CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

The Server Manual

28 August 1984

oo YSHEI i

2

S DHrasspe®

< A
7] el iy
g\
) ey T
LR Al
A 2 H * e ’j
. \ b

Accent and many of its subsystems and support programs were originally developed by the CMU
Computer Science Department as part of its Spice Project.

This document is not to be reproduced in any form or transmitted in whole or in part, without the prior
written authorization of PERQ Systems Corporation or Carnegie-Mellon University.

The information in this document is subject to change without notice and shduld not be construed as
a commitment by PERQ Systems Corporation. The company assumes no responsibility for any errors
that may appear in this document. PERQ Systems Corporation will make every effort to keep
customers apprised of all documentation changes as quickly as possible.

Accent is a trademark of Carnegie-Mellon University. PERQ, PERQ2, LINQ, AND Qnix are trademarks
- of PERQ Systems Corporation. :

Copyright © 1984 Carnegie-MelIdn University

This is an internal working document of the Computer Science Department, Carnegie-Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate working community is discouraged; pubiication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government,

Table of Contents

1 The Authorization Server

1.1 Introduction
1.2 Type Definitions
1.3 Routines

2 The Environment Manager

2.1 Introduction
2.2 Definitions
2.3 Functions

3 The 170 System

3.1 Introduction”
3.2 Devices
3.3 Basic Routines
3.4 Modes of Interaction
3.5 Function of Basic Routines
3.6 Example of SynclO for GPIB
3.7 Commands for GPIB
3.8 Commands for RS232, Speech and Floppy
3.8.1 RS232A
3.8.2 RS232B
3.8.3 Speech
3.9 Floppy
3.10 Definitions
3.11 Routines

4 Name Server

4.1 Introduction
4.2 Functions

5 The Network Server

5.1 Introduction

5.2 overview

5.3 Initializing the interface

5.4 Getting the Ethernet Address of the Machine
5.5 Sending an Ethernet Packet

5.6 Connecting to an Ethernet Type

5.7 Type Definitions

5.8 Exported Exceptions

5.9 Common Parameters

N bt b bt

O 00 1 ~3

15
15
15
17
17
19
21
25
26
30
30
31
3
41

47
47
47

50
50
50
51
51
s1
51
52
58
58

5.10 Procedures

6 Process Manager
6.1 Introduction
6.2 Process Trees
6.3 Process Control Groups
6.4 Process Control Signals
6.5 Keyboard and Window Manager control
6.6 Dcbugging
6.7 Dcfinitions
6.8 Functions

7 Sesame: Interface to Prelimary Sesame File System
7.1 Type Definitions
7.2 Procedures and Functions

8 TimeServer
8.1 Introduction
8.2 Definitions
8.3 Exceptions
8.4 Procedures
8.5 Valid Time Zones

9 The Typescript Manager
9.1 Introduction
9.2 Use
9.3 Definitions
9.4 Routines

58

66
67
67
67
68
69

85
88

99
9
103
103
109

110
110
110
111
111

1 The Authorization Server

1.1 Introduction

The Authorization Server has the responsibility of authenicating a user’s identity by checking a login name
and password against the list of recoginzed users and their passwords. This version of the Authorization
server is only temporary. The temporary Authorization Server runs on a remote PERQ so that if that PERQ is
down then the Authorization Server will not be running. This Authorization Server identifies each user with
a unique id. A user may have owner or world access privileges. This is described in the Introduction to the
Spice User’s Manual. The Authorization Server that will be implemented in the future is described in the
Sesame: The Spice File System Manual and will include group access privileges.

1.2 Type Definitions

The following type are defined in Authdefs.pas.
Auth _Var Size = 30;

NoUser = 0; { files owned by "nobody" }
First User = 1; { first valid user }
Max Users = 1023;

Type

Auth Var = String[Auth_Var _Size];
UserID = No_User.Max Users; { must be "bitl0" }

PassType = Long; { atwo word value }
{ 4 chars for a password??? }

UserRecord = record _
Name: Auth Var; { Name of the user }
UserID: UserID; { The user ID of the user. }
EncryptPass: PassType; { The encrypted password. }
Profile: APath Name; { Path name of the profile file. }
NameOfShell: APath Name; { Name of the Shel.RUN File. }
End;

Machine Name = String[255];

Check Type = (Check Login, { user is logging in }
Check _User); { user is changing parameters }

Logged User = record { one logged-in user }
UserID :UserID;

27 Aug 84

Servers-2

UserName :Auth_Var;
MachineName :Auth_Var;
End;

Logged User Array = array[0..0] of Logged User;
Logged User List = tLogged User Array;

CONST
Auth_Error Base = 5000;

UserNameNotFound = Auth_Error Base + 1;
PassWordIncorrect = Auth_Error Base + 2;
AuthPortIncorrect = Auth_Error Base + 3;

1.3 Routines

The following functions and procedures are found in Authuser.pas.

R SR R T S S T M il
InitAuth

Call:

procedure InitAuth(
RPort : Port)

Parameters:
RPort

ARunLoad initializes a process address space from RunFileName (or from a run file structure in memory if p
is not nil), and optionally starts it executing.

P P P - R I Dl

LoginUser
Logs a user into the authentication server.
Call:
procedure LoginUser(
ServPort : Port;
UserName : Auth Var;
Password : Auth Var;
MachineName : Auth Var;
var UserAuthPort : Port; -
var UserRec : UserRecord)
: GeneralReturn
Parameters:

27 Aug 84

Servers—-3

ServPort-The authentication server port
UserName-the name of the user to check
Password-password for the user
MachineName

User AuthPort-Port returned to the user if the name and password
match)

UserRec-Is filled with the user information if the user name and
password match
Results:

Success-Valid user, logged in

other-Invalid user

e

LogoutUser

Logs a user out.
Call:
function LogoutUser(
: ServPort : Port)
: GeneralReturn
Parameters:
ServPort-The port for the authentication server.
Results:

Success-AuthPortIncorrect

B - T O I R R
ConfirmUser

Checks the UserAuthPort to ensure that the user is logged in. If'so, returns useful information about the user
Call:

function ConfirmUser(
ServPort : Port;
UserAuthPort : Port;
var Userld : User_ID;

27 Aug 84

Servers—4

var UscrMachineName: Auth _Var)

: GeneralReturn
Parameters:
ServPort~The port for the authentication server
UserAuthPort-the signature port
UserID-Returns the ID number for the user
UserMachineName-Recturns the name for the machine that the user is
logged on.
Results:

Success-if the user is valid

CheckUser
Verifies a user name/pasword pair and returns information about that user.
Call:

function CheckUser(
ServPort : Port;
UserName : Auth Var;
Password : Auth Var;
var UserRec : UserRecord)
: GeneralReturn

Parameters:

ServPort-The authentication server port
UserName-user name to be checked
Password-password for the user

UserRec-Is filled with user information if the user name and
password match.

Results:
Success-Valid user

other-Invalid user

ChangeUserParams

27 Aug 84

Servers-5

This function changes the parameters for a logged-in user.
Call:

function ChangeUserParams(
ServPort : Port;
UserName : Port;
CurrentPassword: Auth Var;
ChangcPassword : Boolean;
NewPassword: Auth_Var;
NewProfile: ~ APath Name;
NewShell : APath Name)

: GeneralReturn

Parameters:

ServPort-The port for the user’s authentication server.
UserName-Name of the user whose information is to be changed
CurrentPassword-current password in the user’s record
ChangePassword-if true, change password

NewPassword-new password to replace the current one
NewProfile-path name of the profile file for the user

NewShell-name of the shell to be stored in the user record.
Results:

Success-if the user was added or changed.

AuthPortIncorrect-1f the user did not have the proper access rights to add or change
auser.

GetUserName
Gels the user name corresponding to a User ID.
Call:
function GetUserName(
ServPort : Port;
Userld : User _ID;
var UserName: Auth Var)
: GeneralBenun:

Parameters:

27 Aug 84

Servers—6

ServPort-Authentication Port Server
UserID-User ID

UserName-Returns the name for the user
Results:

Success

UserNameNotFound

IR IR NI I I I N I T P I T Tl
ListLoggedInUsers

Returns all of the users currently logged in to this Authentication Server.

Call:

function ListLoggedInUsers(
ServPort : Port;
var UserList : Logged User List;
var UserList Cnt: long)
: GeneralReturn

Parameters:

ServPort-Authentication server port
UserList-Returns a list of user-ID-Machine

UserList Cnt-Returns the number of users logged in.
Results:

Success

Servers-7

2 The Environment Manager

2.1 Introduction

The Environment Manager provides a language and process independent way of sharing directory
searchlists and other variables among different processes executing on one machine.

The Environment Manager provides a message interface to define and retrieve environment variables. An
environment variable is a named variable that has a type, a scope, and a set of values associated with it.
There are two types: a string-valued variable and a searchlist. The values of the variables are kept as a
variable-length array of strings. An environment variable has a scope associated with it, either local or
global. A local variable is scen only by a single process. The local environment of the parent is copied at
process creation time and is passed to the child process. Once the copy is made, any subsequest changes are
not shared between parent and child. Only global variables can be shared between processes. Global
variables are visible to all the processes that are served by the Environment Manager.

A String-valued variable simply allows one to store and retrieve arbitrary strings.

A Searchlist-valued variable is a list of directories to be searched when looking for a file. The entries in a
searchlist are either directory names or names of other searchlists. On lookup, all references to searchlists
are expanded (replaced by their contents) until the expanded searchlist consists only of directory names. An
entry that is a reference to a searchlist contains the name of the searchlist followed by a colon () (and
optionally a subdirectory name). This is the same syntax that is used by the file system to denote searchlists,
It is possible to have both a local and global environment variable with the same name. In this case the local
variable takes precedent just as in Pascal scope rules.

Ordinarily, if a local searchlist exists with the same name as a global searchlist, the local searchlist will be
used. The one exception to this rule is that when a local searchlist contains its own name, that becomes a
reference to the global searchlist with the same name — not a recursive reference to itself. This behavior is
useful because it allows the system to specify a default search list for a given subsystem by name and for
that subsystem to reference its path by that name. However, a user may then define a local searchlist with
the same name to override the normal search list for that system. The user can then use the global definition
from within the local definition, allowing the user to add directories to the normal search list for the
subsystem.

Note that this applies even if the original searchlist is a global search list. For example, Accent searches for
run files within the “Run:” search list and all other files within the “Default:” search list. A user who wants
to make both searchlists the same can define the global “Run:” search list as “Default:”. Then, each time
the “Run:” search list is resolved, the sytem will actually scarch the “Default:” search list for the process
asking for the search. Since the “Default:” search list is first resolved locally, this allows the one (global)
definition of the “Run:” search list to refer to different “Default:” search lists depending on which process
resolves it.

27 Aug 84

Servers-8

2.2 Definitions

The following definitions are found in EnvMgrDefs.pas. |

At the shell level, Searchlist environment variable names are distinguished from string environment
variable names by having a colon (*’) as the last character of the name. This colon is NOT used by any of
the Environment Manager user interface calls and is not returned by ScanEnvVariables.

{ Env_Variable: A list of environment entries, each of which is a string.

const
Env Element Size = 255; { MaxString }
type
Env Element = string[Env_Element Size];
Env Element Array = array [0.. 0] of Env Element; {hack }
Env_Variable = 1 Env_Element Array;

{ A Searchlist name embedded in a searchlist string is followed by
{ a Searchlist Separator character.

const
Searchlist Separator = '.";

{ Env_Var Name: The name string for an environment variable.
{ The syntax of the name is the same as for an arbitrary
{ entry name in the name server.

const

Env_VarName Size = Entry Name Size;
type

Env_Var Name = string[Env_VarName Size];

{ Env_Var Type: The environment variable type values.

type
Env_Var Type = (
Env String, { Values are lists of strings }
Env SearchList); { Valueis a search list }

{ Env Var Scope: Flag specifying whether to find environment variable
{ inthelocal table, global table, or using the normal method
{ oflocal and then global,

type
Env_Var Scope = (

27 Aug 84

Servers—9

Env Normal, { Use the normal lookup method }

Env_Local, { Refer to name in per-process table }

Env _Global); { Refer to name in global environment
variable table }

{ Env_Scan List: A list of environment variable names, types, and scopes.

type
Env Scan Record =
record
VarName : Env_Var Name;
VarType : Env_Var Type;
VarScope : Env_Var Scope;
end;

Env Scan Array = array [0 .. 0] of Env Scan Record; { hack }
Env Scan List = * Env Scan_Array;

’

{ Error return values for Environment Manager.

const
Env Error Base = 1600;

EnvVariableNotFound .= Env _Error Base + 1;
WrongEnvVarType = Env Error Base + 2;
BadSearchlistSyntax = Env Error Base + 3;
Searchlistloop = Env Error Base + 4;
FirstltemNotDefined = Env_Error Base + 5;

2.3 Functions

The following fuhctions are fo-t_md in EnvMgrUser.pas.
R AR R I I I I O
GetEnvVariable

Returns the value of an environment variable. If the variable is a searchlist, this does not evaluate any
contained searchlist references.

Call:

Function GetEnvVariable(
ServPort : Port;
Name : Env_Var Name;
SearchScope: Env_Var Scope;
var Variable : Env_Variable;

27 Aug 84

Servers-10

var Variable Cnt: long;

var VarType : Env_Var Type;

var ActualScope: Env_Var Scope)
: GeneralReturn

Parameters:
ServPort-Connection to the Environment Manager for process.

Name-name of environment variable,

SearchScope-where to search:
Env _Global global environment only
Env Local local environment only
Env Normal Search the local environment. If
the variable is not there, search the
global environment.

Variable-returns a pointer to the variable (a variable-length
array of strings).

Variable Cnt-returns the number of entrics in variable.

VarType-returns type of environment variable: Env Searchlist
or Env String.

ActualScope-returns where the variable was actually found
(Env_Local or Env_Global).
Results:

Success

Environment Variable not found

BRI I NI i

SetEnvVariable

Enters a new environment variable. If the variable is a search list, checks for valid search list syntax and

ensures that each entry ends in a directory separator (/") or a searchlist terminator (“:").
Calt

Function SetEnvVariable(
ServPort : Port;
Name :Env_Var Name;
VarType :Env_VarType;
VarScope : Env_Var Scope;
Variable : Env_Variable;

27 Aug 84

Parameters:

Results:

A R IR R R R D T -

The ResolveSearchList call is used to resolve the value of an environment variable of type Env_SearchList,
recursively expanding any environment variable references contained therein. If undefined names are
encountered during the expansion, they are ignored and the expansion is continued. It is, however, an error if

Servers-11

Variable Cnt: long)
: GeneralReturn
ServPor—Connection to the Environment Manager for process.
Name-name of environment variable.

VarType-type of variable to enter:
Env String or Env Searchlist

VarScope-Where to enter the variable:
Env Global global environment
Env Local local environment

Variable-pointer to the variable (a variable-length array of
strings). . '

Variable Cnt-number of elements in variable. If the value is an
empty array, the name is deleted.

BadName-if search list name is null or if an entry is malformed. Null

search list names are ignored.

ResolveSearchList

the evaluation results in an empty search list.

Cail:

Parameters:

Function ResolveSearchList(

ServPort : Port;
Name : Env_Var Name;
FirstOnly : boolean;

var Variable : Env_Variable;

var Variable Cnt : long;

var FirstDefined : boolean)

: GeneralReturn

27 Aug 84

Servers-12

ServPort-Port for process environment
Name-name of search list.

FirstOnly-if TRUE, only return the first item in the expansion. If
FALSE, return all items in the expansion.

Variable-returns a pointer to the search list (a variable-length
array of directory names).

Variable Cnt-returns the number of entries in search list.

FirstDefined-returns TRUE if the first element in the expansion exists.
Returns FALSE is it could not be resolved (it was a reference to a
search list that did not exist).

Results:

Success
SearchListnotfound
WrongEnvVarType

SearchListLoop

L L o o i i aa s ik ax aa aa sh xh xa sa aa x5 'Sx ‘s 22 272]
' ScanEnvVariables

Lists the defined environment variables by name.
Call:

Function ScanEnvVariables(
ServPort : Port;
SearchScope: Env_Var Scope;
EnvScanList: Env_Scan List;
var EnvScanList_Cnt: long)
: GeneralReturn

Parameters:

ServPort-Port for process environment.

SearchScope-Env Global list global variables only
Env Local list local variables only
Env_Normal list all local variables, and all
global variables that are not hidden
by local variables with the same
names.

27 Aug 84

Servers-13

EnvScanList-returns the list of variable names, types, and scopes.

EnvScanList Cnt-returns the number of entries in EnvScanList.
Results:

Success

L L
CopyEnvConnection

Creates a new connection to the SearchList manager, copying all of the local variables belonging to the old
connection.
Cail:

Function CopyEnvConnection(
ServPort : Port;
QOldConnection : Port;

var NewConnection : port)
: GeneralReturn

Parameters:
ServPort-Any port to the Environment Manager.
OldConnection-port designating parent connection. If it is NullPort,
the new connection will have no local variables;
otherwise, it will receive copies of all the local
variables from OldConnection,
NewConnection-returns port for new connection.

Results:

Success

NoMoreConnections

, o -
EnvDisconnect

Destroys a connection to the Environment manager and all associated variables.

Call:
Function EnvDisconnect(
ServPort : Port)
: GeneralReturn
Parameters:

27 Aug 84

Servers-14

ServPort-port designating connection. The port is deallocated.
Resuits:

Success

27 Aug 84

Servers-15

3 The 170 System

3.1 Introduction

The IO (input/output) servers provide processes with the interface to access the 10 devices on a PERQ
workstation. A standard interface to all the servers presents a common mechanism for acquiring use of the
device that the given server manages, for making IO requests to the server for using that device, and finally
for relinquishing use of that device. For most of the 10 devices the servers permit processes to manipulate
the device at the lowest level of functionality (i.e., the actual hardware registers). This feature is provided by
supplying a fairly open-ended definition for the parameters to the main IO request routine. It is felt that this
type of control can best provide the flexibility needed by processes to make the device meet the needs of
their particular applications. This does, however, place greater résponsibility upon you to program the
operation of the device correctly and efficiently.

The primary role of the server then is to manage the actual details of device interaction (including the
necessary physical memory requirements), to provide a convenient means for processes to perform IO
operations, to handle the allocation and deallocation of the device, and to attempt to ensure the integrity of
the device by restricting certain operations and recovering the device when it appears to be hung.

Each 10 server registers itself with its local Name Server using a Name/Port pair. The Name part of the

registration inciudes the name of the local machine and thus identifies the server (and the corresponding_
device) with the machine. Thus a process which desires access to a device on a remote machine can expect

to receive a port to that remote device server when the local Name Server broadcasts the request for the

Name over the network.

3.2 Devices

The IO system provides access to all the IO devices except the disk and network. There is one device server
for each of the supported 10 devices. The supported IO devices are:

1. Floppy GPIB RS232A RS232B (PERQ2 workstation only) Speech
These devices are currently supported by a Z80 microprocessor in the PERQ which acts as an IO processor.

Therc is a single sct of standard interface routines that provides you with access to all of the device servers.
The way in which you select to which device server your request is being directed is to specify the
appropriate port associated with that device server as the first parameter of one of the standard interface
routines. Each device server has a special port registered with the Name Server that provides this unique
access to the associated device server. The standard interface routines are found in IQUser.Pas in LibPascal,
and 10 system definitions for various types used in the parameters for the routines are found in IODef5s.Pas
in LibPascal.

3.3 Basic Routines

27 Aug 84

Servers-16

The user interface to an 10 Server is provided through a small sct of standard routines:
1) Procedure InitIO(RPort; Port);

2) Function IO _Version(
ServPort : ServerNamePort
): String;

3) Function OpenlO(
ServPort : ScrverNamePort;
Var IOPort : ServerlOPort;
UserPort : UserEventPort
): GeneralReturn; .

4) Function CloselO(
IOPort : ServerIOPort
): GeneralRcturn;

5) Function SyncIO(
IOPort : ServerlOPort;
Command : I0OCommand;

CmdBlk : Pointer;
CmdBIk Cnt : Long;
Var DataBuf : Pointer;
Var DataBuf Cnt : Long;
DataTransferCnt : Long;
TimeOut : Long;
Var Status : [OStatusBlk
). GeneralReturn;

These routines are discussed in Sections 2.10.

There are two other routines that will be implemented in a future release of Accent:

a) Procedure AsyncIO(
IOPort : ServerlOPort;
Command : I0Command;

CmdBlk : Pointer;
CmdBIk Cnt :Long;
DataBuf : Pointer;
DataBuf Cnt : Long;
DataTransferCnt : Long;
TimeOut : Long

)

27 Aug 84

Servers-17

b) Function Event(
EventMsg : Msg;
Var EventType : IOEvent;
Var DataBuf : Pointer;
Var DataBuf Cnt : Long;
Var Status : IOStatusBlk
): GeneralReturn;
Except for 1) and b), each of these is actually a remote procedure call to a server and is implemented by
sending a message to and receiving a reply from the server in order to accomplish the requested operation.
The message passing interface is provided by modules created by the Matchmaker utility.

3.4 Modes of Interaction

Two modes of interaction - Synchronous and Asynchronous --are availabie for accessing a server {o perform
10 operations. The terms Synchronous and Asynchronous, as used here, do not imply anything about the
typé of data that the device is transferring (e.g., for RS232, it says nothing about whether the data is Bisync
or Async). Synchronous and Asynchronous here refer to the style of user interaction with the server.

In the Synchronous mode, the user process makes IO requests through the SynclIO call. The user process is
then blocked waiting for the reply message holding the results of the operation. This mode is useful if you
do not want to deal with the details of the message passing system, since the Matchmaker generated
interface modules handle the packing, sending, receiving, and unpacking of the messages implementing the
remote procedure call. The Synchronous mode is also useful when the user process does want to block itself
until a certain operation has been performed.

The Asynchronous mode provides a means to quéue IO requests, using the AsynclO call, without being
blocked. This permits the user process to continue with other processing while the IO operation is being
performed. You are permitted to queue up more than one IO request with the actual queue size limited by
the particular server and the available message backlog limit on the server’s port. When the server has
completed a requested operation, it sends the results to you in a message as an asynchronous event which
you must handle. Obviously, this now requires you to deal with the message system by doing an explicit
Receive in order to obtain the event. Upon receiving an event message, you can then call the Event routine
which simply unpacks the message and fills in the parameters of the Event call according to the message
content. (Thus you do not need to know about the details of IPC message formats.) Currently the
Asynchronous interface is not implemented.

3.5 Function of Basic Routines

This section discusses in more detail the standard routines and their parameters.

Except for the InitlO and Event routines, the first parameter to each of the basic routines is a port which is
created and owned by the narticular server and, thus, identifies the device server to which the user’s request
is directed. Each server owns two important ports - a ServerNamePort and a ServerIOPort - which provide

27 Aug 84

Servers-18

the access to users. The ServerNamePort is registered with the Name Server and associated with a unique
string name identifying the particular server.

The current existing 10 servers are registered as:

"[MachincName]GPIBScrver"

"[MachincName]FloppyServer”

"[MachincName]RS232AServer”

"[MachincNamec]RS232BServer"

"[MachineName]SpecchServer”
where MachineName is the name of the machine upon which the device resides. This provides the means
to access the devices on other machines across the network as well as local access.

User programs acquire send access to a ServerNamcPort through a LookUp call to the NameServer. The
ServerNamePort can only be used in the call to open the device or within the IO_Version call. The server
grants access to the device to the OpenlO caller by returning its ServerIOPort. The ServerIOPort is then
used as the first parameter in all other calls to the server. Some servers (e.g., the Z80 supported device
servers) may grant exclusive use of the device and not permit it to be opened again until it has been closed;
other servers may permit multiple access.

The InitlO call is not directed to the server. The InitlO procedure is created by Matchmaker and is part of

the Matchmaker generated user interface module that implements (using the message system) the remote

procedure calls. The user calls InitlO with the parameter ReplyPort which is a pbrt in the user’s space and.
to which the server is given send access for these remote calls (I0_Version, OpenlO, CloselO, and SynclO)

that are implemented with a message send followed by an explicit receive. If the ReplyPort equals NullPort

in the user call, then InitlO will allocate a port in the user’s space for the reply messages for remote calls,

The user must call InitlO just once and before the first actual remote call (which should be OpenlQ) to a

server.

The last parameter in the OpenlO call is the UserEventPort. This is a port owned by the user and to which
the server will send asynchronous event messages. If the user specifies NullPort for the UserEventPort in his
call to OpenlO, then the Asynchronous interface will not be enabled. This means that the server will ignore
calls to AsynclO and will not pass any other asynchronous events to the user. For now, the user should
specify NullPort as the UserEventPort since the AsynclO interface is not implemented.

The parameters for the actual IO calls are fairly straightforward. The CmdBIk, for instance, is a generic
pointer to which the user can recast his own device specific command biock pointer. See IODefs.Pas for the
definition of this device specific command block, IOCmdBlk. CmdBlk_Cnt indicates the number of
command bytes to which CmdBIk points. The CmdBIk is required to have a long integer occupying its first
2 words which can be set by the user to provide an ID tag for the IO command request. This tag is then
copied into the first 2 words of the Status block when the response to the 10 request is made to the user.
The ID tag is mostly useful for matching up server responses to IO requests made through AsynclO. The
remainder of the CmdBlk is completely device specific. DataBuf points to a buffer for data transfers and

27 Aug 84

Servers-19

DataBuf Cnt is the size of the buffer in bytes. The number of data bytes to transfer is indicated by
DataTransferCnt.

DataTransferCnt is not a redundant parameter. DataBuf Cnt is only used as an indicator of how many bytes
pointed to by DataBuf are actually transmitted to/from the server in the message associated with the remote
procedure call. Thus, for example, in a SynclO call to read N data bytes, DataBuf should be set to Nil,
DataBuf Cnt should be 0, and DataTransferCnt should be N when the user invokes the remote procedure.
Upon return from SynclO and assuming the server successfully carried out the request, DataBuf will point
to a buffer holding the N bytes of data. This buffer will have actually been created by the kernel when it
handles the receipt of the server generated response message to the remote call for SynclO. The kernel
maps the data pointed to in the response message into the user’s address space and ultimately -the
Matchmaker generated interface module will set DataBuf to point to that piece of memory.

TimeOut, when applicable to a given command, indicates how long to wait for the command to complete
before giving up on it. In most cases, a value of -1 means to not wait, zero means to wait indefinitely, and a
positive value means to wait that many clock ticks where a tick is approximately 1 microsecond. The Status
block holds information about the success or failure of the 10 command along with any available device
status bytes. In the event of failure, the information in the Status block may also show how much of the
command was performed before failure occurred. The set of IOCommands available will include those like
10ORead, IOWrite, IOReset, IOSense, etc., that are generally applicable to most devices as well as some that
are device specific. Commands include those for data transfer and control, those for device control and

LIS LaLe Ul Laa Lalisivl & aiea wiLse 2 LLVILL N

configuration, and simple directives to the server.

3.6 Example of SynclIO for GPIB

In this section the service provided through the SyncIO call, along with a description of the parameters, is
presented in the context of a specific example. Full definitions for new types are provided in an IODefs
module found in Section 4. For GPIB the call and parameters are:

SyncIO(I0Port : ServerlIOPort;
Command : IOCommand;
CmdB1k : Pointer;
CmdB1k_Cnt : Long;
Var DataBuf : Pointer;
Var DataBuf_Cnt : Long;
DataTransferCnt : Long;
TimeOut : Long;
Var Status : I0StatusBilk
): GeneralReturn;
IOPort As previously mentioned, this is the GPIB server port returned to the user upon
successfully executing the OpenlO call.
Command This is the user requested IO command. Valid commands for GPIB are:
I0Sense IORead
IODevRead IOReset

27 Aug 84

CmdBIk

CmdBIk Cnt

DataBuf

DataBuf Cnt
DataTransferCnt
TimeOut

Status

Servers-20

IOWrite I0DevWrite
I0WriteEOI IOWritcRegisters
IOFlushInput [0SctBufferSize
IOReadHiVol IOFlushOutput
I0WriteHiVol

Each command will be discussed after presenting the rest of the parameters.

This points to a record holding the CmdIDTag as well as device specific
command bytes that are required for the command. The user’s pointer to his
IOCmdBIk for GPIB should be recast to a generic pointer. The definition for
CmdBlk is given in Section 4.

The number of valid bytes in the CmdBIk. This is always at least 4 to account for
the CmdIDTag.

This points to a buffer for the data which is to be sent or received. It is only used
with the IORead, IOWrite, IOReadHiVol, 10WritcHiVol, and IODevWrite
commands. :

The number of data bytes held in the buffer pointed to by DataBuf.
The-number of bytes to read/write to/from the data buffer.

The maximum number of clock ticks to wait before giving up on the command.
A TimeOQut value that is zero means to wait indefinitely. A TimeOut value of -1
means to not wait at all for some commands (e.g. IORead to get data from the
ring buffer) and means to wait indefinitely for other commands (i.e., where to
not wait would make no sense). A positive TimeOut value means to wait that
many clock ticks for the IO opcration to complete. A clock tick is approximately
1 microsecond. For some commands, the TimeOut is irrelevant and is ignored.
In some cases, when a command times out, the server will issue a device reset
automatically. This is done for those commands for which a message is sent to
the Z80. Since the Z80 always gives an ACK/NAK for each command message,
a time out would indicate that the device is hung. The only command that can
free the device for subsequent commands is device reset.

This shows the success or failure of the Command and, in either case, indicates
how much of the command was performed. Also included is device status from
the most recently issued I0Sense command since the last device reset was issued.
Obviously, the device status could be empty. Status will be defined by
IOStatusBlk, IOSenseStatusBlk, and GPIBScnscStatus (see the definitions in
Section 4). In the I0StatusBlk, HardStatus is status information provided by the
device for the given Command. For IORead, for example, it is the error byte
that is supplied with each character in the input ring buffer. SoftStatus is
supplied by the server and provides a logical indication of the Command
completion status. A list of the values used for SoftStatus is exported by the
I0Defs module. I0Success is the value returned in SoftStatus when the
Command is successful When command bytes are present,
CmdBytesTransferred indicates how many of the bytes were actually transferred.
DataBytesTransferred serves a similar function when the Command involves

27 Aug 84

Servers-21

data transfer. DeviceStatus for GPIB indicates the last available status from the
internal registers of the TMS 9914 GPIB Controller chip which provides the
interface to the GPIB. Refer to the Texas Instruments “TMS59914 GPIB
Controller Data Manual” for a detailed description of this chip. :

3.7 Commands for GPIB

In a number of the commands, the Z80 will wait until the data in the Z80’s GPIB output ring buffer has
been transmitted over the GPIB bus before actually initiating the command. Since some commands seize
control and/or reconfigure the bus, it is necessary for the Z80 to wait until its GPIB output buffer has been
drained before initiating those commands. This ensures the integrity of previous IOWrite commands which
have sent output data for GPIB.

The standard TimeOut mechanism used for most commands is;

TimeOut <= 0 means waif_indeﬁnitely

TimeOut > 0 means wait TimeOut clock ticks
and commands that do time out are followed immediately by a server issued device reset.

SoftStatus is returned for each command and indicates success or the reason for failure. A list of SoftStatus
codes with their meanings can be found in the IODefs module. A Command whose parameters are in error
will be rejected and SoftStatus will indicate why. These types of errors will not be listed in the discussions®
below. Assuming no parameter errors, the standard values for SoftStatus for most GPIB commands will be:

I0Success Command completed successfully.
IOTimeOut . Command did not complete within the TimeOut period.
IOUndefinedError Command was NAKed by the Z80.

1. IOSense provides 10 bytes of status information from the Z80. Upon return, DeviceStatus in
Status holds the count and the status bytes. The first 6 status bytes represent the register values in
the TMS 9914 GPIB Controller chip at the time of the last Z80 GPIB interrupt and the remaining
4 bytes show values current with the issued IOSense. (These are shown in the GPIBSenseStatus
record in Section 4.) Note that current values for IntStat0 and IntStatl cannot be obtained since
reading those registers dismisses the interrupts that the bit maps in those registers represent. (See
‘TMS 9914 Data Book for more details.) The server also maintains a copy of these 10 status bytes
and copies them into the DeviceStatus field of Status for subsequent IOCommands. The server
will always zero its copy of DeviceStatus after a device resct. TimeOut for I0Sense is standard.
SoftStatus will be 10Sucess, I0TimeOut, or IOUndefinedError.

2. IOReset puts the GPIB Controller into the idle state by issuing a device reset for GPIB to the
Z80. This clears the Z80’s GPIB input and output buffers (any data is discarded) and puts the
TMS 9914 into the idle state by performing a Software Reset aux command. The TMS 9914
interrupt mode is reset for Data In and Data Out interrupts only, the Hdfa/Hdfe aux commands
are disabled (in case they were previously set), and any data holdoff is released using Rhdf aux
command. The PERQ workstation's GPIB input ring buffer is not affected. This command is also
issued implicitly by the server for some of the other commands when they time out. TimeOut for
IOReset is ignored since the device reset should never fail.

27 Aug 84

Servers-22

3. IOWriteRegisters is used to program the TMS 9914 registers. CmdBIk points to the user’s
IOCmdBIk which, for IOWritcRegisters, contains an array of GPIBWritcRegister elements. Each
GPIBWritcRegister is a pair of bytes where the first byte indicates the TMS 9914 register and the
second byte is the value to be written. CmdBIk_Cnt indicates the total number of bytes and, thus,
must be even. TimeOut and SoftStatus are standard. CmdBytesTransferred shows the total
number of bytes transferered.

4. IOFlushInput is used to suspend GPIB bus activity and extract all remaining GPIB input data
held in the Z80. This is done by issuing a Tca aux command to the GPIB Controller chip to
suspend bus activity and sending all data accumulated in the Z80 GPIB input ring buffer to the
PERQ workstation. In addition, any byte that is being held in the controller chip’s Data In
register is removed and also sent to the PERQ workstation. All data returned is deposited in the
workstation’s GPIB input ring buffer and can be obtained by the user with the [ORead
command. Note that the Tca aux command is not issued by the Z80 until the Z80’s GPIB output
buffer has been drained. TimeOut and SoftStatus are standard.

5. TOFlushOutput flushes the Z80’s GPIB output data ring buffer by waiting until all the data has
been drained from the buffer. TimeOut and SoftStatus are standard.

6. IORead is used to extract data from the PERQ workstation’s GPIB input ring buffer. This does
not require any interaction with the Z80 and, thus, a time out does not result in a device reset.
When the user makes the remote call, DataBuf should be Nil, DataBuf Cnt 0, and
DataTransferCnt should indicate the number of bytes to read. Upon return from the call,
DataBuf will have been set to point to the buffer holding the data sent by the server (and may be
Nil). Each character in the PERQ workstation input ring buffer has a status byte (the value of
IntStat0 at the time of the Data In interrupt) associated with it. The server extracts characters and
puts them into the DataBuf until either the DataTransferCnt is satisfied, a character’s status byte
shows an error, or no characters remain and the TimeOut expires. DataBytesTransferred is set to
the number of characters returned in the DataBuf. SofiStatus is I0Success if the command
succeeds completely. IONoDataFound is returned if no characters were found and the TimeOut
expires. I0TimeOut is returned if the requested DataTransferCnt was not satisfied and the
TimeOut expired. If the scrver finds a character with its status byte showing ‘an error, it
terminates further reading, puts the character into the DataBuf, sets HardStatus with the
character’s status byte, and sets SoftStatus to the appropriate error (IOCircBufOverflow or
IOEndOfInput). For TimeOut, a value of 0 means wait indefinitely, -1 means don’t wait, and > 0
means the obvious,

7. I0Write sends data to the Z80 to be transmitted by the GPIB controller chip using Data Out
interrupts. The Z80 buffers the data and sends an ACK when it has room in its buffer for another
packet (i.e., 12 bytes is the most that can be sent in a single data packet) of data from the PERQ
workstation. The server handles the user’s IOWrite command by packaging the user’s data
pointed to by DataBuf into 12-byte packets and sending them to the Z80 as indicated above.
(Obviously, IOWrite will be optimal when the DataBuf Cnt is a multiple of 12.) Thus the actual
transmission of the last of the data bytes onto the GPIB bus can only be verified by the user
following up with an IOFlushOutput command or some other command that waits until the 730
GPIB output buffer has been drained. TimeOut and SoftStatus are standard.
DataBytesTransferred will indicate how many bytes were actually sent to the Z80 for
transmission.

27 Aug 84

Servers-23

8. IOWriteEOI is the same as IOWrite except that the last data byte will be sent with the GPIB bus
EOI line set. The user must take care not to send more output data until the Z80 GPIB output
buffer drains-otherwise, EOI may be set on the wrong byte. Draining of the buffer can be verified
explicitly with IOFlushOutput or implicitly with one of the other commands.

9. IOSctBufferSize is used to set the size of the physical buffer that is used for the IOReadHiVol
and IOWriteHiVol commands. The default size is set to 1024 bytes when the device is allocated
by the server in the OpenlO call. CmdBIk Cnt should be 8 for this command.

10. IOReadHiVol reads data from the GPIB using a DMA channel and thus provides a high transfer
rate. As with IORead, DataBuf is Nil and DataBuf Cnt is 0 when the user makes the remote call
and are sct appropriately upon return. DataTransferCnt must be greater than 1 (since the Z80
DMA cannot handle a byte count of 1). TimeOut and SoftStatus are standard.
DataBytesTransferred indicates the number of bytes actually read. IOReadHiVol may be
programmed to terminate early if EOI is raised by the sending device. When this feature is
enabled and occurs, a completion of IOEndoflnput is returned for SofiStatus and
DataBytesTransferred must be checked to determine the amount of data actually received.

11. IOWritcHiVol writes data to the GPIB using a DMA channel. DataBuf points to a buffer holding
DataBuf Cnt bytes. DataTransferCnt has the same restriction as for IOReadHiVol. TimeOut and
SoftStatus are standard. DataBytesTransferred indicates the number of bytes actually written to
GPIB and only needs to be checked when SoftStatus is not IOSuccess. The Z80 will wait for the
Z80 GPIB output data ring buffer to drain before starting the HiVol operation.

12. TIODevRead and IODevWrite are somewhat complex commands that, in their simplest form, can
be ‘used just to configure the GPIB bus to change the Talker/Listener device on the bus. The
CmdBIk points to a record containing the CmdIDTag followed by a GPIBDevCmdBlk. See
Section 4 for the definition of GPIBDevCmdBIk. A
By setting all ficlds in GPIBDevCmdBIk to 0 or-false except the PrimAddr and SecAddr, IODevRead
would simply configure the bus with the device in PrimAddr and SecAddr as the new Talker; IODevWrite
would configure a new Listener. If the SecAddr is not used, it should be set to 255. These commands are
useful since they reduce a commonly used sequence of IOWriteRegister and IOWrite commands to a single
command. They can also be used to configure the bus and set up the GPIB controller chip’s interrupt mask
registers appropriately for HiVol Read/Write commands. The basic algorithms for DevRead and DevWrite
are given at the end of this section.

For IODevRead, CmdBlk_Cnt sheould be 10. If ReadCount in GPIBDevCmdBIk is non-zero, the Z80 will
wait until ReadCount bytes have been read (using Data In interrupts) from the configured GPIB Talker
device and the Z80 will then hold off further input using the Hdfa aux command. As the data accumulates
in the Z80, it is sent up to the PERQ workstation’s GPIB input ring buffer. The Z80 returns (and thus the
IODevRead completes) only after the requested number of bytes have been read and sent to the PERQ
workstation. To obtain the data, the user must subsequently use the IORead command (i.e., for
IODevRead, DataBufis NIL and DataBuf Cnt is 0).

For IODevWrite CmdBlk_Cnt should be 9. DataBuf points to DataBuf Cnt bytes of data to be transmitted
on GPIB using Data Out interrupts. As with the IOWrite command, the data is shipped to the Z80 in

27 Aug 84

Servers-24

packets. (In terms of efficiency, note that the first packet holds the 5 byte GPIBDevCmdBIk plus only 7 data
bytes.)

For both I0DevRead and I0DevWrite, TimeOut and SoftStatus are standard. CmdBytesTransferred
should be the same as CmdBlk_Cnt. DataBytesTransferred is valid only for IODevWrite and indicates the
number of data bytes actually sent to the Z80 for transmission.

The Z80 will wait before initiating the DevRead and DevWrite commands until the Z80 GPIB output ring

buffer has drained. The basic algorithm for each command is then given below using the following
definitions: '

AuxReg - 9914 Auxiliary Command Register

DataOut - 9914 Data Out Register

Dataln - 9914 Data In Register

Mask0 - 9914 Interrupt Mask Register 0

Maskl - 9914 Interrupt Mask Register 1

DevWrite:
With GPIBDevCmdB1k, GPIBDevCmdBl1k.Options do

begin
AuxReg := Tca;
AuxReg := Ton, off;
AuxReg := Lon, off;
If SetIntOMask then Mask0 := IntOMask;
If SetIntiMask then Maskl := IntiMask;

If not OmitBusConfig then
begin

DataOut := Unt;

If not CmitUnlisten then DataOut := Unl;

If (0 <= PrimAddr) and (PrimAddr <= 30) then

begin
DataOut := Mla + PrimAddr;
If (0 <= SecAddr) and (SecAddr <= 31) then
DataOut := Msa + SecAddr;

end;
{ Note: We load the DataOut with the first }
{ interface command (Unt) and the rest }
{ are sent using Bus Out interrupts. }
end;

AuxReg := Ton, onf;

If not OmitGoToStandby then AuxReg := Gts;

{Now handle the data bytes }

If DataTransferCnt does not equal 0 then

begin

DataOut := first data byte;
{ Remaining data bytes are transmitted using }
{ Bus Out interrupts
If ForceEOI then last data byte is sent with EOI;
If WaitOnData then

27 Aug 84

Servers-25

wait till all data sent before returning

else
return without waiting;
end;
end { with };
DevRead: .
With GPIBDevCmdBl1k, GPIBDevCmdB1k.Options do
begin
AuxReg := Tca;
AuxReg := Ton, off;
AuxReg := Lon, off;

If not OmitBusConfig then clear Dataln;
If SetIntOMask then Mask0 = IntOMask;
If SetIntlMask then Maskl := IntlMask;
If not OmitBusConfig then
begin
Datalut := Unt;
If not OmitUnlisten then DataQut := Unl;
If (0 <= PrimAddr) and (PrimAddr <= 30) then
begin
DataOut := Mta + PrimAddr;
If (0 <= SecAddr) and (SecAddr <= 31) then
DataQut := Msa + SecAddr;

end;
{ Note: We load the DataOut with the first interface }
{ command (Unt) and the rest are sent using }
{ Bus Out interrupts.

end;

if Hol1dOffOnEOI then
AuxReg := Hdfe, on
else
AuxReg := Hdfe, off;

AuxReg := Hdfa, off;
AuxReg := Rhdf; {Release any previous holdoff }
AuxReg := Lon, on; '
AuxReg := Gts;
If ReadCount <> 0 then
begin

Wait until we have input ReadCount data bytes using
Bus In interrupts and issue
AuxReg := Hdfa, on before the last byte is input.
end
end { with };

3.8 Commands for RS232, Speech and Floppy

The valid SynclO commands for the other servers will be djscussed here. The description of the parameters
to SynclO is essentially the same as that given for GPIB in Section 2.4. Also, the description of th
commands for GPIB in Section 2.5 is applicable except for the differences noted below for each device. The

27 Aug 84

Servers-26

timeout mechanism, use of the status block, and the delay waiting for the device’s output ring buffer to
drain before initiating certain commands is similar to the case for GPIB.

3.8.1 RS232A

The valid commands for RS232A are:

10Sense

IOReset
IOFlushinput
[OFlushOutput
10SetBaud
IOWriteRegisters

IO0Sense

IOReset

IOFlushInput

I0SetBaud

IORead

I0OReadHiVol

IOWriteRegisters

IORead
IOWrite
10SetBufferSize
IORecadHiVol
IOWriteHiVol

Only 2 bytes of status information are held in the DeviceStatus record. These
correspond to the last available values obtained for the ReadRegisters 0 and 1 of
the Serial IO (SIO) chip which implements the RS232 interface.

This configures the RS232A channel to handle 9600 baud, 8-bit asynchronous
data using 1 1/2 stop bits and no parity. The Data Terminal Ready (DTR) and
Request To Send (RTS) signals (RS232 pins 20 and 4) are turned on and the SIO
chip is programmed with Auto Enables mode. Auto Enables means that the
Clear To Send (CTS) and Data Carricr Detect (DCD) inputs (RS232 pins 5 and
8) are used as the enable signals for the respective transmission and reception of
RS232 data bytes. This means that CTS must be on before the SIO chip will
transmit a byte. And the DCD signal must be on before the SIO chip will
actually assemble data bytes from the incoming bit stream.

This simply sends all accumulated data held in the Z80 RS232A input ring
buffer to the PERQ where it is deposited in the PERQ’s RS232A input ring
buffer.

This is used to modify the rate of the internal baud rate clock used for
transmitting and receiving asynchronous RS232 data bytes in their bit-serial
form. The baud rate codes to use are defined in IODefs.Pas and include a code
(RSExt) for synchronous RS232 data where external clocks are used to
synchronize the character bit stream. CmdBlk_Cnt should be 6 for IOSetBaud.

Similar to the GPIB example except that the per character status byte is the
status byte provided by the SIO chip that accompanies each input data byte
assembled by the chip. This byte is the value of SIO ReadRegister 1 which
shows such errors as parity, framing, and overrun for the given input data byte as
well as the end of frame condition and residue codes for SDLC data. Thus the
SoftStatus code returned for IORead will be one of IOSuccess, IOTimeOut,
IONoDataFound, IOCircBufOverFlow, lOParityError, IOFramingError, or
IOEndOfFrame.

Similar to GPIB. Note, however, that this command is not very useful for RS232
and that the EOI feature of GPIB is not present.

Permits you to program all SIO except WriteRegisters 1 and 2. These 2 registers
are used to control the interrupt modes of the SIO chip. Registers 6 and 7 are

27 Aug 4

Servers-27

used to specify the sync characters used for synchronous RS232 data transfers.
Bit definitions for the other 4 registers arc given in Figures 1 through 4.

WRITE REGISTER @
[0z os[Ds|[pe]D3]D2]D1 fo0 |
o] %] 9 Register @
8 8 1 Register 1
8 1 0 Register Z
8 1 1 Register 3
1 2] 8 Register ¢
1 © 1 Register S
1 1 9 Register 6
1 1 1 Register ?
9 9@ 8 HNull Code
9 0 1 Send Abort (SDLC)
%] 1 ® Reset Ext/Status Interrupts
*] 1 1 Channel Reset
1 [°] ® Enable Int On Next Rx Character
1 %] 1 Reset TxInt Pending
1 1 @ Error Reset
1 1 1 Return from Int (CH-A only)
2] @ Null Code
°] 1 Reset Rx CRC Checker
1 8 Reset Tx CRC Generator
1 1 Reset Tx Underrun/EOM Latch

Figure 1. Write Register 0 Bit Functions

27 Aug 84

Servers-28

WRITE REGISTER 3

(D7 D6[D5] 04] D3] Dz D1 J08]

Rx Enable

Sync Character Load Inhibit

Address Search Mode (SDLC)

Rx CRC Enable

Enter Hunt Phase

Auto Enables

9 B Rx 5 Bits/Character
%] 1 Rx ? Bits/Character
1 © Rx 6 Bits/Character
1 1 Rx 8 Bits/Character

Figure 2. Write Rcegister 3 Bit Functions

27 Aug 84

Servers-29

WRITE REGISTER ¢4

(07 06] 05| 0+ [D3 [0z |01 [D@ |

Parity Enable

Parity Even(1), 0dd(9)

Sync Modes Enable

1 Stop Bit/Character
1-1/2 Stop Bits/Character
2 Stop Bits/Character

o
e

8 Bit Sync Character

16 Bit Sync Character
SDLC Mode (01111110 Flag)
External Sync Mode

- 00
oo

X1 Clock Mode
X16 Clock Mode
X32 Clock Mode
X64 Clock Mode

.o
O ®

Figure 3. Write Register 4 Bit Functions

27 Aug 84

Servers-30

WRITE REGISTER 5

[o7 [D8] 0S| Dt | D3 [Dz D1 [DO

L——— ‘Rx CRC Enable

l———— RTS

L CRC1E (1), SOLC (@

Tx Enable

Send Break

Tx S Bits (or Less)/Character
Tx 7 Bits/Character
Tx B Bits/Character
Tx 8 Bits/Character

—_—-OO
oo

DTR

Figure 4. Write Register 5 Bit Functions
The byte masks.used, for example, to program the chip for the default settings

obtained by IOReset are:
Register # Byte Mask (in octal)
0 030
0 100
4 110
3 M1
5 352

3.8.2 RS232B

The description of RS232B is the same as RS232A except that the I0SetBufferSize, IOReadHiVol, and
JOWriteHiVol commands are not present. Note again that RS232B does not exist on PERQ1 workstations.

3.8.3 Speech
The valid commands for speech are:

10Sense JOWrite

IOReset - 10SetBufferSize ‘
10SectBaud 10WriteHiVol

10FlushOutput

27 Aug 84

Servers-31

The description of these is the same as for RS232A except as noted below. The speech data output is
implemented using the same type of SIO chip as for RS232 but configured instcad for synchronous 8-bit
data transmission using a single sync character of 252 (octal) which is automatically transmitted at the start
of data transfers. The default baud rate is set at 32 KHz.

IOReset Configures the hardware for the default state described above and clears the
speech output ring buffer.
10SetBaud Changes the baud rate for bit-serial transmission of specch data to the actual

speech output hardware in the PERQ. The SpeechTxRate field in the CmdBIk is
set to obtain the desired bit rate in the following manner:

PERQ1:
SpeechTxRate = 2.456 * 1016
' 16 * (Desired Baud Rate)
PERQ2
SpeechTxRate = 4*1016

Desired Baud Rate

A SpeechTxRate of 5 for PERQL and 125 for PERQ2 will
give a baud rate of approximately 32 KHz. Note also
that PERQs that have a portrait/landscape electro-
magnetic ranging tablet instead of a Summagraphics
BitPad tablet have a further restriction. Since the
electromagnetic ranging tablet shares the same baud

rate clock with Speech, modifying the Speech baud

rate may have unpredictable effects on the behavior

of the tablet. You may have to unplug the tablet

while your application runs, and you should restore

the baud rate to 32KHz before your program terminates.
This can easily be done by issuing the IOReset command.

3.9 Floppy

The valid commands for floppy are given in the table below, along with some other information that will be
explained below.

27 Aug 84

Servers-32

Table 1. Valid Commands for Floppy

Returns Returns

10 Command CmdBIk Cnt Device Status Hard Status
IOReset 4 failure on failure
IOSense 4 on success no
10SenseDrive 4 on success no
IOReadID 6 on success no
10SetDensity h) no no
IORecalibrate 4 on failure on failure
108Seck 7 on failure on failure
IOFormat 8 on failure on failure

IORead 8 on
failure on failure

IOWrite 8 on
failure on failure

The parameters to SyncIO have a similar description as that for GPIB in Section 2.4 The main difference is
in the Status parameter. For Floppy, the DeviceStatus record in the IOStatusBlk is only valid as indicated in
the table above. From the table “on failure” that the command failed for reasons other than I0TimeOut,
10UndefinedError, or some parameter error. This means that the floppy controller hardware initiated the
command but failed to complete it. The controller always provides status information at the termination of
each command. These bytes are returned to you “on failure” as the DeviceStatus record which for floppy is
a FloppyResultStatus record as defined in IODefs.Pas. Also, “on failure”, HardStatus in Status will be
assigned the first byte of the device status which is Status Register 0 from the controller and is represented
in the FloppyResultStatus record as:) '

Unit ¢ Bit2 {aTways 0}
Head ¢ Bit1

NotReady : Boolean

EquipFault : Boolean

SeekEnd : Boolean

IntrCode : (00 - Normal

01 - Abnormal

10 - InvalidCmd

11 - DriveRdyChange)
DeviceStatus is also returned “on success” for those commands listed in the table whose function it is to
explicitly extract status about the last floppy operation or current drive state. Also shown in the table is the
CmdBIk_Cnt required for each of the floppy commands. From the definition of IOCmdBIk in I0Defs.Pas,
we see that the command bytes for the commands involving actual floppy 10 include a device address
specifying the Unit, Head, Cylinder, and Sector. The range of these parameters is:

Unit , - always 0
Head -0..1
Cylinder -0..76
Sector -1..26

[]

7 Aug 84

Servers-33

For read/write commands, the logical mapping of floppy sectors is done by first increasing the sector
number, then the cylinder number, and lastly the head number. For I0Rcad and IOWrite, the starting
address on the floppy is given in the CmdBlk and DataTransferCnt indicates how many bytes should be
read/written. To satisfy the requested number of bytes, the server will continue to recad/write consecutively
numbered scctors and will continue, if necessary, by advancing to the next cylinder on the same side. When
the last cylinder on side 0 is read/written, it switches to side 1 at cylinder 0 and sector 1 and continues until
the byte count is satisfied. Thus the server will implicitly do seek operations in order to satisfy the
DataTransferCnt. If the DataTransferCnt given is greater than the number of bytes that could possibly be
read/written from/to the floppy from the starting address to the end of the floppy, then the server will not
attempt to start the command and will reject it with an error code of IONotEnoughData /
IONotEnoughRoom.

The other floppy commands are fairly straightforward. The IOFormat command is used to format all 26
sectors of a single track designated by the address in the CmdBik. You must also specify in the CmdBlk the
default data pattern to be written into the formatted sectors of that track. DataBuf for IOFormat must point
to a buffer holding 26 4-byte SectorIDs for each of the 26 consecutive sectors on the track. Each 4-byte
SectorID is given as:

Byte Information Range
1 Cylinder 0..76
2 Head 0.1

3 Sector 1..26
4 SectorSizeCode 0...1

where a SectorSizeCode of 0 is used for single density with 128 bytes per sector and 1 is used for double
density with 256 bytes per sector. The server does not check the 104 (26 x 4) byte buffer of SectorIDs for
correctness. You can also perform hardware interleaving of floppy sectors by simply specifying the desired
sector number in each SectorID. Thus if the list of sector numbers specified in the 26 consecutive SectorIDs
isgivenby 1, 14,2, 15, 3, 16, . . ., 12, 25, 13, 26, then a hardware interleave factor of 2 is achieved on that
track. The IORecalibrate command forces the floppy to seek to head 0 and cylinder 0. IOReset does a
device reset followed by a recalibrate. The timeout mechanism for floppy is the same as that described for
GPIB in Section 2.5.

3.10 Definitions

The following definintions can be found in the Module IODefs.
const

{ Define return values for IO errors.
I0BaseMsgID = 4000;

IOSuccess = SURESS;

27 Aug 84

Servers-34

IOErr = [0OBasecMsglD;
10UndcfinedError = [QErr + 1;
I0TimeOut = [IOErr + 2;
10DeviceNotFree = IOQErr + 3;
I0InvalidIOPort = IOErr + 4;
JOBadUscrEventPort = IOErr + 5;
I0BadPortReference = IOErr + 6;
101llegalCommand = IOErr + 7,
10BadCmdBIkCount = IOErr + 8;

I0BadDataByteCount = IOErr + 9;
I0BadRegisterNumber = IOErr + 10;

IONotEnoughRoom = IOErr + 11;
I0OBadBaudRate = [OErr + 12;
IONoDataFound = [OErr + 13;
I00verRun = IOErr + 14;
IOParityError = IOErr + 15;
IOFramingError = [OErr + 16;
I0CircBufOverFlow = IOErr + 17,
I0EndOfFrame = IOErr + 18;
IOEndOfInput = [OErr + 19;
10BadSectorNumber = IOErr + 20;
10BadCylinderNumber = IOErr + 21;
IOBadHeadNumber = JOErr + 22;
I0UndcterminedEquipFault = IOErr + 23;
IODeviceNotReady = JOErr + 24;

IOMissingDataAddrMark = IOErr + 25;
IOMissingHeaderAddrMark = IOErr + 26;
I0ODeviceNotWritable = IOErr + 27;

I0SectorNotFound = IOErr + 28;

10DataCRCError = I0Err + 29;

IOHcaderCRCError = IOErr + 30;
I0BadTrack = IQErr + 31;

I0CylinderMisMatch = IOErr + 32;
10DriveReadyChanged = IOErr + 33;

IONotEnoughData = IOErr + 34;
I0BadBufferSize = [OErr + 35;
type

ServerNamePort = Port;
ServerlOPort = Port;
UserEventPort = Port;

I0Command = (IOSense, IOReset, IOWriteRegisters,
I0Flushlnput, IOFlushOutPut, IORead,
10Write, IOWriteEOI, 10OReadHiVol,
IOWriteHiVol, IODevRead, IODevWrite,

27 Aug 84

Servers-35

10SetBaud, [OSetStream, [OSetAttention,
I0Abort, I0Suspend, IOResume,
10Seek, IORecalibrate, IOFormat,
IOReadID, I0SenseDrive, [0SetDensity,
10SetBufferSize, IONullCmd);

IOEvent = (IOReply, AsyncData, Attention, Distress, Acknowledge);

plOMessage = tIOMessage;
- IOMessage = record
Head : Msg;
Body : array[0..1023] of integer;

{ Note: The size of the Body is dependent
upon the maximum size of messages

that are passed between the Client

and Server. This size is determined

by the number and type of the parameters
in the remote calls, the IPC conventions
for packing data in-line, and the added

parameters in the message that MatchMaker
inserts for coded return values,

22236 UL el

The actual size needed f or IO messages
is 46 given current IPC conventions,
MatchMaker requirements, and actual
parameters for the remote calls. Future
changes to any of the above may require
modifying the size for the Body. Accent
gurus say that 1024 is a reasonably safe
maximum for the time being and that we
should just use that here.

A b Aoy i, Ay Ay e b Ay e b ey by o, Ay (e, pen

end;

GPIBWriteRegister = packed record
case RegNum: Bit8 { reaily 0..6 } of
0: ({ To be defined later! });
1: (RegVal : Bit8)
end;

SIOWriteRegister = packed record
case RegNum: Bit8 { really 0..7 } of
0: ({ To be defined later! });
1: (RegVal : Bit8)
end;

GPIBDevCmdHead = packed record

27 Aug 84

Servers-36

Options: packed record { Bitmap to select cmd actions }
SetintOMask : boolean;
SetIntlMask : boolean;
OmitBusConfig : boolean;
OmitUnListen : boolean;
case boolean of

true : ({ for IODevRead cmd }
HoldOff OnEOI : boolean;
unused?2 : Bit3
)
false: ({ for IODevWrite cmd }
OmitGoToStandby : boolean;
WaitOnData : boolean;
ForceEOI : boolean;
unusedl : Bitl

)’

end;
IntOMask : Bit8; { Mask for 9914 Interrupt Reg 0 }
Int1Mask : Bit8; { Mask for 9914 Interrupt Reg 1 }
PrimAddr : Bit8; { Primary Address of device }
SecAddr : Bit8; { Secondary Address of device }
case boolean of

true: ({ for IODevRead }
ReadCount : Bit8

);
false: ({ for IODevWrite }
{ nothing }
)

end;
DensityType = (SingleDensity, DoubleDensity);

pIOCmdBIlk = t1I0CmdBIk;
I0CmdBIlk = packed record

CmdIDTag: long;

case integer {IODevice} of

0: {No Device for generic access}
(case integer of
0: {Byte access}
(CmdByte: packed array[0..0] of Bit8);

1: {Word access}
(CmdWord: packed array[0..0] of integer);

2: {Register access}
(WriteReg: packed array[stretch(0)..stretch(0)] of
packed record

27 Aug 84

Servers-37

RegNum: Bit8;
RegVal: Bit8
end)

1: {GPIB}
(case IOCommand of
10SetAttention: { AsynclO only }
(GPIBEnableATN: boolean);

10SetStrecam: { AsyncIO only }
(GPIBEnableStream: boolean;
GPIBBIlockingFactor: integer);

[0SctBufferSize:
(GPIBBufferSize: long);

IOWritcRegisters:
(GPIBWriteReg: packed array[stretch(0)..stretch(0)]
of GPIBWriteRegister);

I0DevRead, IODevWrite:
(GPIBDevCmdBlk: GPIBDevCmdHead)

)’

2: {RS232A, RS232B}
(case IOCommand of :
I0SetAttention: { AsyncIO only }
(RS232EnableATN: boolean);

IOSetStream: { AsynclO only }
(RS232EnableStream: boolean;
RS232BlockingFactor: integer);

IOSetBufferSize: { RS232A only }
(RS232BufferSize: long);

'10SetBaud:
(RS232TxBaud: Bit8;
RS232RxBaud: Bit8);

IOWriteRegisters:

(RS232WriteReg: packed array[stretch(0)..stretch(0)]
of SIOWriteRegister)

27 Aug 84

Servers-38

3: {Specech}
(casc IOCommand of
I0SctAttention: { AsyncIO only }
(SpeechEnableATN: boolean);

I0SetBufferSize: { SpeechA only }
(SpeechBufferSize: long);

[0SetBaud:
(SpeechTxRate: integer);

IOWriteRegisters:
(SpeechWriteReg: packed array[stretch(0)..stretch(0)]
of SIOWriteRegister)
)
4: {Floppy}
(case [OCommand of
10SetAttention: { AsyncIO only }
(FloppyEnableATN: boolean);

I0SetDensity:
(FloppyDensity: DensityType);

IORead, IOWrite, IOFormat, IOSeek, IORecalibrate,
IOReadID, I0SenseDrive:
(FloppyUnit : Bit8;
FloppyHead : Bit8;
case IOCommand of
I0Read, IOWrite, IOFormat, [OSeek:
(FloppyCylinder: Bit8;
case IOCommand of
IORead, IOWrite:
(FloppySector: Bit8);
IOFormat:
(FloppyFmtData: Bit8)

)
)

end;

GPIBSenseStatus = packed record { IOSense to GPIB provides }
{ first 6 bytcs arc status at time of last interrupt }
IntStat0 : Bit8; { Interrupt Status0}
IntStatl : Bit8; { Interrupt Status1}

27 Aug 84

Servers-39

IntAddrStat ; Bit8; { Address Status }
IntBusStat : Bit8; { Bus Status }

IntAddrSwch : Bit8; { Address Switch }
IntCmdPass : Bit8; { Command Pass Through }

{ next 4 bytes are current status }

CurAddrStat : Bit8; { Address Status (now) }

CurBusStat : Bit8; { Bus Status (now) }

CurAddrSwch : Bit8; { Address switch (now) }

CurCmdPass : Bit8; { CurCmdPass (now) }
end;

SIOSenscStatus = packed record
{ Read General Status - SIO Chip’s Read Register #0 }
RxCharAvailable : boolean;

IntPending : boolean;
TxBufferEmpty : boolean;
DCD : boolean;
SyncHunt : boolean;
CTS : boolean;

TransmitUnderRun : boolean;
BreakAbort : boolean;

{ Read Special Condition - SIO Chip’s Read Register #1 }
AllSent : boolean;
Residue : Bit3;
ParityError : boolean;
RxOverRun : boolean;
CrcFramingError : boolean;
EndOfFrame : boolean;
end;

FloppyResultType = (NoStatus, {no status available}
HeadChange, {status from Seek or Recalibrate}
DriveSense, {status from SenseDrive}
CmdResults {status from other drive cmds}

)

FloppyResultStatus = packed record
{ Floppy device status is always returned as part }
{ of the result phase of a cmd to the controller. }
{ Z80 simply maintains a copy of the status results}
{ for the last cmd.
StatusType: FloppyResultType;
Unused : Bit6;
case FloppyResultType of
NoStatus: ({nothing});

27 Aug 84

Servers—40

HeadChange, DriveSense, CmdResults:
(Unit: Bit2;
Head: Bitl;
case FloppyResultType of

DriveSense:
(TwoSided : boolean;
AtTrack0 :boolean;
DriveReady : boolean;
WriteProtected: boolean;
DriveFault : boolean
)

HeadChange, CmdResults:
(NotReady : boolean;
EquipFault: boolean;
SeekEnd : boolean;
IntrCode : (Normal, Abnormal,

InvalidCmd, DriveRdyChange);
case FloppyResultType of
HeadChange:
(PresentCylinder: Bit8);
CmdResults:
(NoAddrMark : boolean;
NotWritable : boolean;
NoData : boolean;
Unusedl : Bitl;
Overrun : boolean;
DataError : boolean;
Unused2 :Bitl;
TrackEnd : boolean;
NoDataAddrMark: boolean;
BadTrack : boolean;
ScanFail :boolean;
ScanHit : boolean;
WrongCylinder : boolean;
DataCRCError : boolean;
ControlMark : boolean;
Unused3 : Bitl;
CylinderID : Bit8;
HeadID : Bit8;
SectorID : Bit8;
SectorSizeCode: Bit8

)
)
)

end;
I0SenseStatusBlk = packed record

27 Aug 84

I0StatusBlk

Servers—41

StatusCnt: Bit8;
case integer {I0Device} of
1: {GPIB}
(GPIBStatus: GPIBSenseStatus);
2: {RS232A, RS232B, Speech}
(SIOStatus: SIOSenseStatus);
3: {Floppy}
(FloppyStatus: FloppyResultStatus);
0: {otherwise} { for generic access }
(case integer of
1: (StatusByte: packed array[stretch(1)..stretch(1)]
of Bit8);
2: (StatusWord: packed array[stretch(1)..stretch(1)]
of integer);
3: (SByte : packed array|stretch(l)..stretch(12)
] of Bit8)
) .

end;

= packed record
CmdIDTag : long;
HardStatus : integer;
SoftStatus : integer;
CmdBytesTransferred : long;
DataBytesTransferred : long;

DeviceStatus : IOSenseStatusBlk;
end; .
const
{3
{ Baud rate codes for RS232.
{1
RSExt =0;
RS110 =1;
RS150 =12;
RS300 =3
RS600 =4;
RS1200 =35;
RS2400 =6;
RS4800 =7
RS9600 =38;
RS19200 =9; {only forRS232A }

3.11 Routines

The following Routines are from IOUser.pas.

27 Aug 84

Servers—42

Init1IO

InitlO is used to specify the port in the calling process’s port space that will be used by the other interface
routines in 10 User.Pas to accomplish the remote procedure calls to the 10 servers. The port specified serves as .
the reply port upon which the response from the server will be received. This procedure should be called once
and before any of the other routines in 10User. Pas are used,

Call:
Procedure InitlO(RPort: Port)
Parameters:
RPort- This is a port in your process’s port space. IfNullPort
is specified, then InitIO will create a new port.
Most programs find it convenient to just specify NullPort.
Results:

None,

IO Version
This function returns a string which identifies the version number of the server.
Call: _
Function IO_Version(
ServPort : ServerNamePort)
: String
Parameters:
ServPort-This is the port that identifies the IO server to which your request
is being directed. It is the port that you obtain from the Name
Server when you perform a LookUp to the Name Server for the desired
IO server.
Returns:

The server’s version number in string form.

A P P R N S R D
OpenlO

Open 10 is used to acquire the right lo use the device managed by the selected IO server. The server grants

access lo a process by returning a port which the process then uses in the other 10 calls. Some servers grant
exclusive use to a single process and thus OpenlQ performed by other processes will be rejected until the
current process relinquishes access with the CloselO call. OpenlQ will always enable the Synchronous
interface to the server and will only enable the Asynchronous interface if a UserEventPort is specified.
Currently, the Asynchronous interface is not implemented and thus NullPort should be used here.

27 Aug 84

Call:

Parameters:

Results:

Servers—43

Function OpenlO(.
ServPort : ServerNamePort;
Var IOPort : ServerlOPort;
UserPort : UserEventPort)
: GeneralReturn

ServPort-This is the port that identifies the IO server to which your request
is being directed. It is the port that you obtain from the Name

Server when you perform a LookUp to the Name Server for the desired

10 server.

10Port=This is the port returned by the server
(if the OpenlO request is
granted) which the caller uses to make subsequent 10 requests.

UserPort-This is the port upon which the calling

process wishes to receive

Asynchronous events. This port should be set to NullPort until the
AsynclO call is implemented. NullPort directs the server to not
enabie the Asynchronous interface.

I0Success-if the request is granted.

IO DeviceNotFree—if an exclusive-use device is already allocated.

CloselO

CloselO is called when you are through using the device managed by the selected server. The specified
ServerlOPort identifies to which server the CloselO is being directed.

Call:

Parameters:

Results:

Function CloseIO(
IOPort : ServerlOPort)
: GeneralReturn

IO Port-This is a ServerIOPort that uniquely identifies the server to which
the CloselQ is directed. The port to use here is the ServerIOPort
returned by the server in the OpenlO call.

27 Aug 84

Servers—44

10Success—if no crrors; otherwise returns an
identifying error code.

SyncID

SynclO is the primary call to be used in performing actual IO operations on the device managed by the
selected 10 server. The specified ServerIOPort identifies the server to which the request is directed. The other
paramelers are specified according to the particular requirements for the device and the valid set of commands
applicable to the device. These are discussed in more detail in other parts of this document and are also
presented in the module 10 Defs.Pas. The server performs the operation and the SynclO call returns whenever
the operation completes or times out. A device dependent status block is returned which shows the degree of
success in the completion of the operation. The set of 10 error codes as well as the status block definition can
also be found in 10 Defs.Pas. In most cases the server will automatically issue a device reset when an operation
times out. For calls that don’t involve the return of data, the server will always set the DataBuf parameter to
Nil. Thus you must be careful about the parameter you supply for DataBuf so that you don’t lose your
reference to a piece of memory inadvertently.

Call:
Function SyncIO(
IOPort : ServerIlOPort;
Command : I0OCommand;
CmdBIk : Pointer;
CmdBlk Cnt :Long;
Var DataBuf - : Pointer;
Var DataBuf Cnt : Long;
DataTransferCnt : Long;
TimeOut : Long;
Var Status : IOStatusBlk)
: GeneralReturn
Parameters:

IOPort-This is a ServerIOPort that uniquely identifies the server to which
the CloselO is directed. The port to use here is the ServerIOPort
returned by the server in the Open IO call.

Command-This is the IOCommand to perform.

CmdBIk-This is a pointer to the device specific command block. For most
commands, you can treate a pointer to an IOCmdBIk and just recast
CmdBIk to point to it. For other commands (like IOWriteRegisters)
which have an arbitrary number of command bytes, you will need to
create a large enough buffer to accommodate your command bytes and

set CmdBIk to point to it. You may also want to treat your command
buffer as an IOCmdBIk for purposes of using the record ficld names to

27 Aug 84

Servers—45

assign the command byte values. Note that the first two words of the
command block are always treated as a CmdIdTag by the server and will
be copied into the status block prior to return. The CmdIdTag is
primarily useful in the AsynclO interface to the server.

CmdBlk_Cnt-This is the number of command bytes pointed
to by the CmdBIk parameters.

DataBuf-This is the pointer to the data. For commands that read data from a
device, DataBuf should be set to Nil before the call. Upon return,
DataBuf will point to a buffer holding the data read. When you are
through with the buffer pointed to by DataBuf, you should use the
InvalidateMemory call (sce the document “Kernel Interface” in this
manual) to deallocate the buffer. For commands that write datato a
device, DataBuf will point to your buffer of data to output. Since

the server will always set DataBufto Nil prior to return for

commands that don’t return input data, you must take care here not to
lose your pointer reference to the buffer used in the call. This is

easily done by using a generic pointer variable for DataBuf that has
also been set to point to your output buffer.

Databuf Cnt-This is the number of bytes in the buffer pointed to by DataBuf, For
read commands, this is the number of data bytes the server has

returned to you. For read commands you should set DataBuf'to Nil and

DataBuf Cnt to 0 prior to the call. (This eliminates the overhead of

passing useless data in the message to the server and prevents any

potential invalid memory references.) For write commands, this is

the number of bytes in your output buffer.

DataTransferCnt-This is the number of bytes that you want to read/write
from/to the device.

TimeOut-This is the number of microseconds that the server should wait for
the operation to complete. A value of 0 means to wait indefinitely.

A negative value means to not wait (when that makes sense) and

otherwise has the same meaning as 0.

Status-This is the completion status of the operation. Included here is the
DeviceStatus which is device dependent and may hold the values of
device status registers when they were last obtained from the device.

The current values are explicitly obtained when the I0Sense command is
issued.

Results:

IOSuccess-if the operation succeeds completely; otherwise returns
an identifying error code. If the command fails, Status can also be

27 Aug 84

Servers—46

checked for more detailed error information as well as an indication
of how much of the command succeeded.

27 Aug 84

Servers—47

4 Name Server

4.1 Introduction

The Name Server provides processes with the ability to establish communications using textual names. In
general, a process registers a Name/Port pair with the NameServer. Other processes can then ask the Name
Server if it has a registration for a specific name.

If a name is not registered with the local Name Server, that Name Server will broadcast a request on the
network. If the name is registered with some other Name Server on the network, that remote Name Server
will reply with a Port.

At the current time the Name Server is a portion of the Message Server Process. The Message Server is
responsible for extending InterProcessCommunication (IPC) over the network. The fact that the Name
Server and the Message Server are the same process is transparent to a client of the Name Server.

Communication with the Name Server is through a Matchmaker-generated interface. The port that is used
for communications with the Name Server is NameServerPort defined in Pascallnit.pas.

42 Functions

The following functions are from MsgNUser.pas.
BN R HE I I IS HE I NI
Checkln

Checkln is used to register a Name/Port pair with the local Name Server.
Call: '

Function CheckIn(
ServPort : Port;
PortsName : string;
Signature : Port;
PortsID : Port)
: GeneralReturn

Parameters:
ServPort-The port that is used to communicate with the Name Server.
It is NameServerPort from Pascallnit.

PortsName-The name to be registered.

Signature-This is not currently implemented. Use NullPort for this
parameter.

PortsID-The port that is to be associated with PortsName. Clients of

the Name Server who request a connection to PortsName will be given Send rights
to PortsID.

27 Aug 84

Servers—48

Results:

Success-Name was registered correctly.

IR R I I D I

LookUp
LookUp is used to obtain a port that is associated with a name.
Call:
~ Function LookUp(
ServPort : Port;
PortsName : string;
var PortsID : Port)
: GeneralReturn
Parameters:

ServPort=The port that is used to communicate with the Name Server.
It is NameServerPort from Pascallnit.

PortsName-The name to look for.

PortsID-The port that is to be associated with PortsName.The caller
of LookUp will be given send rights to PortsID.

~The port PortsName was found and PortsID contains a port

that can be used to communicate with it.

-The port PortsName was not found. PortsID is not
valid.

L T T T SRR

CheckOut
CheckOut is used to remove a Name/Port registration from the Name Server.
Call:
Function CheckOut(

ServPort : Port;

PortsName : string;

Signature : Port)

: GeneralReturn

Parameters:

ServPort-The port that is used to communicate with the Name Server.
It is NameServerPort from Pascallnit.

27 Aug 84

Servers—49

PortsName-The name to be removed..
P3 =Signature

~This is not currently implemented. Use NullPort for this
parameter.
-Name was removed.

—The client tried to remove a name that it did not
register.

IS N C G A R PR A I B el

MsgPortStatus

MsgPortStatus returns Message Server internal information about a Port. This function is a system function
and is not for users.

Call:
Function CheckIn(
ServPort : Port;
PortsID : Port;

var GlobalPort : long;
var Owner :long;
var SrcID : long;
var SegNum : long;
var NetWaiting : boolean;
var NumQueued : integer;
var Blocked : boolean;
var Locked : boolean;
var RecvQueue : integer;
var DataOffset : long; -
var InSrcID : long;
var InSeqNum : long)

: GeneralReturn

- 27 Aug 84

Servers-50

5 The Network Server

5.1 Introduction

The Network Server (or NetServer) provides access to the Ethernet for all processes that are running on a
given PERQ. All access to the Ethernet is through the Network Server. The CMU 3MHz NetServer provides
access to both the 3MHz and 10MHz Ethernets. On the 10MHz Ethernet it functions by encapsulating
3MHz Ethernet packets within 10 MHz Ethernet packets.

Note that this 3IMHz network server is unique to CMU. At other sites a 10MHz NetServer is used by PERQs
communicating solely on a 10 MHz Ethernet. Sec the PERQ Systems document, The Network Server, for
more details.

User access to the Network Server is through a Matchmaker-gencrated message interface. The Network
Server user sees a set of procedure calls. These calls are translated by Matchmaker-generated code into
messages that are then sent to the Network Server.. The Network Server will act on the request and send a
reply to the client. The repl'y messagés are translated by Matchmaker-generated code into a format that is
suitable for the user. (Because the netserver used to be called the EtherServer, the matchmaker interface to
is is called EtherUser.)

When a user process wishes to receive packets from the Ethernet, it informs the Network Server. The user
provides the Network Server with the type of Ethernet packets that it wishes to receive. It also provides send
rights to a port. When an Ethernet packet is received by the Network Server the Server checks to see if any
of its users are interested in packets of that type. If so it will send the received packet to those users in an
IPC message. To get the message cotaining a packet, the user does an IPC receive on the port that it
previously provided to the Network Server to get the message that contains the packet. The user then uses
Matchmaker-generated code to obtain the actual Ethernet packet from this IPC message.

5.2 overview

In order to provide both synchronous and asynchronous communication with the NetServer, the functions
provided by this module are impimented with three subroutine call each. The Send and Parse calls are to be
used (along with a user written Receive call) for asynchronous communication. The Wait calls are to be
used for synchronous communication. The three types of routines have following implementation:

Send<X> This routine sends off a request message to the NetServer. It usually takes a
reply port as well as parameters to the function, and returns the result of the
send call.

Parse<X> This routine parses a request response from the NetServer. It usually takes a

message pointer as a parameter and returns the function results as its result, or in
var parameters, depending on the number of output variables.

Wait3O This routine combines the above two routines for synchronous server
communication. It will raise an exception if something goes wrong. The

27 Aug 84

Servers-51

exceptions are defined below. It should be pretty obvious what their arguments
refer to.
All the routines implicitly take the NetServer port as a parameter. This port is hidden withing the
EtherUser module and is initialised when the routine InitEther is called.

The netserver supports two types of packet format: raw 3Megabit ether packets, and pup packets. Thus
there are parallel sets of calls depending on which packet format is desired.

5.3 Initializing the interface

The procedure InitEther must be called before other routines can be executed.

Example:
InitEther (NullPort, 0);

5.4 Getting the Ethernet Address of the Machine

The Network Server user must place the Ethernet address of the current machine into the Source field of
the Ethernet packet header. The Network Server provides facilities to get the Ethernet address from the
Ethernet hardware. The address that is returned is in a form that can be placed directly into an address field

of an Ethernet header. The CMU MHz network server always returns a 3MHz address even thought the
machine may be on the 10Mhz ethernet.

Example:

VAR
host : integer;

BEGIN
host := WaitEtherAddress;
writeln ('My host = ', host:1);

5.5 Sending an Ethernet Packet

To send a packet on the Ethernet, the user must set the Ethernet packet header to contain the destination
address, the correct source address and the packet type fields of the header. The packet can be sent using
SendEtherPacket.

5.6 Connecting to an Ethernet Type

To receive packets from the network, the user process must tell the Network Server that it wishes to receive
packets of a specific Ethernet type on a user-provided port. The Ethernet type acts as a filter within the
network server. It is possible to receive packets of more than one Ethernet type on a single port by making
multiple calls to WaitEtherFilter with different filters but with the same port.

Example:

27 Aug 84

Servers-52

VAR
filter : integer; { Packet type }
retval : GeneralReturn;
ok : boolean;
myport : port;
BEGIN

retval := AllocatePort (KernelPort, myport, DefaultBacklog);
Write ('Filter number: ');

Readlin (filter);

ok := WaitEtherfilter (myPort, filter);

5.7 Type Definitions

The following definitions are from EtherTypes.pas.

CONST { return codes from PerqE3, PerqE10, PorkE3 }
IOEIOC = #0; {successful }
IOETIM = #1; { no packet is being returned from Ether3Receive }
IOEPTL = #2; { apacket > WdCnt has been reccived }
IOERNT = #3; { a packet < WordSize(EtherHeader) has been received }
IOEBSE = #4; { WdCnt > E3BufferSize }
IOEFUZ = #5; { packet length not integral number of words }

TYPE
EtherHeader = PACKED RECORD
Src :0..255;
Dst 1 0..255; -
Typ : INTEGER;
END;
CONST

MinEtherWords = WordSize(EtherHeader);
MaxEtherWords = 748; { 750 words max data size on 10mhz net, but 2
words are needed for the 3hmz encapsulation
header on the 10mhz net. }
{ 560 is the vax 3mhz limit (ENETPACKETSIZE)}

TYPE
pEtherPacket = tEtherPacket;
EtherPacket = RECORD
CASE Integer OF
0:¢(

Header : EtherHeader;
DataWords : ARRAY[0.. MaxEtherWords -
WordSize(EtherHeader) - 1
JOF INTEGER);
1:(

27 Aug 84

Servers-53

Words : ARRAY][0 .. MaxEtherWords-1] OF INTEGER),
2: (

LongHeader : EtherHeader;

LongWords : ARRAY[0.. (MaxEtherWords -
WordSize(EtherHeader))
div2- 1]JOF LONG);

3:¢(

ConfigHdr : EtherHeader;

SkipC :integer;

ConfigBytes : PACKED ARRAY

[0..2 *(MaxEtherWords -
WordSize(EtherHeader) - 1)]
OF Bit8)
END;

CONST

EtherTypEchoMe . = #700;
EtherTyplAmAnEcho = #701; -
EtherTyp3ConfigTest = #220;

EtherTypPup = #1000;
EtherTypConfigTest = #220;
FwdCode = 2;
RepiyCode = 1;
TYPE
PupLLong = RECORD
CASE INTEGER OF
1:(Lng:Long);
2 : (Low : Integer;
Hgh : Integer)
END;
TYPE
PupHLong = RECORD
CASE INTEGER OF
1:(Lng:Long);
2:(Hgh: Integer;
Low : Integer);
END;
TYPE
PupPort = PACKED RECORD
CASE integer OF
0:¢(
Host: 0.. 255;
Net: 0..255;

27 Aug 84

Servers-54

Soc : PupHLong);

1:(
All : PACKED ARRAY [0..5] OF Char)
END;
TYPE
PupHeader = PACKED RECORD
. Len : INTEGER;
Typ : 0.. 255;
TC : 0..255;
Id : PupHLong;
Dst : PupPort;
Src : PupPort
END;
TYPE
pPupData = tPupData;
PupData = RECORD
CASE INTEGER OF
0: (Chars : PACKED ARRAY[0..1043] OF CHAR);
1: (Bytes : PACKED ARRAY][0..1043] OF 0..255);
2:(Words : PACKED ARRAYT0.. 521] OF INTEGER);
3: (HLongs : PACKED ARRAY(0.. 260] OF PupHLong);
4 : (Ports : PACKED ARRAY] 0.. 260] OF PupPort);
END;
CONST
MinPupWords = WordSize(PupHeader)+1;
MaxPupWords = 533;
TYPE
pPupPacket = tPupPacket;
PupPacket = RECORD
CASE INTEGER OF
0:(Header :PupHeader;
Data :PupData);
1:(ChkSums :ARRAY [0..532] OF Integer)
END;
CONST
PupCMUNet = #52;
CONST
PupError = #4;
PupEFTPData = #30;
PupEFTPAck = #31;

27 Aug 84

Servers-55

PupEFTPEnd = #32;

PupEFTPBort = #33;

CONST

PupNameSocket = #4*#200000; { word-swapped longs}

PupEFTPSocket = #20*#200000;

TYPE

MsgPacket = RECORD
Head : Msg;
TPacket - :TypeType;
END;)

MsgEtherPacket = RECORD
Head : Msg;
TPacket : TypeType;
Packet : EtherPacket;
END;

MsgPupPacket = RECORD
Head : Msg;
TPacket : TypeType;
Packet : PupPacket;
END;

CONST

PacketBytes = 2 * WordSize(MsgPacket);

EtherPacketBytes = 2 * WordSize(MsgEtherPacket);
PupPacketBytes = 2 * WordSize(MsgPupPacket);

CONST
EtherIDBase = 800;

IDGetEtherAddress = EtherIDBase + 1;
IDRGetEtherAddress = EtherIDBase + 101;

IDSetEtherFilter = EtherIDBase + 2;
IDRSetEtherFilter = EtherIDBase + 102;

IDCIrEtherFilter = EtherIDBase + 3;
IDRCIrEtherFilter = EtherIDBase + 103;

IDSendEtherPacket = EtherIDBase + 4;
IDRecvEtherPacket = EtherIDBase + 104;

IDSetPupFilter = EtherIDBase + §;
IDRSetPupFilter = EtherIDBase + 105;

27 Aug 84

Servers-56

IDClrPupFilter = EtherIDBase + 6;
IDRClrPupFilter = EtherlDBasc + 106;

IDSendPupPacket = EtherIDBase + 7;
IDRecvPupPacket = EtherIDBase + 107;

TYPE
pMsgGetEtherAddress = tMsgGetEtherAddress;
MsgGetEtherAddress = RECORD
Head : Msg
END;

pMsgRGetEtherAddress= +MsgRGetEtherAddress;
MsgRGetEtherAddress = RECORD
Head : Msg;
TEtherAddress : TypeType;
EtherAddress : INTEGER
END;

pMsgSetEtherFilter = tMsgSetEtherFilter;
MsgSetEtherFilter = RECORD
Head : Msg;
TTyp : TypeType;
Typ : INTEGER;
TProcessPort: TypeType;
ProcessPort : Port
END;
pMsgRSetEtherFilter = tMsgRSetEtherFilter;
MsgRSetEtherFilter = RECORD
Head : Msg;
TTyp :TypeType;
Typ : INTEGER;
TAnswer : TypeType;
Answer : BOOLEAN
END;

pMsgClrEtherFilter = tMsgClrEtherFilter;
MsgClrEtherFilter = RECORD
Head : Msg;
TTyp :TypeType;
Typ : INTEGER;
TProcessPort: TypeType;
ProcessPort : Port
END;

pMsgRClIrEtherFilter = tMsgRClrEtherFilter;

27 Aug 84

Servers-57

MsgRClrEtherFilter = RECORD
Head : Msg;
TTyp :TypeType;
Typ : INTEGER;
TAnswer : TypeType;
Answer : BOOLEAN
END;

pMsgSendEtherPacket = tMsgSendEtherPacket;
MsgSendEtherPacket = MsgEtherPacket;

pMsgRecvEtherPacket = tMsgRecvEtherPacket;
MsgRecvEtherPacket = MsgEtherPacket;

pMsgSetPupFilter = tMsgSetPupFilter;
MsgSetPupFilter = RECORD
Head : Msg;
TSocket : TypeType;
Socket : Long;
TProcessPort: TypeType;
ProcessPort : Port
END;

pMsgRSetPupFilter = tMsgRSetPupFilter;
MsgRSetPupFilter = RECORD
Head :Msg;
TSocket : TypeType;
Socket :Long;
TAnswer : TypeType;
Answer : Boolean
END;

pMsgClrPupFilter = tMsgClrPupFilter;
MsgClrPupFilter = RECORD
Head : Msg;
TSocket : TypeType;
Socket : Long;
TProcessPort: TypeType;
ProcessPort : Port
END;

pMsgRClrPupFilter = tMsgRClrPupFilter;
MsgRClrPupFilter = RECORD

Head : Msg;

TSocket : TypeType;

Socket :Long;

TAnswer : TypeType;

27 Aug 84

Servers-58

Answer : Boolean
END;

pMsgSendPupPacket = tMsgSendPupPacket;
MsgSendPupPacket = MsgPupPacket;

pMsgRecvPupPacket = tMsgRecvPupPacket;
MsgRecvPupPacket = MsgPupPacket;

5.8 Exported Exceptions
Exception ESendFailed(Why: GeneralReturn);
Exception EReceiveFailed(Why: GeneralReturn);

Exception EBadReply;

5.9 Common Parameters

GeneralReturn The return code from the Send Kernel call,

Listener The port to which to send the notification that a reply to this call has been
received.

MaxWait Maximum number of milleseconds to wait for a send to NetServer to complete.
The value 0 means wait forever.

MsgP A pointer to a specific type of message.

Option Send option for the Send call. Specifies what to do if the server queue is full.
Values are wait,dontwait, and reply. '

packet A pointer to a pup packet.

Reply Port to which reply to this message is to be sent.

Typ A filter specifying the types of ethernet packages that are to be listened for. The
values for this parameter are exported by ethertypes.pas.

sockel The local part of a pup protocol EtherNet address. This acts as a filter for pup
tranmission.

5.10 Procedures

The following procedures are found in EtherUser.pas.

T T TP ————
"InitEther”

This procedure sets up vital state information for the interface and must be called before any of the other
routines are used.

27 Aug 84

Servers—59

Call:
procedure InitEther(
RPort : port;
Heap :integer)

Parameters:

"Rport"-port to which replies from the Ether Server should be
sent. If it is equal to NullPort, a new port is allocated.

“Heap"-heap to be used for dynamic storage allocation. If
equal to 0, the default data heap is used.

Exceptions:

rere

~Exceptions raised by the *wait’ routines, should be obvious, if not
check the code,

. v
"SendEtherAddress"

Send a message to find out the local EtherNet address
Call:
function SendEtherAddress(
Reply : Port;
MaxWait: long;
Option : SendOption)
: GeneralReturn

L e e o e

"ParseEtherAddress"
Parse the reply message containing the EtherNet address
Call:
function ParscEtherAddress(
MsgP :pMsgRGetEtherAddress)
:integer
Returns:

EtherNet address

IR RS N PR T A S P e R NI N R S e T el
"WaitEtherAddress”

Synchronously get the EtherNet address

27 Aug 84

Servers—60

Call:
function WaitEtherAddress : integer;
Returns:
EtherNet address

e o T L oo o]
"SendEtherFilter”

Send a message lo set the ether filter -
Call:

function SendEtherFilter(
Typ :integer;
Listener : Port;
Reply :Port;
MaxWait : long;
Option : SendOption)
: GeneralReturn

A ether fiiter specifies the type of ether packelts that we are interested in listening for. Afler a filter with the
value of Typ has been set, any incoming packets of that type cause a notification message to be sent to the

Listener port.
I I D HI IS I =
"ParseEtherFilter"
Parse reply message containing value of ether filter.
Call:
function ParseEtherFilter(
MsgP : pMsgR SetEtherFilter;
var Typ : integer)
:boolean;
Returns:

true - if the ether filter of the value Typ has been set.

false - if the filter was not set because the maximum number
of filters was already set. Currently the maximum number of
filters is 4.

I PR I S -SSR M- e
"WaitEtherFilter”

Synchronously set a new value for the ether filter
Call:

Servers-61

function WaitEtherFilter(
Typ :integer;
Listener : Port)
: boolean;
Returns:

same as for ParseEtherFilter.

T SR A R O S A R A B Rl
"SendEtherClear"

Send message to remove an ether filter
Calk:

function SendEtherClear(
Typ :integer;
Listener : Port;
Reply :Port;
MaxWait : long;
Option : SendOption)
:GeneralReturn;

Removes the filter of value Typ with the associated notification port of Listener.

"ParseEtherClear”

Parse message received as a result of an EtherClear message
Call:
function ParseEtherClear(
MsgP : pMsgRClrEtherFilter;
var Typ :integer)
: boolean;
Returns:

"same as for ParseEtherClear.”

RN I D R I M I I =
"SendEtherPacket"
Send an ethernet packet pointed to by "Packet’, of size 'PacketWords’
Call:

function SendEtherPacket(
Packet : pointer;
PacketWords: integer;
MaxWait : long;

27 Aug 84

Scrvers—62

Option : SendOption)
: GeneralReturn;

Parameters:

“Packet"-pointer to packet to be sent

“PacketWords"-number of words in packet.

I N AT S I WIS SRR T il
"ParseEtherPacket”

Copies an ethernet packet from the response message into the area pointed at by 'Packel’, returning the
number of words copied.

Call:
function ParseEtherPacket(
‘ MsgP : pMsgRecvEtherPacket;
Packet : pointer)
: integer;
Parameters:
"Packet"-Pointer to packet to be parsed.
Returns:

number of words in packet

“mﬂm

"SendPupFilter"
Add a new socket on which to receive pup packets.
Calk:
function SendPupFilter(

Socket : Long;

Listener : Port;

Reply :Port;

MaxWait :long;

Option : SendOption)
: GeneralReturn;

L o L o e aa i as aa ia aa s aa as s ame |
"ParsePupFilter"”

Parse return message from SendPupFilter call
Call:

27 Aug 84

Servers—63

function ParscPupFilter(
MsgP : pmsgrsetpupfi lter;
var Socket : Long)
: boolean;
Returns:

true - if the socket has been added to the list of available sockets.
Jalse - if the socket was already in use, or if the maximum number of

sockets was already allocated. Currently, the maximum number of sockets
is4.

R I S R R I MR P

"WaitPupFilter"
Synchronously add a new socket on which to receive pup packets.
Calk:

function WaitPupFilter(
VAR Socket :Long;
Listener : Port)
: boolean;

Returns:

same as for ParsePupFilter.

W
"SendPupClear”

Send message to deallocate a socket.
Call:

function SendPupClear(
Socket :Long;
Listener : Port;
Reply :Port;
MaxWait : long;
Option : SendOption)
: GeneralReturn;

R B S R R R D b

"ParsePupClear"

Parse message reply from SendPupClear message.
Call:

27 Aug 84

Servers—64

function ParscPupClear(
MsgP : pMsgRClrPupFilter;
var Socket : Long)
: boolean;

Returns:

true - if the socket was found and deallocated.

false - if the socket was not found,

"WaitPupClear"
Synchrfmous call to allocate a pup socket.
Call:
function WaitPupClear(
var Socket : Long;
Listener : Port)
: boolean;
Returns:
same as for ParsePupClear

"SendPupPacket"
" Send a Pup Packet pointed to by "PupPacket".”
Call: '
"function SendPupPacket(

PupPacket : pointer;
MaxWait : long;
Option : SendOption
: GeneralReturn;")
BRI HEHEH I I TR M HE R

"ParsePupPacket"
Copies the Pup packet from the PacketMessage into the 'PupPacket’.
Call:
procedure ParsePupPacket(

MsgP : pMsgRecvPupPacket;
PupPacket : pointer);

27 Aug 84

Deallocate resources allocated for local use.
Call
procedure FinEther;

Scrvers—65

"FinEther"

27 Aug 84

Scrvers—66

6 Process Manager

6.1 Introduction

The Process Manager controls and monitors the activity of a process. It supplements the process control
functions of the Accent kernel. Process control signals can be sent between processes to control individual
or groups of processes. The user can also suspend, resume, cancel and debug processes through shell or
Window Manager commands.

To use the Process Manager a process must be rgistered. If the process was created with Spawn it it
automatically registered otherwise a process can be registered with the function PMRegisterProcess. A
process that is not registered with the Process Manager will be harder to start up and impossible to control.

6.2 Process Trees

Processes are organized into trees. Each process in the tree has a parent and a set of children. Registering a
process supplies the Process Manager with:

o the parent of the process.

o the kerncl and data ports of the new process,

o adescriptive name for the process,

« the window, typescript and cnvironment manager connections,

The parent process controls the children through Accent or the Process Manager. The parent is notified
when a child dies through an emergency message that contains

1. the reason for termination - “process death” if the child gives no reason
2. runtime - if available

3. load time - if available

4, elapsed time - if available

A process may reregister itself with a new parent. When a parent dies surviving children are “orphans”.

6.3 Process Control Groups

Processes can be controled together through Process Control Groups. Each window can only belong to one
procéss group. A group can be associated with one or more windows and a process cotnrol key typed to any
window affects all of the process group. The name of the group is located in the window icon (aliases for the
name are in icons of other windows in the group). If a process changes it's group, it’s children become
members of the new group. If the process control window is removed, the process is “out of control” and
can only be controlled by shell process control commands.

[\

Servers—67

6.4 Process Control Signals

The Process Manager provides 64 Process Control Signals, 7 with defined roles:

Signal Default Action

suspend suspend the process

resume resume the process

status display status in process manager window
LevellAbort terminate process

Level2Abort terminate process

Level3Abort terminate process

debug suspend process & invoke debugger
other ignore signal

On receiving a signal a process may

1. Send - send an emergency message saying what signal has occured (resume any suspended
processes).

2. Ignore - ignore signal. Level3Abort signals cannot be ingored and will terminate the process.
3. Default - perform the default action for the signal.

The action for each signal may be specified independently. There are Process Manager functions
(Emergency Messages) to send a signal to an entire process group or single process in a group.

6.5 Keyhoard and Window Manager control

The following commands can be typed to the shell to control processes,

Suspend <string>

Resume <string>

Debug <string>

Kill <string>

SetPriority <string>
If the string given is a group name the command will affect the group. The command will affect a process if
the string given is a process number or a prefix of the process name. If the string matches more than one
process name the command fails and returns NameAmbiguous.

These same commands can be selected from the Window Manager menu or with the Window Manager
keyboard commands. See the User’s Guide to the Window Manager for more information.

6.6 Debugging

The process manager can register a debug port for a process. If the process gets an uncaught exception or an
addressing error, or if a signal is raised and not caught, the process is suspended and an emergency message
is sent to the debug port. (This is line AccInt.SetBugPort in the kernel, but intercepts signals as well as
program errors.) The port may be set up to catch all uncaught signals or only the Debug signal. A debugger

27 Aug 84

Servers—68

can use this to keep control of a process and to intercept subsequent Debug keys (instead of starting up
another debugger).

The global Environment variable “DcbuggerName” is the name of the debugger to run. When the
debugger is invoked, the Process Manger first tries to run the program named in “DebuggerName”. If that
is not found, it tries to run 'Debugger.run’. If that, in turnis missing, it runs the built-in Mace debugger. If
“DebuggerName™ has the value *?” the Process Manager asks the user for the name of a run file to run as
the debugger.

The debugger starts up with the following environment:

InPortst(0] Kernel Port of target process

InPortst[1] Process Manager Port

EMPort process Environment Manager connection for target
UserWindow, Window and typescript for the debugger.
UscrTypescript Process control functions on this window affect

the Debugger, not the target process (the
debugger may, of course, intercept them).

6.7 Definitions

The following definitions are found in ProcMgrDef5s.pas,

Const
ProcMgrBase = 3600; { Process Manager messages and errors }
SignalBase = 3800; { Signals and asynchronous returns }

{ Error returns from ProcMgr }

UnknownProcess = ProcMgrBase+1;

UnknownSignal = ProcMgrBase+2;

UnknownAction = ProcMgrBase+3;

UnknownWindow = ProcMgrBase+4;

WindowInUse = ProcMgrBase+5;

NoChildren = ProcMgrBase+6;

UnknownPort = ProcMgrBase+7; { NullPort given to ProcMgr }
NamcAmbiguous = ProcMgrBase+38;

ProcessDisowned = ProcMgrBase+9;

{ Signals }

MinSignal = SignalBase;
MaxSignal = SignalBase+63;

{ signal numbers 1..32 are reserved for Spoonix! }

SigSuspend = MinSignal+33;
SigResume = MinSignal+34;

27 Aug 84

Servers—69

SigStatus = MinSignal+35;
SigDebug = MinSignal +36;
SiglevellAbort = MinSignal+37;
SigLevel2Abort = MinSignal+38;
SigLevel3Abort = MinSignal+39;

type
SignalName = integer;

{ Actions }
type
SignalAction = (SigDefault,
Siglgnore,
SigSend);

{ Statistics returned to caller }

StatRecord = record
RunTime: long; { microseconds }
LoadTime: long; { microseconds }
ElapsedTime: long; { ticks}
KernelPort: long; { number, not port }
Priority: integer;
QueuelD: integer;
ProcName: string; { Process name }
IconName: ProgStr;{ name in Icon - group name }
State: ProcState;

end;

StatArray = array[0..0] of StatRecord;
StatList = 1StatArray;

6.8 Functions

The following functions are found in ProcMgrUser.pas.
I R R D S I R M i
PMRegisterProcess

Register a process with the Proéess Manager
Call:

function PMRegisterProcess(
ServPort : Port;
HisKPort : Port;
HisDPort : Port;

27 Aug 84

Parameters:

Servers-70

ProgName : string;

HisWindow : Window;

HisTypescript: Typescript;

EMConn : port;

Parent : port)

: GeneralReturn

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
HisK Port~-The kernel port of the process to be registered.
HisDPort-The data port of the process to be registered.

ProgName-The name of the process, usually the RUN file name.
Spawn registers the parameler that it calls ProcName as the ProgName.

HisWindow-The window associated with the process. NullPort if none.
HisTypescript-The typescript associated with the process.

EMConn-The port associated with a new connection to the
Environment manager for this process. NullPort if none.

Parent-The kernel port of the Parent Process.

The supplied data is entered into the Process Manager Data Base and the icon name for the process’s window

is set 1o be ProgName.

BRI TH- B R I A S bl

PMSetSignal

Set the signal actions for a process

Call:

Parameters:

function PMSetSignal(
ServPort : port;
ProcPort : port;
Signal : SignalName;
Action : SignalAction)
: GeneralReturn

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
ProcPort=The Kernel port of the process to affect.

Signal-Signal to change action for.

27 Aug 84

Servers-71

Action-New Action to set for signal. Actions are:

SigSend - send a SignalMessage to the process’s Signa]Pdrt
with the signal as the reason. *

Siglgnore - completely ignore the signal.

SigDefault - take the default action for the signal.
Results:

Success
UnknownProcess
UnknownSignal

UnknownAction

R I HE IR I I T NI TS X MR =
PMSetSignalPort

Sets the signal port (port 1o receive signal message for SigSend) for a process.

Call:

function PMSetSignalPort(
ServPort : port;
ProcPort : port;
SignalPort : port)
: GeneralReturn

Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
ProcPort-The Kernel port of the process to affect.

SignalPort-The port to receive SignalMsg

TN E N N P P I D I MR A R I R

PMSetDebugPort

Sets up a port to intercept errors and default signals for a process. If the debug port exists, the default action
Sor the debug signal (or all signals) will be to suspend the process and send a message to the debug port. In
addition, the debug port will receive all Debug error messages for the process (from the kernel).

Call:

27 Aug 84

Scrvers-72

function PMSctDebugPort(
ServPort : Port;
ProcPort : Port;
DebugPort : Port;
DebugSignalOnly : Boolean)
: GeneralReturn

Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
ProcPort-The Kernel port of the process to affect.

DebugPort-Port to receive emergency message when something happens
to the process.

DebugSignalOnly-1f TRUE, only intercept uncaught DEBUG signals.
IfFALSE, intercept ALL uncaught signals.
Results:

Success

UnknownProcess

The "SetDebugPort’ call in Accent only intercepts exceptions and memory faults. This call intercepts Signals*
as well.
B R I S ORI I I R i

PMSaveLoadTime
Saves the load time for a process so that it can be printed later.
Call:

function PMSaveLoadTime(
ServPort : Port;
ProcPort : Port;
LoadTime :long)
: GeneralReturn

Parameters:
ServPort-Port to Process Manager (exported by Pascallnit as PMPort).

ProcPort-Kernel port of process.

LoadTime-Time to load process (microseconds)
Results:

Success

UnknownProcess

27 Aug 84

Servers-73

L L o]

PMGetWaitID

Get the *Wait ID’ of a child process. The Wait ID is a 32-bit number that is returned when the child process
dies. Its only use is to identify the dead process (the dead process’ KernelPort is no longer valid, since it was
deallocated when the process died).

Call:

function PMGetWaitID(
ServPort : Port;
ProcPort : Port;
var WaitiD : long)

: GeneralReturn

Parameters:

ServPort-Port to Process Manager {(exported by Pascallnit as PMPort).
ProcPort-Kernel port of process.

WaitlD-returns the Wait ID for the child process.
Results:

Success

UnknownProcess

The ‘processdeath’ message is returned to the parent’s DataPort, whether or not it has asked for the child’s
WaitID.

EHEHEME I I S I DRI Bl
PMGetTimes

Returns the run and elapsed time for a process.

Call:

function PMGetTimes(
ServPort : Port;
ProcPort : Port;
var LoadTime : long;
var RunTime : long;
var ElapsedTime : long)
: GeneralReturn

Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).

ProcPort-Kernel port of process.

27 Aug 84

Servers-74

LoadTime-Returns the load time for the process (microseconds).
RunTime-Returns the run time for the process (microseconds).

ElapsedTime-Returns the elapsed time for the process (1/60 second).
Results:

Success

UnknownProcess

IR IS S S-S ST ST e
PMGetProcPorts

Get the registered ports of a process.
Call: ’

function PMGetProcPorts(
. ServPort : Port; {get ports for process being
ProcPort : Port; debugged}
var hisWindow : window;
var histypescript : typescript;
var hisEMConn : Port)
: GeneralReturn

Parameters:

ServPort-Port to Process Maﬂager (exported by Pascallnit as PMPort).'
ProcPor=Kernel port of process.

hisWindow-returns window

hisTypescript-returns typescript for process.

hisEMConn-returns Environment connection for process.
Results:

Success
UnknownProcess
BRI SR S el
PMTerminate

Terminate a process.

27 Aug 84

Servers-75

Calil:

function PMTerminate(
ServPort : Port;
ProcPort : Port;
Reason :long)

: GeneralReturn

Parameters:

ServPort-Port to Process (exported by Pascallnit as PMPort).
ProcPort-Kernel port of process.

Reason-Reason for termination.
Resuits:

Success

UnknownProcess

Invoke a debugger on a process.
Call:

function PMDebugProcess(
‘ ServPort : Port;
ProcPort : Port;
Reason :long)
: GeneralReturn

Parameters:
ServPort-Port to Process Manager (exported by Pascallnit as PMPort).

ProcPort-Kernel port of process.

Re}zson—Reason for debugging process.
Results:

Success
UnknownProcess

Failure-couldn’t invoke debugger

27 Aug 84

Servers-76

PMAddCtIWindow
Add a new window to the set of controlling windows for a process group.
Call:

function PMAddCtiWindow(
ServPort : Port;
CtlWindow : Window;
NewCtlWindow : Window)
: GeneralReturn

Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
CtlWindow-an existing window for a control group.

NewCtiWindow-a new window to add as a control window.
Results:

Success
UnknownWindow-CtIWindow is not a control window for a process group.

UnknownPort-NewCtlWindow is NullPort.

L L o o]

PMRemoveCtlWindow
Removes a window to the set of controlling windows for a process group.
Call:
function PMRemoveCtlWindow(
ServPort : Port;
CtlWindow : Window)
: GeneralReturn
Parameters:
ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
CtlWindow-an existing window for a control group.
Results:

Success

UnknownWindow-CtlWindow is not a control window for a process group.

27 Aug 84

Servers-77

PMChangeGroup

Changes a process (and its descendants) to a new process group. If there is already a process in the process
group, it must be the parent of the affected process.

Call:

function PMChangeGroup(
ServPort : Port;
ProcPort : Port;
NewWindow : Window)
: GeneralReturn

Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
ProcPort~Kernel port of process.

Window-Window to use for new group.
Results:

Success
UnknownProcess
UnknownPort-=if window is NullPort.

WindowInUse-window already controls a process group.

s e

PMGroupSignal
Removes a window to the set of controlling windows for a process group.
Caik
function PMGroupSignal(
‘ ServPort : Port;

CtlWindow : Window;

Signal : SignalName)
Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
CtlWindow-One of the windows controlling a process group.

Signal-Signal to send.

This is an Emergency message to the process manager.

27 Aug 84

Servers-78

PMProcessSignal
Sends a signal 1o a single process.
Call:
function PMProcessSignal(

ServPort : Port;

ProcPort : Port;

Signal : SignalName)
Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
ProcPort-Kernel port for a process to signal.

Signal-Signal to send.

This is an Emergency message to the process manager.
BN IR IO AT HE
PMSuspend
Suspend a named (or numbered) process.
Call:

function PMSuspend(
ServPort : Port;
ProcID : string)
: GeneralReturn

Parameters:
ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
ProcID-Name of group, prefix of processname or kernel port number of
process as returncd by PMGetStatus.

Results:

Success
UnknownProcess

NameAmbiguous

If the name designates a process group, it sends the Suspend signal to the process group. [f the name designates
a single process, it suspends the process. If the process has a DebugPort set, it also send an M_DebugMsg
message to the debug port, with SigSuspend as the reason (unless the debug port is set to DebugSignalOnly).

PMResume

Resume a named (or numbered) process.

27 Aug %4

Servers-79

Call:

function PMSuspend(
ServPort : Port;
ProcID : string)
: GeneralReturn

Parameters:
ServPor+Port to Process Manager (exported by Pascallnit as PMPort).
ProcID-Name of group, prefix of processname or kernel port number of
_ process as returned by PMGetStatus.
Results:

Success
UnknownProcess

NameAmbiguous
If the name designates a process group, it sends the Suspend signal to the process group. If the name designates
a single process, it suspends the process. If the process has a DebugPort set, it also send an M_DebugMsg

message to the debug port, with SigSuspend as the reason (unless the debug port is set to DebugSignalOnly).
IR G-I R IR S S T el

PMDebug
Invokes the debugger on a named (or numbered) process.
Call:

function PMDebug(
ServPort : Port;
ProcID : string)
: GeneralReturn

Parameters:
ServPort-Port to Process Manager (exported by Pascallnit as PMPort).

ProcID-Name of group, prefix of processname or kernel port number of
process as returned by PMGetStatus.

Results:

Success
UnknownProcess

NameAmbiguous

If the name designates a process group, it sends the Suspend signal to the process group. If the name designates

27 Aug 84

Servers-80

a single process, it suspends the process. If the process has a DebugPort set, it also send an M Debungg
message to the debug port, with SigDebug as the reason.
RN TR I N E I I I =

PMKill
kill a named (or numbered) process.
Cail
function PMKitl(
ServPort : Port;
ProcID :string)
: GeneralReturn
Parameters:
ServPort-Port to Process Manager (exported by Pascallnit as PMPort).
ProcID-Name of group, prefix of processname or kernel port number of
process as returned by PMGetStatus.
Results:
Success
UnknownProcess
NameAmbiguous

If the name designates a process group, it sends the Suspend signal to the process group. [f the name designales
a single process, and the process does not have a DebugPort set, it terminates the process with reason=
SigLevell Abort. If the process has a DebugPort sel, it instead sends a M_DebugMsg message to the debug
port, with SigLevell Abort as the reason (unless the debug port is set to DebugSignalOnly).

IR RN I I AN NI

PMSetPriority
Sels the priority of a named (or numbered) process. or of all of the processes in a process group.
Call:

function PMSetPriority(
ServPort : Port;
ProcID : string;
priority : integer)
: GeneralReturn
Parameters:

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).

ProcID-Name of group, prefix of processname or kernel port number of
process as returned by PMGetStatus.

27 Aug 84

Results:

Servers-81

Priority-Desired run priority for process:
_ 0: lowest priority
15: highest priority
Success
UnknownProcess

NameAmbiguous

BadPriority

Changes the priority of the process or of all processes in the process group.
I IR TSI D S 2Tl

PMBroadcast

Print a message in the Process Manager Window. This is used to display ’system’ messages.

Call:

Parameters:

Results:

function PMBroadcast(

QarvDart * Darte
MULYL ULL o L UIL,

) : string)
- GeneralReturn

ServPort-Port to Process Manager (exported by Pascallnit as PMPort).

s-String to display.

success

IR R R P S I P el

PMGetStatus

Returns status for one or more processes.

Call:

Parameters:

function PMGetStatus(
ServPort : Port;
ProcID : string;
var Stats : StatList;
var Stats Cnt : long)
: GeneralReturn

27 Aug 84

Scrvers-82

ServPort-Port to Process Manager (exported by Pascailnit as PMPort).

ProcID-Can be:
Process group name -
returns status for all processes in group.
Pattern to match (as in file name patterns) -
returns status for all matching process names
Process number for process -
returns status for that process.
Null String;
returns status for all registercd processes.

Stats-Returns a pointer to the array of status records, one for
each process whose name matches ProcID.

Stats Cnt-Returns number of records in Stats

Results:

Success

UnknownProcess-name didn’t match any process

IR X R IR E R P O R R M MR R el
Asynchronous (Emergency) Messages

Message sent to DebugPort to report an action on another process. (This is the same as the kernel’s M
DebugMsg.) '

Parameters:

KPort-Kernel port of process affected,
Argl-Always 0 (present for historical reasons)

Arg2-Reason for DebugMessage:

if the process was halted by an error, this is
the GeneralReturn value describing the error
(MemFault, UncaughtException, ...)

if the process has a Process Manager Debug Port set
(by PMSetDebugPort), and a signal was raised on
process and not sent or ignored, this is the name
of the signal that was raised.

type DebugMessage = record
Head :Msg; {Accent message header}

27 Aug 84

Servers-83

tKPort : TypeType; { (TypePT, 32) }
KPort :Port { Kernel port of process affected }

tArgl : TypeType; { (TypeInt32,32) }
Argl :Long { What happened, field 1: always 0! }

tArg2 : TypeType; { (Typelnt32, 32) }
Arg2 :Long; { What happcned, field 2:
GeneralReturn value for
error or signal. }
end;

e L L s o]

Asynchronous (Emergency) Messages

Message sent on process termination

Parameters:
WaitID-Wait ID of process that died, as returned from PMGetWaitID.
Reason-Reason for process death:
if killed by terminate (in Acclnt),
PRCCESSDEATH

if killed by PMTerminate (in ProcMgr),
the Reason given to PMTerminate.

if the process re-registered with a different parent,
ProcessDisowned. . .

if the process was killed by a SigLevel[1,2,3] Abort,
the signal value.

LoadTime-CPU time to load process (microseconds)
RunTime-CPU time to run process (microseconds)
ElapsedTime-Total time elapsed from PMRegisterProcess until
termination (60Hz clock ticks).
const ProcessDeathMsgID= 3800;

type ProcessDeathMsg = record
Head : Msg; {Accent message header}

27 Aug 84

Servers-84

- tWaitID : TypeType; { (typelnt32,32)}
WaitlD :long; { Wait ID of process,
returncd f rom PMGetWaitID }
tReason : TypeType; { (Typelnt32,32)}
Reason :long; { reason for process death }

tLoadTime : TypeType; { (Typelnt32,32)}
LoadTime :long; { process Load time
(microseconds) }

tRunTime : TypeType; { (Typelnt32,32)}
RunTime: :long; { process Run time
(microseconds) }

tElapsedTime : TypeType; { (Typelnt32,32)}
ElapsedTime :long; { Elapsed time
(ticks) }
end; .
IS HES I I
Asynchronous (Emergency) Messages
Message sent for signal to a process: this is sent to a process’s SignalPort, or to its DATAPORT if the

SignalPort has not been set or is NullPort.

Parameters:

CilWindow-Window that the signal was sent from. If the signal was
sent only to one process, it is the window that heads the
control group for the process.

Signal-signal sent to process.

const SignalMsgID = 3801;

type SignalMsg = record
Head :Msg; {Accent message header}

tCtlWindow : TypeType; { (TypePt, 32) }
CtlWindow : window; { Window that signal was

received on }
tSignal : TypeType; { (Typelntl6, 16) }
Signal : SignalName; { signal received }

end;

27 Aug 84

Servers-85

7 Sesame: Interface to Prelimary Sesame File System

Sesame provides routines to read, write and get information about files, given an absolute pathname for the
file. The port to this scrver (the ServPort parameter) is exported as SesPort from Pascallnit. See the section
on Sesamoid in the Sesame: The Spice File System Manual for more information.

7.1 Type Definitions

The following definitions are from SesameUser.pas.

const
Path Name Size = 255; { Number of characters in a Path Name }
Entry Name Size = 80; { Number of characters in an Entry Name }
type A
APath Name = string[Path Name Size]; { An abs. pathname }
Wild APath Name = string[Path_Name Size]; { A wild abs. pathname }
Entry Name = string[Entry Name Size]; { A pathname component }

{ Name Flags: Flags giving desired treatment of names in Name Server calls.
{ Note that specific flag values may be illegal for certain calls, and
{ must be zero.

const
NFlag_ Deleted = #000001; { Allow deleted names }
NFlag NoNormal = #000002; { Disallow normal (not deleted) names }
NFlag RESERVED = #177774; { These bits reserved for expansion }
type
Name Flags =0.. #3;

{ Name Status: Flags useful for determining the dispbsition of aname in
{ the name data base.

const
NStat Deleted = #000001; { Setif name is deleted }
NStat High = #000002; { Set if name is highest undeleted version }

NStat Low = #000004; { Set if name is lowest undeleted version }
NStat RESERVED = #177770; { These bits reserved for expansion }
type

Name Status = 0.. #7;

{ Entry Type: The kinds of objects which can be in the name data base.

27 Aug 84

Scrvers-86

const
Entry All = 0; { Special value referencing all entry types }
Entry File =1; {Entry DataisaFileID}

Entry Directory = 2; { Name refers to another level of the
name hicrarchy. Entry Data is empty. }

Entry Port = 3; { EntryDataisaport}
type

Entry RESERVED = 4., #377; { These values reserved for cxpansion }

Entry UserDefined = #400.. #77777; { Values available to the user }
type

Entry Type =0.. #77777,

{ Entry Data: The variant data record dependent upon the Entry Type value.

type
Entry Data = record case Entry Type of
Entry File :({EDFilelD: File ID - Not Yet Implemented});
Entry Directory : ();
Entry Port : (EDPort : Port);

400 : (EDBytes : packed array [0..255] of bit3);
#401 : (EDWords : array [0..127] of integer);
#402 : (EDLongs : array [0..63] of long);

#403 : (EDString; string[255]);

end;

{ Entry List Record: ScanNames returns array of Entry List Record.

Entry List Record = record
EntryName : Entry Name;
EntryVersion :long;
EntryType : Entry Type;
NameStatus : Name _Status;
end;

Entry List Array = array [0..0] of Entry List Record; { hack }
Entry List = 1 Entry List Array;

{ Valid Name Chars: Those 7-bit ascii characters which can occur in an
{ entry name without being quoted. Note that to match uppercase,
{ uppercase letters also have to be quoted.

const
Valid Name Chars = { Put in a string since can’t put in a set }
’$-.+ 0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopgrstuvwxyz’;

27 Aug 84

Servers-87

{ Separator characters for parts of Path Name syntax.

const
Dir Separator = ’/’; { Directory separator }
Ver Scparator = #°; { Version number separator }
Quote Char = ’\; { Quote character for "funny” characters }

Up_one Directory = °../*
This_Directory = °./’;

{ Group_ID: An identifier for a User Group

type
Group ID = long;

{ File Data: A pointer to a file mapped into memory

type
File Data = pointer; { A pointer to data for file calls }

{ Print Name: A short string name in the file header.

const
Print Name Size = 80; { Number of characters in a file Print Name }

type
Print Name = string[Print Name Size]; { A print name string }

{ Data Format: A user-defined longword for storing data format information.
{ System-defined values are given below. User-defined values must

{ have a non-zero high word (# 200000 or greater). These values are

{ intended to be used by programs which need to know about data formats
{ in order to convert from one format to another (such as FTP).

const
DForm_Unspecified = 0; { Unspecified data format } .
DForm 8 Bit =§; { 8 bit binary data }
DForm 16 Bit = 16; { 16 bit binary data }
DForm 32 Bit = 32; { 32 bit binary data }
DForm 36 Bit = 36; { 36 bit binary data }

27 Aug 84

Servers—38

DForm CRLF Text = #413; { CRLF delimited text }
DForm LFText = #410; { LF delimited text }

DForm Press = #1000; { Press file format data }

type
Data Format = long;

{ File Header: How the user perceives the file header information. It is
{ actually generated by the GetFileHeader style calls from the real
{ header.

type
File Header = packed record

FileSize : long; { Size of file in bytes }
DataFormat : long; { Advisory data format }
PrintName : Print Name; { The file print name }
Author : Group ID; { Who wrote the file }
CreationDate : Internal Time;{ When it was written }
AccessID : Group ID; { Who last accessed the file }
AccessDate : Internal Time;{ When it was last accessed }

FHdr RESERVED : array [56..64] of integer; { Pad for expansion }

end;

{ Error return values

const
Sesame Error Base = 1200;

NameNotFound = Sesame _Error Base + 1;
DirectoryNotFound = Sesame Error Base + 2;
DirectoryNotEmpty = Sesame Error Base + 3;

BadName = Scsame _Error Base + 4;
InvalidVersion = Sesame Error Base + 5;
InvalidDirectoryVersion

= Sesame _Error Base + 6;
BadWildName = Sesame Error Base + 7;
NotAFile = Sesame_Error Base + 8;
NoAccess = Sesame Error Base + 9;

NotSamePartition = Sesame Error Base + 10;
ImproperEntryType = Sesame Error Base + 11;
NotADirectory = Sesame Error Base + 12;

7.2 Procedures and Functions

The following procedures and functions are found in SesameUser.pas.

27 Aug 84

Scrvers-89

Several of the calls are provided with two or more forms, with one being a subset of the other. Where this is

the case, the subset form will have a name prefix of Sub, whercas the full form of the call will have a name

prefix of Ses.

IS IR B e il
InitSesame

Initialize the local copy of this module.
Call:

procedure InitSesame(RPort : port);

SubReadFile
Simplest way to read a file.
Call:

Function SubReadFile(
ServPort : port;
APathName : APath Name;
var Data : File_Data;
var Data_Cnt : long)
: GeneralReturn

Parameters:

ServPort-port to the Name Server
apathname-the absolute pathname to read the data from
data pointer-a pointer to the data read in memory

Data Cne-the total number of bytes read
Results:

success-the data was successfully mapped into memory
no such name-no entry was found under apathname

access violation-the requesting client tried to read a file
for which he did not possess rights

not a file-the entry found under apathname was not a file

no such file ID-the file associated with the entered
ID could not be found

The SubReadFile request is used to map the data associated with the given filename into memory. Note that we

27 Aug 84

Servers~-90

map the entire file in, thus there are no arguments specifying the size or position of the data to be read. We can
get away with mapping the whole file since we actually will only bring in the pages which are touched, the rest
being backed to secondary storage. Holes in the file will be mapped in as valid zero pages which will actually be
created if writlen to.

I SIS B S
SesReadFile

Read a file with complete specification
Call:

Function SesReadFile(
ServPort : port;

var APathName : APath Name;
var Data : File Data;

var Data_Cnt : long;

var DataFormat : Data_Format;
var CreationDate: Internal Time;
var NameStatus : Name _Status)

: GeneralReturn

Parameters:

ServPort-port to the Name Server

apathname-the absolute pathname to read the data from

Data-a pointer to the data read in memory

Data Cnt-the total number of bytes read

DataFormat-one of {unspecified, text, bit8, bitl6, bit32, bit36, press, ...}
CreationDate-the date and time the file was written

NameSatus-low version, high version
Results:

success-the data was successfully mapped into memory
no such name-no entry was found under apathname

access violation-the requesting clicnt tricd to read a file
for which he did not possess rights

not a file-the entry found under apathname was not a file

no such file ID-the file associated with the entered
ID could not be found

27 Aug 84

Servers-91

The SesReadFile request is a long form of the SubReadFile call. It returns several parameler values which the
short form does not.
L o
SubWriteFile
Simplest way to write a file
Call:

Function SubWriteFile(
ServPort : port;
var APathName : APath_Name;
Data : File Data;
Data Cnt : long;
DataFormat : Data_Format;
var CreationDate: Internal Time)
: GeneralReturn

Parameters:
ServPort-port to the Name Server

Apathname-the absolute pathname to write the data to

Data-a pointer to the data in memory

Data Cnt-the number of bytes to be written

DateFormat-one of {unspecified, text, bit8, bitl6, bit32, bit36, press, ...} |

CreationDate-the date and time the file was written
Results:
success—the data was written under the name returned

access violation-the requesting client tried to write a file for which he did not possess
rights

conflicting version-the explicit version number was less than or equal to that of an
existing version

allignment error-the data was not on a page boundry

The SubWriteFile request is used lo enter a new name into the directory structure and write a file under that
name. This short form of the call picks up defaults for unspecified parameters from previous versions or
directory defaults. The user must have CreateNames rights in the directory or Supercede rights on the previous
version. Empty pages need no disk pages assigned to them.

27 Aug 84

Servers-92

SesGetFileHeader
Get file header information
~ Call:
Function SesGetFileHeader(
ServPort : port;
APathName : APath Name;

var FilcHeader : File_Header)
: GeneralReturn

Parameters:

ServPort-port to the Name Server
Apathname-the absolute pathname with which to find the file
FileHeader-a data structure containing the
fields of the file header.
Resuits:

success-the header data was successfully returned
no such name-no entry was found under apathname

access violation-the requesting client tried to read a file header
for which he did not possess rights

not a file-the entry found under apathname was not a file

no such file I D-the file associated with the entered ID
could not be found

The SesGetFileHeader request is used 1o return fields from the file header.

m"“ﬂﬂm
SesReadBoth

Read the contents and file header information of a file
Call:

Function SesReadBoth(
ServPort : port; i

var APathName : APath_Name;

var Data : File Data;

var Data Cnt : long;

var FileHeader : File Header;

var NameStatus : Name Status)

: GeneralReturn

Parameters:

27 Aug 34

Results:

Servers-93

ServPort-port to the Name Server

Apathname-the absolute pathname with which to find the file
Data-a pointer to the data read in memory

Date Cni-the total number of bytes read

FileHeader-a data structure containing the
fields of the file header.

NameS tatus-deleted/undcleted, low version, high version

success-the header data was successfully returned
"no such name"-no entry was found under apathname

"access violation"-the requesting client tried to read a file
header for which he did not possess rights

"not a file"~the entry found under apathname was not a file

"no such file ID"-the file associated with the entered ID
could not be found

The SesReadBoth request is used to return both the data from a file and fields from its header.
I HEHE IS I S I ST I S PR S =

Lookup a file ID
Call:

Parameters:

SubLookUpName

Function SubLookUpName(
ServPort : port;
var APathName : APath_Name;
var EntryType : Entry Type;
var EntryData : Entry Data;
var NameStatus : Name Status)
: GeneralReturn

ServPort-port to the Name Server

Apathname-the name to be looked up (may not
contain wildcard characters)

EntryType-the type value of the entry found. Some example

27 Aug 84

Servers-94

values are File, Directory, and Port.

EntryData-a variant field dependent upon the entry type.
A File ID will be returned here for a File entry, whereas there
will be no data returned for a Directory - all
that this call will tell you about a directory
is that it exists.

NameStatus-deleted/undeleted, low version, high version

Results:
success-the name was successfully looked up.

name not found-the specified name was not found

access violation-the client does not have sufficient rights to
look up the given name

This function provides a simple way to look up a name. If any entry encountered during the parsing of
apathname is of type Symbolic Link, a macro expansion is performed using the value of that entry in place of
the corresponding name in apathname. If the final result is of type FID or IPC Port, the corresponding FID or
IPC port is returned. If it is of type Directory no entry data is returned, but entry type specifies the fact that a
lookup on a directory name was done. If apathname does not contain a version number, the most recent version
is assumed.

NI I I IS HE I NI

: SubTestName
See if a file exists

Call:

Function SubTestName(
ServPort: port;
var APathName : APath Name;
var EntryType : Entry Type;
var NameStatus : Name _Status)
: GeneraiReturn

Parameters: _
ServPort-port to the Name Server

Apathname-the name to be looked up (may not
contain wildcard characters)

EntryType-the type value of the entry found. Some example
values are File, Directory, and Port.

NameStatus-deleted/undeleted, low version, high version

27 /'\hg 84

Servers-95

Results:

success-the name was successfully found

name not found-the specified name was not found

access violation—the client does not have UseNames rights

on the name’s directory
SubTestName is like SubLookupName except that it never returns the entry data associated with a name, but
only the entry type. Note that this only requires UseNames rights on the parent directory, whereas
SubLookupName requires Lookup rights on the name itself — a much stronger requirement. It is anticipated
that this call will be used when all that is desired is to test for the existance of a name, and o determine its
type.
RIS HEH IS B G S R il

SubEnterName

Enter a file or port name in a directoty
Call:

Function SubEnterName(
ServPort : port;
var APathName : APath Name;
EntryType : Entry Type;
EntryData : Entry Data)
: GeneralReturn

Parameters:

ServPort-port to the Name Server
Apathname-the name to be entered into the directory structure

EntryType-the type value of the object to be entered. Some
example values are File, Directory, and Port.

EntryData-a variant field dependent upon the entry type.
For instance, this field must contain a File ID for type File, and
an IPC port for type Port. For type Directory, this field
is left empty, seeing as how the user can’t write any directory data
directly. Use of this call with entry type Directory enters a
new directory, thus no special call is needed for that purpose.

Results:

success-apathname was successfully entered

27 Aug 84

Servers-96

conflicting version—the version number specified in
apathname was lcss than or equal to that of an already existing
version

access violation-the client does not possess CreateNames
rights in the specified directory

invalid directory version-only one version number of a
directory is allowed

The SubEnterName request is used to place a name and entry value pair in the direclory structure. It requires
CreateNames permission in the directory within which the name is being entered if no version of the name
already exists else if a version of the name already exists, then Supersede privileges on the name are needed. If
a previous version of the name already exists in the directory and no version number is specified in apathname,
the name is entered with the next higher version number. If a previous version of the name already exists and a
version number is specified in the name, then it must be greater than the highest version number so far. If no
previous version of the name has ever existed, then version one is assigned if none is specified in apathname,
otherwise the specified version is used. '

L o o o o e T]

SubDeleteName
remove a name from a directory
Call:
Function SubDeleteName(
ServPort : port;
APathName : APath_Name)
: GeneralReturn
Parameters:
ServPort-the name to be deleted
Apathname
Results:

success-the name was successfully deleted
nonexistent name-the name specified does not exist

access violation-the user does not possess DeleteNames
rights on the name specified

name already deleted-the given name was already deleted

directory not empty-illegal to delete a non-empty directory

The SubDeleteName request is used to delete a name from a directory. It requires DeleteNames permission in

27 Aug 84

Servers-97

the directory or Delete permission on the name. The name is marked as deleted, but remains in the directory
and is queued for expunging by the Migration Server. If no version number is specified then the lowest version
in the directory will be deleted.

R HE S I I SRR e

SubReName
rename a file or port
Call:
Function SubRcName(
ServPort : port;
OldAPathName : APath_Name;
var NewAPathName : APath Name)
: GeneralReturn
Parameters:

ServPort-port to the Name Server
OldAPathName-absolute pathname of the object to be renamed

NewAPathName-new name to enter the object under

success-the name was successfully changed

access violation-the client either does not have the proper rights
to delete old apathname or to enter new apathname
SubRename enters the object specified by old apathname into into the global name space as new apathname
and then removes the old apathname. The access control list of the object is moved with it.
DS I I HEHE I S Sl el
SesScanNames

Returns a list of names in a directory

Call:
Function SesScanNames(
ServPort : port;
WildAPathName : Wild _APath Name;
NameFlags : Name Flags;
EntryType : Entry Type;
var DirectoryName : APath Name;
var EntryList : Entry List;
var EntryList Cnt : long)
: GeneralReturn
Parameters:

27 Aug 84

Results:

The SesScanNames call is used to search for a given patlern in a specified directory. It will sort and return all
the maiches to the given pattern in the directory. Optionally, names only of a specific entry type can be scanned
Jor. Symbolic links are not expanded, and are returned by this call. Depending on the value of name flags, only
active names, deleted names or both are considered. If no version number is specified, then the highest existing
version of the name is returned. If the version number is wildcarded, then all existing versions af the name are
returned. The version field for directory and symbolic link entries will be returned as zero.
wildcarding is permitted only in the terminal component of wild apathname.
ReadNames access on the directory being scanned, in which case all matches will be returned, or else Visible

Servers-98

ServPori~the absolute pathname to be scanned
(may contain wildcard characters in the terminal component)

WildAPathName
NameFlags-inhibit/allow deleted/undeleted names

EntryType-the entry type being scanned for. The special type
designator A/l may be given, in which case names of all entry
types are returncd.

DirectoryName-the absolute pathname of the directory in which
matches occured

EntryList-the sorted entry names, types, version numbers
and name status flags

of all names matching wild apathname in the first clement of
search list where a match occured

EntryList Cni-the actual number of list elements
returned. Will be zero if no match occured.
success-the given wild absolute pathname was successfully scanned

access violation—the client does not possess
ReadNames rights on the directory to be scanned

illegal pathname-wildcards were found in
wild apathname at other than the terminal component

access on each match which is to be returned.

27 Aug 84

This call requires either

Servers-99

8 TimeServer

8.1 Introduction

The Time Server provides all of the time facilities for Accent. It can return the time in a number of different
formats.

Internally, time is kept as the number of milliseconds since midnight, November 17,1858 Greenwich Mean
Time (the Smithsonian time standard). In order to store the time cfficiently, it is kept as an ordered pair, the
first component representing the number of weeks that have passed since the base date-time and the second
component representing the number of milliseconds that have passed in that week. This format also allows
efficient comparison of times. Conversions to local time are done using a time zone index and information
regarding whether or not to apply daylight savings time.

The zone record, Zone_Info, allows you to specify and reccive zone information. Both the zone number and
application of daylight savings time may be either specified cxplicitly or defaulted, depending on the
settings of the UseTimeZone and UseDaylight bits. The zone record is used in User, Time.

The date and time information in User Time is broken down into fields for input and output. Both the time
zone index and application of daylight savings time can be either explicitly specificd or defaulted through
use of the Zone _Info fields. The Weekday field is unused for input.

8.2 Definitions

The following definitions are from TimeDefs.pas.

Internal Time: a record containing the date and time in Greenwich
Mean Time. This is the Smithsonian Institute’s time standard.
To optimize space usage, we store
time as an ordered pair, the first representing the number of
weeks which have passed since 17-Nov-1858, when the
Smithsonian time standard began. The second represents the
number of milliseconds which have passed in that week.

type
Internal Time = record
Weeks :integer; { Number of weeks since 17-Nov-1858 }
MSecInWeek :long; { Number of milliscconds in that week }
end; ;

Date Fields: fields necessary for representing date information
without respect to the time. Used in by User Time.

type
Date Fields = packed record

27 Aug 84

Servers-100

Year : integer; { Suchas 1982}
Month :1..12; {1 = January, 12 = December }

Day :1..31;
Weekday :0..6; {0 = Monday, 6 = Sunday (output only) }
end;

Time Fields: fields necessary for representing time information
without respect to the date. Used in User Time,

type
Time Fields = packed record
Hour :0..24;
Minute :0..59;
Second :0..59;
Millisecond : 0... 999;
end;

Zone Info: this record allows the user to specify and receive time
zone information. Both the zone number and application of
daylight savings time may be either specified explicitly, or
defaulted, depending upon the settings of the UseTimeZone and
UseDaylight bits. Used in User Time.

type
Zone Info = packed record

TimeZone : integer; { Increasing minutes west from GMT.
GMT = 0, EST = 5*60, CST = 6*60, ...
Used only if UseTimeZone is set. }

UseTimeZone : boolean; { True when TimeZone field is valid,
else false when local time zone is
to be used. } :

Daylight : boolean; { True if daylight savings time is to
be applied. Used only if
UseDaylight is set. }

UseDaylight : boolean; { True if Daylight savings field is
valid, else false when the system
default for daylight savings time
application is to be used. }

end;

User Time: Date and Time informatien broken down into fields as the
user would want to use it for input and output. Both the time
zone index and application of daylight savings time can be

27 Aug 84

Servers-101

either explicitly specified, or defaulted through use of the
Zonelnfo fields. The Weekday ficld is unused for input.

type
User Time = packed record
Date : Date _Fields;
Time : Time _Fields;
Zone : Zone Info;
end;

The following flag values may be ORed together to form TimeFormat values. .

const

TF Weekday = #000001; { If sct output the day of the week
according to the setting of
TF FullWeekday clse don’t output
the day of the week }

TF FullWeekday = #000002; { If sct output full text for the
weekday else the 3-letter
abbreviation (Monday/Mon) }

TF NoDate = #000004; { If sct do not output date and ignore
fl ags through TF NoTime }

TF FullMonth = #000010; { If set output full text for the
month when the month is alphabetic
else the 3- letter abbreviation
(March/Mar) }

TF FullYear = #000020; { If set output the year as a 4-digit
number else the year is is output as
a 2- digit number if in the range
1900- 1999 (1982/82) }

{ The next six settings are mutually exclusive }

TF Dashes = #000000; { Output date as day-month-year
(22-Mar-60) }
TF Spaces = #000040; { Output date as day month year
(22 Mar 60) }
TF Reversed = #000100; { Output date as month day, year
(Mar 22,60) }
TF Slashes = #000140; { Output date as month/day/year
(03/22/60) }
{ #000200 is reserved for future expansion}
{ #000240 is reserved for future expansion}
TF_ANSI = #000300; { Output date according to ANSTX3.30-1971.
Also slightly aff ects time formatting.

27 Aug 84

Servers-102

(600322) }

TF_ANSI Ordinal = #000340; { Similar to TF_ANSI but 3-digit day-of-year
instcad of month and day.
(60082) }

TF DateFormat = #000340; { A mask allowing us to examine the above. }

TF NoTime = #000400; { If set do not output time and ignore
fl ags through TF NoColumns }

{ The next two settings are mutually exclusive }

TF_ NoSeconds = #001000; { Ifsct do not output the seconds }

TF Milliseconds = #002000; { If set output milliseconds as
hh:mm:ss.sss clse omit them
(17:00:00.001/17:00:00) }

TF 12 Hour = #004000; { If set output the time in 12-hour
format with 'am’ or 'pm’ following the
time else output in 24- hour format.
Note that exact NOON outputs neither am’
nor 'pm’ because 12:00am is 0000 and 12:00pm
is 2400. Use of TF_12 Hour with TF_ ANSI or
TF _ANSI Ordinal is supported but not
recommended for a number of reasons. If used
with either ANSI format, however, the codes
’A’,’P’, and "N’ are used f or am, pm, and
noon, respectively.
(5:00:00pm/17:00:00) }

TF TimeZone = #010000; { If set output the time zone as -zzz
after the time else omit it
(17.00:00-EDT/17:00:00) }

TF NoColumns = #040000; { If set output numeric date/time
quantities in the smallest fi elds
into which they will fit, else
output them in fi xed size fields. If
not set, the date/time will be
output in fi xed length fields, thus
making this format appropriate for
colurnnar display. Note that TF_FullMonth
and TF FullWeekday are currently NOT padded
with blanks, even if TF NoColumns is off, }

TF BlankPad = #020000; { If set, pad fixed-width numbers with blanks
instead of zeroes WHERE REASONABLE. Ignored
if TF NoColumns is set. }

TF Never = #100000; {If set allow the distinguished time

27 Aug 84

Servers-103

value NEVER to be output as the
string "Never’ else signal an
error }

The following flags are returned to indicate which fields of the
date and time were present upon parsing a date/time string.

const
TP Weckday = #000001; { Weekday present }
TP Date = #000002; { Date present }
TP Time = #000004; { Time present }
TP Zone = #000010; { TimeZone present }
TP Never = #000020; { Time input was NEVER }

TPRESERVED = #177740; { Reserved for expansion }

String 255: The maximum length string. We parse dates from such strings.
This definition should probably be somewhere else.

type
String 255 = string[255];

8.3 Exceptions

BadDateTime This exception is raised if a bad date/time value is
passed to any of the TimeServer routines, or if the TimeFormat
flags (for conversion to String format) are invalid.

TimeNotInitialized This exception is raised if the system date, time,
and time zone have not been set.

8.4 Procedures

The following procedures are from TimeUser.pas.

SetDateTime
" Sets current date and time.
Call:

Procedure SetDateTime(ServPort : port;
ITime : Internal Time)

Parameters:

ServPort-TimePort (service port to Time Server)

27 Aug 34

Servers-104

ITime-Internal Time record for time to set.
Returns:

Raises TimeNotInitialized if system time zone and daylight switch have
not been sel.

RN SRR SR I il

SetSystemZone
Sels the system defaults for time zone and whether to use Daylight time.
Call:
Procedure SctSystemZone(ServPort : port;
TimeZone : intcger;
DSTWher_lTimely : boolean)
Parameters:

ServPort-TimePort (service port to Time Server)
TimeZone-System time zone to set (refer to the constant definitions).

DSTWhenTimely-Whether to use daylight time during the USA daylight
time interval.

GetDateTime
Gets current time, in Internal Time format.
Call:
function GetDateTime (ServPort : Port)
: Internal Time
Parameters:
ServPor+-TimePort (service port to TimeServer)
Returns:

Raises TimeNotlInitialized if system time has not been set.

mm
GetUserTime

Gets current time, in User Time format, according to system time zone and daylight time defaults.
Call

27 Aug 84

Servers-105

function GetUserTime (ServPort : Port)
: User_Time

Parameters:
ServPort-TimcPort (service port to Time Server)
Returns:
Raises TimeNotInitialized if system time has not been set.
I HE AT T I NI ST
function GetStringTime(ServPort : Port;
TimeFormat : integer)

: String
Gets current time, in string format.
Call:
GetStringTime

Parameters:

ServPort-TimePort (service port to Time Server)

TimeFormat-Format for the string (refer to the constant definitions)
Returns: ‘

Raises TimeNotInitialized if system time has not been set.

B L L]

T IntToZone
Converts internal time to user time, according to supplied time zone.
Call:
function T IntToZone (ServPort : port;
ITime : Internal Time;
WantZone : Zone_Info)
: User Time
Parameters:
ServPort-TimePort (service port to Time Server)
ITime-Internal Time record
WantZone-Zone Info record containing Zone and daylight desired.
Returns:

User. Time record representing ITime.

27 Aug 84

Servers-106

B IR T RTINS Sl
T IntToUser

Converts internal time to user time, according to supplied time zone and daylight time defaults.
Calk:

function T IntToUser (ServPort : port;
ITime : Internal Time)

: User_Time
Parameters:
ServPort-TimePort (service port to Time Server)
ITime-Internal Time record
Returns:

User Time record representing ITime.

L L T T SRR

T UserTolnt
Converts user time value to internal time.
Cail:
function T UserTolnt (ServPort : port;
UTime : User Time)
: Internal Time
Parameters:
| ServPore-TimePort (service port to Time Server)
UTime-User Time record
Returns:

Internal Time corresponding to UTime.

L T
T UserToString

Converts a user time record to a string representing the time, according to the conversion paramelters.
Call:

function T UserToString (ServPort : port;
UTime : User_Time
TimeFormat: integer)
: String

27 Aug 84

Servers-107

Parameters:
ServPort-TimePort (service port to Time Server)
UTime-User Time record
TimeFormat~Format desired for the output (refer to the constant
definitions)
Returns:

A string representation of UTime.

T L L

T IntToString

Converts an internal time record o a string representing the time, according to the conversion paramelers.
The system defaults for time zone and daylight time are used.
Call:

function T IntToString (ServPort : port;
ITime : Internal Time
TimeFormat: Integer)
: String
Parameters:

ServPort-TimePort (service port to Time Server)
ITime-Internal Time record)
TimeFormat-Format desired for the output (refer to the
constant definitions.)

Returns:
A string representation of ITime.

I I I G I IS I I I I I DI i

T StringToUser
Converts a string to a user-time record.
Call:

function T StringToUser(ServPort : port;
STime : String 255;
var Index :integer;
var WhatIFound: integer)
: User Time

27 Aug 84

Servers-108

Parameters:
ServPort=TimcPort (service port to Time Server)
STime-String to be converted to time.
Index-Position in string to start scanning for time. Returns the first
character past the end of the valid time string.
WhatIFound-Returns what was parsed from the time string
Returns:

Raises BadDateTime if STime malformed,

B I M-I NI I SISl
T StringTolnt

Converts a string to an internal-time record.

Call:

function T StringTolInt (ServPort : port;
STime : String 255;
var Index : integer;
var WhatlFound: integer)
: Internal Time

Parameters:

ServPort-TimePort (service port to Time Server)
STime-String to be converted to time.

Index-Position in string to start scanning for time. Returns the first
character past the end of the valid time string.

WhatlFound-Returns what was parsed from the time string
Returns:

Raises BadDateTime if STime malformed,

IO HE I I M Sl
T Never

Returns the internal time value representing “never”,

Call:

function T Never (ServPort : Port)
: Internal Time

27 Aug 84

Servers-109

Parameters:
ServPort-TimePort (service port to Time Server)
Returns:

Internal Time record representing Never.

8.5 Valid Time Zones

The valid time zones accepted by T StringToUser and T StringTolnt are,

GMT Greenwich MeanTime

uT UniversalTime (Same as GMT)

NST Newfoundland Standard Time (-3:30)
AST Atlantic Standard Time (-4 hours)
ADT Atlantic Daylight Time

EST Eastern Standard Time (-5 hours)
EDT Eastern Daylight Time

CST : Central Standard Time (-6 hours)
CDT Central Daylight Time

MST Mountain Standard Time (-7 hours)
MDT Mountain Daylight Time

PST Pacific Standard Time (-8 hours)
PDT Pacific Daylight Time

YST Yukon Standard Time (-9 hours)
YDT Yukon Daylight Time

HST Hawaii-Alaska Standard Time (-10 hours)
HDT Hawaii-Alaska Daylight Time

BST Bering Standard Time (-11 hours)
BDT Bering Daylight Time

27 Aug 84

Servers-110

9 The Typescript Manager

9.1 Introduction

The Typescript manager maintains standard text windows (Typescripts), providing line editing and
redisplay functions for user programs that do not require graphics output or elaborate input control.

Typescript remembers the last several pages (a window’s worth) of text output by the program using a
typescript. When a text window changes state, size, or coveredness, Typescript will also redisplay
information that may have scrolled from the window.

Typescript allows the user to edit input lines using a subset of the commands available in the system editor.
The user can use all of the editor’s single- line editing functions, and recall previous input lines to be edited
into new input lines.

Typescript also handles Escape Completion for each typescript. The user may type a partial filename and
press the Escape key; Typescript will ask the file system to complete the file name by finding the longest
unambiguous match to the partial name. It will then add the name to the line of input, so that the user can
specify the rest of the name or add more to the line,

Typescript can either stop at the end of each screenful of output ('more’ mode) or scroll output
continuously. The user can select which mode to use, under keyboard control.

In "More’ mode, when a full page of output has been displayed, a black bar appears at the bottom of the
window. The user then presses LineFeed to display the next page of output.

In continuous scroll mode, the user can use the Process Control Functions Suspend and Resume to stop or
start output.

9.2 Use

Each typescript maintained by the Typescript manager has its own port. All requests for input, output, and
control of a typescript are directed to its port. There is a master typescript port used to create new
typescripts. '

When a user program is started, the mater typescript port is TypescriptPort and the port associated with the
program’s window is UserTypescript. Both of these are in Pascallnit.Pas. Pascal input and output through
the default files INPUT and OUTPUT is directed to UserTypescript (unless input or output has been
redirected).

A program may create a new Typescript in an existing window by using the call STSOpenWindow and
providing it with the window to use. It returns a port for the typescript in that window.

The program may then request a full line of input with STSGetString. This will allow the user to type a line
of input, using all of the line editing commands. When the user types RETURN, the line is finished and is
returned to the program.

A program may ouput a line of text by calling STSPutString, supplying the typescript and the string to

27 Aug 84

Servers-111

output. Each LineFeed chatacter in the string ends a line of text, scrolling the typescript and putting the
ntext character at the start of the next line. The string does not need to end with a line feed.

A program can ask the Tyepscript Manager to stop refreshing the screen. The call STSGrabWindow returns .
the window associated with the supplied typescript. When the program is terminated, the Typesscript
Manager will resume control over the window and refresh it, erasing whatever the program had displayed
on it.

Since each Typescrip may be used by a program or shell that has its own environment, a program can
specify the environment connection to be used by the typescript. This controls the list of files scanned for
Escape Complction. Each Typescript has its own Environment Connection.

9.3 Definitions
The following definitions are from TSDefs.pas.
type

Typescript = Port;
TString255 = String[255];

TSCharArray = packed array[0 .. 1] of Char;
pTSCharArray = t TSCharArray;

9.4 Routines

The following routines are from TSUser.pas.
BRI IR ARSI I I =

STSOpen

Creates a Typescript inside a viewport. The typescript uses the system font, displays long lines by wrapping
around, and stores three windows’ worth of output.

Call:
Function STSOpen(
ServPort: Port;
vp: viewport;
env: Port)
: Typescript
Parameters:

ServPort-The master Typescript service port (TypescriptPort)
vp-The viewport to contain the typescript.

env-An Environment Manager connection, used to define
the environment for Escape Completion on this typescript.

27 Aug 84

Servers-112

Returns:
A port for a new typescript.

L i i ai s i ea ia Ak as s smn]
STSOpenWindow

Creates a Typescript inside a window. The typescript uses the system font, displays long lines by wrapping
around, and stores three windows’ worth of outpul.

Call:

Function STSOpen(
ServPort: Port;
W window;
env: Port)
: Typescript

Parameters:

ServPort=The master Typescript service port (TypescriptPort)
w-The window to contain the typescript.

env-An Environment Manager connection, used to define

the environment for Escape Completion on this typescript.

Returns:
A port for a new typescript.

L L i aa aa aa aiaa aa A sa as i ki ss smm |
STSFullOpen

Creates a Typescript inside a viewport, allowing the program to select more parameters for the typescript.
Cal:

Function STSFullOpen(
ServPort: Port;
vp : viewport;
env: Port;
fontName : TString255;
doWrap : Boolean;
dispPages : Integer)

: Typescript

Parameters:

ServPort-The master Typescript service port (TypescriptPort)

vp-The viewport to contain the typescript.

Servers-113

env-An Environment Manager connection, used to define
the environment for Escape Completion on this typescript.

JfontName-The name of the font containing the font to use for the
typescript. It must be an absolute path name.

doWrap-if TRUE, displays lines wider than the window by wrapping
to the start of the next line. If FALSE, truncates long lines at the right
margin of the window.

Returns:

A port for a new typescript,

IR P B B R I R M ey
STSFullOpenWindow

Creates a Typescript inside a window, allowing the program to select more parameters for the typescript.
Call:
Function STSFullOpen(

ServPort: Port;
w: Window;
env: Port;
fontName : TString255;
doWrap : Boolean;
dispPages : Integer)

: Typescript

Parameters:
ServPort=The master Typescript service port (TypescriptPort)

w-The window to contain the typescript.

env-An Environment Manager connection, used to define
the environment for Escape Completion on this typescript.

JfontName-The name of the font containing the font to use for the
typescript. It must be an absolute path name.

doWrap-if TRUE, displays lines wider than the window by wrapping
to the start of the next line. If FALSE, truncates long lines at the right
margin of the window.

Returns:
A port for a new typescript,

27 Aug 34

Servers-114

A I AR N

STSGetChar

Returns a singel character of input from a typescript. If a full line has not been typed, it invokes the line editor
and waits until a line is completed. If a line has been typed, it removes the next character from the start of the
line and returns it. '

Call:
Function STSGetChar(
ServPort: Typescript)
: Char
Parameters:
ServPort-Port for the typescript.
Returns:

The first character on the input line.

I I IR OISR I i
STSGetString

Returns an entire line of input from a typescript. If a full line has not been typed, it invokes the line editor and
waits until a line is completed. It then returns the entire line,

Call:
" function STSGetString(
ServPort : Typescript)
: TString255
Parameters:
ServPort-Port for the typescript.
Returns:

The entire input line.

I R O

STSPutChar
Writes a single character 1o a typescript.
Call:
Procedure STSPutChar(
ServPort : Typescript;
ch : Char)
Parameters:

27 Aug 84

Servers-115

ServPort=The port for the typescript.

ch-The single character to output.

A LineFeed character ends the current output line. A BELL character (control G) flashes the viewport
containing the typescript. Any other character is appended to the current line, possibly translated:

Control character (chr(0)..chr(13)) are displayed as tChar.
DEL is displayed as 1{.

Printing characters (space through '}) are displayed as

themselves.

Any character greater than chr(127) is displayed as the corresponding character in the font for the typescript,

minus 128. This allows character in the font with numeric values less than 32 to be displayed as normal

printing characters.

BT R DI T S RS MG HE I S Tl
STSPutString

Writes a string of characters to a lypescript. Each character in the string is displayed according to the
description for STSPutChar.

Cail:
Procedure STSPutString(
ServPort : Typescript;
) : TString255)
Parameters:

ServPort-The port for the typescript.

s-The string to output.

W‘wm

STSFlushInput
Flushes any partially entered input line from a typescript.
Call: '
Procedure STSFlushInput(
ServPort : Typescript)
Parameters:

ServPort~The port for the typescript.

NI TP RIS I T S
STSFlushOutput

27 Aug 84

Servers-116

Forces any queued output for a Typescript to be displayed on the screen. STS PutChar and STS PutString may

not display the output characters immediately, giving strange results if one tries to use the same viewport for
simple text output and for graphics. STSFlushOutput ensures that all Typescript output is displayed on the
screen before it returns.

Call:

Procedure STSFlushQutput(
ServPort : Typescript)

Parameters:

ServPort=The port for the typescript.

R R R S R R
STSChangeEnv

Changes the Environment connection associated with a typescript. The Environment connection determines
the searchlists used for Escape Completion within that typescript,

Parameters:

ServPor~The port for the typescript.

env-The new Environment Connection to use.

“mmmmmm
STSGrabWindow

STSGrabWindow tells Typescript to stop monitoring the state of the window containing a Typescript for
change is state, size or coveredness. A program such as the editor uses this procedure to gain control of the
default user window to use it for graphics. When the program terminates, typescript regains control of the
window and redisplays its contents as of the time STSGrabWindow was called; any changes that the program
made to the window are lost.

Call:
Function STSGrabWindow(
ServPort : Typescript;
kPort : Port)
: Window
Parameters:

ServPort-The port for the typescript.

kPort-A port that the user program has ownership
rights for or that will otherwise be deallocated when the

27 Aug 84

Servers-117

program terminates. Typescript regains control of the window
when this port is deleted.

Returns:

The window that the Typescript is using.

27 Aug 84

	00001
	00002
	00003
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117

