
Issue No.9
April 1990

IN THIS ISSUE

Read This! 2
Find out whether you will get
the next issue of 68 News and
what to do about it

Solid-State Disk 3
Mike Randall describes his
RAMdisk card and the soft­
ware that runs it. The card plugs
into the -2 bus and is battery­
backed-up so it remembers
even when you turn the power
off.

Beginner's Corner 12
Ron Anderson starts off the
Beginner's Corner with a dis­
cussion of the 68000 , and how
to program it in assembly lan­
guage.

SK*DOS Notes
Tired of waiting for SK*DOS to
boot? Here is how to speed up
booting on your -2 system

19

2 68 News

READ THIS!

Will YOU get the next issue of 68 News?

Maybe YES ... and maybe NO.

The code number above your name on the mailing label shows
the number of the LAST issue ofthe 68 News you are scheduled
to get. For example, if the code above your name says N9, then
this issue - issue number 9 - is the last you will get.

There are three ways of extending your subscription:

(1) Subscribe for $10.

(2) Advertise. A half-page advertisement costs $10, and ad­
vertisers get a copy of the News.

(3) Send us an article. While we do not have much space, we
will be happy to publish your article as space allows, and will
send you a free subscription as well.

So don't forget -- if it says N9 above your name, then this is
IT!

The 68 NEWS is published and copyright © 1990 by Star-K Software
Systems Corp, P. O. Box 209, Mt. Kisco NY, 10549. The editor is Peter
A. Stark.

The subscription price is $10 per year. We accept display advertising
at the rate of $10 per half-page (3.5" high by 4.5" wide). Readers are
invited to contribute articles, letters, programs, tutorials, and other
material for publication. We publish only material and advertising
which, in the opinion of the editor, (a) applies to hardware or software
for 68xx(x) type processors, and (b) is of a nature which would not
normally be of interest to the major computer magazines. We simply do
not have room for items of a very general nature, or items which pertain
to very popular systems like the Macintosh or Amiga.

Please send articles or other material to us at the above address
(preferably on disk); you may also fax us at (914) 241-8607, send it via
modem to our BBS at (914) 241-3307, or call us at (914) 241-0287.

We thank you for your support.

April 1990

The Solid-State Disk with Battery-Backup

by Dr. Mike Randall, PO Box 1320, WELLINGTON NEW ZEALAND,
FAX 0064 4 710 977

3

It has always seemed to me a good idea to share the lessons learned the hard
way developing software and hardware. After all, I have gained much from the
work other people have shared with me. Pressure of work makes it easy to put
off such altruism, however if the interest is there I will try to keep up a series
of articles on such topics as the implementation of print spooling using a device
driver, my MODULA-2 compiler for SK*DOS, and my dual-processor bussed
computer which runs SK*DOS on both 68000 and 6809 communicating via
dual-ported RAM.

This article describes the installation, formatting and driver software for XTRD,
a RAM-DISK board that occupies the PC bus on my PT-2 computer. It has all
the speed advantage of the software RAMDISK but leaves the system RAM free
for other uses - and it is battery- backed up, so it retains its data even when the
main computer is turned off!

I will not go into details of the hardware implementation; anyone interested
can contact me directly. Sufficient information for my present purposes is
displayed in the block diagram of XTRD on the next page. The memory array
is accessed through a 256 byte window (odd bytes) in the PC bus area at addresses
$DDFCOl through $DDFDFF. Two latches select the particular page (or sector)
currently available for access. These latches can be thought of as selecting the
current physical track and sector of the RAM-DISK.

(Editor'S note: I've taken the liberty of modifying Mike's block diagram a bit,
so let me explain. The memory array at the right gets the 20 address lines called
A19 through AO. Of these, A16 through A19 select what SK* DOS thinks is a
track between 0 and 15; these lines are latched in a group of flip-flops (only one
is shown) whenever the program writes to address $DDF401 (not shown is the
address decoder which decodes this address). In Mike's case, the memory array
is mounted on two boards, each with 1/2 megabyte, and A19 actually selects
which of the two boards is used - tracks 0 through 7 are on one board, S through
15 on the other. .

Similarly, address lines 1\15 through AS are latched in a group of flip-flops
which appear at address $DDFOOl, and these select what SK* DOS thinks is a
sector between 0 and 255. The track and sector numbers are latched because
the disk driver writes these before transferring actual data.

Memory address lines A 7 through AO come from the address bus on the
expansion connectors through buffers, and select the actual byte within the sector.
Likewise, the eight data lines D7 through DO also come from the bus, but these
go through bidirectional transceivers (again, only one is shown) since this data
has to go in one direction for reading, and the other for writing. These buffers
appear at the 256 odd addresses starting at $DDFC01.)

The program XTRD.COM serves to install the memory resident driver code
(if it is not already installed), to assess how much XTRD memory is available
and to format the XTRD memory (if it is not already formatted).

SK*DOS provides hooks for secondary disk I/O routines - see chapter 13 of
the Users' Manual. Up to 3 sets of secondary routines may be installed, each set

4

BUFFERED
DATA BUS

WRITE
~gD=F~4=Dl~~--------~

4

WRITE 2 D ~ Q .,

~gD""F'""O""'l ---11---------->3'-1>CLK

BUFFERED
A~~~~~~~~~~

R/H ACCESS
TO ODD BYTES

SDDFC01 •• DDFDFF (256 BYTES)

~ Q .;

O •• 1'

AO .• A7

68 News

MEMORY
ARRAY

UP TO
1 MBYTE

(2 BOARDS)

CA1~ SELECTS
BOARD)

32K X B
CHIPS

BATTERY
BACKED

Block diagram of the XTRD solid state disk.

needs a sector read routine, a sector write routine and a disk ready check routine.
The space set aside for these hooks is at SECTRD, SECTWR and SECCHK.
When no secondary routines are installed the space is filled by RTS codes.

By convention, the high order bits of FCBPHY (the physical drive number byte
in the FCB) are used to indicate drive type. I use bit 6 which indicates type 0
(Other) for XTRD. Thus XTRD can co-exist with the standard RAM DISK (type
R). I make no assumption as to previously installed secondary drivers except that
none is of type O. XTRD.COM uses its CHKSEC routine to find the next
available slot for its routines. The program uses the SK*DOS flag space at
SECFL3 to indicate successful installation of its drivers.

The driver routines are made memory resident by setting OFFINI to a new
value just past the resident code. The following transient code is freed once
installation is complete.

I have chosen to use a logical track/sector sequence with sectors numbered
from 1 to $20 (so it is not necessary to use the +T option with COPY). These
must be converted to physical track/sec before writing to the latches. Movement
of data between the odd bytes of the XTRD memory window and the FCB uses
the MOVEP.L command for efficiency.

April 1990 5

The formatting technique is fairly standard. An image of the system information
sector (SIS) is set up in the transient code area and the details filled in there
before it is eventually copied to its place in XTRD. The program first checks to
see if XTRD is already formatted. The word $AA55 at the very beginning of
XTRD memory (physical track/sec $()()()() shows this. The user is given the
opportunity to reformat if desired. Before formatting, XTRD memory is tested
for the presence of each successive memory chip. (So you don't have to completely
populate the board). Thus the sector address of the last free sector and the
number of free sectors can be calculated.

The initial directory structure is then set up, with links from logical track/sec
$0005 to $0020, and the directory data cleared. Following this the free chain
links are set up. Finally the RAM copy of the SIS is set up and copied to logical
track/sec $0003, and the 'formatted' flag is written.

Installation is the last step of the process. Space is found in the secondary disk
I/O routine areas and the code JSR.Lxxxx set in for each of the routines SECRD2,
SECWR2 and SECCHK. The subroutine SETXRD is called to adjust the
SK*DOS DRUSED table. The next free logical drive is assigned to XTRD and
MAXDRV updated, and the user is informed. Finally OFFINI is set to the end
of the resident code and the flag $AA55 along with its address stored at SECFL3.
These give a reasonably secure check of installation should XTRD.COM be
called again. (You might want to reformat but can't be allowed to install another
set of drivers).

I hope this has been instructive. If anyone is interested in the XTRD board
they should contact me directly. Other PC ramdisk boards might be suitable for
the PT-2 and my software could be modified to allow for their hardware interface.
Mine works and really improves productivity. Frequently used programs that
normally take an age to load can be copied to XTRD which can be used as the
work drive. The compile edit recompile sequence is very much faster. The battery
backed RAM holds data for several days so backing up work files is not
exhausting.

For those of you who would like to adapt this idea to different hardware, the
actual code for XTRD.COM follows:

* VERSION TO USE SECTORS 1.. $20
*===:===================================

* XTRD EQUATES
0000 00DDF40l RDTRK EQU $DDF40l
0000 OODDFOOl ROSEC EQU $DDFOOI
0000 OODDFCOI OSKIOB EQU $DDFCOl

LIB SKEQUATE. TXT
* SK*OOS / 6SK EQUATES FOR USER PROGRAMS

*=======================================
* RESI DENT CODE
*=======================================

0000082C0006.SECRD2 BTST
00066602 BNE.S
0008 4E75 RTS
OOOA 48£70306 SEMRD MOVEM. L

* convert logical
OOOE 2C3COOOO. MDVE.L
00141C2C0022 MOVE.B
0018 E846 ASL.W

16, FCBPHY(M)
SEMRD dri ve typeO(ther)

06-D7/A5-A6,-(A7)
trk/sec eto physical
10, D6
FCBCTR(M), D6
15,06

6

001A OC2C0023 AOO.B FCBCSE(A4),06
001E 6604 BNE.S RORO
002006460100 AOD.W 1$100,06
0024 13C60000.RORO MOVE.B 06,ROSEC
002A E046 ASR.W '8,06
002C 13C60000. MOVE.B 06,ROTRK

* move data to FCB
0032 4BEC0060 LEA FCBOAT(A4),A5
00362C3COOOO. MOVE.L '63,06 256-BYTE SECTORS
003C 2C7COOOO. MOVE. L 10SKI DB, A6
0042 OF4EOOOO RORI MOVEP.L 0(A6),07
004600FCOOOO. AOO.L 18,A6
004C 2AC7 MOVE.L 07,(A5)+
004E 51CEFFF2 OBRA 06,RDRI
0052 4COF60CO MOVEM. L (All +, 06-07/ A5-A6
00560FFCOOOO. AOD.L '8,A7 RETURN TO PRIMARY CALLER
005C 003C0004 OR.B '4,CCR SET Z
0060 4E75 RTS

0062 082C0006.SECWR2 BTST
00686602 BNE.S
006A 4E75 RTS
006C 48E70306 SEMWR MOVEM. L

* convert logical
00702C3COOOO. MOVE.L
00761C2C0022 MOVE.B
007A EB46 ASL.W
007C OC2C0023 ADO.B
00806604 BNE.S

'6, FCBPH Y(A4)
SEMWR dri ve type O(ther)

06-07/A5-A6,-(A7)
trk/sec to physical
'0,06
FCBCTR(A4),06
'5,06
FCBCSE(A4), 06
ROWO

68 News

PT68K-2 PROGRAMS UNDER SK*DOS

" EDDI

SPELLR

ASMK

SURCAT

a screen editor and formatter

a 160,OOO-word spelling checker

a native code assembler

a sub-directory manager

$50.00

$50.00

$25.00

$25.00

KRACKER a disassembler program $25.00

NAMES a name and address manager $25.00

Include disk format and terminal type with order. Personal checks
accepted, no charge cards please.

PALM BEACH SOFTWARE
7080 Hypoluxo Farms Rd.

Lake Worth, FL 33463
(704) 965-2657

Aprill990

0082 06460100 ADD.W '$100,06
0086 13C6000D.RDWO MOVE.B D6,ROSEC
008C E046 ASR.W '8,06
DOSE 13C60000. MOVE.B 06,ROTRK

* MOVE DATA FROM FCB
0094 4BEC0060 LEA FCBOAT(A4), AS
0098 2C7COOOO. MOVE. L #DSKI DB, A6
009E 2C3COOOO. MOVE.L #63,06 256-BYTE SECTORS
00A42E10 ROW1 MOVE.L (A5)+,07
00A60FCEOOOO MOVEP.L 07,0(A6)
OOAA OOFCOOOO. ADO.L #8,A6
OOBO 51CEFFF2 OBRA 06,RDWl
00B4 4CDF60CO MOVEM.L (A7)+,D6-D7/A5-A6
00B80FFCOOOO. ADD.L '8,A7 RETURN TO PRIMARY CALLER
OOBE 003C0004 OR.B #4,CCR SET Z
00C2 4E75 RTS

00C4082C0006.secchk
OOCA 6602
OOCC 4E75
OOCE DFFCOOOO.SEMCHK
0004 003C0004
0008 4E75

OODA AA55 RESFLG
OOOC OOOOOOOC TRANST

BTST
BNE. S
RTS
ADD.L
OR.B
RTS

DC.W
EQU

#6,FCBPHY(A4)
SEMCHK

#~A7 RETURN TO PRIMARY CALLER
#4,CCR SET Z

$AA55
*

*===========~===========================
* TRANSIENT CODE
*========== •• ===========================

OOOC 00000000 SISOAT EQU
OOOC 00000000. OC.W
OOEC DO OC.B
ODED 58545F52. OC.B
00F80000 OC.W
OOFA 0101 FSFREE OC.W
OOFC 0000 LSFREE OC.W
OOFE 0000 NRFREE OC.W
01000000 MTHCR OC.W
0102 00000101 OATCR EQU
0102 0000 YRCR OC.W
0104 00000103 MAXTRK EQU
0104 2000 MAXSEC OC.B

RPT
010600000000. OC.W
011600000000. OC.W
012600000000. OC.W
013600000000. OC.W
014600000000. OC.W
015600000000. OC.W
0166 00000000. OC.W
017600000000. OC.W
0186 00000000. OC.W
019600000000. OC.W
01A600000000. OC.W
01B600000000. OC.W
01C600000000. OC.W
010600000000. OC.W

* POINT TO TRK/SEC

*+1
0,0,0,0,0,0,0, °
o
I XT RAM 01 SK'
o - -
$101 ° fill in later
o fill in later ° fill in later
MTHCR+1 ° fi 11 in later
YRCR+1
$20,0
14
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0,0,0,0,0,0,0, °
0, 0, 0, 0, 0, 0, 0, 0
0,0, 0, 0, 0, 0, 0, °
0,0, 0, 0, 0, 0, 0, °
0, 0, 0, 0, 0, 0, 0, °
0,0,0,0,0,0,0, °
0,0,0,0,0,0,0, °
0, 0, 0, 0, 0, 0, 0, °
0, 0, 0, 0, 0, 0, 0, °
0, 0, 0, 0, 0, 0, 0, 0
0,0,0,0,0,0,0, °
0,0,0,0,0,0,0, °

* ENTRY:- OO.W = TRK/SEC (PHYSICAL)
* USES 01

7

8

01E6 3200 POINT MOVE.W
MOVE.S
ASR. W
MOVE. S
RTS

00,01
01, ROSEC
18,01
01, ROTRK

01E8 13C10000.
01EE E041
OlFO 13C10000.
OlF6 4E75

* SET UP ALINK
* ENTRY:- ~O. W = TRK/SEC (PHYSICAL)
* 02. W = LI NK TRK/SEC(LOGI CAL)
* A2 = OSKIOS
* USES 01 (POINT)

01F8 6100FFEC LINK
01FC 058AOOOO

BSR POINT
MOVEP. W 02, O(A2)
RTS 0200 4E75

* MESSAGES
020258545244.AVAIL OC.S 'XTRD tot a 1 sectors = ',4

68 News

0218416C7265.ASK DC.S
0237 52657369.IN DC.S
025752657369.INST DC.S

I Al ready formatted - Reformat? ',4
'Resident code already installed',4
, Res i dent code i nsta 11 ed' ,4

026F 4E6F2072.NOROOM OC.S 'No room in secondary table' ,4
028A 4E6F2058. NORAM DC. S 'No XTRD RAM present' ,4
029E 58545244.0RV OC.B 'XTRD i s 1 09i ca 1 dri ve ' , 4

02B6 AOOO START DC VPOINT
02B8206E0346 MOVE.L 00SORG(A6),AO AO=OOSORG THROUGHOUT

* CHECK IF ALREADY FORMATTED
02BC 303COOOO MOVE.W 10,00
02CO 6100FF24 BSR POINT
02C4 247COOOO. MOVE.L IOSKIOB,A2
02CA 010AOOOO MOVEP.W O(A2),OO
02CE OC40AA55 CMP.W I$AA55,OO
0202 6614 BNE.S FORMAT
0204 49FAFF42 LEA ASK(PC),A4
0208 A035 DC PSTRNG
02DA A029 DC GETCH
02DC 0205005F AND. S 1$5F, 05
02EO OC050059 CMP.B 1$59,05
02E 4 66000156 BNE I NST AL

* ASSESS XTRO MEMORY (A2 STILL· OSKIOB)
02E8 303COOOO FORMAT MOVE. W 10,00
02EC 6100FEF8 AM1 BSR POINT
02FO 070AOOOO MOVEP.W 0(A2),03 READ XTRO MEMORY
02F4 343CA55A MOVE. W I$A55A,D2
02F8058AOOOO MOVEP.W 02,O(A2) WRITE PATTERN
02FC 050AOOOO MOVEP.W 0(A2),D2 READ BACK
03000C42A55A CMP.W I$A55A,02 COMPARE
0304660E BNE.S AM2 NO RAM CHIP THERE
0306078A0000 MOVEP.W 03,O(A2) RESTORE DATA
030A 06400080 ADO.W 1$80,00 NEXT CHIP
030E OC401000 CMP.W 1$1000,00
0312 6608 BNE. S AM1 TRY NEXT CHI P
03144A40 AM2 TST.W DO
0316672C BEQ.S AM3
0318 49FAFEE8 LEA AVAIL(PC),A4
031C A035 DC PSTRNG
031E 283COOOO. MOVE. L 10,04
0324 2A3COOOO. MOVE. L #0,05
032A 3800 MOVE.W 00,04
032C A038 DC OUTSO REPORT TO CALLER
032E 04400001 SUB.W #1,00

April 1990

* DO IS NOW PHYSICAL AOOR OF LSFREE
0332 45FAFOC8 LEA LSFREE(PC),A2
03363480 MOVE.W 00,(A2) CHANGE TO LOGICAL LATER
033804400020 SUB.W 1$20,00
033C 45FAFOCO LEA NRFREE(PC),A2
0340 3480 MOVE.W 00,(A2)
0342 6008 BRA.S OIR

* WHAT IF NO RAM?
0344 49FAFF44 AM3 LEA NORAM(PC), A4
0348 A035 DC PSTRNG
034A A01E DC WARMST

* 01 R LI NKS
034C 247COOOO.OIR MOVE.L
0352303C0005 MOVE.W
0356343C0006 MOVE.W
035A 6100FE9C OR1 BSR
035E 06400001 AOO.W
0362 06420001 AOO.W
03660C400020 CMP.W
036A 66EE BNE.S
036C 243COOOO. MOVE.L
0372 6100FE84 BSR

* CLEAR OIR DATA
0376303C0005 MOVE.W
037A 6100FE6A COl BSR
037E 303COOOO MOVE.W
0382323C007E MOVE.W
0386 247COOOO. MOVE.L
038C 018AOOOO C02 MOVEP.W
039005FCOOOO. AOO.L
0396 51C9FFF4 OBRA
039A 247COOOO. MOVE.L
03AO 010AOOOO MOVEP.W
03A44A40 TST.W
03A66602 BNE.S

* FREE CHAIN LINKS

10SKI OB, A2
IS, DO
16,02
LINK
#1, DO
#1,02
1$20,00
OR1
10,02
LINK

15,00
POINT
10,00
#126,01
10SKI OB+4, A2
DO, O(A2)
14,A2
01,C02
10SKIOB, A2
o(A2), DO
DO
COl

03A8247COOOO. MOVE.L 10SKIOB,A2
03AE 303C0021 MOVE. W #$21,00
03B2343C0102 MOVE.W #$102,02
03B6 6100FE40 F1 BSR LINK
03BA 06400001 AOO.W #1,00
03BE 06420001 ADD. W 11,02
03C2 OC020021 CMP.B 1$21,02
03C66604 BNE.S F2
03C8064200EO AOO.W #$EO,02
03CC B07AF02E F2 CMP.W LSFREE(PC),OO
0300 66E4 BNE.S F1
0302343COOOO MOVE.W #0,02
0306 6100FE20 BSR LINK

* SIS - CORRECT LSFREE TO LOGICAL
03DA 45FAF020 LEA LSFREE(PC),A2
030E 3012 MOVE.W (A2),00
03EO 02400FEO ANO.W I$FEO,OO
03E4 E740 ASL.W #3,00
03E6 0000001F OR.B #$lF,OO
03EA 3480 MOVE.W 00,(A2)

* SET MAXTRK
03EC E040 ASR 18,00
03[E 45FAFD13 LEA MAXTRK(PC),A2

9

10 68 News

03F2 1480 MOVE. B DO, (A2)

03F4 45FAFDOA LEA MTHCR(PC), A2
03F8 14EE02EE MOVE. B CMONTH(A6), (A2) +
03FC 14EE02EF MOVE. B CDAY(A6), (A2)+
0400 14AE02FO MOVE. B CYEAR(A6), (A2)
0404 303COO03 MOVE. W (13,00
0408 6100FDDC BSR POINT
040C 247COODD. MOVE.L HDSKI DB, A2
0412 47FAFCC9 LEA SI SDAT(PC), A3
0416 303COOFF MOVE. W #255, DO
041A 149B SI MOVE. B (A3)+, (A2)
041C D5FCOOOO. ADD.L H2, A2
0422 51CBFFF6 DBRA DO, SI

* SET XTRD FORMAT FLAG
0426303COOOO MOVE.W (10,00
042A 6100FDBA BSR POINT
042E 247CODDD. MOVE.L IDSKIOB,A2
0434323CAA55 MOVE.W (I$AA55,Dl
0438038AOOOO MOVEP.W Dl,O(A2)

* CHECK IF ALREADY INSTALLED
043C OC68AA55.INSTAL CMP.W I$AA55,$90(AO) SECFL3 has $AA55 if in-

0442 6612
0444 22680092
0448 OC51AA55
044C 6608

stalled
BNE. S 11
MOVE.L $92(AO),Al = RESFLG in resident code
CMP.W I$AA55,(Al) is code still there?
BNE. S I1

* ALREADY INSTALLED
044E 49FAFDE7 LEA IN(PC),A4
0452 A035 DC PSTRNG
0454 AOIE DC WARMST

* INSTALL
0456 43FAFBA8 II LEA
045A 45E80020 LEA
045£ 6154 BSR. S
0460 664A BNE.S
046234FC4EB9 MOVE.W
0466 2489 MOVE.L
0468 43FAFBF8 LEA
046C 45E80034 LEA
0470 61000042 BSR
04746636 BNE.S
047634FC4EB9 MOVE.W
047A 2489 MOVE.L
047C 43FAFC46 LEA
0480 45E80070 LEA
0484612E BSR.S
04866624 BNE.S
048834FC4EB9 MOVE.W
048C 2489 MOVE.l

04& 613A
0490 43FAFC4A
0494 21490018
0498 43E80090
049C 45FAFC3C
04AO 3202 .

04A2 228A

BSR.S
LEA
MOVE. L
LEA
LEA
MOVE. W

MOVLl

SECRD2(PC), Al
$20{AO),A2 beginning of SECREAD area
CHKSEC find free space
12 NO ROOM
#$4EB9.(A2)+ JSR.L install JSR.L SECRD2
Al,(A2) ADDRESS
SECWR2(PC), Al
$34(AO),A2 beginning of SECWRITE area
CHKSEC find free space
12 NO ROOM
#$4EB9,(A2)+ JSR.L install JSR.L SECWR2
AI, (A2) ADDRESS
secchk(PC), Al
$70{AO),A2 beginning of SECCHECK area
CHKSEC find free space
12 NO ROOM
(I$4E8:9, (A2) + JSR. L i ns tall JSR. L secchk
Al. (A2) ADDRESS

SETXRD SET DRIVE PARAMS
TRANST(PC),Al end of resident code
Al,$18(AO) OFFINI set to it
$90(AO),Al SECFL3
RESFLG(PC), A2
(A2),(Al)+ store flag $AA55 and its

address there
A2,(Al) to show installed

April 1990

04A4 49FAFDB1
04A8 A035
04AA A01E

LEA
DC
DC

INST(PC),A4 indicate installation
PSTRNG
WARMST

* NO ROOM IN SECONDARY DRIVE ROUTINE TABLES
04AC 49F AFDC1 12 LEA NOROOM(PC), A4
04BO A035 DC PSTRNG
04B2 AOlE DC WARMST

XXXX

* ROUTINE TO CHECK THERE IS SUFFICIENT ROOM IN SECONDARY
* DISK ROUTINE TABLE
* ENTRY:- A2 = START OF SECONDARY AREA
* EXIT:- A2 = NEXT ENTRY - Z SET IF ENOUGH ROOM FOR JSR.L

* USES DO
04B4 303C0007 CHKSEC MOVE. W 117, DO NEED 3 WORDS
04B8 OC524E75 C1 CMP.W 1I$4E75,(A2) RTS
04BC 670A BEQ.S C2 return with Z set when A2 = RTS code
04BE D5FCOOOO. ADD.L 112,A2 ADDA DOESN'T CHANGE CC
04C4 51CBFFF2 DBRA DO,C1

* NE holds here if loop falls thru
04C8 4E75 C2 RTS

* ROUTINE TO FIND NEXT FREE LOGICAL DRIVE
* SET AT XTRD ('00')
* SET MAXDRV TO IT
* ASSUMES ENOUGH SPACE

Micronics Research Corp.
(604) 859-7005

RBASIC
Enhanced BASIC Interpreter for 68000 SK*DOS

US$99.95 + $5 ShippinglHandling for USA and Canada
($10 S/H elsewhere)

Please specify Disk Size and Format
(Le., 5-inch 80-track)

Sorry! No credit cards!
Checks may take up to 2 weeks to clear.

For fastest delivery make
Bank Draft or Money Order payable to:

R. Jones, 33383 Lynn Avenue, Abbotsford,
B.C., CANADA V2S 1E2

11

12

04CA 45E8013C SETXRO
04CE 4200
0400 OC1AOOOO SX1
0404 67000008
0408 06000001
040C 60F2
040E 153C0040 SX2
04E2 10400322
04E6 49F AFOB6
04EA A035
04EC 283COOOO.
04F2 2A3COOOO.
04F8 1800
04FA A038
04FC 4E75

04FE 000002B6

LEA
CLR.B
CMf'. B
BEQ
AOO. B
BRA. S
MOVE. B
MOVE. B
LEA
OC
MOVE.L
MOVE.L
MOVE. B
OC
RTS

ENO

$13C(AO),A2 = ORVUSEO TABLE
00
10, (A2)+
SX2 1st free entry in table
#1,00
SX1
1$40,-(A2) Lx=OO
OO,MAXORV(A6) LO=MD
ORV(PC),A4
PSTRNG
10,04
10,05
00,04
OUTSO

START

Beginner's Corner

by Ron Anderson

68 News

Last time we talked in general about the computer. Assuming those who are
reading this all have a computer whose processor is the 68008, 68000, or 68020,
you will all be interested in learning more about that microprocessor family.
Unfortunately, we have to start with the dull and dry subject of number
representation. In virtually all of the microprocessor based computers, numbers
are represented inside the computer in binary notation. That is, each memory
bit must be on (representing 1) or off (representing 0). (Remember the movie
Tron with the memory bits floating around saying "yes" or "no")? Just as in decimal

'notation as we proceed to the teft in a number, the digits represent successive
powers of ten, in binary notation they represent successive powers of 2.

o Decimal
1 = 10 (ten tal the zero powed' = 1)

10 = 1 times 101 + 0 times 100 = 10 + 0
23 = 2 times 10 + 3 times 10 = 20 + 3

o Binary
1 = 1 times 21 = 1 0

10 = 1 times 22 + 0 times 21 = 2 0
100 = 1 times 22 + 0 times 21 + 0 times 20 = 4
101 = 1 times 2 + 0 times 2 + 1 times 2 = 5 0

Note first of all that any (non-zero) number £0 the zfro powe! (N) equals 1.
Any num~er to the first power equals itself. 2 =2, 10 =10. 10 = ten squared
= 100.10 = ten cubed = 10 times 10 times 10 = 1000. In binary notation the
o denotes the absence of the power of 2 whose place it occupies. A 1 denotes
the presence of that power of 2. The value of each "1" in a binary number is
twice that of its neighbor to the right:

1 = 1 decimal
10 = 2 decimal

100 = 4 decimal
1 000 = 8 decimal

10000 = 16 decimal
If the number has multiple Is in it, the values ADD.

April 1990

11 = 3
101 = 5
111 = 7

1111 = 15 (8+4+2+1) etc.

13

Now when we get to representing large numbers they get very tedious to look
at:

1000000000000000 = 32768 decimal
It is hard to sort out all those zeros. Computer folks decided that they could

combine such a number into groups of four binary digits and use a shorthand
notation:

BINARY DECIMAL HEXADEC-
IMAL

0000 0 0
0001 1 1

0010 2 2
0011 3 3
01()() 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8

1001 9 9

1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Some of the early computers used Octal notation, but just for now, we'll skip
that. Notice that hexadecimal runs out of our standard number symbols at 9 and
then uses the first six letters of the alphabet for the remaining numbers. What
is the use of this notation? 1010 0111 becomes A7.1000 0000 0000 0000 becomes
8000. To indicate that numbers are hexadecimal, Motorola has always used a
dollar sign preceding the number as in $A7. Since a hexadecimal number could
possibly contain only the symbols 0 through 9, the number base must be specified,
and the $ is always the key.

Let's talk a minute or two about how computers handle data, and data sizes.
One Binary digIT (represented by 0 or 1) is called a BIT. A number of length
8 bits as in 10000000 is commonly referred to as a BYTE. Most computers allow
access to memory in one-byte "chunks". A byte is just right for representing a
single character of text. 8 bits can represent unsigned numbers from 0 to 255.
That sounds like too much to represent characters. The ASCII codes for
characters occupy the first half of those values 0 to 127. The values 0 to 31
represent "control codes" including Carriage Return (decimal 13, Hex $OD).

14 68 News

Linefeed (Decimal to, $OA), and Formfeed (decimal 12, $OC). Note that a byte
may nicely be represented by two Hexadecimal digits. The 8th bit can be used
as a "parity" bit, a piece of "redundant" information for error detection, (more
on that later) or as a flag to a printer to make that character italic, or as a means
of representing graphics characters (chunks of single or double ruled boxes, smiley
faces, club, spade, diamond, heart symbols, etc.

The 68000 also allows handling of larger numbers directly. You can access and
manipulate 16 bit "WORD" length chunks of data (represented by four
Hexadecimal digits, 16 bits) and "long" data (represented by eight Hexadecimal
digits or 32 bits). Word sized data generally is used to represent integer numbers.
Numbers in the range of -32768 to 32767 can be represented. Sometimes Words
are used to represent "unsigned" numbers (always considered positive) and can
then represent numbers from 0 to 65535. Longs can represent signed numbers
in the range of about +/- 2,140,000,000. More about this below.

10100001: What is the decimal value? If you count places, doubling each time,
you will get 1+32+128 = 161. What is the hex. value? $A1. Is there an easy
way to get from the hex value to the decimal value? Yes, each digit is worth the
ne~ succeeding power of 16. That is, the lowest digit's value is multiplied by 1
(16), the second digit is multiplied by 16, the third by 256, etc. $Al therefore
is 10 times 16, plus 1, or 161.

The 68008 has 20 address lines (or pins on the Ie that carry memory addresses).
The largest address that can be accessed is $FFFFF, which is 1048575 decimal.
Remembering that 0 is a valid address, the 68008 can access 1048576 addresses,
just over one million bytes, commonly called 1 megabyte. The 68000 has 23
address lines (plus one internal line, for a total of 24), so its maximum address
is $FFFFFF or 16 megabytes of memory. Obviously we would not like to represent
addresses on a 68000 as a string of twenty-four 1 's and O's. The hexadecimal
notation is useful. The 68000 Assembler can accept numbers in deCimal, binary,
or hexadecimal. There are reasons for using each of these notations at different
times.

Well, we got through that. Now let's look at the 68XXX processor itself. This
discussion won't be complete by any means, but it will get us started writing a
program and running it. The 68XXX has 8 Data registers and 8 Address registers;
the diagram at the right shows the inside of the 68000 as seen by a programmer.
A "Register" is simply a place that can hold a number value. If you will, it is a
special memory location built right into the processor. All of these registers are
32 bits "wide". That is, they can hold a Long number, 8 hexadecimal digits from
o to $FFFFFFFF. The registers can therefore hold numbers from 0 to around
4,290,000,000 decimal, or "signed" numbers from around -2,140,000,000 to
+2,140,000,000. Perhaps it is time to mention that so far, and for the time being,
we are dealing only with integer numbers (whole numbers), numbers without
decimal fractions such as 3.14159265398. Such numbers are called "Real" numbers
or "Floating Point" numbers. We will get into those much later. The eight data
registers are named DO-D7, and the eight address registers are named AO-A7.
Since each register can hold 32 bits, the bits are numbered from bit 31 at the
left to bit 0 at the right.

Suppose we start out and write a simple program to add 5 and 7. The most
used instruction for the 68000 assembler is MOVE. Instructions operate on
"Bytes" (8 bit quantities), "Words" (16 bit quantities) or "Long Words", 32 bit
quantities. The letters B, W, and L are used as suffixes for instructions to tell

Aprill990 15

the assembler how big a "chunk" of data to move, Byte, Word or Long. Some
examples:

MOVE.W D7,D5
This instruction moves a word (16 bits), the rightmost or low order 16 bits of

the 32 bit contents of D7, to D5. The upper 16 bits of D5 will remain unchanged,
as will all of D7.

MOVE.L D7,D5
This instruction moves the entire 32 bit contents of D7 to D5. When the contents

of a register are moved to another, the first or source register remains unaltered.
Thus if D7 contains $789ABCDE and D5 contains $12345678, after the MOVE.W
instruction above,· D7 would still contain $789ABCDE, but D5 would contain
$1234BCDE. After the MOVE.L instruction, both registers D7 and D5 would
contain $789ABCDE. We can also move a BYTE. Byte values can represent
signed numbers from -128 to +127. Thus we can add 5 to 7 using Byte values.
It is possible to move a predetermined number into a register by preceding it
with the # symbol. For example, the following instructions put the number 5 into
register D7, the number 7 into D5, and then add the number from D7 into D5:

MOVE.B #5,07
MOVE. B #7,05
ADO.B 07,05

The ADD instruction must also specify the size of the data on which it is to
operate (the OPERAND). The last instruction adds the byte contents of D7 to
D5 and puts the result in D5. The second register specified is always the recipient
of the result, be it a move, an add, a subtract, a multiply, a logical AND or OR,
or whatever. The # (some people call it a number sign, some a pound sign and
some a sharp), is read "immediate" in assembler language programming. "Move

3t--____ ~ ... ,".,.,"'--S __ ¥ 8 ·7 ---oil, {---bJ. t number

DO!

DATA RECISTERS

ADDRESS REGISTERS

A£! • -j Uu" Stock PoLo"" (US,

L--_-!""-'-7"-':~""'urcr'r:lW.1.n,.'''__!: ..,.hc.,,""-.,Ok"""-[lJ,t.;.u:...r ',-----, -''':::::::::::::::~~::':-lr---------------'
. SypcryilPC StAck PRinter (55)

Prosram Cgunter

s~ CCR

What the programmer sees inside the 68000

16 68 News

dot B immediate 5 comma D7" is how I would read the first line of the three
above. Immediate refers to the fact that the data value follows the instruction
immediately. That is, the value 5 is coded right into the machine language
instruction by the assembler.

All this is nice, but how do we peek to see that D5 actually contains the value
decimal 12 or Hex $OC? Well, we can write a program to translate the $OC into
decimal digits 12, change them to the ASCII codes for "1" and "2" and output
them to the terminal, or we can take advantage of SK*DOS, our operating system.
The Assembler has an instruction called DC, for "declare Constant", but also
think of DC as DOS Call, because that is what we also use it for. Among the
nice things that are in the operating system manual are the descriptions of the
"system calls" that can be used by a programmer. A little look through section
10 of the manual will find descriptions of the DOS calls OUT5D and OUT2H.
One outputs a number in decimal and the other in HEX. We have a slight
problem in that OUT5D outputs a 16 bit or WORD value, so our Byte arithmetic
needs to be extended. Let's try the following:

START MOVE.W #5,07
MOVE.W #7,04
AOO.W 07,04
CLR.L 05
OC.W $A034 PCRLF
OC.W $A038 OUT50
OC.W $A034 PCRLF
OC.W $A03A OUT2H
OC.W $A034 PCRLF
OC.W $A01E WARMST
ENO START
Now if you have an editor, type the above in just as you see it and save it as

a file named ADDTEST.TXT. It is very important that the word START begin
in the very leftmost column when you type the program in, and that all the other
lines begin in the second column or farther. It is also important to put spaces
exactly where they appear in the above listing and nowhere else. The reasons
will become clear later. Now assemble it:

SK*OOS: ASM AOOTEST -8
You will see the following listing appear on your terminal:

001 00000000 3E3C0005 START MOVE.W #5,07
00200000004383C0007 MOVE.W #7,04
003 00000008 0847 AOO.W 07,04
004 OOOOOOOA 4285 CLR.L 05
005 OOOOOOOC A034 OC.W $A034
006 OOOOOOOE A038 ~C. W $A038
007 00000010 A034 OC.W $A034
008 00000012 A03A OC.W $A03A
009 00000014 A034 OC.W $A034
010 00000016 A01E ~C. W $AOlE
011 00000018 00000000 ENO START

No Syntax Error(s)

PCRLF
OUTSO
PCRLF
OUT2H
PCRLF
WARMST

April 1990 17

The leftmost column is simply the line number in the program. The assembler
numbers the lines sequentially. The second column is the MEMORY ADDRESS
at which each instruction will load when the program is run. (It is not quite that
simple, but that is OK for now). The third column is the actual code that the
assembler generated in hexadecimal notation. Notice that the first two instructions
each generated 4 bytes of code (eight hex digits) and the rest just two bytes each.
I've used the hexadecimal values for the system calls right out of the manual,
aM included the names of the system calls after those values as "comments". To
clarify, the word START is in the next column and it is a LABEL. After that
comes the operator column that contains the instruction MOVE or DC or ADD.
Then come the operands or operand, and anything after that is a comment. Note
that at this point you have assembled the program with no output but a listing
of the program to your terminal. In order to run it you must use a different
assembler option to generate an executable output file, which we will do shortly.

You might notice that the assembler output listing is "expanded". That is, though
the labels in the input file start at the first column and the operators (such as
MOVE) at the second, the assembler has given the labels seven columns of space
in the output listing (Editor's note: I've eliminated some of the extra spaces and
zeroes so the code would tit on the page.) This assembler and most others allow
you only 6 characters for a Label. Some allow you to use more, but only the first
6 are Significant to the a$SCmbler. A few allow you to use very long labels if you
want. to do so. If you like, you can tabularize the input listing as well. I like to
keep the input listing short so the files are small, since they are then read faster
by the assembler. I generally make an output listing if I want to study the program
to look for bugs or possible improvements.

I need to mention Ibat the. W suffix on instructions is not needed. If the suffIX
is left off, .W is assumed .. L or .B are never assumed by the assembler. I generally
use the .W'so that all instructions have a suffIX. It is much easier to find one
that is wrong if you do this, particularly when you are beginning. Otherwise a
missing .B is not obvious and you will hunt long and hard before it dawns on you
what the problem is,

Let's make our program more readable. Rather than use the hex codes for the
SK·DOS calls, we will define them in terms of the names of the calls:

* Program to add two numbers
NAM ADOTEST2

* System Equates
PCRlF EQU $A034 These tell the assembl er that
OUTSO EQU $A038 ••. the name and the hex number
OUT2H EQU $A03A ••. stand for the same thing
WARMST EQU $AOIE
*
START MOVE.W #5,07

MOVE. W #7,04
ADD. W 07,04
ClR.lOS
DC PCRlF
DC OUTSO
DC PCRlF
DC OUT2H
DC PCRlF

Here we use the names, not
••• the hex values

Note the use of DC to mean
... "~OS Call"

18

DC WARMST
END START

68 News

I haven't explained a couple of things here, and there are a few new ones.
First of all, any line that starts with * in the first column is assumed to be a
comment line by the assembler. It is passed on through to the output listing, but
it doesn't generate any code whatever. The word START is a label and you will
note a couple of new things. NAM is an "assembler directive" that says that what
follows is the name of the program. If you print out a listing of the program
using the assembler, the name will appear on the top of each page. The last line
of the program is END START. END is the assembler directive to say that the
program has ended. START, following it, is a special feature of Motorola
assemblers. It tells the assembler to indicate that when the program runs, it is
to start at the label START. It does this by writing a special instruction sequence
to the program disk file at the end of the code. The label is unimportant. It could
just as well be GOBBLE or XYZ (as long as it matches the actual label of the
first instruction). You should see, however, that it makes the program easier to
read if you use a meaningful label.

Oh, yes, I forgot to mention the last actual instruction in the program. When
we run it (we'll do so momentarily) the instruction DC WARMST tells the
processor to jump back into the operating system command processor loop and
wait for another instruction. OK, now let's assemble the new version again with
the -B option and check to see that there are no errors. If not, assemble it once
more:

ASM ADDTEST2 -L
You won't see anything on the screen until the assembler is finished, when it

will tell you that there were no errors. That is because the -L at the end of the
command tells the assembler to assemble without a Listing (the -B earlier told
it to assemble without writing a Binary or machine language file on the diSk.)

The program will assemble and write an output fiie to your present directory.
Assuming you are working on a floppy disk, or in the root (main) directory of a
hard disk, CAT ADD will show you ADDTEST2.TXT, your "source" file, and
ADDTEST2.COM, your "object file". This file is "executable". That is, you can
run it. At the SK*DOS prompt, type ADDTEST2 and then press the Carriage
Return or Enter key). You should see:

12
OC
The 12 is indented because 5 characters were printed. Depending on what is

in D5 at the time the OUT5D routine is used, SK*DOS may precede the 12
with either three spaces or three zeroes; we set D5 10 zero, so the leading zeros
were changed to spaces. The OC is at the left of the screen because the PCRLF
call caused a Carriage Return and Line Feed to be sent to the terminal, and
there were no leading characters with OUT2H.

ADDTEST2.COM is now a command on your system disk. Simply type
ADDTEST2 and the program will run.

Well, that is just a little start at assembler programming and using the SK*DOS
system calls. There's a lot more to learn. Change the ADD instruction to SUB
and you will get 7 minus 5 as a result. Remember that you don'l just change the
source program - you have to assemble it. Note that you put 5 in D7 and 7 in
D4. The SUB instruction subtracts the value in the source register from the value
in the destination register and puts the result in the destination register. To
subtract 3 from a register you would say:

April 1990 19

SUB.W #3,D4
Of course, in the above program we could move 7 into D4 and use SUB.W

#5,D4 and save an instruction. One thing that becomes very clear when you start
programming in assembly language is that there are many ways to accomplish
the same thing. We've only used three Data registers in our program, and have
not used any Address registers at all, at least explicitly.

Perhaps this is more than enough to digest for this time. Next time we will
continue to expand this demonstration program and learn new assembler
instructions and techniques.

(Editor's note: for a review of how to use the editor and assembler, see the
last issue, number 8, of 68 News.)

Speed up SK*DOS Booting
by Peter A. Stark

When SK*DOS boots on a PT68K-2 system, it checks how many (if any) hard
drives are installed. Because of some peculiarities of the hard drive controller,
this takes about 20 seconds, during which we all stare at the computer, wishing
it could be speeded up. Well it can!

Starting with version 3.0, SK*DOS has a location which tells it how many hard
drives to look for. This location is in address $1152; SK*DOS is normally supplied
with an 02 in that location, so SK*DOS looks for two drives. By changing this
byte to an 01 if you have one drive, or to 00 if you have only floppy drives, you
can speed up booting a lot. Here is how.

First, using your editor, prepare the following text file; call it FASTBOOT.

ORG $1152
DC.B 1 (or 0 if you have no hard drive)
END

(Make sure to leave at least one space at the beginning of each line.) This short
program simply tells the system to define a byte constant (DC.B) equal to a 1
(or 0), and put it into memory at location $1152 hex.

Now assemble it with the command ASM FASTBOOT into a file called
FASTBOOT.COM. Although this has a .COM extension and therefore sounds
like a command, it is not actually a full program and cannot be run. Next, rename
your SK*DOS system file with the command

RENAME SK*DOS.SYS SK*DOS. TWO
and then make a new SK*DOS system file by appending the FASTBOOT file
to the end of this original SK*DOS file, using the command

APPENO SK*DOS. TWO FASTBOOT.COM SK*DOS.SYS
The result is your original SK*DOS file which has location $1152 set to a 02,

but appended to it is the FASTBOOT file, which consists of just one byte - a
byte which overlays the 02 in location $1152 and substitutes an 01 (or 00,
depending on your situation). The next time you boot from this version, you will
find that SK*DOS boots within just a second or two. Just save the original file,
so if you do get more hard drives, you can easily go back.

From: Star-K Software Systems Corp.
P. O. Box 209
Mt. Kisco, N. Y. 10549

Address Correction Requested

To:

BULK RATE
U. S. Postage

PAID
Mt. Kisco NY 10549

Permit No. 197

