CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Pascal Library

Mary R. Thompson
Sharon Schanzer
Dean Zarras

ATV RN

'm View. ~ -
Mtfie I o Keaw DY"“"“‘%& Fo o Loy
=l [.
]) N ENE
T b o P LY, v - o5l S

1 S l

D, 2

?

23 August. 1984
Spice Document S169

~ -Abstract
This document will eventually provide documentation of all the Pascal library routines. Much of the
information in this section has been taken from comments in the modules and is no more accurate

than those comments.

Copyright © 1984 Carnegie-Mellon University

This is an internal working document of the Computer Science Department, Carnegie-Melion
University, Schenley Park, Pittsburgh, Pennsyivania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government.

This manual includes sections from the PERQ Systems Manual, The Pascal Library.

Pascal Library Summary - i

Table of Contents

1 Introduction 2
2 Module Summary 3
3 Aload: A pascal process loader for accent 6
4 Bootinfo: the definition of the Boot Information Block 8
5 Cload: a loader for 'C’ run files 10
6 Clock: A 60-hz clock 13
7 CommandParse: Command line parsing 14
8 CommandDefs: Definitions for the command structure passed between Accent programs. 27
9 Configuration: provides Perqg configuration information - 29

10 Dynamic: Pascal dynamic allocation routines 31
11 Except: Exporter of exceptions 34
12 ExtraCmdParse: More help in parsing a command line 36
13 IPCRecordlO: Simple routines to send and receive messages 43
14 OldTimeStamp: Convert between POS and Accent date formats 45
15 Pascallnit:Process Initialization and Exporter of server ports 46

16 PathName: A Logical Name Interface to Sesame 49
16.1 Interfaces to Sesame Calls .50

16.2 Name searching routines 52

16.3 Name manipulation routines 59

17 PMatch: Pattern Matching Routines 63
18 RealFunctions - Standard functions for reals. 65
19 SaltError: Translation of error codes 70
20 Spawn: Create and initialize a new process 73
21 Spice_String: PERQ String hacking routines. 77
22 Stream package output conversion routines. 85
23 ViewKern: Graphics operations 103
24 WindowUtils: Routines to manipulate windows 110
A.Error Codes 113
A.1 Accent 113

B. Summary of Calls 115

Acknowledgments

The routines in the Pascal Library have been written by many different people over the past several
years. The names of the major implementers for each module are included in the module sections.

Where to find things

All Pascal Library software is currently stored on the CMU-CS-CFS Host (a Vax Unix) in a directory
tree rooted at /usr/spice/libqascal. To get the run files for up-to-date Spice system, including
both the Accent kernel, the servers, and the standard utility programs, use the Update program, type

path /Sys/Spice

This places you in the proper directory. Depending on what type of PERQ you are using, type
update perqla_OIO
update perqla_CIO
update perq2
update perqt2
See the Introduction to the Spice User’s Manual or Update: A File Transfer Facility for instructions an
how to determine the type of PERQ you are using.

if you are going to be writing programs that use the Pascal Library routines you will need the
Exports sections of the source files. The standard way to do this is to create a subdirctory
/Sys/Spice/LibPascal on your Perg and then type

path /Sys/Spice/LibPascal
update stub get Exports sections of source files

To get the longer version of the Pascal Library including comments, type
update longstub

Problem reports

All reports of problems related to Spice or its documentation should be mailed to the ArpaNet
address Spice@CMU-CS-Spice. This address may be abbreviated to Spice@Spice on CcMU
Computer Science Department computers. To keep track of the latest changes in systems,
documentation, and procedures, all Spice users should read the “Spice” bulletin board on any of the
local host-machines.

Due to the number of routines documented here and the fact that much of the descriptive
information was taken from program comments, there may be errors and ommisions in the
explanatory material. The calling sequences were copied from the code, so they should be correct.
Please report any errors that you notice to Spice@Spice, and every attempt will be made to correct
the document.

Anyone who modifies any of these modules or adds new modules to the LibPascal directory is
strongly urged to notify Spice@spice attn:documentation group of any changes. Do not assume
that simply changing a standard program will ensure that the documentation elves will know about it.

Pascal Library - 2

1 Introduction

This document attempts to describe all the generally useful subroutines that are in the Pascal
Library. To be more specific, these are the programs that can be found in /usr/spice/libpascal on the
CFS vax or boot:libpascal on a Perq. These programs can be organized into three groups:

1. General utility routines:

aload bootinfo cload

clock commandparse configuration
extracmdparse ipcrecordio oldtimestamp
pathname pmatch _ . realfunctions
rundefs ' salterror spawn
spice_string viewkernel windowutils

2. Routines that provide remote procedure call interfaces to servers:

acccall accint auth
envmgr etheruser io
modgetevent - msgn procmgr
sapph sesame time

ts viewpt

3. Routines that provide runtime support for Pascal code:

dynamic except pascalinit
paslong pasreal reader
stream writer

The next section of this document provides a brief abstract of each of these modules and tells
where it is docuimented more completely. Following that there is a section for most of the modules
that have not already been documented elsewhere.

Each module section contains a chronological list of the implementors that was taken from the
Changelog in the program. The first name on the list is the person who did the original
implementation, while the last name is the person who has most recently modified it. Each section
also contains a list of files. The first file is the Pascal code for the module. The other files contains
definitions of types, constants or variables that are used by the exported procedures of this module. In
addition to the files listed, each module also uses accenttype.pas to provide the definition of the type
port.

Next, each section includes the definitions of all the types used in calls to the module and all the
exported exceptions. If any type or values are missing you can look in the section Accent Public
Module Index of the Spice Programmers’ Manual which provides an alphabetical list of all the
names exported by any module in the Pascal library directory. Each entry in that section gives the
definition of the item and the name of the module that exports it..

Finally, each section provides a description of all the routines exported by the module.
The directory /usr/spice/devices is one more source of low-level utility routines. This directory

contains modules that deal directly with devices or machine configurations. These are routines that
must be run with privileges enabled.

Pascal Library - 3

2 Module Summary

The following is a list of the modules in the LibPascal directory. The ones marked with an *** are
described in this document. If a module is not documented we suggest that you look at the code for

more information.

AccCall:

Accint

*AlLoad

Auth

*Bootinfo

*CLoad

*Clock

Code

*CommandDefs

Accent Kernel non-message interface. Documented in the Accent Kernel
Interface Manual.

Accent Kernel message interface. Documented in the Accent Kernel Interface

Manual.
Pascal loader. Also provides a routine to display run files.

Provides the user interface to the authorization server. Documented in the
Servers Manual

Provides the definition of the Boot Information Block.
Provides the facilities to load a process with a C program.
Provides a quick 60-hz clock routine.

Provides common definitions for the linker and loader. This module is not
documented.

Provides definitions for the command structure passed between Accent
programs.

*CommandParseProvides routines to parse and interpret a command line.

*Configuration

*Dynamic

*EnvMgr

Provides information about the hardware configuration of the current machine.
To use this module a process must have access to physical memory.

Pascal dynamic storage routines. Generally calls to these routines are only
generated by the Pascal compiler.

User interface to the Environment Manager. Provides routines to set and read
environment variables. Documented in the Servers Manual.

*ExtraCmdParse More routines to parse command lines and to answer yes-or-no questions.

EtherUser

*Except

*IPCRecordlO

User interface to the Ether Server. Provides routines to do direct’ ether 170,
Pascal runtime support for exceptions. This module exports many of the Pascal
standard exceptions. These are documented here. The routines in this module are
not called by the user and are not documented.

Provides routines to send and receive a simple record.

ModeGetEvent

MsgN

NameErrors

*OldTimeStamp

*Pascallnit

PaslLong

PasReal

*PathName

*PMatch

ProcMgr

QMapDefs

Reader

*RealifFunctions

RunDefs

*SaltError

Sapph

SegDefs

Pascal Library - 4

Provides routines to do Sapphire functions asychronously. Not documented here.
Documented in the Saphire Window Manager Procedure Headers.

This module is the interface to the Message-Name Server. Provides routines to
register and lookup Ports in a net-work-wide name table. Documented in the
Servers Manual

This module exports the MsgServer (NameServer) errors. It is not documented.
Provides routines to translate between POS and Accent date formats.

This is the module called immediately after process creation to initialize a process
to run Pascal code and to communicate with other processes. Users do not call
this module, but it exports many of the ports to the standard servers. Its exported

variables, and exgeptions are documented here.

Pascal runtime procedures to convert longs for input and output. These routines
are not called by users, thus they are not documented.

Pascal runtime procedures to convert reals for input and output. These routines
are not called by users, thus they are not documented.

High level interface to the Sesame File Server. Uses logical names in addition to
absolute pathnames.

Provides routines for pattern matching in strings.

This module is the interface to the Process Manager. Provides routines to register
and manipulate processes. Documented in the Servers Manual.

This module defines the constants and types used by the Qcode to source
mapping facility. It is not documented.

Pascal runtime support for input. These routines are not called by users, thus are
not documented.

Provides routines to evaluate many standard logarithmic and trigonometric
functions on reai numbers.

This module defines the form of Pascal .Run files. This module is not
documented.

Provides a routine to return a string explaining the meaning of a standard system
error code.

This module is the interface to the Sapphire Window Manager. It is documented in
the section Sapphire Window Manager Procedure Headers.

This module defines the constants and types used in the .seg file output of the
Perqg Pascal compiler. It is not documented.

Sesame

*Spawn

*Spice_String

*Stream

SymbDefs

Time

TS

*ViewKernel

ViewPt

*Window Utils

Writer

Pascal Library - §

This module is the interface to the Sesamoid File Server. The Pascal calling
sequences are documented in the Servers Manual, but the explanation of the
file system isin Sesame: The Spice File Server.

Provides routines for process creation and initialization.

Provides many routines for hacking Pascal strings.

Lowest level runtime support for Pascal [/O. The routines of this module are not
called by users, but all the standard Pascal I/0 exceptions are exported from

here..

This module contains the definitions for the symbol table file produced by the
current Pascal compiler. This module is not documented.

This module is the inteface to the Time Server. Provides routines to get the
current date and time and to translate between the various formats for dates and
time. Documented in the Servers Manual.

This module is the interface to the Typescript Server. Provides routines to create
and manipulate Typescripts which are used for character steam /O into a
window. Documented in the Servers Manual.

Routines to do graphic 170 to windows. Documented here and in the section
Sapphire Window Manager Procedure Headers.

This module is the interface to the ViewPort server. It is documented in the section
Sapphire Window Manager Procedure Headers.

Provides routines to change the title line of the UserWindow.

Runtime support routines for Pascal output. Routines are not generally called by
users, never-the-less it is documented here.

AlLoad

Pascal Library - 6

3 Aload: A pascal process loader for accent

Implementers:

Abstract:

Files:

J. Eugene Ball
Michael Jones
Doug Philips
Richard Gumpertz

Aload provides facilities to load and execute Pascal programs. Aload loads by
invalidating all of a process’s address space, and then re-initializing from the state
defined by a .RUN file.

aload.pas,rundefs.pas,timedefs.pas,pathname.pas

Exported Types

LinkFileType = (SegFile, RunFile, DataFile,>SymsFileType, QMapFileType);

Internal_Time

record

Weeks integer; Number of weeks since 17-Nov-1858
MSecInWeek : long; Number of milliseconds in that week
end;
Path_Name = string[Path_Name_Size]; Path.NameSize = 255
String_255 = string[255];

Exported Exceptions

exception ALoadError(s: string_255);

ARunlLoad

Initializes a process address space.

Call:

Parameters:

procedure ARunlLoad(

RunFileName ¢ Path_Name;
p : pointer;
filesize : long;
hiskport : port;
LoadDebug : boolean);

RunFileName - run file name. This may be null is you wish to load a file that is
mapped into memory.

p - opticnal pointer to RunFile data{or NIL)
filesize - size of run file image (in bytes) to be loaded.
hiskport - kernel port of process to be loaded.

LoadDebug - If this parameter is true, print information about the loading process.

ARunload initializes a process address space from RunFileName (or from a run file structure in
memory if p is not nil), and optionally starts it executing.

Pascal Library - 7

ShowRun
Display contents of a .Run file.
Call: procedure ShowRun(
p : pointer;
MapF ileName : Path_Name)
Parameters: p - optional pointer to RunFile data(or NIL)

MapFileName - file to display it on.

Writes a map for a run file into memory.

DateString
Converts an internal format date to a string.
Call: function DateString(
date : Internal_Time)
: String
Parameters: date - date input as an Internal Time
Result: A string representation of the date in the same format used by TimeUser

Use the routine T_IntToString from TimeUser instead.

LinkTypeStr
Translates a LinkFileType value to a string name.
Call: : function LinkTypeStr(
typ : LinkFileType)
: string
Parameters: typ - an ennumerated type value indicating the type of a link block.

Resuit: a string containing the name of the link file type.

AlLoad

Bootinfo

Pascal Library - 8

4 Bootinfo: the definition of the Boot Information Block

Implementers:

Michael Jones

DavidGolub
Don Scelza

Abstract: This module provides the definition of the boot information block. This block is
set up in part by MakeVMBoot when the boot file is created. The machine specific
fields are filled in by the system microcode when the machine is booted. You
must have physical memory privileges to access these structures.

Files: Boaotinfo.pas

Exported Types

const

BootBlockLocation = #20000000000;

type ASTRecord

type

= integer;

MachineInfoRec = packed record
case boolean of

false:
true:

end;

(int: integer); { configuration comes in a word }
(
WCSSize: 0..15; { 0-> 4K WCS }
{1 -> 16K WCS }
Reserved: 0..3;
IsPortrait: Boolean; {.True -> Portrait screen }
{ False -> Landscape screen }
BoardRev: 0..31; { I0 Board revision / disk type:
{ 0 =->CIO board with Shugart disk
{1 ->CIO board with Micropolis disk
{ 16 -> EIO board
{}
01dZ80: boolean; { True =-> 01d Z80 protocol }
{ False -> New 780 protocol }
CMUNet: boolean; { True for CMU network environment. }
{ False for standalone 10MBit net. }

Reserved2: 0..3

)

{ Boot Information Record }

BIRecord

2:

(

packed record
case integer of
(IntBlk: array [0..255] of integer);

OviTable : array [0..11] of VirtualAddress; { Overlays }
VP :
PV :
PVList : VirtualAddress; { " of PV 1list }

VirtualAddress; { Address of VP table }
VirtualAddress; { " of PV table }

- Pascal Library

Sector : VirtualAddress;
PCB : VirtualAddress;
AST : VirtualAddress;
AccentQueue: VirtualAddress;
AccentFont : VirtualAddress;

AccentCursor :VirtualAddress;
AccentScreen :VirtualAddress;

ScreenSize : integer;
FreeVP tinteger;
FreeAST :integer;

P Ve Yo Yoo Y an Yo T

of
of
of
of
of
of
of

Bootinfo

sector headers }
PCB Handles }
AST }

Queue headers }
Font }

Cursor }

Screen segment }

{ Initial FreeVP }

SchedProc¢ : integer; { High level scheduling process }

InitProc : integer; { Initial process }

Character used in boot }

Number of processes set up }

Size of sup. stack in pages}

Size of sup. global area in pages}

BootChar : integer;
NumProc : integer;
StackSize : integer;
GlobalSize :integer;

A

NumSVReg : integer; { Number of regs for SVCall }
{** NumSVRegs is obsolete - GGR 11/16/81 **}

TrapCode: integer;
TrapArgs: VirtualAddress;

MemBoard: integer; { number of K of memory }
AccentStdCursor: VirtualAddress;
AccentRoTemp: VirtualAddress;
DefaultPartitionName: String[19];

IgnoreRunFile: Boolean;

MachinelInfo: MachineInfoRec;
Filler: array [0..49-WordSize(AstRecord)] of integer;

FirstAst: ASTRecord;
EtherIOArea: VirtualAddress;

UserPtr: VirtualAddress;
SVContext: record
SvV_CS:
SV_GP:
SV_LP:

SV_LocalSize:

SV_TrapCount:

SV_FirstRN:

SV_PC_Vector:
end

)

end;

ptrBIRecord = tBIRecord;

{ Start of user process }

integer;
integer;
integer;
integer;
integer;
integer;
array [0

..1217 of integer

CLoad Pascal Library - 10

5 CLoad: aloader for’C’ run files

Implementer: Doug Phillips

Abstract: This module provides the facilities that are used to load a process with a C
program. These procedures are used by the shell and are not of general use to
other programs.

File: CLoad.pas, Cfiledefs.pas

Exported Types

const

CLoadNotCFile = -1; { shouldn't conflict with any other General Return }
type
LString = String[255];
pFirstBlock = tFirstBlock;
FirstBlock =
record
FileVersion : integer; { major version # }
FileSize ¢ long; { size of this file in bytes } {C}
FileTimeStamp : Internal_Time; {C}
SymbolAreaSize : long; { in pages }
TextAreaSize : long; { in pages }
DataAreaSize : long; { in pages } {C}
BSSAreaSize : long; { in pages } {C}
DestAddr ¢ long; { word address of file in process }
StartAddr : long; { of program (i.e. 'crt0') }
MainAddr : long; { of program (i.e. 'main') }
InitialLocalSize : long; {words needed for first stack frame locals}
StackBaseAddress : long; { word address }
StackSizeInPages : long;
end;

{$IFC (WORDSIZE(FirstBlock) > 256) THEN}
?Error: First block is too big!

{$ENDC}
const
CFileVersion = -4;
1 . . .
{ CFileVersion is the major version number for 'C'. It should

{ not conflict with the version number in 'Pascal' run files.

8

{2
{ Symbol entry codes

{3
PrimaryDef = 10;

(}

Pascal Library - 11 CLoad

{ Symbol Kinds (kind of (primary) entry codes)

PascalProcedure = 1; { UnUsed }
LocalProcedure = 2;
GlobalProcedure = 3;
InitializedSymbol = 53
LocalLabel = 6;
UndefinedSymbol =7;
{ synonyms }

UndefinedGlobal = UndefinedSymbol;
DefinedGlobal = InitializedSymbol;
DefinedLocal = LocallLabel;

OffsetDef = 11;

ChainHead = 12;

AbsoluteDef = 133

AbsolutelocalDef = 14;

LibraryDef = 90;

{3

{ Area Designators

TextState = 0;

DataState = 1;

Data2State = 2; { Internal to asm }

{ synonyms }

PCInText = TextState;

PCInData = DataState;

PCInData2 = Data2State;

{3

{ Misc. stuff

{}

OFFSETBASE = 16000; { Maximum computed offset value. }

CLoadProcess
This procedure is used to load a process with a C program

Call:
Function CLoadProcess(FileName : APath_Name;
var FileInMem: pointer;
var FileSize : long;
Proc : Port;
LoadDebug: Boolean): GeneralReturn;

Parameters: ' FileName - name of the C run file to be loaded. This may be null if you with to load
the process with a file that is mapped into memory

FileInMem - a pointer to a run file structure that is in memory. To load a Pascal
program from a file, this parameter must be nil.

FileSize - The size of the file (in bytes) to be loaded.

Proc - The kernel port of the process to be loaded.

CLoad ‘ Pasgal Library - 12

LoadDebug - if True, print information about the loading process.

Compietion Code:
Success - file was loaded - process is set up and ready to run. The file image has
been freed. '

CLoadNotFile - file was not a C file. FilelnMem points to a copy of the file, and
FileSize contains the size of the copy in bytes. (The memory image can then be
passed to the Pascal loader.)

other - the process was not loaded. All memory in the parent process has been
freed.

Pascal Library - 13

6 Clock: A 60-hz clock

Implementer: Da\;id Golub

Abstract: Provides a quick 60-hz clock routine.
File: clock.pas
I0GetTime

Gets 60-hz clock value, for relative timing.

Call: function I0GetTime: long;

Result: Clock value (number of screen refresh cycles since system was started).

Clock

CommandParse Pascal Library - 14

7 CommandParse: Command line parsing

Implementers: Don Scelza
Brad Myers
Michael B. Jones
David Golub
John B. Brodie

Abstract:

The modules CommandParse and ExtraCmdParse provide routines intended to
ease the task of developing utilities which conform to the “standard” command
syntax conventions. For historical reasons, these parsing routines are divided
somewhat arbitrarily between the two modules. Start by reading this section first
and it will refer you to routines in ExtraCmdParse when they are relevant.

Command parsing occurs in four distinct phases:

¢ The Shell transforms the user's input command into a list of words
(Tokenization/partial Syntax Analysis).

e The ParseCommand routine of CommandParse further processes this
word list into lists of inputs, outputs, and switches (final Syntax
Analysis).

e The utility scans the three lists to ensure correctness of the parsed
information (Semantic Analysis). '

e The utility executes the command (Execution). In the case that the
utility wants to prompt for user’s input, then the first two of these
phases (Tokenization and Syntax Analysis) are performed by the
other parsing routines provided by CommandParse and
ExtraCommandParse.

The utility should normally look at the switches first. It is especially important that
the HELP switch (a switch which every standard utility is required to recognize) is
looked for first. The suggested response to the HELP switch is to display the
HELP'ful message; discard everything eise on the command line, and then either
(1) return to the shell; or (2) prompt the user for an input and then process it; or,
(3) prompt the user for another command as you normally would.

Definitions:

Command Line: A line of text usually typed in by the user that invokes a
command. Normally the first word is the name of the command
to be invoked, followed by switches, and/or input arguments
and/or output arguments.

Command File: A text file containing one or more command lines. if the user

Organization:

Pascal Library - 15 : CommandParse

invokes a command with the argument @filename, filename is
assumed to be a command file. Command files may be nested
by inciuding the line @nexifile in a command file.

Character Pool: An unbounded character string. This is the type of a raw
command line. :

CommandBlock: The result of the first level of parsing a command line. This
parsing is normally done by the Shell. The command line is
divided into words by parsing for 'white space’, e.g. blanks,
tabs and CRs. This is the form in which a command line is
passed to a utility by the Shell via the variable UserCommand
exported by Pascallnit.

Command_Word List: :
The completely parsed command arguments or switches. The
six parsing routines (CommandParse, ExerciseParseEngine,
GetCmd, GetShellCmd, GetParsedUserinput and
ParseChPool) return three of these structures, one for
switches, one for input arguments and one for output
arguments.

Search_Table: A private type that contains a list of words against which input
words are to be matched. If an input word matches or is an
unique abbreviation of one of the search table words,
UniqueWordIndex will return its index. Common uses of a
search table are to identify switches or subcomands.

The routines in CommandParse do not directly interact with the user. Rather, they
process a "pool" of characters which has been read-in by some other means
(either by the Shell or by the routines in ExtraCmdParse). The routines in
CommandParse are divided into four functional groups:

e Those which deal with nested command files.

o Those which perform the actual parsing.

¢ Those which deal with identifying. WOrds.

o Other miscellaneous routines that deal with character pools.

The routines in ExtraCmdParse do directly interact with the user via the
keyboard/display and then return the parsed data structures representing that
input.

Command File Routines:
The command file routines provide support for a LIFO stack of
nested command files. This stack is maintained by these
routines as a singly-linked list of file descriptors,

CommandParse

File:

Parsing Routines:

Word Identification

Miscellaneous Poo

Constants:

Pascal Library - 16

Command_File_List. This list always ends in a node
associated with the current default input file to act as a
backstop.

The parsing routines in CommandParse, parse a single line.
There is one routine to parse the standard command line
handed to the utility at its invokation, and another to read a
line from the console and parse it. The routines to parse
command files are in ExtraCommandParse.

Routines:

Four routines are provided to support the identification of
word-prefixes. A Word_Search_Table is the underlying data
structure for these identification routines. A
Word_Search_Table is an array of pointers to linked lists of
words to be identified. Each linked list contains those words
with the same first character. Thus the common case of
classifying a word whose first character is sufficient for
unigueness is fast.

The initialization of such a table is fairly expensive, but
searches are very fast. Thus a utility should delay the
initialization of such a table until it realizes that it is actually
needs to do a search.

I Manipulators: Routines are provided to translate a PERQ
character string to/from an unbounded pool of characters as
used by the parsing routines.A routine is also provided to
deallocate the memory of an unbounded character pool.

CommandParse also exports definitions of the separator
characters of the "standard" syntax so that applications may
provide their own recognizers utilizing these characters if they
so desire. Note that the identifiers beginning ‘shell_' represent
characters which are only recognized by the Shell. They are
defined herein for completeness and so that all are aware of
which characters may have special meanings in the syntax.

CommandParse also exports two characters to be used in
User prompts. The ‘CmdChar' should be used as the last
character of user prompts caused from outside a nested
command file. The '‘CmdFileChar' should be used inside any
nested command file. The routines ‘GetCmd' and
‘GetParsedUserlnput’ in ExtraCmdParse deal with these
characters automatically; while ‘GetCharacterPool‘ does not.

commandparse.pas

Pascal Library - 17 CommandParse

Exported Types
Const (* delimiters: *)

eofChar = chr{0); (* "end of file" -

may NEVER appear in a word *)
eolnChar = chr(#12);(* end of line *)
single_char_quote = '"\'; (* quote just the next char *)
quoted_text_bracket_char = ''''; (* quote an entire string *)
env_var_bracket_char = 'ty (* substitute from the environment *)
env_quoted_bracket_char = '"'; (* environ sub into a quoted string *)
switch_leadin_char = '-';
value_marker_char = '=',
command_file_leadin_char = ';
comment_leadin_char = '#',
in_out_separator_char = '~'y
shel1_special_args_start = '['; (* these are recognized by *)
sheli_special_args_stop = ']°'; {(* the shell only *)
shell_input_redirect = '<{";
shell_output_redirect = '>' (* parsing routines herein attach *)
shel1_sequential_command = ';'; (* no special meaning to them and *)
shell_piped_command = '] {* treat them as if they were *)
shell_parallel_command = '&'; (* alpha-numerics *)

(* characters to be appended to prompts *)

CmdChar = Chr(#200+24); (* use outside command files *)
CmdFileChar = Chr(#200+26); (* use inside command files *)
CommandParseVersion = '5,7 of 3 Jun 84';
MaxCmndString = 255;

(* word identification routines *)

Const (* errors returned by UniqueWordIndex *)
WS_NotFound = -1; (* word-prefix not found *)
WS_NotUnique = -2; (* word-prefix not unique *)

Type
pCmnd_String = * Cmnd_String;
Cmnd_String = String[MaxCmndString];

pWord_String = * Word_String;
Word_String = String[1]; (*DO NOT try to STORE into a Word_String*)

pCommand_Ffile_List = tCommand_File_List;
Command_File_List = RECORD (* the command file stack *)
cmdFile: Text;
isCharDevice: Boolean;
next: pCommand_File_List;
END;

Word_Type = (in_arg, out_arg, switch_arg, switch_value, command_file);

pCommand_Word_List = *+ Command_Word_List;

CommandParse Pascal Library - 18

(* Use AllocCommandNode (see below) to make one of these *)

Command_Word_List = packed record (*the structure of a parsed command*)
ptrWordString: pWord_String;
DeallocWordString: boolean; (* DO NOT MESS WITH THIS FIELD *)
case WordClass: Word_Type of

in_arg,
out_arg,
command_file: (NextArg: pCommand_Word_List);
switch_arg:(NextSwitch: pCommand_Word_List;

ValueOfSwitch: pCommand_Word_List;
CorrespondingArg: pCommand_Word_List);
switch_value:((*nothing*));
end;

pWord_Search_Table = POINTER; (*structure of table is strictly private*)

The following types are actually exported by CommandDefs but are included
here for the convenience of the reader

Character_Pool packed array [0..0] of char;

{* an unbounded chunk of characters *}

pCharacter_Pool = tCharacter_Pool;

Char_Pool1_Index = long;
CommandBlock = record
WordCount ¢ long; { number of words }
WordDirIndex : Char_Pool_Index; { Byte index to word dictionary }
WordArrayPtr : pCharacter_Pool;
WordArray_Cnt : Char_Pool_Index;
end;

Command File Routines

InitCmdFile

Initializes the first node of inF to be a valid Text File corresponding to the keyboard. This
must be called before any other command file routines.

Cali: - procedure InitCmdFile(var InF: pCommand_File_List);
Parameters: InF - Qutput variable which will point to the top of the stack of command files.

Initializes the first node of inF to be a valid Text File corresponding to the keyboard. This must be
called before any other command file routines. The application should then read from inFt.cmdFile.
E.g. ReadLn(inFilet.cmdFile, s); or while not eof(inFilet.cmdFile) do ... Use popup only if inFt.next =
NIL (means no cmd File). The CmFile is a fileSystem file if inFt.IsCharDevice is false. InF will never be
NIL. The user should not modify the pCommand_File List pointers; use the procedures provided.

Pascal Library - 19 CommandParse

OpenCmdFile

Opens a new command file and pushes it onto the specified stack of open command
files.

Cali: function OpenCmdFile(FileName: pWord_String;
var InF: pCommand_File_List)
: GeneralReturn
Parameters: FileName - the name of the command file to be opened. The application is

responsible for ensuring that the file appears in a correct context.

inF - the list of command files. This was originally created by InitCmdFile and is
maintained by these routines. [f FileName is a valid file, a new entry is put on the
front of InF describing it. If there is an error, then InF is not changed. In any case,
InF will always be valid.

Result:’ Returns success if the new command file is opened successfully and failure
otherwise.

This function will prepare a command file for use by the standard pascal 1/0 routines. The user
should give OpenCmdFile the filename as parsed by one of the parsing routines contained in this
CommandParse module. The application is expected to ensure that the command file has appeared in
a correct context for that application. These checks might include ensuring that no other words
appeared within the input line containing the command file. This function maintains a stack of
command files so that command files may contain other command files. Be sure to call InitCmdFile
before calling this procedure.

ExitCmdFile
Removes the top command file from the list.
Calt: procedure ExitCmdFile{var inF: pCommand_File_List)
Parameters: InF - the list of command files. It must never be NIL. The top entry is removed;

except when attempting to remove last command file, when it is simply re-
initialized to be the backstop default input file. It is OK to call this routine even
when at the last entry of the list.

Result: One element is popped off of the command stack, InF.
Call this whenever the end of a command file is reached.
ExitAllCmdFiles
Removes all command files from the given list.

Call:
procedure ExitAl1CmdFiles{var InF: pCommand_File_List)

Parameters: InF - the list of command files. It must never be NIL. All entries but the last are
removed.

CommandParse Pascal Library - 20

Result: InF is reset to a single list node attached to the béckstop default input file.

Use when a fatal error has been found or upon reciept of either a SiglLevel2Abort or a
SigLevel3Abort in order to reset all command files.

DstryCmdFiles

Removes all command files from the given list. All entries are removed and InF is set to
NIL. InitCmdFile must be called again before any command file stack routines may be
used.

Call: procedure DstryCmdFiles(var InF: pCommand_File_List)
Parameters: InF - the list of command files to be released.

Result: InF is set to NIL.
Parsing Routines

InitCommandParse -

Initializes the parser by marking the parsing state tables as un-initialized. The Parser,
when first invoked, will notice that the parsing table need to be initialized and will do so.
Thus delaying a possibly lengthy initialization process until the data is actually needed.

Call: Procedure InitCommandParse
Result: Resets the private global table initialized flag to FALSE,

DestroyCommandParse
Deallocates the parsing DFA table.

Calt: Procedure DestroyCommandParse
Result: Resets the private global table inited flag to FALSE.
ParseCommand

Transferms the word list passed to the program into the parsed data lists of input,
outputs, and switches.

Call: Function ParseCommand{var inputs: pCommand_Word_List;
var outputs: pCommand_Word_List;
var switches: pCommand_Word_List)

: GeneralReturn

Parameters: inputs - list to contain the input words.
outputs - list to contain the output words.

switches - list to contain the switches.

Pascal Library - 21 CommandParse

Resuit: Sets the three lists and returns a GeneralReturn code indicative of the parse
results.

This routine parses UserCommand which is the command line that is passed to the utility from the
shell via an export in Pascallnit. The program name is normally passed to the program as the flrst
word in the list. The word is stripped and ignored by ParseCommand.

ParseChPool
Parses the given unbounded pool of characters.

Call: Function ParseChPool1{ChPool: pCharacter_Pool;
PoolLength: Char_Pool_Index;
var inputs: pCommand_Word_List;
var outputs: pCommand_Word_List;
var switches: pCommand Word_List)
: GeneralReturn

Parameters: ChPool - pointer to the beginning of the pool to be parsed.
PoollLength - number of characters in the pool.
inputs - list to contain the input words.
outputs - list to contain the output words.
switches - list to contain the switches.

Result: Sets the three lists and returns a GeneralReturn code indicative of the parse
results.

This routine may be called if the utiiity has read in a new command line from the user and wants it to
be parsed by the standard parser.

ExerciseParseEngine

This routine is the Parser. It is called by all other routines which perform parsing. It
scans the given character pool (augmented if necessary by reading another pool) and
consirucis the parsed data iists of inputs, ouiputs, and swiiciies,

Caii: Function ExerciseParseEngine
(ChPool: pCharacter Poo¥;
Poo]Length Char_Poo]_Index;
procedure ReadPool(var Pool: pCharacter_Pool;
var PLen: Char_Pool_Index);
var inputs: pCommand_Word_List;
var outputs: pCommand_Word_List;
var switches: pCommand_Word_List)
: GeneralReturn;

Parameters: ChPool - the first hunk of characters to be parsed.

PoolLength - The length of the first pool of characters. This parameter may be
zero; in which case NIL parse structures will be returned.

CommandParse Pascal Library - 22

ReadPool - a procedure to read successive pools of characters, if required by the
parsing actions.

inputs - the list to contain the words recoginzed as inputs.
outputs - the list to contain the words recognized as outputs.
switches - the list to contain the words recognized as switches.

Result: Places the parsed lists into the parameters and returns a GeneralReturn code of
either Success if all went well or an error code indicative of the error.

Assumes that InitCommandParse has been called. This routine is called by a utility that has read (or
wants ExerciseParseEngine to read) an input line from the console. If the next line may be coming
from a command file, call GetParsedUserinput instead. ExerciseParseEngine should be called
vigorously for at least 20 minutes twice weekly in order for the software to remain in top condition.
AllccCommandNode

Allocates a new node to be inserted into the parsed data structures. User is responsible
for establishing the correct linkages. This routine merely creates a node with the correct
string text value for the word.

Call: Function AllocCommandMode(WordClass : Word_Type;
WordString: Cmnd_String)
pCommand_Word_List

Parameters: WordClass - the class desired for the new node.
WordString - the text of the new word.
Result: returns a pointer to the newly allocated node.

DestroyCommandList

Deallocates a parsed data structure.

Call: Procedure DestroyCommandList{var arglList: pCommand_Word_List)
Parameters: argList - a pointer to the structure to be released.
Result: arglist is set to NIL.

AlwaysEof

Support routine for callers of ExerciseParseEngine. This routine sets up a character pool
which contains an end-of-file marker. This will signal the parsing activity to stop.

Cail: Procedure AlwaysEof(var ChPool: pCharacter_Pool;
. var PoolLength: Char_Poo1_Index)

Parameters: ChPool - pointer to the pool to contain the end-of-file marker.

Pascal Library - 23 CommandParse

PoolLength - length of the eof buffer (always set to 1 by this routine).
Routines for indentifying word values

InitWordSearchTable

Creates an empty search table for use in word identification.

Call: procedure StdError(var table: pWord_Search_Table;
CaseSensitive: boolean)
Parameters: table - will be set to the address of the new search table.

CaseSensitive - TRUE if the words in this table should retain their c;pitalization
during the identification processing.

Result: The address of a new search table is returned in ‘table‘.
This routine must be called before any of the other search table routines.

AddSearchWord
Merges the given word into the search table under the given key.

Call: Procedure AddSearchWord(table: pWord_Search_Table;
WordKey: integer;
WordString: Cmnd_String)
Parameters: table - PCINTER to a search table.
WordKey - identification of the word. The key may be any arbitrafy non-negative
integer. The negative numbers are reserved by the identification and parsing
routines to indicate errors.
WordString - the text of the word.

Exceptions: Impossible - raised if table is Nil, or WordKey is negative, or WordString is zero
length

Table must be the result of an InitWordSearchTable call. Adds a word to the search table.

DeleteSearchWord
Expunges the given word from the search table.

Call: Procedure DeleteSearchWord(table: pWord_Search_table;
WordString: Cmnd_String)

Parameters: table - POINTER to a search table

WordString - the text of the word to be deleted.

CommandParse Pascal Library - 24

Exceptions: Impossible - raised if table is Nil, or WordString is zero length
Table must be the result of an InitWordSearchTable call.

DestroySearchTable

Expunges the data for the given search table.

Call: Procedure DestroySearchTable(var table: pWord_Search_Table)
Parameters: table - POINTER to the search table to be destroyed.
Result: table is set to NIL.

DestroySearchTable deallocates the memory of a search table.

UniqueWordindex

Locates the given word in the given search table. Returns both the key and the text of the
word found.

Call: Function UniqueWordIndex(table: pWord_Search_Table;
ptrWordString: pWord_String;
var WordText: Cmnd_String)
tinteger
Parameters: table - the search table in which to attempt the identification.

ptrWordString - a pointer to the text of the word-prefix to be found.
WordText - the text of the found word.

Resuit: Returns the word-key and the entire text of the identified word if and only if the
given word-prefix is in the table is not found in the table or a WS_NotUnique if the
word-prefix is not unique. In either of the latter error conditions WordText will
contain the erroneous word-prefix.

Assumes that table has been initialized via InitWordSearchTable and AddSearchWord.
Miscellaneous conversion routines

ConvertPoolToString

Transforms an arbitrary portion of the given unbounded pool of characters into a PERQ
Pascal String.

Call: procedure ConvertPoolToString(ChPool: pCharacter_Pool;
FirstChar: Char_Pool1_Index;
StringlLength: Char_Pool_Index)
: Cmnd_String

Parameters: ChPool - a pointer to the unbounded hunk of characters.

Pascal Library - 25 CommandParse

FirstChar - the beginning position (zero based) within ChPool of the desired string.
StringLength - the number of characters to be moved from the pool to the string.
Result: Returns a PERQ Pascal String.
Exceptions: StrTooLong - if asked to create a string longer than 255 characters.
The result of a function is to be ﬁlaced in its local #0.

ConvertStringToPool

Transforms a PERQ Pascal String into an unbounded pool of characters suitable for use
by the ParseChPool routine. Is symetric with ConvertPoolToString.

Call: procedure ConvertStringToPool(CnvStr: Cmnd_String;
var ChPool: .pCharacter_Pool;
var PoollLength: Char_Pool1_Index)

Parameters: CnvStr - the PERQ Pascal String to be converted.
ChPool - set to the address of the created pool. -
Poollength - the number of characters in the resultant pool.

Result: Sets the parameters ‘ChPool' and ‘PoolLength’ to describe the new unbounded
hunk of characters.

DestroyChPcol

Deallocates storage of a given unbounded pool of characters.

Call: procedure DestroyChPool{var ChPool: pCharacter_Pool;
var PoolLength: Char_Pool_Index)

Parameters: ChPool - pointer to the pool to be released; is set to NIL.
PoollLength - number of characters to be released; is zeroed.
Result: Both ChPool and Poollength are modified to describe an empty pool.

WordifyPool

Transforms the given unbounded pool of characters into a word list suitable for passing
to a Spawn‘d child process.

Call: Function WordifyPool(ChPool: pCharacter_Pool;
Poollength: Char_Pool_Index;
var WordStruct: CommandBlock):

GeneralReturn

Parameters: ChPool - pointer to the beginning of the pool to be 'wordified’.

CommandParse Pascal Library - 26

PoolLength - number of characters in the pool.
WordStruct - a buffer to contain the word list description.

Result: Sets the WordStruct and returns a GeneralReturn code indicative of the
wordification results.

GetithWordPtr
Retrieves a pointer to the desired word from the given word list.

Call: procedure GetIthWordPtr(i: long;
CmndBlock: CommandBlock)
pWord_String

Parameters: i - the number (one-based) of the desired word.
CmndBlock - the block from which to fetch the word.

Result: Returns a pointer to the requested word or NIL if the desired number is out of
bounds.

Pascal Library - 27

CommandDefs

8 CommandDefs: Definitions for the command structure passed
between Accent programs.

Implementers: John Brodie

David Golub
Abstract: Definitions for the command structure passed between Accent programs.
Files: commanddefs.pas,commandparse.pas
Exported Types

{ Error General Return Values

const
CmdParse_Error_Base

ErBadSwitch
ErBadCmd
ErNoSwParam
ErNoCmdParam
ErSwParam
ErCmdParam
ErSwihotUnique
ErCmdNotUnique
ErNoOQutFile
ErOnelnput
ErOneQutput
ErIT1CharAfter
ErBadQuote
ErAnyError

ParseInternalFault
ParseWordToolong
ParseIllegalCharInSwName
ParseIllegalCharInSwVal
ParseIllegalCharInEnvNam
ParseIllegalCharInQuoted
ParseGnlyCmdAliowed
ParseIllegalCharInInRed
‘ParselIllegalCharInQutRed
ParselllegalCharInShPara

type
Character_Pool

}

4200;

CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_trror_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base

CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base
CmdParse_Error_Base

packed array [0..0] of char;

SRR O T TR T K R S S

RN R T S IR

OO & WN -
we wo ws we we we we we

-e

[=
20NN O

e we we we

PNNNNON R E
PWN =R OOO~NOOC

{* an unbounded chunk of characters

pCharacter_Pool

Char_Pool1_Index Tong;

CommandBlock record
WordCount : long;

2Character_Pool;

{ number of words }

*}

CommandDefs Pascal Library - 28

WordDirIndex : Char_Pool_Index; { Byte index to word dictionary}

WordArrayPtr : pCharacter_Pool;
WordArray_Cnt : Char_Pool_Index;
end;

Null-CommandBlock
Null CommandBlock is used to get a new, empty CommandBlock

Call: function Null_CommandBlock: CommandBlock

Result: A new empty CommandBlock

Pascal Library - 29 Configuration

9 Configuration: provides Perq configuration information

Implementers: David Golub

Abstract: Configuration is used to .provide information about the hardware configuration of
the current machine. To use this module a process must have access to physical
memory.

Files: Configuration.pas

Exported Types

type

Cf_IOBoardType = (Cf_CIO, { Perql }
Cf_EIO); { Perq2 }

Cf_MonitorType (Cf_Landscape,

Cf_Portrait);

Cf_NetworkType (Cf_CMUNet,

Cf_10MBitNet);

Exported Exceptions

exception ConfigurationError(s: string_255);

CF-10Board
This procedure is used to obtain the type of the 1/0 board.
Call: function CF_IOBoard : CF_IOBoardType
Result: Returns CF_CIOQ if this is a PERQ 1/0 board, CFEIQ if it is a PERQ2

CF-Monitor

This procedure is used to obtain the type of display that is on the machine

Cail: function CF_Monitor: CF_MonitorType
Resuit: Return CF_CIO if this is a PERQ /0 board, CF_EIQif it is a PERQ2.
CF-01dZ80

This procedure is used to determine the protocol that is to be used to communicate with
the 170 board Z80. Accent no longer supports the ‘‘old’’ Z80 protocols.

Call: function CF_01dZ80 : boolean

Result: Returns true if the protocol is old Z80 - This procedure should always return false.

Configuration Pascal Library - 30

CF-Network
Provides information about the type of network that is in use.
Cail: function CF_Network: CF_NetworkType
Result: Return CF_10MBitNet is there is a standard Ethernet or if there is no network. If

the machine is running in the Carnegie -Mellon University network environment
return CF_.CMUNet.

Pascal Library - 31 Dynamic

10 Dynamic: Pascal dynamic allocation routines -

Implementer:

W.J. Hansen

Abstract: Implements Pascal dynamic allocation - New and Dispose. Also provides routines
CreateHeap, ResetHeap and DestroyHeap to make, empty, and get rid of heaps. In
general calls to these routines should only be generated by the compiler.

File: dynamic.pas

Design: InitDynamic must be called before calling any other routine in this module.
Normally it is called by Pascallnit before the user’s main program gets control.
Dynamic maintains chains of heaps. Each element is (HeapLimit + 1) words long,
but the Last PostFixSize words are occupied by control information. Generally,
Heapl imit is 32767 so all links in a heap are positive integers.

Memory of a given size with a given alignment may be allocated from any heap. If
the heap is full (doesn't contain enough free memory to meet the request), then an
additional heap is attached to the current one. These additional heaps are kept in
the chain on the NextHeap field.
Memory cells may be deallocated by Dispose. Free memory within each heap is
linked into a circular freelist in order of address. Each free node is at least two
words long and is of the form:
record
Next: Integer; index of next free block
Len: Integer; . length of this free block
Tag: Integer; set to a known value in free nodes
Rest: array [1..Length - 2] of integer;
end;
Requests larger than Heaplimit-PostFixSize are met by doing a direct
ValidateMemory or InvalidateMemory.
Exported Types
HeapNumber = integer;

Exported Exceptions

exception NilPointer;

NilPointer is raised when a Nil pointer is used or passed to Dispose.

excsption BadPointer;

BadPointer is raised when the pointer passed to dispose cannot really be a pointer
to a node to be freed.

exception TooManyHeaps;

TooManyHeaps is raised when CreateHeap is called and there are already
MaxHeaps allocated. Fatal even if handled (raises ExitProgram when returned to).

Dynamic Pascal Library - 32

exception AccentError(R: GeneralReturn; M: String):
Accent did not return success from some system call.

Parameters:
R - The return value from Accent.
M - A message describing what the caller was doing.

exception BadHeap(H: HeapNumber);
BadHeap is raised when the heap passed to New is invalid. This may mean that
the heap has been improperly modified or that the pointer itself is improper or
uninitialized. (It should be initialized with CreateHeap.)

Parameters:
H - Pointer that caused the error.

exception BadAlignment; _
Raised if the alignment to NewP is not a power of two.

InitDynamic
Initializes Pascal dynamic memory allocation

Calt: procedure InitDynamic
InitDynamic must be called only once and before any call to any other routine in this module.

CreateHeap

Validate memory for a heap and initialize its free list.

Call: function CreateHeap : HeapNumber
Resuit: HeapNumber of the new heap.
Exceptions: TooManyHeaps - If the process is already using MaxHeaps number of heaps
ResetHeap
Return all storage in heap S to free list.
Cail: procedure ResetHeap(S : HeapNumber)
Parameters: s - HeapNumber of the heap that is to be reinitialized.
DestroyHeap

Release storage for heap S

Call: procedure DestroyHeap(S : Heap Number)

Parameters: s - HeapNumber of heap to destroy.

DisposeP

Pascal Library - 33 Dynamic

Deallocate memory

Call:

Parameters:

Exceptions:

procedure DisposeP(
var Where : pointer;
Len : integer)

Where - Pointer to the record to release.
Len - Length in words.

BadHeap - if the record is in some heap that does not have reasonable values in
the control fields.

BadPointer - if Where + Length extends off the end of heap, or if the node to be
Disposed overlaps some node that is already free.

NilPointer

Normally the node pointed to by where is added to the free list of the heap in which it was allocated.
if the iength of the node is greater than MaxAvail, then the cell is released with invalidateMemory.
Otherwise it is assumed to be part of a heap starting at the next lower multiple of HeapLimit + 1.

NewP

Alloacate Memory

Call:

Parameters:

Exceptions:

procedure NewP('

S : HeapNumber;

A : integer;
var Where : pointer;

L : integer)

s - Number of heap in which to allocate. 0 means the default data heap.

A - Alignment of node in words relative to beginning of segment. Must be a power
of 2. Orepresents 2**16, the maximum value.

Where - Set to point to the memory that was allocated. If the data segment is full
and cannot be increased, P is set to nil.

L - Length in words. O represents 2**16, the maximum. Negative values are
interpreted as (L + 2**16).

FullMemory -if NewP tries to expand the segment, but there is not enough
physical memory to do so.

Allocates a new node in the specified heap. If the size of the requested node is greater than the size
of the heap, the storage is allocated by using the ValidateMemory kernel call.

Pascal Library - 34 Except

11 Except: Exporter of exceptions

Implementers:

Abstract:

File:

John Strait
George Robertson
Eugene Ball

Provides runtime support for Pascal exceptions. Exports the definitions for many
of the standard exceptions.

except.pas

Other modules that export exceptions are: Dynamic,EtherUser,Pascalinit, Pmatch,Reader,
Spice _String, Stream and TimeUser.

Exported Exceptions:

Exception
Exception
Exception
Exception
Exception
Exception
Exception
Exception
Exception
Exception
~Exception
Exception
Exception
Exception
Exception
Exception
Exception
Exception
Exception
Exception

RaiseP

Abort(Message: String);
Dump(Message: String);

DivZero;
MulOvfi;
Strindx;
StrLong;
InxCase;
UndfQcd;
UndfInt;
MParity;
EStack;
OvfiLI;
NormMsg;
EmergMsg;
UndReal;
OvrReal;
RtoIOvf1;

RealDivZero;

NextOp;
BadExit;

division by zero

overflow in multiplication

string index out of range -

string to be assigned is too long

array index or case expression out of range
execution of an undefined Q-code

undefined device interrupt detected

memory parity error

E-stack wasn’t empty at INCDDS

Overflow in conversion to integer from Long Integer
normal IPC msg pending _
emergency IPC msg pending

floating point underflow

floating point overflow

floating point truncate error

floating point divide by zero

NextOp across a page boundary

EXITT or EXGO falling off stack

RaiseP is called to raise an exception.

Call:

Parameters:

procedure RaiseP(ES, ER, PStart, PEnd: Integer)

ER - Routine number of the exception to be raised.

ES - Segment number of the exception to be raised.
PStart - Pointer to the original parameters (as an offset from the base of the stack).

PEnd - Pointer to the first word after the original parameters (as an offset from the
base of the stack).

Pascal Library - 35 Except

The compiler generates a call to RaiseP in response to
raise SomeException(original parameters)

in the following way

Push original parameters onto the MStack. RAISE SegmentNumber(SomeException)
RoutineNumber(SomeException) ParameterSize

The microcode calls RaiseP in the following way.

Push parameters onto the MStack if appropriate. ParameterSize : = WordsOfParameters. Error: =
ErrorNumber, Goto{CallRaise).

Where CallRaise does the following.

SaveTP := TP. Push ExcSeg onto the MStack. Push Error onto the MStack. Push SaveTP-
ParameterSize + 1 onto the MStack. Push SaveTP + 1 onto the MStack. call RaiseP.

InitExceptions

InitExceptions tells the microcode what segment number to use when raising its own
exceptions. The segment number is the one that the system assigns to this module.

Call: procedure InitExceptions

ExtraCmdParse Pascal Library - 36

12 ExtraCmdParse: More help in parsing a command line

Implementers: Brad Myers
John B. Brodie

Abstract: The modules CommandParse and ExtraCmdParse provide routines intended to
ease the task of recognizing the "standard" command syntax conventions. See
the section on CommandParse for a explaination of parsing conventions.

The routines provided by ExtraCommand parse input from Command Files. If you
are writing a really first class utility which wants to be able to handle input from
command files as well as single line input, you should use these parsing routines
along with the command file management routines in CommandParse.

ExtraCmdParse also provides routines to get user input from the console and to
ask yes/no questions of the user.

Files: extracmdparse.pas, cmdparse.pas

Exported Types

Const (* anomolous conditions reported by GetCmd and GetShellCmd *)
Cmd_NotFound = WS_NotFound; (* first input word not
found in search table *)
WS_NotUnique; (* first input word-prefix
not unique *)

Cmd_NotUnique

Cmd_EmptyCmdLine = -3; (* user line was empty *)

Cmd_NotInsMaybeSwitches = -4; (* user line contained no inputs
but maybe has switches *)

Cmd_SomeError = -5, (* some error has occured --

code is 1in ErrorGR *)

(* indicators returned by GetConfirm *)

Confirm_YES = 1;
Confirm_NO = 2;
Confirm_Switches = 3;
Prompt_Indention_String = ' ';(* amount to indent prompts for params *)

GetCmd

GetCmd will obtain a command input from the top file on the given file list. Note that the
top file may be the console. GetCmd will completely parse the input line. This routine and
GetShellCmd are designed for utilities that expect the first input word to be a
subcommand specifiying an operation for the utility to perform. Thus a match for the first
word is searched for in the specified SearchTable.

Call: Function GetCmd (Prompt : Cmnd_String;
SearchTable: pWord_Search_Table;

var CmdName: Cmnd_String;
var InF: pCommand_File_List;

var inputs: pCommand_Word_List;

Pascal Library - 37 ExtraCmdParse

var outputs: pCommand_Word_List;

var switches: pCommand_Word_List;

var ErrorGR: GeneralReturn): integer;
Parameters: Prompt - the prompt string to print for the user. Do not put the prompt separator

() on the end of the prompt; GetCmd will do that for you. If reading from a
command file, GetCmd changes the prompt appropriately. Prompt is always
displayed on the current default output file.

SearchTable - the word search in which to attempt to locate the user’s first input.
CmdName - buffer to contain the text of the user’s first input.

InF - command file list on which to nest command files (if any).

inputs - list to contain the user’s input words.

outputs - list to contain the user's output words.

switches - list to contain the user’s switch selections.

ErrorGR - GeneralReturn code indicating status of the parse processing.

Result: Returns the UniqueWordindex of WordKey for CmdName in SearchTable or
Cmd_NotFound - first input word not found in SearchTable
Cmd_NotUnique - first input word not unique
Cmd_EmptyCmdLine - command line was empty

Cmd_NotinsMaybeSwitches
- no inputs appeared on the line
-but there may be switches
Cmd_SomeError -error was discovered (ErrorGR contains error code)

on the current default output file.

After parsing the command line, GetCmd will examine the parsed structures to determine if a
command file reference was the first (and only) item in the command. If a command file is found, that
file is prepended to the command file list and a null command is signalled to the caller. If no command
file is found, then an attempt to locate the first input argument in the given search iabie is made. The
results of that search are returned to the caller along with the text of the first argument, and the lists of
inputs (sans first arg), outputs, and switches.

Assumes that InitCmdFile and InitCommandParse has been called. Also assumes that SearchTable
has been appropriately initialized via InitWordSearchTable and AddSearchWord calls and that the
current default output file has been rewritten.

ExtraCmdParse Pascal Library - 38

GetShellCmd

This routine is similar to GetCmd except that it works on the command line specified to
the Shell. It is should be used by programs that use GetCmd so that the Shell command
line may be parsed in a similar manner. Command files are handled by GetShellCmd in a
manner like GetCmd.

Call: Function GetShellCmd(SearchTable: pWord_Search_Table;
var CmdName: Cmnd_String;
var inF: pCommand_File_List;
var inputs: pCommand_Word_List;
var outputs: pCommand_Word_List;
var switches: pCommand_Word_List;
var ErrorGR: GeneralReturn): integer

Parameters: SearchTable - the word search in which to attempt to locate the user’s first input.
CmdName - buffer to contain the text of the user’s first input.
InF - command file list on which to nest command files (if any).
inputs - list to contain the user’s input words.
outputs - list to contain the user’s output words.
switches - list to contain the user’s switch selections.

ErrorGR - GeneralReturn code indicating status of the parse processing.

Result: Identical to GetCmd. Viz: returns the UniqueWordindex of WordKey for
CmdName in SearchTable or
Cmd_NotFound - first input word not found in SearchTable
Cmd_NotUnique - first input word not unique
Cmd_EmptyCmdLine - command line was empty

Cmd_NotinsMaybeSwitches
- no inputs appeared on the line
- but there may be switches
Cmd_SomeError - error was discovered {ErrcrGR contains error code)

Assumes that InitCmdFile and InitCommandParse have been called and that SearchTable has been
appropriately initialized via InitWordSearchTable and AddSearchWord calls.

GetShellCmd performs basically the same processing as GetCmd. Except that GetShellCmd does
not prompt the user for input, but rather utilizes the word list information passed to the utility by the
Shell.

A short example of GetCmd/GetShellCmd:

InitCmdFile(Input_File_List);
initCommandParse;

Pascal Library - 39 ExtraCmdParse

(* get the first input from the shell *)

Cmd_Index : = GetShellCmd(CmdTable,
Cmd_Name,
Input File_List,
Inputs, Outputs, Switches,
GR);

(* command file nesting handled transparently to the caller *)

while The_Utility Has_ Something_To_Do do
begin
case Cmd_Index of
Cmd_SomeError: GRWriteStdError(GR, GR_whatever,);
’ (* see SaltError *)
Cmd Notins MaybeSwitches: doSwitches(Switches);
Cmd_EmptyCmdLine: (* do nothing *)
Cmd_NotUnique: GRWriteStdError(ErCmdNotUnique, GR_whateverVerb_String);
Cmd_NotFound: GRWriteStdError(ErBadCmd, GR_whatever, Verb_String);
some_cmd _key: do_some_cmd(whatever the_command_needs,.....
{inputs, Cutputs, Switches);
(* deal with all inputs, outputs, and switches *)
(* as is appropriate for the given command *)

some_other_cmd _key:
do_some_other_cmd(whatever that command_needs,.....
Inputs, Outputs, Switches);
(* deal with all inputs, outputs, and switches *)
(* as is appropriate for the given command verb *)

end;
(* gst the next input from the user *)

Cmd_index : = GetCmd(’utility name’,
CmdTabile,
Cmd_Name,
Input File List,
Inputs, Outputs, Switches,
GR);

(* command file nesting handled transparently to the caller *)

end;

ExtraCmdParse Pascal Library - 40

GetParsedUserinput

GetParsedUserlnput will obtain a command input from the top file on the given command
list. It will then parse that command and return to the caller the lists of inputs, outputs,
and switches. This routine is intended for those applications in which the rules for parsing
user input into words is desired but for which the application desires to perform all
processing of the parsed words. (That is, use this if you don’t want the command-file and
word-identification effects of the GetCmd routine).

Call: Function GetParsedUserInput(prompt: Cmnd_String;
var inF: pCommand_File_List;
var inputs: pCommand_Word_List;
var outputs: pCommand_Word_List;
var switches: pCommand_Word_List)
: GeneralReturn

Parameters: Prompt - the prompt string to print for the user. Prompt string is displayed as is,
no modifications made. Prompt is always dispilayed on the current default output
file.

InF - command file list from which to read the user’s command.
inputs - list to contain the user’s input words.

outputs - list to contain the user’s output words.

switches - list to contain the user’s switch selections.

Result: Returns a GeneralReturn code indicating either Success, if all went well, or an
appropriate error code.

Assumes that InitCmdFile and InitCommandParse have been called and that the current default
output file has been rewritten.

GetParsedUserlinput is a general routine used to prompt the user for input and then return parsed
data to the caller. It makes no assumptions about the meaning of the words it reads (other than the
normal syntactic rules). Thus it does not automatically nest command files nor does it attempt to
identify the first input word.

GetConfirm

Handles a question that is to be answered Yes or No where the answer should come from
the keyboard. Prompt followed by default (if any) is printed. Prompt may be nuil. If illegal
input is typed, GetConfirm re-asks but doesn’t use prompt.

Calt: Function GetConfirm (prompt : Cmnd_String;
def : integer;
var switches: pCommand_Word_List)
: integer
Parameters: Prompt - the prompt to display for question. Prompt is always displayed on the

current default output file.

Pascal Library - 41 ExtraCmdParse

Def - Index of the default answer: Confirm_YES = true or yes; Confirm NO = false
or no; other numbers mean no defaulit.

Switches - set to NIL or a list of switches specified. Be sure to handle the switches
first since one might be HELP.

Result: Confirm_YES if true or yes.
Confirm_NQ if false or no.

Confirm_Switches if naked return when no default and switches <> NIL. This
means that there was no argument but a switch was entered. If an answer is still
needed, the application should re-call GetConfirm.

Assumes that InitCmdFile and InitCommandParse have been called and that the current default
output file has been rewritten.

The following semantic rule are enforced for the user’s answer;

1) no outputs allowed (e.g. ~ is illegal)

2) no command files allowed (e.g. is illegal)

3) only zero or one inputs allowed.

4) if zero inputs then either switch(es) must exist or the line must be empty.
5) if one input then NO switch(es) must exist and it must be either Yes or No.

GetCharacterPool

GetCharacterPool should be used by those applications which wish to perform their own
command input line parsing. This routine will interact with the user to obtain an
unbounded raw pool of characters.

Call:
Procedure GetCharacterPool(prompt: Cmnd_String;
var InputFile: Text;
var ChPool: pCharacter_Pool;
var PoollLength: Char_Pool_Index)
Parameters: Prompt - the prompt string to print for the user. GetCharacterPool displays this
string exactiy as given; no changes made. Prompt is always displayed on the
current default output file.
InputFile - the file from which to read the pool of chars. If this is set to input the
characters will be read from the console.
ChPool - a pointer to the pool read.
PcolLength - number of characters read.
Result: All results returned via the parameters.

Assumes that the current default output file has been rewritten.

ExtraCmdParse Pascal Library - 42

GetCharacterPool is used to obtain ffom the user a raw hunk of characters. GetCharacterPool

makes no assumptions about the meaning of the characters nor does it attempt any processing of the
characters.

Note that since GetCharacterPool attempts no interpretation of the characters it reads, it will not
recognize quoted end-of-line characters and therefore it will not read continuation lines.

Pascal Library - 43 IPCRecordlO

13 IPCRecordlO: Simplé routines to send and receive messages

Implementer: Richard F. Rashid

Abstract: Routines for sending and receiving simple Pascal records.

File: ipcrecordio.pas

SendRecord

Send a Pascal record (which does not contain a port reference) to a port.

Call: function SendRecord(
localport : Port;
remoteport : Port;
id : long;
MsgType : long;
recptr : Pointer;
recsize : integer)

: GeneralReturn;

Parameters: localport - a port in the current process (usually used for a reply to the sent
message, but may be nothing).
remoteport - port to send the message to
id - 1D to use for the message (a 32 bit number)
msgtype - NORMALMSG or EMERGENCYMSG
recptr - Pointer to a record to send
recsize - Type size IN BITS of the record

Result: The return of the send operation (see Accent Manual)

This routine packages up a simple Pascal record (i.e. no pointers, no ports) and sends it off to a
process which will receive it using the RecRecord call.

RecRecord

Receives a Pascal record from a port.

Callt: function RecRecord(
var localport ¢ Port;
var remoteport ' : Port;
var id : Tong;
var MsgType : long;
var recptr : : Pointer;
var recsize : integer)

: GeneralReturn;

IPCRecordlO Pascal Library - 44

Parameters: localport - a port in the current process on which the message was received
remoteport - reply port if any
id - ID of the message (a 32 bit number)
msgtype - NORMALMSG or EMERGENCYMSG
recptr - Pointer to the received record
recsize - Type size IN BITS of the record
Resulit: Same as for Receive (see Accent Manual) plus BadMsgType
RecRecord receives a message containing a record, allocating space for the record automatically.
It is meant to be used with SendRecord (above) and checks to see if the received message is
compatible with the format used by SendRecord. If it is, the data pointer is placed in recptr and the
other var parameters are updated. If the incoming message is bad in some way, either the error
return from Receive will be returned or if the Receive succeeds but the message is of the wrong type,

a BadMsgType will be returned. In all cases the last message received is kept in the exported
LastRecMsg and can be examined there upon error.

Pascal Library - 45 OldTimeStamp

14 OldTimeStamp: Convert between POS and Accent date
formats

Implementer: David Golub
Abstract: OldTimeStamp is a compatibility module for converting between new time values
and POS timestamps.
Files: oldtimestamp.pas, timedefs.pas
- Exported Types
Intér‘na]_Time = record Accent time standard, GMT
Weeks : integer; Number of weeks since 17-Nov-1858
MSeclInWeek : long; Number of milliseconds in that week
end;

TiheStamp = packed record
the fields in this record are ordered this way to optimize bits

Hour: 0..23;

Day: 1..31;

Second: 0..59;

Minute: 0..59;

Month: 1..12;

Year: 0..63; year since 1980
end;

OldCurrentTime
Gets current time as an old style time stamp.

Call: function 01dCurrentTime: TimeStamp;
Result: TimeStamp for time, in system time zone.

NewTcoOldTime
Converts a new internal_time record to an old time stamp.

Call: function NewToOldTime(NewTime: Internal_Time):TimeStamp;
Result: Time stamp representing NewTime, in system time zone.

OldToNewTime
Converts an old time stamp to a new internal time record.

Call: function OldToNewTime(01dTime: TimeStamp): Internal_Time;

Result: Internal time representing OldTime.

Pascallnit Pascal Library - 46

15 Pascallnit:Process Initialization and Exporter of server ports

Implementers: Eugene Ball
Doug Philips
Michael Jones

Abstract: This module is used to complete the creation of a new process. It contains the
first routine invoked in a process before the main program is called. It initializes
the server environments and state variables for a process.

File: pascalinit.pas

Exported Types

Exported Variables:

UsrCmdLine : CommandBlock; Command passed to user program
InPorts : ptrPortArray; Ports inherited from parent
InPortsCnt : long Number of ports in InPorts
TimePort i port; Port to Time Server

SesPort : port; Port to Sesame Server

EMPort ¢ port; Port to Environment Manager
PMPort : port; Port to Process Manager
NameServerPor : port; Port to Net message Server
UserTypescript : Port; This process' typescript
UserWindow : Port; This process' window
UserWindowShared : Boolean; TRUE if window shared with parent
TypescriptPort ¢ Port; Only good for making new typescripts
SapphPort : Port; Only good for making new windows

Exported Exceptions:

Exception ExitProgram;

Anyone can raise this to exit a program and pass a SUCCESS return code to the
program’s caller. Handling this is dubious at best. Nothing in the boot file

currently handles this exception.

Exception GRError(GR: GeneralReturn);
GRError is raised whenever a module wishes to signal a GeneralReturn error to be
handled elsewhere. GR is the value of the GeneralReturn being signaled.

Pascal Library - 47 Pascallnit

InitPascal

This is the first routine to run in an empty address space. It is called implicitly by Aload
and should not ever be called by a user program.

Call: Procedure InitPascal

A spawn causes Al.oad to initialize the new process state such that InitPascal will be the initial entry
point of a pascal program when a resume is done. Spawn then does a Resume and InitPascal sets up
the process state and calls the main program. '

WARNING: It is critical that the routine number for InitPascal remain 0 for all time. Aload counts
upon this fact.

InitProcess

This routine initializes a pascal process. This routine is exported mainly for use in
spawn. It can only be used when there is an initial message to receive.

Call: Procedure InitPascal (AmIClone : BOOLEAN)

Parameters: AmliClone - Used to indicate whether the caller is a copy of some other process
(fork, cione). True means caller was created with “Fork””. False means caller was
"CreateProcess’ed.

How to modify the init message:

If you want to add a new kind of object to be passed to each process, do: For each thing you want
to add, do the following: Add a XType field (of type 'TypeType’) and an X field (of whatever type you
are using). Add a CheckTypeType call in the corresponding place in the code below. After the
CheckTypeType call add the code to extract the value just checked. That's all you have to do in this
module. You have to then go into spawn and follow the directions there.

If you want to change the default set of ports passed to each process, do: For each port you want to
add, do the fcliowing: Between 'FirstUserlndex’ and the thing before it, add a constant name
definition. When you are all done, make REAL sure that FirstUserindex is 1 greater than the last
named index. Add a statment to InitProcess that extracts the named port into wherever it goes.
That's all you have to do in this module. You have to then go into spawn and follow the directions
there.

DisablePrivs
Disable physical memory access and supervisor access for a process.

Call: Function DisablePrivs(Proc: PORT): GeneralReturn;
Parameters: Proc - The Kernel port of the process to affect.

Completion Code:
Success - Privileges have not been disabled.

Failure - Privileges not affected. This shouldn’t ever occur unless you violate the
precondition.

Pascallnit Pascal Library - 48

This procedure will only work if Proc is 'KERNELPORT’ (i.e. you are modifying your own privileges),
or if the process to be affected is suspended.

EnablePrivs
Enable physical memory access and supervisor access for a process.

Call: Function EnablePrivs(Proc: PORT): GeneralReturn;
Parameters: Proc - The Kernel port of the process to affect.

Completion Code:
Success - Privileges have been enabled.

Failure - Privileges not affected. This shouldn’t ever occur unless you violate the
precondition.

This p}ocedure will only work if Proc is 'KERNELPORT’ (i.e. you are modifying your own privileges),
or if the process to be affected is suspended.

Pascal Library - 49 PathName

16 PathName: A Logical Name Interface to Sesame

Implementers: Michael B. Jones
David Golub

Abstract: The following routines provide a non-primitive interface to the Sesame File Server.
: ’ These routines make use of both Environment Manager functions and Name
Server functions. All pathnames should be handled by routines at this level.

Files: pathname.pas, sesamedefs.pas envmgrdefs.pas

Exported Types

APath_Name:
A full Name Server pathname string.

APath_HName
Path_Name_Size

string[Path_Name_Size]; An abs. pathname
255; Number of characters in a Path_.Name

Entry_List = t+ Entry_List_Array;
Entry_List_Array = array [0..0] of Entry_List_Record; hack
Entry_List_Record: ScanNames returns array of Entry List Record.
Entry_List_Record = record

EntryName : Entry_Name;

EntryVersion : long;

EntryType : Entry_Type;

NameStatus : Name_Status;

end; '

Entry_Type: .
The kinds of objects which can be in the name data base.

Entry_Type =0 .. #77777;
Entry_Al1 = 0; Special value referencing all entry types
Entry_File =1

; Entry Data is a File ID
: Name refers to another level of the

name hierarchy. Entry Data is empty.
3; Entry Data is a port
4 .. #377; These values reserved for expansion
#400 .. #77777; \Values available to the user

Entry_Directory

Entry_Port
Entry_RESERVED
Entry_UserDefined

Env_Var_MNamse:
The name string for an environment variable. The syntax of the name is the same
as for an arbitrary entry name in the name server,

Env_Var_Name = stri'ng[Env_VarName_Size];
Env_VarName_Size = Entry_Name_Size;

Extension_List:
a list of name extensions to tack onto a pathname (before any version number)
when doing an extension search. Each extension in the list must be terminated by
the semicolon (;) character.

PathName Pascal Library - 50

Extension_List
Extension_String_Size

string[Extension_String_Size];
80;

File_Data: A pointerto a file mapped into memory

File_Data = pointer; A pointer to data for file calls

Name_Flags:
Flags giving desired treatment of names in Name Server calls.

Note that specific flag values may be illegal for certain calls, and must be zero.

0 .. #3;

#000001; Allow deleted names

#000002; Disallow normal (not deleted) names
#177774; These bits reserved for expansion

Name_Flags
NFlag_Deleted
NFlag_NoNormal
NFlag_RESERVED

Name_Status:
Flags useful for determining the disposition of a name in the name data base.

0 .. #7;

Name_Status

NStat_Deleted
NStat_High
NStat_Low
NStat_RESERVED

#000001; Setif name is deleted

#000002; Setif name is highest undeleted version
#000004; Setif name is lowest undeleted version p
#177770; These bits reserved for expansion

Path_Name: An absolute, relative, or logical non-wild pathname. Wild_Path_Name:
A potentially wild pathname.

Path_Name
Wild_Path_Name

string[Path_Name_Size];
string[Path_Name_Size];

16.1 Interfaces to Sesame Calls

These calls accept either an absolute, relative or logical pathname. They should be used when a
program does not necessarily have an absolute pathname.

ReadFile

Readiiig a file

Cali: function ReadFile(
Var PathName : Path_Name;
Var Data : File_Data;
Var ByteCount : Tong)

: GeneralReturn;

Parameters: PathName - Path name of the file to be read. Is returned set to the absolute
pathname of the file read.

Data - Is set to a pointer to the returned data.

Pascal Library - 51 PathName

ByteCount - Is set to number of bytes read.

Completion Code:
success - the data was successfully mapped into memory

NameNotFound - no entry was found with the name PathName
NotAFile - the entry found with the name PathName was not a file
EnvVariableNotFound - The default search list was incorrect.

The ReadFile call is equivalent to calling FindFileName and then using the returned absolute
pathname in a call to SubReadFile.

ReadExtendedFile

Reading one of a list of files

Call: function ReadExtendedFile(
Var PathName : Path_Name;
ExtensionList : Extension_List;
ImplicitSearchlList : Env_Var_Name;
Var Data : : File_Data;
Var ByteCount : long)
: GeneralReturn;
Parameters: PathName - The pathname of the file to be read. Returned set to the absolute

pathname of the file read.
ExtensionList - A list of possible filename extensions.

ImplicitSearchList - Name of the search list to use if a partial pathname is
supplied. If blank, the list “Default” is used.

Data - Set to point to the returned data
ByteCount - Set to number of bytes read

Cempletion Code:
success - the data was successfully mapped into memory

NameNotFound - no entry was found under apathname
NotAFile - the entry found under apathname was not a file
EnvVariabieNotFound - The impiicit or Defauit search list was incorrect.

The ReadExtendedFile call is equivalent to calling FindExtendedFileName followed by a call to
SubReadFile with the returned absolute pathname with extension.

PathName Pascal Library - 52

WriteFile
Writing a file
Call: function WriteFile(
Var PathName : Path_Name;
Data : File_Data;
ByteCount : long)
: GeneralReturn;

Parameters: PathName - Path name of the file to be written. Is returned set to the absolute

pathname of the file written.
Data - Pointer to the data to be written.
ByteCount - Number of bytes to write.

Completion Code:
success - the data was written under the name returned

InvalidVersion - the explicit version number was less than or equal to that of an
existing version

The WriteFile call is equivalent to calling ExpandPathName followed by a call to SubWriteFile with
the returned absclute pathname.

16.2 Name searching routines

CompletePathName

Do file-name completion on the filename indicated by WildPathName.

Call: function CompletePathName(
var WildPathName : Wild_Path_Name;
ImplicitSearchList : Env_Var_Name;
FirstOnly : boolean;
var Cursor ¢ integer)
: long;
Parameters: WildPathName - The partial filename to be expanded. Changed to indicate the

(partially) completed filename.

ImplicitSearchList - Name of the search list to use if a partial path name is
supplied.

FirstOnly - If true, only look in the first item of the search list. Shouid ordinarily be
false.

Cursor - Position in WildPathName AFTER which the implicit '*' should be
inserted. Changed to indicate the corresponding position in the expanded

Pascal Library - 53 PathName

WildPathName. For now, the corresponding position is FORCED to be at the END
of an entry name. Most common usage is Cursor = length(WildPathName).

Result: number of names that matched WildPathName. 0 => no matches at all;
WildPathName unchanged 1 => unique match; WildPathName is the expanded
name. n =) several matches; WildPathName is the part that matches them all.

CompletePathName finds the number of names that will match a pathname with some wildcard
component. WildPathName is taken relative to ImplicitSearchList or if that is blank relative to
“Default”.

ExpandPathName
Expanding a pathname into an absolute pathname
Call: function ExpandPathName(
Var PathName : Wild_Path_Name;
ImplicitSearchList : Env_Var_Name)

: GeneralReturn;

Parameters: PathName - the (potentially) relative pathname to be expanded. Returned set to
absolute pathname

ImplicitSearchList - the pathname is to be interpreted as relative to this logical
name. If it is blank, the logical name “‘Default” is used.

Completion Code:
success - the name search was successful

EnvVariableNotFound - the specified logical name was not defined

Searchlooplist - a recursively defined logical name resulted in a logical name
expansion loop

BadName - PathName was incorrectly formatted.

The ExpandName call accepts a pathname relative to an implicit logical name, and returns the
corresponding absolute pathname after the logical name is expanded.

If no implicit logical name is specified in the call and the pathname is a relative pathname, then the
expansion is done relative to the logical name “Default” (resulting in an expansion in the current
directory). The user may of course, override the default expansion by specifying either an absolute
pathname or an explicit logical name in the pathname parameter. Logical names will be recursively
flattened as necessary to complete the expansion. Undefined logical names will cause the expansion
to fail with an EnvVariableVarNotFound error.

This call differs from FindName in that only a macro expansion is done, and no attempt is made to
verify that the name previously existed or is even valid. Whereas FindName should normally be used
before a LookupName type of operation, ExpandName should normally be used before an EnterName
type of operation. Note that only the first element in the logical name search list is used by this call.

PathName

Pascal Library - 54

FindPathName

Performing a name search for any type of name

Call:

Parameters:

function FindPathName(

Var PathName : Path_Name;
ImplicitSearchlList : Env_Var_Name;
FirstOnly : boolean;

Var EntryType : Entry_Type;

Var NameStatus : Name_Status)

: GeneralReturn;
PathName - the relative, absolute, or logical pathname to be searched for. Is
returned set to the absolute pathname that was found.
ImplicitSearchlList - if pathname was a relative pathname then the pathname is to
be interpreted as relative to this search list. If it is blank, the logical name

“Default” is used.

FirstOnly - if set to first, only the first name in the search list will be used; if set to
full, a complete search will be performed.

EntryType - Set to the type value of the entry found

NameStatus - Set to low version or high version

Completion Code:

success - the name search was successful

NameNotFound - the specified name was not found
EnvVariableNotFound - the specified logical name was not defined
BadName - PathName was incorrectly formatted.

SearchLooplList - a recursively defined logical name resulted in a logical name
expansion loop

The FindPathName call searches for a pathname relative to the implicit logical name, returning the
name found and the entry type associated with it. If no logical name is specified in the call and the
pathname is a relative pathname, then the search is done using the logical name “Default”. The user
may of course, override the implicit logical name given in the call by specifying either an absolute
pathname or an explicit logical name in the pathname parameter. Logical names will be recursively
expanded as necessary to complete the search. Except for the case that the top-level logical name is
undefined, errors in the search will not terminate it. Thus, if a name in a list is undefined, it will be

effectively ignored.

In summary, there are three cases of pathnames:

1. absolute pathname -- requires only a TestName on the name to get the entry type.

Pascal Library - 55 PathName

2. relative pathname -- requires the flattening of the implicit logical name, and then
iterating down the search list testing for pathname with TestName until it is found.

3. logical pathname -- requires the parsing off the logical name part, the flattening of the
logical name, and then iterating down the search list testing for pathname with TestName
until it is found.

FindFileName

Performing a name search for a file name

Call: function FindFileName(
Var PathName : Path_Name;
ImplicitSearchlList : Env_Var_Name;
FirstOnly : boolean)

: GeneralReturn;
Parameters: PathName - the relative, absolute, or logical pathname to be searched for. Is
returned set to the absolute pathname that was found.
ImplicitSearchList - if pathname was a relative pathname then the pathname is to
be interpreted as relative to this search list. If it is blank, the logical name

“Default” is used.

FirstOnly - if set to first, only the first name in the search list will be used; if set to
full, a complete search will be performed.

Completion Code:
success - the name search was successful

NameNotFound - the specified name was not found
EnvVariableNotFound - the specified logical name was not defined
BadName - PathName was incorrectly formatted.

NotAFile - the name did not refer to a file

SearchLooplList - a recursively defined logical name resulted in a logical name
expansion loop

Is the same as FindPathName but only looks for entries of type file

FindExtendedPathName

Performing a name search with extensions

Call: function FindExtendedPathName(
Var PathName : Path_Name;
ExtensionList : Extension_List;

ImplicitSearchList : Env_Var_Name;

PathName

Parameters:

Pascal Library - 56

FirstOnly (: boolean;
Var EntryType : Entry_Type;
Var NameStatus : Name_Status)

: GeneralReturn;
PathName - the relative, absolute, or logical pathname to be searched for.
Changed to the name actually found.

ExtensionlList - The list of extensions. Each name in the extension list is
terminated by a semicolon (’;’). A null name implies a null extension.

ImplicitSearchList - if pathname was a relative pathname then the pathname is to
be interpreted as relative to this search list. If blank, the logical name “Default” is
used.

FirstOnly - if set to first, only the first name in the search list will be used; if set to
full, a complete search will be performed.

NameStatus - Set to low version or high version

Completion Code:

success - the name search was successful

NameNotFound - the specified name was not found
EnvVariableNotFound - the specified logical name was not defined
BadName - PathName was incorrectly formatted.

SearchLooplList - a recursively defined logical name resulted in a logical name
expansion loop

The FindExtendedPathName call is like the FindPathName call with the additional function that it
performs a two-dimensional search: first down the extension list and then down the directory search
list. Each extension string is successively concatenated to the terminal component of the name and
tried, successively in each search list directory (if an absolute pathname was not specified) until a

match is found.

FindExtendedFileName

Performing a file name search with extensions

Call:

Parameters:

function FindExtendedFileName(

Var PathName : Path_Name;
ExtensionList : Extension_List;
ImplicitSearchlList : Env_Var_Name;
FirstOnly : boolean)

: GeneralReturn;

PathName - the relative, absolute, or logical pathname to be searched for.
Changed to the name actually found.

Pascal Library - 57 PathName

ExtensionList - The list of extensions. Each name in the extension list is
terminated by a semicolon (';). A null name implies a null extension. An empty list
means that no extensions are applied.

ImplicitSearchList - if pathname was a relative pathname then the pathname is to
be interpreted as relative to this search list. If blank, the logical name "Default” is
used.

FirstOnly - if set to first, only the first name in the search list will be used,; if set to
full, a complete search will be performed.

Completion Code:
success - the name search was successful

NameNotFound - the specified name was not found
EnvVariableNotFound - the specified logical name was not defined
BadName - PathName was incorrectly formatted.

SearchlLooplList - a recursively defined logical name resulted in a logical name
expansion loop

NotAFile - name was found but was not a file

The FindExtendedFileName is the same as the FindExtendedPathName except that it only searches
for names of type file.
FindTypedName

Performing a name search for any specific type of name with an optional list of
extensions

Call: function FindTypedName(
Var PathName : Path_Name;
ExtensionList : Extension_List;
ImplicitSearchlList : Env_Var_Name;
FirstOnly : boolean;
Var EntryType : Entry_Type;
Var NameStatus : Mame_Status)

: GeneralReturn;

Parameters: PathName - the relative, absolute, or logical pathname to be searched for. Is
returned set to the absolute pathname that was found.

ExtensionList - The list of extensions. Each name in the extension list is
terminated by a semicolon (*;"). A null name implies a null extension.

ImplicitSearchList - if pathname was a relative pathname then the pathname is to
be interpreted as relative to this search list. If it is blank, the logical name
“Default” is used.

PathName Pascal Library - 58

FirstOnly - if set to first, only the first name in the search list will be used,; if set to
full, a complete search will be performed.

EntryType - Entry type being searched for. Entry_all finds the first one, and then
sets EntryType to the type found.

NameStatus - Set to low version or high version

Completion Code:
success - the name search was successful

NameNotFound - the specified name was not found
EnvVariableNotFound - the specified logical name was not defined
BadName - PathName was incorrectly formatted.

SearchlLooplist - a recursively defined logical name resulted in a logical name
expansion loop

ImproperEhtryType - name was found but was of wrong type

The FindTypedName call is like the FindExtendedPathName call except that it searches for a
specific type of name. The extension list may be empty.

FindWildPathnames

Finding all the matches for a wild-carded name using a search list

Call: function FindWildPathnames(

Var WildPathName : Path_Name;
ImplicitSearchList : Env_Var_Name;
FirstOnly : boolean;
NameFlags : Name_Flags;:
EntryType : Entry_Type;

Var FoundInFirst : boolean;

Var DirName : APath_Name;

Var EntrylList ¢ Entry_List;

vVar EntryListCnt : long)

: GeneralReturn;

¥

Parameters: WildPathName - the relative, absolute, or logical pathname to be searched for.
Cnly the terminal name component may have wild-card characters. Is returned set
to the absolute pathname that was found.

ImplicitSearchList - if pathname was a relative pathname then the pathname is to
be interpreted. as. relative to. this search list. If it is blank, the logical name
“Default” is used.

FirstOnly - if set to first, only the first name in the search list will be used; if set to
full, a complete search will be performed.

Pascal Library - 59 PathName

EntryType - the type value of the entries to return. Entry_all causes all types of
entries to be returned

FoundinFirst - Returned TRUE if and only if the first item in the search list
produced the match.

DirName - Returned set to the absolute pathname of the directory in which the
matches were found

EntryList - List of entry name, types, version and status as returned by
SesScanNames

EntryListCnt - Count of entries in EntryList

Completion Code:
success - the name search was successful

NameNotFound - the specified name was not found
EnvVariableNotFound - the specified logical name was not defined
BadName - PathName was incorrectly formatted.

SearchLooplList - a recursively defined logical name resulted in a logical name
expansion loop

Finds matches for a wildcarded name using a search list. For each item in the search list, the name
is looked up using SesScanNames. If any matches are found, the search stops and the results from
SesScanMNames are returned. Note that this routine may not be quite what you want -- it returns first
non-empty match-set, NOT the union of all the match-sets. Think about the distinction before
deciding whether this routine is appropriate for your application!

16.3 Name manipulation routines

ExtractSimpleName

Finding the terminal component and version number of a pathname.

Call: procedure ExtractSimpleName(
Name : Path_Name;
Var StartTerminal : integer;
Var StartVersion ¢ integer);
Parameters: Name - The pathname to check

StartTerminal - Returns the index of the first character of the terminal component
of the name. Will be length(Name) + 1 if the name is a directory name (ends with
).

StartVersion - Returns the index of the version suffix of name (at the ’;"). Will be
length(Name) + 1 if the name has no version.

PathName Pascal Library - 60

The ExtractSimpleName call returns the indices of the terminal component of the name and the
version number.

SimpleName
Return the terminal versionless component of a pathname.

Call: function SimpleName(
PathName : Path_Name)
: Entry_Name;

Parameters: PathName - The pathname from which to extract the terminal node.
Result: The terminal component of PathName.

Returns the terminal node of a name without a version number.

StripCurrent
Contracting an absolute pathname to a relative pathname when possible
Call: function StripCurrent(
Var WildPathName : Wild_Path_Name)

: GeneralReturn;

Parameters: WildPathName - the absolute pathname to be converted

Completion Code:
success - the absolute pathname was processed correctly

EnvVariableNotFound - the logical name “Current’” was undefined
Failure - The initial components of WildPathName are not the same as ““Current’'.
BadName - PathName was incorrectly formatted.

This routine may be called by an application in order to try to shorten an absolute pathname
returned by the Name Server into a relative pathname suitable for typeout to the user. If the initial path
components of WildPathName matched the first entry of the logicai name ""Current”, then the relative
pathname with the initial components removed is returned. Otherwise, the absolute pathname is
returned. A version number is included.

AddExtension
Add an extension name to a pathname

Call: Procedure AddExtension(
Var FileName : Path_Name;
Extension : String);

Pascal Library - 61 PathName

Parameters: FileName - Name to check. Itis changed if the extension is added.
Extension - The extension to add
Adds an extension to a file name if it is not already there.

ChangeExtension

Change an extension of a pathname

Call: Procedure ChangeExtensions(
Var Name : Path_Name;
EList : Extension_List; -
NewExt : string);
Parameters: Name - The path name to be modified.

EList - The list of extensions to check for and replace.
NewExt - The extension to add.

The ChangeExtension call removes any of a list of extensions from a file name if they are there and
then adds NewExt to the end.

NextExtension

Finding the next extension in a list.

Call: function NextExtension(:
Var EList : Extension_List)
string;
Parameters: Elist - the list of extensions to be modified
Result: the next extension

The NextExtension call retrieves the next extension from a list of them which are terminated by
semicolons. Removes the extension from the list.

RemoveExtension

Removing extensions
Call: Procedure RemoveExtension(
Var FileName : Path_Name;
Extension : String);
Parameters: FileName - The file name to check. It is altered to remove the extension if it is

there.

PathName Pascal Libran} - 62

Extension - The extension to remove.

The RemoveExtension removes an extension from a file name if it is there.

Index1Unquoted
Find an unquoted character in a pathname.
Cali: function Index1lUnquoted(
S : Wild_Path_Name;
c : char)
integer;
Parameters: S - The string to search

C - The character to find; it should not be ™"
Result: The index of the matching character, or zero if none.

Finds the first occurrence of C in S that is not preceded by a’ character.

IsQuotedChar
Look for quoted characters in a pathname
Call: function IsQuotedChar(
S : Wild_Path_Name;
Index : integer)
: boolean;
Parameters: S - The string to check.

Index - The index of the character to be checked.

Completion Code:
true - the character is quoted by preceding ' characters.

false - the character is not quoted.

Checks whether S{index] is preceded by a’ character.

Pascal Library - 63 PMatch

17 PMatch: Pattern Matching Routines

Implementers: Gene Ball
Michael B. Jones

Brad Meyers

Abstract: Does pattern matching on strings. Patterns accepted are as follows:
nEn matches 0 or more characters.
" matches exactly 1 character.

"*" matches '*’, other pattern chars can be quoted also.
File: pmatch.pas

Exported Types
pms255 = String[2565];

Exported exceptions

Exception BadPatterns; Raised if outPatt and inPatt do not have the same patterns
in the same order for PattMap

PattDebug

Sets the global debug flag
Call: procedure PattDebug(v : boolean)
Parameters: v - value to set debug to.

Changes debug value.

IsPattern

Tests to-see whether str contains any pattern matching characters.

Call: function IsPattern(
str : pms255)
: boolean
Parameters: sitr - string to test.

Result: true if str contains any pattern matching characters, otherwise false.

PMatch Pascal Library - 64

PattMatch
Compares str against pattern.
Call: function PattMatch(
var str, pattern : pms255)
:boolean
Parameters: str - full string to compare against pattern.

pattern - pattern to compare against. it can have special charactersin it.
Result: true if string matches pattern, otherwise false.

PattMap

Compares str against inpatt, putting the parts of Str that match Inpatt into the
corresponding places in Outpatt and returning the resuit.

Call: function PattMap(
’ var str,inpatt,outpatt,outstr 1pms255;
fold :boolean)
:boolean
Parameters: str - is full string to compare against pattern.

inpatt - is pattern to compare against. It can have special charactersin it.

outpatt - pattern to put the parts of str into; it must have the same special
characters in the same order as in inpatt

outStr - the resulting string if PattMap returns true

fold - if true, upper and lower cases match, otherwise they are distinct.

Result: True if the string matches the pattern; false otherwise
Exceptions: BadPatterns - if outpatt and inPatt do not have the same patterns in the same
order.
EXAMPLES:
PattMap('test9.pas’', 'test’'0.pas’, 'xtest'0O.pas’, outstr, TRUE)
returns TRUE, with outstr = 'xtest9.pas’

PattMap('test9.pas', '*.pas’, '*.ada’', outstr, FALSE)
returns TRUE, with outstr = 'test9.ada’

Pascal Library - 65 RealFunctions

18 RealFunctions - Standard functions for reals.

Implementer:

Abstract:

Design:

John Strait

RealFunctions implements many of the standard functions whose domain and/or
range is the set of real numbers. The implementation of these functions was
guided by the book Software Manual for the Elementary Functions, William
J. Cody, Jr. and William Waite, (C) 1980 by Prentice-Hall, Inc.

The domain (inputs) and range (outputs) of the functions are given in their
abstract. The following notation is used. Parentheses () are used for open
intervals (those that do not include the endpoints), and brackets [] are used for
closed intervals (those that do include their endpoints). The closed interval
[RealMLargest, RealPLargest] is used to mean all real numbers, and the closed
interval [-32768, 32767] is used to mean all integer numbers.

Currently all functions described by Cody and Waite are implemented.
DISCLAIMER:

Only the most cursory testing of these functions has been done. No guarantees
are made as to the accuracy or correctness of the functions. Validation of the
functions must be done, but at some later date.

AdX, IntXp, SetXp, and Reduce are implemented as Pascal functions. It is clear
that replacing the calls with in-line code (perhaps through a macro expansion)
would improve the efficiency.

Many temporary variables are used. Elimination of unnecessary temporaries
would also improve the efficiency.

Many limit constants have been chosen conservatively, thus trading a small loss in
range for a guarantee of correctness. The choice of these limits should be re-
evaluated by someone with a better understanding of the issues.

Some constants are expressed in decimal (thus losing the guarantee of precision).
Cthers are expressed as Sign, Exponent, and Significand and are formed at
execution time. Converting these two 32-bit constants which are Recast into real
numbers would improve the correctness and efficiency.

More thought needs to be given to the values which are returned after resuming
from an exception. The values that are returned now are the ones recommended
by Cody and Waite. It seems that Indefinite values (NaNs in the IEEE terminology)
might make more sense in some cases.

RealFunctions Pascal Library - 66

Sqrt

Compute the square-root of a number.
Call: function Sqrt(X : Real): Real
Resuit: Square-root of X.

Domain = [0.0, RealPLargest]. Range = [0.0, Sqrt(RealPLargest)].

Ln

-Compute the natural log of a number.
Call: function Ln(X : Real): Real
Result: Natural log of X.

Domain = [0.0, RealPLargest]. Range = [RealMLargest, Ln(RealPLargest)].

Log10

Compute the log to the base 10 of a number.
Call: function Log10(X : Real): Real
Resulit: Log to the base 10 of X.

Domain = [0.0, RealPLargest]. Range = [RealMLargest, Log10(RealPLargest)].

Exp

"Compute the exponential function.

Call: function Exp(X : Real): Real
Result: e raised to the X power.

Domain = [-85.0, 87.0]. Range = (0.0, RealPLargest].

Power
Call: function Power(X, Y : Real): Real
Result: X raised to the Y power.

Compute the result of an arbitrary number raised to an arbitrary power. DomainX = [0.0,
RealPLargest]. DomainY = [RealMLargest, RealPLargest]. Range = [0.0, RealPLargest].
Restrictions: 1) if X is zero, Y must be greater than zero. 2) X raised to the Y is a representable real
number.

Pascal Library - 67 RealFunctions

Powerl

Cait: function PowerI{
X : Real;
Y : Integer)
: Real;
Result: X raised to the Y power.

Compute the result of an arbitrary number raised to an arbitrary integer power. The difference
between Power and Powerl is that negative values of X may be passed to Powerl. DomainX =
[RealMLargest, RealPLargest]. DomainY = [-32768, 32767]. Range = [RealMLargest,
RealPLargest]. With the restrictions that 1) if X is zero, Y must be non-zero. 2) X raised to the Y is a
representable real number.

Sin

Compute the sin of a number.
Call: function Sin{ X : Real): Real
Result: Sin of X.

Domain = [-1E5, 1E5]. Range = [-1.0, 1.0}.

Cos
Compute the cosin of a number.

Call: function Cos{ X : Real): Real
Result: Cos of X,
Domain = [-1E5, 1E5]. Range = [-1.0, 1.0].

Tan
Compute the tangent of a number.

Call: function Tan(X : Real): Real
Result: Tangent of X,
Domain = [-6433.0, 6433.0]. Range = [RealMInfinity, RealPInfinity].

CoTan
Compute the cotangent of a number.

Call: function CoTan(X : Real): Real

Result: Cotangent of X.

RealFunctions Pascal Library - 68

Domain = [-6433.0, 6433.0]. Range = [RealMInfinity, RealPInfinity].

ArcSin

Compute the arcsin of a number.
Call: function ArcSin{ X : Real): Real
Result: Arcsin of X.

Domain = [-1.0, 1.0). Range = [-Pi/2, Pi/2). It seems that the Domain and Range ought to be
closed intervals, however this implementation apparently returns a number very close to zero when X
is 1.0, rather than returning Pi/2 as it should.

ArcCos
Compute the arccosin of a number.

Call: - function ArcCos(X : Real): Real
Resulit: Arccosin of X.

Domain = (-1.0, 1.0]. Range = (-Pi/2, Pi/2]. It seems that the Domain and Range ought to be
closed intervals, however this implementation apparently returns a number very close to zero when X

is -1.0, rather than returning -Pi/2 as it should.

ArcTan
Compute the arctangent of a number.

Call: function ArcTan(X : Real): Real
Result: Arctangent of X.

Domain = [RealMLargest, RealPLargest]. Range = (-Pi/2, Pi/2). Seems fine except for very large
numbers.

ArcTan2

Compuie the arctangent of the quotient of two numbers.
Cail: function ArcTan2(Y, X : Real): Real
Result: Arctangentof Y / X.

Seems fine except for very large Y/X. One interpretation is that the parameters represent the
cartesian coordinate (X,Y) and ArcTan2(Y,X) is the angle formed by (X,Y), (0,0), and (1,0). DomainY
= [RealMLargest, RealPLargest]. DomainX = [RealMLargest, RealPLargest]. Range = [-Pi, Pi].

Pascal Library - 69 RealFunctions

SinH

Compute the Hyperbolic Sine of a number.
Call: SinH(x: real) : real
Result: The Hyperbolic Sine of X

Domain = [-87.33, 87.33]. Range = [RealMLargest, RealPLargest].

CosH
Compute the Hyperbolic Cosine of a number.
" call: function CosH (x: real) :real
Resuit: The Hyperbolic Cosine of X

Domain = [-87.33, 87.33] Range = [1.0, RealPLargest].

TanH
Compute the Hyperbolic Tangent of a number.
Call: function TanH{ x: real) : real

Result: The Hyperbolic Tangent of X.

Domain = [-8.66433975625,8.66433975625]. Range = [-1.0,1.0].

SaltError Pascal Library - 70

19 SaltError: Translation of error codes
Implementers: Eugene Ball

Michael B. Jones

Amy Butler

Abstract: SaltError is the standard system error module. It provides a number of facilities
for generating and printing error messages.

There are three classes of errors :
a) Warnings - informative, preceeded by a single "*".

b) Errors - indicating a true error, preceeded by "**". It may be possible to
recover from an Error. The recovery is left to the application program.

c) Fatal Errors - No recovery possible, also preceeded by "**".
File: salterror.pas

Exported Types

GeneralReturn = integer; Values returned from system calls

GR_Error_Type (GR_Warning, GR_Error, GR_FatalError);

GRWriteStdError
Takes the GR value, finds the message and writes it.
Cail: Procedure GRWriteStdError(
GR : GeneralReturn;
ER_Type : GR_Error_Type;
InMsg : PString)
Parameters: GR - The return code to translate.

ER _Type - Warning, Error or Fatal Error

InMsg - An optional message to display.

GRStdError
Takes The GR value, finds the message and returns it in QutMsg.
Call: Procedure GRStdError(
GR : GeneralReturn;
ER_Type : GR_Error_Type;
InMsg ¢ PString;
var QutMs : PString)

Parameters: GR - The return code to translate.

Pascal Library - 71 SaltError

ER_Type - Warning, Error or Fatal Error
InMsg - An optional message to display.
OutMsg - The translated error msg

If fatal error, outmsg will be lost.

GRWriteErrorMsg

Takes the GR value, finds the message and writes it as <stars Progname : Module:
GrMessage.> .

Call: Procedure GRWriteErrorMsg(
GR : GeneralReturn;
ER_Type : GR_Error_Type;
ProgName : String;
InMsg : PString)
Parameters: GR - The return code to translate.

ER Type - Warning,'Error or Fatal Error

ProgName - Program name to display - provides information about where in the
system, program and module the error occured.

InMsg - An optional message to display.
This routine is used for errors that may not be a direct result of user action.

GRErrorMsg

Takes the GR value, finds the message and returns it in OutMsg as <stars Progname:
Module: GrMessage.>

Call: Procedure GRErrorMsg(
GR : GeneralReturn;
ER_Type : GR_Error_Type;
ProgName : String;
InMsg : PString;
var OutMsg : PString)
Parameters: GR - The return code to translate.

ER_Type - Warning, Error or Fatal Error

ProgName - Program name to display - provides information about where in the
system, program and moduie the error occured.

InMsg - An optional message to display.

OutMsg - The translated error msg

SaltError Pascal Library - 72

This routine is used for errors that may not be a direct result of user action.

ErrorMsgPMBroadcast

Takes the GR value, finds the message, and prints the message in the process manager
window.

Call: Procedure ErrorMsgPMBroadcast(
GR : GeneralReturn;
ER_Type : GR_Error_Type;
ProgName : String;
InMsg : PString)
Parameters: GR - The return code to translate.

ER_Type - Warning, Error or Fatal Error

ProgName - Program name to display - provides information about where in the
system, program and module the error occured.

InMsg - An optional message to display.

GRStdErr
Takes the GR value, finds the message and returns it in OutMsg.
Call: Function GRStdErr(
GR : GeneralReturn;
ER_Type : GR_Error_Type;
InMsg : PString;
var OutMsg : PString)
: boolean;
Parameters: GR - The return code to translate.

ER_Type - Warning, Error or Fatal Error
InMsg - An optional message to display.
OutMsg - The translated error msg

If FatalError, outmsg will be lost.

Pascal Library - 73 Spawn

20 Spawn: Create and initialize a new process

Implementers: Eugene Ball
Mary R. Thompson
Doug Philips
William Maddox
David Golub
Michael B. Jones

Abstract: Create a new process and notify the Process Manager of its existence. An
initialization message containing state and system server ports is sent to be
received in the new process (by InitProcess in Pascallnit). Spawn is used to
handle the general case of process creation while Exec and Split are implemented
by calling Spawn with specific arguments.

Files: spawn.pas, spawninitflags.pas
Exported Types
CmdLineString = STRING[2557;

Connectionlnheritance = {NewOne, Given, GivenReg);

NewOQOne - Make a new connection.
For Sapphire, this means create a newwindow and typescript.
For file system, this means duplicate ours.

Given - Use the ports given in the call.
The parent process retains ownership.

GivenReg - Use the ports given in the call.
The Child process will own the ports.

Exec

Create a new process running a new program. (Note: Unix Exec runs a new program in
the existing process.)

Cali: function Exec(
VAR ChildKPort : Port;
VAR ChildDPort : Port;
ProcessName : STRING;
HisCommand : CommandBlock)

: GeneralReturn;
Parameters: ChildKPort - set to the new process’s kernel port.
ChildDPort - set to the new process’s data port.

ProcessName - The name of the file to execute, and the name that will be
registered with the Process Manager.

HisCommand - Used to set the new process’s UsrCmdLine.

Spawn Pascal Library - 74

Completion Code:
Success - Process was created and loaded.

Failure - No new process was created.

This is the simplist way to run a program in a new process. The new process will share the caller's
window and typescript and copy the caller’'s Environment Manager connection. The process will be
registered with the Process Manager under its run file name (i.e. ProcessName). It will inherit its
protection from the caller. It won't startup in the debugger.

Split

Create a copy of the current process. (Unix: fork)

Call: function Split(
var ChildKPort : : Port;
var ChildDPort : Port)

: GeneralReturn;

Parameters: ChildKPort - set to the new process’s kernel port.
ChildDPort - set to the new process’s data port.

Completion Code:
IsParent - The original process.

IsChild - The copy.

This is the simplest way to 'fork’ and have all the standard initialization done. The caller’s window
and typescript will be shared. The caller's Environment Manager state will be duplicated. The child
will have the same protection as the parent.

Spawn

General case of process creation. This can exec as well as fork.

The Spice kernel calls to create processes, Fork and CreateProcess, do not pass state or
ports to the new process. Spawn gets around this restriction by passing a message to the
new process containing this information. InitProcess receives this message in the new
process.

Basically Spawn just passes the system ports except if SaphConn of EMConn is
“NewOne”. in this case, it must create a new Sapphire and Environment connecition. The
Process Manager is notified (PMRegisterProcess) of the new process, its window,
environment, and these are the rights to access physical memory and 1/0 device
registers. The new process will be resumed or left for debugging (PMMakeDebugProcess)
depending on the debugit parameter.

Call: function Spawn(
var ChildKPort : Port;
var ChildDPort : Port:

Parameters:

Pascal Library - 75

ProgName : APathName;

ProcName : string;

HisCommand : CommandBlock;

DebuglIt : boolean;

ProtectChild : boolean;

SapphConn : ConnectionInheritance;
pWindow : Port;

pTypeScript : Port;

EMConn : ConnectionlInheritance;
pEMPort : Port;

PassedPorts : ptrPortArray;

NPorts ;. long;

LoaderDebug : BOOLEAN)

Spawn

: GeneralReturn;

ChildKPort - will be set to the Child’s KernelPort in the Parent.
ChildDPort - will be set to the Child’s DataPort in the Parent.

ProgName - the name of the .RUN file that you want loaded and executed. If this is
null, a fork is done and the new process continues to run the existing program.

ProcName - the name of the child process as it will should appear in a SYSTAT,
usually the same as ProgName.

HisCmdLine - this will be used to set the child’s UserCommand.

Debuglt - if true, the new process is suspended and Mace is invoked on it befor it
gets control.

ProtectChild - if true, the child process will not have access to physical memory or
the ability to do 1/0. [f false, the child will inherit the parent’s access capabilities.

SapphConn - If *Given’, the child’'s window and typescript will be taken from the
pWindow and pTypeScript arguments. They will be shared (i.e. WindowShared =
true) with these ports. 'GivenReg’ has the semantics above and ownership rights
for these two ports are passed to the child. If '"NewOne’, Sapphire will be asked to
create a new window and TypeScript will be initialized to this window. These new
ports are passed with ownership rights.

pWindow - a window to share with the new process.
pTypeScript - a TypeScript to share with the new process.

EMConn - this controls access to the enviromment manager. |f 'Given’ then the
connection wili be taken from 'pEMPort’. ‘GivenReg’ is the same as 'Given’,
except that ownership rights to the port are passed. |If ‘Newone’ then a new
Environment Manager connection will be made, copying the state of the current
connection.

Spawn Pascal Library - 76

pEMPort - parent’s Environment Manager port.

PassedPorts - an array of ports to pass to the child. This contains only the ports
above and beyond any system ports that you wnat to pass to the child, and will be
available in Inports, with the same indexes as in this array. Everything else that
you used to have to set by hand is now controlled by other parameters to spawn.
NPorts - the number of ports being passed in PassedPorts.

LoaderDebug - turns on Spawn and loader debugging.

Completion Code:
IsParent - In the fork case

IsChild - In the fork case
Success - In the exec case
Failure - In the exec case

If the ProgName string is not empty, Spawn performs the Exec function by creating a new process
and Aloading into it.

If you don’t specify 'newone’ as the SapphConn parameter, you will have to do a EnableWinListener
on the window yourself (if the parent hasn't already done it). When 'newone’ is used, Spawn will
make a window and typescript and set up the typescript’s keytranslation table for you.

Pascal Library - 77 Spice_String

21 Spice_String: PERQ String hacking routines.

Implementers:
Don Scelza
Joseph M. Newcomer
J.G. Chandler

Abstract: This module implements SAIL-like string hacking routines for the Three River
PERQ Pascal. Itis a complete replacement for PERQ_String and Sail_String.

Strings in PERQ Pascal are stored a single character per byte with the byte
indexed by 0 being the length of the string.

File: spice_string.pas

Exported Types

BreakKind = set of BreakType;

BreakType = (Append,Retain,Skip,
FoldUp,FoldDown,
Inclusive,Exclusive);

BreakTable = t* BreakRecord;

BreakRecord = record
Breakers: set of Char;
Omitters: set of Char;
Flags: BreakKind

end;

PString = String[MaxPStringSize];

MaxPStringSize=255; Length of strings
Inf = -32742; magic value decoded as length-of-string

Exceptions Exported
Exception StrBadParm(FuncName, StringArgument: PString; ParmValue: integer;)

Abstract Raised when inconsistent (bad index or length) parameters are passed to
procedures.

Parameters
FuncName Name of function. (Is all upper case.)

StringArgument The string paramenter with which the illegal operation was to
be performed.

Parmvalue An illegal value. (In some instances, the combination of two
parameters is illegal; for these, one of the parameters is
arbitarily chosen.)

Resume If the exception returns, the procedures will exit immediately, returning
meaningless resulits.

Spice_String Pascal Library - 78

Raised by Adjust, Pad, SetBreak

Exception Striong; declared in module Except

Abstract: A result string will be too long.
Raised by ConCat, Cat3, Cat4, Cat5, Cat6, InsertChars, SubstrTo, SubstrFor
Resume If the exception returns, the result will be truncated to 255 characters.
Adjust
This procedure is used to change the dynamic length of a string.
Call: procedure Adjust(
var Str :PString;
Len :Integer)
Parameters: Str - is the string that is to have the length changed.

Len - is the new length of the string. This parameter must be no greater than

MaxPStringSize.
Result: This procedure does not return a value.
Exceptions: StrBadParm - If Len > MaxPStringSize or less than 0. If the error resumes, Str is

not modified.
AppendChar

puts c on the end of Str
Call: procedure AppendChar(
var Str : PString;
c : Char)

Parameters: Str - is the left String and ¢ goes cn the end.
Exceptions: StrBadParm - As this calls Adjust, StrBadParm will be raised if length (Str) is

equal to MaxPStringSize.

AppendString
puts Str2 on the end of Str1

Call: procedure AppendString(
var Strl : PString;
Str2 : PString)
Parameters: Str1 - is the left String and Str2 goes on the end.

Modifies Str1.

Pascal Library - 79 Spice_String

Cat3
Concatenates three strings together.
Call: function Cat3(
Str1,Str2,Str3 : PString)
: PString
Parameters: Str1,5tr2,Str3 - Strings to concatenate.
Result: Returns a single string composed of the parameters.
Exceptions: StrLong - If the total length is greater then MaxPStringSize then raise StrLong

exception. If resume from the exception, the result is truncated to 255 characters.
This exception is tested as each string is appended, so it may occur multiple times
for one call on Cat-n. -

Uses ConCat to combine the arguments into a temporary.

Cat4

Concatenates four strings together.
Call: function Cat4(

Str1,Str2,5tr3,Str4 : PString)
: PString

Parameters: Str1,Str2,Str3,Str4 - Strings to concatenate.
Result: Returns a single string composed of the parameters.
Exceptions: SirLong - If the total length is greater then MaxPStringSize then raise StrLeng

exception. If resume from the exception, the result is truncated to 255 characters.
This exception is tested as each string is appended, so it may occur multiple times
for one call on Cat-n.

Uses ConCat to combine the arguments into a temparary.

Cat5

Concatenates five strings together.
Call: function Cat5(

Str1,Str2,5tr3,Str4,Strb : PString)
: PString

Parameters: Str1,Str2,Str3,Str4,Str5 - Strings to concatenate.
Result: Returns a single string composed of the parameters.
Exceptions: StrLong - If the total length is greater then MaxPStringSize then raise StrLong

exception. If resume from the exception, the result is truncated to 255 characters.
This exception is tested as each string is appended, so it may occur multiple times
for one call on Cat-n.

Spice_String Pascal Library - 80

Uses ConCat to combine the arguments into a temporary.

Cat6
Concatenates six strings together.
Cali: function Caté6(‘
Str1,Str2,5tr3,Str4,5tr5,Stré : PString)
: PString
Parameters: Str1,5tr2,5tr3,Str4,Str5,Str6 - Strings to concatenate.
Result: Returns a single string composed of the parameters.
Exceptions: StrLong - If the total length is greater then MaxPStringSize then raise StrLong

exception. If resume from the exception, the result is truncated to 255 characters.
This exception is tested as each string is appended, so it may occur multiple times
for one call on Cat-n.

Uses ConCat to combine the arguments into a temporary.

Concat

Concatenates two strings together.

Call: function Concat(
Str1,Str2 : PString)
PString
Parameters: Str1,Str2 - the two strings that are to be concatenated.
Result: Returns a single string as described by the parameters.
Exceptions: StrLong - If Length(Str1) + Length(Str2) is greater then MaxPStringSize then

raise StrLong exception. |f control is resumed from the exception, concat will
return a string truncated to length MaxPStringSize.

Uses MVBW (Move bytes Q-code) to copy Str2 onto the end of Stri1.

ConvUpper
Converts str to all upper case
Call: procedure ConvUpper(
var Str : PString)
Parameters: Str - to be converted

Str is converted to upper case. Uses character compares to test whether character is lower case.

Pascal Library - 81 Spice_String

CvD
Converts a decimal string to an integer.
Call: function CVD(
Str :PString)
rinteger
Parameters: Str - is the string to be converted.
Result: An integer containing the value.

Conversion stops at the first.character which is not legal in the radix used. Characters whose
ordinal value is less than or equal to 32 (a space) which precede the value are ignored.

CVH
Converts an hexadecimal string to an integer.
Call: function CVH(.
: - Str :PString)
rinteger
Parameters: Str - is the string to be converted.
Resulit: An integer containing the value.

Conversion stops at the first character which is not legal in the radix used. Characters whose
ordinal value is less than or equal to 32 (a space) which precede the value are ignored. Lower case
'a’..’f’ are the same as upper case 'A’..'F’

CVHS
Converts an integer to a string using hexadecimal radix.
Call: function CVHS(
I :integer)
:Pstring
Parameters: ! - is the integer o be converted.
Result: A string containing the character representation; the string will represent the

value expressed in hexadecimal.

CVHSS
Converts an integer to a string of width W.
Call: function CVHSS(
1 rinteger;
W :integer)
:Pstring

Parameters: ! - is the integer to be converted

Spice_String Pascal Library - 82

W - is the minimum field width to be produced

Result: A string containing the character representation; the string will be of at least width
W, and be filled on the left with spaces and the conversion will be done in
hexadecimal radix

The return string is padded on the left with spaces if necessary to fill out the width; radix will be
hexadecimal.

Cvint
Converts a string to a integer according to base Radix.
Call: function CvInt(Str: PString;
R: integer)
:integer :
Parameters: Str - the string to be converted

Radix - the radix to use
Result: An integer containing the value
Exceptions: if Overflow then StrBadParm is raised
Conversion stops at the first character which is not legal in the radix used. Characters whose

ordinal value is less than or equal to 32 (a space) which precede the value are ignored. A sign is
permitted. Lower case 'a’..'z’ are the same as upper case 'A'..'Z’

CvL
Converts a string to a long integer.
Call: function CvL(
Str : PString;
Radix : integer)
long
Parameters: Str - is the string to be converted.

Radix - is the radix to use.
Result: A long integer containing the value.

Converts a string to a long integer according to base Radix Conversion stops at the first character
which is not legal in the radix used. Characters whose ordinal value is less than or equal to 32 (a
space) which precede the value are ignored. A sign is permitted. Lower case ’a’..’z' are the same as
upper case 'A’.."Z’' Errars: Overflow is possible, but not checked for.

Pascal Library - 83 Spice_String

CVN
Exactly the same as CVLS
Call: function CVN(
I : integer;
W : integer;
B : integer;
Fill : Pstring)
:Pstring
CVLS
Converts an integer to a string of width W, padding on the left.
Call: function CVLS(
I : long;
W : integer;
Radix : integer;
Fill : Pstring)
:Pstring
Parameters: ! - is the integer to be converted

W - is the minimum field width to be produced
B - is the base to use (2..36)
Fill - is a one-character string to fill on the left

Result: A string containing the character representation; the string will be of at least width
W, and be filled on the left with Fill, and converted according to radix B

Converts an integer to a string of width W, padding on the left with 'Fill’ if necessary to fill out the
width. The base for the conversion is Radix. If Radix>10, the letters 'A’..’Z’ will be used to compute
the character for the representation. Using a base > 36 will produce bogus results. A negative base
will force an unsigned result.

Cvo
Converts an octal string to an integer.
Cali: function CVO(
Str :PString)
sinteger
Parameters: Str - is the string to be converted
Resuit: An integer containing the vaiue.

Conversion stops at the first character which is not legal in the radix used. Characters whose
ordinal value is less than or equal to 32 (a space) which precede the value are ignored.

Spice_String Pascal Library - 84

Cvos
Converts an integer to a string using octal radix.
Call: function CVOS(
I sinteger)
:Pstring
Pa rameters: I - is the integer to be converted
Result: A string containing the character representation; the string will represent the

value expressed in octal

CVOSS
Converts an integer to a string of width W.
Call: function CVOSS(
I :integer;
W :integer)
:Pstring
Parameters: / - is the integer to be converted.

W - is the minimum field width to be produced.

Result: A string containing the character representation; the string will be of at least width
W, and be filled on the left with spaces and the conversion will be done in octal
radix.

Converts an integer to a string of width W, padding on the left with spaces if necessary to fill out the
width; radix will be octal.

CVsS
Converts an integer to a string using decimal radix.
Call: function CVS(
I zinteger)
:Pstring
Parameters: ! - is the integer to be converted.
Result: A string containing the character representation; the string will represent the

value expressed in decimal,

CVSSs
Converts an integer to a string using decimal radix and filis.
Call: function CVSS(
I tinteger;
W rinteger)

:Pstring

Pascal Library - 85 Spice_String

Parameters: I - is the integer to be converted.
W - is the minimum field width to be produced

Result: A string containing the character representation; the string will be of at least width
W, and be filled on the left with spaces and the conversion will be done in decimal

radix.

Converts an integer to a string of width W, padding on the left with spaces if necessary to fill out the
width; radix will be decimal.

CvUp
Returns a copy of Str with lower case replaced by upper.
Call: function CvUp(
Str : PString)
: PString
Parameters: Str - to be converted.
Resuit: A copy of Str with all aiphabetic characters converted to upper case.

Uses character compares to test whether character is lower case.

s &l LR19 [=1 K= 0]

DeleteChars

This procedure is used to remove characters from a string.

Call: Procedure DeleteChars(
var Str :PString;
Index, Size :Integer)
Parameters: Str - is the string that is to be changed. Characters will be removed from this
string.

Index - is the starting position for the delete.

ize - is the number of character that are to be removed. Size characters will be
removed from Str starting at Index.

Resuit: This procedure does not return a value.
This precedure will change Str. Uses MVBW (Move Bytes Q-code) to copy Str back onto itself.

GetBreak
Allocates and clears a break table.

Call: function GetBreak
: BreakTable

Result: A new, empty break table.

Spice_String Pascal Library - 86

Initial

This function returns true if Str2 is an initial string of Str1.

Call: function Initial(
Str1,Str2 : PString)
:boolean
Parameters: Str1 - is the string to be tested.

Str2 - is'the string which is the initial substring to test for.
Result: true if Str2 is an initial substring of Str1.

The comparison is case-sensitive. A null string is an initial substring of any string. Uses EQUBYT
QCode to test if the first Length (Str2) chars are equivalent.

InsertChars

Inserts a string into the middle of another string.

Call: Procedure InsertChars(
Source :Pstring;
var Dest :PString;
Index :Integer)
Parameters: Source - is the string that is to be inserted.

Dest - is the string into which the inseration is to be made.
Index - is the starting position, in Dest, for the inseration.
Resuit: This procedure does not return a value.

Exceptions: StrLong - If the resulting string is too long then raise StrLong. Upon resumption
the procedure will return a truncated result.

This procedure is used to insert a string into the middle of another string. This procedure will insert
Source in Dest starting at location Index.

Lop
Removes and returns the first character from Str.
Cail: function Lop(
var Str : PString)
: PString
Parameters: Str - is the string from which a character will lopped off.
Result: This function returns the first character of Str.

Removes the first character from Str and returns it as the value of the function, Str no longer

Pascal Library - 87 Spice_String

conatains the character. Modifies Str, removes the first character. Uses MVBW to copy the string
back onto itself.

Pad
Adds padding characters to a string.

Cait: function Pad(
Str : PString;
TotallLen : integer;
PadCh : char;
Where : integer)

: PString
Parameters: Str - original string.

TotalLen - desired length for result string.

PadCh - char to insert to achieve desired length.

Where - Where to insert characters; use O for padding on left and Strinf (or
iength(Str)) for padding on the right. if some other value, padding will be done

just after the character in that position.

Result: A string of length TotalLen consisting of a copy of Str with sufficient copies of
PadCh inserted just after position Where.

Exceptions: StrBadParm(TotalLen) -if TotalLen is greater than MaxPStringSize or less than
length(Str). '

StrBadParm(Where) - if Where is greater than length(Str) or less than 0. If either
error resumes, the original value of Str is returned.

Produces a copy of Str adjusted to have length TotalLen by inserting sufficient copies of PadCh just
after location Where.

PosC
Finds the position of C in Str. Returns 0O if absent.
Cali: function PosC(‘
Str : PString;
c : char)
: integer
Parameters: Str - string that is to be searched.

C - character we are looking for.

Resulit: If C occurs in Str then the index into Str of the first character matching C will be
returned. If C was not found (even if Str is empty) then return 0.

Spice_String Pascal Library - 88

if supported, use BSCAN QCode. BreakTable is an array 256 bits long.

PosString
Finds the position of Mask in the substring of S.
Cail: function PosString(
Source, Mask : PString)
integer
Parameters: Source - string that is to be searched.

Mask - pattern that we are looking for.

Result: If Mask occured in Source then the index into (the original) Source of the first
character matching the Mask will be returned. If Mask was not found then return
0. If Mask is empty, return 1.

Scans for first character of mask. When found, uses EQUBYT (byte string compare Q-code) to test
rest of Mask. The Source is tempararily modified during the search.

ReplaceChars

Replaces a substring of Str with another string.

Call: procedure ReplaceChars(
var Str : PString;
NewS : PString;
Index : integer)
Parameters: Str - String into which the replacement is to be made.

Index - starting posistion in Str for NewS. |If it is greater than Length (Str), no
replacement will be made. {f it is less then zero, start at one.

NewsS - string that is to replace the deleted segment.
Resulit: The function returns a string of the same length with the appropiate replacement.

Use MVBW QCode to copy NewS over Str.

RevPosC
Tests if c is a member of Str.
Call: Function RevPosC(
Str : PString;
c : char)
integer
Parameters: ¢ - is any char,

Str - is string to test for ¢ member of.

Pascal Library - 89 Spice_String

Result: index of ¢ in Str (from end of string) or zero if not there.
RevPosString
Finds the position of Mask in the substring of S.
Call: function RevPosString(
Source, Mask : PString)
: integer
Parameters: Source - string that is to be searched.

Mask - pattern that we are looking for.

Result: If Mask occured in Source then the index (from the end) into (the original) Source
of the first character matching the Mask will be returned. If Mask was not found
then return 0. I Mask is 7, return 1.

Scans for first character of mask. When found, uses EQUBYT (byte string compare Q-code) to test
rest of Mask. The Source is temporarily modified during the search.

Scan

Scans the string Str according to the breaktable specifications of BT.

Calil: function Scan(
var S : Pstring;
BT : breaktable;
var BRK : Pstring)
:Pstring
Parameters: S - is a string to be scanned.

BT - is a breaktable initialized by SetBreak.
BRK - is the break character. -
Result: The initial substring determined by the breaktable is removed from Sir and

returned as the value of the function. The BRK variable contains the string
(character) which caused the scan to stop, or the null string if the string was

exhausted.
SetBreak
Initializes a break table.
Call: procedure SetBreak(
var BT : BreakTable;
Break, Omit : PString;
Options : BreakKind)

Parameters: Str - is a string to be scanned.

Spice String Pascal Library - 90

BT - is a breaktable initialized by SetBreak.
BRK - is the break chafacter.

Result: The initial substring determined by the breaktable is removed from Str and
returned as the value of the function. The BRK variable contains the string
(character) which caused the scan to stop, or the null string if the string was
exhausted.

Exceptions: StrErrParm - lllegal combinations of options.

Initializes a breaktable according to the specifications of Break, Omit and Options.

Break specifies the set of characters (as a string) on which a scanning break will occur.
Omit specifies the set of characters which will be removed from the string.
Options allows specification of one option from each of the following groups:
Inclusive The Break set is the set of characters on which a break will
occur.
Exclusive The Break set is the set of characters on which a break will
not occur.
~ If no option is specified from this group, 'Inclusive’ is
assumed.
Skip Upon return, the break character will be in the break variable.

The result of the scan will be all characters up to the break
character, and the input string is modified to start immediately
after the break character.

Append Upon return, the break character will be in the break variable.

The result of the scan will be all characters up to and including

J the break character, and the input string is modified to start
immediately after the break character

Retain Upon return, the break character will be in the break variable.
The result of the scan will be all characters up to the break
character, and the input string is modified to start at the break

character.
~ If no option is specified from this group, 'Skip’ is assumed.
FoldUp Before anything else is done, each character which is

alphabetic is folded to uppercase. Note that break sets are

ShowBreak

FoldDown

Pascal Library - 91 _ Spice_String

case sensitive, but this is done before the break test. This
folding proceeds until the break condition is reached.

Similar to FoldUp, except upper case alphabetics are made
lower case.

If no option is specified from this group, no case folding will
be done.

*** No guarantees about behavior are made if more than one
option is selected from each set group. ***

Create a string representation of the BreakTable for debugging.

Call:

Parameters:
Result:

Squeeze

function ShowBreak(

BT : BreakTable)

: PString

BreakTable - is a breaktable initialized by SetBreak.

An informative string of the break table specifications.

Removes all spaces and tabs from a string .

Call:

Parameters:
Result:

Str

function Squeeze(

Str : PString)

: PString

Str - The string to be squeezed.

A string which has all spaces and tabs removed.

This procedure is used to coerce a character to a string.

Call:

Parameters:

Result:

function Str(

Ch :char)

:PString

Ch - the character to be ¢oerced to a string.

A string value for a one-character string containing the character.

Spice_String Pascal Library - 92

Strip
Converts sequences of spaces, tabs, CR and LF to a single space.
Call: function Strip(
Str : PString)
¢ PString
Parameters: Str - The string to be squozen.
Result: A string which has all sequences of spaces, tabs, CR and LF changed to a single
space.
SubStrFor
Returns a substring
Call: | Function SubStrFor(
Source :PString;
Index, Size :Integer)
:PString
Parameters: Source - is the string that we are to take a portion of.

Index - is the starting position in Source of the substring.
Size - is the size of the substring that we are to take.

Result: This function returns a substring as described by the parameter list. If
Index + Size exceed the dynamic length of the string, return Index to

DynamicLength; no error message is generated.

Exceptions: StrLong - If Index or Size exceed MaxPStringSize. Upon resumption, this
procedure will return a truncated result.

This procedure is used to return a sub portion of the string passed as a parameter.

SubStrTo
Returns a substring
Call: Function SubStrTo(
Source :PString;
Index, EndIndex :Integer)
:PString
Parameters: Source - is the string that we are to take a portion of.

Index - is the starting position in Source of the substring.
Endindex - is the Ending position in the source of the substring.

Result: This function returns a substring as described by the parameter list. If Index or

Pascal Library - 93 Spice_String

Endindex exceed the dynamic length of th'e string, return Index to
DynamicLength; no error message is generated.

Exceptions: StrLong -If Index or Endindex exceed MaxPStringSize, give an error Upon
resumption, this procedure will return a truncated resuit.

This procedure is used to return a sub portion of the string passed as a parameter.

Trim

Deletes leading and trailing spaces and tabs from a string.

Call: function Trim(
Str ' : PString)
: PString .
Parameters: Str - The string to be squozen.
Result: A string which has all leading and trailing spaces and tabs removed.
ULInitial
This function returns true if Str2 is an initial string of Str1.
Call: function ULInitial(
Str1,Str2 : PString)
:boolean
Parameters: Str1 - is the string to be tested.

Str2 - is the string which is the initial substring to test for.
Result: true if Str2 is an initial substring of Str1, false otherwise.

This function returns true if Str2 is an initial string of Str1. The comparison is case-insensitive. A
null string is an initial substring of any string.

ULPosString

Find position of a pattern in a string
Call: Function ULPosString(

Source, Mask :PString)
:Integer
Parameters: Source - is the string that is to be searched.
Mask

Result: If Mask occured in Source then the index into Source of the first character of

Mask will be returned. If Mask was not found then return O.

This procedure is used to find the position of a pattern in a given string without case sensitivity.

Spice_String Pascal Library - 94

UpChar
Converts C to upper case.
Call: function UpChar(
C : Char)
: char
Parameters: C - to be converted.

C is converted to upper case. Uses character compares to test whether character is lower case.

UpEQU

Compares two strings for case-independent equality.

Call: Function UpEQU(
Strl : PString;
Str2 : PString)
:boolean
Parameters: Str1, Str2 - the strings to be compared.

Result: true if the strings are equal, false if they are not, independent of case.

Pascal Library - 95 Stream

22 Stream package output conversion routines.
implementers: John Strait

Abstract: This "'module implements the low-level Pascal 1/0. It is not intended for use
directly by user programs, but rather the compiler generates calls to these
routines when a Reset, Rewrite, Get, or Put is encountered. Higher-level
character 170 functions (Read and Write) are implemented by the two modules
Reader and Writer.

In this module, the term "file buffer variable" refers to F+t for a file variable F.

Files: stream.pas

Exported Types
SName = string[255]; same as PathName
FileType = file of Thing

packed record
Flag: packed record case integer of

0: (CharReady : boolean; character is in file window
FEoln : boolean; end of line flag
FEof : boolean; end of file
FNotReset : boolean; false if Reset has been performed on this file
FNotOpen : boolean; false if file is open
FNotRewrite: boolean; set false if a Rewrite has been performed

on this file

FExternal : boolean; not used - will be permanent/temp file flag
FBusy : boolean; 10 is in progress
FKind : FileKind);

i: (skip1 : 0..3;
ReadError : 0..7);

2: (skip2 0..15;
WriteError: 0..3)

end;

Exported Exceptions
exception ResetError(FileName: SName);

Abstract Raised when unable to reset a file--usually file not found but also could be ill-
formatted name or bad device name.

Parameters FileName - name of the file or device.

exception RewriteError(FileName: SName);

Abstract Raised when unable to rewrite a file--usually file unknown device or partition but
also could be ill-formatted name or bad device name.

Parameters FileName - name of the file or device.

Stream

exception

Abstract

Parameters

exception

Abstract

exception

Abstract

Parameters

exception

Abstract

Parameters

exception

Abstract
Parameters

exception

Abstract
Parameters

exception

Abstract
Parameters

exception

Abstract

exception

Abstract

Pascal Library - 96

NotTextFile(FileName: SName);

Raised when an attempt is made to open a non-text file to a character-structured
device.

FileName - name of the device.
NotOpen;
Raised when an attempt is made to use a file which is not open.

NotReset(FileName: SName);

Raised when an attempt is made to read a file which is open but has not been
reset.

FileName - name of the file or device.

NotRewrite(FileName: SName);

Raised when an attempt is made to write a file which is open but has not been
rewritten.

FileName - name of the file or device.

PastEof(FileName: SName);

Raised when an attempt is made to read past the end of the file.
FileName - name of the file or device.

UnitIOError(FileName: SName);

Raised when IOCRead or IOCWrite returns an error status.
FileName - name of the device.

TimeOutError(FileName: SName);

Raised when a device times out.
FileName - name of the device.

UndfDevice;

Raised when an attempt is made to reference a file which is open to a character-
structured device, but the device number is bad. In the current system (lacking
automatic initialization of file variables), this may be caused by referencing a file
which has never been opened.

NotIdentifier(FileName: SName);

Raised when an identifier is expected on a file, but something else is
encountered.

Parameters

exception

Abstract
Parameters

exception

Abstract
Parameters

exception

Abstract
Parameters

exception

Abstract
Parameters

exception

Abstract
Parameters

axception

Abstract
Parameters

excention

Abstract

Parameters

exception

exception

Pascal Library - 97 Stream

FileName - name of the file or device.

NotBoolean(FileName: SName);

Raised when a boolean is expected on a file, but something else is encountered.
FileName - name of the file or device.

BadIdTable(FileName: SName);
Raised by Readldentifier when the identifier table is bad.

FileName - name of the file or device.

IdNotUnique(FileName: SName; Id: Identifier);

Raised when non-unique identifier is read.
FileName - name of the file or device. ld - the identifier which was read.

IdNotDefined(FileName: SName; Id: Identifier);

Raised when an undefined identifier is read.

FileName - name of the file or device. id - the identifier which was read.
NotNumber(FileName: SName);

Raised when a number is expected on a file, but something else is encountered.

FileName - name of the file or device.

LargeNumber(FileName: SName);

Raised when a number is read from a file, but it is too large.
FileName - name of the file or device.

BadBase{ FileName: SName; Base: Integer);

Raised when an attempt is made to read a number with a numeric base that is not
in the range 2..36.

FileName - name of the file or device. Base - numeric base (which is not in the
range 2..35).

SmallReal(FileName: SName);

LargeReal(FileName: SName);

Stream Pascal Library - 98

Streaminit
Cali: procedure StreamInit(
var F : FileType;
WordSize, BitSize : integer;
Charfile : boolean)
Parameters: F - the file variable to be initialized.

WordSize and BitSize - are the size of an element of the file.

CharfFile - determines whether or not the file is of characters.

Initializes, but does not open, the file variable F. Automatically called upon entry to the block in
which the file is declared. (To be written when the compiler generates calls to it.)

St rear_nCIose

Closes the file variable F.

Cail: procedure StreamClose(

var F : FileType)
Parameters: F - the file variable to be closed.
StreamOpen

Opens a file variable.

Call: procedure StreamOpen(
var F : FileType;
var Name : SName;
WordSize, BitSize : integer;
CharfFile : boolean;
OpenWrite : boolean)
Parameters: F - the file variable to be opened.

Name - the file name.

WordSize - number of words in an element of the file (0 indicates a packed file).
BitSize - number of bits in an element of the file (for packed files). name.
CharFile - true if the file is a character file. |

OpenWrite - true if the file is to be opened for writing (otherwise it is opened for
reading).

Exceptions: ResetError - if unable to reset the file.

RewriteError - if unable to rewrite the file.

Pascal Library - 99 Stream

NotATextFile - if an attempt is made to open a non-text file to a character
structured device.

Opens the file variable F. This procedure corresponds to both Reset and Rewrite.

GetB
Get the next element of a file.
Call: procedure GetB(
var F : Filetype)
Parameters: F - the file to be advanced.
Exceptions: NotOpen -if F is not open.

NotReset - it F has not been reset.
PastEof - if an attempt is made to read F past Eof.

Advances to the next element of a block-structured file and gets it into the file buffer variable.

GetC
Get the next character of a file.
Call: procedure GetC(
var F ' : Filetype)
Parameters: F - the file to be advanced.
Exceptions: NotOpen -if F is not open.

NotReset - if F has not been reset.
PastEof - if an attempt is made to read F past Eof.
TimeQutError - if RS: or RSX: times out.
UnitiOError - if IOCRead doesn’t return IOEIOC or IOEIOB.
UndfDevice - if F is open, but the device number is bad.
Advances to the next element of a character-structured file and gets it into the file buffer variable.

PutB
Put the next element in a file.

Call: procedure PutB(
var F : Filetype)

Stream Pascal Library - 100

Parameters: F - the file to be advanced.
Exceptions: NotOpen - it F is not open.
NotRewrite - if F has not been rewritten.

Writes the value of the file buffer variable to the block-structured file and advances the file.

PutC
Put the next characterin a file.
Call: procedure PutC(
var F : FileType)
Parameters: F - the file to be advanced.
Exceptions: NotOpen - if F is not open.

NotRewrite - if F has not been rewritten.

UnitIOError - if IOCWrite doesn’t return IOEIOC or IOEIOB.
TimeOQutError - if RS: or RSX: times out.

UndfDevice - if F is open, but the device number is bad.

Writes the value of the file buffer variable to the character- structured file and advances the file.

PReadin
Advances to the first character following an end-of-line.
Call: procedure PReadln(
var F : Filetype)
Parameters: F - the file to be advanced.
PWritein
Writes an end-of-iine.
Call: procedure PWriteln(
var F : Filetype)
Parameters: F - the file to which an end-of-line is written.

KBFlushBoardQOutput

Flushes the typescript output buffer for a file open to 'console:’ This is only used by
routines in Writer to indicate the end of a “‘bilock’’ of text output.

Call: proceéure KBFlushBoardOutput(

Pascal Library - 101 Stream

var F : Filetype)
Parameters: F - the file to be flushed.
StreamKeyBoardReset
Call: procedure StreamKeyBoardReset(

var F : Text)
Parameters: F - file to be cleared.

Clears the keyboard input buffer and the file variable F so that all input typed up to this point will be
ignored.

InitStream

Initializes the stream package. Called by System.

Call: procedure InitStream
FullLn
Determines if there is a full line in the keyboard input buffer.
Call: function Fullln(
var F : Text)
: Boolean
Parameters: F - file to be checked.
Result: True if a full line has been typed.
Exceptions: NotOpen -if Fis not open.

NotReset - if F has not been reset.

Determines if there is a full line in the keyboard ihput buffer. This is the case if a carriage-return has
been typed. This function is provided in order that a program may continue to do other things while
waiting for keyboard input. If the file is not open to the console, FullLn is always true.
StreamName

Returns the file name associated with: the file variable F.

Call: function StreamName(
var F : FileType)
: SName
Parameters: F - file variable whose name is to be returned.

Returns the file name associated with the file variable F. For block-structured files, the full path
name including device and partition is returned. For character-structured files, the device name is
returned. Environment: This routine seems to be called by Stream, Reader and Writer when they are

Stream Pascal Library - 102

about to raise an exception on the stream and want to know the name or filename associated with the
stream. For Accent it gives only the simple filename, which does not include the disk or partition
name.

WriteNChars
Writes some number of characters to the file.
Call: procedure WriteNChars(
var F : FileType;
c : char;
N : Integer)
Parameters: F - the file to write to.

¢ - the character to duplicate.

N - the number of characters to write.

WriteChars
Writes some number of spaces to the file.
Call: procedure WriteChars(
var F : FileType;
var S : String)
Parameters: F - the file to write to.

S - the string to write.

IsStreamDevice -

Indicates whether a name is one of the special devices that the Stream package uses.

Call: function IsStreamDevice(
S : SName)
integer
Parameters: S - String containing name to check.
Result: Index of the last character of the device name if a stream device, 0 if not a stream

device.

Pascal Library - 103 ViewKern

23 ViewKe rni Graphics operations

implementers: Brad A. Myers
David Golub

Abstract: This module attempts to call the Kernel protected graphics operations and if they
fail, then it calls Sapphire’s graphics operations instead. These routines are also
documented in The Spice Programmer’s Manual section Sapphire Window
Manager Procedure Headers. :

Files: viewkern.pas,sapphdefs.pas

Exported Types

LineFunct = (DrawLine, EraselLine, XORLine); {used in ViewlLine}

RectColorFunct = (RectBlack, RectWhite, Rectlnvert);usedin ViewColorRect

RopFunct = (
RRp1, Destination gets source
RNot, Destination gets NOT source
RANd, Destination gets Destination AND source
RAndNot, Destination gets Destination AND (NOT source)
ROr, Destination gets Destination OR source
ROrNot, Destination gets Destination OR (NOT source)
RXor, Destination gets Destination XOR source

RXNor); Destination gets Destination XOR (NOT source)

Viewport =

Port;

pVPCharArray = tVPCharArray;
VPCharArray = Packed Array[0..1] of Char;

VPStr255 =

VPROP

string[255];

Does a rasterOp from src to destination using windows

Call:

Parameters:

Procedure VPROP(

destvp : Viewport;
funct : RopFunct; .
dx, dy, width, height: Integer;
srcVP : Viewport;
SX, Sy : Integer)

destVP - the destination viewport. May be same as srcVP.

funct - the rasterOp function.

dx, dy - coordinates of the upper left corner of the rectangle in the destination

viewport.

ViewKern Pascal Library - 104

width, height - the width and height of the rectangle to rasterOp.
src VP - the source viewport. May be same as destVP,

sx, sy - coordinates of the upper left corner of the rectangle in the source
viewport.

For setting a rectangle to white or black or inverting a rectangle, call VPCclorRect instead of
VPROP. Only the displayed portions on the screen are updated. If the dest VP has memory then the
covered portions are updated in the offscreen memory. May raise exposed exception if portions in
destination are not available in source. Tries using the Kernel protected graphics functions first, and
then, if that fails, calls Sapphire's ViewRop.

VPColorRect

Operates on one rectangle to set, clear or invert all its bits.

Call: ' procedure VPColorRect(
vp : Viewport;
funct : RectColorFunct;
X, y, width, height : Integer);
Parameters: vp - the viewport to modify.

funct - the operation to do: RectWhite, RectBlack, or Rectinvert.
x, vy - the upper left corner of the rectangle in vp’s coordinate system.
width, height - the width and height of the rectangle to do.

This is more efficient than ViewRop for these operations. Only the displayed portions on the screen
are updated. If the viewport has memory then the covered portions are updated in the offscreen
memory. Never generates exposed exception. Tries using the Kernel protected graphics functions
first, and then, if that fails, calls Sapphire’s ViewColorRect.

VPScroll
Scrolls a portion of a viewport up, down, left, or right and erases the part that is left.

Call:
procedure VPScroll(

destvp : Viewport;

x, ¥y, width, height, : Integer

Xamt, Yamt : Integer);
Parameters: destvp - the viewport to modify.

x, y - upper left corner of rectangle’s old position with respect to destVP.
width, height - width and height of the area to move.

Xamt - number of bits to move the area horizontally. Negative numbers to move to
left, positive to move to right.

Pascal Library - 105 ViewKern

Yamt - number of bits to move the area vertically. Negative numbers to move up,
positive numbers to move down.

Only the displayed portions on the screen are updated. If the viewport has memory then the
covered portions are updated in the offscreen memory. Tries using the Kernel protected graphics
functions first, and then, if that fails, calls Sapphire’s ViewScroll.

VPLine
Draws a line in the viewport clipped to the displayed portions.
Call: procedure VPLine(
destvp : Viewport;
funct : LineFunct;
x1,y1,x2,y2 : Integer);
Parameters: destVP - the viewport to draw the line in.

funct - how to draw the line: DrawlLine, EraseLine or XorLine.

x1, y1 - one end of the line. Coordinates are in destVp’s coordinate space with 0,0
at the upper left.

x2, y2 - the other end of the line. Both end points are drawn.

Only the displayed portions on the screen are updated. If the viewport has memory then the
covered portions are updated in the offscreen memory. Tries using the Kernel protected graphics
functions first, and then, if that fails, calls Sapphire’s ViewLine. BUGS: Due to the current microcode,
the line may have holes in it.

VpString
Displays a string in a viewport.
Call: procedure VPString(
destvp, fontVP : Viewport;
funct : RopFunct;
var dx, dy : Integer;
var str : VPString255;
firstCh : Integer;
var lastch : Integer);
Parameters: destVp - the viewport to put the string in.

fontVP - a viewport that is a font (returned from LoadFont). If NULLViewport, then
SysFontVP used.

funct - the rasterOp function to use when displaying the string.

dx, dy - the starting location for the origin of the first character. Set to be the
origin of the next character to be displayed after the characters actually written.

ViewKern Pascal Library - 106

str - the string to display. VAR parameter for efficiency only not modified.

firstCh - the first character of the string to display. If DONTCARE, then 1 is used
(first character of the string)

lastch - the last character of the string to display. If DONTCARE, then length(str)
is used (the entire string is displayed). Set to the actual last character displayed.
This may not be as many characters as was desired because the edge of the
viewport was reached.

As much of the string as will fit is displayed and the amount that was displayed is returned. Only the
displayed portions on the screen are updated. If the viewport has memory then the covered portions
are updated in the offscreen memory. Tries using the Kernel protected graphics functions first, and
then, if that fails, calls Sapphire’s ViewString. VPPutString is similar to this procedure but it does not
have the return values. :

VpCharArray
Displays a portion of a character array in a viewport.
Call: procedure VPChArray(
destvp, fontVP : Viewport;
funct : RopfFunct;
var dx, dy : Integer;
chars : pVPCharArray;
arSize : Long;
firstCh : Integer
var lastch : Integer);

Parameters: destVp - the viewport to put the string in.

fontVP - a viewport that is a font (returned from LoadFont). If NULLViewport, then
SysFontVP used.

funct - the rasterOp function to use when displaying the string.

dx, dy - the starting location for the origin of the first character. Set to be the
origin of the next character to be displayed after the characters actually written.

chars - Pointer to a packed array of characters that contains the characters to
display.

arSize - Total number of characters in the array.

firstCh - the first character of the string to display. |f DONTCARE, then 0 is used
(first character of the string)

lastch - the last character of the string to display. If DONTCARE, then arSizel is
used (the entire string is displayed). Set to the actual last character displayed.’
This may not be as many characters as was desired because the edge of the
viewport was reached.

Pascal Library - 107 ViewKern

Like VPString, except that the characters come from a packed array of characters instead of a
string.

VPChar
Displays a single character in a viewport.

Call: procedure VPChar(
destvp, fontVP : Viewport;
funct : RopFunct;

var dx, dy : Integer;

ch : Char);

Parameters: destVp - the viewport to put the character in.

fontVP - a viewport that is a font (returned from LoadFont). If NULLViewport, then
SysFontVP is used. . .

funct - the rasterOp function to use when displaying the character.

dx, dy - the location for the origin of the character. Set to the origin of the next
character to be displayed. ’

ch - the character to show.

Unlike the other text display routines, this one will not notify the user if the edge of the viewport has
been reached. Only the displayed portions on the screen are updated. If the viewport has memory
then the covered portions are updated in the offscreen memory. Tries using the Kernel protected
graphics functions first, and then, if that fails, calls Sapphire’s ViewChar. VPPutChar is similar to this
procedure but it does not have the return value.

VPPutString
Same as VPString except no return values. Displays a string in a viewport.

Call: procedure VPPutString(
destvp, fontVP : Viewport;
funct : RopFunct;
dx, dy : Integer;
var str : VPStr255;
firstCh, lastch : Integer);

Parameters: destVp - the viewport to put the string in.

fontVP - a viewport that is a font (returned from LoadFont). If NULLViewport, then
SysFontVP used.

funct - the rasterOp function to use when dispiaying the string.
dx, dy - the starting location for the origin of the first character.

str - the string to display. VAR parameter for efficiency only not modified.

ViewKern

Pascal Library - 108

firstCh - the first character of the string to display. if DONTCARE, then 1 is used
(first character of the string)

lastch - the last character of the string to display. If DONTCARE, then length(str)
is used (the entire string is displayed).

Displays a string in a viewport. As much of the string as will fit is displayed. Only the displayed
portions on the screen are updated. If the viewport has memory then the covered portions are
updated in the offscreen memory. Tries using the Kernel protected graphics functions first, and then,
if that fails, calls Sapphire's ViewPutString.

VPPutChArray

Same as VPChArray except no return values. Displays a portion of a character array in

a viewport.

Call:

Parameters:

procedure VPPutChArray(

destvp, fontVvP : Viewport;
funct : RopFunct;

dx, dy : Integer;
chars : pVPCharArray;
arSize : Long;
firstCh, lastch : Integer);

destVp - the viewport to put the string in.

fontVP - a viewport that is a font (returned from LoadFont). If NULLViewport, then
SysFontVP used.

functthe rasterOp function -to use when displaying the string. -the starting
location for the origin of the first character.

chars - Pointer to a packed array of characters that contains the characters to
display.

arSize - Total number of characters in the array.

firstCh - the first character of the string to display. If DONTCARE, then 0 is used
(first character of the string)

lastch - the last character of the string to display. If DONTCARE, then arSizel is
used (the entire string is displayed).

Like VPPutString, except that the characters come from a packed array of characters instead of a

string.

VPPutChar

Same as VPChar except no return values. Displays a single character in a viewport.

Call:

procedure VPPutChar(
destvp, fontVP : Viewport;

Pascal Library - 109 ViewKern

funct : RopFunct;

dx : Integer;

dy : Integer;

ch : Char);
Parameters: destVp - the viewport to put the character in.

fontVP - a viewport that is a font (returned from LoadFont). If NULLViewport, then
SysFontVP is used.

funct - the rasterOp function to use when displaying the character.
dx, dy - the location for the origin of the character.
ch - the character to show.
Only the displayed portions on the screen are updated. |If the viewport has memory then the

covered portions are updated in the offscreen memory. Tries using the Kernel protected graphics
functions first, and then, if that fails, calls Sapphire’s ViewPutChar.

WindowUtils

Pascal Library - 110

24 WindowUtils: Routines to manipulate windows

Implementers:

John B. Brodie

David Golub
Abstract: This module provides several useful procedures for manipulating the
UserWindow. All of the actions requested by these routines take place on
UserWindow. It is assumed that this window has been initialzed and exported by
Pascallnit. These routines provide a simpler interface to routines documented in
The Spice Programmer’s Manual section Sapphire Window Manager
Procedure Headers.
Files: windowutils.pas, sapphdefs.pas
Exported Types _
TitStr = String[TitStrLength];
TitStriength = LandScapeBitWidth div SysFontWidth;
SysFontWidth = 93
LandScapeBitHeight = 1024;

ShowPathAndTitle

Display current path and given title in the UserWindow.

Call:

Parameters:

Procedure ShowPathAndTitle(
S ¢ TitStr)

S - String to be displayed in UserWindow's title line.

This procedure is called to display the current path and the given string in the title line. Assumes
that UserWindow is initialized within Pascallnit.

ShowWindowErrorFlag

Display ErrorFlag in the UserWindow icon.

Call:

Procedure ShowWindowErrorFlag

RemoveWindowErrorFlag

Remove the ErrorFlag from the UserWindow icon.

Call:

Procedure RemoveWindowErrorFlag

ShowWindowRequestFlag

Display the RequestFlag in the UserWindow icon.

Call:

Procedure ShowWindowRequestFlag

Pascal Library - 111 Window Utils

RemoveWindowRequestFlag
Remove the RequestFlag from the UserWindow icon.

Call: Procedure RemoveWindowRequestFlag

ShowWindowAttentionFlag
Display the AttentionFlag in the UserWindow icon.

Cait: Procedure ShowWindowAttentionFlag

RemoveWindowAttentionFlag
Remove the AttentionFlag from the UserWindow icon.

Call: Procedure RemoveWindowAttentionFlag

StreamProgress

Shows progress in reading a Pascal File in the title-line progress bar of the UserWindow.

Call: Procedure StreamProgress(

var F : Fite)
Parameters: F - The file being read. !t must have been Reset and not Closed.
ComputeProgress

Shows progress in the title-line progress bar of the UserWindow, as an amount of a total.

Call: Procedure ComputeProgress(
Current, Max : Long)
Parameters: Current - How far the operation has gotten.

Max - Total amount for the operation.

RandomProgress
Shows random progress in the title-lin bar of the UserWindow.

Call: Procedure RandomProgress

Shows random progress (something is happening, but we’re not sure how much) in the title-line
progress bar.

QuitProgress
Turns off the title-line progress bar in the UserWindow.

Call: Proczgure QuitProgress -

WindowUtils Pascal Library - 112

MultiLevelProgess

Shows progress in the selected progress bar in the UserWindow, as an amount of a total.

Call: Procedure MultilLevelProgress(
Level : integer;
Current, Max : Long)
Parameters: Level - Which progress bar to use.

Current - How far the operation has gotten.
Max - Total amount for the operation.

MultiStreamProcess

Shows progress in reading a Pascal file in the selected'progress bar of the UserWindow.

Call: Procedure MultiStreamProgress(
Level : integer;
var F : File)
Parameters: Level - The progress bar to show progress in.

F - The file being read. It must have been Reset and not Closed.

QuitMultiProgress
Turns off the selected progress bar in the UserWindow.

Call: Procedure QuitMultiProgress(
Level : integer)

Parameters: Level - Which progress bar to use.

Pascal Library - 113 ErrorCodes

A.Error Codes

A.1 Accent

General error codes to be used by all modules that pass messages.
Exported by AccentType.

BADMSGID
WRONGARGS
BADREPLY
NOREPLY
UNSPECEXCEPTION

.
’
.
]
.
*

’

; Message is an exception on behalf of a server

1
2
3
4
5

Error codes returned by Accent kernel calls. Exported by AccentType.

AccErr = 100;
Dummy = 100;
Success = 101;
TimeOut = 102;
PortFuli = 103;
WillReply = 104;
‘TooManyReplies = 105;
MemFault = 106;
NotAPort = 107;
BadRights = 108;
NoMorePorts = 109;
I11egalBacklog = 110;
NetFail = 111;
Intr = 112;
Other = 113;
NotPortReceiver = 114;
UnrecognizedMsgType = 115;
NotEnoughRoom = 116;
NotAnIPCCall = 117;
BadMsgType = 118;
BadIPCName = 119;
MsgTooBig = 120;
NotYourChild = 121;
BadMsg = 122;
OutOfIPCSpace = 123;
Failure = 124;
MapFull = 125;
WriteFault = 126;
BadKernelMsg = 127;
NotCurrentProcess = 128;
CantFork = 129;
BadPriority = 130;
BadTrap = 131;
DiskErr = 132;
BadSegType = 133;
BadSegment = 134;

ErrorCodes Pascal Library - 114

IsParent = 135;
IsChild = 136;
NoAvailablePages = 137;
FiveDeep = 138;
BadVPTable = 139;
VPExclusionFailure = 140;
MicroFailure = 141;
EStackTooDeep = 142;
MsgInterrupt = 143;
UncaughtException = 144;
BreakPointTrap = 145;
ASTInconsistency = 146;
InactiveSegment = 147;
SegmentAlreadyExists = 148;
OutOfImagSegments = 149;
NotASystemAddress = 150;
NotAUserAddress = 151;
BadCreateMask = 152;
BadRectangle = 153;
OutOfRectangleBounds = 154;
I1legalScanWidth = 155;
CoveredRectangle = 156;
BusyRectangle = 1567;
NotAFont = 158;
PartitionFull = 159;

Pascal Library Summary - 115

B. Summary of Calls

The following is a summary of the Pascal library calls. The page on which the operation is fully
described appears within square brackets.
Aload

[6] procedure ARunLoad(RunFileName : Path_Name; p : pointer; filesize : long; hiskport : port;
LoadDebug : boolean);

[7]1 procedure ShowRun(p : pointer; MapFileName : Path_Name)
[7] function DateString(date : Internal_Time) : String N

[7] function LinkTypeStr(typ : LinkFileType) : string
Bootinfo

CLoad

[11] Function CLoadProcess(FileName : APath Name; var FilelnMem: pointer; var FileSize : long;
Proc : Port; LoadDebug: Boolean): GeneralReturn;

Clock

[13] function IOGetTime: long;

CommandParse ,

[18] procedure InitCmdFile(var InF: pCommand File List);

[19] function OpenCmdFile(Fi!eName: pWord String; var InF: pCommand _File_List) : GeneralReturn
[19] procedure ExitCmdFile(var inF: pCommand File List)

[19] procedure ExitAllCmdFiles(var InF: pCommand File List)

[20] procedure DstryCmdFiles(var InF: pCommand File List)

[20] Procedure initCommandParse

{20} Procedure DestroyCommandParse

[20] Function ParseCommand(var inputs: pCommand_ Word _List; var outputs: pCommand_Word_List;
var switches: pCommand Word List) : GeneralReturn

[21] Function ParseChPool(ChPool: pCharacter_Pool; PoolLength: Char_Pool_Index; var inputs:
pCommand_Word_List; var outputs: pCommand_Word_List; var switches:
pCommand_Word List) : GeneralReturn

[21] Function ExerciseParseEngine (ChPool: pCharacter_Pool; PoolLength: Char_Pool_Index;
procedure ReadPool(var Pool: pCharacter_Pool; var PLen: Char_Pool_Index); var
inputs: pCommand_Word_List; var outputs: pCommand_Word_List; var switches:
pCommand Word _List) : GeneralReturn;

[22] Function AllocCommandNode(WordClass : Word_Type; WordString: Cmnd_String) :
pCommand Word List

Pascal Library Summary - 116

[22] Procedure DestroyCommandList(var argList: pCommand_ Word_List)

[22] Procedure AlwaysEof(var ChPool: pCharacter Pool; var PoolLength: Char Pool_Index)

[23] procedure StdError(var table: pWord Search_Table; CaseSensitive: boolean)

[23] Procedure AddSearchWord(table: pWord_Search_Table; WordKey: integer; WordString:
Cmnd_String)

[23] Procedure DeleteSearchWord(table: pWord Search_table; WordString: Cmnd_String)

[24] Procedure DestroySearchTable(var table: pWord_Search_Table)

[24] Function UniqueWordIndex(table: pWord_Search_Table; ptrWordString: pWord_String; var
WordText: Cmnd_String) :integer

[24] procedure ConvertPoolToString(ChPool: pCharacter_Pool; FirstChar: Char_Pool_Index:
StringLength: Char_Pool_Index) : Cmnd_String

[25] procedure ConvertStringToPool(CnvStr: Cmnd_String; var ChPool: pCharacter_Pool; var

’ PoolLength: Char_Pool_Index)

[25] procedure DestroyChPool(var ChPool: pCharacter_ Pool; var PoolLength: Char_Pool Index)

[25] Function WordifyPool(ChPool: pCharacter_Pool; PoolLength: Char_Pool_Index; var WordStruct:
ComimandBlock): GeneralReturn

[26] procedure GetlthWordPtr(i: long; CmndBiock: CommandBlock) : pWord_String

CommandDefs

[28] function Null CommandBlock: CommandBlock

Configuration

[29]
[29]
[29]
[30]

function CF_IOBoard : CF_10BoardType
function CF_Monitor: CF_MonitorType
function CF_0IdZ80 : boolean

function CF_Network: CF_NetworkType

Dynamic

[32]
[32]
[32]
[32]
. [33]
(23]

procedure InitDynamic

function CreateHeap : HeapNumber

procedure ResetHeap(S : HeapNumber)

procedure DestroyHeap(S : Heap Number)

procedure DisposeP(var Where : pointer; Len : integer)

procedure NewP(S : HeapNumber; A : integer; var Where : pointer; L : integer)

[34] procedure RaiseP(ES, ER, PStart, PEnd: Integer)

[35] procedure InitExceptions

Pascal Library Summary - 117

ExtraCmdParse

[36] Function GetCmd (Prompt : Cmnd_String; SearchTable: pWord Search_Table; var CmdName:
Cmnd String; var InF: pCommand _File_List; var inputs: pCommand_ Word List; var
outputs: pCommand_Word List; var switches: pCommand_Word_List; var ErrorGR:
GeneralReturn): integer;

[38] Function GetShellCmd(SearchTable: pWord_ Search_Table; var CmdName: Cmnd_String; var inF:
pCommand File List; var inputs: pCommand WordList; var outputs:
pCommand Word List; var switches: pCommand Word List; var ErrorGR:
GeneralReturn): integer

[40] Function GetParsedUserinput(prompt: Cmnd_String; var inF: pCommand_File_List; var inputs:
pCommand Word_ List; var outputs: pCommand Word List; var switches:
pCommand_Word _List) : GeneralReturn

[40] Function GetConfirm {prompt : Cmnd_String; def : integer; var switches: pCommand_Word List)
:integer

[41] Procedure GetCharacterPool(prompt: CmndString; var InputFile: Text; var ChPool:
pCharacter Pool; var PoolLength: Char_Pool_Index)
IPCRecordlO

[43] function SendRecord(localport : Port; remoteport : Port; id : long; MsgType : long; recptr :
Pointer; recsize : integer) : GeneralReturn;

[48] function RecRecord(var localport : Port; var remoteport : Port; var id : long; var MsgType : long;
var recptr : Pointer; var recsize : integer) : GeneralReturn;

OldTimeStamp

[45] function OldCurrentTime: TimeStamp;

[45] function NewToOldTime(NewTime: Internal Time): TimeStamp;

[45] function OldToNewTime(OldTime: TimeStamp): Internal_Time;

Pascalinit

[47] Procedure InitPascal

[47] Procedure InitPascal (AmiClone : BOOLEAN)

[47] Function DisabiePrivs(Proc: PORT): GeneraiReturn;
[48] Function EnablePrivs(Proc: PORT): GeneralReturn;

PathiName

[50] function ReadFile(Var PathName : Path Name; Var Data : File Data; Var ByteCount : long) :
GeneralReturn;

[51] function ReadExterdedFilef Var- PathName . PathrName; ExtensionList : ExtensionList;
ImplicitSearchList : Env_Var Name; Var Data : File_ Data; Var ByteCount : long) :
GeneralReturn;

[52] function WriteFile(Var PathName : PathName; Data : File Data; ByteCount : long) :
GeneralReturn; :

[52]
(53]

(54]

[55]

(55]

[56]

(57]

(58]

[59]

(60]
[60]
(60]
[61]
[61]
[61]
[62]
[62]

Pascal Library Summary - 118

function CompletePathName(var WildPathName : Wild_ Path Name; ImplicitSearchList :
Env_Var_ Name; FirstOnly : boolean; var Cursor : integer) : long;

function ExpandPathName(Var PathName : Wild_Path_Name; ImplicitSearchList : Env_Var Name)
: GeneralReturn;

function FindPathName(Var PathName : Path_Name; ImplicitSearchList : Env_Var Name;
FirstOnly : boolean; Var EntryType : Entry Type; Var NameStatus : Name_Status) :
GeneralReturn;

function FindFileName(Var PathName : Path Name; ImplicitSearchList : EnvVarName;
FirstOnly : boolean) : GeneralReturn;

function FindExtendedPathName(Var PathName : Path Name; ExtensionList : Extension_List;
ImplicitSearchList : Env.VarName; FirstOnly : boolean; Var EntryType
Entry Type; Var NameStatus : Name_Status) : GeneralReturn;

function FindExtendedFileName(Var PathName : Path_ Name; ExtensionList : Extension_List;
ImplicitSearchlList : Env_Var Name; FirstOnly : boolean) : GeneralReturn;

function FindTypedName(Var PathName : PathName; ExtensionList : Extension_List;
ImplicitSearchList : EnvVarName; FirstOnly : boolean; Var EntryType
Entry Type; Var NameStatus : Name_Status) : GeneralReturn; :

function FindWildPathnames(Var WildPathName : Path.Name; ImplicitSearchList
Env_VarName; FirstOnly : boolean; NameFlags : Name_Flags; EntryType :
Entry Type; Var FoundInFirst : boolean; Var DirName : APath_Name; Var EntryList :
Entry_List; Var EntryListCnt : long) : GeneralReturn;

procedure ExtractSimpleName(Name : Path_Name; Var StartTerminal : integer; Var StartVersion
: integer);

function SimpleName(PathName : Path Name) : Entry Name;

function StripCurrent(Var WildPathName : Wild_Path_Name) : GeneralReturn;

Procedure AddExtension(Var FileName : Péth_Name; Extension : String);

Procedure ChangeExtensions(Var Name : Path_ Name; EList : Extension_List; NewExt : string);
function NextExtension(Var EList : Extension_List) : string;

Procedure RemoveExtension(Var FileName : Path_Name; Extension : String);

function Index1Unquoted(S : Wild_Path_Name; C : char) : integer,

function IsQuotedChar(S : Wild_ Path_Name; Index : integer) : boolean;

PMatch

1 procedure PattDebug(v : boolean)

[63]
[64]
[64]

function IsPattern(str : pms255) : boolean
function PattMatch(var str, pattern : pms255) :boolean

function PattMap(var str,inpatt,outpatt,outstr :pms255; fold :boolean) :boolean

Pascali Library Summary - 119

RealFunc

[66] function Sqrt(X : Real): Real

[66] function Ln(X: Real): Real

[66] function LogiO(X : Real): Real

[66] function Exp(X : Real): Real

[66] function Power(X, Y : Real): Real
[67] function Powerl(X: Real; Y : Integer) : Real;
[67] function Sin(X: Real): Real

[67] functionVCos(X: Real): Real

[67] function Tan(X : Real): Real

[67] function CoTan(X : Real): Real

[68] function ArcSin(X : Real): Real
[68] function ArcCos(X : Real): Real
[68] function ArcTan(X : Real): Real
[68] function ArcTan2(Y, X: Real): Real
[69] SinH(x:real):real

[69] function CosH (x: real) :real

[69] function TanH(x: real) : real

SaltError
[70] Procedure GRWriteStdError(GR : GeneralReturn; ER_Type : GR_Error_Type; InMsg : PString)

[70] Procedure GRStdError(GR : GeneralReturn; ER_Type : GR_Error_Type; InMsg : PString; var
QutMs : PString)

[71] Procedure GRWriteErrorMsg(GR : GeneralReturn; ER_Type : GR Error Type; ProgName : String;
InMsg : PString)

[71] Procedure GRErrorMsg(GR : GeneralReturn; ER_Type : GR_Error Type; ProgName : String;
InMsg : PString; var OutMsg : PString)

[72] Procedure ErrorMsgPMBroadcast(GR : GeneralReturn; ER_Type : GR_Error_Type; ProgName :
String; InMsg : PString)

[72] Function GRStdErr(GR : GeneralReturn; ER Type : GR_Error_Type; InMsg : PString; var OutMsg
: PString) : boolean;
Spawn

[73] function Exec(VAR ChildKPort : Port; VAR ChildDPort : Port; ProcessName : STRING;
HisCommand : CommandBlock) : GeneralReturn;

[74] function Split(var ChildKPort : Port; var ChildDPort : Port) : GeneralReturn;

[74]

Pascal Library Summary - 120

function Spawn(var ChildKPort : Port; var ChildDPort : Port; ProgName : APath - Name;
ProcName : string; HisCommand : CommandBlock; Debuglt : boolean;
ProtectChild : boolean; SapphConn : Connectionlnheritance; pWindow : Port;
pTypeScript : Port; EMConn : Connectioninheritance; pEMPort : Port;
PassedPorts : ptrPortArray; NPorts : long; LoaderDebug : BOOLEAN)
GeneralReturn;

Spice_String

[7¢]
[7e]
[7¢]
[7e]
[7¢]
[79]
[80]
(80]
[80]
[81]
[81]
[81]
[61]
[62]
[62]
[83]
[83]
[83]
[84]
[4]
[84]
[84]
[e5]
[85]
[85]

8]
[86]
[g6]

procedure Adjust(var Str :PString; Len :Integer)

procedure AppendChar(var Str : PString; ¢ : Char)

procedure AppendString(var Str1 : PString; Str2 : PString)

function Cat3(Str1,Str2,Str3 : PString) : PString

function Cat4(Str1,Str2,Str3,Str4 : PString) : PString

function Cat5(Str1,Str2,Str3,Str4,Str5 : PString) : PString

function Cat6(Str1,Str2,Str3,Str4,Str5,Str6 : PString) : PString
function Concat(Str1,Str2 : PString) : PString

procedure ConvUpper(var Str : PString)

function CVD(Str :PString) :integer

function CVH(Str :PString) :integer

function CVHS(| :integer) :Pstring

function CVHSS(| :integer; W :integer) :Pstring

function CviInt(Str: PString; R.: integer) :intéger

function CvL(Str : PString; Radix : integer) : long

function CVN(| : integer; W : integer; B : integer; Fill : Pstring) :Pstring
function CVLS(|: long; W : integer; Radix : integer; Fill : Pstring) :Pstring
function CVO(Str :PString) :integer

function CVOS(| integer) :Pstring

function CVOSS(| :integer; W :integer) :Pstring

function CVS(| :integer) :Pstring

function CVSS(| iinteger; W :integer) :Pstring

function CvUp(Str : PString) : PString

Procedure DeleteChars(var Str. :PString; Indéx, Size :Integer)
function GetBreak : BreakTabie

function Initial(Str1,Str2 : PString) :boolean

Procedure InsertChars(Source :Pstring; var Dest :PString; Index :Integer)

function Lop(var Str : PString) : PString

Pascal Library Summary - 121

[87] function Pad(Str: PString; TotalLen : integer; PadCh : char; Where : integer) : PString
[87] function PosC(-Str : PString; C : char) : integer

[88] function PosString(Source, Mask : PString) : integer

[88] procedure ReplaceChars(var Str : PString; NewS : PString; Index : integer)

[88] Function RevPosC(Str : PString; ¢ : char) : integer

[89] function RevPosString(Source, Mask : PString) : integer

[89] function Scan(var S : Pstring; BT : breaktable; var BRK : Pstring) :Pstring

[89] procedure SetBreak(var BT : BreakTable; Break, Omit : PString; Options : BreakKind)
[81] function ShowBreak(BT :.BreakTable) : PString -

[91] function Squeeze(Str: PString) : PString

[91] function Str(Ch :char) :PString

[92] function Strip(Str : PString) : PString

[92] Function SubStrFor(Source :PString; Index, Size :Integer) :PString

[92] Function SubStrTo(Source :PString; Index, Endindex :Integer) :PString

[98] function Trim(Str : PString) : PString

[93] function ULInitial(Str1,Str2 : PString) :boolean

[93] Function ULPosString(Source, Mask :PString) :Integer

[94] function UpChar(C: Char):char

[94] Function UpEQU(Str1 : PString; Str2 : PString) :boolean

Stream
[98] procedure Streaminit(var F : FileType; WordSize, BitSize : integer; CharFile : boolean)
[98] procedure StreamClose(var F : FileType)

[98] procedure StreamOpen(var F : FileType; var Name : SName; WordSize, BitSize : integer;
CharFile : boolean; OpenWrite : boolean)

[99] procedure GetB(var F : Filetype)

[99] procedure GetC(var F : Filetype)

[99] procedure PutB(var F : Filetype)

[100] procedure PutC(var F : FileType)

[100] procedure PReadIn(var F : Filetype)

[100] procedure PWriteln(var F : Filetype)

[100] procedure KBFlushBoardQutput(var F : Filetype)
[101] procedure StreamKeyBoardReset(var F : Text)
[101] procedure InitStream

[101]
[101]
[102]
[102]
[102]

Pascal Library Summary - 122

function FullLn(var F : Text) : Boolean

function StreamName(var F : FileType) : SName

procedure WriteNChars(var F : FileType; ¢ : char; N : Integer)
procedure WriteChars(var F : FileType; var S : String)

function IsStreamDevice(S : SName) : integer

ViewKern

[103]

[104]
[104]
[105]
[105]

Procedure VPROP(destvp : Viewport; funct : RopFunct; dx, dy, width, height: Integer; srcVP :
Viewport; sx, sy : Integer)

procedure VPColorRect(vp : Viewport; funct : RectColorFunct; x, y, width, height : Integer);
pracedure VPScroll(destvp : Viewport; X, y, width, height, : Integer Xamt, Yamt : Integer);
procedure VPLine(destvp : Viewport; funct : LineFunct; x1,y1,x2,y2 : Integer);

procedure VPString(destvp, fontVP : Viewport; funct : RopFunct; var dx, dy : Integer; var str :
VPString255; firstCh : Integer; var lastch : Integer);

procedure VPChArray(destvp, fontVP : Viewport; funct : RopFunct; var dx, dy : Integer; chars :
pVPCharArray; arSize : Long; firstCh : Integer var lastch : Integer);

procedure VPChar(destvp, fontVP : Viewport; funct : RopFunct; var dx, dy : Integer; ch : Char);

procedure VPPutString(destvp, fontVP : Viewport; funct : RopFunct; dx, dy : Integer; var str :
VPStr255; firstCh, lastch : Integer);

procedure VPPutChArray(destvp, fontVP : Viewport; funct : RopFunct; dx, dy : Integer; chars :
pVPCharArray; arSize : Long; firstCh, lastch : Integer);

procedure VPPutChar(destvp, fontVP : Viewport; funct : RopFunct; dx : Integer; dy : Integer;
ch : Char);

WindowUtils

[110]
[110]
[110]
[110]
[111]
[111]
[111]
[111]
[111]
[111]
[111]
[112]

Procedure ShowPathAndTitle(S : TitStr)
Procedure ShowWindowErrorFlag
Procedure RemoveWindowErrorFlag
Procedure ShowWindowRequestFlag
Procedure RemoveWindowRequestFlag
Procedure ShowWindowAttentionFlag
Procedure RemoveWindowAttentionFlag
Procedure StreamProgress(var F : File)
Procedure ComputeProgress(Current, Max : Long)
Procedure RandomProgress

Procedure QuitProgress

Procedure MultiLevelProgress(Level : integer; Current, Max : Long)

Pascal Library Summary - 123

[112] Procedure MultiStreamProgress(Level : integer; var F : File)

[112] Procedure QuitMultiProgress(Level : integer)

	00001
	00002
	00003
	0001
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123

