
Issue No. 11
November 1990

IN THIS ISSUE

68 News Asked to Stop
Publication 2

Single-Drive Backup 3
Mike Herman's program to
backup floppy disks if you only
have a single floppy drive

Beginner's Corner
More on programming by Ron
Anderson

5

Print Spooling on the PT68K 12
Mike Randall's print spooler pro­
gram saves time

A Modified LIST Utility 23
David Underland improves the
LIST program

More Programming Tricks 26
From Gordon Reeder's Bag of
Tricks

SK*DOS Update 30

The Star-K BBS System 31

2 68 News

68 News Asked to Stop Publishing
Just about the time we mailed out the previous issue of 68 News, we learned

that a new "68" magazine has been formed. It seems that this past summer, when
we fell a few months behind schedule, some of our good friends took that to
mean that 68 News was dead. And so they decided to start another newsletter,
tentatively called The 68xxx Machines. We have now been asked to stop
publishing 68 News, send The 68xxx Machines our subscription list, transfer our
subscribers to them, and send them our articles and ads to be published there.

The 68xxx Machines will be a bit different from 68 News. While their per-issue
subscription rates will be somewhat lower than ours ($1 per issue for them, vs.
$1.67 per issue for us), their ad rates are generally much higher ($75 for a half
page in The 68xxx Machines vs. $10 for a half page in 68 News). To get the
advertisers to help pay for the costs, The 68xxx Machines will have to cover a
hardware and software from many vendors. In other words, The 68xxx Machines
would cover not just SK*DOS, but also perhaps OS-9. or Minix (a Unix clone)
,as well as other hardware and software. The idea is to form a common magazine,
replacing the many newsletters that individual vendors now send out themselves.

On the surface. I think this is a fine idea. The 68xxx world is small. and bringing
it together under one roof can be beneficial to all. Bull have several reservations.

When a magazine has to cover many different systems, the space devoted to
anyone has to be limited. There just may not be enough room for the material
anyone of us wants to see, and there may be much that we have no interest in.

Second, on a long-term basis, a magazine that relies heavily on advertisers
must of necessity follow the majority of its readers. For example, some of the
people involved with setting up the magazine are heavily into the Radio Shack
Color Computer (CoCo). Since there are so many more CoCos than almost
anything else, the magazine might tum into a CoCo magazine, for all I know.

I have seen cases where one vendor or group managed to take over a magazine
and effectively downplay or even exclude other points of view. Whether it was
preferential treatment from the publisher, or just a simple matter of one prolific
vendor flooding the magazine with news releases, ads. articles. and photos, the
ultimate effect is the same - a stilted, one-sided, unfair magazine. For example,
I remember one vendor who wrote a monthly column (and even gave talks at
meetings organized by the magazine), which turned out to plug all his own
products and ignore everyone else's.1l was designed to look impartial, but was
in fact a free advertisement which made it look as though the magazine supported
his products above those of other advertisers. I have no indication that this will
happen with The 68xxx Machines, but I am afraid that it might.

As a result. I have decided to go with The 68xxx Machines's suggestion on a
trial basis. If the first issue comes out in January as expected, then you will
receive an issue of The 6&o:x Machines instead of 68 News. Beyond that, things
are less certain. I suspect that the ultimate solution may be to substitute The
68xxx Machines on an issue-for-issue basis, but still come out with an occasional
issue of 68 News to cover material which may not be appropriate for The 68xxt
Machines, or for which they may simply not have room.

Let me know What you think.

November 1990 3

Single-Drive Backup Program
by Mike Herman

Here is a useful program for those of us running SK*OOS on a system with
just one floppy drive and too little memory for a RAMdisk. It is a backup
program which allows making a copy of an entire disk on just one floppy drive.
It copies as much of the disk into memory as fits, asks you to insert the destination
disk, and copies the data out to the disk. If the memory is not large enough, then
it asks you to swap disks several times, until the entire disk is copied.
* SDBAC!ruP - SINGLE DRIVE BAC!ruP FOR SX*DOS 68000
*
* ORIGINAL BY MlXE HERMAN, 9/90
* MODIFIED AND EXPANDED BY PETE STARX 11/17/90
* TO SAVE SPACE, WRITTEN FOR l56-BYTE SECTORS. IF SECTOR LENGTH
* IS CHANGED TO 512, CHANGE 352 TO 608 IN TWO PLACES BELOW
*

LIB SXEQUATE LIBRARY FILE

ORG $0000 START ADDR + OFFSET

SDBACXUP BRA.S START GOTO START
DC.W $0100 VERSION NUMBER

START LEA MSG1(PC),A4 POINT TO INIT MESSAGE
DC PSTRNG GO PRINT
DC GETNXT READ DRIVE NUMBER
SUB.B #$30,D5 CONVERT FROM ASCII
CMP.B MAXDRV(A6),D5 CHECX IF VALID DRIVE
BHLL HELP ON ERR XFER

* SET UP REGISTERS TO GO AHEAD

MOVE.L D5,DO SAVE DRIVE NUMBER
MOVE.L A6,A4 POINT A4 TO USRFCB
MOVE.B D5,FCBDRV(A4) INSERT DRIVE No INTO FCB
MOVE.W #$0003,FCBCTR(A4) INSERT TR 0 SECT 3
DC SREAD READ SIS
BNB.L ERROR
CLR.L D1
MOVE.W FCBDAT+38(A4),Dl Dl=LAST TRACX/SECT
MOVE.L MBMBND(A6) ,AO
SUB.L #610,AO AO=BND OF BUFFER
CLR.L D2
MOVE.B FCBPHY(A4) ,D7 CHECX IF FLOPPY
AND.B #$FO,D7
CMP.B #$10,D7
BNB.L NOTFLO EXIT IF NOT FLOPPY

* REGISTER USAGE:
* DO=DRlVE NUMBER D1.W=LAST TRACX/SBC ON DISX
* D2 . W=LAST TRltISBC READ D3=RBAD FLAG D4=BOF FLAG
* AO=BND OF BUFFBR A1=LAST BUFFBR USBD

4

* READ SECTOR DATA

*

READ
WaITE

READY

RLOOP

DATE

CLR.L

CLR.L
LEA
DC
DC

LEA

ADD.B
CMP.B
BLS.S
ADD.W
MOVE.B
CMP.W
BLS.S
MOVE.B
BRA.S

SECTOK MOVE.B

WRITB

*

MOVE.W
DC
BNE.L
MOVE.B

ADD.L
CMP.L
BHI.S

D3

D4
ASltSRC (PC) , A4
PSTRNG
GETCH

FCBUFF(PC) ,A4

#l,D2
D1,D2
SECTOK
#$0100,D2
#1,D2
D1,D2
SECTOK
#$1,D4
WRITE

DO,FCBDRV(A4)
D2,FCBCTR(A4)
SREAD
ERROR
#1,D3

#352,A4
A4,AO
RLOOP

* WRITB SBCTOR DATA
*

WRITB

READY

WLOOP

WRITIT

TST.B
BEQ.S
MOVE.L
LEA
DC
DC

LEA

CMP.L
BNE.S
TST.B
BEQ.S
BRA.S

DC
BNE.S
ADD.L
BRA.S

D3
DONE
A4,A1
ASKDES(PC) ,A4
PSTRNG
GETCH

FCBUFP (PC) , A4

A4,A1
WRITIT
D4
READ
DONE

SWRITE
ERROR
#352,A4
WLOOP

68 News

CLEAR FLAG: NOTHING TO

ALSO EOF FLAG
ASK FOR SOURCE DISK
GO PRINT
READ INPUT OF CR WHEN

POINT TO BUFFER BEGINNING

NEXT SECTOR
TIME TO GO TO NEXT TRACK?
NO
YES, NEXT TRACK
AND SECTOR 1
PAST END OF DISK?
NO
YES, SET EOF FLAG
AND GO WRITE OUT ALL TO

PUT DRV NO INTO FCB
AND TRACK/SECTOR
READ SECTOR INTO BUFFER
EXIT ON ERROR
SET FLAG: SOMETHING TO

NEXT BUFFER AREA
AT END OF BUFFER?
NO, CONTINUE

ANYTHING TO WRITE?
NO, SO EXIT
SAVE LAST BUFFER ADDRESS
ASK FOR DESTINATION DISK
GO PRINT
READ INPUT OF CR WHEN

POINT TO BUFFER BEGINNING

AT BND OF BUFFER?
NO, SO WRITE IT
CHECK EOF FLAG
READ MORE IF NOT EOF
ELSE QUIT

ELSB GO WRITB THB SECTOR
ERROR OUT
THEN GO TO NEXT BUFFBR

November 1990

* ALL DONE

*
DONE DC WARMST
*
* ERRORS AND MESSAGES

*
HELP LEA HLPMSG(PC) ,A4

PSTRNG
WARMST

RETURN TO Slt*DOS

DC
DC

HLPMSG DC.B "SDBACltUP is a single-drive floppy disk
backup utility."

ERROR

DC.B $D,$A
DC.B "The correct syntax is SDBACKUP ",$04

DC
MOVE.B
DC

PCRLP
#$07,D4
PUTCH

DC PERROR
DC WARMST

BEEP

NOTFLO DC PCRLF
LEA NTFMSG(PC),A4
DC PSTRNG
DC WARMST

"SINGLB DRIVE BACKUP ",$04

5

Msal DC.B
ASKSRC DC.B
ASKDES DC.B
NTFMsa DC.B

"Insert source disk ••• CR when ready", $04
"Insert destination disk ••• CR when ready ",$04
"Specified drive is not a floppy disk.",4

*
EVEN

FCBUFF DS.B 1 BEGINNING OF BUFFER

END SDBACKUP

Beginner's Corner
by Ron Anderson

I guess we ought to change the name of this to Assembler Comer, at least
for the time being. Rather than forge on ahead very quickly into files and file
handling, I thought perhaps we ought to spend a little more time on our program
to add numbers. First, let's start with the program from last month and fix a
deficiency. DECIN, as you will recall, won't accept negative numbers. Let's
fix that problem by modifying our subroutine GETS1R. Since that routine is
going to get more specific, I am going to rename it GETNUM. We'll fix it so
that it looks to see if the first character it sees is a "-". If so, we'll tuck away that
information and not put the minus sign in S1RBUF. Then later, when we return
from DECIN, we will check whether the value is negative and NEGATE the
number if that is the case. It is easier to do than to describe in words.

Program ADD4 meets these requirements and brings up an example of
something I mentioned previously but didn't explain at the time. I said that the

6 68 News

designers of the 68000 had placed a limitation on programmers. If a variable is
tucked away along with the program access to it is limited. Look at the ADD4
listing below. The variable SIGN is declared at the end of the program. I can
do this:

KOVB.B SIGN(PC) ,DO

but the following is illegal:
KOVB.B DO,SIGN(PC)

PC relative addressing can be used to read the value in a variable, but not to
write a value to the variable. Instead we must go through two steps to use another
addressing mode (We haven't formally talked about addressing modes yet).

LEA SIGN(PC) ,AO
KOVB.B DO, (AO)

This method will always work: for writing to a memory location. Now I'll
include the listing of ADD4. I've started with a fresh uncommented version and
only commented the changes.
* ADD TWO NUMBERS INPUT BY USER

NAM ADD4
* EQUATES

VPOINT EQU $AOOO
WARMST EQU $A01E
PSTRNG EQU $A035
PCRLF EQU $A034
OUT5D EQU $A038
DECIN EQU $A030
GETCH EQU $A029
LPOINT EQU 758

START DC VPOINT
MOVB.L A6,AO
LEA MSG1(PC) ,A4
DC PSTRNG
BSR.S GETNUM CHANGED SUBROUTINE
LEA STRBUP(PC),A1
KOVB.L A1,LPOINT(AO)
DC DECIN
KOVB.B SIGN(PC),D1 GET THE NEGATIVB SIGN PLAG
BEQ. S ADD1 IF ZERO. NOT NEGATIVB
NEG.W D5 OTHERWISE NEGATE THE NUMBER

ADD1 KOVB.W D5,DO
LEA KSG2(PC).A4
DC PSTRNG
BSR.SGETNUM
LEA STRBUF(PC).A1
KOVB.L A1,LPOINT(AO)
DC DECIN
KOVB.B SIGN(PC) ,D1 SAME COMMENT AS ABOVB
BEQ.S ADD2
NEG.W D5

ADD2 ADD.W D5,DO
LEA MSG3(PC).A4
DC PSTRNG

November 1990

CLR.L D5
MOVE.W DO,~
DC 0U'l'5D
DC WABMST

* eDTNUM SUBllOU'l'INB
GBTNUM LEA STRBUP(PC),A1

LEA SIGN (PC) ,A2 POINT AT SIGN VARZABLE
CLR.B (A2) SET SIGN PALSB

GBT1 DC GETCR
CMP.B 1'-',D5 SBB IP PIRST CBARACTBR IS MINOS SIGN
BNB • S GBT2 IP NOT, ALL IS OK
MOVE.B I$Pp, (A2) IP SO, SET SIGN PLAG NON-ZBRO
BRA.S GBT1 DON'T PU'l' "_a IN BUPPBR

GET2 CMP.B '$20,D5 PROM RBRB ON TRBRB ARB NO CHANGBS.
BBQ. S DONGET
CMP.B '$OD,D5
BBQ.S DONGBT
MOVE.B D5, (A1)+
BRA.S eDT1

DONGBT MOVE.B I$OD, (A1)
RTS

MSG1 DC.B "INPU'l' PIRST HOMBD ",$04
MSG2 DC.B "INPU'l' SBCOND HOMBD ",$04
MSG3 DC.B "SOM lSI ",$04
SIGN DC.B 1
STRBUP DS.B 30

BND STUT

7

Our program is growing. Note near the beginning of the program we have
used MOVE.B SIGN(pc),Dl. That instruction is followed by a BEQ.S. We
haven't talked about the condition code register yet, but let me just say that
simply moving a value to a data register causes the value to be tested and some
condition codes seL The test for zero is done automatically and the condition
code register ZERO FLAG is set appropriately so that the BEQ (branch if an
equality test results in a zero value) works after simply moving the value to a
register.

You might be thinking that we have done a lot of manipulation to get our
"flag" set and cleared and stored away in the SIGN variable. You are absolutely
C~L Since I've use Dl in the process, why not eliminate the variable SIGN
,nd simply keep track of it in D1. Listing ADDS follows, and it does just that.
* ADD TWO HOMBBRS INPU'l' BT OSD

HAM ADDS
*BQOATBS

VPOINT BQO $AOOO
WARMST BQO $A01B
PSTRNG BQO $A035
PCRLP EQO $A03 ..
0U'l'5D BQO $A038
DBCIN BQO $A030
GBTCR BaO $A029

8

LPOIN'l' BQU 758

START DC VPOIN'l'
MOVB.L A6,AO
LEA MBG1 (PC),M
DC PSTRNG
BSR.S GBTNUM
LEA STRBUF(PC),A1
MOVB.L A1,LPOIN'l'(AO)
DC DBCIN
TST.B D1 IF NOT ZBRO, SIGN IS NlQATIVB
BBQ.S ADD1
NEG. W D5 NEQATB NUMBBR IF NEQATIVB FLAG

ADD1 MOVB. W D5, DO
LEA MBGl (PC) ,A4
DC PSTRNG
BSR.S GRTNUM
LEA STRBUF (PC) , A1
MOVB.L A1,LPOIN'l'(AO)
DC DRCIN
TST.B D1
BBQ.S ADDl
NEG.W D5

ADOl ADD.W 05,DO
LEA MSG3 (PC) ,A4
DC PSTRNG
CLR.L D5
MOVB.W DO,D4
DC OUT50
DC WARMST

* GBTNUM SUBROUTINE
GBTNUM LEA STRBUF(PC),Al

CLR.B D1 SET SIGN FALSB OR POSITIVB
GBT1 DC GBTCH

CMP.B 1'-',D5
BNI.S GBTl
MOVB.B I$FF,D1 SET SIGN NBGATIVB
BRA.S GRT1 DON'T PUT "-" IN BUFFO

GBTl CMP.B l$lO,D5
BBQ.S DONGBT
CMP.B I$OD,D5
BBQ.S DONGBT
MOVB.B D5, (A1)+
BRA.S GBT1

DONGBT MOVB.B I$OD,(A1)
RTS

MBG1 DC.B "INPUT FIRST NUMBBR ",$04
MSGl DC.B "INPUT SBCOND NUMBBR .. , $04
MBG3 DC.B "SUM IS. ",$04
STRBUF DS.B 30

BND START

68 News

November 1990 9

Obviously the new version is simpler and has fewer instructions. Maybe
not quite so obviously it is not as easy to follow for anyone but the author. A
comment line:
* Dl is used to keep track of the sign of the input value

would surely help clarify the program. In fact, at the beginning of the main
program and at the start of any subroutine, it would be a good idea to document
the register usage. This is sometimes of great value in debugging a complex
program. You can more easily find that you have used a register in a subroutine
that was holding something important in the main program or a higher level
subroutine.

Now that we have a program that will accept negative values, how about one
more improvement. Let's make it so that it will accept numbers until you enter
a zero and then print the total. Numbers may be positive or negative. The
negative numbers are to be identified by preceding them with a "_" just as we
have done so far. The only difference will be to change the prompts from "Enter
First Number" and "Enter Second Number" to "Enter Number". We will do an
unconditional branch back to get another number and add it until the number is
zero and then we will print the total and exit. It will be smaller than our previous
program:
* ADD NUMBERS INPUT BY USER UNTIL ZBRO IS INPUT

NAN ADD6
* EQUATES

VPOINT EQU $AOOO
WARMST BQU $AOIE
PSTRNG EQU $A035
PCRLF EQU $A034
OUT5D EQU $A038
DECIN EQU $A030
GETCH EQU $A029
LPOINT EQU 758

START DC VPOINT GET POINTER TO Slt*DOS VARIABLES
MOVE.L A6,AO SAVE POINTER TO VARIABLES
CLR. W DO TO HOLD SUM OF ENTRIES

ADDO LEA MSGl(PC),A4
DC PSTRNG
BSR.S GBTNUM
LEA STRBUF(PC) ,AI
MOVE.L Al,LPOINT(AO)
DC DECIN
TST.B Dl IF NOT ZERO, SIGN IS NEGATIVE
BEQ.S ADDI
NEG.W D5

ADDI ADD.W D5,DO
CMP.W #O,D5
BNE.S ADDO IF NOT ZERO GO GET MORE
LEA MSG3 (PC) ,A4
DC PSTRNG
CLR.L D5
MOVE.W DO,D4

10

DC oUT5D
DC WARMST

* GETNUM SUBROUTINE
GETNUM LEA STRBUP(PC),Al

CLR.B Dl SET SIGN PALSE OR POSITIYB
GETl DC GETCR

CKP.B #'-',D5
BNE.S GET2
KOYB.B #$PP,Dl SBT SIGN NEGATIYB
BRA.S GETl DON'T PUT - IN BUPPER

GET2 CMP.B #$20,D5
BBQ.S DONGBT
CKP.B #$OD,D5
BEQ.S DONGET
KOYB.B D5, (Al)+
BRA.S GETl

DONGBT KOYB.B #$OD,(Al)
RTS

KSGl DC.B "INPUT NUMBER ",$04
KSG3 DC.B "SUM lSI ",$04
STRBUP DS.B 30

BND START

68 News

Make the changes in the previous program and assemble this one as ADD6.
Gi ve it a try. This one assembled correctly on the first try and did what I expected
it to do. Now you can balance your checkbook provided your balance never
exceeds $327.67 nor is in the red by more than $327.68. (Just omit the decimal
point in your entries). I'll leave it as the first exercise for you to work
independently, to change the .W arithmetic to .L arithmetic. I believe DECIN
will already work for Longs, but you will have to use OUTIOD rather than
OUT5D in order to print out the longer number. When you get done, you can
balance your checkbook if the numbers are less than about $20,000,000. If that
is a problem for you,let me know and we will do a double precision long integer
version that can handle the National Debt!

On a different subject, it might be time to introduce afew more quirks in the
68000 instruction set (hereafter when I say 68000 I mean the entire family, it
gets tiresome to write 68XXX all the time). There is a special short instruction
that may be used to add a small amount to a register. Edit the following two line
program and assemble it using ASM:

ADD.W #1,00
ADDQ.W #1,DO
END

You will get the following listing:
00002 00000000 06450001 add.w #l,dS
00003 00000004 5245 addq.w #l.dS
00004 00000006 end

Notice that the second line generates a shorter instruction (i.e. hex code) than
the first. In fact the first is a 4 byte instruction and the second is only 2. The Q

November 1990 11

(for Quick) version of Add and Subtract work for immediate values from 1 to
8. There were three bits left over in the instruction (speaking loosely) so the
people who worked out the instruction set coded the immediate value right into
the instruction. In the case of the regular ADD instruction the amount to be
added is coded in the second word of the instruction (the 0001 in the above
listing). Again, I will refer you to the 68000 user's manual or your book on
assembler programming on the 68000. The situation here is similar to the one
that we discussed in considering the branch instructions, BRA vs. BRA.S. The
shorter form of the instruction is more limited in scope but it reduces the size of
the object code and it runs faster, and so should be considered if speed is critical.
With a megabyte of memory available, you might well ask why a programmer
should worry about saving two bytes here and there, and the question is valid.
Back in the days when a computer had 4K of memory, programmers Were very
concerned about saving a few bytes, and some of this is a holdover from those
days. Obviously with all that memory, space is no longer as important a
consideration, but speed might be a larger one.

Generally compilers ignore these shortcut instructions and use the BRA form
and the ADD form without exception. This is a case of simplifying the compiler
at the expense of a few more bytes of code. I ought to mention that some
assemblers automatically choose the correct instruction. ASMK from Palm
Beach Software, for example, will generate an ADDQ machine code wherever
an ADD has a value within proper range. ASMK won't accept an ADDQ
instruction, however. It wants to do it automatically and it balks with an error
message if you try to tell it to use the ADDQ. ASMK does something else that
is rather nice. If you use a BRA.. instruction, and it is within the range of a
BRA.S, it will flag the instruction so you can change it. In this case, the
assembler doesn't do it automatically, but it does tell you that you may do it. In
a long program you may find that when you change all the flagged branch
instructions to short branches, a few more will be brought within range, so the
process is iterative. Perhaps this is why the assembler doesn't do it automati­
cally.

Our program from above yields the following when assembled with ASMK:
000000 5245 add.w .l,ds
000002 4E7l 4E7l 4E7l addq.w 'l,ds

*** UNRECOGNIZABLE MNEMONIC OR MACRO
end

It automatically generates the machine code for ADDQ on the ADD.W
instruction, and it complains when you try to tell it to use ADDQ.

If you look through the user's guide you will find a couple other versions of
ADD. Both of the assemblers mentioned here handle those automatically. In
the original instruction set we would have to use ADDI #32,D7. Both assem­
blers see the immediate sign (#) and generate the ADDI instruction. ADDA is
also mentioned for use in adding to an address register. This is also handled by
both assemblers. There are a few more subtle differences in the two assemblers
that we needn't worry about for the present.

12 68 News

Well, next time we will get into reading from and writing to disk files, I
promise. Perhaps at that point, you will be able to read and understand books
on the subject without help.

I truly hope these four articles have helped you to get started. Somehow it
is difficult to get through that first step of firing up the computer and getting it
to do something. Welcome to the world of computer programmers as opposed
to being appliance users. Future columns will deal with using compilers and
interpreters, and reviews of software that you can use.

Print Spooling on the PT68K-2
by Dr. Michael RandaU

(Editor's Note: Mike sent us the enclosed code for inclusion ill the 68 News,
but did not enclose an article with it. I have therefore added the following
paragraphs by way of explanation.)

A print spooler lets you print a file at the same time as you do something else;
the word spooler dates back to the early days of large computers, when the file
was written to a spool of tape, to be printed at a later time. For example, a print
spooler allows you to print out an assembly listing at the same time as you edit
or assemble another file.

Without a print spooler, you would have to wait until the printing is finished
before you could edit or assemble the next file; the spooler allows you to do both
at the same time. The computer can handle both jobs easily because printing
keeps the printer busy, but involves relatively little work for the CPU.

The print spooler is nothing more than a program (or actually, two programs
in our case), which sets up a timer (the DUART in our case) to generate periodic
interrupts. Each time this interrupt arrives, the CPU stops the current program
(which may be an editor, assembler, or any other program you might be running),
temporarily goes off to send the next character to the printer, and then resumes
your program as if nothing had happened. Since the interruption is very short,
you will generally never notice that the CPU went off to do something else for
a moment.

To use Mike's print spooler, you must do three things:
Step 1. Prepare the file or files you want to print. For most normal text files,

the file may already exist as .TXT files, in which case you need do nothing. In
some cases, you may have to go out of your way to prepare the file. For example,
to spool an assembly listing, you will have to tell the assembler to write a listing
file, rather than print it directly. This could be done by redirecting its output to
a file. For example, the command
ASK TESTPILB -B 4.LISTFILE.OUT

would tell the assembler to assemble lESTFILE, not generate a binary file, and
send all output to a file called LISTFlLE.OUT on drive 4. (On my system, drive
4 is generally a RAMdisk, so this would be a strictly temporary file.)

Step 2. Use the DEVICE command to load the PARSPOOL printer driver and
call it PSPL. Thefollowing command would do the job:

November 1990 13

DBVICB PARS POOL AT 3 AS PSPL

Note that a different driver is needed; the normal PARALLEL driver you may
have been using to date is not set up for spooling.

Step 3. Use the PRINT command to send the file to the driver. In our example,
the command would be
PRINT LISTFILB

PRINT is used here instead of LIST. Many of you have been using a command
such as LIST PRTR to send a listing to a PRTR driver; now you would use
PRINT instead. The PRINT command defaults to an extension of .OUT, so we
did not need to add an .OUT after LISTFILE; for other extensions, you would
need to add it.

The P ARSPOOL driver code follows:
NAM PARSPooL.TXT
OPT PAG
LIB SKEQUATB.T~
PAG

* PARALLEL DEVICB DRIVER FOR SX*DOS/68X
* THIS VERSION IS CONFIGURID FOR THE PT-68X-2 COMPUTBR
* IT IMPLEMENTS PRINTBR SPOOLING USING DUART 2 TO +
* GBNERATB TIMER INTBRRUP'l'S +
* OCNTRL $0081 GIVES THB CALLBR ACCBSS TO THB SPOOL +
* QUBUE DATA STRUCTURE +
* IT IS BASBD ON PBTBR STAlUt'S "PARALLEL.T~" +
* PARTS ADDBD ARB MARKED "+" PARTS CHANGBD ARB MARKED "X" +

* THE FORMAT OF A DEVICE DRIVER FOR SX*DOS IS VERY RIGID,
* BSPBCIALLY AT THE BBGINNING AND VERY BND. YOU MAY
* SUBSTITUTB YOUR OWN DRIVER CODB, BUT MAKE SURE TO USB THE SAME
* FORMAT POR THB DRIV'ltR AS THIS BXAMPLE. NOTB BSPBCIALLY THAT
* THIS DRIVER IS NOT BXECUTABLEI IT IS TO BB LOADBD INTO MEMORY
* BY THB 'DEVICB' UTILITY, AND MUST BB POSITION-INDBPBNDBNT.

**************** IMPORTANT II ****************************
** IP USING ASM.COM TO ASSEMBLE THIS PILE, CBANGB "PAG"
** TO "PAGB" IN LINES 2 AND 3, AND MAKE SURB TO
** USB THE -F OPTION
**

******************.***************************************
* PART 1. BBGINNING, VERSION NUMBBR, AND A 'DN' MARKER
* WHICH IS CHBCKED BY 'DBVICB' TO AVOID BRRORS.
******* •• ***

START BRA.S START

DC.W $0001
DC.W $444B

NEVER BXECUTBD

VERSION NUMBBR
'DN' ID MARKER

**
* PART 2. LENGTH SPBCIFICATION. THB NE~ LONG WORD DBFlNES
* THB LBNGTH OP THB DRIVER TO DBVICB.COM. THBEND IS A
* LABBL WHICH IS PLACBD AT THB VERY BND OP THE DRIVER

14 68 News
___ **_ •••• _._* ____ ***** ____ * __ •• _._ ••• ____ ._ •• *. ____ •• w __ _

LENGTH DC.L THEBND
* •• *a._._._. _____ * ____ ._* _________ * _____________ .*.* __ w __ *

* PART 3. BNTRY POINT POINTBRS. THE POLLOWING POINTBRS
* DBPINB THE BNTRY POINTS INTO THE DRIVBR. ALL ARB
* RBLATIVB '1'0. THB ORIGIN _* __ * ____ * ______ ** ____ ••• _* ______ * _______________ * __ * __ w __

DC.L INIPOl DRIVBR INITIALIZATION
DC.L INSTAT INPUT STATUS
DC.L INCHAR INPUT CHARACTBR WITH ECHO
DC.L INCHAN INPUT CHAR WITHOUT ECHO
DC.L ICNTRL INPUT CONTROL ENTRY
DC.L OUSTAl OUTPUT STATUS
DC.L OUCHRl OUTPUT A CHARACTBR
DC.L OCNTRl OUTPUT CONTROL BNTRY
DC.L INSTAl INPUT STATUS (1 cHAR ONLY)
DC.L INCHNl INPUT 1 CHAR ONLY, NO ECHO
DC.L BPLUSH PLUSH TYPEAHEAD BOPPBR __ ._* __ •.• ________ * ___ ••• _______ • _____ *_ •• * ___ * __ *_* __ *.w_.w_

x

x
X
X

* PART ". THE POLLOWING LINB DBPINBS THE BBGINNING 01' THE ACTUAL
* CODE AS BEING AT $0000. IT SERVBS TO BREAK UP THE OBJECT PILE
* TO MAD IT EASIER POR 'DBVICB' TO LOAD INTO THE CORRICT PLACE. ****wwww.w ___ *_*** ____________ * _______ ._* _____ *. __ * ___ * ___ • __

ORG $0000
** ____ * ____ ** ______ * ________________ *_ •• ___________ *_.*wwww __

* PART 5. DATA AREA USBD BY THE DEVICB DRIVBR POR VARIOUS
* PURPOSES. _** _____________ * ____ * __ ._. ____ * _________ • __________ •• w __ * __ _

* BYTES 0-121
* NAMB 01' THIS DEVICE DRIVBR DISK PILE - 12 CHARACTERS PLUS 04
* 'PRTSPOOL' IS RBQUIRBD BY PRINT.COM WHICH SEARCHES TO +
* DEVICB TABLE POR A DEVICB WITH THIS NAMB +

DRNAMB DC.B 'PRTSPOOL.DVR',4 X

* BYTE 13:
* DEVICB NUMBER SO THIS DRIVBR KNOWS WHICH DEVICB IT IS
DBVNUM DC.B 0 WILL BE PILLED IN BY 'DEVICB'

* BYTES 14-17:
* ADDRESS 01' DEVICE DESCRIPTOR POR THIS DRIVBR
DEVADD DC. L 0 WILL BE PILLED IN BY 'DBVICE'

*~*********************************.****************** *******
* PART 6. DEVICS INITIALIZATION. THIS CODS .INITIALIZSS PORT A
* 01' THE 68230 .PI/T AT $PE0080 IN THB PT68K-2 COMPUTBR
* AND TIMBR INTBRRUPTS USING DUART 2. IT IS +
* ONLY EXECUTED WHEN LOADSD BY 'DEVICE'. ALL RBGISTERS CAN BE
* CHANGBD.

November 1990

• HARDWARE EQUATES POR THE PORTS

PIT EQU $PE0081
GENCON BQU PIT
PADIR EQU PIT+4
PACONT EQU PIT+12
DATREG EOU PIT+16
STARBG EOU PIT+26

BASB BOU $FB0040
ACR BOU BASE+$9
ISR BOU BASE+$B
IMR BOU BASB+$B
CTUR BOU BASB+$D
CTLR EOU BASB+$P
STARTC EOU BASE+$lD
STOPC EOU BASE+$lP
VEC5 EOU $74
DRVUSD BOU $113C
SECTRD EQU $1020
DlREAD BOU $110C

• INITIALISE TIMER
INIPOl DC INTDIS

LBA INT (PC) ,AO
LEA SAVVBC(PC),Al
MOVE.L VEC5,(Al)
MOVE. L AO, VEC5
MOVE.B #$PO,ACR
MOVE.B #$4,CTUR
MOVE.B #$84,CTLR
TST.B STOPC
TST.B STARTC
MOVE.B #8,IMR
BSR.S INIPOR
DC INTBNA
RTS

PIT ADDRESS
GBNERAL CONTROL REG
DIRECTION REG
CONTROL REGISTER
DATA REGISTER
PORT STATUS REGISTER

DUART2 BASB ADDRESS

LBVEL 5 AUTOINTBRRUPT VECTOR

DISABLE INTBRRUPTS

SAVE NORMAL VECTOR
INSTALL NEW VECTOR
TIMER MODB SBT UP

10ma INT
CLEAR ISR[3]
START TIMER CLEAN
BNABLE TIMER INTERRUPT
PRINTER INIT
ENABLE INTERRUPTS

•
•

INITIALISE PRINTBR PORT A POR UNIDIRECTIONAL OUTPUT,
H2 PULSED OUTPUT MODE, Hl TO DETBCT RISING EDGB

INIPOR MOVE.B #O,GBNCON START WITH GENERAL CTRL =0
MOVE.B #$PP,PADIR 8 OUTPUT BITS
MOVE.B #$78,PACONT PORT A,SUBMODB 01,PULSBD
MOVE.B #$10,GBNCON BNABLB PORT
RTS

* PART 7. INPUT PORT STATUS CHEC~. THIS ROUTINE IS TO RETURN
• TWO THINGS:
• 1. ZERO IF NO CHARACTBR IS READY, NON-ZBRO OTHERWISB
• 2. D5=0 IF NO CHARACTBR IS READY, BLSB THB NUMBBR OP
• CHARACTBRS READY. IN NON-INTERRUPT SYSTEMS, D5 SHOULD
• RETURN A 1; ONLY IN INTERRUPT-DRIVEN SYSTEMS WILL IT

+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

15

16 68 News

* INDICATE A REAL NUMBER OF CHARACTERS IN INPUT BUFFER
* PRESERVE ALL REGISTERS
* ON THE PRINTER PORT, HOWEVER, THERE IS NO INPUT SO ZERO
• NOTE CHANGES INTRODUCED IN VERSION 0004 I

* THERE ARE NOW TWO INSTA- ENTRIES, ALTHOUGH BOTH DEFAULT
* TO THE SAME ROUTINE IF THERE IS NO TYPEAHEAD BUFFER ON THE
* INPUT PORT: INSTAT CHECKS TO SEE WHETHER THERE IS ANY CHARACTER
* IN THE TYPEAHEAD BUFFER, WHEREAS INSTAl CHECKS ONLY TO SEE
* WHETHER THERE IS A 'LAST' CHARACTER AT THE END OF THE BUFFER
* WHICH HAS NOT YET BEEN INPUT WITH THE INCHNl ENTRY

INSTAT

INSTAl

MOVE.B #0,05
RTS
EQU INSTAT

NO CHARACTER READY

* PART 8. GET INPUT CHARACTER FROM PORT INTO 05 AND ECHO IT TO
* THE OUTPUT PORT. IF NO CHARACTER IS READY, WAIT FOR IT.
* PRESERVE THE PARITY BIT, AND PRESERVE ALL REGISTERS
* ON THE PRINTER PORT, HOWEVER, THERE IS NO INPUT SO ZERO
* THIS ENTRY USES THE TYPEAHEAD BUFFER, IF ANY

INCHAR MOVE.B #0,05
RTS

RETURN NOTHING

* PART 9. GET INPUT CHARACTER FROM PORT INTO 05 WITHOUT ECHOING
TO
* THE OUTPUT PORT. IF NO CHARACTER IS RBADY, WAIT FOR IT.
* PRESERVE THE PARITY BIT, AND PRESBRVE ALL REGISTBRS
* ON THE PRINTBR PORT, HOWEVER, THBRE IS NO INPUT SO ZERO
* NOTB CHANGES INTRODUCBD IN VERSION 0004 I

* THBRE ARE NOW TWO INCH-- ENTRIES, ALTHOUGH BOTH DBFAULT
* TO THE SAME ROUTINE IF THBRE IS NO TYPEAHBAD BUFFBR ON THE
* INPUT PORT: INCHAN TAKES THE NEXT CHARACTER FROM THB TYPEAHEAD
* BUFFBR (AND CLBARS THE INSTAl FLAG), WHBREAS INCHNl TAKES ONLY
* THE CHARACTER FROM THB END OF THE TYPBAHEAD BUFFER, AND CLEARS
* BOTH FLAGS.

.************

INCHAN

INCHNl

MOVE.B #0,05
RTS
BQU INCHAN

RETURN NOTHING

* PART 10. INPUT CHANNEL CONTROL. THIS DRIVER DOBS NOT
* IMPLEMENT INPUT CONTROL, SO SIGNAL ERROR AND RTS

ICNTRL AND.B #$FB,CCR
RTS

RETURN NON-ZBRO BRROR

November 1990

* PART 11. OUTPUT STATUS. RETURN ZBRO IF OUTPUT IS NOT
* READY, NON-ZBRO IF READY TO OUTPUT NEXT. PRESBRVE ALL
* REGISTBRS. IF NO HANDSHAKING IS USBD, OR IF HARDWARE
* HANDSHAKING IS USBD, THEN SIMPLY CHECK BUSY BIT.
***.**-----

OUSTA1 MOVE.L AO,-(A7) SAVE
LBA SPAF (PC) ,AO
TST.B (AO)
BPL.S OCBRR IF SPOOL NOT IDLE
BTST #O,STAREG .. BSR OUSTAT

OSX MOVE.L (A7)+,AO RESTORE
RTS

--.. _*.----**--_._-_._----.--------------------.----*------* PART 12. OUTPUT CHARACTBR FROM DS TO OUTPUT PORT. IF NOT

17

+
+
+
+
+
+
+

* READY, JUST WAIT FOR IT. PRESBRVE ALL REGISTBRS (INCLUDING DS)

_ .. _._ .. _-----_._-----------.--------------------_ ... ------
OUCHAR

00'CHR1

OCBRR

BTST.B #O,STAREG
BBQ.S OUCHAR
MOVE.B DS,DATREG
RTS

MOVE.L AO,-(A7)
LBA SPAF(PC) ,AO
TST.B (AO)
BPL.S OCERR
BSR.S OUCHAR
MOVE.L (A7)+,AO
RTS

MOVE.W #$FFF1,D4
DC $A032 OCNTR1
LEA SPMSG(PC),A4
DC PSTRNG
DC WARMST

SAVE

CHBCK IF READY
WAIT UNTIL READY
OUTPUT THB CHARACTER

ZBRO IF SPOOLING ACTIVE

PRINT IF IDLE
RESTORE

REDIRECT TO BRROR OUTPUT

BRROR IF SPOOLING NOT IDLE

.------------.----------._-------------------------*** * PART 13. OUTPUT CHANNEL CONTROL.

-------------*._---------_.------------_._------------. * $0081 USBD BY PRINT.COM
OCNTR1 CMP.W #$81,D4

BBQ.S OCNT81

OCNTRL AND.B #$FB,CCR
RTS

RETURN NON-ZBRO BRROR

* RETURN PTR TO QUBUB DATA STRUCTURE IN DS.L
OCNT81 MOVE.L AO,-(A7) SAVE AO

LEA AQP(PC),AO
MOW.L AO,DS

IBXIT MOVE.L (A7)+,AO RESTORE AO
OR.B #4,CCR SBT Z - NO BRROR
llTS

+
+
+
+
+
+
+

+
+
+
+
+

+
+
+

+
+
+
+
+
+
+

18 68 News

-
* PART 14. WHEN A TYPEAHEAD BUFFER
* EXISTS, THIS FLUSHBS IT AND CLBARS BOTH INSTAT AND
* INSTAl FLAGS TO INDICATE THAT ALL IS EMPTY.
************.**

BFLUSH RTS IN THIS CASE DOBS NOTHING

*=============.=================.===~========================

* INTBRRUPT ROUTINE FOR TIMER INTBRRUPTS +
INT BTST #3,ISR +

BNE.S TIMINT +
MOVE.L SAVVBC(PC),·(A7) NORMAL INT ADOR ON STACK +
RTS 00 TO NORMAL INT ROUTINE IF NOT TIMER INT +

TIMINT TST.S STOPC TO CLEAR ISR[3] +
MOVE.L AO,·(A7) SAVE AO ON STACK +
LBA SPAF(PC),AO +
TST.a (AO) +
BNE.S SPXl IGNORE IF IDLE OR SUSPENDED +
BTS'!' •. B #0, STARBG +
BBQ.S sPXl IGNORE IF PRINTER NOT READY
MOVBM.L 00·D7/AI-A6,-(A7) SAVE REGISTERS

*SPOOL OPBRATIONS

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

BOF

LBA SPFCB(PC),A4
BSR TREAD
BBQ.S BOF
TST.S DS
BBQ.S SPBXIT
MOVE.B DS,DATREG
BRA.S SPBXIT
LEA SPAF(PC) ,A2
MOVE.B #1, (A2)

IGNORE NULLS
PRINT CHAR BSR OUCHAR

A2=SPAF
SUSPEND

* on end-of-file or file error print form-feed
* and go to next file if any

MOVE.S #$C,DS
BSR OUCHAR
LEA AQP (PC) ,AO
MOVE.L (AO),AO
MOVE.S #0, (AO)
BSR BUMP

PRINT FF

FREB THB FILB DEF BNTRY +
BUMP POINTERS « OPEN FILE IF ANY+

SPBXIT MOVEM.L (A7)+,DO-D7/AI-A6 RESTORE REGS +
SPXl MOVE.L (A7)+,AO RESTORE AO +

RTE +

* BUMP POINTBRS +
BUMP LEA AQP(PC),AO +

MOVE.W #9,D5 MOVE 10 POINTBRS UP +
SS2 MOVE.L 4(AO),(AO)+ +

DBRA 05,SS2 +
MOVE.L #0, (AO) CLBAR LAST POINTER +
BSR OPFI +
TST.S (A2) +
8HI.S SS3 IF IDLE (SBT BY OPFI IF Q EMPTY) +
MOVE.B #0, (A2) SBT ACTIVE IF SUSPBNDBD +

November 1990

SS3 RTS +

* OPEN FILB IF NRINQ # 0 +
OPFI LBA NRINQ(PC),AO

TST.B (AO)
+
+

BNB.S OFl +
MOVE.B #$FF,(A2) SBT FLAG TO INDICATB SPOOL IDLE+
RTS +

OFl SUB.B #1, (AO) ADJUST NR IN Q
LBA AQP(PC) ,AO

+
+

FCBPTR
TREAD

MOVE.L (AO),AO AOzFILB DBF STRING
LEA SPFCB(PC),A4
MOVE.B 1(AO),FCBDRV(A4)
MOVE.W 14(AO),FCBCTR(A4)
LEA COUNT(PC),AO
MOVE.B #255, (AO)
RTS
BQU 80 UNUSED SPACE IN FCB
LEA COUNT(PC),AO
CMP.B #255, (AO)
BNB • S NXTBYT

+
+
+
+
+
+
+
+
+
+
+

* READ NEXT SECTOR +
BSR SlREAD +
BNB TRERR +
MOVE.W FCBDAT(A4),FCBCTR(A4) LINK TO NEXT +
MOVE.B #252, (AO) REDUCE COUNT +
LEA 100(A4),A3 POINT TO 1ST DATA BYTE +
BRA.S NBl +

NXTBYT MOVE.L FCBPTR(A4),A3 GET DATA PTR +
NBl MOVE.B (A3)+,D5 +

MOVE.L A3,FCBPTR(A4) UPDATE DATA PTR +
SUB.B #1, (AO) 0 WHEN LAST BYTE READ +
BEQ.S LSTBYT LAST BYTE READ +
RTS +

LSTBYT TST.W FCBCTR(A4) +

19

BEQ.S ITSEOF THAT WAS LAST SEC RETN WITH Z SET+
MOVE.B #255, (AO) Z NOW CLEAR +
~S +

ITSEOF
TRERR

MOVE.B #8,FCBERR(A4)
OR.B #4,CCR SET Z FOR EOF OR READ ERR
RTS

* SINGLE SECTOR READ - DON'T USE DC SREAD III
SlREAD MOVE.B 3(A4),D5

AND.L #$F,DS
MOVE.L #DRVUSD,A3
MOVE.B 0(A3,DS),FCBPHY(A4)
JSR SECTRD
JMP DIREAD

+
+
+

+
+
+
+
+
+
+

*--~-----------~--- +
* DATA AREA +
*-- +
SAVVEC
NRINQ
SPAF

DC.L 0
DC.B 0
DC.B $FF

SAVE OLD VECTOR HERE
NR FILES IN Q
= SPOOLING IDLE,
1= SUSPBNDED, 0 = ACTIVE

+
+
+
+

20 68 News

AQP DC.I. 0 ACTIVE QUEUE POINTER
QPO DC.I. 0,0,0,0,0,0,0,0,0,0 TEN Q POINTERS
FSO DC.I. 0,0,0,0 1ST FILB DEFINITION STRING

DC.L 0,0,0,0
DC. I. 0,0,0,0
DC.I. 0,0,0,0
DC.w 0,0,0,0
DC.I. 0,0,0,0
DC.L 0,0,0,0
DC.I. 0,0,0,0
DC.L 0,0,0,0
DC.L 0,0,0,0 TEN FILE DBF STRS

SPFCB BQU * SPOOLER FCB
RPT 38 X16=608
DC.L 0,0,0,0

COUNT DC.B 0
SPMSG FCC IPRINT BRROR - SPOOLING ACTIVE/,4
.*.**
* THE BND. LABEL THEEND IS USBD TO CALCULATE LENGTH OF
* DRIVER. NOTE THAT THERE IS NO TRANSFER ADDRESS.
*************.***

THEEND EQU *
END

The following is the PRINT. COM program:
NAM PRINT. COM
OPT PAG
PAG
LIB SKEQUATB.TXT

*---.------
* PRINT.COM - BNTER FILE IN SPOOL PRINT QUBUE
*--

$A032
'PSPL'

OCNTRL EQU
PSPL EQU
* OFFSETS TO
NRINO BOU

SPOOL DATA STRUCTURE
-2

SPAP EOU
AOP EOU
OPO EQU
FSO BQU
SPFCB EQU
COUNT BOU

START MOVE. X,
DC
AND. I.
OR.W

-1
a
4
$2C
$CC
$32C

#O,D4
OCNTRL
#7.D5
#$FFFO,D5

GET CURRENT DEVICE IN D5

+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+

MOVE. I. D5,D2 OCNTRL WORD FOR CURRENT DEVICE
IN D2
* CHBClI: FOR PSPL DBVICE

DC VPOINT
MOVE. I. A6,A4

* search the device table for a
LEA SPNAME(PC),AO
LEA DEVTAB(A6),Al

USE USRFCB
device named PRTSPOOL

POINT TO NAME TO BE FOUND
POINT TO DEVICE TABLE 1ST ENTRY

November 1990

CLR.L 01 START AT DEVICB 0
SRCH MOVB.L 4 (Al) ,A2 POINT TO START OP DRIVER CODB

MOVE.L (A2) ,DO
CMP.L (AO) ,DO
BNE.S NOTIT
MOVE. I" 4 (Al) ,DO
CMP.L 4(AO),DO
BNE.S NOTIT

*WE HAVE POUND THB DRIVER (01)
BRA.S NEWDBV

NOTIT ADD.B #1,01
CMP.B #8,01
BBQ.S NOTPND WE COULD' T PIND IT
ADD.L #80,Al NEXT BNTRY IN DBVICB TABLE
BRA.S SRCH

* REPORT DBVICB NOT INSTALLBD
NOTPND LEA NOPSPL(PC) ,A4

DC PSTRNG
DC WARMST

* SAVE OCNTRL WORD POR PSPL DBVICB IN 01
NEWDEV OR.W #$PPPO,Dl
* GBT PILB SPBC INTO PCB

DC
BCC.S

GBTNAM
EXTBN

* REPORT IMPROPBR PILE SPEC - TELL USER THE RIGHT SYNTAX
LBA BADPIL(PC),A4
DC PSTRNG
DC WARMST

EXTBN MOVE. I" #11,D4
DC DBPEXT

* SWITCH TO PSPL DEVICE
MOVE.L Dl,D4
DC OCNTRL
MOVE.W #$81,04
DC OCNTRL
MOVE. I" D5,A3
MOVE. I" 02,04
DC OCNTRL
MOVE.B SPAP(A3) ,03
BMI.S Il
MOVE.B #1,SPAP(A3)

Ii CMP.B #10,NRINQ(A3)
BBQ PULL

* OPBN AND CLOSB THB PILE
DC POPBNR
BNE ERROR
DC PCLOSE
BNE BRROR

(.OUT)

GBT PTR TO SPOOL DATA IN D5
• SPOOL DATA STRUCTURE

SWITCH TO PORMER DEVICB
CURRENT SPAP SAVED IN 03

IP NOT IDLE I SUSPEND

NO PREE BNTRIES

* GBT PREE BNTRY IN PILE DEP TABLE
LEA PSO(A3),AO

I2 TST.B (AO) LOOK POR PREE ENTRY

I3

BBQ.S I3
ADD.L #l6,AO NEXT ENTRY
BRA.S I2
MOVE. I" AO,Al
MOVE.B #$20, (AO)+

A2,AO=PILE DBP ENTRY
SPACE (NON-ZBRO)

21

22

LEA 3 (A4) ,Al Al=FCB FILE DEF
MOVE •• #ll,DO 12 BYTES TO COPY

CPY MOVE.B (Al)+,(AO)+
DBRA DO,CPy COpy FeB TO FILB DEF

* BNTBR FILB DBF IN Q
MOVE. I. #O,DS
MOVE.S NRINQ(A3) ,DS
ASL.II #2,DS X4
LEA QPO(A3) ,Al
ADD. I. DS,Al (Al) IS NEXT Q PTR
MOVE. I. A2, (Al) STORE FILE DEF ADDR
ADD.B #1, NRINQ (A3) UPDATE
MOVE •• FCBFTR(A4),14(A2) 1ST TRXISEC TO FILB DEF

* IF NOT IDLB RESTORE SPOOL STATB
TST.B D3
BMI STSP IF IDLB START SPOOLING
MOVE.B D3,SPAF(A3)
DC WARHST

STSP LBA AQP(A3),AO
MOVE •• #9,DO MOVE 10 PTRS UP

SS2 MOVE. I. 4 (AO) , (AO) +
DBRA DO,SS2
CLR.L (AO) CLBAR LAST PTR
SUB.B #1, NRINQ (A3)

* INITIALISB SPOOL FCB

FULL

LBA SPFCB(A3),A4
MOVE.S 1(A2),FCBDRV(A4)
MOVE.. 14(A2),FCBCTR(A4)
MOVE.S #2SS,COUNT(A3)
MOVE.B #0,SPAF(A3) ACTIVATB SPOOLER
DC WARHST

LBA
DC

QFULL(PC) ,A4
PSTRNG

DC WARHST

BRROR DC PBRROR
DC WARHST

68 News

-- DATA AREA
*--
SPNAMB FCC
NOPSPL FCC
BADFIL FCC

FCC
queue/,4
QFULL FCC

END

IPRTSPooLI spool device driver filename
ISPooL DEVICB PSPL NOT INSTALLBD/,4
ISyntax:- PRINT filespecl,$D,$A
IInserts filespec (default .OUT) in spool print

IPRINT SPOOL QUBUB FULL/,4
START

If you want to avoid the effort of typing these listings in, the code for both of
these programs is available for downloading from the Star-K BBS at (914)
241-3307.

November 1990 23

A Modified LIST Utility
by David Underland

I have found the LIST utility from the SK*OOS users manual to be very useful.
However, I did find a few things annoying. First, the printer doe,S not formfeed
after the listing is finished, and second, the lines per page count does not reset.
Thus, the second listing will have the bottom and top of page margins inserted
in the middle of the page. The following is a quick and dirty fix for this problem
and also adds the ability to date stamp the top of a printout to help keep track of
different versions of a program.

I have the following line in my STARTUP. BAT file;
dosparam 2 wd=80 p1=56 sl=10

This allows printing of 56 lines of text on a page with 10 lines skipped over
the perforation. The problem is that the line counter in the print driver doesn't
get reset after a listing is finished. To solve this situation, I added the following
lines to the close subroutine at the end of the list program:

MOVE.B #$OC,D4
DC PUTCH OUTPUT A PORM PBBD
MOVE.B #$00,$D9P(A6) SBT PLINKS POR DBVICB 2 TO ZBRO

The above outputs a form feed to the printer (the screen ignores it) and sets the
line count (PLINES) to zero in readiness for the next printout. Note: if a print
from another driver (assembler listing) is generated, it may NOT reset PLINES
either, To be sure that the printer and the driver are ready for the next print out,
do a manual formfeed on the printer and at the OOS prompt type:
LIST LIST

This will set the printer to top of form and reset PLINES in readiness for the
next printout.

While I was at it. I decided that since I am very careless about version numbers
and dates of file creation that I would also add a date stamp to the listing routine.
The following is inserted immediately after the opening of the file to allow the
file name and date that the file was last stored to be printed at the top of the
listing:
*LETS PRINT THE PILB NAMB

MOVE.L AO,A4
ADDA.L #4,A4
MOVE.L #7,D2

LOOP MOVE.B (A4)+,D4
BBQ BXT
DC PUTCH
DBRA D2,LOOP

*NOW ADD BXTBNSION
BXT MOVE.B #$2B,D4

DC PUTCH
MOVE.L AO,A4
ADDA.L #12,A4
MOVE.L #2,D2

LOOP 1 MOVE.B (A4)+,D4

MAKE A4 POINT 0 PCB
PILB NAMB STARTS AT BYTB 4
SBT COUNT POR 8 BYTB NAMB
GBT THE CHARACTBR OP NAME
IP ZBRO, NAMB SHORTER THAN 8 BYTES
PRINT IT
IP NOT DONK BRANCH

PRINT A •
GET PCB POINTER BACK
BXTBNSION STARTS AT 12 TH BYTE
SBT UP POR 3 CHARACTERS
GBT THB CHARACTBR

24 68 News

BEQ DATE IP ZERO NO EXTENSION
DC PUTCH PRINT IT
DBRA D2,LOOP1 BRANCH IP NOT DONE

* LETS PRINT THB DATE THAT THE PILE WAS LAST SAVED
DATE LEA MSG(PC) ,1.4

DC PNSTRN PRINT THE MESSAGE
CLR.L D4
MOVE.L A6,A4 MAXB A4 POINT TO FCB
MOVE.B FCBMONeA4l,D4 GBT MONTH OP FILE CREATION
MOVE.L 'OO,DS PRINT WITH OUT LEADING ZEROS
DC OUTSD OUTPUT IN DECIMAL
MOVE.B #$2F,D4
DC PUTCH PRINT I
MOVE.B PCBDAY(A4),D4 GET DAY OP MONTH
DC OUT5D PRINT DAY IN DECIMAL
MOVE.B '$2F,D4
DC PUTCH PRINT ANOTHER I
MOVE.B FCBYER(A4l,D4 GBT YEAR
DC OUT5D PRINT YEAR IN DECIMAL
DC PCRLP PRINT CR AND LF

The above will print a line at the top of the listing such as:
LIST.TXT WAS LAST UPDATED ON 51 28/ 90

While this may not be fancy it does help keep track of different versions of a
program.

The complete. modified code is then this:
*LIST UTILITY FOR S~*DOS 168X
*COPYRIGHT eCl 1986 BY PETER A.
*
* EQUATES TO SX*DOS
*

LIB snQUATB
*
LIST BRA.S START
VER DC.W $0101 VERSION NUMBER
*
*START OF ACTUAL PROGRAM
START DC PCRLF

*

CLR.B D1
MOVE.L A6,AO
MOVE.L A6,A4
DC GETNAM
BCC.S NAMBOX
MOVE.B '21,PCBBRR(A4'

*ERROR ROUTINE

*
ERROR DC

BSR
PERROR
CLOSE
WARMST DC

*FILE SPEC WAS OX; DEPAULT TO .TXT
NAMBOX MOVE. B '1, D4

DC DEFEXT
*
*NOW ACTUALLY OPEN THE FILE

DC FOPENR

STARX

November 1990

*LETS

LOOP

EXT

SNB.S BlUlOR
PRIN'!' 'I'D FILENAME

MOVE.L
ADDA.L
MOVE.L
NOVE.S
SBQ
DC
DBRA
MOVE.S
DC

AO,A'
",A'
'7,D2
(A,,.,D'
BXT
PUTCH
D2,LOOP
1$2B,D4
PUTCH

MOVE.L AO,A'
ADDA.L 112 ,A'
MOVE.L '2,D2

LOOP 1 MOVE.B (A'I+,D'
BEQ DATH
DC PUTCH
DBRA D2,LOOP1

*LETS PRIN'!' 'I'D DATB THAT 'I'D FILE WAS ClUlATBD.
DATE LEA. MSG(PCI,A4

*

DC PNSTRN
CLR.L D4
NOVE.L AO,A'
NOVE.S FCBMON(A4I,D4
NOVE.B 1$00,D5
DC OUT5D
MOVE.S 1$2F,D'
DC PUTCH
MOVE •• FCBDAY(A4I,D4
DC OUT5D
NOVE.B 1$2F,D'
DC PUTCH
MOVE.B FCBYBR(A4I,D'
DC OUT5D
DC PCRLF
DC PCRLF

*MAIN LOOP TO READ AND PRIN'!' BACH CHARACTBll
MAIN MOVE.L AO,A'

DC FREAD
BBQ.S CHAROK

*
*IF THBllB WAS AN BlUlOR, SBB IF BND OF FILII

CMP.B #a,FCBBlUl(A41
BNB BlUlOR
BSR.S CLOSE
DC WARNST

*
*CON'!'INUB IF CHARACTBR IS OK
CHAROlt CMP.B '$OA,D5

BNB.S PRN'l'IT
MOVE.S D1,D6
MOVE.B D5,D1
CMP.B I$OD,D6
SBQ.S MAIN

PRN'l'IT NOVE.S D5,D1

25

26

*

MOVE.B DS,D4
DC PU'l'CH
CMP.B #$OD,D4
BNB.S MAIN
MOVE.B I$OA,D4
DC PUTCH
BRA.S MAIN

*CLOn StlBROU'l'INB
*
CLOn MOVE.L AO,u

*

DC PCLOSB
MOVE.B I$OC,D4
DC l'U'l'CH
MOVE.B '00,$D9P(A6)
IlTS

MSG DC. B .. WAS LAST UPDATED ON ..
DC.B 4
BND LIST

More Programming Tricks
by Gordon Reeder, 618 Adrian Drive, Rolla, MO 65401

68 News

Here are some more tricks from my programing bag. What I have here is a
group of four routines that help a programmer use the free memory that remains
in a system after a program is loaded. I was writing a utility that would search
for data in several files. To do this I needed several buffers; one to hold the list
of files, one to hold the data I was looking for, and one to hold the data that was
found. At this point I was faced with "programers dilemma #127", how large
should I make the buffers?,] Should the file list buffer hold 8, 20, 50.100 files?
If it was too small the usefulness of the program would suffer, if it was too large
I would be wasting space. Wouldn't it be nice if I could have the buffer size
determined at run time!

It turns out that defining buffers at run time was easy to do. And now with
these four routines~ you can do it too! The buffers are placed in the free memory
that is left over after SK*DOS loads your program. The amount of memory left
depends on the size of your program and the amount of DRAM in your system.
The last available byte of memory is at MEMEND(A6). and the ftrSt byte is at
..• well now, just where does the free memory begin anyway? SK*DOS doesn't
have a variable to point to the beginning of free memory, so we have to define
our own, like this .•.
PIlBB DC.L FIlEB+' end

As you can see FREE has to be THE VERY LAST variable declared. In fact
it has to be the last thing in the program before the 'end' statement. When the
program is loaded into memory by SK*DOS, the first byte of free memory will
be right after the variable FREE, and FREE will be pointing to it. Now that we
can find the free memory we need a way to use it. The first routine is called
GeCMem. It's almost trivial in its simplicity. All it does is read the value in
FREE(pc) an return it in A4. So what? Well lincluded it for completeness. and

November 1990 27

if you should want to add features to these routines you may find that you need
a more complex GeCMem. Placing it here makes upgrading easier. The next
routine lets you set aside a block of memory. The size of the block, in bytes, is
placed in A4, then Res_Mem is called. Res_Mem will check to make sure that
there is enough memory to hold the block you want. Here is how to use it to set
upa buffer.

*

bsr
lea.l
move. 1

move
bsr
beq

Get_Mem you need to know where buffer will start
Buffer(pc),Al this is where we will save it
A4,(Al) A4 has start address of the buffer

it is now also in Buffer(pc)
#1000,A4 lets make the buffer 1000 bytes long
Res-"em buffer is now set
error unless there wasn't enough memory

Buffer ds.l 1 of course you need to declare this.

Now if you should call GeCMem it will return the new value that is the first
byte after your new buffer. The next routine does the same thing that Res_Mem
does, but in a different way. Instead of telling how much memory you want to
set aside, you tell Set_Mem what the absolute end address is. The example
routine above using SeCMem would look like ...

bsr Get-"em you need to know where the buffer will
start

lea.l Buffer(pc),Al this is where we will save it
move. 1 A4,(Al) A4 has the start address of the

buffer

*
add. 1 #1000,A4
bsr Set-"em

it is now also in Buffer(pc)
lets make the buffer 1000 bytes long
buffer is now set

beq error unless there wasn't enough memory

Buffer ds.l 1 of course you need to declare this.

Actually. SeCMem has a more useful function, As you will see shortly. The
last routine doesn't even use the variable FREE, but it is useful for placing data
into buffers so I included it here. PuCMem can be used in a loop to place data
into the free memory. D5 is used to hold the character to be placed into memory
(compatible with GETNXT) and A4 holds the address to receive the data. When
the routine returns A4 will have been incremented to the next address. PucMem
also checks for memory overflows. Here is a way that you can use PuCMem
and SecMem to create a buffer that is exactly sized to its needs.

bsr Get-"em you need to know where buffer starts
lea.l Buffer(pc),Al this is where we will save it
move. 1 A4,(Al) A4 has start addres8 of buffer

* it i8 now a180 in Buffer(pc)

Loop
* read a byte of data (from a file or the keyboard, whatever)
* the actual routine depends on your application

28 68 News

* be sure to preserve the contents of A4

bsr.l Put_Mem put the data into free memory
beq error oops, did we run out of memory?
bra.s Loop

* After all the data has been read
AllDone bsr Set_Mem buffer is now set

beq error unless there wasn't enough memory

Buffer ds.l 1 of course you need to declare this.

Now I don't know where you will be reading you data from, or how it's
formatted. That's why I didn't include the code that gets the data or checks for
the end of the input in the above routines.

Maybe a word about what's going on is in order. The call to GeCMem returns
the current value of the FREE. It is kept in A4 while one byte of input data is
read. The input data routine needs to check for the out of data condition. If no
more data is forthcoming then it should branch to AIIDone. If not, it should place
the data into D5 (GETeR andGETNXT will already have done this). The call
to PucMem places the data into free memory. Notice that this is free memory,
not memory that has been reserved or otherwise set aside. The call to PuCMem
will also increment A4 to the next byte. When all the data has been read A4 is
pointing to what will become the new beginning of free memory. The call to
SeCMem uses that value to update FREE, and set the new start of free memory.
You are not limited to just one buffer. After one buffer has been set up you can
use these routines to set up a second, and a third... You get the idea. In the
program that I was writing that started all this, I set up four buffers. The end of
the last buffer is never declared, I just use all available memory. Put these
routines into a file and name it USEMEM.TXT. Now when ever you write a
program that needs to use the vast expanse of memory in your system just include
it with the statement
lib usemem.txt

The routines will be available to you with out having to type them into your
source code. Well that's all for this time. But my bag of tricks is far from empty.
So when I find some more useful routines I'll pass them along. What about you
out there, yes, you reading this news letter. Do you have any tricks you know?
Row about passing them along too.

Free memory routines:
GecMem returns the first available byte of free memory
Res_Mem Reserves a block of x bytes of memory
PucMem puts a byte into free memory
Set_Mem sets the start of free memory at a user defined point
All these routines use a long word 'FREE' that must be defined in the main

body of the program. Like this ...
*FRBE DC.L
* end

FRBE+4
start

init to point just past program
end of program

November 1990 29

As you can see, the longword FREE must be the last declared variable * in the
program. It comes right before the 'END' statement. * After SK*DOS loads the
program, the first free byte of memory will be * directly after the variable FREE.
And FREE will be pointing to it!
..
.. ..

FIND FIRST FREE BYTE
To call •.•••

no arguments needed
Exit •••••

A4 = first available byte of free memory

Get_Mem
move. 1 FREE(pc),A4 get value from FREE •••
rts •••• and return

.. trivial, I know, but by placing it in a

.. subroutine I can add features later.

***

Reserve memory
To calL ••

A4 = how many bytes to reserve
Exit •••

A4 = First free byte past reserved block
Z flag =0 = Memory overflow

move. 1
move. 1
add. 1
cmp.l
bge.s
lea.l
move. 1
move. 1
rts

A1,-(A7) save A1
FREE(pc),A1 get Free pointer
A1,A4 add offset
MBMBND(A6),A4 see if there is enough mamory
Mfull
FREE (pc) ,A1
A4, (A1)
(A7)+,A1

point too FREB pointer
save the new value
restore A1

.. What to do if we run out of memory
Mfull andi #11111101,CCR clear Z bit in CC reg.

rts

*** ..
.. SET MEMORY ROOTINE ..
* to call .••
.. A4 = end of block +1 of a block of memory to reserve
.. Bxit •••
.. Z flag =0 = Memory overflow
.. nothing changed

*----------------~----,-------------------

move. 1
cmp.l
bge.s
lea.l
move. 1

A1,-(A7) save A1
MBMBND(A6) ,A4 see if there is enough memory
Mfull
FREE(pC),A1
A4, (A1)

point too FREB pointer
save the new value

30

move. 1 (A7)+,Al restore Ai
rts

* What to do if we run out of memory
Mfull andi #llllllOl,CCR clear Z bit in CC reg.

rts

*
* MEMORY INPUT ROUTINE
* To call •••••
* A4 = Buffer pointer (auto inc)
* D5 = char to place in buffer
* Bxit ...
* A4 = next Byte of memory
* Z flag .0 = Memory overflow
* Note:

68 News

*This routine doesn't use the variable FREB. But A4 can be set
*with a call to Get_Mem. After all the data has been placed into
*memory, a call to Set_Mem will protect it.

*--
put_Mem cmp.l

bge.s
move.b
rts

MBMEND(A6) ,A4
Mfull
D5, (A4)+

see if there is room in memory

place char in memory
return

.. What to do if we run out of memory
Mfull andi #11111101,CCR clear Z bit in CC reg.

rts

SK*DOS Update
by Peter A. Stark

The following change to SK*DOS will only be of interest to advanced
. programmers, and I am including it here only in the interest of completeness.

We have recently updated SK*OOS to version 3.2 by the addition of two new
variables called DATBEG and MEMBEG. Both of these were put in at the
request of Dr. Jack Crenshaw, who is writing a linker/loader called JINK for use
with SK*OOS.

Both variables can be accessed from programs by using the A6 register (which
normally returns to user programs, pointing to the user data area of SK*OOS)
as follows:

DATBEG is 5100(A6); in most versions of SK*DOS, this translates to $27EC.
MEMBBG is 5104(A6); in most versions of SK*DOS, this translates to $27FO.
The names DA TBEG and MEMBEG are both being added to the SKEQU-

ATE.TXT file.
Both of these variables are generally uninitialized, and ate ignored by

SK*DOS except when loading a binary file from a disk into memory. The
SK*DOS binary file format now has two new load codes, which specifically
refer to these two locations:

The load code $30 takes the next long word in the binary file. adds to it the
current value of OFFSET, and puts the resulting 32-bit sum into DA TBEG.

November 1990 31

The load code $31 does exactly the same thing, but puts its sum into
MEMBEG.

In both cases, SK*DOS does not do any checking on the results. That is, it
does not check for overflow, for an even or odd number, or even that the result
is greater than OFFSET or smaller than MEMEND.

Jack expects to use these two new variables to keep track of the memory
available to load modules.

The Star-K BBS System
Some of you may not be aware that you can talk to other SK*DOS users via

the Star-K BBS. There are also files to download, such as user-contributed files,
or copies of all previous issues of 68 News.

The telephone number is (914) 241-3307, and the protocol is 300, 1200, or
2400 baud, 8 bits, no parity. You may access the BBS with your SK*DOS
system, using a communications program such as CMODEM or EZMODEM;
via a modem connected to a terminal, or even (heaven forbid!) with a PC or
clone.

I hate to admit it, but the BBS itself runs on an XT clone computer, running
at 4.77 MHz with an 8088 processor. The system has a no-name 24oo-baud
modem, and a lO-megabyte hard drive.

In a sense, the hard drive is a tribute to the efficiency of 68000 programming.
10 megabytes is plenty of room for our programs, whereas 10 megabytes would
be woefully inadequate if we were supporting IBM PC programs. In this case,
small is beautiful!

The 68 NEWS is published and copyright © 1990 by Star-K Software
Systems Corp, P. O. Box 209, Mt. Kisco NY, 10549. The editor is Peter
A. Slark.

The SUbscription price is $10 per year. Your subscription runs through
the issue number printed above your name on the label. For example, NlS
means your subscription runs through issue 15.

We accept display advertising at the rate of $10 per half-page (3.5" high
by 4.5" wide). Readers are invited to contribute articles,letters, programs,
tutorials, and other material for publication. We publish only material and
advertising which, in the opinion of the editor, (a) applies to hardware or
software for 68xx(x) type processors, and (b) is of a nature which would
not normally be of interest to the major computer magazines. We simply
do not have room for items of a very general nature, or items which pertain
to very popular systems like the Macintosh or Amiga.

Please send articles or other material to us at the above address (prefer­
ably on disk); you may also fax us at (914) 241-8607, send it via modem
10 our BBS at (914) 241-3307, or call us at (914) 241-0287.

We thank you for your support.

------- ----::;.: : "~::~,'::
From: Star-KSoftware Systems Corp.

P. O. Box 209
Mt. Kisco, NY 10549

Address Cprrection ReQuesteQ.

To:

