CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

SPICE System Programmers Guide

Robert Sansom
21 Aug 84

Abstract

This document provides an overview of how to write programs which use the ACCENT opcrating system.
Thus it explains how to use the server processes running under Spice, how to create your own processes and
how to talk between your own processes. It does not attempt to explain how to make modifications to the
operating system except for giving the procedure for constructing a new system image.

Spice Document S159
Keywords and index categories: Accent, Manual

Location of machine-readable file: [cmu-cs-spiée]/ usr/spicedoc/manual/spiceprogram/sysprog

Copyright © 1984 Robert Sansom

This is an internal working document of the Computer Science Department, Carnegie-Mellon *
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced

Projects Agency or the U.S. Government.

Table of Contents

1 Introduction
1.1 Documentation

2 Operating System Overview
2.1 Basics
2.2 Processes

3 Accent on the Pergs
3.1 Getting Started
3.2 Writing Pascal Programs
3.3 Imports/Exports
3.4 Importing Accent Modules
3.5 The Linker

4 Message Handling
4.1 Accent Primitives
4.2 Message Construction
4.2.1 Message Header
4.2.2 Data
4.3 An example

5 Matchmaker
5.1 Overview
5.2 Definitions Files
5.3 IPC Type Information
5.4 The User Side
5.5 The Server Side
5.6 What it all looks like

6 Ports and the Message-Name Server

6.1 Ports
6.2 Sending Ports in Messages

6.3 Message-Name Server, the Name half
6.4 Message-Name Server, the Message half
6.5 Accent style IPC under UNIX

7 Memory Management

v P W NN

\O QO ~2 N OV O

11
11
12
12
13
14

16
16
16
17
17
18

18

8 Sesame
8.1 Introduction
8.2 PathName

9 Process Management
9.1 Accent Primitives
9.2 Process Manager
9.3 Spawn

10 Emergency Messages
10.1 Occurrence
10.2 Format

11 The End of the Beginning

A Type and Routine Specifications
A.1 From AccentType
A.2 From AccCall
A.3 From Acclnt from AccentUser
A.4 From SaltError
A.5 From Pascallnit
A.6 From MsgN from MsgnUser
A.7 From SesameDefs
A.8 From PathName
A.9 From Spawn

B A Simple Example

C Building a System

19
19
19

mRE8sE

22
23

24
25

26
26

27
27
28

29

32

ii

1 Introduction

In this document I aspire to provide sufficient information and explanation so that you, dear reader, can
go ahead and use the features of the SPICE System and the Accent Operating System Kernel. [also hope
that this document will reduce the learning time that I, for one, experienced when trying to understand how
to use all the Accent facilities. If you find that I have omitted some vital point plcase feel free to tell me
about it and I shall do my best to include it in a future version of this document.

I apologise in advance for the way in which this document is so orientated towards Pascal. This was
historically due more to necessity than choice for the operating system and its interfaces were almost
entirely written in PERQ Pascal. Now that SPICE LISP is available there should be a parallel version of this
manual providing the LISP view of the world. The interfaces for C should be almost identical (allowing for
language syntax) to the Pascal interfaces.

The following sequence of sections is meant to be fairly logical in that I will try and build up a coherent
picture of the interprocess communication and process management facilities of Accent. To this end I have
inserted a chapter describing the SPICE utility Matchmaker after the chapter on message handling. The later
chapters mostly present the features of Accent in terms of a Matchmaker provided procedural interface.

1.1 Documentation

If you want a general overview of Accent you should read Accent: A Communication Oriented Network
Operating System Kernel [Richard Rashid and George Robertson, Proceedings of the Eighth Symposium on
Operating Systems Principles, December 1981). I summarise the main points of the operating system design
in the next section.

The most important document to have at hand whilst reading this document is the Accent Kernel
Interface Manual [Richard Rashid, 1982]. One of the aims of my document is to explain to the layman all
the details contained in that manual. Another operating system document is the Perq Systems manual
Theory of Operations.

Other useful documents are Matchmaker: A Remote Procedure Call Generator [SPICE Document S129),
User Manual for KRAUT - The Interim Spice Debugger [SPICE Document S156], User Interface to the
Sapphire Window Manager, Application Interface to the Sapphire Window Manager and Sesame: The Spice
File System [SPICE Document S140]. These documents are all to be found in the SPICE Programmers
Manual. In addition you will certainly need access to various Accent sources which will be found on the

21 Aug 84

Spice System Programmers Guide — 2

/usr/spice account on the CFS VAX. The things that you arc most likely to nced will be found in libpascal
and can be obtained by doing an update on the logical name /ibpascalsre.

In Appendix A I have listed all the routine specifications that I use or describe in this document. These
have been copied verbatim from the corresponding source files.

2 Operating System Overview

2.1 Basics

Accent is an opecrating system supporting multiple processes communicating via messages. There is no
shared memory between processes and each process has its own virtual address space. Ports are the basic
Accent object. They are used primarily as the addresses to which messages are sent. But they also play the
role of naming system objects, such as processes, virtual memory segments and so on.

Ports are protected kernel objects. Within a process the name of a port is local to that process and only
the Kernel can map local names for ports into kernel-wide names. The primary reason that this mapping is
done is so that the kernel can protect rights on ports. A process can only gain rights (send, receive or
ownership) on a port by appropriate mechanisms to be discussed later. A process cannot just make up a
name, where a name is an integer, for a port and hope that it will be a valid name.

2.2 Processes

The Accent kernel performs only a small part of traditional operating system functions. It is left upto
various server processes to provide the remaining functionality. The various servers are as follows:

o System Init: The process which is initially set running. It starts up the next four processes.

o Time Server: Obtains the current time over the ethernet and provides timing services for any
other process.

o Sesamoid: The file server. This is an interim version of the full Sesame file server and provides
file read and write functions as well as maintaining directories.

o Environment Manager: Manages SearchLists and facilitates the sharing of profile variables.

o Startup: The last process started up by the system init process. It brings up all the rest of the
Server processes.

o Sapphire: Window manager for SPICE. Manages the PERQ’s display and is capable of executing
complex graphics commands.

21 Aug 84

Spice System Programmers Guide - 3

« TypeScript: For processes which have traditional teletype style interfaces, typescript manages
their input and output. It stores up some amount of i/0 so that if you shrink and then enlarge a
window you don’t lose what was initially in the window.

o Tracker: Keeps tabs on the PERQ’s Puck.

¢ Procman: The Process Manager. Does most of the handling of processes at a higher level than the
kernel. Provides most of the hooks for debugging processes. Keeps a list of what processes are
running.

e Message-Name Server: Called the network server or the MsgServer in some descriptions of the
system. It provides transparent, remote inter-process communication over the ethernet.
Additionally it functions as a primitive name server, both for local and remote name services.

o Netserver: Should be called the etherserver as it handles all of the dirty work involved in using
the ethernet.

e Shell: The user’s process. Functions as a simple command interpreter and allows the user to run
and control other processes. You can have multiple shells running simultaneously. Each shell has
its own window onto the screen.

3 Accent on the Pergs

3.1 Getting Started

Having found a working PERQ and switched it on you should now wait a couple of minutes to let it
warm up. To boot the Accent Operating system you should press the boot button located on the back of the
keyboard. Accent will announce itself. The system initialisation program then starts creating various Accent
system processes and eventually the process manager is started. One Sapphire window will be created for
the process manager. Another window, called the Icon Window, will be created to hold Icons representing
the windows about which Sapphire knows. A final window will be created in which your initial shell
(command processor) will run.

The PERQ disc is divided up into five or six partitions all named as /sys/naie and to begin with you will
probably find yourself in partition /sys/spice. Alternatively, if your machine has a name, the partitions will
all be named as /your-machine-name/partition-name. Using cither of /sys/... or /machine-name/... will give
the same result. The spice partition is where you will find all the Accent OS code and is not where you
should create files as a user. The place for the latter is /sys/user. Before moving to this partition by typing
path /sys/user, you should add the directory /sys/spice/libpascal to your search list by typing setsearch
libpascal. Your search list will now contain /sys/spice & /sys/spice/libpascal and these should be sufficient
to give you access to Accent utilities.

21 Aug 84

Spice System Programmers Guide - 4

3.2 Writing Pascal Programs

If you are not wanting to use any Accent Operating System calls and just want to write an ordinary
Pascal program then this is the last section of this document which you should read. Having typed in and
edited your program using either the standard system editor or Hemlock, the Spice Lisp editor, you can
compile it by typing compile <name>. By default the compiler produces files containing symbol table
information. These are essential for debugging a program with Kraut. To get a RUN file you link the SEG
file with /ink. To run the executable code type its name. Debugging means starting up Kraut. The debugger
is implicitly invoked when an error occurs in your program. It can be invoked explicitly either by typing
debug <process number> to another shell where the process number is the identity of the process executing
your program or by following the name of the run file with a caret (eg. <name>t).

3.3 Imports/Exports

~

PERQ Pascal provides you with a very simple modularization facility. Program modules can be compiled
separately and brought together at link time. Onc module must be the Program module, all the rest are
subsidiary. In a Module you can export declarations and routine specifications. These should be placed in
the exports section, everything else in the module should be in the Private section. To import specifications
exported by another module, you should write at the beginning of your exports or private section
(whichever is appropriate) imports <module name> from <{file name). The typical convention is that <module
name> and <file name> are the same and that the compiler appends .pas to the file name and looks it up in
the current search list. The one exception to this convention are modules generated by Matchmaker where
the file is called <module name>USER (eg. TimeUser). For more details you should see the PERQ Pascal
manual and also the examples at the end of this document.

3.4 Importing Accent Modules

To start writing programs using features of the Accent Operating system, you must start importing
modules which provide declarations of types or constants used in Accent and specifications of functions
which are Accent system calls or calls to other server processes. The most important modules are those that
provide the interface to the kernel. These are AccentType which gives lots of definitions for system objects
(see later), AccCall which gives the fundamental kemnel calls and Acclnt from AccentUser which gives the
kernel calls to which there is a message passing interface. The module Pascallnit provides those global
variables which are acccssible to the user and are needed for communicating with server processes. You will
almost certainly need to import it. Also worth looking at is SaltError which provides translation of Accent
system error codes.

Library modules are available either as sfubs or as complete modules. A Stub contains only the part of

21 Aug 84

Spice System Programmers Guide - 5

the module which is exported by that module. Typically this means that the stub is a lot smaller that the
whole module thus saving quite a lot of disc space. Compilation should also be a bit quicker since the files
that are read in by the compiler are that much smaller. You can write your own modules in the stubs plus |
body style by having the body included into the private section of the modules with the appropriate
compiler directive ($include).

3.5 The Linker

The Accent Linker can be quite a powerful beast. This section is meant to give some guidance on how to
handle it. The normal case, which is just linking some scg files into a run file, was mentioned above. To
make loading of run files more efficient one can specify the switch include which means that the object code
from the files is actually included in the run file instead of there being pointers from the run file to the seg
files. Of course one has to pay the price of extremely big run files! Similarly the switch syminclude means
that the SYM and QMAP files produced by running the compiler with the scrounge switch are actually
copied into the run file. You do not need to use the syminclude switch as KRAUT, the debugger, does a
better job of locating SYM and QMAP files.

The most useful advanced feature of the linker is its ability to copy SEG files out of RUN files. This
enables you to rebuild a RUN file from an old RUN file and, for instance, just one new SEG file. All the
other SEG files necessary for building the new RUN file are obtained from the old RUN file. An example
will be the best explanation. I want to make changes to the startup program which is the first program, apart
from the boot core image, that is run by Accent on start up. I just want to make changes to the procman
module which is part of the startup program. Also the original startup.run was linked on someone else’s
PERQ and I want to link it with my libpascal files and not his. In this complicated case the linker command
should be: '

1ink -library=/sys/spice/libpascalinit -verbose -forceload -include
procman, /sys/spice/startup.run -main -include
~/sys/spice/startup.run

e The library=/sys/spice/libpascalinit means that libpascal SEG files will be taken from the local
libpascalinit.run.

o The verbose switch gives me more information about what is going on so that I can check that the
link is correct.

e forceload ensures that all files specified on the command line are actually loaded.
e include ensure that the body of procman.seg is copied into the output RUN file.

o /sys/spice/startup.run -main -include says that startup.run contains the main module and the
remaining SEG files all of which should be included in the resulting run file.

21 Aug 84

Spice System Programmers Guide - 6

o Lastly the twiddle ~ says that the output run file should be called /sys/spice/startup.run. As far as
I can tell it is safe to overwrite the old RUN file.

4 Message Handling

4.1 Accent Primitives

To send or receive Accent IPC messages just call the kernel routine send or receive and pass it a message
header (see below) as a var parameter. On calling send, the message which is associated with the header will
have all its data sent. On calling receive, the message received will be placed in the message associated with
the message header. Options and other parameters to send and receive are described in the Kernel Interface
Manual and to start with you should just use the obvious defaults. These are 0 for MaxWait (implying wait
for ever), WAIT for send and RECEIVEIT for receive. (The PortOpt parameter of receive is described
below.)

Before a message can be sent, you must construct a message in memory. The message can be
represented in a contiguous block of memory or by a block containing pointers to other blocks. Only one
level of indirection is allowed.

To receive a message, a block of memory must be allocated for the header and contiguous data part of
the incoming message. If the incoming message has pointers to other blocks, the kernel will find unused
portions of your address space and place these out of line blocks in such portions. There is no way to specify
where these message pieces go.

In general, the kernel does not change the message representation: if a message is sent with pointers, it
will not be reformatted to be contiguous at the receiver side. Furthermore, page alignments are normally
maintained except for the header and contiguous part of the message, whose location is specified in the
receive call.

4.2 Message Construction

The difficult and tedious part of message management is the constructing and filling in of all the fields
that a message must contain, There are two distinct parts to a message, the header and the data. As seen in
the diagram below the data consists of an alternating sequence of data item description and actual data.

21 Aug 84

Spice System Programmers Guide -7

Message

Header
3 e 3 2 aje oje e sk ol e ol ofe die ol e ok ok alk ok o ok R

Item 1 Description

- ————— - — - - - - . - - - - =

4.2.1 Message Header

In the module AccentTy;ve you wﬂ] find the predefined types Msg and ptrMsg. The latter is simply a
pointer to the former. They provide the structure for an Accent message header. The most important fields
in the header are LocalPort and RemotePort.

On sending a message the RemotePort must contain the port to which you wish to send this message.
(See later scctions for more discussion on Ports.) The LocalPort field contains a port which you wish the
recipient to use as a reply port (it may be set to NullPort, which is defined in AccentType to be 0). The
recipient can obtain this port from the RemotePort field after his call to receive returns successfully. What
happens is that the local port on the sender’s side gets mapped to the remote port on the receiver’s side and
vice versa. Thus the receiver will also be able to find out upon on which port the message was received.

On receive the LocalPort specifies on which of the ports, which your process owns, the process should
wait for a message. This behaviour only occurs if you set the third parameter (PortOpi) to LOCALPT. If
you sct PortOpt to be ALLPTS then the LocalPort field of the header can be left undefined and all ports to
which you have access will be examined for messages. The Localport field will then be set by the kernel to
* tell you which port the message came from.

Other relevant fields of the message header are:

o SimpleMsg See later

o MsgSize The size of your message.(in bytes)

o MsgType Whether this message is NORMALMSG or EMERGENCY
o ID For your convenience - use by convention

Note that the MsgSize field must be filled in on both send and receive. If you receive a message larger

21 Aug 34

Spice System Programmers Guide - 8

than MsgSize or larger than the amount of space that you have allocated to receive the message data, a
NotEnoughRoom error will occur. Similarly the MsgSize on send should accurately reflect the total size.
You should not leave any unused space after the last data item in the message. In both cases the
conventional technique is to declare a record representing your message and then use the Perq Pascal
intrinsic WordSize to fill in the MsgSize. Don’t forget to multiply by two because whereas wordsize returns
the number of 16-bit words, the header field requires you to provide the number of bytes.

4.2.2 Data

Almost any number of data items can be included in an Accent message (the limit is about 1K of inline
data). You will find it most convenient to construct a record type for yourself representing the message
format that you wish to use. (Sce the examples at the end of this scction and in Appendix B.) You can then
use the wordsize intrinsic of PERQ Pascal to fill in the message size field of the header as above.

The major distinction between different data items is whether they are inline or not. Inline data is
suitable for small amounts of data, the size of which you know in advance. Out-of-line data is good for large
amounts of variable sized data. Out-of-line data is referred to by a pointer contained as inline data within
the message. The Accent kernel ensures that all data pointed to is logically sent across to the other process.
If you use ports (more later) or pointers in the inline data then you must set the SimpleMsg field in the
header to be FALSE otherwise it should be set to TRUE.

For each data item you have to describe various characteristics. You can do this either within the
confines of one 32-bit word or by expanding the attributes in several words. In either case the first 32bit
word should be of type TypeType (yes - that really is its name). (See Appendix A for the PASCAL declaration
of typetype.) The boolean field LongForm of your typetype value says whether you are using the short form
or the long form. The long form means that you need to use two extra 16-bit words followed by one extra
32-bit word in your type declaration for message items.

In either case the most important field is the TypeName ficld. This provides a uniform coding for the
type of the data that you are passing. Thus the remote process will be able to check that it has received the
types of data it was expecting. Additionally the kernel will trap any data of a Port type (again see below for
more details) to convert references to ports from being local to this process to being local to the other
process. Note that for the long form the TypeName field is the first extra 16-bit word.

You are also responsible for filling in the size of each element (TypeSizelnBits) and the number of
elements you are passing (NumOQObjects) for each data item. Typically the latter figure will be one. However
if you are passing for instance a string then you have two options (taking the default string length of eighty
as example). You can either pass 82 elements of TypeChar each of length 8 or one element of TypeString
which is of length 652 (8*82). (A string of nominal length 80 takes up 82 bytes because there is one leading
byte giving the string’s actual length and one trailing pad byte to bring it upto a 16bit word boundary.) Note

21 Aug 84

Spice System Programmers Guide - 9

that for the long form the TypeSizelnBits ficld is the second extra 16-bit word and NumObjects (called
NumZltsin the Kernel Interface Manual) ficld is the extra 32-bit word.

The last attribute of a data item is Deallocate. This is only relevant to out-of-line data. If it is set, then
when the message has been successfully sent, the local copy of the data sent will be disposed. The other
field that has been implicit in all the above discussion is, of course, the boolean Inline whose use should by
now be obvious.

.4.3 An example

I assume that the modules AccentType and AccCall are imported. First [define the message format:

var mymsg : record

head - : Msg;

descriptorl : typetype; { Thisis ashort prm }
datal : integer;

descriptor2 : typetype; { Thisisalong orm }
typename2 : integer; { and theseare }
typesizeinbits2 : integer; { thethree }
numobjects2 : long; { extrafelds }
data2 : tarray [0..99] of integer

gnd;
Next fill in all the fields of the message:

with mymsg do

head.localport
head.remoteport :

begin

head.simplemsg = false; { because we have out ofline data }
head.msgsize = wordsize (mymsg) * 2;

head.msgtype = NORMALMSG;

head.ID = 42; ~{ my choice }

replyport; { A portfrthereply }
theport; { Theporttosendto }

descriptorl.deallocate = false;
descriptorl.longform = false;
descriptorl.inline = true;
descriptorl.typename = TYPEINT16;
descriptorli.typesizeinbits := 16;
descriptorl.numobjects := 1;

datal 1= 678;
descriptor2.deallocate = true;
descriptor2.longform = true;
descriptor2.inline = false;

21 Aug 84

Spice System Programmers Guide ~- 10

typename2 = TYPEINT16;
typesizeinbits2 := 16;
numobjects2 = 100;

new (data2)
end;

The message actually constructed looks something like:

SimpleMsg = true

Msgsize = 44

msgtype = NORMALMSG

ID = 42

localport = replyport

remoteport = theport

descriptorl

datal

descriptor2

typename 2

typesizeinbits2

numobjects2

data2 (pointer)

Finally we can actually send the message:
return_value := send (mymsg.head, 0, WAIT);
The receiving process can just do:

return_value := receive (amsg.head, 0, ALLPTS, RECEIVEIT);

21 Aug 84

Spice System Programmers Guide ~ 11

5 Matchmaker

5.1 Overview

By now you ought to have come to the conclusion that all the work required to create a suitable message
for sending is extremely tedious and prone to errors. You are of course quite correct. This is where
Matchmaker comes into the picture. Matchmaker will do most of the mechanical work for you and will
present a Procedure Call-like interface for cach type of message that you wish to send. Matchmaker can
generate PERQ Pascal, C and SPICE LISP interfaces.

Matchmaker generates code to provide Remote Procedure Calls. Remote Procedure Calls look like
ordinary procedure calls to the user but are implemented by the underlying message passing mechanism.
They are called Remote because the call is from one process to another, unlike normal procedure calls
which are local to one process.

From onec definition file, written in its own source language, Matchmaker will generate two interface
modules. One corresponds to the user or client side of the business and the other to the scrver side. Thus
the user will call a procedure in the user module which he hopes will do something useful for him. This
procedure constructs a message, fills it in appropriately and sends it off to the server. The server must
receive the message and then call the managing procedure in the server interface medule. This takes the
message received, dissects it and calls the appropriate procedure in the server. When the server has done the
work required of it, it returns to the server interface module which constructs a reply message. This message
is then sent back in turn to the user module which receives it, extracts the returned values and finally
returns to the user. Phew!

For further explanation see the Matchmaker manual. For a picture see the end of this section.

5.2 Definitions Files

The Matchmaker definitions files that you will need to write should be fairly simple. The first line of the
file should be the name and numerical identity of your subsystem. Thus:

Interface Example = 666

(There exist conventions for numbering subsystems but you only need worry about them if you are writing
a system server.) The next few lines should give stylised details of all the types that you intend to pass across
the interface. For more details sec the next section or the Matchmaker manual. After a few irrelevant fields
we come to the meat of the specification - the individual procedural interfaces. Typically you should specify

21 Aug 84

Spice System Programmers Guide - 12

them to be of type Remote_Procedure in order to generate functions which send request parameters to a
server and receive reply parameters. The declaration looks like:

Remote_Procedure CallName (ArgList) : ValueType;

The ValueType should probably be GR_Value which means that the function returns the Accent result type
GeneralReturn. For cach call one parameter should identify the port to which this message is to be sent.
This parameter is specified by the keywork RemotePort. Further parameters are values to be sent in the
message (the default), returned if out is specified or sent in both directions if inout is specified. For
example:

Remote_Procedure Foo
(RemotePort ServerPort : port;
Data : integer;
Out Result : long) : GR Value;

5.3 IPC Type Information

The main input to Matchmaker apart from the syntax of the remote procedure calls is the IPC typing
information for the values passed across in these calls. Matchmaker has predefined common types - for
instance a Short is converted to the IPC type TYPEINTI6 with a type size of 16 bits. For other more
esoteric types you should declare your own IPC type information. This can be done at the beginning of the
definitions’ file, for instance:

Type string = array [82] of (TypeChar, 8);

This means that wherever the type string occurs in a routine specification then Matchmaker will fill in the
IPC information such that the object has IPC type TYPECHAR, type size in bits of 8 and that there are 82
elements. (Note that a string of N characters takes up (N + 2) DIV 2] * 2 bytes - one extra byte for the
string’s size plus a possibly extra pad byte.)

5.4 The User Side

About all you need to do is to import the user module and then calf the functions of the server as if they
were local. But before you use the interface you must initialise it by calling the procedure /nit<name> with a
port as the parameter. This port will be used as the reply port for requests to the server implementing the
functions. Passing NULLPORT to the Init procedure means that a new port will be allocated within the
user module, For an example see the program in Appendix B.

21 Aug 84

Spice System Programmers Guide - 13

5.5 The Server Side

Writing the Server side of a Matchmaker interface is not quite as easy as using the User side. On the
Server side you have to do more of the work. Your main routine should first receive a message that you
want to be interpreted by the Matchmaker interface. Then it should call the function <systemserver
exported by the Matchmaker Server interface. This routine will parse the received message, check the types
of the arguments and then calls the routine, that you have provided, which will do the real work. It is
probably best if you put the real routines in a separate module which can then be imported by the Server
module. On returning from the real routine the Server routine will package up a reply message before
control is returned to the top level. The main routine should then send this reply message for which the
Matchmaker User side will be waiting. The Server function will return a boolean value which says whether
the received message was understood by the Scrver interface. -

The Server routine is called with two parameters, one being a pointer to the message just reccived and
the other a pointer to the reply message. Thus is is probably easicr to declare two variables for the respective
pointers. You must ensure that they point to data areas-which are large enough to receive the largest
expected message and to contain the biggest possible reply message respectively. In addition the data area
used for the incoming message should consist of an Accent Message header followed by the actual data area
and you should fill in the MsgSize field of the header to reflect the size of message you are willing to
receive. Similarly if you are likely to receive messages from more than one source then you can specify the
LocalPort field of the incoming message to be, say, your special server port.

Here is an cxample of what the main routine could look like:

Program example;

imports AccentType from AccentType;
imports AccCall from AccCall;
imports ExampleServer from ExampleServer; { exportsfunction ExampleServer }
imports Acclnt from AccentUser;
imports Pascallnit from Pascallnit; { For the Name Server Port }
imports Msgh from MsgNUser; { For Name Services }
Type
InMsgPtr = tInMessage;
InMessage = record

Head : Msg;
Data : array [100] of integer;

end;
RepMsgPtr = tRepMessage;
RepMessage = array [14] of integer;
Var
ServerPort : port;

RequestMessage : InMsgPtr;

21 Aug 84

Spice System Programmers Guide - 14

ReplyMessage : RepMsgPtr;

ok : boolean;

GR : GeneralReturn;
Begin

new (RequestMessage);
new (ReplyMessage);

{ Allocate the serverport and check it in. '}
GR := AllocatePort (KernelPort, ServerPort, DefaultBacklog);

InitMsgN (NullPort); { Initialises the Name Server Interface }

GR := CheckIn (NameServerPort, 'ServerName', NullPort, ServerPort);

while true

do begin '
RequestMessaget.Head.MsgSize := WordSize (InMessage) * 2;
RequestMessaget.Head.LocalPort := ServerPort;

GR := receive (RequestMessaget.Head, 0, LOCALPT, RECEIVEIT);
if GR = success

then begin { Process the Request. }
ok := ExampleServer (RequestMessage, ReplyMessage);
if ok { Request was correctly processed. }
then GR := send (ReplyMessaget.Head, 0, WAIT)
end
end

End.

5.6 What it all looks like

This picture shows the modules, processes, functions calls and messages involved in executing the
remote procedure called DoFoo. The Matchmaker generated modules are FooServer and Foo. The latter

module is contained in the file FooUser.

21 Aug 84

Spice System Programmers Guide - 15

User Process

Program User: Module Foo;
Imports Foo from FooUser: Exports
Function function DoFoo (....)
: GeneralReturn;
Calls ;
Pr1v§;e
retval := DoFoo (....); 7
gr := send (....): - - | -
gr := receive (....): é‘ - - - _']'—]
AY
{We get the results here} I |
|
T
These are | I
Accent IPC l
Messages | l
|
o
Server Process I
Program Server; I
Imports FooServer from FooServer; |
gr := receive (....): % - - —! |
FooServer (....):
/N
gr := send (....); - -] - - —I
Function
Calls
Module FooProcs; Module FooServer;
Exports Exports
function DoFoo (....) function FooServer {....)
: GeneralReturn; : boolean;
Private Function Private N
Calls retval := DoFoo {....):

function DoFoo; <
{The work is done here}

end;

N
7

Example of the mechapics of a Matchmaker iptecface

21 Aug 84

Spice System Programmers Guide - 16 |

6 Ports and the Message-Name Server

6.1 Ports

A port is a protected kernel object. All ports are local to a particular process and are mapped by the
kernel into processor-wide ports. The most important ports that you ought to know about are the
KernelPort and the DataPort. You obtain access to the definitions of these ports by importing the file
AccentType. The KernelPort represents your process’ right to make service requests of the kernel. The
DataPort is used by the kernel to send messages to you. As a user process you also have access to various
system ports, in particular the NameserverPort, the TimePort and the PM Port, the definitions of which are
to-be found in the module Pascallnit. Additionally you can access the ports SapphPort, TypeScriptPort,
UserWindow and UserTypeScript, which allow you to create or manipulate windows and typescripts.

To create a new port you should usc the call AllocatePort, the first parameter of which must be your
KernelPort. The second parameter is the name for the new port and the last parameter is the backlog, just
set this to zero which will give you the dcfault backlog.

As previously mentioned, ports are used for sending and receiving messages. Thus with each port the
kernel associates send and receive (and ownership) rights. At any one time only one process can have
receive (or ownership) rights but multiple processes can have send rights. When you create a port your
process will possess all three rights. The ownership right is normally coupled with the receive right.
However it’s purpose is to provide some amount of failure protection. If ownership and receive rights are
associated with two different processes, then one process will be informed by the kernel if the other one
dies. This information is in the form of a port death emergency message (see section 10 for more
information on emergency messages). The emergency message contains the right which was associated with
the freshly dead process.

There are two ways of letting other processes have access to your ports. These are discussed below.

6.2 Sending Ports in Messages

If you have a priori knowledge of a port belonging to another process (for example by importing some
system module), then you can send a message directly to this port (assuming you have send rights on it
which is normally the case). In this message you can include a port (see previous sections on message
handling and typing of message items). The default rights associated with a port sent in a message are send
rights. To send a port with receive or ownership rights you must specify the type of message item to be
TYPEPTRECEIVE or TYPEPTOWNERSHIP respectively.

21 Aug 84

Spice System Programmers Guide - 17

Once another process receives send rights on a port on which you have retained receive rights, it will be
able to send messages to you.

6.3 Message-Name Server, the Name half

A more common case in the SPICE client-server environment is that you don’t know anything about
another process with which you wish to communicate other than some textname identifying it. This is
where the Name half of the Message-Name Server (hereafter the Name Server) comes into the picture. To
find a port on which you can communicate with another process you must call the function LookUp.

All Name Server routines can be obtained by importing MsgN from MsgNUser. To communicate with
the Name Server you must have access to the NameServer public port which is obtained by importing the
file Pascallnit. The value of the Portsld parameter returned will be the identity of the port upon which the
other process is willing to receive messages. You can then initiate two-way conversation as described above.

You will be (or should be) wondering by now just how this port that you have just obtained was
registered with the Name Server in the first place. The registration is done by a Checkln call. Checkin
ailows you to associate a string name with a port for which you want to give other processes receive rights.

Pt

Name Server CheckIn and CheckQOut routines require an extra port paramecter which is meant to
provide security. On Checkln you quote this extra port as authorizing operations on the string name and
port you are checking in. This port can only be deleted from (or changed in) the Name Server’s tables if the
CheckOut (or new Checkln) call also contains the authorization port. Typically, at present, since we aren’t
(though perhaps we ought to be) worrying about security, you should just set this authorization port to
NULLPORT.

6.4 Message-Name Server, the Message half

One excellent feature of Accent is that remote communication over the network connected to your
PERQ is virtually transparent. Obviously there are quantitative differences (eg. longer delays), and there is a
completely different failure model, but I shall not worry about these details here. The main duty of the
Message half of the Message-Name server (hereafter the Message Server), apart from sending and receiving
messages on the Ethernet, is to map ports local to the processor to ports which have a unique identity over

“the network. Thus when you communicate with a remote process you will be going via both your Message
server and the other processor’s Message server.

In practice, you should not worry about the presence of the Message server and should continue to use
the message passing and port management features of Accent as though all processes were local. The
current Name Server which, as you have seen, is incorporated into the Message-Name server functions as a

21 Aug 84

Spice System Programmers Guide ~ 18

primitive network Name Server, thus you don’t even have to worry whether the string names you look up
map into local or remote ports.

6.5 Accent style IPC under UNIX

If you want to have UNIX processes communicating with Accent processes then you should know that
there is a UNIX subroutine library which will allow you to use Accent style IPC under UNIX. The
subroutines map Accent mcssages onto the corresponding CMU UNIX IPC messages. The CMU UNix [PC
is the precursor of Accent IPC and thus the two are quite similar in many respects. However it is easier if
you use the subroutines which hide the differences. More documentation is available as AccUnix - Accent
style IPC under UNIX by yours truly (SPICE document S160).

Futhermore there is an Accent style Message-Name server available under UNIX. This means that you
can just as easily do remote IPC between an UNIX process and an Accent process as between two Accent
processes. Most of the Computer Science Department Vaxes have one of these Accent style Message-Name
servers running on them.

7 Memory Management

Unless the kernel is told otherwise, an arbitrary virtual memory location is considered invalid and may
not be referenced. A normal user process has access to three primitives for rectifying this situation.
ValidateM emory marks a given or a new part of a process’ address space as valid. Referencces to data in the
newly validated memory will succeed and rcturn zeroes. The parameter CreateMask specifies the address
alignment of new memory; a vaiue of -1 implies no particular alignment. /nvalidateMemory performs the
inverse of ValidateMemory. MoveWords moves data from one place in a process’ address space to another.
For more details on the above three functions see the Kernel Interface Manual.

The most important memory management objects are segments, which can be created, read, written or
destroyed. There are four types of segments. A permanent segment is allocated on disc and survives machine
crashes. Thus if you want to store data, but don’t want to use the full Scsame file system, then you can
manipulate permanent segments to achieve your own ends. SegPhysical scgments are contiguous regions of
real memory and are used to handle devices. Temporary segments are similar to permanent segments except
that they disappear when all the processes having access to them die. Irmaginary segments are scgments ids
without storage. References to data within them are forwarded to an I/magSegPort which has previously
been associated with the segment id. As you have no doubt guessed by now, use of imaginary segments is
fairly esoteric!

To access permanent segments, you need to have access to the ports associated with the disc partitions.

21 Aug 84

Spice System Programmers Guide - 19

For segphysical segments, you nced to have access to a specially protected port. These ports are not
available to normal user processes. For the other types of segments your kernel port suffices to give access.

All the calls to manipulate segments do so in terms of whole pages. Thus even if you only want to write '
two bytes to a segment you will end up cffectively writing the whole page of the segment. Of course you
won’t write the rest of the page with new data. When you create segments you have to specify the initial and
maximum size of the segment in terms of pages. Note that these sizes are ignored for permanent segments
since the kernel manages the disc space with a modicum of intelligence. For instance one can create a
segment on disc and then write one byte to page 835. The segment will only take up two pages on disc, one
for the header and one for page 835.

8 Sesame

8.1 Introduction

The Sesame system will eventually encompass not only a file service but also name, authorisation and
archival services. You can find full details of the procedural interface to Sesame in the Sesame: The Spice
File System chapter of the SPICE Manual. Currently in operation is a preliminary version (Sesamoid) of the
file server. From now on when I write Sesame I probably should write Sesamoid.

In this section of the Programmers’ Guide 1 briefly describe how to do simple management of files. The
routines which I actually describe are from the module PathName which provides a non-primitive interface
to the Sesame File Server. The first thing that you ought to know is that Sesame manipulates two types of
names. Absolute Path Names always begin with a forward slash (/) and unambiguously name a file
(assuming that the file exists). Relative Path Names are interpreted by Sesame relative to your current file
system defaults. These defaults are stored by the environment manager but that need not worry you.
Defaults include search lists and logical names - the use of which you should be familiar with as a SPICE
user. Anyhow, given a relative path name in the appropriate context, Sesame will convert it to the
corresponding absolute name.

8.2 PathName

From PathName the two important routines are ReadFile and WriteFile. ReadFile given a relative path
name will read a file. The file data is read into memory. A pointer to the data and the number of bytes read
are returned. In addition the path name you gave to readfile will be filled in with the absolute name of the
actual file read. Thus this first parameter must be a variable. Don’t forget that the ByteCount actual
parameter must be a long variable.

21 Aug 84

Spice System Programmers Guide - 20

WriteFile will both create a new file and overwrite a current file. The data that you wish to write to the
file should be pointed to by the FileData parameter and the number of bytes to be written should be
specified by the ByteCount parameter. Like readfile, writefile will overwrite the name passed in with the
absolute name of the file actually written. In the long term Sesame will provide version numbers for all files.
A write will always create a new version of the file leaving older versions untouched. Currently all files are
of version 1; thus the name returned is something like /..../..#1. You must not try and specify the version
number to wrilefile since you cannot write to a particular version, only to a new file. However for readfile the
absolute name should include the version (ie. the #1). More details about these routines can be found in
the PathName scction of the Pascal Library of the SPICE Manual.

9 Process Management

9.1 Accent Primitives

If you are a glutton for punishment then you nced only use the primitive functions provided by Accent
and described in the Kernel Interface Manual. Using the fork primitive to create a new process means that
you have to do all the hard work of initializing the new process’ environment, especially the interface to
Sapphire (the Accent display management facilities).

The other primitive functions besides fork are easier to use as they allow manipulation of processes
already created. Most important is the function terminate which allows you to perform infanticide. You can
also manipulate child process’ priority, computation time limits and state (running or suspended). The
debugger uses these facilities to manipulate processes being debugged.

As mentioned in the previous section there are two special ports owned by every process, the Kernelport
and the DataPort. A process has send rights on its KernelPort and receive rights on its DataPort. The kernel
has the corresponding receive and send rights respectively. When you fork a child it will be created with its
own KernelPort and DataPort. The difference is that the parent process also has rights on these two child
ports. Thus the parameters for fork must include two port variables. The kernel will create the ports and
initialize these two variables. As a parent process you have send rights on both the child’s KernelPort and its
DataPort. To manipulate a process you must always quote its KernelPort - this represents your right to
manipulate it. Thus since you know your own KernelPort as well as your children’s you can manipulate
yourself as well as them. In particular to fork a process the first parameter to fork must be your own
KernelPort. Tt is possible to communicate to the child using its DataPort but this is not recommended.
Instead, if you wish to send message to the child, the first thing you should have it do is to send you a
message containing a port which it has allocated and on which it will receive messages from you.

When you fork a process you can pass it ports to which you have access to or which you have created in

21 Aug 84

Spice System Programmers Guide - 21

an array of ports. Use the type ptrPort Array to simulate a dynamic array of ports. The PortsCount parameter
of fork should be set to the number of ports you have put in the array. Ports should be put in the array
sequentially starting from zero. You may have wondered how your process initially gets ports to the
nameserver, fileserver, etc. The ports are passed from parent to child when the child is forked. By
convention, some of the ports are copicd from the port array provided by fork into a set of port variables
exported by Pascallnit.

After a call to fork you can find out whether you are the parent or the child. The return value from the
call will be IsParent or IsChild accordingly.

9.2 Process Manager

Higher level routines for process management are provided by the process manager (or ProcMan). This
has a Matchmaker gencrated user interface hence you should import PM from PMUser to use it. Some
Procman routines map almost directly onto Accent process manipulation primitives. Others do a lot more
for you.

More details about the Process Manager can be found in the SPICE Server manual.

9.3 Spawn

The most useful Accent utility for process management is Spawn. Spawn exports three routines which
enable you to do most of the process creation that you will ever need and in addition initialise the new
process’ environment for you. All three functions take, as their first two parameters, variables which will be
the parent’s access to the child’s kernel and data port as described above.

The function Exec is the simplest way to run a program. The new process will execute the run file
passed as the ProcessName parameter. The new process will inherit the caller’s window and typescript and a
copy ofits file system connections.

The function Split effectively does a fork with the child sharing the caller’s window and typescript and
getting a copy of the caller’s file system connections.

The function Spawn provides the full generality of process creation. I find it most useful, even though it
is not well documented. In fact the shell itself uses Spawn to create a new copy of itself when you type shell
to obtain a new shell. The new shell inherits the environment of the shell from which it was forked and it is
spawn that manages this inheritance.

Now follows a description of the major parameters to Spawn. The ProgName parameter gives the name

21 Aug 84

Spice System Programmers Guide - 22

of the run file to be executed. The ProcName (don’t get confused with ProGname - it’s like the difference
between stalaCtites and stalaGmites) gives the name that you wish to be associated with the new process.
This name will appear in the process manager window. HisComimand allows you to pass over a command
block to your child. The child will access this command block through the global variable UserCommand
which is declared in Pascallnit. The SapphConn parameter says whether you want the child to inherit the
parent’s window or not. There are in fact three options available for the ConnectionInheritance. If it is Given
the new sapphire window and typescript will be taken from the following two parameters to Spawn,
pWindow and pTypeScript respectively. If it is NewOne the the process manager will be asked to allocate a
new window. The third option is GivenReg which is to our intents the same as Given. Similar options apply
to the parameter EMConn, but you may as well ask for NewOne for all I know. The penultimate pair of
parameters allow the parent to give to its child process send rights on ports. The ports being passed across
should be placed in the array pointed to by PassedPorts, indexed from zero, and the number of ports should
be stated in NPorts. The child gets access to these ports from the pirportarray InPorts, the definition of
which is contained in Pascallnit. The indices of the ports in this array are the same as the indices that the
parent provided in PassedPorts. The final parameter LoaderDebug turns on debugging of spawn itself and
either the pascal or C loader. '

One word of warning. It is probably better for the parent not to use the child’s DATAPORT for sending
messages to the child even though the parent has send rights on this port. If you try and send a message to
the child’s DATAPORT before the child had been completely initialised, then things are quite likely to go
wrong and result in a fuzzy exception. You should either wait until the child sends the parent a message
saying that it is running or just wait for some amount of time (I can’t say how long). The optimal solution is
to have the child send to the parent a message which includes a port allocated by the child. The parent can
then use this port to send messages to the child and the child will know that the messages are coming from
the parent.

10 Emergency Messages

10.1 Occuirence

Emergency:Messages are high priority messages. Anyone can send them but my purpose here is to make
you aware that you will quite likely receive them from the Accent kernel. The most important Kernel
Emergency message is one notifying you of the deletion of a port upon which you had send rights (or one
and only one of receive or ownership rights). This message will be sent when the process owning receive or
ownership rights (or both) on that port dies. This will often occur when one of your child processes dies. Its
death will cause the deletion of its DATAPORT and sincc you were given send rights on this port when you
forked the child, you will be notified of this deletion. In fact this is the Kernel's only method of informing

21 Aug 84

Spice Systcm Programmers Guide - 23

you that a process which you forked has died. There is no other mechanism and it is only the child’s
DATAPORT and KERNELPORT which name that child process.

10.2 Format

A Kernel Emergency message contains in its /D field a code representing of what you are being notified.
The values of these codes arc defined in the AccentType module. In addition the message data consists of a
single port field (plus the associated #ypetype information) which will contain the port to which the message
refers. The PASCAL declaration of an emergency message is something like:

type EmergencyMsg = record
head : Msg;
porttype : typetype;
deadport : port
end;

11 The End of the Beginning

Well, it’s your turn now. I suggest that you try writing some simple programs which use features of the
Accent Operating System which interest you. If you run any difficulties please don’t hesitate to ask a
member of the SPICE group for help. Also you ought to have access to copies of both the Users’ Manual and
the Programmers’ Manual. These overweight documents should answer a lot of the questions you have -
even though it may take a bit of effort to find the solutions.

Good luck. May all who sail in her have a safe passage.

21 Aug 84

Appendix A. Type and Routine Specifications

A.1 From AccentType

type
TypeType

Port

ptrMsg
Msg

ptrPortArray
PortArray

GeneralReturn

const
NULLPORT
KERNELPORT
DATAPORT

const
WAIT
DONTWAIT
REPLY

type
SendOption

const

Spice System Programmers Guide - 24

= packed record
case integer of

1:(TypeName
TypeSizelnBits
NumObjects
InLine
LongForm
Deallocate

2: (LongInteger

end; :
= long;

= tMsg;

= record
SimpleMsg
MsgSize
MsgType
LocaiPort
RemotePort
ID

end;

= tPortArray;

= array [0..MAXPORTS-1] of Port;

= integer;

=0

= 1;

=2

=0

= 1;

=2

= WAIT.REPLY;

21 Aug 84

: Bit8;

: Bit8;

: Bitl2;

: boolean;

: boolean;

: boolcan);
:long)

: boolean;
: long;

: long;

: Port;

: Port;

: long

type

const

type

PREVIEW
RECEIVEIT
RECEIVEWAIT

RcceiveOption
DEFAULTPTS
ALLPTS
LOCALPT
PortOption
SegID

SpiceSegKing
VirtualAddress

A.2 From AccCall

Function Send

Function Receive

Function MoveWords

Spice System Programmers Guide - 25

0;
1
2

= PREVIEW.RECEIVEWAIT;

’

NS

DEFAULTPTS..LOCALPT;

long;

(temporary, permanent, bad, segphysical, imaginary)

long;

(var xxmsg
MaxWait
Option

) : GeneralReturn;

(var
MaxWait
PortOpt
Option

) : GeneralReturn;

(SrcAddr

var DstAddr
NumWords
Delete, Create
Mask
DontShare

) : GeneralReturn

A.3 From Acclnt from AccentUser

Function AllocatePort

(ServPort
var LocalPort
BackLog

21 Aug 84

: Msg;
: long;
: SendOption

XXmsg
: long;
: PortOPtion;
: ReceiveOption

: VirtualAddress;
: VirtualAddress;
: long;

: boolean;

: long;

: boolean

: Port
: Port;
: Integer

: Msg;

{ Your KernelPort }
{ The port to be created }

Function Fork

Function Terminate

Function ValidateMemory

Function InValidateMemory

A.4 From SaltError

Function GRErrorMsg

A.5 From Pascallnit

var
InPorts

TimePort
SesPort
EMPort

PMPort
NameServerPort

Spice System Programmers Guide - 26

) : GeneralReturn;

(ServPort

var HisKcrnelPort
var HisDataPort
var Ports

var Ports Cnt

) : GeneralReturn;

(ServPort
Reason
) : GeneralReturn;

(ServPort
var Address
NumBytes
CreatcMask
) : GeneralReturn;
(ServPort
Address
NumBytes

) : GeneralReturn;

(GR

var Msg
) : boolean

: ptrPortArray;

: port;
: port;
: port;

: port;
: port;

21 Aug 84

: Port; { Your KernelPort }

: Port; { Child’s KernelPort }
: Port; { Child’s DataPort }

: ptrPortArray;

: long

: Port;

: long

: Port;

: VirtualAddress;

: long;

: long

: Port;

: VirtualAddress;

: long

: GeneralReturn

{ The return code to be translated }
: String {The translated error message}

{True if translation was successful}

{ Ports inherited from parent }

{ Time service }
{ Sesame Server }
{ Environment manager }

{ Process Manager }
{ Messgae-Name server }

- UserTypescript
UserWindow

Spice System Programmers Guide - 27

: Port;
: Port;

A.6 From MsgN from MsgnUser

Function CheckIn

Function CheckOut

Function LookUp

A.7 From SesameDefs

type
File_Data
const

Path_Name_Size

A.8 From PathName

type
Path_Name

Function WriteFile

Function ReadFile

(ServPort
Portsname
Signature
PortsId

)} : GeneralReturn;

(ServPort
PortsName
Signature

) : GeneralReturn;

(ServPort
Portsname

var portsld

) : GeneralReturn;

= pointer;

= 255;

= string [Path_Name_Size];

(var PathName
Data
ByteCount

) : GeneralReturn;

(var PathName
var Data

var ByteCount
) : GeneralReturn;

21 Aug 84

{ This
{ This

: Port;
: String;
: Port;
: Port;

: Port;
: String;
: Port

: Port;
: String;
: Port

: Path_Name
: File_Data;
: long

: Path_Name
: File_Data;
: long

process’ typescript }
process’ window }

{ The NameServer Port }

{ Authorization Port }
{ Port being checked in }

{ The port being looked up }

.
b

A.9 From Spawn

Function Exec

Function Split

Function Spawn

Spice System Programmers Guide - 28

(var ChildKPort

var ChildDPort
ProcessName
HisCmdLine

) : GeneralReturn;

(var ChildKPort
var ChildDPort
) : GeneralReturn;

(var ChildKPort

var ChildDPort
ProgName
ProcName
HisCmdLine
Debuglt
ProtectChild
SapphConn
pWindow
pTypeScript
EMConn
pEMPort
PassedPorts
NPorts
LoaderDebug

) : GeneralReturn;

21 Aug 84

: Port

: Port;

: string;

: CommandBlock

: Port;
: Port

: Port;

: Port;

: APath_Name;

: string;

: CommandBlock;

: boolean;

: boolean;

: ConnectionInheritance;
: Port;

: Port;

: ConnectionInheritance;
: Port;

: ptrPortArray;

: long;

: boolean

Spice System Programmers Guide - 29

Appendix B. A Simple Example

Program example;

__ }
{ Abstract:
{ Forks a child using spawn.
{ The parent passes a port o the child to which the child has send rights.
{ The child registers a second port with the NameServer.
{ The parent looks up this port upon which it has send rights.
{ The Parent and child send each other messages using these two ports.
{
el }

imports AccentType from AccentType
imports AccCall from AccCall;
imports AccInt from AccentUser; Uses AllocatePort. }
imports MsgN from MsghNUser; Uses Checkin and LookUp. }

{ Accent type defnitions. }
{
%
imports Spawn from Spawn; { Uses Spawn. }
{
{
{

Uses Send and Receive. }

impofts Pascalinit from pascalinit; To obtain system ports. }
imports nameerrors from nameerrors; Name Server Error Codes.}
imports commanddefs from commanddefs; NullCommandBlock. }

type myMsgType = record
Head : Msg;
DataDesc : TypeType;
Data : integer

end;
var ChildKPort, ChildDPort : port; { Ports representing the Child. }
ChildtoParPort : port; { Ports por communicating }
PartoChildPort : port; { between child and parent. }
retval : GeneralReturn;
i : integer;
ports : ptrPortArray; { Used to pass ports to the child. }
ports_Count : long;
MyMsg : myMsgType; { The actual message. }

begin :
retval := AllocatePort (KernelPort, ChildtoParPort, 0);
' { Child will be given send rights on this port. }

new (ports);

portst[0] := ChildtoParPort; { The port upon which the child will have
send rights and the parent receive rights. }

ports_count := 1;

21 Aug 84

Spice System Programmers Guide - 30

{ Initialise fields in MyMsg. '}
with MyMsg.Head

do begin
simpleMsg := true;
MsgSize := 2 * Wordsize (myMsgType);:
MsgType := NORMALMSG;
ID := 42
end;
with MyMsg.DataDesc
do begin

Deallocate := false;
LongForm “:= false;
InLine := true;
TypeName := TYPEINT16;
TypeSizeInBits := 16;
NumObjects := 1

end;

{ -Now Spawn the Child process. } ‘
retval := Spawn (ChildKPort,

ChildDPort,
{ProgName} ", { Don’t executea.RUN fle.}
{ProcName} 'MyChild', { Name ofchild process. }
{HisCmdlLine} Nul1l_CommandBlock,
{DebugIt} false, { Don’tdebugit }
{ProtectChild} false,
{SapphConn} Given, { Use given window. }
{pWindow} UserWindow,
{pTypeScript} UserTypeScript,
{EMConn} Newone,
{pEMPort} NULLPORT,
{PassedPorts} ports, { Thearray ofports. }
{NPorts} Ports_count,

{LoaderDebug} False);

if retval = IsParent
then
begin
{ [Initialise the nameServer user end. }
initmsgn (nulliport);
{ Wait for message from Child. }
writeln ('Parent: Waiting for message from child.');
MyMsg.Head.LocalPort := ChildtoParPort;
retval := Receive (MyMsg.Head, 0, LOCALPT, RECEIVEIT);
if retval = success
then writein ('Parent: Received from Child ', MyMsg.Data);

{ Now look up the port that the child has registered with the NameServer. }
retval := NameNotCheckedIn;
while retval = NameNotCheckedIn
do retval := LookUp (NameServerPort,
"CHILDPORT', PartoChildPort);

21 Aug 84

Spice System Programmers Guide - 31

{ Now send data back to the child. }
MyMsg.data := MyMsg.data + 1;
writeln ('Parent: Sending to child ', mymsg.data);
MyMsg.Head.RemotePort := PartoChildPort;
retval := Send (MyMsg.Head, 0, WAIT)
end
else
begin { Child }
{ [Initialise the nameServer user end. }
initmsgn (nquort)
writeln ('Child: started.');

retval := AllocatePort (KernelPort, PartoChﬂdPort 0);
writeln ('Child: Allocated a port 0K.'); .
retval := CheckIn (NameServerPort, 'CHILDPORT’,

nulliport, PartoChildPort);

write ('What is the input data: ');

readln (i);

{ Send the data to the Parent. }

MyMsg.data := 1i;

writeln ('Child: Sending to Parent ', MyMsg.data);
MyMsg.Head.RemotePort := InPortst[0]; { The ChildtoParPort }
retval := send (MyMsg.Head, 0, WAIT);

{ Now wait to receive response from parent. }
MyMsg.Head.LocalPort := PartoChildPort;
retval := Receive (MyMsg.head, 0, LOCALPT, RECEIVEIT);
if retval = success

then writeln ('Child: Received from Parent ', MyMsg.data)
end :

{ P.S. This program actually works.
It is available on the SPICE VAX in /ust/rds/src/example.pas. }
end. { Example }

rI
=
o>
[
[+
co
I~

Spice System Programmers Guide - 32

Appendix C. Building a System

This appendix describes how to build a new Accent system. It probably should not be in this part of the
manual, but I thought that it was better to write it down somewhere rather than nowhcre. (Thanks to Jeff
Eppinger for an updated version of this appendix.) It is only relevant to you if you arc making changes to
the Accent Kernel. Changes to processes such as the process manager or shell can be made independently
of the kernel.

To begin, obtain all the necessary SEG files from the SPICE VAX. Update from the following logical
names with the switch -fest. You will need:

e accentseg_a in a directory such as /sys/user/new/accent.

bootupseg_a in a directory such as /sys/user/new/bootup.

devicesseg_a in a directory such as /sys/user/new/devices.

libpascalseg a in a directory such as /sys/user/new/libpascal.

micro<size>seg_a in a directory such as /sys/user/new/micro.
Substitute 4k, 16k, or perg2 for <size).

Also get the file [cfs}/usr/spice/dev/accent/src/ # /accent.config (where # is the highest numbered
directory) and store it on your Perq as /sys/user/new/accent/new.confg.

1. Empty your search path except for <boot).

2. Create the operating system run file, call it new.run:
path /sys’user/new/accent/
link -nodef - noinit accent ~new

3. Create the system initialization file, system.run:
path /sys/user/new/bootup/
setsearch ../libpascal, ../devices
link - nodef -noinit system

4. Make the boot files, call them new.*:
setsearch -pop=2, current:, ../accent, ../micro
path /sys/spice/
makevmboot new x system -{perqtype>
where <perqtype> is one of oldperql, oldperqla or perq?2.

5. Finally install your new accent system:
bindboot -system = new.boot -interpreter= new.<size>.mboot -bootcharacter=x
where <size) is 4k, 16k or perg2 depending on your machine.

If you wish to modify the accent kernel or system initialization process, get the sources corresponding to the
logical names listed above.

21 Aug 84

	0001
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

