Vol. 1, Issue 6, July 1991

The 68xxx Machines ie published and copyright (C) 1991 by Chatham House Company, RDN1 Box 375,
Wyoming, DE 19934. Ph. (302) 492-8511. The editor is James H. DeStateno. One year USA subscription
Is $12.50. Canada and Mexico $14.25. All others (surface) $17.25. All major credit cards accepted.
Our low prices reflect a 10% cash discount. Please add 100 to credit card orders. Any sizc display
advertising is accepted. The half page rate is $10/issue. Write for other size/duration rates.

Readers are encouraged to contribute letters,
material related to computers with the 68xx(x) processors; excepting Macs and Amigas. Plcase send
material to the above address. Thank you for your support.

Machines

Price: $2.75

articles, programming information and other

This Issue:

Editor’s Thoughts 2
* Thanks for the Support! More
"fest” observations and rebuttals.

OSK and Super Terminals . 3
Bob van der Poel explores
controlling super terminals with
OSK.

Rush Caley, LIVE! 4
What Is Minix? 5

Joseph Fosco on an OS for the
future minded.

Why Your Disk Drive
Won’t Work 12
Ed Gresick dissects disk drives
and controllers.

The Tech Corner 14
J. Scott Kasten on C and
graphics.

Beginner’s Corner 16
Ron Anderson talks about writing
utility programs.

The Eccentric Programmer 18
Randy Krippner takes you from

Inexpensive Flex Floppy Color BASIC to Basic09.
Drives 8
Alen Gordon, MD, shows us how Advertiser’s Index 13
to do it yourself. Classified Ads 2
July 1991 68xxx Machines Page 1

Editor’s Thoughts

by Jim DeStafeno

Another mile stone has been
passed. All the people involved with
The 68xxx Machines deserve a pat on
the back. This is the sixth month,
half year, issue. "Thank you" to
those that have voted their encour-
agement with articles. By now you
must have noted they are not a re-

hash, but rather are current and
contain information that can be used,
today.

“Thank you" to those that are

advertising. I have not heard one
complaint about the products or ser-
vices. And of course “Thank you" to
the subscribers. Without you all it
would be a pretty useless exercise.

To try to obtain better results,
we're experimenting with different
character fonts and with a new method
of producing the copy that eventually
goes to our printer. The new font
allows us to increase the amount of
material we can publish without re-
ducing the size of the type. Hopeful-
ly the new font will also be easier
for you to read.

Speaking of our printer, Randy
Krippner, who does some of the desk
top publishing work to put 68xxx
together, omitted the two year price
of a subscription for foreign coun-
tries on the subscription coupon.
When I mentioned it to Mike, our man
at the printer, he said he could
"pencil" it in. Did you notice what
he did? Mike, thank you for the ef-
fort, but you didn‘t fool any one. No
one sent $133.50; guess we better go
back to the intended $33.50.

Got a letter from Paul Ward. You
know, the main MM/1 man. He very
nicely said some of my observations
printed in the May ‘91 issue of his
machine at the Chicago RAINBOWfest,
were out of order. He said that: “The
MM/1 was showing animations and grap-
hics in fine color. They were not dim
in any way. In fact, the MM/1 display
is as bright or brighter than either
of our competitors.” (The italics are
mine, ED.) Okay, sorry if what I saw
was not what I thought it was; maybe
I was looking at night scene in an
adventure game.

In another part of the letter,
Paul commented about my remarks re-
lating to the moderated ’'talk’ be -
tween Ed Gresick, DELMAR; Frank Hogg,
FHL and himself, “Frank continually
gave me a hard time because our booth
sign said the MM/1 was faster then
competing systems. (The italics are
mine, ED.) Anyone who has seen our

‘gave a little insight on cost.

brochure realizes that we compare
ourselves prominently to systems that
we do beat in speed.“ Ahaa Paul, not
sure competitors can mean particular
companies in one reference, but not
those same companies in the next.

There are other points in the
letter such as IMS has been deliver-
ing computers longer then DELMAR.
Humm, maybe so Paul, but will you
send me a name of a purchaser that
has received a complete MM/1 with a
working hard disk; I‘d like to print
a taped telephone conversation review
for our readexs.

On another day Frank Hogg called.
We kicked around a couple of things,
like my comments on the “fest". For
one, he says he doesn’t like an in-
ference that his machine is slow;
especially when his and the MM/1 use
the same CPU and clock speed. He also
Both
his and the DELMAR machines are
shipped with their expansion buses in
place, while the MM/1’s is not. At
the ‘talk’ Paul said the MM/1’'s will
be an upgrade. Frank allowed, an
expansion add-on bus will not be
cheap, and expects the final cost of
each machine will be about the same,
if the MM/1‘s isn‘t more than the
others.

Addressing my question about lead
time, Frank said the TC-70 lead time
is running 4 to 6 weeks due to the
lead time on some parts.

He also said he would send a press
Ielease sheet on two new products.
One a 16Mb Ram Disk board for the
K-Bus and second, a new 68030 based
computer with lots of serial ports.
The hard copy hasn’t arrived as yet.

What else? Not much; Gresick is
quiet. Too busy shipping computers I
guess. Be talking with you next
month, take care for now, and thanks
again to everyone for the six months
of support. JHD

CLASSIFIED ADS

SALE: PT68K-2 complete system: 10MHz
motherbd w/i1M RAM, 20M hard drive, 720K
tloppy, amber monitor, SK+*DOS, RBASIC,
EDDI, all manuale, more! Used very lit-
tle, $800 + shipping. Phil Krieg,
11221/2 Bayland, Houston TX 77009. (713)
861-0367 eve/wkends.

SALE: 4 each TM848-2 Tandon 8" HH Drives,
brand new, with service manual, $249
each. 1 each SSS50 /SS30 Smoke Signal 6809
System, 2 Mhz, 48K RAM, Mother Board, FDC
S*/3% 80 tracks, UIA, ACIA, PIA, Extender
Boards 3S50/S530, male and female connec-
tors (gold), others. Best Offer. Shipping
Included, all items. Geza Holzhaker,
Apdo. Correos # 393, Merida 5101, Vene-
Zuela, PAX: 58-74 63.5857 (nights, East

“WANTED", $2.50/50 space line/issue.
*"SALE", $5.00/50 space line/issue.

Page 2

68xxx Machines

July 1991

OSK And Super
Terminals

by Bob van der Poel

Working with OSK, a system desig-
ned to be adaptable to different
types of peripherals, including dif-
ferent terminals can be fun. Such
flexibility often results in chal-
lenging problems in search of solu-
tions. Things which are trivial on a
*fixed" system like MS-DOS, become
the subject of endless debate and
excuses to stay up late in the com-
puter room. When designing my VED
text editor I was faced with such a
"problem."

The VED uses the OSK ‘C’ Termcap
Library to handle the terminal out-
put. The Termcap Library is a set of
C routines which read a data file
containing the information needed to
do terminal output, attributes like
highlight, wundezrline and blinking;
plus the size of the screen, cursor
positioning, etc. To extract the
correct information from the data
file the SHELL variable “TERM" is set
to the name of the terminal being
used. All this works smoothly, once
the termcap data file is set up prop-
erly; except for one small detail,
the screen size.

The screen size 1listed in the
termcap data base for a particular
terminal is, like all the other val-
ues for that terminal, a constant. If
your texrminal is a "White Bread Whiz-
Bang” with 80 columns and 22 lines
there is no problem. But what if the
terminal has variable sized screens?
Or if you have a system using a win-
dowing system?

One solution is to have the user
enter the screen size as a command
line option which will override the
texrmcap values. It works, but it's
not too friendly. Another solution,
assuming a console system, would be
to have the program interrogate the
system with a GetStt. Nice idea, but
it fails with a remote terminal and
assumes that the program knows how to
do the interrogation; (Microware has
not supplied a standard Getstt code
for this).

Another solution might be to have
the terminal size set up as a SHELL
variable. T this is a good idea, but
it creates problems when a windowing
system is changing the size often.

The solution I came up with is to
use a extension module to let the
editor know about the screen size. If
the module exists, VED gets the size
from it; otherwise it uses the term-

cap entry. The extension module sim-
ply prints the number of rows and
columns to standard output. It can be
wiitten in any language and can get
the size in any manner it wishes, via
a Getstt, from some kind of informa-
tion file or from a SHELL variable.
VED has no need to know how the size
was determined, it just needs to know
what it is.

A simple example of the extension
module (called "ved_ssize") would be:

main()

printf (“sd\n%d\n",80,26);

Of course, if the need for the
program exists a more complex program
would be needed (the example would be
better handled with the termcap en-
try).

The only thing remaining is for
VED to get the data. The method I use
is for VED to call ved ssize with a
pipe opened so VED can read the out-
put from the called program. The
following code shows how VED does it:

save_std_out=dup(1);/* save stdin */
close(1); /* force pipe to */
open("/pipe”,S_IREAD+S_IWRITE) :
/* use path 1 */
t=os9fork("ved_ssize",0,0,0,0,0,0);
/' run eizer */
pipe_path=dup(1);/* save forked prog
output */
close(1);
dup (save_std_out) ; /*restores stdout*/
close (save_std out) ;
1f(t>0) /* fork successful */
cread(pipe_path,buf2,sizeof (buf2)-1);
/' get columns */
get_exp (&3, buf2,&e);
if(Te){ /*no error evaluating
xsizev/
cread (pipe_path,buf2,sizeof (buf2) -1);
/* get rows */
get_exp(&i,buf2,&e);
if (Te) set ssize(j i);
/; go set size */

)
close(pipe_path); /*close pipe path*/

In the above fragment cread()
reads a string and appends a null to
it, get_exp() evaluates a numeric
expression and set_ssize() sets the
screen size.

This might not be the most elegant
solution, but it does have a number
of advantages. First, the code for
both the main program and for the
auxiliary program is straight forward
and easy to write as well as main-
tain. Second, the main program does
not need to make any assumptions
about the usexr’s terminal.

In the future I hope to cover more
picky problems like this. If you have
a request, question or comment please
contact me at:

PO Box 57 PO Box 355
wynndel, BC Porthill, ID
Canada VOB 2NO USA 85853

July 1991

68xxx Machines

Page 3

Rush Caley, LIVE!

For years, I could never under-
stand why certain people engaged in
activities I deemed “crazy". Here‘'s a
few examples of what I mean. Bunji
Cord jumping, mountain climbing, rock
climbing, white-water rafting, hang-
gliding, sky-diving, and many more. I
never could dredge up more than a
modicum of sympathy when I read head-
lines about fatal accidents involving
this type of activity. But now as my
45th birthday approaches, I’'ve final-
ly reached an understanding of these
endeavors. It has nothing to do with
bravery, death-wish, or a neurotic
need for attention. I now see that
these people are merely reacting to
the *"predicament* of life in one of
the two equally moronic alternatives
available.

For this is the predicament of
life: it's dangerous! I recently
heard about the results of a study
that showed left handed people die 9
years earlier than their right handed
counterparts. The dangers appear when
you are very young and continue to
multiply and haunt you through life.
If you run with the scissors or play
with BB guns, you’ll put your eye

out. If you keep making that face,
your mouth will stay that way. If you
continue to pick at that, it‘ll be-
come infected. Loud music will deafen
you; and in addition to sitting too
close to the television, we all know
what will blind us for sure.

Eating too much will make you
sick; not eating enough will make you
sick; eating the wrong foods will
make you sick. Driving too fast is
dangerous, driving too slow is dan-
gerous. Too much sun is bad for you,
too little sun is bad for you. We
live in dire fear of atom bombs,
earthquakes, tornadoes, volcanic
eruptions, holes in the ozone layer,
AIDS, Cancer, and a host of other
diseases frightening enough to keep
you awake all night.

And if that’s not enough, not only
are we physically in mortal danger,
we are also spiritually at risk. If
you have no religion, you’ll go to
hell. If you have religion, but it‘s
the wrong one, you’ll go to hell.
Heaven will be a small golden city
for those clever enough to get it
right.

So how does one cope with all of
this disaster that envelops our exis-
tence? Well, it appears to me now
that there are basically two alterna-
tives to just “plodding ahead" with
our lives. The first alternative I
mentioned at the outset. It now makes
sense to me why people engage in some

*** New For 0S-9/68000 **x

Our famous VED text editor is now avajlable for computers running the 05-9/68000

operating systen.
terminals.

It uses TERNCAP functions to make it conpatible nith most
Nearly all of VED's internal settings (macro definitions, key-bindings,
editing modes, etc.) can be modified from an initialization file.

VED's editing

node options include insert/overstrike modes, automatic indenting and nusbering,

wordarap on/off, etc.

Standard functions like search, find/replace, blockmove/

copy/delete, word and line delete are conpletely supported with countless variants

and options.

R complete set of ™undo™ functions make it easy to correct mistakes.

VED also has a built-in text formatter; included in the command set are margin
settings, headers and footers, justification modes, and embedded comnands for
various printer fonts (italic, underline, etc). An interactive previen mode makes

it easy to see what the final document will look like when printed.

User

extendable help screens speed things up when you just need a refresher, rather than
using our detailed, indexed 68 page reference guide.

To order VED please send us your check or

$39.95 plus $3.00 S/H.

money order (sorry, no credit cards) for

Bob van der Poel Software

PO Box 57
Wynndel, B.C.
Canada V0B 2N0

PO Box 355
Porthill, ID
USR 83853-0355

Telephone 604-866-5772

Page 4

68xxx Machines

July 1991

of the more intrepid endeavors. It's
a 1etaliatory measure. In other
words, a person says: "I'm not going
to wait for Cancer, an earthquake, or
an out of control Bus. If I've got to
go, I'm going to go in a blaze of
glory.” That’s understandable now. It
beats the hell out of a hospital bed
and tubes jammed into every conceiv-
able opening.

But me? I'm not on my way out to
buy any scuba gear just yet. It’s not
that I'm “chicken"; but even though I
have more understanding of those
types of risky entertainment, I‘m one
that just doesn’'t have the where-
with-all to go asking for 4it. 1
choose to just "plod ahead* even
though it’s a jungle out there.

What’'s the second alternative I
alluded to earlier? Not very attrac-
tive, I'm afraid. Not really worth
the effort to mention it. Just stay
in bed and never come out from under
the covers. Never go anywhere. Never
do anything. Play it safe. Some life.
All fear, no fun, and wind up just as
dead. Like I said, moronic. Well, I'm
on my way out the door to the movies.
I'l1l probably even put extra butter
and salt on my popcorn.

What Is Minix?

by Joseph Fosco

Several years ago after building a
Peripheral Technology PT68K-2 comput-
exr kit I tackled getting an Operating
System for it. 1 liked the idea of
Unix, but after a little research I
found, if available, it would be very
expensive.

At first, the closest thing avail-
able for the PT68K-2 I could find was
0S-9. It looked good, however, it was
rather expensive and its source code
wasn’'t available. Not long later I
heard about a Unix look-alike called
MINIX. I was able to test run it on
an IBM PC. Soon I found myself con-
sidering doing a port of the system
to my PT, (what better way to learn
about operating systems?); but as it
turned out it was not necessary.
Someone had already done it. Before I
begin with *“Getting MINIX to Run*,
perhaps a little background on MINIX
would be appropriate. Much of the
following information comes from the
MINIX Information sheet available on
USENET.

MINIX is an operating system very
similar to UNIX. It was written by

° TIFEIF P RF O
pIAMEHL T3
; 8§ prt 1%9,,
wE § 25Q83f FErx e
; :.g- !"R?“%q-‘: ::‘m
2 3 3 ®gk=¥d i
§2 94 ¢ Szip 383 %
¥ 3 & 8 2a im; 8. Z
H] PRl il 2E &
3 RfesELSiiri i A
P opeifsiieiligi ®
iind <Gebie: £ i rfig
A2y L =
ﬁ&:i,gfg,rn zppf IFE
1S 288 8088 qrig iy d
fIRgfaskeiz ¢ é‘o ¥ 3
S R NI I S IR
AT tszz il 20 e o
HAER I S
AR
3&,3 §§§§ }5 P tw
b gty g8 I® * 2o
H.' 2,88 g ,.3 §
iTC 287 i3)
e geoe i1
gL ¥ :
R*x <2

00'8% €XRQXEPUIS 00°Z1$ SIGTY'ATY'A (3u) pue dd 2y) epeuve) H7BS

zZ Pz FRKZ mnZ 9Tz
IR RTERHIER IERIES
$y 3 BIz iy 2E§z wnécn
FiRtsfeiiSEif fisem
“E o i3 fEEEL VRIS
FEEISLAEY 5 2TZ
iteirs §-3§ S
¥ & L& T & &S m
3¢ EIf §IF gif iF A
s ".? E‘ 'g'?“ gs -1.2
i giF 10 3 35 Q
3 <ge LN L3
STEL CH I 3
) »zg §§ it it c
i 5 ef 32 <t o
LR L4 ¢ -
=L 0 Xn R 2_53'3 £g
Fra 2% 1 3gas’ 2.2 O»
g i3 & viif3 if =
@9y @ % eI |7n ‘ﬁ
18 8% g ! %rings
SR LR z
f3ag 7z 932337 >
gEE: B 2 £ 2%
fgel o3 F
z-2, &7 -
< H HE P
TEES Bz ¢ ¢

July 1991

68xxx Machines

Page 5

Dr. Andrew S. Tanenbaum for teaching
operating system design. MINIX was
written from scratch and does not
contain any AT&T code. For this rea-
son, source code is made available.
The current version of MINIX is 1.5.

MINIX is a full multiprogramming
operating system (allows more than
one program to run at once). In addi-
tion, it is system call compatible
with V7 of the Unix operating system.
MINIX comes with a C compiler that is
K&R compatible (no floating point
support, or source code), and a shell
that is functionally identical to the
Bourne shell. Over 175 Unix utilities
are included as well as 200 library
procedures. The distribution includes
full source code (in C) for the oper -
ating system, utilities and librar-
ies.

A book by Andrew S. Tanenbaum
describes operating systems in gener -
al and MINIX in particular. The de-
ecriptions and source listings in the
book are for the early version of
MINIX, but are still useful, if not
required, for understanding MINIX’'s
internals. The book is:

Title: Operating Systems:
Design and Implementation

Author: Andrew S. Tanenbaum
Publisher: Prentice-Hall
ISBN: 0-13-637406-9

MINIX is sold by Prentice-Hall.
Some software stores stock MINIX, or
it can be ordered directly from Pren-
tice-Hall.

Prentice-Hall sells MINIX for only
a few machines. These are: -

IBM (5 1/4"), ISBN 0-13-585076-2
IBM (3 1/2%), ISBN 0-13-585068-1

Amiga ISBN 0-13-585043-6
Atari ISBN 0-13-585035-5
Macintosh ISBN 0-13-585050-9

All vexrsions cost $169.00 plus tax
and shipping. Included in this price
is executable. binaries, a detailed
manual, complete source code (on
diskettes), and a typeset; cross-
referenced listing of the operating
system. Prentice-Hall can be contact-
ed at:

Microservice Customer Service
Simon and Schuster
200 Old Tappan Road
Old Tappan, NJ 07675
Phone Orders: (800)
(201) 767-5969

624-0023 or

Even though source code is includ-
ed, MINIX is not public domain, Pren-
tice-Hall has copyrighted it. Howev-
er, they grant permission for univer-
sities to copy the software under
certain circumstances. Also, MINIX
owners are allowed to modify the
operating system and distribute

‘diff’' 1listings. The shrink wrap
license allows the owner to make 2
backup copies.

If you’re reading this there is a
good possibility you do not own one
of the computers for which Prentice-
Hall is distributing MINIX. However,
all is not lost. MINIX has been port-
ed to several other computers; such
as the PT68-K2 via modifications
called 'diff’ 1listings. The hardest
part of getting MINIX for one of
these "other” computers is determin-
ing if there is a “bootable* ‘diff’
listing available. .

As mentioned earlier, MINIX is
copyrighted. It is not legal ‘to dis-
tribute copies of the source code,
even if modified for another comput-
er. Prentice-Hall does allow the
distribution of these ‘diff‘ 1list-
ings; which are "different™ from, and
modify, the available commercial
versions. To get one of these ‘diff’
versions of MINIX working, locate the
'diff’ 1listing for your machine,
purchase the proper commercial ver-
sion for the ‘diff’ listing you need
to use, apply the ‘diff‘s to the
commercial version which rebuilds the
operating system, and load it to a
disk bootable on your computer. (Be
sure to purchase the correct commer-
cial version. The Atari ‘diff's will
only work with Atari commercial ver-
sion, and the compiled result will
not work on any other computer.

There is no official source for
the MINIX diff‘s. Most of the activ-
ity occurs on or through the USENET
discussion group, comp.os.minix. In
addition to questions and answers,
numerous programs and ‘diff’ listings
are posted regularly. This group is
also carried as a BITNET mailing
list. The activity from this discus-
eion group is archived at numerous
sights, so past postings can be down-
loaded via FTP or LISTSERV.

For those without access to USENET
or BITNET there is a BBS that carries
all traffic from comp.os.minix: The
Mars Hotel BBS 301/277-9408; 300,
1200 and 2400 baud, 8, n, 1. No reg-
istration. Everyone gets 60 minutes a
day. No upload/download ratios.

PT68-K owners can obtain every-
thing they need to get the Atari
version running on a PT68-K from a
bulletin board operated by Michael
Everson, 817/488-8398; 300, 1200 and
2400 baud; 8, n, 1. No registration,
no time limit.

Once the diffs you need are ob-
tained, you must create a version of
the operating system that will boot
on your machine. This 1is greatly
simplified if a "boot-disk" for your
target system is available. A boot-
disk is a listing of the MINIX kernel
that will run on the target computer.
Once running, the source code can be
unpacked and the ‘diff’'s applied.

Page 6

68xxx Machines

July 1991

Without a “boot-disk", MINIX must
be running on the computer from which
the port was made. The 'diff‘s can
then be applied to the sources and
the operating system recompiled. The
executable modules must be transfer-
red to the target computer and saved
on disk. You must then create a disk
that will allow MINIX to boot. This
format will vary from machine to
machine, but if you have network
access I'm sure help can obtained
there.

If you are porting to a 680xx
(68020, etc...) processor, the vast
majority of the code will not have to
be modified. Most of the work will be
in rewriting portions that handle the
hardware (Interrupts, Clock Timer,
Keyboard, Display, Disk Drives,
etc.). After recompiling the code,
the process will be identical to
getting a version with 'diff’ 1list-
ings working (transfer to the target

‘computer, and create a boot disk).

I understand that porting MINIX to
one of the more powerful 680xx pro-
cessors requires quite a bit more

_work due to a difference in inter-
rupt/trap handling.

HARDWARE REQUIRENENTS FOR MINIX

Many people run MINIX on an IBM XT
with 512K and two floppies. This is
what I would call the absolute mini-
mum. You could get MINIX running and

do some work with it, but you would be
severely restricted. I am not sure if you
would be able to recompile the operating
system with this configuration, but even
if you could the disk swapping would be
horrendous. Of course the larger the
system the more you can do. I would rec-
ommend the following for a practical
lower limit:

1 megabyte ram, 1 floppy drive, 1 20Mb
hard drive and a text only monitor.

Currently a text mode monitor is the
only option available. Some graphics
routines have been developed (there is
even work on bringing over X-Windows),
but text mode is all that is supplied in
the official releases.

Locating and obtaining MINIX for a
non-supported system is really the big-
gest problem. Once you have it running,
it vorks very well. The biggest complaint
I've heard about the 68000 version of
MINIX concerns its method of memory man-
agement. Because it does not use a memory
management unit, MINIX keeps multiple
processes running by copying them around
in memory. Under most circumstances this
is not as big a problem as it might seem,
but there are instances where this cre-
ates a severe degradation in performance
(most notably this occurs while running
Kermit) .,

Is it worth it? Personally, I‘d answer
with an unqualified YES! Although $169.00
might seem a little steep for an operat-
ing system, when you consider all that is
included it is really a bargain. Not only
do you get the operating system but
source code, a C compiler, and several
editors! The fact that MINIX is so much
like Unix allows many public-domain Unix

] - el

' z i 2

]

i o g

1

' S =

1] 13

] ' 44

H > &= — = v W v

! W O o3 9 —nPw®

H B S+ S =0 W =

H o 1 |a D A®+~0 9P

' = ! [e T 57 -

o .

' < | - = o] g c

H < ! S Bw P - - -

H H m PO ~0 0 3 = (=] —

zs i, 3 w2 5%y k] w hU
P S5 1| ouw < =3 -~ I w)
5 3w a8 1.8 8 =~ c 3~ 29 BoR J;
rAg4 P R TS e o < o s e S’EL 4 -

FoOoE B S 4Ll e s MY P~] E]
= . B — | D LT T~ —~ 0 =
o wv — 4o = "0 - - (D a. m
O ~ > -~ - o0 15 ., - ™ = a.
s 53 op 1 2% 27 18R =4 F = o -
- . -

o o e - 3P = e = >4
= JEERY X xR - o & o - m (=] (g ad
— D [~ T T I | - -y ou::,. e -~ ;)

o o 0 [) = — ™ =

o 3 > 1 O e L N]) ~ .
& v 0 'S Ea T e ©
@ e s B - e | —) > o -

— m o W< WO w G —
[R a | ~o = = o =
[32y n - 0 m 0 e oa
m o bl [
o) -
] ~ Tt
' o M
' © M 1 -
' o ' o
] - '
1] [~9 [,)
" b -
o
=>
-~
-~
July 1991 68xxx Machines Page 7

source programs to be compiled without
modification. . '

The package is an excellent introduc-
tion to advanced operating system con-
cepts. With MINIX you get hands-on expe-
rience with O0s design. Even if you never
have a need to work with the source code,
MINIX will provide you with an understan-
ding of many of the system-administration
issues involved in the operation of a
large scale 0s.

Finally, aside from the educational
value, MINIX is a very powerful operating
system. Although it is not as visually
appealing as something like Windows or
Mac-0s, operationally it is more power-
ful. MINIX is very much a programmers
environment. If you hope to buy applica-
tions to run with MINIX, you will be
disappointed. If you want to write your
own applications you will find MINIX an
ideal Os to work in.

If you've read this far, you realize
that getting MINIX to run on a computer
not supported by Prentice-Hall is not a
trivial exercise. However, with persis-
tence and ingenuity you too can do it. My
own experience was not smooth (this seema
to.be the norm). I do, however, have a

- floppy disk version running and am work-
ing to get a hard disk up. The tale of my
journey to booting MINIX will be the
subject of a future article. In the mean-
time, if you have any questions feel free
to write to me ¢/o "68xxx Machines". If
you have an address on BITNET, Internet,
or CompuServe please include it. JF

Inexpensive Flex
Floppy Drives

by Alen Gordon, MD

This article shows how to convert 5
1/4* and 3 1/2* inexpensive Teac brand
1.2Mb floppy drives intended for - IBM
system use, for use in Flex based sys-
tems. Drives used this way will format
floppies which are compatible with flop-
pies formatted on older Flex systems. I
have never used any brands other than
Teac, but this information may apply to
other brands as well.

As the capacity of floppy drives be-
came larger one step was double-density,
and double-sided. Early drives had 40
tracks each side and were called Quad
density. The next increase was to 80
tracks on each side, and was called Octal
Density. Octal density drives are format-
ted to 1Mb total capacity. Of this, the
user receives 2844 sectors of 256 bytes
per sector; or 728,064 bytes. IBM calls
this format standard, 720k.

The main difference between the IBM
1.2Mb drive and other drives is the rota-
tion rate. The 1.2Mb turns at 360 RPM,
all other 5 1/4 inch drives turn at 300
RPM. All the 3 1/2 inch drives turn at
300 RPM as well. Bench testing floppy

'drives will demonstrate this by measuring

the time between two index pulses on pin
8 of a drive. The ‘all other’ drives have

SK*DOS © /68K Upgrade Offer

Why make do with a me-too DOS when you can upgrade to the new, faster SK*DOS and get all this
ataspedial price: Simple-to-use DOS with full documentz.don and on-line help ¢ Multiple directo-
ries ® Multiple I/O devices and drives » User-installable device drivers ¢ Keyboard type-ahead
Print-screen « RAM disk ¢ Disk cache ° 54" and 314" floppy disk support, normal or high density
* Easy hard drive partitioning * I/O redirection to drives or I/O * Time/date stamping of files o
file or disk write-protect (even hard disk) » Batch files » Monochrome or color video board support
* Read and write MS-DOS disk files ¢ Emulator for running a wide variety of 6809 programs
Powerful utilities such as copy-by-date, undelete, show differences between files, prompted delete,

text file browse etc. - all included ¢ Basic interpreter included » Fast assembler included » Editor
included ¢ User support via newsletter, BBS and users’ group ¢ Available third-party software
includes C and other compilers, full Basic, screen editors, disassemblers, cross-assemblers, text
formatter, ROM-based debugger, modem communications program, screen-based shell and hard -
disk manager program, and more.)

SK*DOS is now priced at $70, but here is a special upgrade offer for
new users: trade in any old 68K DOS and get SK*DOS for just $50.

(Note to current SK*DOS owners: as always, your upgrade price remains at $5.)

%

Star-K Software Systems Corporation

%
&2

el
5

<¢ P. O. Box 209
ég % Mt. Kisco, NY 10549
g &Jh %’g Phone/Fax: (914) 241-0287 - BBS: (914) 241-3307
<X Q

Page 8 68xxx Machines July 1991

a period of 60/300 which equal 200ms be-
tween pulses. The 1.2Mb drives will show
60/360, or 170ms between pulses.

This attempt by IBM to increase the
capacity of the 5 1/4 inch drive in this
way was one of the worst ever made. The 3
1/2 inch drive increases its capacity
from 720Mb to 1.44Mb by leaving the rota-
tion rate at 300 RPM, while using better
media and increasing the data transfer
rate by 100%.

For some reason the 5 1/4 inch drive
went from 720K to 1.2Mb (An increase of
67%) by increasing the rotation rate by
20% and increasing the data transfer rate
to account for the balance. Fortunately
for us the newer 1.2Mb drives will still
handle lower data transfer rates. All
that is needed is to make the drives turn
at 300 RPM. (Of course, the 1.2Mb drives
are widely available and cheap.)

Teac Octal density drives had names
like FD-55SR. Current 1.2Mb drives have
names like FD-55GFR. As far as I know,
the 'F' means the drive turns at 300 RPM.
‘G’ means the drive turne at 360 RPM;
which makes it IBM compatible. ‘GF’ means
the drive is convertible to either.

Many floppy drives are manufactured to
be configurable to several
formats. To make it easy to do, the driv-
e’s PCB (printed circuit board) is prewi-
red with each possibility, but are left
unpowered. To invoke a given possibility
a little device called a shorting block
is slipped over two pins. These blocks

complete the connection between the pins

and thereby complete the circuit.
Shorting blocks come in different

sizes; be sure to use the proper size.

They can be obtained at most electronic

different ’

stores,

The pins the shorting blocks are
slipped over project out of the PCB. They
have identifying letters and numbers
printed next to them on the PCB.

To make a FD-55GFR drive turn at 300
RPM slip a shorting block over the two
pins labeled ‘I’ and another over those
labeled ‘LG’; (Leave the existing blocks
in place). That is all there is to it!
You now have an unlimited supply of
brand-new S 1/4 inch drives for less then
$80. It will even read and write your
cheapest older single sided floppies at
720K.

Adding a shorting block to the Teac 3
1/2 inch drives at ‘HHI' disables the
drive‘s ability to tell the difference
between 720K and 1.44Mb floppies. Any
floppy looks like a 1.44Mb format when
'HHI' is shorted. When done, this seems
to put a 1000 Ohm resistor across the
switch which senses if the floppy is 720K
or 1.44Mb.

With ‘HHI’ shorted you can put any
720K floppy in the drive and format it to
1.44Mb. The disadvantage is, if you put
this same floppy in other drives, it will
look to be 720K, and be unreadable. Of
course 1.44Mb floppies will read and
write correctly, and the data can be
transferred to other drives.

Pin spacing on Teac 3 1/2 inch PcB
drives is not 0.1 inch. Forcing regular
0.1 inch shorting blocks will ruin the
drive’s pins. If you have any questions
or comments, please write, inclosing a
SASE, to 160 NW 176 St, Miami FL 33169

Micronics Research
RBASIC
Enhanced BASIC Interpreter
with built-in Line-Editor
for 6809 or 68000 FLEX/SK*DOS

US$100 + $5 Shipping/Handling
continental USA and Canada
($10 S/H elsewhere)

** Please specify Disk Size and Format #**
(e.g., 5-inch 80-track)

Sorry!

No credit cards!

Checks may take 2 weeks to clear

Please make Bank Draft/Money Order payable to:

R.Jones, 33383 Lynn Avenue,
B.C., CANADA V2S 1E2

Abbotsford,
(604)854-6814

July 1991

68xxx Machines

Page 9

SYSTEM IV

Just call, FAX, or drop us a line. We

will reopond promptly with complete
pricing and specifications,
DELMAR Q0 - serving its’ customers since 1975.
Terminal Systems from $999.00 Console Systems from $1,149.00

Assembled boards and kits a le

delmar co

Middletown Shopping Center . PO Box 78. Middletown, DE 19709
3023782555 FAX 302.278.2856

089/68000 SOFTWARE

QUICK ED - Screen Editor and Text Formatter $275.00
A high quality documentation tool and program editor ideally nuited to laser printer wers. Uses
function and cursor keys on any terminal, configurable per user, Micro-justifies mixed i

text. Automatic table of contents generation and userdefinable macros and commands. Handles an
unlimited mumber of fonts. Drives any printer, Ideal for multiuser systems. Available cn & 30day
try before-youbuy basia

IDISASM_0S9 . 05.9/68K Disassermbler . 3250,00

This highepeed, threepass 68000 dissmembler can also handle the 68010 and 68020, It in.
telligently decodes module baaders and produces symbol information that can be repeatedly edited
and pased through the disaserabler allowing iterative disasembly, The systema Libraries are read to
supply , .

TP Taweliigen

$250.00

This C source code library packags supports multiple overl windows displayed on one
characterbused terminal screen. It supports window beaders and footers, and popup windows.

PC9 - MS-DOS to 05-9 Windowing System $350.00
PC9 allows an MS-DOS computer to be used as & terminal to multiple processes on a remote
OS-9 system linked by s single serial cable. Bach 0S-9 process is displayed through a
resizable, moveable window on the PC screen. Terminal emulation facilities support uMACS
and other screen editors and provide a programmable PC keyboard. Access to PC disk drives

is also avilable through the OS-9 unifisd 1/O system, giving disk capability 10 ROM based
OS-9 systems.

delmar co
Middletown Shopping Center . PO Box 78. Middletown, DE 19709

* 302.378-2585 FAX 302.378.2856

- Why Your Disk
Drive Won’t Work

by Ed Gresick

In the beginning of June I received the
following letter from Bill Hughes of Valley
Palls, Kansas. ED.

Editor:

I would be very interested in an
article about sharing software among
the various machines running 0S-9 (or
SK*DOS, REX, etc.) T.have described
my experience below; but I'm sure
some of your regular contributors
will have wider experience.

I have a PT68K-4 with a 3.5" and a
5.25" floppy drives. Originally both
drives were running on the Western
Digital 1772 floppy disk drive con-
troller. The default 0S-9 format for
this machine 1is 10 sectors/single
side on track 0; and 16 sectors per
track/double sided for all other
tracks (0s-9 "standard").

The problem began when I ordered
software that was advertised for the
CoCo. It was to run under 0S-9, so I
assumed there wouldn‘t be any trouble
getting it onto my machine. The fol-
lowing points are notable:

1) The CoCo and the PT68K use
different “standard" disk formats. T
now know how to change the descrip-
tion in the 10/d0.a file, compile a
new descriptor, and generate the
proper boot file. However, getting
this information from square one was
not easy. It became a real learning
experience for a beginner like my-
self. .

2) The 1772 chip on the HD (high
density) 5.25" doesn’'t seem to like
CoCo disks, regardless of format. 1
later installed the newer 37C65 chip.
It seems to handle anything (so far),
8o now I can share 5.25" disks (pro-
vided we agree on which format to
use.)

3) The 3.5 drive on the 1772
controller reads/writes/formats (in
PT68 standard format) disks that are
readable/writable by CoCo.

4) I couldn’t get the 1772 con-
troller to give reliable results on
either drive using CoCo format. 18
gectors per track may be too much for
it to figure out.

S) Obviously, always use DD (doub-
le-density) diskettes: my 5.25" could
handle HD diskettes without a prob-
lem, but I guess CoCo’s are strictly
DD drives.

I have been working with Bob van
der Poel on this CoCo<->PT mess. He

has also had experience with trans-
fers between CoCos and MM-18. He
included his format scheme when he
sent the software; which was very
helpful, since it got me beyond the
easy solutions pretty quickly!

In summary I would caution PT68K
users to be careful about mixing and
matching drives and controllers if
they want to exchange disks with
non-PT machines. Also, it might be a
good idea for software companies to
indicate what format they use (or,
heaven forbid, adopt a STANDARD!) .

This looked pretty serious to me
so I forwarded it to Ed Gresick of
the DELMAR €O, the distributors of
the PT computers. The following is
his very informative reply. ED.

Dear Jim: :

I've reviewed Mr. Hughes letter.
He is correct with respect to mixing
drives and controllers. But this is
not a PT problem; rather it’s a prob-
lem on all computers. On the various
forums and BBSs, people ask how they
can use their new drive (usually
already purchased) with such-and-such
system. All too often, the mix won’'t
work.

Experienced OSK software companies
will ask the customer what disk for-
mat the customer prefers.

Attempts to mix a 1772 controller
chip with HD (high-density) 5 1/4%
drives is an invitation to disaster.
They are not compatible. The 1772
controller chip has a data transfer
rate of 2S50KBits/sec. A HD § 1/4%
drive will transfer data at 300K
Bits/sec because it is rotating at
360 rpm unless it is instructed to
change to 300 xpm. (Don‘t miss Alen
Gordon’s article in this issue. ED.)
Not all HD S 1/4" drives are able to
change speed although I think most
may be modified to do so. The 1772 is
unable to support this kind of switc-
hing. Peripheral Technology has
solved the HD 5 1/4" speed problem by
specifying a 300Kbit/sec transfer
rate but this works only with the
37C65 controller chip. This solution
avoids changing the drive speed.

HD 3 1/2" drives detect the type
of disk and adjust theix speed ac-
cordingly so they might work with a
1772. The 37C65 controller chip is
capable of handling different trans-
fer rates accounting for the success
Mr. Hughes achieved with this combi-
nation.

Through and including version 2.3
of 0S9/68000, Peripheral Technology
used standard Microware format. This
format is 10 sectors per track, track
0, side 0 and 16 smectors per track
for the remaining tracks (including

Page 12

68xxx Machines

July 1991

track 0 side 1). With version 2.4,
Microware changed their standard
format to ‘universal’ format. Periph-
eral Technology has followed suit and
is using the ‘universal’ format as
their standard format for 720K
drives. One other common format in
use is the MIZAR format. This format
is 16 sectors for all tracks and is
popular in industry and business.

The SYSTEM 1V, manufactured by
Peripheral Technology for DELMAR CO,
uses 28 sectors per track with a S
1/4" drive and 34 sectors per track

‘with a 3 1/2" drive. HD drives are
standard. Should a customer not want
HD drives, we do provide 720K drives
and follow the Microware standard
with the universal format for the
distributions disks. Alternate for-
mats are available upon request. The
HD configuration was selected because
Western Digital has discontinued the
1772 controller chip, 720K drives are
becoming difficult to obtain and the
rest of the computer industry has
shifted to HD 3 1/2" drives and HD §
1/4" drives. We provide descriptors
to handle the various 720K formats
for backward compatibility. As long
as they are available, the 1772 con-
troller chip can be provided as an

option.
The CoCo format (18 sectors per
track) is not a Microware format nor

do they the
‘rbfdesc.a’
or the ‘systype.d’
directory.)
by Tandy to conform with their RSDOS
format. While Microware did write the
original 0S9 6809 operating system,
Tandy’s license -permitted them to
make changes and additions which they
did. All support was the responsibil-
ity of Tandy.

Mr. Hughes stated he ordered soft-
ware ‘...
CoCo, but was 0S9, ...’. CoCo O0S9
software is not compatible with 0s9/-
68000. The instruction set used in
the respective processors is entirely
different. There is one exception,
CoCo Basic09 programs will usually
run under 0S9/68000 Basic with slight
or no modifications so long as graph-
ics are not required.

I suggest Mr. Hughes upgrade to
version 2.4 of 059/68000 if he hasn’t
done so already. A complete set of
descriptors for HD and 80 track DD
disks for universal, the old Micro-
ware standard, MIZAR and Tandy Color
Computer are provided for 3 1/2" and
S 1/4" HD drives. The upgrade is
available from PT or we can provide
it. starting with version 2.3, Micro-
ware included a neat utility ‘moded’.
This utility allows editing the desc-
riptor object code in the CMDS/BOOTO-
BJS directory without having to as-
semble them each and every time.

There are two caveats Mr. Hughes

recognize it. (See

file in the DEFS

file in the IO directory.

This format was devised

that was advertised for the

should be awazre of. If DD, 720K disks
are to be exchanged between a HD and
a DD drive, format the disks on the
DD drive. Formatting on the HD drive
may yield disks that are unreadable
by a DD drive. This is not an 0s9/-
68000 problem; rather it is a hard-
ware problem having to do with the
magnetic coating on the disks and the
head drive currents. And, do not use
HD disks in a DD drive - the results
are unpredictable.

I hope I've responded satisfacto-
rily. If not, give me a yell!
Best regards,

Edward Gresick, Pres.

DELMAR CO
PO Box 78
Middletown Shopping Center
Middletown, DE 19709
Phone 302/378-2555
FAX 302/378-2556

'Keep tuned, if all goes well next
month we’ll have a complete answer to
Bill's first sentence. ED.

ADVERTISER’S
INDEX

Bob van der Poel Software ... 4
" Cogent Engineering 14
delmar company 10, 11
Granite Computer Systems .. 13
Palm Beach Software 17
PAT 17

Star-K Software
SystemsCorp 8

The 68xxx Machines 18

July 1991

68xxx Machines

Page 13

COGENT ENGINEERING

'PRESENTS THE
EMBEDDED SOLUTION

MICRO-CHASSIS

The Micro-Chassis system consists of a
single motherboard with multiple add on
expansion modules. At the heart of the
Micro-Chassis isa high-speed,
low-overhead, 32-bit syncronous bus.

Maximum performance and space efficiency
is achieved via multilayer, surface mount
lechnology.

68030 Micro-Chassis Motherboard
25Mhz 68030 25Mhz 68882
2/4/8 Mbytes DRAM Parallel Port
Dual RS-232 Serial Ports
6 32-bit Micro-Chassis Modules

Expansion modules

* Ethemet SCSUFioppy
RS-232/422 Motor Contro
Bytewide Memory DRAM
Universal Prototype ~~ A/D, DIA

Operating Systems
0S8 SK-DOS UNIFLEX

Cogent Engineering will also provide
efficient, low-cost custom design and
programming services for it's .
Micro-Chassis product line. Call for
further information. .
COGENT ENGINEERING
45 LAKESIDE AVE, 10
MARLBORO, MA 01752
508) 624647

The Tech Corner

by J. Scott Kastner

When we left off last time, we
were developing a mini graphics 1li-
brary to help us explore the tech-
niques and problems involved with
modern computer graphics. The example
code for the library was developed on
a Peripheral Technology OSK system
with Super VGA. I can’t stress highly
enough to substitute in the code for
YOUR system if you have something
different. The 1resolution that we
will be working with most often is

‘the VGA 640 X 480 mode in 16 colors,

just pick a reasonably high resolu-
tion if yours does not support -that
mode .

The method for calling the Periph-
eral Technology graphics driver is
through the I$SetStt system call; the
parameters are all held in CPU regis-
ters. Here is a brief description of
the two we are using:

All calls.
do.w - path number
di.w - function code

38._SetMode - Set display mode.
d2.b - mode value

SS_WritePix - Set a pixel.
d2.b - color
d3.w - x position
d4.w - y position

Last time, we coded the Graphics()
routine in assembly using the #asm
#endasm options of the Microware C

. compiler. The routine to set a pixel

is a little more complicated; we will
use a mix of C and assembly. Add this
routine to the ‘gfx.c’ file started
last time:

Listing #2a for gfx.c
/n.......................‘.

Routine to clip and plot a pixel.’

D T T P ./

int Plot(x,y,c) register int x,y,c; |
/*Return FALSE if off screen.*/
if ((x<0) (y<0) {x>639)
(y>479)) return 0;

/*Plot and TRUE if on screen.*/ Kasm.
* Save registers for later.

Page 14

68xxx Machines

July 1991

movem.l do-dd, - (sp) * Set path and
function call.

moveq.l #1,do sStdout

move.w #$85,d1 SS_WritePix «
Copy args to proper regs.

move.b dé6,d2 copy color

move.w d4,d3 copy x pos

move.w dS,d4 copy y pos * Make
sys call.

089 I$SetStt * Recall regs.

movem.l (sp)+,d0-d4 #endasm

return 1;)

This routine demonstrates the use
of register variables. When we entex
the Plot() routine, the three argu-
ments are contained in do, di, and
one on the stack as described last
time and in section 3-1 of the Micro-
ware C compiler manual. The ‘regis-
ter’ prefix caused the compiler to
generate code copying the parameters
into registers d4, d5, and dé6. The
values will be accessed from there
inatead of on the stack or something,
like the compilex would normally code
it. This is handy for us since we
need to use them directly with the
inline code. The inline code copies
the values to the appropriate regis-
ters and makes the sys call to the
driver. On return from Plot(), there
will be a value in register do. This
value will be a 0 (FALSE) or 1 (TRUE)
to indicate whether a point was actu-
ally plotted or not due to the edge
of screen clipping (the 1if statem-
ent). We could have done this as in
listing #2b, but it is easier and
sometimes clearer to use the C code
when one can.

Listing #2b for gfx.c

R el
Routine to clip and plot a pixel

#asm Plot: * Is off in X?

cmpli.w #0,d0 x<0 ?
bge.s Plot_1

clr.l do rtrn FALSE
Its Plot_1

cmpi.w #639,d0 x>639 ?
ble.s Plot_2

clr.l do rern FALSE

rts * Is off in Y? Plot_2

cmpi.w #0,d1 y<o ?

bge.s Plot 3

clr.l do rtrn FALSE

rts Plot 3

cmpi.w ¥479,d0 y>479 ?

ble.s Plot 4

clr.l do rtrn FALSE)

rts * Save registers for laterx.
Plot 4

movem.l do-d4, - (sp).
proper regs.

move.b 27 (sp),d2 copy color

move.w do,d3 copy X pos

* Copy args to

move.w di,dd copy y pos * Set
path and function call.

moveq #1,do sStdout

move.w #$85,d1 SS_WritePix =
Make sys call.

0s9 I$SetStt * Recall regs.

movem.l (8p)+,d0-d4 * Return TRUE.

moveq #1,do

rts #endasm

The assembly version is a func-
tional equivalent to #2a. Since it
was all assembly, extra code was
needed to get the arguments that were
passed, and to generate a return
value., The color value was on the
stack so we had to fetch it with the
move.b 27 (sp),d2 instruction. How did
I get the value 27 as the offset for
this? Well, we pushed d0 through d4
on the stack ourselves. The CPU put a
return address on the stack from the
BSR or JSR instruction that called
this routine. This is a total of 6
long word values, 6*4 = 24. The color
value is the first argument on the
stack after this, but it was convert-
ed to a long before being placed on
the stack, the byte we want is three
away from the start, so we now have
6*4 + 3 = 27, Now it should be clear
why #2a is a little more clear and
certainly less work.

The last routine to be added is
the one to return us to the text
mode. Just add listing #3 to your
'gfx.c’ file.

Listing #3 for gfx.c

#define Text_Mode_80 0x03

Text() {
Graphics (Text_Mode_80); }

This routine just makes a call to
the graphics mode routine we created
last time. The ‘Text_Mode_80‘ is just
a mode value for the 80 column text
screen. The 0x03 is a way of writing
hexedecimal notation in C.

At this point, we have covered
quite a bit of material, so 1'l1
break here and let you digest it some
more. -As far as chapter 3 of the
Microware C manual, READ IT, LIVE IT,
LEARN IT, it‘s your key to really
getting the most out of a superlative
C compiler. Next time we will create
the header file for the library,
compile it, and do a test drive.
Until then, I'll leave you with a
mystery. Why are the two empty braces
{} in listing #2a necessary for the
code to work right? I‘11 give the
answer next month.

July 1991

68xxx Machines

Page 15

Beginner’s Corner

by Ron Anderson

Last time (Apr ‘91) we got as far
as a filter program under SK*DOS, and
-did quite a few variations on a
theme, Let’s talk a little this time
about simple utility programs. For
example, suppose you have an Epson
printer attached to your system and
want to set it to the "Emphasized"
mode. The Epson manual indicates you
have to send it an "escape sequence"
consisting of the ESCape character
followed by a capital “E*. The
following program will do that just
fine: .

* PROGRAM TO SET EPSON TO EMPHASIZED
MODE

*

PUTCH EQU $A033

VPOINT EQU $A000

WARMST EQU $AO1E
DEVOUT EQU 3275
-

START DC VPOINT SET A6 TO POINT AT
SK*DOS VARIABLES

MOVE.B #2,DEVOUT(A6) SELECT DEVICE
2 FOR OUTPUT

MOVE.B #$1B,D4 S1B IS THE CODE FOR
THE ESCAPE CHARACTER

DC PUTCH OUTPUT IT

MOVE.B #$45,D4 $45 IS THE CODE FOR
E

DC PUTCH

MOVE.B #0,DEVOUT (A6)
DEVICE BACK TO TERMINAL

DC WARMST RETURN TO SK*DOS

END START

SET OUTPUT

The only possible point of
confusion here is the DEVOUT memory
location. If you have a printer, your
STARTUP.BAT file probably has a call
to the DEVICE utility of SK*DOS. You
have probably installed a printer
driver as device 2. If your printer
is installed as a device other than
2, the line below START in the above
program must be changed soc you move
the correct device number into the
DEVOUT location. DEVOUT is a variable
which is part of SK*DOS. It contains
the number of the device used by
PUTCH to output a character.

SK*DOS also has a variable named
DEVIN which serves the same function
for input. Assuming you have a modem
installed on a serial port as device
4, you could put a 4 in DEVIN (MOVE.B
#4 ,DEVIN(A6)) and receive input from
the modem just as though it were your
terxminal.

Of course you would have had to
define DEVIN with an EQU statement as
we did for DEVOUT at the beginning of

.this program. To do gsomething like

this in a higher level language would
take quite a few more bytes of code
and would probably involve a little
assembler code as well. Anyway, since
the location of DEVOUT is relative to
the start of the SK*DOS variables;
which should be determined by a call
to VPOINT.

It is generally easier to
“massage* the operating system
directly in assembler code. There are
all sorts of simple utility programs
you can write for vyourself. For
example, when you go away from your
terminal for some time, it is easier
on the screen if it is blank or
almost so. I wrote a quick program
called CL to handle that for me. On
one of the 68000 systems I use, we
have a serial terminal. It is an
“ANSI" standard terminal which
emmulates a VT-100. The code sequence
to clear the screen and put the
cursor on the first line is rather
complex but it ' will serve to
illustrate how easy it is to do.

* PROGRAM TO CLEAR SCREEN AND HOME
CURSOR ANSI TERMINAL
-

PUTCH EQU $A033
WARMST EQU SAO1E
ORG $0000
START MOVE.B #$1B,D4
DC PUTCH
MOVE.B #' (’,D4
DC PUTCH
MOVE.B #°'2°,D4
DC PUTCH
MOVE.B #'J',D4
DC PUTCH
MOVE.B #$1B,D4
DC PUTCH
MOVE.B #' (’,D4
DC PUTCH
MOVE.B #'1',D4
DC PUTCH
MOVE.B #';’,D4
DC PUTCH
MOVE.B #'1’,D4
DC PUTCH
MOVE.B #'H’,D4
DC PUTCH

DC WARMST

END START

A simpler program clears the
screen of most terminals such as the
Televideo or Wyse non ANSI versions.

* PROGRAM TO CLEAR SCREEN AND HOME
CURSOR ’

-

PUTCH EQU $A03
WARMST EQU SAO1E

ORG $0000

START MOVE.B #$1B,D4

DC PUTCH

MOVE.B #'*’,D4

DC PUTCH

DC WARMST

END START

Page 16

68xxx Machines

July 1991

You might look at these programs,
particularly the first, and say we’'ve
done it very inefficiently. We could
define a string of bytes terminated
with a 4 and call the SK*DOS system
routine PNSTRN, which outputs a
string without a leading CRLF. Just
for fun, let’s do it that way and get
a feel for how much we could save in
program code and bytes.

* PROGRAM TO CLEAR SCREEN AND HOME
CURSOR ANSI TERMINAL
-

PUTCH EQU $A033

PNSTRN EQU $A036

WARMST EQU SAO1E

ORG $0000

START LEA STRING(PC),Ad

DC PNSTRN

DC WARMST

STRING FCC $1B,"([2J",$1b,"[1;1H",4
END START

P

At this level of program, it
really doesn’t matter much. The whole
program is less than one sector of
disk storage, and a whole sector
would be used for any program from 1
to about 245 bytes. When you run this
CL program you won‘t be doing
anything else, so memory usage is not
important either.

As a matter of interest the first
*“long way" program is 62 bytes and
the one directly above, which works

identically is 19 bytes. I should
mention I have been using the long
one for a year or more, primarily
because it was a simple extension of
the non-ascii clear program that had
been done first. Looking at it again
today brought to mind there was a
bettexr way.

I find with programming there
seems to be no end of looking at a
program and making it better and
shorter or faster. The improvements
come more slowly and make less change
in the performance or size of the
program after you have worked on it
for a long time, but you never reach
the point where improvements cannot
still be made. (Well, of course, for
a very simple two line program, you °
do reach that point, but for any
non-trivial program, it seems to be a
never ending process).

Now looking at the program's
content, obviously for the non-Ascii
terminal, ESC * is the sequence which
clears the screen and homes the
cursor. The ANSI version requires:
ESC [2J to clear the screen and ESC
[1;1H to put the cursor at row 1 and
column 1 of the screen. The Hercules
board video version for the PT68K-2,
which probably most of you have, uses
the code $1A (control Z). You only
need to send it one character, as
below:

* PROGRAM TO CLEAR SCREEN AND HOME

PT68K2/4 Programs for REXDOS & SK*DOS

EDDI
SPELLB
ASMK
SUBCAT
KRACKER
NAMES

A screen editor and formatter

A 160,000-word spelling checker
A native code assembler

A sub-directory manager’

A disassembler program

A name and address manager

$50.00
$50.00
$25.00
$25.00
$25.00
$25.00

Include operating system, disk format, terminal type and telephone
number with order. Personal checks accepted. No charge cards.

PALM BEACH SOFTWARE
Route 1 Box 119H
Oxford, FL 32684

904/748-5074

July 1991

68xxx Machines

Page 17

CURSOR

* FOR PT68K-2 USING
BOARD

.

PUTCH EQU $A033 WARMST EQU $A01E
ORG $0000 START MOVE.B #$1A,D4
DC PUTCH

DC WARMST

END START

MONOGRAPHICS

Well, there you see some of the
usefulness of Assembler programming,
particularly with regard to massaging
the operating system to make it do
what you want it to do. We've looked
at filter programs, found out how to
open and close disk files, and talked
to the printer and terminal with
simple utility programs. Next time
we’ll look at higher level languages
and see why we might not find them
appropriate for all of our programs.

The
68xxx
Machines

The newest, most in-depth
information vehicle for the
new 68xxx machines and
their operating systems.

1 Yr. US $12.50. Canada/Mexico $14.25
2 Yr. US $23.00. Canada/Mexico $26.50

1 Yr. Foreign $17.25 (surface)
2 Yr. Foreign $33.50 (Surface)

Name :
Strt :
City :
State: Zip:
Send check or money order to:
The 68xxx Machines
RD 1, Box 375
Wyoming DE 19934
Credit card orders call:
(302) 492-8511

The Eccentric
Programmer

by Randy Krippner

A famous computer scientist once said
the comment that using BASIC causes brain
damage. I find that comment absurc. I am
a BASIC programmer and I can assure you
that my brain isn‘t damaged in the sligh-
test. (The rumor that I entered a Madonna
look-alike contest and took second place
is a vicious rumor. I took first.) Just
because someone chooses to program in
BASIC doesn’t mean that his or her RAM
bank is a few chips short of a full meg.

One thing that can make an otherwise
normal person feel a sudden urge to go
live with the squirrels is trying to
learn a new programming language. Once
you have become thoroughly familiar a
language, it can be difficult to adapt to
a new one. This is true even when chang-
ing from one version of a language to
another. In fact, moving from one dialect
of a language to another can sometimes be
more difficult than trying to learn an
entirely different language. This is
especially true when trying to move from
a ‘standard’ BASIC like Extended Color
BASIC to a modern version like Basico09.

If you've decided to take the plunge
and switch from ECB to Basico9, you’re in
for a surprise. BASIC ain't BASIC any
more, folks. Take a look at the two sim-
ple code fragments below:

10 REM JUNKLOOP.BAS
20 FOR CT = 1 TO 10
30 PRINT "Hello"

40 NEXT CT

50 END

PROCEDURE JunkLoop

DIM count:INTEGER

FOR count = 1 TO 10
PRINT "Hello"

NEXT count

END

These two programs, the first in ECB,
the second in Basico9, do exactly the
same thing, but there are some signifij-
cant differences in how they do it.

The most obvious difference is that
the Basic09 program doesn‘t have line
numbers. Line numbers are optional in
Basic09. They are required only when a
line is referenced by a GOTO or GOsSUB.
Otherwise they can be used or not, de-
pending on the programmer’s preference.

The PROCEDURE line of the Basic09
listing is also something new. Every
Basic09 program starts with the word
PROCEDURE, followed by the name of the
program or module.)

The PROCEDURE line is inserted auto-
matically by the Basic09 editor whenever
you start to write a new program. To
start editing a new program, you would
type:

e JunkLoop [ENTER]

bage 18

68xxx Machines

July 1991

The “e" tells Basic09 to go into the
edit mode. The word after the “e* is the
name of the module you want to edit, If
the module does not exist, Basic09 will
create it, giving it the name you typed.
If a module of that name already exists,
Basic09‘s editor will allow you to edit
that module. If you do not enter a name
after the "e" command, Basic09 will give
the procedure a name of “program*.

If ECB is the only language you‘ve
ever used, you may find the DIM statement
in the second line. In ECB, DIM is used
only to dimension an array, as in DIM
A(10). In Basic09, however, DIM serves
two purposes, It is used to dimension
arrays, just as in ECB, but it is also
used to declare variable types.

In ECB, there are only two types of
variables; numeric and string. Basico09
has five different variable types; inte-
ger, real, byte, string, and boolean.

In Basic09, real variables and string
variables are similar to ECB‘'s numeric
and string variable types. Real variables
are used to hold standard floating point

numbers. 8tring type variables hold, of -

course, strings. However, string vari-
ables under Baeic09 are a bit different
from what you may be used to. ’

Integer variables are numeric vari-
ables also, but they can only hold whole
numbers in the range of -32768 to +32767.
Byte variables are also numeric, but the
values they can hold are limited to the
range of 0 - 25SS.

Boolean variables are used exclusive-
ly for logical comparisons. They can hold
only one of two values, TRUE or FALSE.
Boolean variables are usually used as
flags to test to see if specific condi-
tions have been met.

And as if that isn‘t enough, Basic09
also supports user defined data types,
something we’ll get into a bit later.

Why all of these different variable
types? It may seem that all of these
different types would confuse things, but
they actually help programmers in the
long run.

These different data types can make a
program much more efficient in terms of
execution speed and memory use. Look at
JunkLoof" again. I‘ve declared count to be
an integer variable. Since it is an inte-
ger, it takes up only two bytes of memo-
ry, rather than the five bytes a real
variable would have taken up.

Also, since it is an integer rather
Lhan a floating point value, mathematical
operations are performed much more quick-
ly. Performing manipulations on floating
point numbers takes a great deal of time.

(Note: You have to make sure that the
wumber being stored in the variable will
10t exceed the capacity of the variable’s
Lype.)

What happens if you do not declare a
sariable with a DIM statement before you
1se it? Well, unlike Pascal and C which
require all variables to be declared
sefore they can be used, Basic09 will
1llow you to create new variables on the
fly, 80 to epeak. Undeclared numeric
rariables default to the real type. Unde-
*lared string variables default to a
string length of 32 characters. (Unlike
*CB which automatically adjusts the
length of a string to match the string
ssigned to it, under Basic09 you have to

-includes an address,

8et’' the maximum string length yourself.
It may sound like an annoyance, but there
are advantages. First, strings are not
limited to 255 characters in length. A
Basic09 string can be as long as you like
(within memory limitations). The second
advantage is that there is no need to
endure the dreaded “garbage collection*
delays for which ECB is so justifiably
infamous. Because Basic09 strings are of
a fixed length set by the programmer, the °
language doesn’t have to pause to reorga-
nize string memory.)

Another advantage of Basic09 is that
you are no longer restricted to two char-
acter variable names. Variable names can
be up to 32 characters long, all of them
significant. You don‘t have to go crazy
trying to figure -out whether CT$ is the
customer name, credit rating or eomething
else. Under Basic09 you can give vari-
ables names that actually mean something
useful, such as CustName or CreditRating.

Novw let’'s talk about those four digit
numbers that appear in front of every
line in a Basic09 program. If you type in
JunkLoop and then list it, you‘ll see
something like this:

PROCEDURE JunkLoop

0000 DIM count:INTEGER

0007 FOR count=1 TO 10

0017 PRINT “Hello*

0033 NEXT count

003E END

Newcomers to Basic09 often think

these are line numbers. They aren’t. They
are actually hexadecimal addresses. The
number to the left of the line is the
address of where that line of code starts
in the computer’s memory. (This is is not
the actual memory location where the
program is stored. Normally we don’'t
know, and don’t care, exactly wheze a
program is stored in memory. 0S89 and
Basic09 take care of that for us. The ad-
dresses displayed in a Basic09 program
are offsets from the beginning of the RAM
area being used. For example, perhaps 0s9
has given Basic09 a block of RAM starting
at 0100 hex. The offset is added to the
base address to produce the true address
of where that particular item is stored.
So the second line of JunkLoop is not
really stored at 0007, but at 0107, or
the base address plus the offset.)

Since exactly where a Basic09 program
is located in memory is normally some-
thing we don’t care about, why does Basi -
c09 give us this list of addresses?

Well, the addresses can help you when
you are debugging a program. Remember, we
aren’t working with line numbers, so it
can sometimes be difficult to find a
particular location in a program. If your
program crashes, Basic09’'s built in debu-
gger will give you an error message that
telling you where
the problem turned up. You can compare
that address with the list of addresses
printed in the Basic09 listing to find
wvhere the error took place.

Next time we’'ll continue our move
from ECB to Basic09. Questions can be
sent to Randy Krippner, 1014 W. Hwy. 114,
Lot 29. Hilbert, WI 54129. Please include
an SASE.

July 1991

68xxx Machines

Page 19

“The 68xxx Machines™
The Chatham House Company
RD#1 Box 37S

Wyoming. DE 19934 USA

- Address Correction Reguested

- First Class -

