ERSITY

CARNEGIE-MELLON UNIV

F COMPUTER SCIENCE

DEPARTMENT O

SPICE PROJECT

AccUnix - Accent style IPC under UNIX

Robert Sansom

21 August 1984
Spice Document S160
Keywords and index categories: Accent, IPC, Unix
Location of machine-readable file: [x]/usr/spicedoc/manual/spiceprogram/sysprog
Abstract

An explanation of how to use the facilities available under UNIX for doing Accent style IPC. In
addition, a descripton of how to use the UNIX network server for communicatin with other machines.

Copyright © 1984 Robert Sansom

This is an internal working document of the Computer Science Department, Carnegie-Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate-working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F3361 5-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government.

1 Introduction

2 Perq Pascal
2.1 Using the Interface
2.2 UNIX and PERQs

3C
3.1 The Interface
3.2 Strings

4 Network Server
4.1 Introduction
4.2 Using the NetServer

5 Infelicities
5.1 IPC types
5.2 MsgSize
5.3 Floating Point numbers
5.4 Size Limits

6 Location of Code

A PP Example

B C Example

C Makefile Example

Table of Contents

()

o

S~

N ONON W

1 Introduction

This document explains how to use the Accent style Inter-Process Communication (IPC) facilities
available under UNIX. ! There are really three intertwined parts to these facilities: The first is only relevant
if you arc writing programs in UNIX PERQ Pascal (PP) and consists of an interface between PP and C. The
second part is a mapping between Accent style IPC and UNix IPC. The two IPC facilities are broadly
similar since the Accent IPC was evolved from the UNix IPC but there are many details which are not
equivalent. The final part is an Accent style ‘network server running under UNIX. This server is called the
MsgServer under SPICE on the PERQs and is responsible for extending IPC over the network. The net result
of these three parts is that you can write a program which uses Accent style IPC and will run on either a
PERQ or a VAX with only minor changes. Furthermore it is simple to commiunicate between processes on
any combination of the two machines.

The arrangement of this document does not quite follow the above threefold structure. Instead I devote
one section to discussing how to use the IPC facilities from PP, another section to how to use the facilities
from C and a third section to an explanation of the network services. A final section gives the current
location of the relevant include, object and run files but these locations are liable to change and should be
verified. Two appendices give examples of using the facilities from PP and C respectively.

I assume that you understand and are familiar with Accent IPC and, for instance, have programmed a
PERQ to do inter-process communication. You should refer to the Accent Kernel Interface Manual for
details of Accent IPC and to ipc(2) in the UNIX manual for details of UNIX IPC. Another usefil document is
my SPICE System Programmers Guide, available as /usr/rds/press/spicespg.press o the SPICE VAX.

2 Perq Pascal

As mentioned in the introduction the interface from PP to the Unix IPC facilities consists of an
interface between PP and C and an interface between Accent and UNIX style IPC. The latter interface as
well as the standard interface to UNix IPC is written in C hence making the former interface necessary.

1 Unix is a Trademark of Bell Laboratories

21 Aug 84

AccUnix: Accent style IPC under Unix -2

2.1 Using the Interface

The functions that you can call from your PP program are specified in the module accunix.p. You
should import this module into your program and it provides the bare necessities for Accent style [PC - if
you need more then fecl free to ask me. It is only a dummy module as the actual routines are written in C,
The object code corresponding to these routines is in accunix.o and caccunix.o. You need both these object
files - accunix.o does the parameter hacking from PP to C whilst caccunix.o is code that is common to both
PP and C users. You will probably notice that the module accunix.p imports and exports the module
myacctype.p. All that this latter module does is to definz a generic pointer type before importing and
exporting the most recent version of AccentType.pas, which should correspond with what you have on your
PERQ. (The source of this module is /usr/accent/libpascal/src/ # /accenttype.pas on the SPICE VAX.)

Your compilation and link commands should look something like:

pp -c myprogram.p
pp myprogram.o accunix.o caccunix.o -lipc -o myoutput

The library ipc contains the actual C routines for doing UNIX IPC. It is important that -/ipc occurs after the
other object modules on the command line so that the loader looks for undefined routines in the ipc library
after discovering them in the other object modules.p

2.2 UNIX and PERQs

Here are some of the differences that I have found between UNIX PP and the PP on the PERGs.

o If a routine is exported from a module then you should only declare it fully once in the exports
section. In the private section of the module just put the name of the routine before you begin its
body and leave out the parameter information.

o As far as I can tell the compiler invariably complains about repeated specifications if you import
the same module more than once.

o As I mentioned above it is necessary to declare a generic pointer type as the UNIX PP compiler
does not have it built in,

o The names of intrinsics vary wildly. Instead of shrink on the PERQ we have narrow on the VAX.
Instead of WordSize we have SizeOf. SizeOf is much more restrictive, demanding as its
parameter the actual variable for which you want the size. In addition it returns the number of
bytes instead of the number of 16bit words - so beware.

¢ Long Octal constants are prefixed by # # and not just one #.

AccUnix: Accent style IPC under Unix - 3

3C

3.1 The Interface

The only routines that I provide are ¢_send and c_receive. These provide the IPC translations as
mentioned above. For all other IPC calls you should directly use the standard UNIX IPC calls, documented
in ipc(2). These two routines are in the object file caccunix.c. Thus your compile and link commands should
look something like:

cC -C myprogram.c
cc myprogram.o caccunix.o -lipc -o myoutput

The specifications of the two routines are as follows:

c_send (msghdr, maxwait, option)
caddr_t msghdr;
int maxwait, option;

c_receive (msghdr, maxwait, portopt, option)
caddr_t msghdr;
int maxwait, portopt, option;

The parameters are the same as for the Accent IPC routines Send and Receive. The first parameter should
be a pointer to the message to be sent or available for containing a received message.

The include file acctype.h contains suitable definitions of Accent types and constants for you to
construct your messages. If you find anything missing please feel free to ask me to add it.

3.2 Strings

If you are communicating with a PP program and you are passing strings between the two programs
then you should be aware of the need to convert from C strings to PP strings. This should be done by the C
program before sending the string. Macros for doing the conversion are available in the public include file
perg.h. If you have a C string of 80 characters then the corresponding predefined PP string is PergString.
The conversion from C to PP should look like:

PerqString myppstring;
char * mycstring;
strcpy (myppsting.Chars, mycstring); { Copies the characters upto a null. '}

MakeCcunt (myppstring); { Inserts the length as the first byte. '}

21 Aug 84

AccUnix: Accent style IPC under Unix - 4

4 Network Server

4.1 Introduction

The network server allows you to send IPC messages from machine to machine in a transparcnt manner. .
It provides a mapping between ports local to a machine and network ports. Thus if you have access to a port
on another machine (cither a VAX or a PERQ), you can send messages to that bort provided you have a
network server running on the machine. For historic reasons the nctwork server on the PERQs is called the
MsgSenier whereas that on a VAX is still called the NetServer. The NetServer on a PErQ is the process that
deals directly with the Ethernet on a packet level and should be called the EtherServer.

On most Vaxes in the Computer Science department there should be a network server running. You can
check this by looking at the processes associated with user name pupd. There should be a process called
netserver.

42 Using the NetServer

If you want to do remote IPC from a process under UNIX there are probably three phases.

1. Use the UNix IPC name service local to your machine to locate the Accent style netserver. The
name asserted by the netserver is NAMESERVER. This is a distinct difference from using the
network server under Accent where, as part of your process’ environment, you have access to the
nameserverport,

From PP you can use the routine in accunix.p called Jocate. Thus the call should look like:
retval := locate ('NAMESERVER', nameserverport);

where nameserverport is a var parameter.

From C you should just use the ipclocate call of UNIX IPC:
nameserverport = ipclocate ("NAMESERVER");

If the call returns successfully then nameserverport will contain the local port giving you access to
the name service facilitics of the network server.

2. Use the name service facilities of the UNIX network server to look up the remote port with which
you wish to communicate.

From PP you can make a call to the function lookup provided in the module MsgN. This module
is generated by Matchmaker and provides a procedural interface to the name services by a
synchronous sending and receiving of appropriately constructed messages. Your program should
look something like:

imports MsgN from MsgNUser;

21 Aug 84

AccUnix: Accent style IPC under Unix - §

retval := LcokUp (nameserverport, 'REMOTENAME', remoteport);

You should not import accunix since ﬁzsgn already imports and exports it. To gain access to these
routines at link time you should, in addition to the object modules mentioned in the previous
section, link with msgnuser.o.

From C there is a hand written equivalent of the Matchmaker generated PP interface. (Thanks go
to Richard Goldschmidt for this.) The object code for this is contained in cmsgnuser.o and you
should link your object code with this along with caccunix.o etc.. The call to lookup is all but
identical to the PP call:

retval = lookup (nameserverport, "REMOTENAME", &remoteport);

except for the last parameter which, being a var parameter under PP, must be passed across as a
pointer in tliis case. ‘

In all cases, if the call to LookUp returns successfully, then remoteport will contain your local
representation for the remote port. Under both languages you must initialise the Matchmaker
interface to the network name services by calling the procedure initmsgn with a parameter of
NULLPORT.

3. Now that you have obtained send rights on the remote port, just go ahead and send Accent style
messages [0 it using the accunix subroutines. From now on the network server processes on your
machine and on the remote machine are effectively transparent to you as a user, though of course
there are quantative differences in send and receive times.

Once you have obtained send rights to a remote port you can send and receive rights on other ports
using the normal IPC typing conventions. The network servers will do the appropriate mapping between
remote and local ports.

5 Infelicities

5.1 IPC types

First some warnings about the IPC interface. You should be careful about what IPC type information
you use. In particular I rely on the fact that when you give a type size in bits and the number objects then
these figures define what you are giving me to the nearest word (where word is 16bits.in PP and 32 bits in
C). For instance you are better off declaring, though it is not mandatory, a TYPEBOOLEAN to have a
typesizeinbits of 16 and not 1. Similarly a standard PP string of 80 characters should be declared to be 82
objects of TYPECH AR each of size 8 bits.

This brings up another point - it is recommended that you declare strings as being of TYPECHAR and
not of TYPESTRING sir.ce the UNIX IPC type-size-in-bits field is only six bits wide and thus you can only
use it for strings of upto 6 characters in length. I do try and cope with this problem for TYPESTRING but

21 Aug 84

AccUnix: Accent style IPC under Unix -6

is is not possible to deal with it for TYPEUNSTRUCTURED. Thus you must not make the fypesizeinbits
value for TYPEUNSTRUCTURED greater than or equal to 64. To get round this you can just increase the
numobjects value until the product of the two quantities reaches the size of your object.

5.2 MsgSize

The MsgSize field in the message header must accurately reflect the amount of data you are trying to
send or receive. I rely on this value to be correct when parsing the message body. On sending you should
not leave any space between the end of the last item of data and the end of the message. Typically ore uses
the intrinsic SizeOfon a record or a structure to determine the size of the message.

5.3 Floating Point numbers

The format of floating point numbers differs between a PERQ and a VAX. Thus you should not try to
send real quantities between the two machines. The only safe way of sending Floating Point numbers is to
convert then into an implementation independent string of ASCII characters.

5.4 Size Limits

There is a limit within UNIX IPC of 4096 bytes on the size of the message. This implies that you should
not make your Accent style message much bigger than 4000 bytes including any out of line data.

6 Location of Code

The optimised object modules accunix.o, caccunix.o, msgnuser.o and cmsgnuser.o are to be found in the
directory /usr/rds/lib on the SPICE VAX. Eventually this code should be put in something like
/usr/local/lib.

The C include file acctype.h and the PP imports modules myacctype.p, accunix.p and msgnuser.p ar¢ to
be found in the directory /ust/rds/include on the SPICE VAX. Eventually this code should be put in
something like /usr/local/include.

The run file for the netserveris to be found in the directory /usr/rds/bin on the SPICE VAX.

21 Aug 84

AccUnix: Accent style IPC under Unix -7

Appendix A. PP Example

Program example;
{ Looks up a port checked in by the C program in Appendix B. }
{ Then sends a message lo that port. '}

imports msgn from '/usr/rds/include/msgnuser.p';

{ N.B. msgnuser.p imports accunix.p so we must not import it here. }

var
nameserverport : port;
sendtoport : port;
retval : GeneralReturn;
mymessage : record
head : Msg;
desc : TypeType;
text : string
end;
begin
retval := NameNotCheckedIn;
while retval <> success { Locate the network nameserver. }
do retval := locate ('NAMESERVER', nameserverport);
InitMsgN (NULLPORT); { [Initialise the Matchmaker interface. }
retval := NameNotCheckedIn;
while retval <> success { Locate the remote port. }

do retval := LookUp (nameserverport, 'CPORT', sendtoport);

with mymessage
do begin

Head.SimpleMsg = true;
Head.MsgSize = SizeOf (mymessage);
Head.MsgType = NORMALMSG;
Head.LocalPort = NULLPORT;
Head.RemotePort = sendtoport;
Head.ID = 42;
desc.Inline = true;
desc.LongForm = false;
desc.DeAllocate = false;
desc.TypeName = TypeChar;
desc.TypeSizelInBits = 8;
desc.NumObjects = 82;

end;

write ('Input: ');

readln (mymessage.text);

retval := send (mymessage.head, 0, WAIT);
if retval = success '

21 Aug 84

AccUnix: Accent style IPC under Unix ~ 8

then writeln ('Message sent.');
end.

Appendix B. C Example

/ *
Checks in a port called "CPORT".

Waits to receive a message on that port from the PP program in Appendix A.
* / -

#include <perq.h>
#include <acctype.h>

main ()

port nameserverport;
port receiveport;
generalreturn retval;

struct

struct msg head;
struct typetype desc;
PerqgString text;
} mymessage;

nameserverport = ipclocate ("NAMESERVER");
/* Locate network name server. */

receiveport = ipcallocateport (5); /* Createaport. */
initmsgn (NULLPORT); /* Initialise the Matchmaker interfice. */

retval = checkin (nameserverport, "CPORT", NULLPORT, receiveport);
/* Check in the Port. */

/* Initialise the message. */
mymessage.head.msgsize = sizeof (mymessage);
mymessage.head.localport = receiveport;

/* Wait to receive the message. */
retval = c_receive (&mymessage, 0, LOCALPT, RECEIVEIT);

if (retval == ASUCCESS)

MakeAsciz (mymessage.text); /*. Convert PP string to C string. */
printf ("Mgssage received: %s\n", mymessage.text.Chars);

}

21 Aug 84

AccUnix: Accent style [PC under Unix -9

Appendix C. Makefile Example

The makefile for the above two programs should, assuming you are using the Spice Vax, look like: -

CFLAGS = "-1/usr/rds/include"”
First the Pascal program

ppexam: ppexam.o :
pp ppexam.o /ust/rds/lib/msgnuser.o /usr/rds/lib/accunix.o \

/usr/rds/lib/caccunix.o -lipc -0 ppexam

ppexam.o: ppexam.p
pp -C ppexam.p

Now the C program

cexam: cexam.o

cc cexam.o /usr/rds/lib/cmsgnuser.o /usr/rds/lib/caccunix.o -lipc -0 cexam

21 Aug 84

	0001
	0002
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09

