxxx, -Txxxx, or -txxx 

sets symbol table size to decimal xxxx bytes, to attempt to force a smaller or larger symbol table size; since the 
maximum size of the symbol table in a given case depends upon the size of memory available to the assembler, if 
insufficient space is available to process a program, the number of program labels and symbols must be decreased, or 
the program must be segmented and separately assembled. 

+X, +x, -X, or-x 

inserts the formatted symbol table at the end of an S3/S2 object ftle. 

If the assembler fmds missing or invalid information specified on the command line, it will output a prompt message 
indicating the correct format of the command line. On other than minimum systems, this prompt provides summary 
information on the valid command-line arguments (file names and options). 

Assembler Syntax 

The input to this assembler is one text ftle containing a number of lines formatted according to the requirements of 
the 68000/68010 assembler language. Because of the ability of this assembler to include auxiliary text files, source 
text libraries may be established and used. Whatever the source, the output lines are automatically formatted to 
separate the label, instruction, and operand fields, whenever the output line is at least 64 characters in width. 

The statements acceptable to this assembler are free-field, one statement per line. Intermediate fields are separated 
by at least one space, and each line is terminated by a carriage return. 

There are three types of statements in the 68000/68010 assembler language, as follows: 

instruction 
directive 
comment 

Each of these statement types is discussed below. 

1-3 



SK*OOS (R) 68K USER'S MANUAL 

Instruction Statement 

An instruction statement consists of zero to four fields, as follows: 

[Iabel[:]] [instruction [operand] [comment]] 

Label Field 

The label field is optional. It is normally used to provide a symbolic name for the address of the code generated by 
the following assembler instruction. If the label field is omitted, it must be replaced with a space. 

Labels are composed of one to 30 characters, of which all characters are significant. The first character of a label 
must be a letter or period, and the remaining characters must be letters, periods, digits, underlines, and dollar signs. 
Lower case and upper case letters are considered distinct. Label defmitions starting at other than the left margin 
must end with a colon. 

The following symbols may not be used as labels, since to do so would create ambiguous register references: 

AO thru A 7, CCR, 00 thru 07, OFC, PC, SFC, SP, SR, USP, VBR, 
aO thru a7, ccr, dO thru d7, dfe, pc, sfc, sp, sr, usp, vbr. 

These represent the following 68000 or 68010 registers: 

AO thru A7 32-bit address registers AO thru A7, 
CCR 8-bit condition code register (low 8 bits of SR), 
00 thru 07 32-bit data registers DO thru 07, 
OFC Destination function code register, 
PC 32-bit program counter, 
SFC Source function code register, 
SP 32-bit stack pointer (same as A7), 
SR 16-bit status register, 
USP 32-bit user stack pointer, 
VBR Vector base register. 

Instruction Field 

The instruction field contains the 68000/68010 assembler instruction. It will normally always be present, but if it is 
omitted, the operand and comment fields must also be deleted. Lines containing labels only are allowed, as are 
totally-blank lines. 

A 68000/68010 instruction name contains no more than seven characters, with upper case and lower case non-unique. 
The complete set of 68010 assembler language instructions is described in the Motorola 68010 Resident Structured 
Assembler manual. 

Those 68000/68010 instructions which require data size specification may be suffIXed with length modifiers. These 
include ".B" for 8-bits, ".W" for 16-bits, and ".L" for 32-bits. If no data length modifier is specified, ".W" is normally 
assumed. 

To indicate short branch instructions, the SuffIX ".S" may be used. This assembler will not change short branches to 
long branches or vice versa, and a short branch to the next instruction will not be changed to a long branch, but will 
be noted as an illegal operation on the 68000/68010. 

1-4 



SK*DOS (R) 68K USER'S MANUAL 

Operand Field 

The operand field contains zero or more parameters of the instruction. If multiple sub-fields are present, they must 
be separated by a comma. Only the MOVEM instruction allows more than two operands, but the register list of that 
instruction must be separated with slashes and hyphens, even if only one register is used. Many instructions (such as 
MOVE) have two operands, which are designated as source and destination sub-fields, from left to right. 

This assembler supports the standard Motorola notation for the 68000/68010 effective addressing modes. They are 
summarized below. 

CCR, DFC, SFC, SR, USP, VBR - Control register 

An - Address register direct 

Dn - Data register direct 

(An) - Address register indirect 

(An) + - Address register indirect with postincrement 

-(An) Address register indirect with predecrement 

expression(An) - Address register indirect with displacement 

expression(An,Xn); expression(An,Xn.W); expression(An,Xn.L) - Address register indirect with index 

expression (in ORG); *-expression; *[ + expression] (in ORG) - Address short or long 

expression (in RORG); *[ + expression] (in RORG); expression(PC) - Program counter with displacement 

expression(PC,Xn); expression(PC,Xn.W); expression(PC,Xn.L) - Program counter with displacement and index 

#expression - Immediate 

Comment Field 

The comment field consists of any text following the fields described above, but preceding the terminating carriage 
return on the line. It may contain characters with hex values from $20 thru $7E. 

Directive Statement 

A directive statement consists of one to four fields, as follows: 

[label[:11 directive [operand] [comment] 

Label Field 

The label field of a directive follows the same rules provided above. However, a label may be used only with the 
directives indicated below. 

Directive Field 

1-5 



SK*DOS (R) 68K USER'S MANUAL 

The directive field provides information for the assembler, rather than instructions for the 68K processor. This 
information inciudes such items as the base address of the program, the establishment of symbol values, the 
allocation of storage, the specification of additional source mes to be read by the assembler, etc. A list of the 
directives implemented by ASM is provided later in this manual. Lower case and upper case letters in the directive 
field are not considered distinct. 

Operand Field 

The operand field consists of zero or more sub-fields. Multiple sub-fields are separated with commas. 

Comment Field 

The comment field consists of any text following the fields described above, and preceding the terminating carriage 
return. The comment field may be composed of characters with ASCII hex values from $20 thru $7E. 

Comment Statement 

A line which starts with an asterisk is ignored by the assembler except for being optionally listed (along with the 
remainder of the program). A comment statement may be composed of characters with ASCII hex values from $20 
thru $7E. 

Directives 

[labe1.[ : ]] DC operand [ , operand [ , ... ] ] 
[label[:]] DC.B operand[,operand[, ... ]] 
[label[:]] DC.L operand[,operand[, ... ]] 
[label[:]] DC.W operand[,operand[, ... ]] 
[label[:]] FCB operand[,operand[, ... ]] 
[label[:]] FCC operand[,operand[, ... ]] 
[label[:]] FDB operand[,operand[, ... ]] 

DC specifies the assignment of one or more values into successive words, bytes, or long words; the suffixes are 
interpreted as described above for instruction suffixes; a DC.B directive not followed immediately by another OC.B 
directive will normally have a filler byte inserted, if necessary, to force word alignment (except when the + / -F option 
is used.) FCB and FCC are equivalent to DC.B and FOB is equivalent to DC.W. Strings must be enclosed in single 
or double quote symbols. 

[label [ : ] ] DS expression 
[label [ : ] ] DS.B expression 
[label[:] ] DS.L expression 
[label [ : ] ] DS.W expression 
[label [ : ] ] RMB expression 

DS indicates the reservation of a specified number of words, bytes, or long words, without placing values into the 
locations; no word alignment is forced after any DS directive, although word alignment is forced before OS and 
DS.W directives, and double-word alignment is forced before OS.L direc~ves. RMB is equivalent to OS.B. 

END [label] 

END indicates the logical end of the assembler language unit, although not necessarily the end of the program, as the 
assembler will continue to process input until it fmds physical end of me. Although the END statement may not be 

1-6 



SK"'DOS (R) 68K USER'S MANUAL 

labelled, an optional label may appear as an operand indicating the starting address of the program, and will be 
placed into the object fIle as the transfer address. 

ENDC 
ENDIF 

ENDC and END IF indicate the end of the range of an IFxx or IFDEF declarative. 

label [:] EQU expression 

EQU defmes a symbol and sets its value to that of the single operand; this operand may contain complex expressions, 
but not forward references, and once defmed by an EQU statement or as a program label, a symbol's value may not 
be changed. 

IFxx expression 
IFDEF label 
IFP! 

IFxx or IFDEF indicates the beginning of a sequence of assembler statements which may be logically conditionally 
included or excluded from the input to the assembler; the xx indicated above must be replaced by EQ, GE, GT, LE, 
LT, or NE, in order to indicate the condition (expression xx zero) for the inclusion of the assembler statements, 
which are terminated by a corresponding ENDC/ENDIF directive; IFDEF includes the sequence of statements if the 
indicated label is defmed; IFPl includes the sequence on the fIrst pass of the assembler, but excludes it on the second 
pass; IFxx, IFDEF, and IFPl statements may be nested to 32 aggregate levels. 

LIB filename 
USE filename 

LIB and USE provide the name of an auxiliary source fue which is logically inserted into the current source fue in 
place of the LIB or USE directive; the fue name must follow the conventions required by SK*DOS/68K. 

LIST 

LIST allows the source listing to be produced, unless it is suppressed by an option on the command line. 

NOLIST 

NO LIST suppresses source listing production. 

NO PAGE 

NOPAGE suppresses source listing pagination. 

ORG expression 

ORG specifies the starting absolute memory base of the program counter, assuming short absolute addresses 
restricted to the fIrst and last 32768 bytes of address space. 

ORG.L expression 

1-7 



SK*DOS (R) 68K USER'S MANUAL 

ORG.L specifies the starting absolute memory base of the program counter, assuming long absolute addresses 
representing the full range of the address space. 

PAGE 

PAGE causes the next line on the source listing to appear on the next page. 

RORG expression 

RORG specifies the starting absolute memory base of the program counter, assuming short absolute addresses, and 
the generation of program-counter-relative effective addresses. 

RORG.L expression 

RORG.L specifies the starting absolute memory base of the program counter, assuming long absolute addresses, and 
the generation of program-counter-relative effective addresses. 

RPT expression 

RPT specifies the number of times the next line in the same source fIle will be repeated; the next line is always 
included at least once, even if the value of the expression is zero. 

label [:1 SET expression 
label [:1 - expression 

SET defmes or redefines a symbol and sets its value to that of the single operand; this operand may contain complex 
expressions, but not complex forward references, and this symbol's value may be changed only by another SET or = 
directive. 

SPC 

SPC places a blank line in the source listing. 

TTL title 
NAM title 

TIL and NAM specify the title to be placed at the top of each page in the source listing when pagination is active. 

Arithmetic Expressions 

Expressions consist of combinations of symbols, constants, operators, and parentheses. Symbols must normally be 
defmed before being used in complex arithmetic expression evaluations. All arithmetic and logical operations are 
performed using 32-bit two's complement integer arithmetic; division is truncated, and overflows are normally lost. 
Expressions may be forced into 16-bit mode by enclosing them With '(' ... ').W', or by masking them with Sffff. 

Symbols used in expressions include the following: 

program labels 
symbols defmed with DC, OS, EQU, SET directives 
numeric constants 
,*, (the location counter) 

1-8 



SK*DOS (R) 68K USER'S MANUAL 

Program. labels and symbols are composed of one to 30 characters, starting with a letter or period, as described 
earlier in this manual. 

Constants may be expressed in decimal, hexadecimal, binary, octal, or ASCII, and are constructed as follows: 

Decimal constants are represented by the digits 0 thru 9; they may not contain decimal points. 

Hexadecimal constants start with the dollar symbol, which must be followed by one or more digits and/or letters, 
restricted to the ranges a thru f and A thru F. 

Binary constants start with the percent symbol, which must be followed by one or more O's and 1's. 

Octal constants start with the at symbol, which must be followed by one or more digits, restricted to 0 to 7. 

ASCII constants start and end with single or double quote symbols, and contain characters with hex values $20 thru 
$7E; quote symbols within the constants, matching the delimiters, are represented by two adjacent quote symbols; the 
number of characters in ASCII constants within expressions is restricted to four except in DC and equivalent types of 
directives. 

Operators used in expressions may include the following, in decreasing order of priority: 

unary minus -
left/right logical shifts < < and > > 
logical and/or & and! 
division/multiplication / and * 
addition/subtraction + and-

Object File Formats 

One of the object fue types produced by ASM assembler follows the format of the standard Motorola S-records fue. 
The format of each type of S-record is described below. 

The record type field is an'S' and a digit, interpreted as follows: 

S1 indicates a record containing data, starting at the value in the 16 bit (2 byte) address field. 

S2 indicates a record containing data, starting at the value in the 24 bit (3 byte) address field. 

S3 indicates a record containing data, starting at the value in the 32 bit ( 4 byte) address field. 

S7 indicates a record containing an optional 32 bit ( 4 byte) transfer address, and terminates a group of S3 records. 

S8 indicates a record containing an optional 24 bit (3 byte) transfer address, and terminates a group of S2 records. 

S9 indicates a record containing an optional 16 bit (2 byte) transfer address, and terminates a group of S1 records. 

The number of bytes to follow is indicated as two hexadecimal digits. if an address or value is to appear in this 
record, it follows the length field just described; it is represented in hexadecimal. If data appears in the record, it 
follows the starting address, and is represented in hexadecimal. The one's-complement checksum of all of the items 
is indicated as two trailing hexadecimal digits. 

1-9 



SK*OOS (R) 68K USER'S MANUAL 

Another set of the object flle types produced by ASM is the SK*OOS/68K binary load records 02, 03, and 05. These 
formats are described below: 

leadin address length body comments 
------ ------------- -.---- --------
$02 2-byte-offset I-byte data 
$03 4-byte-offset 2-byte data default 
$05 4-byte 2-byte data 
$16 2-byte-offset none none transfer address 
$18 4-byte-offset none none transfer address, default 
$19 4-byte none none transfer address 

The naming of the object flle produced by ASM is dependent upon the type of object ftle and the system on which it 
is run. The following table provides the extensions: 

type 

02/03/05 
S3/S2 

extension 

.com 

.mxt 

Instruction Syntax 

The syntax of the assembler language accepted by this assembler is compatible with the standard language as 
implemented in the Motorola 68010 Resident Structured Assembler. 

Upper and lower case letters in instructions are not considered distinct. For those instructions with length modifiers, 
the sufftx ".W" will usually be assumed if none is provided in the instruction field. Branch instructions must be coded 
with ".S" to indicate short branches or with ".L" or without suffix to indicate long branch instructions. A short branch 
to the next instruction is invalid on the 68010 and will not be changed to a long branch. For unsized instructions, 
length modifiers are generally ignored. 

Certain instructions (ADD, AND, CMP, EOR, MOVE, NEG, OR, and SUB) have variations in their basic operation 
codes beyond length modification. The following variations are normally handled by this assembler, but may be 
coded explicitly, as follows: 

... A address register operation 

... .1 immediate operation 

Other variations must be coded explicitly (as the assembler has no manner in which to determine that they were 
desired), as follows: 

.... M memory operation 

.... 0 quick immediate operation 

... x extended carry operation 

For the MOVEM instruction, if only one register is present in the register list, it must appear as Dx-Ox, Ax-Ax, 
Ox/Dx, or Ax/Ax. The syntax of the MOVEM requires a register list, not a register. 

The BKPT, MOVEC, -MOVEM, and RTD instructions and the MOVE CCR, ... and MOVE ... ,CCR variants of the 
MOVE instruction are invalid when the 68000 option (MO) is chosen on the command line, as these are all 68010 
instructions. 

1-10 



SK*DOS (R) 68K USER'S MANUAL 

Error Messages 

Most error messages are sell-explanatory; however, all of them are briefly explained in the list below. For minimum 
systems, only error numbers are output by the assembler. 

19 Assembler error - An internal error in the assembler has been detected, probably caused by syntax errors in the 
statement. 

07 Bad 16 bit displacement - The displacement value is less than -32768 or greater than +32767. 

25 Bad 16 bit displacement range - The displacement value is less than -32768 or greater than + 32767. 

11 Bad 16 bit extension - The extension value is less than -32768 or greater than + 32767. 

02 Bad 3 bit value - The quick immediate data value is not in the range 1 to 8,-or the specified breakpoint number is 
invalid. 

03 Bad 32 bit field specifier - The bit field value specifies a bit outside of a long word. 

31 Bad 4 bit value - The specified vector number is invalid. 

08 Bad 8 bit displacement - The displacement value is less than -128 or greater than + 127. 

26 Bad 8 bit displacement range - The displacement value is less than -128 or greater than + 255. 

12 Bad 8 bit extension - The extension value is less than -128 or greater than + 255. 

15 Bad 8 bit field specifier - The bit field value specifies a bit outside of a byte. 

22 Bad 8 bit operand - The operand value is less than -128 or greater than + 255. 

01 Bad address displacement - The displacement is out of range for the effective address type. 

06 Bad count operand - The immediate shift count is less than 1 or greater than 8. 

10 Bad destination effective address - The destination effective address type is invalid for this type of instruction. 

09 Bad destination indexed address - The indexed destination effective address type is invalid for this type of 
instruction. 

13 Bad effective address - The effective address type is invalid for this type of instruction. 

14 Bad expression format - The expression is badly-formed or contains a space. 

27 Bad expression range - The address expression has a value outside the short addressing range. 

18 Bad instruction field - The item in the instruction field cannot be recognized. 

20 Bad label usage - The directive statement may not be labelled. 

xx Bad library file ... - The indicated library file could not be found. 

1-11 



SK*DOS (R) 68K USER'S MANUAL 

21 Bad multiple destination - The operand specifies registers not allowed in a multiple destination list. 

xx Bad object file ... - The indicated object file could not be created. 

16 Bad operand 1 for instruction type - The fust operand is improper for this instruction. 

04 Bad operand 1 format - The fust operand has been coded incorrectly. 

17 Bad operand 2 for instruction type - The second operand is improper for this instruction. 

05 Bad operand 2 format - The second operand has been coded incorrectly. 

23 Bad operand format - The instruction operand field is badly-formed or contains an unintended space or other 
illegal character. 

xx Bad source fue ... - The indicated source me could not be found. 

xx Library fue nest error ... - The indicated library me could not be included, as the nest level is too deep (usually 3 
for minimum systems and 12 for others). 

24 Phasing error - The non-redefinable symbol has been found to have a different value on the second pass than it 
had on the fust pass of the assembler; this is often due to conditional assembly including different text on the two 
passes or due to other syntax errors in the assembly text. 

28 Redefmed symbol - The symbol defmed in other than a SET statement has been redefmed. 

30 Symbol table overflow - The table which contains the program labels has been filled to capacity or has been 
specified as too large; attempt to change its size with the command line option, reduce the number of labels used in 
the program, reduce their lengths, or divide the program into smaller parts. 

29 U ndefmed symbol - The symbol is used in an expression or in a context which does not allow forward references 
or is not defmed in the program. 

1-12 


	000
	001
	002
	003
	004
	01-00
	01-01
	02-01
	02-02
	03-01
	03-02
	03-03
	04-01
	05-01
	06-01
	07-01
	08-01
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	A-01
	A-02
	A-03
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	F-01
	G-01
	G-02_ACAT
	G-03_APPEND
	G-04_BACKUP
	G-05_BEEP
	G-06_BUILD
	G-07_CACHE
	G-08
	G-09_CAT
	G-10
	G-11
	G-12_CHECKSUM
	G-13_COMPARE
	G-14_COPY
	G-15
	G-16
	G-17
	G-18
	G-19_DAMON
	G-20_DELETE
	G-21_DEVICE
	G-22_DIFF
	G-23_DIR
	G-24_DISKNAME
	G-25_DOSPARAM
	G-26_DRIVE
	G-27_EDLIN
	G-28
	G-29_FIND
	G-30_FORMAT
	G-31
	G-32_FROMDOS
	G-33_FTOH
	G-34_GET
	G-35_HDFORMAT
	G-36
	G-37
	G-38
	G-39_HELP
	G-40_LINK
	G-41_LIST
	G-42_LOCATE
	G-43_MAKEMPTY
	G-44_MON
	G-45_PARK
	G-46_PDELETE
	G-47_PEEK
	G-48_PICTEST
	G-49_PROMPT
	G-50_PROTECT
	G-51_RAMDISK
	G-52
	G-53_REDOFREE
	G-54_RENAME
	G-55_S1TOCOM
	G-56_SAVE
	G-57_SCAT
	G-58_SKDOS09
	G-59
	G-60_STEPRATE
	G-61_SYSTEM
	G-62_TCAT
	G-63_TIME
	G-64_TRACE
	G-65_UBASIC
	G-66_UNDELETE
	G-67_VERIFY
	G-68_VERSION
	G-69_XEQ
	H-01
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12

