Procedural Interface to the Sapphire Window Manager

Copyright © 1984

PERQ Systems Corporation
2600 Liberty Avenue

PO Box 2600

Pittsburgh, PA 15230

(412) 3550-0900

25 Aug 84

Rl

N
h N

N
1]
-"'%

Accent and many of its subsystems and support programs were originally developed by the CMU
Computer Science Department as part of its Spice Project.

The major part of the design and most of the implementation of the window manager was done by
Brad Myers of PERQ Systems Corporation. The design grew out of his discussions with many people,
including Gene Ball, the window manager designers at Interntional Computer Limited, and various
interested parties at CMU and PERQ Systems Corporation. Amy Butler and Dave Golub of PERQ
Systems were instrumental in completing the window manager’s implementation.

This document is not to be reproduced in any form or transmitted in whole or in part, without the prior
written authorization of PERQ Systems Corporation or Carnegie-Melion University.

The information in this document is subject to change without notice and should not be construed as
a commitment by PERQ Sys:tems Corporation. The company assumes no responsibility for any errors
that may appear in this document. PERQ Systems Corporation will make every effort to keep
customers apprised of all documentation changes as quickly as possible.

Accent is a trademark of Carnegie-Mellon University.

Table of Contents

1 Introduction

2 Data Types

3 Creating Windows and Viewports
4 Graphics Primitives

5 Emergency Messages

6 Cursors, Regions, and Tracking
7 Listeners

8 Keyboard and Puck Events

9 Errors and Exceptions

10 Initialization and Setup
10.1 Exported Type Definitions

11 Sapphire Procedure Headers
11.1 Version Number
11.1.1 Function Sapph_Version
11.2 Windows and Vicwports
11.2.1 Function CrecateWindow

11.2.2 Procedure DeleteWindow
11.2.3 Procedure ModifyWindow
11.2.4 Procedure RemoveWindow
11.2.5 Procedure RestoreWindow
11.2.6 Procedure SetWindowError
11.2.7 Procedure SctWindowRequest
11.2.8 Procedure SetWindowAttention
11.2.9 Procedure IdentifyWindow -
11.2.10 Function MakeViewport
11.2.11 Procedure DestroyViewport
11.2.12 Function GetVPRank

11

12

13 .

13
13

17
17
17
18
18
19
19
20
20
21
21
21
22
22
23
23

11.2.13 Procedure ViewportState
11.2.14 Procedure Modify VP

11.2.15 Function GetFullViewport
11.2.16 Procedure ReserveScreen
11.2.17 Procedure GetScreenParameters
11.2.18 Procedure SctWindowTitle
11.2.19 Function GetFullWindow
11.2.20 Procedure SctWindowName
11.2.21 Procedure FullWindowStaté
11.2.22 Procedure SetWindowProgress
11.2.23 Procedure GetWinNames
11.2.24 Function WinForName
11.2.25 Procedure WindowViewport
11.2.26 Procedure DefineFullSize
11.2.27 Procedurc ExpandWindow
11.2.28 Procedure ShrinkWindow
11.2.29 Function GetWinProcess
11.2.30 Function WinForViewPort

11.3 Icons

11.3.1 Procedure Compacticons
11.3.2 Procedure IconAutoUpdate
11.3.3 Procedure GetlconViewport
11.3.4 Procedure DeAlloclconVP
11.3.5 Function GetlconWindow

11.4 Graphics Primitives

11.4.1 Procedure VPROP

11.4.2 Procedure VPColorRect

11.4.3 Procedure VPScroil

11.4.4 Procedurc VPLine

11.4.5 Procedure VPString

11.4.6 Procedure VPChArray

11.4.7 Procedure VPChar

11.4.8 Procedure VPPutString

11.4.9 Procedure VPPutChArray

11.4.10 Procedurc VPPutChar

11.4.11 Procedure VPtoScreenCoords
11.4.12 Procedure ScreenToVPCoords
11.4.13 Function LoadFont

11.4.14 Procedure FontSize

11.4.15 Procedure FontCharWidthVector
11.4.16 Function GetSysFont

11.4.17 Function FontStringWidthVector
11.4.18 Function LoadVPPicture

11.4.19 Procedure PutViewportBit
11.4.20 Function GetViewportBit

11.4.21 Proccdure PutViewportRectangle

11.4.22 Function GetViewportRectangle

23
24
24
25
25
25
26
26
26
27
27
28
28
28
29
29
30

i1
31
31
31
32
32
33
KX]
KX]

35
36
3
37
38

‘39

41
41
42
42
43
43

45

ii

11.5 Emergency Messages 46

11.5.1 Procedure EnableNotifyExceptions 46
11.6 Cursors, Regions, and Tracking 47
11.6.1 Function lLoadVPCursors 47
11.6.2 Procedure Destroy VPCursors 47
11.6.3 Procedure ReserveCursor 47
11.6.4 Procedure SctCursorPos 48
11.6.5 Procedure SctRegionCursor 48
11.6.6 Procedure GetRegionCursor 49
11.6.7 Procedure SctRegionParms 49
11.6.8 Procedure GetRegionParms 50
11.6.9 Procedure PushRegion : 51
11.6.10 Procedure ModifyRegion 52
11.6.11 Procedure DeleteRegion 52
11.6.12 Procedure DestroyRegions 53
11.7 Listeners 54
11.7.1 Procedure EnableWinlistener 54
11.7.2 Procedure Scti.istener 54
11.7.3 Procedure MakeWinListener . 55
11.7.4 Function Getl.istenerWindow : ' 55
11.7.5 ProcedurcEnablelnput 55
11.8 Keyboard and Puck Events : 57
11.8.1 Function GetEvent 57
11.8.2 Function FlushEvents 57
11.8.3 Procedure GetEventPort 58
11.8.4 Procedure ExtractEvent 58

A Sample Sapphire Application Program 59

B Key Translation ' 66

1 Introduction

Sapphire is a window ménagcr for the Accént operating system. (The operating system has also been
called Solar, Spice, and Gold at different times by different groups. Accent will be used here to name the
operating system.) Sapphire, which stands for SCREEN ALLOCATION PACKAGE PROVIDING HEIPIUL
ICONS AND RECTANGUIAR ENVIRONMENTS, supports a powerful application and user interface. 'This
document describes how Sapphire is used by application programs and User’s Gui({e to the Sapphire
Window Manager describes how it is used by users. 'The user interface document contains an introduction
to window managers in gencral for those who are unfamiliar with window managers and the covered
window paradigm. It also has an introduction to the Sapphire window manager so it might be appropriate
to skim it before reading this docixment.

Although the window manager is currently one process, the interface to Sapphire is contained in two
MatchMaker defs files: Sapph.defs and ViewPt.defs. Sapph.defs is implemented by WinManager.pas and
ViewPt.defs is implemented by VPMain.pas, VPKeyRegion.pas, and VPGraphics.pas. The implementation
files contain the full procedure headers that describe the procedures. Sapphire will raise two emergency
messages in application programs. 'These are defined by the MatchMaker file SaphEmr.defs. Scction 11
contains all the procedure headers from the implementation files, with additional documentation. Section A
is an example application program,

In general, Sapphire supports the Covered Window Paradigm, where the screen area is divided into
various rectangular areas, called Windows, which may be overlapping, and the graphics and text in one
window does not affect the graphics and text in other windows. Sapphire supports graphic operations
(which includes text) to windows even if the window is partially covered by other windows. Only the
uncovered portions of the graphics will actually be displayed on the screen,

Sapphire also supports Icons, which are small pictures that represent windows. Sapphire’s icons differ '
from icons in the Xerox Star or Apple Lisa in three important ways. First, the icons in Sapphirc provide'
useful state information about the process running in the window. Secondly, Sapphire’s icons exist for all
windows, not just those that have been shrunk. This allows the icons to be used for controlling the window
even when it is on the screen, and it allows the extra state information to be viewed by the user at any time.
The third difference is that all of Sapphire’s icons are collected together in one Sapphire window so that all
the Icons can be manipulated as a group.

Sapphire will support either the portrait or landscape monitor on a Perq. It currently will not handle the
color monitor at all.

29 Oct 39

Sapphire Procedural Interface- 2

2 Data Types

Sapphirc supports a varicty of data types and there are separate procedures for dealing with cach type.
'T'he data types that describe rectangular arcas are Windows, Viewports, and Regions. There are other data
types for Cursors, Fonts, etc.

A Wiudow is a rectangular arca. It may be on the screen or off the screen. Windows optionally have
borders an title lines, and they also optionally have an icon associated with them. Windows also can be
manipulated dircctly by the user via the puck. Fach window is composed of onc or two viewports.

A Viewport is the unit of graphical display in Sapphire. It is the viewport layer that knows how to do
graphics to partially covered arcas. Each window is composed of one or two (or more) viewports. One
viewport is uscd to display the title linc and borders of the window. A sccond viewport, created just inside
the first viewport, is passed to the user to be used for all graphics in the window.

All graphics operations are clipped to the boundaries of a viewport. If an operation were to extend out
of the viewport’s borders, it would be simply clipped (cut off at the border). Thus, for example, it is
impossible for an application to draw over the borders of a window since it can only manipulate the inner
viewport and not the border vicwport. '

In this document Cursor will be used to mean the picture that (usually) follows the puck on the screen.
In Sapphire, all cursors come in groups called CursorSets. The first block of a CursorSet describes the group
and has the x and y offscts for all cursors in the set. The individual cursors are addressed by number. The
motivation for CursorSets is that most applications that usc cursors will need more than one (Sapphire itself
uses over 20, for example), so it is more cfficient to store them together.

A viewport can be divided into a number of Regions. Regions do not clip graphics operations and are
only used for tracking and interpreting keyboard actions. For example, an application can define a number
of regions and associate different cursors with different regions. Sapphire would then change the cursor
picturc automatically when the puck was moved from one region to another. This saves processor cycles
since the application program does not need to wait in a loop constantly checking the cursor to sec if the
picture needs to be changed.

The scparation in function between viewports and windows is fairly clean. Viewports do not have any
user-interface. Thercfore, only windows have title lines, borders, icons, ctc. The window package simply
uses the viewport’s graphics primitives to implement its graphics. Also, the handling of the puck user
interface (with the various cursor pictures, ctc.) is done entirely by the window manager. The viewport layer
is supposed to be able to support a number of different window managers. The separation isn’t entirely that
clean, but that is the idea.

29 Oct 39

Sapphire Procedural Interface- 3

Since windows have a user interface, the user will be able to move them and change their size. Also, the
user will be able to designate which window is to be the I.islener{tﬁe window currently getting user input)
by pointing. All Shells will run in windows. A viewport's paramcters can only be changed by a program
(and not by the user directly). Therefore, viewports are used instead of windows whenever the application
program wants to divide up its arca into units that only it controls. This might be uscful for subdividing a
window, for cxample. ’

For many of the routines in Sapphire, there are special values_for parameters. The predefined constants
are all defined in SapphDefs.pas. For example, NULLViewport and NULLWindow arc special values for
viewports and windows. DONTCARE, UNCHANGED, and BOTTOM arc special values for integers that
can be used in various places as appropriate. The procedures that will take these values describe what they
will do in the procedure headers (see 11 for details).

3 Creating Windows and Viewports

When an application wants an arca in which to do some graphics, it has three choices: it can use the
window provided by its Shell, it can create a new window, or it can create a new viewport. This section will
discuss the reasons for choosing between creating a viewport or a window, and will describe how to do cach.

Windows can have borders, title lines, and icons and can be manipulated by the user. Thus, most
applications that want an area will use windows. Viewports will typically only be used when an existing
window is to be sub-divided into various sections. A window is composed of two viewports, one for the title
line and borders and the other for the inner area that is rcturned to applications. When the application
wants to do graphics in a window, it uses the viewport returned by the CreateWindow call (described
below).

Both windows and- viewports arc hicrarchical. A window or a viewport can have sub-windows or
sub-viewports that are constrained to lie entirely within their parets’ borders. Just as all windows and
viewports are clipped to the boundaries of the screen, all sub-viewports are clipped to the boundaries of
their parent viewports (similarly with windows). If an application creates a window as a child of another
window, the user will be allowed to move it around inside the other window, but it will not be possible to
move it outside the parent window.

29 Oct 39

Sapphire Procedural Interface- 4

Function CreateWindow(ServPort: Window;

fixedPosition: Boolean;

var Teftx, topy: Integer;
fixedSize: boolean;

var width, height: Integer;
hasTitle, hasborder: boolean;
title: TitStr;

var progName: progStr;
hasIcon: boolean;

var vp: Viewport): Window;

CreatcWindow is used to create windows. It takes a parent window. You can use Sapphport (returned
from GetFullWindow) to make the parent the entire screen. If FixedPosition is true, then the window
cannot be moved by the user (o'r application). If FixedSize is true, then the window cannot have its size
changed. These are independent. For example, a window for an application implementing a terminal
cmulator may want to be exactly 80 characters across and 24 down, but not carc where the window is
placed. It would set fixedSize to true and fixedPosition to false. LeftX and topY arc the initial coordinates
for the window, and width and height arc the initial size. These are the coordinates for the OUTSIDE of the
entire window (including the border and title, if any). The inside of the window can be calculated using the
constants TitleOverhead and BorderOverhead. If any of lefix, topy, width or height have the spccial value
ASKUSER, then the parameters of the window are requested from the user. Any (or all) of thesc can have
this value, and the rest of the parameters are fixed at the specified values. If ASKUSER, the coordinates are
sct to the actual values specified by the user. The user may choose to not create a window by aborting when
asked to specify corners. In this case CreateWindow returns NullWindow and ServPort is NullViewport.

The coordinate system runs from 0,0 at the upper left corner of the inside of the parent window. The
coordinate systcm is one-to-one and linear with the pixels on the screen. Negative numbers are legal; the
window will simply be clipped at the top and/or left edge of the parent window. The legal coordinate range
is (-16000,-16000) .. (16000,16000), and the maximum legal width and hcight is also 16000,

HasTitle and Hasborder determine whether the window will have a title and border. They are
independent. (The border is used to show whether the window is the current Listener). The title line is used
for displaying the title text and the UtilProgress progress bar, and it allows the user to give six window
manager commands by using the puck. The title string is the initial text to display in the title. The
progName is the initial name for the window. Each window has a name which is shown in the icon. The
name is guaranteed to be unique so it is modified by appending a digit if it conflicts with another window’s
name. The viewport returned is the viewport for the inside of the window. This is the viewport to use in all
graphic operations to this window. CreateWindow returns the window created.

Once a window is created, it can be modified to have a different position and rank. The rank of a
window or viewport is its ordering in the Z dircection and determines how covered a window is. The lower
the rank, the closer to the viewer (and the less covered) a window is. Rank 1 means that the window is not

29 Oct 39

Sapphire Procedural Interface- 5

covered, rank 2 means that the window is covered by one window, etc. A special value for the rank is
BOTT'OM which means it is covered by all windows. (CreateWindow always creates the window with Rank
= 1.) All of the paramcters to ModifyWindow can have the special value UNCHANGED which means
that they will not be modified. ASKUSER is also a valid parameter value. If ASKUSER, the user may
choose to abort when asked to specify corners. In this case ModifyWindow also aborts, returning the
existing window.

In addition to creating and modifying windows, Sapphire also has procedures and functions to delete
them, change the title, and control the pictures presented in the icon. For a full description, see 11.

Function MakeViewport(ServPort: Viewport;
x,y,w,h, rank: Integer;
memory, courteous,
transparent: Boolean): Viewport;

MakeViewport is similar to CrcatcWindow in that it takes a parent. To crcate a viewport inside a
window, use the viewport returned as the inside of the window. MakeViewport takes the initial coordinates
inside its parent (ASKUSER is not allowed for viewports) and the initial rank. Memory means that the
viewport remembers the contents of the viewport at all times by using a special off-screcn buffer to hold any
covered parts of the viewport. If a viewport is created with memory = true and the x and y values are both
the special value OFFSCREEN, then the viewport can serve as a buffer to hold pictures, etc. If the viewport
does not have memory, then the application will be responsible for refreshing the viewport when it
becomes uncovered. It will be notified of this by a special emergency message (which can be converted into
an exception in Pascal). Having memory. is fairly expensive, however, since physical memory must be
allocated for it. 1f a viewport is courteous, it remembers the screen area underneath it. Currently this is
intended only for pop-up menus and other short-lived viewports that are under Sapphire’s control. (Do not
set this parameter to true. Courteous viewports are not fully implemented.) Transparent viewport does not
cover the viewports or windows underneath it. Most viewports will not be transparent, but in some cases it
may be convenient to be able to see graphics done to viewports behind another viewport. A possible
application for this would be to cover a viewport or a set of viewports with a transparent viewport so that
graphics could be done to the entire set. All of the graphics operations of a transparent viewport and the
viewports underneath it arc inseparably mixed together.

Once a viewport has been created, it can be modified or deleted, or graphics can be done in it. (Do not
modify or delete the viewport returned by a window.) Each window or viewport has cxactly onc owner
which is the process that calls the create function. When the owner process dies, the windows and viewports
owned by it are automatically deallocated. The owner can pass the windows and viewports to other
processes in messages if it is careful to designate that they arc implemented as Ports. If the owner wants
some other process to be the owner, it can simply pass the ownership rights with the port in a message.

290ct 39 .

Sapphire Procedural Interface- 6

4 Graphics Primitives

All graphic operations are clipped to the boundaries of the viewport in which they are done. In addition,
only the visible (uncovered) portions of the operations will be done on the screen. If the viewport has
memory, the covered portions will be updated in off-screen memory; otherwise, the operation will simply
not be done. If some portion of the operation requires information that is not available (for cxample, using
RasterOp from a covered portion of the source), the application will be notified of the sections that need to
be regenerated in the same manner as’ if the portions had become uncovered. The special protected
RasterOp primitives provided by the Accent Kernel will be used to increase cfficiency. If an operation is
donc to a window that is not covered, these fast primitives will be used. If the window is covered, the
Kernel primitive will fail and the Sapphire routine will have to be called since only Sapphire knows how to
do these operations when parts of the viewports are clipped. This optimization, however, will be entirely
invisible to most applications since it will be added at the MatchMaker interface. .

Sapphire has no notion of a current position or current color, so all operations take a full coordinate
specification. In addition, Sapphire does not implement a character cursor; this has to be handled by the
application. Sapphire currently does not support any colors.

Procedure VPROP(destvp: ViewPort;
funct: RopFunct;
dx, dy, width, height: Integer;
srcVP: ViewPort;
sx, sy: Integer);

VPROP is the basic RasterOp primitive. It can be used to move the contents of one viewport around or
to move the contents of one viewport to another. Like RasterOp, it takes the destination first, followed by
the source. The function is one of the eight RasterOp functions: RRpl, RNot, ROr, RNor, RAnd, RNand,
RXor, or RXNor. The coordinate system of viewports is from (0,0) at the upper left corner of cach viewport.
(Note that the order of the arguments is (x,y,w,h) which is different from POS’s RasterOp).

VPROP and all other graphics primitives are optimized for the case where the viewport is not covered.
In this case, the operation is donc directly by the Kernel without process swapping or message passing. If
the viewport is covered, however, the operations cannot be handled by the Kernel so a message is passed to
Sapphire where it will be performed. The Sapphire call for VPROP is ViewRop. Similarly, for the other
graphics primitives named VP—, the Sapphirc call is View—. If the View— procedure is called directly,
this will be perfectly correct, it will just be slower when the viewport is not covered.

Procedure VPColorRect(vp: ViewPort;
funct: RectColorFunct;
X, y, width, height: Integer);

VPColorRect is much more cfficient than VPROP when an area is to be set to white or black or

29 Oct 39

Sapphire Procedural Interface-7

inverted. Tt takes only one viewport and set of coordinates and makes that rectangle black, white or
inverted.

Procedure VPLine(destvp: ViewPort;
funct: LineFunct;
x1,y1,x2,y2: Integer);

VPL.ine is used for drawing a linc in a viewport. The linc can be drawn as white, black or XOR.

Fonts in Sapphire arc represented as viewports. A special procedure, l.oadFont, takes a font name and
returns the viewport that represents that font. This special font viewport can then be used in the routines
that draw text in a viewport. l.eadFont returns NULI.Viewport if the font name is not found. Fonts are
allocated out of Accent’s physical memory, so that having too many fonts allocated at one time will cause
Accent to crash. Since fonts are viewports, they can be casily deallocated using DestroyViewport.

The three text writing procedures come in two forms. The first form returns information about the text
drawn. For example, VPString returns the number of characters that were printed and the pixel after the
last character. The second form of the procedures does not return any information. This will be faster since
no return messagé necds to be gencrated. This also means, however, that error messages cannot be reported.

If there is an error in a procedure of the second type, then the text is simply not displayed. For cach
procedure VP—, the corresponding procedure that does not return any information is called VPPut—.

[RSL L0} S (8181833 ATNICH 1481011

Procedure VPString(destvp, fontVP: ViewPort;
funct: RopFunct;
var dx,dy: integer
var str: VPStr255;
firstCh: Integer;
var lastch: Integer);

VPString is used to draw a string in a viewport. It takes the destination viewport and the font viewport,
the RasterOp function to use, and the position for the string. VPString uses the fast StringOp (formerly
DrawByte) microcode. It is set up to display as many characters as possible across a line and then report
how many characters were displayed. It does not handle wrap-around. Dx is the starting x position. It is set
to the x position directly after the last character displayed. Dy is the y position of the bottom of the
character. The bascline of the font is ignored. If it has the special value DONTCARE, then the characters
will go to the right edge of the viewport. Str is the string to display. FirstCh is the first character of the string
to display. If the special value DONTCARE is provided, the valuc one will be used. LastCh is the last
character to display. DONTCARE means to use length(str). LastCh is set to the last character actually
displayed which may be less than the specified LastCh if maxX is reached first. The procedure VPPutString
does the same things as VPString, but it does not return any information and will not notify the application
if fontVP is illegal or if there are other errors. ’

VPChArray is the same as VPString except it takes a variable length array of characters instead of a

29 Oct 39

Sapphire Procedural Interface- 8

string. VPChar can be used to display just one character. Again, there are corresponding procedures
VPPutChArray and VPPutChar that do not return information.

Unfortunately, there is currently a restriction on the height of a font that VPString and VPChArray will
handle. This is set at 45 pixcls; therefore these procedures will return an error if they are used with a taller
font. VPChar will work with any size font, however.

There are other graphics primitives for transferring the contents of a viewport to and from virtual
memory (for recading and specifying a viewport's contents from a program). They are PutViewportBit,
GetViewportBit, GetViewportRectangle, and PutViewportRectangle.

Function LoadVPPicture(ServPort: Viewport;
fileName: VPStr255;
width, height: Integer): Viewport;

[.oadVPPicture allows a picturc to be read from a file into an off-screen viewport with memory. We do
not have a general format for pictures in files, so this routine simply assumes the picture is in the file with
no header information (like the picture’s width and height). LoadVPPicture thercfore takes the width and
height of the picture as parameters. If these do not correspond cxactly with the parameters of the picture,
then the picture will not be read in correctly. One application of L.oadVPPicture is to load special pictures
containing grey patterns which can be created by a program or by using the CursDesign program.

5 Emergency Messages

There are two cmergency messages that may be enabled for any viewport. One of these is sent to the
application when the viewport is modified. This may happen, for example, if the viewport is part of a
window that is explicitly modificd by the user via Sapphire’s user interface. This emergency message may
be converted into a Pascal exception using the MatchMaker interface defined in SaphEmr.defs.

If a portion of a viewport is uncovered for any reason, that portion will have to be regenerated. The
window may have become less covered cither by the removal of some other window or by the window
being brought to the top. The window may have been moved: from partially off screcn to more on screen or
" it may have been brought from fully off screen. The window may have been grown from a smaller size to a
bigger size. Finally, a RasterOp may have been done where a part of the source that was covered was placed
in an exposcd portion of the destination. If the viewport has memory, then the picture can simply be
recalled from the backup memory. Most viewports will not have memory, however, so some program will
have to be notificd that the viewport needs to be refreshed. Even if the viewport has memory, it may still get
this exception if the Viewport is grown to a bigger size since the picture for the new area is not available.
For applications that do not do any graphics, the typescript manager will handle this, but if the abplication
does do graphics, then only it knows how to refresh ‘the viewport. The cmergency message may be

29 Oct 39

Sapphire Procedural Interface-9

converted'into an cxception in the same manner as the message for viewport size. One of the parameters of _
“this message is a variable length array of rectangles. "This includes all of the rectangles that need to be
refreshed for the viewport. The application can cither update only the rectangles in the list, or it can simply
refresh the entire viewport. The rectangle list is allocated using ValidateMemory so the application should
be sure to deallocate the memory using Function InValidateMemory as follows (where ra is the rectangle
array):

gr := InValidateMemory(KernelPort, recast(ra,
VirtualAddress), wordsize(ra)*2);

In order to get around current MatchMaker restrictions, the interface files were hand edited. The
SERVER side (SaphEmrServer.pas) is used by the application program. It exports a procedure
(SaphEmrtServer) which can be uscd on the incoming Emergency message to convert it into one of the two
exceptions (which currently are defined in SaphEmrExceptions. pas). The USER side, SaphEmrUsct.Pas,.is
uscd at the Sapphire end to actually generate the emergency messages (note that this is backward). Due to a
bug in MatchMaker, currently it is not possible to do graphics from the exception handler routine (which is
exactly what one would typically want to do). This will hopefully be fixed soon.

6 Cursors, Regions, and Tracking

The viewport layer also handles all tracking and keyboard interface. Cursors come in sets, as described
carlier. A cursorSet can be read from a file using the procedure 1.oadVPCursors. CursorSets can be most
casily created using the CursDesign program. They have a special format (which is different from ail
previous cursor formats). The first block of a cursorSet describes the cursorSet as a whole. CursorSets
typically have the extension .SCursor. Cursors can be loaded from the disk using the procedure
LoadVPCursors. 'This procedure returns NIL if the file cannot be found. Application prdgrams are not
allowed to dereference. the cursorSet pointer since the actual data is kept in the window manager process
only.

A viewport can be divided into a number of Regions each with its own cursor. Regions are different
from viewports in that they do not clip graphics. Thercfore, regions can be arbitrarily overlaid on a
viewport. Regions are defined by number with the special two regions VPREGION for the entire inside of
a viewport, and OUTREGION for the entire outside of a viewport. When created, viewports are
automatically given these two regions. Applications can define their own regions by pushing them with the
procedure PushRegion which takes the viewport, a region number and the coordinates of the region in the
viewport. The application program is responsible for maintaining the region numbers and remembering
which is which. A region number already in use can be pushed and the newest one will take precedence.
VPREGION and OUTREGION can also be pushed, but for these the coordinates are ignored.
DeleteRegion removes the most recently added region of the specified number. If there is only one region

29 Oct 39

Sapphire Procedural Interface- 10

by that number, then the region number becomes illegal. It is a bad idea to delete the last VPRegion or
OU'TRegion. A region’s coordinates may be changed using ModifyRegion.

Once _a region has been defined, a number of -different - propertics for the region can be set. The
procedure SetRegionCursor allows the cursor for a region to be defined:

Procedure SetRegionCursor(ServPort: Viewport;
regionNum: Integer;
cursorlmage: CursorSet;
cursIndex: Integer;
cursFunc: CursorFunction:
track: Boolean);

i}

The curserimage and cursindex together specify which cursor is to be used whenever the cursor is-in
that region. CursFunc determines what the cursor function is. 'The only real choices are ¢fOR, ¢fXOR, or
CFCursorOff. CfScreenOff means that the cursor is visible but the cntire rest of the screen (not just this
viewport) is invisible. cfBroken is a non-functional cursor function. (Note that the overall screen color is
specified with an entirely separate function, unlike POS.) Track determincs whether the cursor follows the
tablet while this region is active. In general, track will be true, but if the application wants to de-couple the
tablet and the cursor, false can be used. The procedure SetCursorPos will sct the cursor position
independecnt of the tablet position if track is false, otherwisc it sets both,

The way the cursor tracks while the region is active can be controlled using the procedure
SetRegionParms:

Procedure SetRegionParms(ServPort: Viewport;
regionNum: Integer;
absolute: boolean;
speed: Integer;
minx, maxx, miny, maxy,
modx, posx, mody, posy: Integer);

The tracking parameters allow for relative or absotute tracking; for the cursor to be restricted to stay inside
some box; and for the cursor to be restricted to a particular grid. If absolute is true, then the upper left
corner of the tablet will correspond to the upper left corner of the screen, etc. If absolute is false, then
movements on the tablet will be converted into movements on the screen relative to the current position.
Speed determines how the movements on the tablet are mapped to movements of the cursor in relative
mode. Positive numbers mean that one increment on the tablet will be translated into SPEED increments
on the screen. Negative numbers mean that SPEED increments on the tablet will be required before there
is one increment on the screen. Speed is applicable only to relative mode. In absolute mode, a number is
automatically picked for specd that will allow the entire screen to be addressed using the current tablet. A
value of DONTCARE will usc the system-chosen default for speed. Minx, maxx, miny, maxy form a
rectangle in the region that the cursor is not allowed to leave; thus the cursor will be trapped by this

29 Oct 39

Sapphire Procedural Interface—- 11

rectangle. If all are DONTCARE, the cursor is not trapped. As an example, if the minx and maxx values are
the same, then the cursor will be restricted to move only vertically. The rest of the parameters arc ysed for
gridding. Modx is the grid factor in the x direction. The cursor will only be put on cvery "modx”th point.
DONTCARE means there is no gridding in x. If modx is not cqual to DONTCARE, posx determines the
offset on which to put the cursor in the x dircction. It should be less than modx. DONTCARE for posx
means 0 is used. Mody and Posy do the same thing for the y direction. :

Using different regions with different cursors, gridding, etc. should allow most applications to simply sct
up a set of regions and then read the cursor position only when there is an interesting cvent. Hopefully, few
applications will nced to turn tracking off and wait in a loop (handling tracking themsclves) since this
infringes on the user-interface of Sapphire and will be much less cfficient.

7 Listeners

The Listencr is the viewport, window or process that is currently getting.keyboard typing. Typically,
application programs should never sct the listener since users will choose which window should be the
listener, using Sapphire’s window manager. The window which is the Listener is marked with a special
border., Therefore, if an application program wants to change the listener, it should use the window
manager call MakeWinListener. This changes the border, etc. and then calls the viewport level procedure
SetListener. If an application calls SetListener directly, one window will remain marked as the Listener and
the input will be going to another window. Also, due to synchronization problems, it will never be possible
to make sure that the application program is not overriding an explicit change listener command given by
the user. When a window is made the listener, either by the user or explicitly by an application program,
the inner viewport of that window is automatically made the listener viewport.

When a viewport is the Listener, it has complete control over the puck and keyboard. Thercfore, no
matter where the cursor is, the application program can control it. The regions set up for that viewport
control the cursor picture and tracking parameters while the viewport is the listener.

In order to be the listener, a window or viewport must first be enabled. Although there is a procedure at
the viewport level to specify a kcy translation table for a viewport, the procedure EnableWinListener for the
" window should be used instead because it calls the appropriate procedure for the viewport for that window.
Calling the window's procedure rather than the viewport’s will allow the user to point at the window to
make it the Listener. These ¢nable routines take a key translation table. If the table is not found, then an
exception will be gencrated.

29 Oct 39

Sapphire Procedural Interface- 12

8 Keyboard and Puck Events

Whenever a keyboard key is hit or a puck button goes down or up, an event is said to have happened.
Sapphire allows these cvents to be converted into abstract command codes so that an application program
can be written independent of the actual letters that cause the desired actions. T'his should make it casier for
uscrs to convert applications such as cditors to use the command sct they like best. Key translations are
controlled by a key translation table. These tables are created from source text using a special key
transtation table compiler (called KeylranCom). ‘The format for the source text to Key'l'ranCom is
described in another document (KeyTran.Definitions). The key translation mechanism supports prefix keys
(such as Control-X in EMACS) and both up and down transitions of the puck. Each viewport that accepts
input has a key translation table associated with it. One key translation table may dcfine different
commands for the same keyboard or puck event when the cursor is in different regions (regions are
discussed in the previous scction). This might be uscful to an editor, for example, where a pres§ with a
particular button might mean SCRQOLL-UP in the scroll region, but mean SELECT-WORD in the text
region. ‘

To request a keyboard or puck event, use the procedure GetEvent:

Function GetEvent(ServPort: Viewport;
howWait: KeyHowWait): KeyEvent;

HowWait determines how to wait for the event. If it is KeyDontWait, GetEvent returns immediately with
an event. This may be an actual event if one has happened or it may be a position response. Position
response come in two forms: POSITION and DIFFPOSITION. DIFFPOSITION is uscd whenever the
point being returned has different coordinates from the last point returned. POSITION is used when the
coordinates are the same. These can be mapped to the same abstract command code in the key translation
table if desired. If the viewport specified is not the Listener, then it can never get real events. KeyDontWait
always rcturns immediately, however, so the special command NOEVENT is returned. If the key
translation table docs not define a command for this special event, the application program will wait for the
viewport to become the Listener before returning an event.

If howWait is KeyWaitDiffPos, GetEvent returns the DIFFPOSITION cvent the next time the cursor is
in a different position. (Obviously, with KeyWaitDiffPos, the POSITION spccial event will never be
generated since no response will happen if the position is not different.) Key WaitDiffPos should make some
applications more efficient if they only need to know the position when it has changed. KeyWaitDiffPos
does not rcturn an event if the viewport is not the Listcner. If howWait is KeyWaitEvent, an actual
keyboard or puck cvent is waited for. If howWait is KeyWaitDiffPos or KeyDontWait and an actual
keyboard or puck event occurs, that event will be returned instead of a POSITION event. A proposal has
been made for a new value for howWait: KeyPollButtons that will return a special event immediately with

29 Oct 39

Sapphire Procedural Interface- 13

the state of the buttons. Since there are events for button down and up (separately), this is not really
nccessary, but it will probably be added eventually.

Events are queued on per-viewport basis and the-translation is not done until the event is requested by
the application. This allows the application to change the key translation table for a viewport and have the
type-ahead interpreted by the correct table. The LISP community has requested another mode of access
where a special sct of keys would be sent immediately to a special port. This would require that the key
cvents be translated when typed rather than when requested since it would be the key translation table that
specified which keys are special. To solve this problem, both the translated and untranslated keys would be
kept around and, if the key translation table were changed, all the alrcady translated events would simply
be re-translated.

The key translation table mechanism allows all the keys on the keyboard to be differentiated (it will take
raw keyboard data). One key is reserved for use as a prefix to the window manager. This key is defined in
the system’s key translation table (Default. KText) and is defined as CONTROL.-DEL (on PERQI’s) or
SETUP (on PERQ2’s). The commands that can be given after the prefix key are defined in the Sapphire
user-interface document.

9 Errors and Exceptions

Unfortunately, error handling in Sapphire is not well designed currently. When creating or looking up
something, a NULL value will typically be returned if the item is not there. All other errors are signalled by
a single exception UserError which has a string parameter explaining the error. Clearly, this needs to be
expanded so that applications can differentiatc among different errors. Another exception, IMPOSSIBLE, is
raised when Sapphire discovers a bug in its internal workings.

10 Initialization and Setup

10.1 Exported Type Definitions

module SapphDefs;

Abstract: Exported type definitions for the Sapphire Window Manager. This includes the exports for
both the Window manager layer and the Viewport layer. This type module is imported by both the server
and the user side of the interface.

Author: Brad Myers, PERQ Systems Corporation

29 Oct 39

Types:

Window:

Viewport:

Rectangle:

Font:

Cursor:

CursorSet:

Region:

KeyEvent:

Sapphire Procedural Interface- 14

A rectangular area that is controllable by the user and which has an icon and an
(optional) border and title line. A window is composed of two viewports; the
outer one kept private by the window manager uscd to hold the title and border,
and an inner one passcd to the application to fill with graphics or text.

A rectangular display area which may be on the screen. The coordinate system of
a viewport is fixed with 0,0 at the upper left and is lincar with the pixels on the
screen. All graphic operations are clipped to a viewport’'s boundarics and
viewports arc the unit of refreshability on the screen and of keyboard type-in. A
viewport may have “children” sub-viewports. Graphic operations to
sub-viewports are clipped to the boundaries of the parent viewport,)

Defined by its upper left corner and a width and height. The upper left corner is
usually relative to some viewport.

A standard character set defined by the Perq standard format. Fonts are
represented externally as viewports.

(1) the picturc that follows the puck on the screen. (2) any symbolic picture
which may at some time be connected to the puck. A Cursor is 56 bits wide and
64 bits tall. Cursors are only accessible to the users in CursorSets.

A collection of cursors. There may be one or many cursors in a set. On the disk,
files containing CursorSets usually have the extension ".SCursor”. Each cursor
has associated with it the origin or offsct for the point. CursorSets can be
conveniently be created using the latest version of CursDesign.

a subset of a Viewport. Regions are used for cursor tracking and key translation.

an event gencrated directly by the user by typing on the keyboard or pressing a
puck button, consisting of a command code, a character, and a pointer position.

}

{$Version V1.0 for Accent}

{

INNNNNNNNNNNNNNNNNNNNNNNY EXPORTS {77/77777771777117117777717717}

imports AccentType from AccentType;

{***************************** VIEWPO]{TS *****************************}

{—— Exported Constants —}

const

VPREGION = 1;
OUTREGION = 0;

UNCHANGED = -32001;

29 Oct 39

Sapphire Procedural Interface- 15

OFFSCREEN = -32002;

DONTCARE = -32004;

" BOTTOM = 32000;

NULLViewPort = NullPort;

MaxNumRectangles = 256 div 4; {number that can fit in a page}

SyskontName = "Fix13.Kst’;
SysFontHcight = 13;
SyskFontWidth = 9;

{—— Exported Constants for key translations —}
WILDREGION = 31; {no matter what region}

c¢ChCmd = 0; {special rescrved command numbers}
¢NoCmd = 1;

{—— EXPORTED types—}

Type
VPStr255 = string{255];

Viewport = Port;
CursorSet = LONG;

Rectangle = record
1x, ty, w, h: integer;
end;

{used in GetEvent} -
KeyEvent = record {not packed since goes into a message}
Cmd: 0.255;
Ch: char;
region: Integer;
X,Y: integer;
end;

{used to control the cursor}
CursorFunction = (cfScreenOff, cfBroken, cfOR, cfXOR, cfCursorOff);

{used in calls to GetKeyEvent to control waiting}
KeyHowWait = (KeyWaitDiffPos, KeyDontWait, KeyWaitEvent); -

{used in ViewLine}

29 Oct 39

Sapphirc Procedural Interface- 16

[LincFunct = (Drawl.ine, Erascl.ine, XORLinc); {used in ViewLine}

{used in ViewColorRect}
RectColorFunct = (RectBlack, RectWhite, Rectinvert); {used in
ViewColorRect}

{used in ViewRop, ViewStrArray, etc.}

RopFunct = (RRpl, { Destination gets source 1
RNot, { Destination gets NOT source }
RAnd, { Destination gets Destination AND source }
RAndNot, { Destination gets Destination AN (NO'T source) }
ROr, { Destination gets Destination OR source }
ROrNot, { Destination gets Destination OR (NOT source) }
RXor, { Destination gets Destination XOR source }
RXNor); { Destination gets Destination XOR.(NOT source) }

Type
VPIntegerArray = Array[0..0] of Integer;
pVPIatcgerArray = +VPIntegerArray;

{uscd in ViewCharArray}
VPCharArray = Packed Array[0..1] of Char;
pVPCharArray = tVPCharArray;

{used in exception for vié\vport becoming exposed}
RectArray = Array[l..MaxNumRectangles] of Rectangle;
pRectArray = tRectArray; { array of 64 rectangles (one page’s worth) }

VPPortArray = Record
num: Integer;
ar: Array[0..0] of Port;
end;
pVPPortArray = tVPPortArray;

{***************************** W[NI)OWS *****************************}

Const BorderOverhead = 5; -
TitleOverhcad = SysFontHeight + 6;

LandScapeBitWidth = 1280;

PortraitBitWidth = 768;

LandScapeBitHeight = 1024;

PortraitBitHeight = 1024;

TitStrLength = LandScapeBitWidth div SysFontWidth;

NullWindow = NullPort;

29 Oct 39

Sapphirc Procedural Interface— 17

ASKUSER = -32005; ,

MaxCoord = 16000; {largest legal window coord}

MinCoord = -16000; {smallest lcgal window coord}

MaxSize = 16000; {largest legal window size}

{— Icons —}

NumProgressBars = 2;

Progressinlitle = 1; {the UtilProgress nest level that is in the
title line}

lconWidth = 64;

IconHeight = 64;

ProgStrl.ength = (IconWidth - 2*BorderOverhead) div SysFontWidth;
{— Exported Types —}
Type Window = Port;

TitStr = String[T'itStrl_ength];
ProgStr = String[ProgStrl.ength];

pWinNameArray = tWinNameArray;
WinNameArray = Array[0..0] of ProgStr; {vbl length array}

11 Sapphire Procedure Headers

The following are the procedure headers for all of the procedures that applications might call to access the
Sapphire window manager. The procedures are grouped by function, generally in the order in which they
are discussed in the procedural interface document.

11.1 Version Number

11.1.1 Function Sapph Version
Function Sapph_Version (Seﬁ/Portz window):string;
Abstract: Returns the version number and name of Sapphire as a string *V1.0°.

Parameter: ServPort - Any window (including SapphPort)

29 Oct 39

Sapphire Procedural Interface- 18

11.2 Windows and Viewports

11.2.1 Function CreateWindow

Function CreateWindow(ScrvPort: Window;

fi xedPosition: Boolean;

var leftx, topy: Integer;
fi xedSize: boolean;

var width, height: Integer;
hasTitle, hasborder: boolean;
title: TitStr;

var progName: progStr;
haslcon: boolean;

var vp: Viewport): Window;

Abstract: Creates a ncw window on the screen. It will be in front of all
other windows (of the same parent window). Note: If ASKUSER,
no window may be created and NullWindow is returned.

Parameters: ServPort - the window that will be the parent of the new window.

The parent is the entire screen if Sapphport is used.

fixedPosition - if true, the user is not allowed to move this
window after it has been created.

leftX - the left X rclative to the parent window of the new
window. This will be the OUTER leftX of the window. If leftX is
ASKUSER, then the uscr is requested for the window position.
If ASKUSER, then sct to the actual window leftX.

topY - the top Y relative to the parent window of the new window.
This will be the OUTER topY of the window. IftopY is ASKUSER,
then the user is requested for the window position. If ASKUSER,
then set to the actual window topY'; not set if ASKUSER aborts
with no window created.

fixedSize - the user is not allowed to change the size of this
window after it has been created.

width - the width of the OUTSIDE of the new window. The inner
width may be lcss if there is a title or border. If width is
ASKUSER, then the user is requested for the window width, If
ASKUSER, then set to the actual window width.

height - the height of the OUTSIDE of the new window. The inner
height may be less if there is a title or border. Ifheight is
ASKUSER, then the user is requested for'the window height. If
ASKUSER, then set to the actual window height or not set if
ASKUSER aborts with no window created.

29 Oct 39

Sapphirc Procedural Interface- 19

hasTitle - true if the window should have a title arca. This
is a black area into which the title string may be written. The
title arca is also used for UtilProgress so if false, there will
be no UtilProgress in the window. If there is a title, the
‘outer height will be the inner height + TITLLEOVERHEAD.

hasBorder - true if the window should have a border arca. This
arca is used to hold the hair line around the entire window and
is the arca where the window is shown to be the Listener or not.
If there is no border, the Listener will not be shown in the
window. If there is a border, it takes up BORDEROVERHEAD on
each side (including the top).

title - the initial title for the window. It is always displayed
in the system font. It isclipped if it won’t fit in the title
arca,

progName - the initial string to show in the icon to name this
window. If the name is not unique, the final characters are
changed to a number to make it unique.

haslcon - if true, then the window has an icon. If false, then
the window does not have an icon.

vp - set to the viewport that corresponds to the inside of
the window or NullViewport if ASKUSER aborts with no window
created. :

Returns: The window created or NullWindow if ASKUSER aborts.

11.2.2 Procedure DeleteWindow

Procedure Dclethinddw(ScrvPort: Window);

Abstract: Deletes a window and all its subwindows. Do not use the window

after calling this procedure.

Parameter: ServPort - the window to delete.

11.2.3 Procedure ModifyWindow

Procedure ModifyWindow(ServPort: Window;

newleftx, newtopy, newouterwidth, newouterheight,
newRank: Integer); '

Abstract: Changes the size, position and rank of a window. Any of these

29 Oct 39

Sapphirc Procedural Interface— 20

may be left unchanged by supplying UNCHANGED as the parameter.
If the window is the IconWindow, then the icons are compacted and
the window is redisplayed. If any of the parameters arc ASKUSER,
then the user is required to supply the missing information.

If ASKUSER aborts, the window is unchanged.

Parameters: ServPort - the window whose parameters are to be modified.
newl.cftx - the new outer left x of the window.
newtopy - the new outer top y of the window.
newouterwidth - the new outer width of the window.
newouterheight - the new outer height of the window.
newRank - the new rank of the window.

Errors: If not allowed to change size or position and try to.

11.2.4 Procedure RemoveWindow

Procedure RemoveWindow(ServPort: Window);

Abstract: Moves the window to a special place off screen so that it is outside
the refresh loop. The opposite of this procedure is RestoreWindow.
This is nothing like DestroyWindow,

Paramecters: ScrvPort - the window to be removed from the screen.

11.2.5 Procedure RestoreWindow

Procedure RestoreWindow(ServPort: Window);

Abstract: Gets back a window to its original place on the screen if it has
been sent away using RemoveWindow. If hasn’t been removed then no
effect. '

Parameters: ServPort - the window to be restored to the screen.

29 Oct 39

Sapphire Procedural Interface- 21

11.2.6 Procedure SetWindowError

Procedure SetWindowError(ServPort: Window:
error: boolcan);

Abstract: Changes the error flag for the window. Displays the picture for
crror in the icon if true, otherwise crases the picture.

Parameters: ServPort - the window to change the error flag for.
error - the new value of the error boolean.

11.2.7 Procedure SetWindowRequest

Procedure SetWindowRequest(ServPort: Window;
requesting: boolean);

Abstract: Changes the requesting flag for the window. Displays the
picture for requesting in the icon if true, otherwise erascs
the picture.
Parameters: ServPort - the window to change the requesting flag for.
error - the new value of the requesting boolean.

11.2.8 Procedure SetWindowAttention

Procedure SetWindowAttention(ServPort: Window;
attn: boolean);

Abstract: Changes the attn flag for the window. Displays the picture
for attention in the icon if true, otherwise erases the picture.

Parameters: ServPort - the window to change the attention flag for.
attn - the new value of the attention boolean.

29 Oct 39

Sapphire Procedural Interface- 22

11.2.9 Procedure IdentifyWindow

Procedure IdentifyWindow(ServPort: Window);
Abstract:’Shows the relationship between a window and its icon briefly by
video-inverting the pictures for cach and drawing lines from one

to the other.

Paramecters: ServPort - the window to display the relationship for.

11.2.10 Function MakeViewport

Function MakeViewport(ServPort: Viewport;
x,y,w.h, rank: Integer;
memory, courteous, transparent: Boolean): Viewport;

Abstract: Create a new viewport.

Parameters: ServPort - the parent viewport. Should be NIL only for the very first
viewport. The new viewport will be clipped inside of the parent
viewport. To make this global inside the screen, use Full-
Viewport.

X,y - the upper left corner of the new viewport with respect to
ServPort. May also be OFFSCREEN in which case the viewport is
offscreen (if cither is OFFSCREEN then both are OFFSCREEN). x,y
may be negative if the new viewport is to extend off the parent
to the left or top.

w, h - the width and height of the new viewport. These must be
>= 1. May extend outside the parent viewport,

rank - the rank of the new vicwport with respect to other sons
of ServPort. 1 means that the new viewport covers all others
and BOTTOM (or any very large number) means that all other
sons cover the new viewport. »

memory - whether the viewport will have off-screcen memory to back
up any parts of the picture that are covered. If false, then
the client is in charge of refreshing the contents of the ,
viewport. To create an offscreen picture buffer, simply use
OFFSCREEN for x and y and make memory be true. '

courteous - whether the viewport saves the bit map underneath
it. Currently this is used for popup menus and other pop-up
viewports only under Sapphire’s control; do not set this .
parameter to true.

transparent - whether this viewport covers viewports it is on

29 Oct 39

Sapphire Procedural Interface— 23

top of. Most viewports will not be transparent. Ifa viewport
is transparent then updates to viewports underneath it will show
through.

Returns: The viewport created.

11.2.11 Procedure DestroyViewport

Procedure Destroy Viewport(ServPort: Viewport); -

Abstract: Deallocates a viewport and removes it from the screen. Any further
use of the viewport will be an error. Also destroys all of the
subviewports of this viewport.

Parameters: ServPort - the viewport to destroy.

11.2.12 Function GetVYPRank |

Function GetVPRank(ServPort: Viewport): Integer;

Abstract: Returns the rank of ServPort w.r.t. its parent. Higher ranks are
covered by lower ranks. Rank = 1 is the top most (least covered).
Offscreen viewports are not counted in the rank calculation.

Parameters: ScrvPort - the viewport.
Returns: ServPort’s rank. Ifparent = NIL then returns 1. If ServPort not

found under its parent, then returns last rank plus 1 (this should
never happen).

11213 Procedure ViewportState

Procedure ViewportState(ServPort: Viewport;
var curlx, curty, curwidth, curheight, curRank: Integer;
var memory, courtcous, transparent: boolean);

Abstract: Returns a description of ServPort.

29 Oct 39

Sapphire Procedural Interface- 24

Parameters: ServPort - the viewport information is desired for.

curl.x, curly - set to the upper left corner of this viewport in
its parent’s coordinate system.

curWidth, curHeight - set to the width and height of the
viewport.

curRank - set to the rank of the viewport with respect to its
brothers under their parent.

memory - st to true if the viewport has memory clse false.

courteous - sct to true if the viewport is courtcous clsc false,

transparent - sct to true if the viewport is transparent clse
false.

11.2.14 Procedure ModifyVP

Procedure Modify VP(ServPort: Viewport;
newlx, newty, newwidth, ncwheight, newrank: Integer;
wantVpChEx: boolcan);

Abstract: Changes the position, size, and/or rank of a viewport.

Paramecters: ScrvPort - the viewport to maodify.
newl.x, newTy - the new upper left corner of this viewport with
respect to its parent. UNCHANGED means that the corner does not
change.
newWidth, newHeight - the new width and height of the viewport
or UNCHANGED if no change.
newRank - the new rank of the viewport or UNCHANGED.
wantVPChEXx - if truc and the change exception is enabled, then
raises an exception after the viewport is modified. If false,
then doesn’t raisc an exception even if enabled.

11.2.15 Function GetFullViewport

Function GetFullViewport(ServPort: Viewport): Viewport;
Abstract: Returns the viewport for the full screen.
Parameters: ServPort - ignored.

Returns: The viewport for the full screen. DO NOT MODIFY this viewport.

29 Oct 39

Sapphire Procedural Interface- 25

11.2.16 Procedure ReserveScreen

Procedure ReserveScreen(ServPort: Viewport;
reserve: Boolean);

Abstract: Pretends thatServPort is not covered. Operations are still
clipped to be inside ServPort, but are not affected by other
viewports. WARNING: No permancnt screen modifications should be done
while the screen is reserved, only temporary ones (like window
hair-lincs). .
CURRENTLY, OTHER VIEWPORTS ARE NOT DISABLED so they can do
araphics even if the screen is reserved* '
Parameters: ServPort - the viewport to reserve the screen with respect to.
reserve - if true then reserves the screen. If false, then
relcascs the screen. It is OK to call with reserve
falsc if the screen is not reserved. If ServPort dies, the
screen is automatically un-reserved.

Errors: if reserve is true but screen is already reserved for some viewport.

11.2.17 Procedure GetScreenParameters

Procedure GetScreenParameters(ServPort: Window;
var width, height: Integer);

Abstract: Returns the width and height (in pixels) of the current screen.
Parameters: ServPort - the window to get parameters for,

width - width of screen
height - height of screen

11.2.18 Procedure SetWindowTitle

Procedure SetWindowTitle(ServPort: Window;
title: TitStr);

Abstract: Sets the title of ServPort to be new string. If window has no title
then this is a no-op. Ifthe title is too long, then clipped.

29 Oct 39

Sapphire Procedural Interface- 26

Parameters: ServPort - the window to set the title of,
title - the new title.

11.2.19 Function GetFullWindow

Function GetFullWindow(ScrvPort: Window): Window;
Abstract: Returns the full window. 120 NOT MODIFY This window in any way.
Parameters: ServPort - ignored. (Nceded for message passing).

Returns: The window that is the full screen.

11.2.20 Procedure SetWindowName

Procedure SetWindowName(ServPort: Window;
var progName: ProgStr);

Abstract: Changes the progname for the window. Displays the new progname
in the icon.

Parameters: ServPort - the window to change the progname for.
ProgName - the new progName for the window. Ifit conflicts
(is the same as) any other progNames already existing then is
changed to be unique by changing the last letters to be numbers.

11.2.21 Procedure FullWindowState

" Procedure FullWindowState(ServPort: Window;

var leftx, topy, outerwidth, outerHeight,
rank: Integer;

var hasBorder, hasTitle, isListener: boolean;

var name: ProgStr;

var title: TitStr);

Abstract: Returns the state of the window ServPort.

29 Oct 39

Sapphire Procedural Interface-27

Parameters: ServPort - the window whose description is desired.
lefx, topy - sct to the upper Ieft corner of this window with
respect to this window’s parent.
outcrWidth, puterHeight - sct to the width and height of the
outside of the window.
hasBorder, hasTitle - set to whether the window has a title or
border.

isl.istener - sct to whether the window is currently the listener.

name - sct to the current name of the window.
title - set to the current title string for the window.

11.2.22 Procedure SetWindowProgress

Procedure SetWindowProgress(ServPort: Window;
nestl.evel: Integer;
value, max: Loong);

Abstract: Shows progress in icon and title arca if apprdpriate.
If max is 0 then random progress is done. If value >= Max
then the progress bar is removed.

Parameters: ServPort - the window to display the progress for.
nestl_evel - which utilProgress bar to show.
value - the current value.
max - the maximum value.

Errors: If nestl_evel > N-umProgrcssBars or<1l.

11.2.23 Procedure GetWinNames

Procedure GetWinNames(ScrvPort: Window;
var names: pWinNameArray;
var namesCnt: Long;
var curListenlndex: Integer);

Abstract: Creates an array of names of all the current windows.
Parameters: ScrvPort - ignored.
names - storage is allocated and filled with all the names of

the windows.
namesCnt - number of names

29 Oct 39

Sapphire Procedural Interface— 28

curl.istenIndex - sct to the index in the names array of the
name corresponding with the current listener. If no listener,
then will be set to -1,

11.2.24 Function WinForName

- Function WinForName(ServPort: Window;
name: ProgStr): Window;

Abstract: Returns the window for a name.

Parameters: ServPort - ignored.
name - the name of the window to get.

Returns: the window refered to by name or NullWindow if name is not a legal
window.

11.2.25 Procedure WindowViewport

Procedure Window Viewport(ServPort: Window;
var vp: Viewport;
var vpWidth, vpHeight: Integer);

Abstract: Returns the viewport for the insides of the window along with
its width and height. This is the same viewport as is returned
by CreateWindow as the var ServPort field.
Parameters: ServPort - the window whose viewport is desired.
vp - set to the viewport for the insides of the window.
vpWidth, vpHeight - set to the width and height of the viewport.

11.2.26 Procedure DefinelFullSize

Procedure DefineFuliSize(ServPort, exceptW: Window);

Abstract: Changes the meaning of "full size window” by adding a new window that
should be ignored if a window is made full size. This procedure is
incremental; every time it is called, the window is added to the list
of ones to ignore. This list can be reset to no windows by passing in

29 Oct 39

Sapphire Procedural Interface- 29

the NullWindow. Each time a window is madc:full size, the meaning of
full size is recalculated so if an “excepted™” window changes size,
the meaning of full will automatically change.
Parameters: ServPort - any valid window (ignored).
exceptW - the window that is to be added to the list of those to be
cxcepted. If this is the NullWindow, then the FullWindow list
is reset to be empty.

Errors: Raises UscrError if more than 11 windows are excepted.

11.2.27 Procedure ExpandWindow

Procedurc ExpandWindow(ServPort: Window);

Abstract: Expands the specified window to be full Screen. If this window is
alrcady full Screen and its size has not been modificed, then this isa
no-op. If the window was full screen and its size was modified, then -
this remembers the current size as the one to go back to. This is the
opposite of ShrinkWindow. The meaning of full window is defined by
DefineFullSize.

Parameters: ServPort - a window that is to be expanded.

11.2.28 Procedure ShrinkWi_ndow

Procedure ShrinkWindow(ServPort: Window);

Abstract: Shrinks the window back to its original size (opposite of expand-
Window). If the window has not been e¢xpanded, then this is a no-op.

Parameters: ServPort - a window that is to be shrunk.

29 Oct 39

Sapphire Procedural Interface- 30

11.2.29 Functiqn GetWinProcess

Function GetWinProcess(ServPort: Window): Port;
Abstract: Returns the port for the window. 'This is the port passed to the window
-manager when the window was cnabled to be the listener. This port can
be used for sending emergency messages about control characters.

Parameters: ServPort - the window to get the process for.

Returns: The port for the window or NullPort if no port specified.

11.2.30 Function WinForViewPort

Function WinForViewPort(ServPort: Window;
vp: Viewport;
var isouter: boolean): Window;

Abstract: Returns the Window for the specified viewport.
Parameters: ServPort - any valid window; ignored.
vp - the viewport that the window is desired for. This
can cither be an inner or outer viewport.
outer - set to true if vp is the outer viewport for win.

Returns: the window for the specified viewport or NullWindow if none.

29 Oct 39

Sapphire Procedural Interface- 31

11.3 Icons

11.3.1 Procedure Compactlcons

Procedure Compacticons(ServPort: Window):
Abstract: Compacts and redisplays the icons, removing any empty spaces.

Parameters: ServPort - a window that is ignored.

11.3.2 Procedure IconAutoUpdate

Procedure [conAutoUpdate(ServPort: Window;
allowed: boolecan);

Abstract: Specifics that the icon for the window should or should not be
automatically updated by the window manager. If not, then
the icon will not have UtilProgress, WinGone, or the name
displayed in it. This has the side effect that it sets Err, Req, and
Attn to false and redisplays the icon which will therefore have an
empty insides. The application is free to update the inside of the
icon using the icon viewport. This procedure must be called with
allowed = false before getting the viewport for the icon window.

Parameters: ServPort - the window whose icon should not be updated.

11.3.3 Procedure GetlconViewport

Procedure GetlconViewport(ServPort: Window;
var iconvp: Viewport;
var width, height: Integer);

Abstract: Returns a viewport for the insides of the icon for the window
specified. This can be used by the application to show its own state
in the icon. The application should be prepared to redisplay the icon
if the viewport becomes uncovered or is moved. Call IconAutoUpdate
(w, false) first.

29 Oct 39

Sapphirc Procedural Interface— 32

Parameters: ServPort - the window whose icon viewport is desired.
iconVP - set to the viewport or NullViewport if the window has no
icon. .
width, height - sct to the width and height of the icon vp.

Errors: UserError('Update Altowed on window’) if lconAutoUpdate(ServPort,
false) not called first. '

11.3.4 Procedure DeAlloclconVP.

Procedure DeAlloclconVP(ServPort: Window):

Abstract: Eliminates the VP for the icon window. This erascs the icon and
redraws it. oes not Allow IconAutoUpdate.

Parameters: ScrvPort - the window whose icon viewport is to be destroyed.

11.3.5 Function GetlconWindow

Function GetlconWindow(ServPort: Window): Window;

Abstract: Returns the window that holds all the icons. Do not do graphics
inside this window.

Parameters: ScrvPort - ignored. (Needed for message passing).

Returns: The window that contains the icons.

29 Oct 39

Sapphire Proccdural Interface- 33

11.4 Graphics Primitives

11.4.1 Procedure VYPROP

Procedure VPROP(destvp: Viewport;
funct: RopFunct;
dx, dy, width, height: Integer;
srcVP: Viewport;
sx, sy: Integer);

Abstract: Does a rasterOp from src to destination using the covered windows.
For sctting a rectangle to white or black or inverting a rectangle,
call VPColorRect instead of VPROP. Only the displayed portions
on the 'screen are updated. If the dest VP has memory then the
covered portions are updated in the offscreen memory. May raise
exposed exception if portions in destination are not available in
source. Tries using the Kernel protected graphics functions first,
and then, if that fails, calls Sapphire’s ViewRop.

Parameters: destVP - the destination viewport. May be same as sicVP.

funct - the rasterOp function.
dx, dy - coordinates of the upper left corner of the rectangle
in the destination viewport.
width, height - the width and height of the rectangle to rasterOp.
srcVP - the source viewport. May be same as destVP.
sX, sy - coordinates of the upper left corner of the rectangle
in the source viewport.

Design: Simply calls DoRop after figuring out the rasterOp direction.

11.4.2 Procedure VPColorRect

Procedure VPColorRect(vp: Viewport;
funct: RectColorFunct;
X, y, width, hecight: Integer);

Abstract: Operates on one rectangle to set, clear or invert all its bits.
This is MUCH more cfficicnt than ViewRop for these operations.
Only the displayed portions on the screen are updated.
If the viewport has memory then the covered portions are

29 Oct 39

Sapphire Procedural Interface- 34

updated in the offscreen memory. Never generates exposed cxcepuon.
Tries using the Kernel protected graphics functions first, '
and then, if that fails, calls Sapphire’s ViewColorRect.
Paramecters: vp - the viewport to modify.
funct - the operation to do: RectWhite, Rcctll]ack or Rectinvert.
X, ¥ - the upper left corner of the rectangle in vp's coordinate
system,
width, height - the width and height of the rectangle to do.

11.4.3 Procedure VPScroll

Procedure VPScroll(destvp: Viewport;
X, ¥, width, height, Xamt, Yamt: Integer);

Abstract: Scrolls a portion of a viewport up or down and erases the part that
is left. Only the displayed portions on the screen are updated.
If the viewport has memory then the covered portions are updated in the
offscreen memory. Tries using the Kernel protected graphics functions
first, and then, if that fails, calls Sapphire’s ViewScroll.

Parameters: destvp - the viewport to modify.
x, y - upper left corner of rectangle’s old position with respect
to destVP, ,
width, height - width and height of the area to move.
Xamt, Yamt - number of bits to move the area; negative numbers to
move up and positive numbers to move down.

11.4.4 Procedure VPLine

Procedure VPLine(destvp: Viewport;
funct: LineFunct;
x1,y1,x2,y2: Integer);

Abstract: Draws a line in the viewport clipped to the displayed portions.
Only the displayed portions on the screen arc updated. If the
viewport has memory then the covered portions are updated in the
offscreen memory. ‘T'ries using the Kernel protected graphics functions
first, and then, if that fails, calls Sapphire’s ViewLine.

Parameters: destVP - the viewport to draw the line in.
funct - how to draw the line: DrawLine, ErascLine or XorLine.

29 Oct 39

Sapphire Procedural Interface- 35

x1, y1 - one end of the line. Coordinates arc in destVp’s
coordinate space with 0,0 at the upper left.
x2, y2 - the other end of the line. Both cnd points are drawn.

BUGS: Due to the current microcode, the line may have holcs in it.

11.4.5 Procedure VPString

Procedure VPString(destvp, fontVP: Viewport;
funct: RopFunct;
var dx, dy: intcger
var str: VPStr255;
firstCh: Integer;
var lastch: Integer);

Abstract: Displays a string in a viewport. As much of the string as will fit
across is displayed and the amount that was displayed is returned.

Only the displayed portions on the screen are updated. If the viewport
has memory then the covered portiens are updated in the offscreen
memory. Tries using the Kernel protected graphics functions first, and
then, if that fails, calls Sapphire’s ViewString. VPPuiString is

* similar to this procedure but it does not have the return values.

Parameters: destVp - the viewport to put the string in.

fontVP - a viewport that is a font (returned from LoadFont).
If NULILViewport, then SysFontVP used.

funct - the rasterOp function to use when displaying the string.

dx, dy - the starting location for the origin (bottom, left corner)
of the first character. Set to be the origin of the next
character to be displayed after the characters actually
written.

str - the string to display.

firstCh - the first character of the string to display. If
DONTCARE, then 1 is used (first character of the string)

lastch - the last character of the string to display. If
DONTCARE, then length(str) is used (the entire string
is displayed). Sect to the actual last character displayed.
This may not be as many characters as was desired because the
edge of the viewport was reached.

Errors: if fontVP is not a font.

If fontHeight is too big for the special buffer.

29 Oct 39

Sapphire Procedural Interface- 36

Design: Uses Genl.ine to write text to a buffer using the microcode StringOp
and then uses normal ViewRop from there.

11.4.6 Procedure VPChArray

Procedure VPChArray(destvp, fontVP: Viewport;
funct: RopFunct; '
var dx, dy integer;
chars: pVPCharArray;
arsizc :long;
firstCh: Integer;
var lastch: Integer);

Abstract: Displays a character array in a viewport.
Like VPString cxcept that the characters come from a
packed set array of characters.

Parameters: destVp - the viewport to put the characters in.

fontVP - a vicwport that is a font (returned from LoadFont). If
NULLViewport, then SysFontVP used.

funct - the rasterOp function to use when displaying the
characters.

dx, dy - the starting location for the origin (bottom, left corner)
of the first character. Sct to be the origin of the next
character to be displayed, after the characters are
actually written.

chars - Pointer to a packed array of characters that
contain the characters to be displayed. The array is
DeAllocated.

arsize - Number of characters in the array.

firstCh - the first character to display. If DONTCARE, then
zero is used (first character of the string).

lastch - the last character of the string to display. Cannot be
DONTCARE. Set to the actual last character displayed. This may
not be as many characters as was desired because the edge of the
viewport (or maxx) was reached.

Errors: if fontVP is not a font.
If fontHcight is too big for the special buffer.

Design: Uses GenLine to write text to a buffer using the microcode StringOp
and then uscs normal ViewRop from there. .

29 Oct 39

Sapphire Procedural Interface- 37

11.4.7 Procedui'e VPChar

Procedure VPChar{destvp, fontVP: Viewport;
. funct: RopFunct;
var dx, dy: Integer;
ch: Char);

Abstract: Displays a single character in a viewport. Unlike the other text
display routines, this one will not notify the user if the edge of
the viewport has been reached. Only the displayed portions on the
screcn arc updated. If the viewport has memory then the covered
portions are updated in the offscreen memory. Tries using the Kernel
protected graphics functions first, and then, if that fails, calls
Sapphire’s ViewChar. VPPutChar is similar to this proccdure
but it does not have the return value.

Parameters: destVp - the viewport to put the character in.

fontVP - a viewport that is a font (returned from LoadFont). If
NULLViewport, then SysFontVP used.

funct - the rasterOp function to use when displaying the character.

dx, dy - the location for the origin (bottom, left corner) of
the character. Set to the origin of the next character
to be displayed.

ch - the character to show.

Errors: if fontVP is not a font.

Design: Does a ViewRop directly from the font onto the viewport so the text
buffer is not used.

11.4.8 Procedure VPPutString

Procedure VPPutString(destvp, fontVP: Viewport;
funct: RopFunct; |
dx, dy: Integer;
str: VPStr255;
firstCh, lastch: Integer);

Abstract: Same as VPString except no return values.
Displays a string in a viewport. As much of the string as will
fit across is displayed and the amount that was displayed is .
returned. Only the displayed portions on the screen are updated.
If the viewport has memory then the covered portions are

29 Oct 39

Sapphire Procedural Interface- 38

updated in the offscreen memory. Tries using the Kernel protccted
graphics functions first. and then, if that fails, calls
Sapphire’s ViewString.

Parameters: destVp - the viewport to put the string in.

fontVP - a viewport that is a font (returned from [oadFont). If
NULIL Viewport, then SysFontVP used.

funct - the rasterOp function to use when displaying the string.

dx, dy - the starting location for the origin (bottom, left corner)
of the first character.

str - the string to display.

firstCh - the first character of the string to display. If
DONTCARE, then 1 is used (first character of the string)

lastch - the last character of the string to display. [f
DONTCARE, then length(str) is used (the entire string
is displayed).

Errors: NO NOTIFICATION IS GIVEN IF fontVP is not a font or fontHeight is
too big for the special buffer, the operation simply doesn’t happen.

Design: Uses Genl.ine to write text to a buffer using the microcode StringOp
and then uses normal ViewRop from there.

11.4.9 Procedure VPPutChArray

Procedure VPPutChArray(destvp, fontVP: Viewport;
funct: RopFunct;
dx, dy: Integer;
chars: pVPCharArray;
arSize :long;
firstCh, lastch: Integer);

Abstract: Same as VPChArray cxcept no return values.
Displays a portion of a character array in a viewport. Like
VPPutString except that the characters come from a packed array ot
characters. Only the displayed portions on the screen are updated.
If the viewport has memory then the covered portions are
updated in the offscreen memory. Tries using the Kernel protected
graphics functions first, and then, if that fails, calls
Sapphire’s ViewPutChArray.

Paramecters: destVp - the viewport to put the characters in.

fontVP - a viewport that is a font (returned from LoadFont). If
NULLViewport, then SysFontVP used.

29 Oct 39

Sapphire Procedural Interface- 39

funct - the rasterOp function to use when displaying the characters.

dx, dy - the starting location for the origin (bottom, left corner)
of the first character.

chars - Pointer to a packed array of characters that contain
the characters to be displayed. The array is DeAllocated.

arSize - number of characters in the array. Needed for message
passing.

firstCh - the first character to display. IfDONTCARE, then
zero is used.)

lastch - the last character of the string to display. Cannot be
DONTCARE. .

Errors: NO NOTIFICATION IS GIVEN IF fontVP is not a font or fontHeight is
too big for the special buffer, the operation simply doesn’t happen.

Design: Uses Genl.ine to write text to a buffer using the microcode StringOp
and then uses normal ViewRop from there.

11.4.10 Procedure VPPutChar

Procedure VPPutChar(destvp, fontVP: Viewport;
funct: RopFunct;
dx, dy: Integer;
ch: Char);

Abstract: Same as VPChar except no return values.
Displays a single character in a viewport. Unlike the other text
display routines, this one will not notify the user if the edge of
the viewport has been reached. Only the displayed portions on the
screen are updated. If the viewport has memory then the covered
portions are updated in the offscreen memory. Tries using the Kernel
protected graphics functions first, and then, if that fails, calls
Sapphire’s ViewPutChar.
Parameters; destVp - the viewport to put the character in.
fontVP - a viewport that is a font (returned from LoadFont). If
NULLViewport, then SysFontVP used.
funct - the rasterOp function to use when displaying the character.
dx, dy - the location for the origin (bottom, left corner) of
the character.
ch - the character to show.

Errors: NO NOTIFICATION IS GIVEN IF fontVP is not a font, the operation
simply doesn’t happen.

29 Oct 39

Sapphire Proccdural Interface- 40

Design: Does a ViewRop directly from the font onto the viewport so the
text buffer is not used.

11.4.11 Procedure VPtoScreenCoords

Procedure VPtoScreenCoords(ServPort: Viewport;
x, y: Integer;
var scrX, scrY: Integer);

Abstract: Calculates the screen coordinates of the point in the viewport
specified. Does not clip the point to the screen (the resulting
scrX, scrY may be off screen). This is the inverse of
ScreenToVPCoords.

Parameters: ServPort - the viewport the point is with respect to.
x,y - the coordinates of the point w.r.t. ServPort.
scrX, scrY - sct to the corresponding point w.r.t. the screen.

11.4.12 Procedure ScreenToVPCoords

Procedure ScreenToVPCoords(ServPort: View)vpdrt;
scrX, scrY: Integer;
var x, y: Integer);

Abstract: Calculates the viewport coordinates of the point in the screen.
Does not clip the point to the viewport (the resulting
X, y may be outside of the viewport). This is the inverse of
VPtoScreenCoords.

Parameters: ScrvPort - the viewport the point is inside of.
scrX, scrY - the point w.r.t. the screen.
X,y - sct to the corresponding point in ServPort.

29 Oct 39

Sapphire Procedural Interface— 41

11.4.13 Function LoadFont

Function LoadFont(ServPort: Viewport;
fileName: VPStr255): Viewport;

Abstract: Rcad in a font from the disk and creates a vicwport for it.
Parameters: ServPort - ignored. (necded for message passing).
fileNamec - the string name of the font (including any cxtensions).
A normal file lookup is uscd to find the file.

Returns: The font viewport for the file or NULLViewport if not found.

Errors: if cannot allocate memory for font.

11.4.14 Procedure FontSize

Procedure FontSize(ServPort: Viewport;
var name: string;
var PointSize, Rotation, FaceCode: Integer;
var maxWidth, maxHeight, xQOrigin, yOrigin: integer:
var fixedWidth, fixedHeight: boolean);

Abstract: Returns the parameters of the font.

Parameters: ServPort - a viewport representing-a font.

name - sct to the name of the font (e.g., "Helvetica"” or
"Computer Modern Roman")

size - sct to the size of the font in points (has little
to do with the size in pixels)

Rotation - set to the rotation of the font, in degrees
counterclockwise from the positive X axis

FaceCode - sct to a number encoding the "face” of the font
(bold, italic, normal, compressed, ...). The encoding.
is not specified here, but should be meaningful to a
program that knows the name of the font,

maxWidth, maxHeight - sct to the size of the bounding box for the
font - the smallest rectangle containing all of the
characters when their origins are aligned.

xOrigin, yOrigin - sct to the displacement of the origin from the
lower left corner of the bounding box.

fixedWidth - set to true if the font is fixed width, otherwise set
to false.

29 Oct 39

Sapphirc Procedural Interface- 42

fixedHeight - set to true if the font is fixed height.

***{f FixedWidth is true for fonts at rotation 0 or 180,
or FixedHcight is truc for fonts at rotation 90 or 270,
then FontStringWidth can be calculated without looking
at the width vectors for individual characters.***

Errors: if ServPort is not a font.

11.4.15 Procedure FontCharWidthVector

Procedure FontCharWidth(ServPort: Viewport;
ch: char;
var dx, dy: Integer);

Abstract: Returns the width of the specified character.

Parameters: ServPort - a font viewport.
ch - the character that the width is desired for.
dx, dy - return the width vector for the character: the
displaccment from the character’s origin to the origin
of the next character to be drawn.

Errors: if ServPort is not a font.

11.4.16 Function GetSysFont

Function GetSysFont(ServPort: Viewport): Viewport;
Abstract: Returns the standard system font viewport. Using NULLViewport in
the drawing routines will usc the System font, but if you need to

inquire for font size or char size, use the return from this
routine.

Parameters: ServPort - ignored. (needed for message passing).

Returns: The font viewport for the standard system font.

29 Oct 39

Sapphirc Procedural Interface— 43

11.4.17 Function FontStringWidthVector

Procedure FontStringWidthVector(ServPort: Viewport;
str: VPStr25s;
firstCh, lastch: Integer;
var dx, dy: integer): Integer;

Abstract: Returns the width of the specified portion of the string.

Parameters: ServPort - a font viewport,

str - the string that a width is desired for.

firstCh - the character of the string to start at. If
DONTCARE then 1 is used (first character of the string)

lastch - the character of the string to stop at (from firstCh to
lastCh INCI.USIVE is done). If DONTCARE, then length(str) is
used.

dx,dy - the width vector for the string portion: the displacement
from the first character origin for the next character to be
drawn after the string.

Returns: the width of str portion in screen pixels.

Errors: if ServPort is not a font.

11.4.18 Function LoadVPPicture

Function Load VPPicturc(ServPort: Viewport;
filcName: VPStr255;
width, height: Integer): Viewport;

Abstract: Read in a picture from the disk and create a viewport for it. This
is only useful when the size of the picture is known.

Parameters: ServPort - ignored. (needed for message passing).
fileName - the string name of the picture file (including any
extensions). A normal file lookup is used to find the file.
The picture is read starting at block 0 of the file.
width, height - the desired dimensions of the picture. This
must be consistent with the actual picture or it will not be
read in correctly.

Returns: The viewport for the picture or NullViewport if not found.

29 Oct 39

Sapphire Procedural Interface- 44

11.4.19 Procedure PutViewportBit

Procedure PutViewportBit(ServPort: Viewport;
X, y: Integer;
value: boolcan);

Abstract: Sct or clear a particular bit of the viewport.
Parameters: ServPort - the viewport to put the bit in

X, y = location of the bit
value - TRUE to sct the bit, FALSE to clear the bit

11.4.20 Function GetViewportBit

Function GetViewportBit(ServPort: Viewport;
X, y: Integer;
var value: Boolean): boolean;

Abstract: Read a particular bit of the viewport. Fails if the bit is
not available because it is in a covered portion (of a viewport
without memory) or if it is outside the viewport.

Parameters: ServPort - the viewport to get the bit from
x, y - location of the bit
value - set to TRUE if the bit is set; if not, set to FALSE.

Returns: TRUE if the bit is available, FALSE if not

11.4.21 Procedure PutViewportRectangle

Procedure PutViewportRecctangle(ServPort: Viewport;
funct: Ropfunct;
X, ¥, width, height: integer;
Data: pVPIntegerArray;
DataCnt: Long;
WordsAcross, ux, uy: integer);

Abstract: Performs a RasterOp operation from an array to a viewport.

29 Oct 39

Sapphirc Procedural Interface- 45

If the function is RRpl, this is the inverse of GetViewport.

Parameters: ServPort - the viewport to modify

funct - the RasterOp function to perform

X,y - the upper left corner of the rectangle to write

width, height - the size of the rectangle in pixels

Data - a pointer to an integer array containing the contents
of the rectangle

DataCht - the size of the array in words ‘

WordsAcross - the number of words in one scan line of the
array. Must be a multiple of 4.

ux, uy - the upper left corner of the rectangle in the array

11.4.22 Function GetViewportRectangle

Function GetViewportRectangle(ServPort: Viewport;
X, y, width, height: Integer;
var data: pVPIntegerArray;
var DataCnt: long; '
var wordsacross: integer
ux, uy: integer): boolean;

Abstract: Reads a rectangle from a viewport. Fails if any portion of
the rectangle is covered (in a viewport without memory) or
outside the viewport boundaries.

Parameters: ServPort - the viewport to read

x,y - the upper left corner of the rectangle to read
width, height - the sizc of the rectangle in pixels
data - returns a pointer to an integer array containing
the contents of the rectangle. The portion of the
array not filled by the rectangle contents is zeroed.
DataCnt - returns the size of the array in words
wordsAcross - returns the number of words in one scan line
of the array. It will be a muliiple of 4.
ux, uy - the desired location for the upper left corner of
the rectangle in the returncd array

Returns: True if the rectangle is available, False if it is not.

29 Oct 39

Sapphire Proccdural Interface- 46

11.5 Emergency Messages

11.5.1 Procedure EnableNotinyxceptions

Procedure EnableNotifyExceptions(ServPort: Viewport;
notif yPort: Port;
changed, exposed: boolean);

Abstract: Allow the client to be notified when the viewport is moved or
if parts of it are exposed. [not enabled, then exposed parts
arc simply cleared to white. If the viewport has memory, then
if will not usually get exposed exceptions. It will only get these
when the viewport has gotten bigger or when a VPRop has taken
place from another viewport that does not have memory, or when
a VPRop source is outside a viewport.

Parameters: ServPort - the viewport to cnable or disable,

notifyPort - the port to send emergency mcssages to when the
viewport is changed or exposed. If NULLPort, then
no messages are sent.

changed - if true, then exceptions are enabled when the viewport’s
size or position is changed. If false, then disabled.

exposed - if true, then exceptions are cnabled when the any part
of the viewport is exposed. If false, then disabled.

29 Oct 39

Sapphire Procedural Interface- 47

11.6 Cursors, Regions, and Tracking

11.6.1 Function LoadVPCursors

Function LoadVPCursors(ServPort: Viewport;
fileName: VPStr255;
var numCursors: Integer): CursorSet;

Abstract: l.oad a cursor sct into memory so that it can be used to set the
cursor to.

Parameters: ServPort - ignored.
fileName - the name of the file to read the cursors from.
numCursors - sct to the number of cursors found in the file.

Returns: a reference that can be used when setting the cursor or NIL if
file not found.

Errors: Iffile does not seem to be a valid cursor file.
NOTE: CURSORS SHOULD PROBABLY BE CHANGED TO BE VIEWPORTS (SO NO
SPECIAL CURSORSET TYPE). HANDLE LIKE FONTS.

11.6.2 Procedure DestroyVPCursors

Procedure Destroy VPCursors(ServPort: CursorSet);

Abstract: Deallocates the cursors. WARNING: Do not destroy a cursorSet while
it is still being usced by any region.

Paramcters: ServPort - the cursors to deallocate. Better not use them again.

11.6.3 Procedure ReserveCursor

Procedure ReserveCursor(ServPort: Viewport;
reserve: boolean);

Abstract: Prevents the down presses on the cursor from being interpreted by

29 Oct 39

Sapphire Procedural Interface- 48

the window manager. All down presses go to ServPort when ServPort

is the Listener. 'This is turned off by calling with reserve = false
or when ServPort is destroyed. This is independant of screen
reserving function. If ServPort is not the listener, then it is made
the listener.
*** NOT YET IMPLEMENTEI ***
Parameters: ServPort - the viewport that will reserve the cursor.
reserve - if true, then this cursor is reserved. If false, the
the cursor is released. Itis OK to call with false if cursor is
not reserved. '

Errors: if some other process has the cursor reserved, if ServPort cannot be

the listener.

11.6.4 Procedure SetCursorPos

Procedure SetCursorPos(ServPort: Viewport;
x,y: Integer);

Abstract: Set the cursor position for this viewport. This overrules
the settings of the cursor control for the region (gridding and
trapping will NOT be applied to the coordinates). If the specified
viewport is not the current listener, then this has no effect.
If tracking is true, then this sets both the cursor and tablet
position, otherwise, it sets only the cursor position.

Parameters: ScrvPort - the viewport to set the cursor for.

X,y - the position for the cursor with respect to ServPort.

11.6.5 Procedure SetRegionCursor

Procedure SetRegionCursor(ServPort: Viewport;
regionNum: Integer;
cursorlmage: CursorSet;
cursIndex: Integer;
curaFunc: CursorFunction;
track: Boolean);

Abstract: Specifics the cursor to be used in a region.

Parameters: ServPort - the viewport for the region.
regionNum - the region in that viewport to modify.

29 Oct 39

Sapphire Procedural Interface- 49

cursorlmage - the cursorSet containing the cursor. This cursorSet
should have been returned by 1.oadVPCursors. NiL
will use the default cursor and cursindex must be zero.

curslndex - the index in cursorlmage for the cursor desired.
‘Cursor indices start at 0.

cursFunc - the cursor function to use.

track - whether the cursor should follow the puck or not.

Errors: Raises userkrror if region not there or cursindex is out of bounds for
cursorlmage.

11.6.6 Procedure GetRegionCursor

Procedure GetRegionCursor(ServPort: Viewport;
regionNum: Integer;
var cursorimage: CursorSet;
var cursindex: Integer;
var cursFunc: CursorFunction;
var track: Boolean);

Abstract: Returns the current state of the region’s cursor.

Parameters: ServPort - the viewport for the region.

regionNum - the region to get information from.

cursorlmage - sct to the cursorSet for the region.

cursIndex - sct to the index in cursorlmage for the cursor for the
region.

cursFunc - set to the cursor function in use.

track - set to true if the cursor will follow the puck and false
if not.

Errors: Raises uscrError if region not there.

11.6.7 Procedure SetRegionParms

Procedure SetRegionParms(ServPort: Viewport;
regionNum: Integer;
absolute: boolean;
speed, minx, maxx, miny, maxy, modx, posx,
mody, posy: Integer);

29 Oct 39

Sapphirc Procedural Interface~ 50

Abstract: Specify the cursor movement control parameters for a region. The
special value DONTCARE can be used for most to get the defaults.

Parameters: ServPort - the viewport for the region.
regionNum - the region to sct up.
absolute - whether the tablet coordinates arc directly mapped to
screen coordinates or whether incremental movements
on the tablet will be added (creating relative
movements). If absolute is true then speed is ignored.
speed - if relative (not absolute), then controls how movements
on the tablet will map to movements on the screen. 1
means 1:1. Positive numbcrs mean that onc increment on
the tablet will be translated into that number of
increments on the screen. Negative numbers mean that
number of increments on the tablet will be translated into
onc increment on the screen. DONTCARE ==> 1.
minX, maxX, minY, maxY - these form a rectangle in the region that
the cursor is not allowed to leave when it goes into that
region. Thus the cursor will be trapped by this
rectangle. If all are DONTCARE, then not trapped.
modx - the grid factor in the x direction. The cursor will only
be put on cvery "modx"th point. Must be >= 1 or DONTCARE.
DONTCARE ==>1.
posx - if modx <> 1 then this determines the offsct to put the
cursor on in the x dircction. It should be less than
modx. DONTCARE ==>0.
mody - same as modx, only for the y direction,
posy - same as posx, only for the y dircction.

11.6.8 Procedure GetRegionParms

Procedure GetRegionParms(ServPort: Viewport;
regionNum: Integer;
var absolute: boolean;
var speed: Integer;
‘var minx, maxx, miny, maxy, modx, posx,
mody, posy: Integer);

Abstract: Returns the cursor movement for a region.
Parameters: ServPort - the viewport for the region.
regionNum - the rcgion to read.

absolute - sct to true if the tablet coordinates are directly
mapped to screen coordinates or false if incremental

29 Oct 39

Sapphire Procedural Interface- 51

movements on the tablet will be added (creating
relative movements). If absolute is true then speed
is ignored.

speed - if relative (not absolute), then set to the value that
controls how movements on the tablet will map to
movements on the screen. 1 means 1:1.
Positive numbers mean that one increment on
the tablet will be translated into that number of
increments on the screen. Negative numbers mean that
number of increments on the tablet will be translated into
onc increment on the screen. .

minX, maxX, minY, maxY - sct to the values that form a rectangle
in the region that the cursor is not allowed to leave
when it goes into that region. Thus the cursor will
be trapped by this rectangle. If all are DONTCARE,
then not trapped.

modx - set to the grid factor in the x direction.
The cursor will only be put on every "modx"th point.

posx - set to the offset to put the cursor on in the x
direction if modx <> 1.)

mody - sct to the grid factor in the y direction.

posy - set to the offset to put the cursor on in the y
direction.

11.6.9 Procedure PushRegion

Procedure PushRegion(ServPort: Viewport;
regionNum: Integer; .
leftx, topy, width, height: Integer);

Abstract: Pushes a new copy of regionNum onto ServPort. If regionNum is
already a region of ServPort, then it is NOT deleted so that this
region can be popped to go back to the old state. It is a bad idea
to have the same region pushed twice with different sizes since the
older one may not be fully covered by the newer one and thercfore
still be visible. If the regionNum is VPREGION or OUTREGION then
the coordinates arc ignored. [f cither, the rectangle for the
region is sct to the viewport’s rectangle.

The dcfault parameters for the region are taken from the old region
with the same number if present. If not present, then taken from
the first region for this viewport. If that not-there, then taken
from the parent of this viewport's first region if there, otherwise
uscs system defaults. This default can be overridden by
subsequently calling SetRegionParms and SetRegionCursor.

29 Oct 39

Sapphire Procedural Interface- 52

Parameters: ServPort - the viewport to add a region for.
regionNum - the region to add. If there already, then the new

version hides the old one. . .
I¢ftx. topy, width, height - the rectangle for this region with

respect to the viewport. If regionNum is VPREGION

or OUTREGION then ignored, otherwise, may not be UNCHANGED.

Errors: Raiscs userError if try UNCHANGED and not viewport or OUT REGION.

11.6.10 Procedure ModifyRegion

Procedure ModifyRcgion(ScrvPort: Viewport;
regionNum: Integer; .
leftx, topy, width, height: Integer);

Abstract: Modifics an existing region to have a new shape and position.

Parameters: ServPort - the viewport the region is for.
regionNum - the number for the region.
leftx, topy, width, height - the new parameters for the
region. May be UNCHANGED. If the regionNum is OUTREGION

or VPREGION then these parameters are ignored (the
coordinates for those regions arc the coordinates of the

viewport).

Errors: Raises UserError if region not there.

11.6.11 Procedure DeleteRegion

Procedure DeleteRegion(ServPort: Viewport;
regionNum: Integer);

Abstract: Deletes the most recent copy of regionNum. If only one, then
regionNum becomes illegal. If more than one had been pushed, then

the older onc becomes available.

Parameters: ServPort - the viewport containing the region.
regionNum - the region to delete.

Errors: Raises userError iftry to dclete a region that isn’t there.

29 Oct 39

Sapphire Procedural Interface- 53

11.6.12 Procedure DestroyRegions

Procedure DestroyRegions (ServPort: viewport);

Abstract: Deallocates all the regions for ServPort and each region’s rectangle
list.

29 Oct 39

Sapphire Procedural Interface- 54

11.7 Listeners

11.7.1 Procedure EnableWinListener

Procedure EnableWinl.istener{ServPort: Window;
abortPort: Port;
keytrantab: VPStr25s;
timeOut: Intcger);

Abstract: Allows the window to be the Listener and allows the vicwport for
the window to take input. Calling this procedure will generate
a changed listener event which is sent to the inner viewport of
the window.
Parameters: ServPort - the window that can be the Listener.
abortPort - the Kernel port of the process that owns the
window. This is used to send tDel emergency
messages to when the window gets tC type aborts.
keytrantab - the name of the key translation table to use.
If empty (") then the system dcfault key translation table
is used.
timeout - the number of "ticks" to wait before returning a
timeout event. 0 means wait forever. '
***Timeout NOT IMPLEMENTED YET**

Calls: Enablelnput on the Viewport for this window.

11.7.2 Procedure SetListener

Procedure SctListener(ServPort: Viewport);

Abstract: Specifies a new viewport to be the listener. All subscquent key
events will go to the new viewport. If no viewport had been
the listener, then all events queucd in the Null queuc are put
at the end of ServPort’s queue. NOTE: Applications cannot use the
FullViewport as the Listener. It is reserved for use by the
window manager itself.

Parameters: ServPort - the viewport to be the listerier. If NULLViewport then

the listener is sct to no viewport and cvents are saved in
a special queue for the next real viewport to be the

29 Oct 39

Sapphirc Procedural Interface- 55

listener. EnableWinListener for this viewport’s window and
EnableInput for this viewport must have been called before
calling Setl.istener.

11.7.3 Procedure MakeWinListener

Procedure MakeWinl.istener(ServPort: Window);

Abstract: Changes the Listener to the ServPort window. ServPort can be
NullWindow in which case there will be no listener.

Parameters: ServPort - the window to be the new Listener.

11.7.4 Function GetListenerWindow

Function GetListenerWindow(ServPort: Window): Window;
Abstract: Returns the Window for the listener.
Parameters: ServPort - ignored.

Returns: The window for the listener or NULLWindow if there is no Listener.

11.7.5 ProcedureEnablelnput

Procedure Enablelnput(ServPort: Viewport;
keytrantab: VPStr255;
timeout: Integer); -

Abstract: Allows the Listener to be set to the specified viewport. Also
specifies the Key translation table to be used.

Parameters: ScervPort - the viewport to be allowed to be the Listener.
keytrantab - the name of the key translation table to use.
If empty () then the system default key translation
table is used.
timeout - the number of "ticks" to wait before returning a timeout
event. 0 means wait forever. **NOT IMPLEMENTED YET**

29 Oct 39

Sapphirc Procedural Interface— 56

29 Oct 39

Sapphire Procedural Interface- 57

11.8 Keyboard and Puck Events

11.8.1 Function GetEvent

Function GctHvent(Scr»'Port: Viewport;
howWait: KeyHowWait): KeyEvent;

Abstract: Returns the next keyboard or puck event. [fhowWait is
KeyDontWait then returns immediately with a Position or
DiffPosition event (or a regular event if one has been queued).

If howWait is KeyWaitDiffPos then waits for the x,y position of

the cursor to be different. 1f howWait is KeyWaitEvent then

waits for the next key or button transition. If ServPort is not

the Listener, then will wait for ScrvPort to be the Listener before
returning unless how Wait is KeyDontWait in which case returns the
NoEvent event.

Parameters: ServPort - the viewport that an event is wanted for.
howWait - determines how to wait for the event.

Returns: a key event record for the event.

Errors: if input has nct been enabled for this viewport.

11.8.2 Function FlushEvents

Function FlushEvents(ScrvPort: vicwport): boolean;
Abstract: Flushes all queued cvents for a viewport.
Parameters: ServPort - the viewport to-flush.

Returns: True if any events were outstanding, false otherwise.

29 Oct 39

Sapphire Procedural Interface- 58

11.8.3 Procedure GetEventPort

Procedure GetEventPort(ServPort: Viewport;
howWait: KeyHowWait;
retPort: Port);

Abstract: Does a GetEvent from a named port. Allows asynchronous cvent
receives from more than one viewport.

11.8.4 Procedure ExtractEvent

Procedure ExtractEvent(rcpMsg: Pointer;
varvp: viewport;
vark: KeyEvent)
: Boolean;

Abstract: Allows asynchronous event receives from more than one viewport.

29 Oct 39

Sapphire Procedural Interface- 59

Appendix A. Sample Sapphire Application Program

In order to use Sapphire, the application program must import Sapph from Sapphuser and Viewpt from
ViewPtUser for the Matchmaker interface.

If handling cmergency messages, import SaphEmrServer and SaphEmrExceptions.
To get the full window port, call GetFullWindow(Sapphport).

Program Ritest;
f
1

Test program to illustrate parts of Sapphire interface
CopyRight (c) 1983, 1984 - PERQ Systems Corporation

Change Log
17-jan-84 V0.1 Amy Butler Change to run under Accent/Sapphire
Created . :
}

Imports Sapph from SapphUser;
Imports ViewPt from ViewPtUser;
Imports Pascallnit from Pascallnit;
Imports PathName from Pathname;
Imports Acclnt from AccentUser; {using SoftInterrupt}
Imports Except from Except; {to get emerg msg exception}
imports AccCall from AccCall; {for receive}

Imports SaphEmrServer from SaphEmrServer; {figure out which emerg msg}
Imports SaphEmrExceptions from SaphEmrExceptions; {the exceptions}

Imports TesterK Defs from TesterKDefs;

var
wins: Array[1..256] of window;
fullWindow, iconWindow: Window;
gr: GeneralReturn;
waithow: KeyHowWait;
SCIVPX, SCTVpy: integer;
hasTit, hasBor, fixcdSize, fixedPos: boolean;
title: TitStr;
progName: ProgStr;
strToPrint: VPStr255;
win: Window;
vp, scrvp, vpfont, SysFontVP: Viewport;

29 Oct 39

Sapphirc Procedural Interface- 60

names: pWinNameArray;
keyEv: KeyEvent;
myCursors: CursorSct;
fname,f2name : pathname;

num: l.ong;

dum, pushed: boolcan;

c: Char; ’

count, dummic:integer;)
x.xLy,yLw,wl,h.hl,x2,y2.x3,curWin, r, r1, minW, minH: Intcger;
x11, y11, wll, hll, rll:integer;

label

{ }

{ all for emerg msgs

{ }

const MaxMsgSize = 2048; { Max message size we can receive in bytes }

type Space = array [0 .. MaxMsgSize div 2 - 1] of integer;
pDummyMsg = tDummyMsg;

DummyMsg = record { A record large enough to hold the fixed }
case boolean of
true: (hcad : Msg; { portion of all of our messages }
RetType : TypeType;
RetCode : Integer;
body : Space); ,
false: (nextFreeMsg: pDummyMsg);
end;

var pInMsg : array[1..10] of pDummyMsg; {Pointer to a message we will receive}
pRepMsg : pDummyMsg; { Pointer to a reply message we will send }
msglinUse: array[1..10] of boolean; '

Procedurc HandlcAllEmergMsgs;
var i: Integer;
begin
fori:=1to1l0do
if msgInUsc[i] then
begin
if not SaphEmrServer(pInMsg[i], pRepMsg) then
writeLn(’** Got unknown emerg msg: ’, pInMsg[i]t.head.id:1);
msgInUscfi] : = false;
end;

29 Oct 39

Sapphire Procedural Interface~ 61

end;

Handler EmergMsg;
var gr: GeneralReturn;
num, i: Integer;
begin
num:=-1;
fori:=1to10do
if not msginUsc[i] then num : = i;
if num = -1 then Writel.n(** all 10 msgs in use’)
clse begin
pInMsg[num]t.hcad.MsgSize : = MaxMsgSize;
GR : = Rececive(pInMsg[num]t.hecad, 0, AllPts, Receivelt); { Get work }
if gr <> success then WritcLn(™* Lost the emerg msg’)
else (** HandleEmgMsg ** Can’t do this here due to MatchMaker bug **)
msginUsc[num] : = true;
end;
dum : = true;
HandleAllEmergMsgs; (** Due to matchMaker bug **)
if SoftInterrupt(kernelPort, false, dum) <> success then
WriteLn("** failed’);
end;

Handler EViewPtChanged(vpl: ViewPort; x1,yl,wl,hl,r: Integer);
var i: integer;
begin
fori:=1to(wldiv2)-1do
ViewColorRect(vpl, Rectlnvert, i*2, 0,1, hl);

ifr=1then {if top window }
VPROP(vpl, RRPL, x1, y1, w1, hl, vp, x1, y1);

wi=wl;
h:= hl;
ModifyRegion(vpl, regl, 0, 0, w div 2, h);
ModifyRegion(vpl, reg2, w div 2, 0, w div 2, h);
if pushed then ‘

ModifyRegion(vpl, 5, 0, h div 3, w div 4, h div 3);
end;

Handler EViewPtExposed(vpl: Viewport; ra: pRectArray; numRectangles: Long);
var i,j: Integer;
begin
fori := 1 to Shrink(numRectangles) do
with rat{i] do
begin
VPROP(vpl, RRPL, Ix, ty, w, h, vp, Ix, ty);

29 Cct 39

Sapphire Procedural Interface- 62

{ViewColorRect(vpl, Rectlnvert, Ix, ty, w, h);}
forj:= 1to 30000 do;
end;

if InValidateMemory(KernelPort, recast(ra, VirtualAddress),
wordsize(ra)*2) <> Success then
Writel.n("** failed to deallocate memory’);
end;

{ ' }

Handler Impossible(s: String):
begin
Writel.n(chr(7), 'IMPOSSIBLE *****°5);
goto 1;
end;

Handler UserError(s: String);
begin
Writel.n(chr(7), "USER ERROR *****° q):
goto 1;
“end;
(********************************* M[\IN *********************************)

begin
waithow : = KeyWaitEvent;
fullWindow : = GetFullWindow(sapphport);’

{~——————— Emergency Mcssage stuff ———-}
WritcIn("Enable emerg msgs ’);
dum : = true;
if SoftInterrupt(kernelPort, false, dum) <> success then
WriteLn(™** failed’)
else writeln(Cold value = °,dum);
forx := 1to10do '
begin _
New(pInMsg[x]);
msginUsc[x] : = false;
end;
New(pRepMsg);
{

curWin := 1;

29 Oct 39

Sapphire Procedural Interface- 63

forx:= 1t0256do
wins[x] : = NULLPort;

(* Createc Window *)

x := ASKUSER;

y := ASKUSER;

w:= ASKUSER;

h:= ASKUSER;

title : = > VP offscreen Window test ';

progName :=";

win : = CreatcWindow(FullWindow, false, x,y, false,
w,h,true, trug, title, progName, true, scrvp);

if win = NullWindow then exit(Rtest);

(* key Translation *)
fhame : = ’tester.keytran’;
if FindFileName(fname,”,false) <> success then
begin
writeln(fname, * not found’);
exit(Rtest); '
end;

ViewportState(scrvp, x, v, W, h, r, dum, dum, dum);

r:=1; :
vp: =MakeViewport(scrvp, OFFSCREEN, OFFSCREEN, w, h, r, TRUE, False, False);
ViewportState(scrvp, X, y, w, h, r, dum, dum, dum);

{SysFontVP : = GetSysFont(scrvp);}
{Get Font file} .
f2name : = ":accenOsteve>hbrw35.kst’; _
if FindFileName(f2name,”, false) <> success then
begin : :
writeln(f2name, ’ not found’);
{exit(Rtest);}
. end;
ypfont : = LoadFont(scrvp, f2name);
EnableNotifyExceptions(scrvp, DataPort, true, true);

EnableWinListener{win, DataPort, fname, 0);

{GetCursors}

fname : = "Tester.SCursor’;

if FindFileName(fname,”,false) <> success then . -
begin
writeln(Rtest: ’,fname, ’ not found’);
exit(Rtest);

29 Oct 39

Sapphire Procedural Interface- 64

end;
myCursors : = [LoadVPCursors(scrvp, fname, x);

{Create Regions and Set Cursors associated with the regions}
PushRegion(scrvp, regl, 0,0,w div 2, h);
PushRegion(scrvp, reg2, w div 2,0,w div 2, h);

SetRegionCursor(scrvp, regl, myCursors, 0, CFXor, true);
SetRegionCursor(scrvp, reg2, myCursors, 1, CFXor, true);

{main loop}

1:

count : =0;
SCIvpx : = 5;
pushed : = false;
repeat

keyEv : = GETEVENT(scrvp, waitHow);

if keyEv.x < 10 then keyEv.x : = 10;

if keyEv.y < 10 then keyEv.y : = 10;

if keyEv.x > w-9 then keyEvx := w-9;

ifkeyEv.y > h-13 then keyEv.y : = h - 13;

x2:=0;x3:=0;

{ display character }

VPCHAR(scrvp, vpfont, RNOT, x2, x3, chr(keyEv.cmd));
VPCHAR(scrvp, vpfont, RXOR, keyEv.x, keyEv.y, keyEv.ch);

ifkeyEv.ch =1’ then

{ don’t wait'}

waitHow : = KeyDontWait
else if keyEv.ch = 2’ then

{ wait for different position }

waitHow : = KeyWaitDiffPos
clse ifkeyEv.ch = '3’ then

{ wait for press or keystroke }

waitHow : = KeyWaitEvent

else if keyEv.ch = ’4’ then

begin
{ a new region created over top of part of first region}
pushed : = true;

PUSHREGION(scrvp, 5, 0, h div 3, w div 4, h div 3);
SETREGIONCURSOR(scrvp, 5, myCursors, 2, CFXOR, TRUE);
end

elsc if keyEv.ch =5 then
begin
{ the new region delcted }
pushed : = false;

29 Oct 39

Sapphire Procedural Interface- 65

DELETEREGION(scrvp, 5);
end
clse if keyEv.ch = 6" then
begin
{ the new region modified if it cxists }
if pushed then

begin

MODIFYREGION(scrvp, 5, w div 3 * 2, h div 3, w div 4,
h div 3);

end;

cnd
else if keyEv.ch =’ then

{ crase screen }

ViewColorRect(scrvp, RectWhite, 0, 0, w, h)
clse if keyEv.ch = '’ then

exit(Rtest);

count: =count+1;

if count > 5 then
begin) _
{ save viewport offscreen, blank onscreen viewport }
{ and refresh with offscreen } .
ViewportState(scrvp, x1, y1, wl, hl, rl, dum, dum, dum);
ViewportState(vp, x11, y11, w11, h1l, r11, dum, dum, dum);
VPROP(vp, RRPL, §, 5, wl-5, h1-§, scrvp, $, 5);
VPColorRect(scrvp, RectWhite, 0, 0, wl-5, h1-5);
for count : = 11020000 do ;
VPROP(scrvp, RRPL, §, 5, wl-5, h1-5, vp, §, 5);

count: =0;
end;

if count = 4 then
begin

{ draw a line, print a string using VPfont }
VPLine(scrvp, drawline, 50, 250, 100, 250);
if scrvpx > w1-100 then scrvpx: =S5
clse scrvpx : = scrvpx + 3;
scrvpy: =250;
strToPrint: =Perq’;
dummie: = dontcare;
ViewString(scrvp, vpfont, RRPL, scrvpx, scrvpy, strToPrint,
dummie,dummie);
VPString(scrvp, vpfont, RRPL, scrvpx, scrvpy, strToPrint,
dummie, dummie);
end;
until false;
end.

29 Oct 39

Sapphire Procedural Interface- 66

Appendix B. Key Translation

"This scction describes the format for the creation of a key translation table and provides an example
KTEXT file. Compiling this file using Key'IranCom produces a file foo.KEYTRAN which is used by the
window manager and application programs and a file fooKIDDEFS.PAS which is imported by the program
using the table.

To exccute, type KEYTRANCOM. You will be prompted for the .KTEXT filename, the . KEYTRAN
filename, the KDEFS.PAS filename and the .ERR crror filename. If you wish all the files to be called FOO,
you may type KEYTRANCOM FOO and the_ files will be called FOO.KTEXT, FOO.KEYTRAN,
FOOKDEFS.PAS and FOO.ERR. You will not be prompted for filenames.

'The following conventions have been used in describing the format of a keytranslation table text file:

(<>) enclose non-terminals,

({}) enclose comments,

(1)) enclose optional items, -

(*) between items means that they can come in any order,
(]) between items means a choice.

o Literals are shown in upper case but will not be case-sensitive.
e Begin Comments in the file with "!" and the rest of the line will be ignored. There may be blank

lincs.

o All special scparator characters (literals in the text, such as "+" and "=") must have spaces
around them.)

o Numbers can be in octal by preceeding them with a #. Numbers must be positive and less than
256. ‘ '

e When specifying a character, shift (case) is significant. Thus "CONTROL A" is "control shift a",
whereas "CONTROL. a" is normal control a. A shift prefix is therefore not nceded (shift of
special keys is not significant).

If you simply wish rawkeyboard events then the file should have the one word in it; ,

RAWKEYBOARD ! optionally followed by the word
END. ! Comments arc permitted.

A Key translation text file will have the following format:

29 Oct 39

Sapphire Procedural Interface- 67

DEFINITIONS ! the definitions section is optional
if no
! commands or regions need to be
named.
region <name> = <2..30> ! names are 1..25 characters in
Tength;
<name> = <2..30> | case is preserved but irrelevant:

! all names must be unique.
command <name> = <2.,255>
<name> = <2..255>

! 6redefined region names are VPREGION OUTREGION

WILDREGION .

! VPREGION is the full area inside the
viewport

! OUTREGION 1is the full area outside the
viewport

! WILDREGION matches any region

! predefined command names are STDCOMMAND

NULLCOMMAND

| STDCOMMAND is used when no translation is
done '

! NMULLCOMMAND is only used with prefixes,
see below.

! Region and Command definitions may repeat in any order

KEYTRANSLATIONS

[Region <region name>] ! if no region is specified, WILDREGION is
used
! The order for regions is important. If the

same key

! is defined in a region and in WILDREGION,
the one

! in the specific region should be defined
first

! so it will take precedence over the
definition in
! WILDREGION.

! standard form

<key desc> = <command name> [<char code>] [PREFIX]

29 Oct 39

Sapphire Procedural Interface- 68

! prefix form
<key desc> + <key desc> = <command name> [<char code>] [STAYINMODE]
! continue with additional regions

[END] ! if END present, then the
! rest of file is ignored

DEFINING PREFIXES

Before using a prefix in other <key desc>s, the prcﬁx first must be defined, by using the Standafd form
and the word PREFIX.

If the prefix is to return a value when typed, provide the value as the <command name>. If no value is to
be returned, specify NULLCOMMAND. NULLCOMMAND can only be uscd with prefixes.

The <char code for prefixes must be 1..7 and defines the Escape Class of the prefix. Different prefixes
should have different <char codes if they are to have different effects.

The ANY <key desc) is used with prefixes to specify that any char- acter after the prefix will have the
same command number. For a prefix to be used before an ANY, define the prefix as:

prefix = NULLCOMMAND <char code 1..7> PREFIX
prefix + ANY = <{command name>

The prefix must be defined with NULLCOMMAND. Any character typed after the pre'ﬁx will have the
command name specificd on the "any" line. There should be no <char code> on this line as shown.

DEFINITIONS OF NON-TERMINALS

! the asterisks mean that the color prefixes can be in any order

<key desc> == [BLUE] * [YELLOW] * [WHITE] * [GREEN] <keyboard key> | !for
GPIB

_[MIDDLE] * [LEFT] * [RIGHT] <keyboard key> !for
KRIZ :

<keyboard key> == [CONTROL] <key> |
[CONTROL] <0..127> |
<0..255>

<key> == <{character> | ! any printing character (not
! SPACE)
<{special key name> |
{special actions> |
ANY

29 Oct 39

Sapphire Procedural Interface- 69

{char code> == [CONTROL] <character> ! no special actions allowed
| <0..255>
| UPPERKEY ! upper case of key irrespective of control

! or shift, e.g C for *SHIFT-C or tc or c.

| ROOTKEY ! the key without the control bit; shift is
! significant, e.g. C for tSHIFT-C or ¢ for
! *c. Special keys come in as control codes.

| FULLKEY ! the exact number of that key as it comes in
! as raw data from key board.

| ASCIIKEY ! the ascii value that corresponds to the key.
! This is the default if no character is given.

{special key name> == INS | DEL | HELP | TAB | BACKSPACE | OOPS | RETURN |
LF | SPACE | ESC |
-1 INS and ESC_are the same

! PERQ1 only same as PERQ2 ENTER
CONTROLSPACE |

! PERQ2 keys
NOSCROLL | SETUP |
UPARROW | DOWNARROW | LEFTARROW | RIGHTARROW |
! breaks are same as arrows
BREAK | CONTROLBREAK | SHIFTBREAK | CNTRLSHFTBREAK |
) ! Control doesn't work with the next 3 lines of

keys
NO | N1 | N2 | N3 | N4 | N6 | N6 | N7 | N8 | N9 |
PF1 | PF2 | PF3 | PF4 |
ENTER | NCOMMA | NMINUS | NPERIOD

{special actions> == | blue no equivalent with Kriz tablet

BLUEDOWN | BLUEUP |

! white=left button
WHITEDOWN | WHITEUP | LEFTDOWN | LEFTUP |

! green=right button
GREENDOWN | GREENUP | RIGHTDOWN | RIGHTUP |

| yellow=middle button
YELLOWDOWN | YELLOWUP | MIDDLEDOWN | MIDDLEUP]

REGIONEXIT | TIMEOUT | POSITION | DIFFPOSITION |
NOEVENT | LISTENER

29 Oct 39

Sapphire Procedural Interface- 70

Example .KTEXT file

DEFINITIONS

region regl = 3
reg2 = 4
regd = 5

command

command PosResponse = 65

DiffPos = 66
NoneEvent = 67
YellowDown = 68
WhiteDown = 69
GreenDown = 70
BlueDown = 71
YellowUp = 72
Whitelp = 73
GreenUp = 74
BlueUp = 75
Yel1DownReg2 = 76
Yel1UpReg2 = 77
Yel1lDownReg3 = 78
YeliUpReg3 =79
NewRegionEvent = 80
IMListener = 81
KEYTRANSLATIONS

region reg2

yellowdown = yellDownReg2 '[
yellowup = yellUpReg2 ']

region reg3

yellowdown = YellDownReg3 '*
yellowup = YellUpRegd '#

REGION WildRegion
Position = PosResponse 'p
yellow position = PosResponse 'p
blue position = PosResponse 'p
white position = PosResponse 'p
green position = PosResponse 'p

DiffPosition = DiffPos 'd

29 Oct 39

Sapphire Procedural Interface- 71

yellow DiffPosition = DiffPos 'd
blue DiffPosition = DiffPos 'd
white DiffPosition = DiffPos 'd
green DiffPosition = DiffPos 'd
NoEvent = NoneEvent 'n
RegionExit = NewRegionEvent '%
Listener = IMListener '&

yellowdown = yellowDown 'y.
yellowup = yellowlp 'Y

whitedown = whiteDown 'w
whiteup = whiteUp 'W

greendown = greenDown 'g
greenup = greenlp 'G

! blue is UNDEFINED for testing

END

29 Oct 39

Sapphire Procedural Interface- 72

index

CompactIcons
CreateWindow

DeAllocIconVP
DefineFullSize
DeleteRegion
DeleteWindow
DestroyRegions
DestroyViewport
DestroyVPCursors

EnablelInput
EnableNotifyExceptions
EnableWinListener
ExpandWindow
ExtractEvent

FlushEvents
FontCharWidthVector
FontSize "
FontStringWidthVector
FuliWindowState

GetEvent
GetEventPort
GetFullViewport
GetFuliWindow
GetIconViewport
GetIconWindow
GetListenerWindow
GetRegionCursor
GetRegionParms
GetScreenParameters
GetSysFont
GetViewportBit
GetViewportRectangle
GetVPRank
GetWinNames
GetWinProcess

IconAutoUpdate
IdentifyWindow

LoadFont
LoadVPCursors
LoadVPPicture

MakeViewport
MakeWinListener
ModifyRegion
ModifyVP
ModifyWindow

29 Oct 39

PushRegion
PutViewportBit

PutViewportRectangle

RemoveWindow

ReserveCursor
ReserveScreen
RestoreWindow

Sapph_Version
ScreenToVPCoords
SetCursorPos
SetRegionCursor
SetRegionParms

SetWindowAttention

SetWindowError
SetWindowName
SetWindowProgress
SetWindowRequest
SetWindowTitle
SetWinListener
ShrinkWindow

ViewportState
VPChar
VPChArray
VPColorRect
VPLine
VPPutChar
VPPutChArray
VPPutString
VPROP
VPScroll
VPString
VPtoScreenCoords

WindowViewport
WinForName
WinForViewPort

Sapphire Procedural Interface~ 73

29 Oct39

	0001
	0002
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73

