Accent Kernel” Interface

Rickiard F Rashid

22 August 1984

Abstract

Accent is a communication oriented operating system kernel built at Carnegie-Mellon University to
support the distributed personal computing project, SPICE, and the development of a fault-tolerant
distributed sensor network (DSN). Accent is built around a single, powerful abstraction of
communication between processes, with a all kernel functions, such as device access and virtual
memory management accessible through messages and distributable throughout a network. In this
manual, specific attention is given to the program interface to the Accent kernel. In addition to an
implementation for the PERQ System Corporation PERQ and PERQ Il computers, the interprocess
communication facility described here is also available for VAX UNIX systems 4.1 bsd, 4.1¢c bsd and
4.2 bsd.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

Accent is a trademark of Carnegie-Mellon University.

Accent and many of its subsystems and support programs were originally developed by the CMU
Computer Science Department as part of its Spice Project. The system described in this manual is
based upon the Kernel program by Richard F. Rashid.

This document is adapted from the paper by Richard F. Rashid, Accent Kernel Reference Manual.
Carnegie-Mellon University, Pittsburgh, PA 1984. This document is not to be reproduced in any form
or transmitted in whole or in part without the prior written authorization of PERQ Systems Corporation
or Carnegie-Mellon University.

The information in this document is subject to change without notice and should not be construed as
a commitment by PERQ Systems Corporation. The company assumes no responsibility for any errors
that may appear in this document. PERQ Systems Corporation will make every effort to keep
customers apprised of all documentation changes as quickly as possible.

Table of Contents -

1. Introduction
1.1. Manual Organization
1.2. Notational conventions
2. Accent message primitives
2.1. Basic terms
2.2. Accent primitives
_ 2.3. IPC related non-primitive functions
3. Accent process primitives
3.1. Basic terms :
3.2. Process management routines
4. Accent virtual memory primitives
4.1.Basic terms _
4.2. Virtual memory management routines
5. Accent Disk Handling
5.1. Basic terms
5.2. Disk management routines
6. Accent Display Facilities)
6.1. Overview
6.2. Display Management Routines
7. MatchMaker Interface Specification for Accent
|. Summary of Calls .

LBBBBBERRRBBRS v

1. Introduction
Accent is a communication-oriented operating system kernel. Conceptually, Accent provides:
¢ multiple processes with a flexible process scheduling facility,
¢ a large, paged virtual memory for each user process,
© both synchronous and asynchronous message-based interprocess communication,
e transparent network extensibility, and

« a flexible capability-based approach to security and protection.

As an operating system for the PERQ Systems Corporation PERQ computer, its features include:

e support for multiple virtual machines, each capable of using its own micro-interpreter and
each with up to 2**32 bytes of paged virtual memory, :

o transparently pageable microcode overlays for special purpose operations and

e protected access to rectangular areas of the PERQ’s 1024x768 or 1024x1280 bitmap
displays, including graphics rasterop capability and special string display functions.

The basic unic of computation in Accent is the process. Processes consist of an address space
(2**32 bytes of paged virtual memory), process state (including the state of any macrocode and

microcode registers essential to execution) and access to one or more ports.

An Accent port is a kernel managed and protected queue of messages. A port is both a simplex
communication channel and the basic object reference mechanism in Accent. Ports are used to refer
to objects and -operations on objects are requested by sending messages to the ports which represent

them.

An Accent message is a discrete typed collection of data objects and may include access rights to

ports.

Message-passing is the sole means of communication both between processes and between the
processes and the operating system kernel itself. The only primitive functions are those directly
‘concerned with message communication. These primitive functions are implemented as traps into

the Accent kernel.

This manual describes both the basic message primitives provided by Accent and the functicns
made available by the Accent kernel through messages. It does not describe facilities prqvided by

Accent processes (such as the Spice File System).

1.1. Manual Organization

This technical content of this manual consists of four sections:
1. message primitives and support facilities,
2. process creation and management facilities,
3. virtual mem'ory management functions and

4, disk management and /0 facilities.

In addition, an appendix is included which details the machine readable definition of the Accent

kernel interface produced by MatchMaker, the Spice remote procedure call generator.

1.2. Notational conventions

For clarity, all message primitives and Accent kernel functions provided by messages are described
as calls to a PASCAL library of kernél interface procedures and functions. In addition to PASCAL,
SubAda, C and Spicelisp libraries are provided which have a similar form and make available the
same set of functions. In practice, Accent kernel interfaces are described.in a high-level multiprocess

communication language called MatchMaker.

The rule of thumb for converting the PASCAL specification of this document to either a message

exchange or kernel trap is as follows:

e In the case of message primitives, the arguments to the function are packaged into a
record and a pointer to the record is passed on the PERQ expression stack to be picked
up and interpreted by the operating system after a switch to kernel state occurs. Return
values slots are part of the passed record and return values are stored by the operating
system before returning to the user process.

e in the case of message calls, the in arguments to the function are composed into a
message and sent to the port described in the first argument of the function. The
arguments are placed in the message in the order that they appear, each described by a
different descriptor (see below). Reply messages contain a sixteen bit integer result code
and all out arguments and are sent to the port which was used as the local port field of
the message as sent to the kernel. In the procedural specifications below, the reply port
field is left out of the call for clarity. In the Accent Pascal interface, the reply port is -
allocated by an initialization routine and implicit in all calls.

In addition, Pascal records are used as a descriptive language for the contents of the messages. In
interpreting these records as bits of information laid out in memory, the following packing rules must
be applied: ') o

e In records which are not labeled ’packed’, all quantities which are 16 bits or less in size
are packed in 16 bits.

eln packed records several quantities may be packed into a 16 bit word if the sum of the bit

sizes is less than 16.

e The bit size of a quantity is the minimum number of bits required to represent that
quantity. Thus a boolean has bit size one. A character has bit size eight. An integer is 16
bits. A long is 32 bits. '

e Information is paéked into words from right to left (least significant to most significant bit).
No quantity may stradle a 16 bit boundary with the exception of a long which is 32 bits.

o Identifiers which are defined as part of enumerated types start with the value zero and
increase by one. Thus type foo = (bar, baz) means that bar will have the value zero

and baz the value one.

2. Accent message primitives

2.1. Basic terms

Accent message primitives manipulate two distinct objects:

1. ports - protected kernel objects to which messages may be sent and logically queued
until reception, and

2. messages - ordered collections of typed data consisting of a fuxed size message header
and a variable size message body.

Ports have finite queues and processes may exercise several options for handling the case of

message transmission to a full queue (see Send below).

Processes refer to ports through the use of 32-bit integer values which represent access rights to
send-to, receive from or own ports. A process can hold any combination of these rights. When a
process creates a port it.holds all three. As long as a process retains access to a port it may use the
same integer value to refer to it. The integer value representing the same port may be different for

different processes. A process can only refer to ports to which it has been given access.

The three different kinds of port access rights are defined as follows:

Send access to a port implies that a process can send a message to that port. Should
~the port be destroyed during the time a process has send access, a
message will be sent to that process by the kernel indicating that the port
has disappeared as well as the cause of the disappearance (e.g. explicit
destruction, process death, network failure, etc.).

Receive access to a port allows a process to receive a message from that port. Only one
process may have receive access for a given port at a time.

Ownership of a port implies that, should the process with receive access relinquish
the port either through explicit deallocation or process death, the receive
rights to the port will be sent to the port’'s owner. Likewise, should
ownership be relinquished, the ownership rights are sent by the kernel in a
message to the receiving process.

‘Port access rights can be passed in messages. They are interpreted by the kernel and transferred

from the sender to the kernel upon message transmission.and to the receiver upon message receipt.

At the time of creation, each process normally has access to at least two ports:

1. a kernel port for which the new process has send access and which can be used to send
messages to the system kernel, and

2. a data port for which the new process has receive access and ownership and for which
the kernel has send access. This port is always used for receiving replies to kernel-
directed requests. In addition, the data port is the pcrt normally used by the kernel to
send emergency messages about port destruction and other error conditions.

A message consists of a fixed part, describable as a PASCAL record and a variable size part
following that fixed part. The PASCAL record describing the fixed size message head is:
type

Msg =
record

SimpleMsg : boolean; True if message uses no pointers }
and transmits no port rights }
MsgSize : long: Number of contiguous bytes in the }
: message. } v
MsgType : long; NORMALMSG or EMERGENCYMSG }
LocalPort : Port; For send: optional port of sender}

For receive: port msg received on }
For send: port to send message to }
For receive: optional port of sender}
Arbitrary value - by convention used}
{ to identify kind of message. }

RemotePort : Port:

Caon Yanu Y aon Yane Yate Yo Yase Yase Yane Vasn)

1D : long

{ MsgSize - ByteSize(Msg) bytes of message }
{ data follow, see below. }

end;

15) o

| Simp?ggkg) ---l word 0
[--- i Msgs;;; (1sw) | word 1
r ;;;;;;; {msw) - ‘--| ‘word 2
G ;;;Type (sw) - --‘| word 3
| Mngy;; (ms;; | word 4
| Local;;;;-z;;;; ------------- | word &
| T Loca1Po;; (msw) -~ . i | word 6
l-----------;emotePort (1sw) S | word 7
| RemotePort (ms;; ---l word 8
|F ;5 (1sw) | word 9
| 10 (;;;) - _--I word 10

The variable data part of a message consists of an array of descripfors for typed objects. Each typed

object descriptor is of the form:

31 0
| TypeType |
| TypeName) TypeSizelnBits | (optional)
| NumElts | (optional)
| |
. Pointer to Data
. (32 bits)
. or .

Inline Data
(TypeSizeInBits * NumElts bits)

The record describing the TypeType field is:

type
TypeType =
packed record -
TypeName : s Bit8;
TypeSizeInBits : Bit8;
NumOb jects : Bit12;
InLine : boolean;
LongForm : boolean;
Deallocate : boolean;
end;
3130 29 28 27 16 16 87 0
I T I I | | |
U DL I NUMOBJECTS TYPESIZEINBITS TYPENAME
N E O N
U AN L
S L G I
E L F N
D O 0 E
C R
A M
T
E

The TypeName: TypeSizelnBits, and NumElts fields exist only if the LongForm bit of the DataType
field is set. This provides potentially 16 bits for both the TypeName and the TypeSizelnBits and allows
a single object to be an array of up to 2**32-1 primitive date elements. If LongForm is false, then the

number of elements is defined by the NumObjects field of DataType.

System defined data types (i.e., values which may be included in the TypeName field of a

DataDescriptor) include:

« TYPEUNSTRUCTURED = 0;
¢ TYPEBIT = 0;

o TYPEBOOLEAN = 0;

o TYPEINT16 = 1;

o TYPEINT32 = 2;

o TYPEPTOWNERSHIP = 3;
o TYPEPTRECEIVE = 4;

o TYPEPTALL = 5;

e TYPEPT = §;

o TYPECHAR = 8;

o TYPEINTS = 9;

o TYPEBYTE = 9;

o TYPEREAL = 10;

o TYPEPSTAT = 11;

o TYPESTRING = 12;

o TYPESEGID = 13;

o TYPEPAGE = 14;

The Deallocate bit appliés to port rights and data blocks pointed to by a descriptor. |f the Deallocate
bit is set and a port is referred to, that port is deallocated from the name space of the current process
when the message is sent. If the Deallocate bit is set and a pointer is referred to, all full pages of data
pointed to by the pointer will be removed from the address space of the sending process when the

message is sent.

The following is an example of the creation of a message in PASCAL. The message contains both
pointer and inline data blocks as well as a port and a long integer. Note that in practice users do not
normally construct messages by hand, but use MatchMaker to define type-checked message

interfaces between processes.

const
MYMESSAGEID = 100;

type
ptrBlock = 4Block;
Block = array [0..256] of integer;

MyMessage =
record

Header) :
APortType :
APort :
ALongType :
~AlLong :
BlockPtrType :
BlockPtr :
IntineBlockType :
InlineBlockTypeName :
InlineBlockTypeSize :
InlineBlockNumObjects :
InlineBlock :
end;
var
message : MyMessage;
MyPort : Port;
HisPort : Port;
MyOtherPort : Port;
Mylong : long;

PtrToSomeBlock: ptrBlock;

begin

Msg;
TypeType:
Port;
TypeType;
long;
TypeType:
ptrBlock;
TypeType:
Integer;
Integer:
Long;
Block;

{ Get information to send from somewhere. }

message.Header.SimpleMsg
message.Header .MsgSize.
message.Header .MsgType
message.Header.LocalPort
message.Header.RemotePort
message.Header.ID

message.APortType, TypeName
message.APortType.NumObjects
message.APortType.InLine
message.APortType.LongForm
message.APortType.Deallocate
message.APortType.TypeSizeInB
message.APort

message.ALongType.TypeName
message.ALongType.NumObjects
message.ALongType.InLine -
message.ALongType.LongForm
message.ALongType.Deallocate
message.ALongType.TypeSizeInB
message.Along

message.BlockPtrType.TypeName

message.BlockPtrType.NumObjec
"message.BlockPtrType.InLine

message.BlockPtrType.LongForm

its

its

ts

message.BlockPtrType.Deallocate
message.BlockPtrType.TypeSizeInBits

message.BlockPtr

:» false;

:» WordSize(message)*2;
:= NORMALMSG;

:= MyPort;

:= HisPort;

;= MYMESSAGEID;

:= TYPEPT;
= 1

= true;
:= false;

:= false;

:= 32;

:= MyOtherPort;

:= TYPELONG;
HLE ’
:= true;
:= false;
:= false;

= 323

:= MyLongInteger;

= TYPEINT16;
n 266;

= false;

= false;

= false;

= 16; .

:= PtrToSomeBlock;

{ Now an example using the long form of TypeType }

message.InlineBlockType.InLine
message.InlineBiockType.LongForm
message.InlineBlockType.Deallocate

message.InlineBlockTypeName
message.InlineBlockTypeSize
message.InlineBlockNumObjects
message.InlineBlock

= true;

= true;

:= false;

:» TYPEINT18;

1= 163

1w 256

:= PtrToSomeBTockt;

{ Send the message }

end;

In addition to the message record definitions, the following constant and type definitions are used

by the various message interface routines:

const :

WAIT = 0;
DONTWAIT = 1;
REPLY = 2;

. PREVIEW = 0;

" RECEIVEIT = 1;
RECEIVEWAIT = 2;
DEFAULTPTS = 0;
ALLPTS = 1;
LOCALPT = 2.
MAXPORTS = 265; { NB: This constant is out of date,.thers is

: no longer a maximum number of ports. }
MAXBACKLOG = 63; { Installation dependent }
{}
{ Message types:
{
MORMALMSG = 0;
EMERGENCYMSG = 1;
{ Kernel generated message ids:
{} '
M_PORTDELETED = #100 + 1;
M_MSGACCEPTED = #100 + 2;
M_OWNERSHIPRIGHTS = #100 + 3;
M_RECEIVERIGHTS = #100 + 4;
M_GENERALKERNELREPLY . = #100 + 6;
M_KERNELMSGERROR = #100 + 7;
M_PARENTFORKREPLY = #100 + #10;
M_CHILDFORKREPLY = #100 + #11;
M_DEBUGMSG = #100 + #12;
type

Port = Jong;
Milliseconds = long:
SendOption = WAIT..DONTWAIT;
ReceiveOption = PREVIEW.,RECEIVEWAIT;
PortOption = DEFAULTS. .LOCALPT;
PortBitArray = packed array [0..MAXPORTS-1] of boolean;
PortArray = array [0..MAXPORTS-1] of Port;
PtrPortArray = tPortArray;
LPortArray = array [stretch(0)..stretch(#77777)] of Port;
PtrLPortArray = tLPortArray;
Backlogvalue = 0..MAXBACKLOG;

In addition the possible return values for all of the routines are listed bélow, and in the file

10

AccentType.pas. For message primitives, these values are returned in the kernel trap argument
block. For kernel messages these values are returned as the first element in the data portion of the

message as a 16 bit integer. The user sees both these_ types of return values as general return values.

const
AccErr ‘ = 100;
Dummy = AccErr+0;
Success = AccErr+l;
TimeOut = AccErr+2;
PortFull = AcCErr+3;
WillReply = AccErr+4;
TooManyRep1ies = AcCErr+5;
MemFault s AccErr+6;
NotAPort = AccErr+7;
BadRights = AccErr+8;
NoMorePorts = AccErr+9;
I11egalBacklog = AccErr+10;
NetFail = AccErr+il;
Intr = AccErr+12;
Other = AccErr+13;
NotPortReceiver = AccErr+l4;
UnrecognizedMsgType = AccErr+16;
NotEnoughRoom = AccErr+16;
NotAnIP(Call = AccErr+17;
BadMsgType = AccErr+18;
BadIPCMame = AccErr+19;
MsgTooBig = AccErr+20;
NotYourChild = AccErr+21;
BadMsg = AccErr+22;
OutOfIPCSpace = AccErr+23;
Failure = AccErr+24; °
MapFull = AccErr+25;
WriteFault = AccErr+26;
BadKernelMsg = AccErr+27;
NotCurrentProcess = AccErr+28;.
CantFork = AccErr+29;
BadPriority = AccErr+30;
BadTrap = AccErr+31;
DiskErr = AccErr+32;
BadSegType = AccErr+33;
BadSegment » AccErr+34;
IsParent = AccErr+36;
IsChild = AccErr+36;
NoAvailablePages = AccErr+37;
FivaeDeep = AccErr+38;
BadVPTable = AccErr+39;
VPExclusionFailure = AccErr+40;
MicroFailure = AccErr+4l;
EStackTooDeep = AcCErr+42;
MsgInterrupt = AccErr+43;
UncaughtException = AccErr+44;
BreakPointTrap = AccErr+45;
ASTInconsistency = AccErr+46;
InactiveSegment = AccErr+47;
SegmentAlreadyExits = AccErr+48;
OutOfImagSegments = AccErr+49;
NotASystemAddress = AccErr+60;.
NotAUserAddrass = AccErr+51;
BadCreateMask = AccErr+62;
BadRectangle = AccErr+63;
OutOfRectangleBounds = AccErr+b4;
I11egalScaaWidth = AccErr+b6;
= AccErr+66;

CoveredRectangel

BusyRectangle
NotAFont
PartitionFull

= AccErr+67;
= AccErr+58;
= AccErr+59;

11

12

2.2. Accent primitives

Send
function Send
(.
var MsgHdr : Msg;
MaxWait : long;
Option :SendOption
)
: GeneralReturn;
Synopsis
Send, transmits a message from the current process to the RemotePort specified in the message
header. ‘
Arguments

MsgHdr The header portion of the message to be sent.

MaxWait , ' The maximum time in milliseconds to wait should the destination port be
full. A wait time of zero implies wait forever. Currently thete is an
implementation re_striction of 32000 milliseconds as a maximum wait time.

Option A constant specifying whether the send operation should WAIT,

DONTWAIT or REPLY if the destination port is full at the time of the send.
The various options are defined below:

WAIT should be used when the sending process
wishes to be suspended for MaxWait
milliseconds if the queue is full. If by that time
the port is still full, the call returns without
having sent the message.

DONTWAIT should be used if the sending process does
not wish to wait for any length of time in the
case of a full destination port.

REPLY : allows the sender to give exactly one message
to the operating system without being
suspended should the destination port be full.
When that message can in fact be posted to
the receiving port’s queue, a message is sent
to the data port of the sending process
notifying it that another message can be sent.
A second message, sent to a full port before
this notification arrives, results in an error.

Returns

Success

Timeout

Failure

WillReply

TooManyReplies

MemFauit

NotAPort

BadRights

13

The message has been queued for the RemotePort.

The message was not sent since the destination port was still full after
MaxWait milliseconds.

The message was not sent because the destination port was full and
DONTWAIT was specified.

The destination port was full but the REPLY option was specified. An
emergency message will be sent when the message can be posted.

The REPLY option was specified but a reply request is already
outstanding for this process and destination port.

The message pointed to data not in the address space of the sender.

The message refers to a port number which is not available to the current
process.

The message contains a reference to port access rights not possessed by
the current process.

14

SetPortsWaiting

function SetPortsWaiting
(

var Ports : PortBitArray

)

- : GeneralReturn;

Synopsis

NB: SetPortsWaiting is still in the system but has been made obsolete by the remcval of
limitations on the maximum number of ports accessible to a process. This call will’
succeed only if the total number of ports in the current Accent system is less than the old

per prccess maximum of 255. The call LockPorts replaces SetPortsWaiting.

SetPortsWaiting passes a boolean array to the operating system kernel specifying the ports on
which the current process wishes to receive messages. Each port is represented as a bit in the array
and a value of true implies that, should a Receive call be made, a message can be accepted from that
port. A value of false implies that even if a message is waiting on that port at the time of the Receive

call, it should not be received.

Arguments
Ports ~Avar bit array specifying the ports to be waited on during a Receive. On
successful return it will contain the value of the bit array.
Returns
Success The call performed its function.
MemfFault The port array points to memory which is not in the address space of the

current process.

15

Receive
function Receive
(.
var MsgHdr : Msg; { inout parameter }
MaxWait : long;
PortOpt : PortOption;
Option : ReceiveOption
)
: GeneralReturn;
Synopsis
~ Receive retrieves the next message from a port queue on which the current process is waiting (see
SetPortsWaiting).-
Arguments
MsgHdr The header part of a message data structure into which a message can
be received.
MaxWait " The maximum time in milliseconds to wait for a message before giving up.
A wait time of zero implies an infinite wait. A wait time of -1 implies no
wait. Currently there is an implementation restriction on the PERQ of
32000 milliseconds maximum wait time.
PortOpt A constant specifying what ports the receive should be done on.
ALLPTS look for a message on all the ports to which
this process has Receive access.
DEFAULTPTS look for a message on all the ports to which
: this process has Receive access, except for
those ports which have been locked by
LockPorts.
LOCALPT receive a message only on the port specified
by MsgHdr.LocalPort.
Option A constant specifying whether the receive operation should be PREVIEW,

RECEIVEWAIT or RECEIVEIT.

PREVIEW allows the header of a message to be looked
at before receiving the data. Once previewed,
a message has in fact been received, but the
operating system will hold the data until a
subsequent Receive with the RECEIVEIT
option is performed. No other messages can
be received until the previewed message has
been received.

16

RECEIVEWAIT simply waits until a message can be received.
It goes not receive the message or modify the
port queues in any way.

RECEIVEIT is the option actually used for receiving both
the header and data part of a message. Once
received, the message is removed from its port
gueue and all port capabilities contained in the
message are passed to the receiving process.

Returns
Success The message has'been received.
Timeout The message was not received after MaxWait milliseconds.

MemFault The message pointed to a data area inaccessible to the receiver.

17

EReceive

function EReceive
(
var xxmsg :Msg;
MaxWait :long;
PortOpt :PortOption;
Option :ReceiveOption
)

: GeneralReturn;

Synopsis . .
EReceive is a version of Receive that is used by the operating system. It is not-to be used by other

clients of thé kernel.

Arguments

xxmsg The header part of a message data structure into which a message can
be received.

MaxWait The maximum time (in milliseconds) to wait for a message before giving
up. A wait time of zero impiies an infinite wait. A wait time of -1 implies no
wait. '

PortOpt A constant specifying what ports the receive should be done on.

DEFAULTPTS The ports that have been previously set by
SetPortsWaiting should be used.
ALLPTS ~ Look for a message on all the ports to which
: this process has EReceive access.
LOCALPT Receive a message only on the port specified
by MsgHdr.Local.Port.
Option A constant spécifying whether the receive operation should be PREVIEW,

RECEIVEWAIT, or RECEIVEIT.

PREVIEW Allows the header of a message to be looked
at before receiving the data. Once previewed,
a message has in fact been received, but the
operating system will hold the data until a
subsequent EReceive with the RECEIVEIT
option is performed. No other message can be
received until the previewed message has
teen received. C :

RECEIVEWAIT . Simply waits until a message can be received.
It does not receive the message or modify the
port queues in any way.

18

RECEIVEIT This is the option actually used for receiving
both the header and data part of a message.
Once received, the message is removed from
its port queue and all port capabilities
contained in the message are passed to the
receiving process.

Returns
Success The message has been received.

Timeout The message was not received after MaxWait milliseconds.

« MemFault The message pointed to a data area inaccessible to the receiver.

19

PortsWithMessages

function PortsWithMessages
(
MsgType :long;)
var Ports : PortBitArray

)
: GeneralReturn;
Synopsis
NB: PortsWithMessages is still in the system but has been made obsolete by the removal
of limitations on the maximum number of ports accessible to a process. This call will
succeed only if the total number of ports in the current Accent system is less than the old

per process maximum of 255. The calil MessagesWaiting replaces PortsWithMessages.

PortsWithMessages returns a boolean array in the var parameter Ports which has a true value for

every port containing at Ieaét one message of type MsgType.

Arguments
MsgType The type of message the current process is interested in (currently it must
be either EMERGENCYMSG or NORMALMSG).
Ports A boolean array used to return the description of the waiting ports.
Returns
Success The call returns the array.

MemFault Illegal data area specified fcr returned data.

LockPorts
function LockPorts
(
LockOrUnlock : boolean;
Ports : PtrLPortArray;
PortsCount :long
)
: GeneralReturn;
Synopsis

LockPorts either locks (if LockOrUnlock is true) or unlocks the points pointed to by the array Ports.
Messages may not be received from a locked port and no interrupts will occur if messages arrive at a

locked port. A port may only be locked by the process with receive access.

Arguments
LockOrUnlock True if we are locking, false otherwise.
Ports A port array used to specify the ports to be locked.
PortsCount The number of ports to be locked.
Returns
Success . Ports are locked or unlocked.

MemfFault lllegal data area specified for returned data.

Failure lilegal request to lock or unlock a port.

21

MessagesWaiting

function MessagesWaiting
(;
MsgType :long;
var Ports : PtrLPortArray;

var PortsCount :long { inout parameter }
) _
: GeneralReturn;
Synopsis
MessagesWaiting returns an array of ports on which there is a message waiting whose type matches
MsgType. '
Arguments
MsgType Message type field of messages of interest.
Ports A port array used to return ports with messages waiting.
PortLCount The maximum number of ports to return. On return, the actual number of
ports returned.) ’
‘Returns
Success Ports are returned.

NotEnoughRoom Number of ports is greater than the maximum given by PortsCount.

MoveWords

22

function MoveWords

Synopsis-

(

SrcAddr : VirtualAddress;
var DstAddr : VirtualAddress; { inout }

NumWords :long;
Delete : boolean;
Create :boolean;
Mask :long;
DontShare : boolean

) : GeneralReturn;

MoveWords moves data from one place in the current processes’ address space to another. It

differs from a macroarchitecture move instruction in that it can be used to remap areas of memory in

addition to moving data in the conventional sense.

Arguments
SrcAddr

DstAddr

NumWords

Delete

Create

Mask

DontShare

Returns

Success

MemFault

The source address.

The destination address. If Create (see below) is true then this argument
is ignored on input and supplied by the system on output.

The number of words to move.

- If true, the source words will be deleted from the current process’ address '

space. Memory is only deleted in full pages. The pages deleted start with
the page containing SrcAddr and end with the page containing the
address SrcAddr + NumWords - 1.

If true, new space will be allocated for the copy and a pointer returned in
DstAddr.

A 32-bit mask which, if Create is true, determines where in memory
allocated space can be used (see ValidateMemory below).

If true, implies that data will be copied copy-on-write. [f false it implies
that the data references in the destination area will be synonymous with
data references in the source area. It is an error if DontShare is false and
the source and destination address have different word offsets in a page.

. The copy was performed.

The arguments are illegal.

23

SoftEnable
function SoftEnable
(
NormQOrEmerg : boolean;
EnOrDis :boolean
): GeneralReturn;
Synopsis

SoftEnable resets the enabling of software interrupts. When a software interrupt occurs scftware
interrupts are disabled by the system. This routine is intended to be called by software interrupt

handlers just before they exit in order to allow the handling of futher software interrupts.

Arguments
NormQOrEmerg True if we are enabling software interrupts on normal messages, false if
we are enabling software interrupts on emergency messages.
EnOrDis True if we are enabling interrupts. False if we are disabling interrupts.
Returns

Success Success is the only possible return.

24

2.3. IPC related non-primitive functions

AllocatePort

function

(

AllocatePort

KernelPort : Port;

var LocalPort : Port; {out}

)

Backlog

: BacklogValue

: GeneralReturn; '

Synopsis

AllocatePort requests that a new port be allocated with an initial maximum queue size (backlog) of

Backlog. If no port can be returned, LocalPort is left with a value of NULLPORT (= 0).

Arguments

KernelPort

LocalPort

Backlog

Returns

Success
NoMorePorts

MemfFault

The kernel port of a process. The port is created in the calling process’
port space, regardless of which kernel port is used.

Avar parameter into which the allocated portis returned.

The maximum 'queue length (number of messages) for the newly
allocated port. A value of zero will set the backlog to
DEFAULTBACKLOG. The maximum backlog value is MAXBACKLOG.

A port has been allocated.
No more port slots available for this process.

Illegal address specified.

25

SetBacklog
function SetBackiog
(
KernelPort : Port;
LocalPort : Port;
Backlog : BacklogValue
)
: GeneralReturn;
Synopsis

SetBacklog requests that the maximum queue length for the specified port be changed to Backiog.

The kernel port of the process whose port space the current process

The new backlog. Should the new backlog be less than the current queue

‘length, no messages are released or destroyed, but future send

requests will respect the new backlog. A value of zero will set the backiog
to DEFAULTBACKLOG. The maximum backlog value is MAXBACKLOG.

Arguments
KernelPor?
wishes to alter.
LocalPort The port queue to be changed.
Backiog
Returns
Success The backlog has been changed.
IlegalBacklog The backlog is either too small or too large.

The backlog of a port in another process’ port space can be changed, if you have access to that

process’ kernel port.

26

DeallocatePort

function DeallocatePort
(
KernelPort : Port;
LocalPort : Port;
Reason :long

)

: GeneralReturn;

Synopsis

DeallocatePort requests that the current process’ access to a port be released. If the current

process is both the receiver and owner for the port, then the port is destroyed and all other processes

with send access are notified both of the port’s destruction and the reason for that destruction.

Arguments

KernelPort The kernel port of the process.

LocalPort The port to be deallocated.

Reason An arbitrary 32 bit number which will be returned to those processes
which have access to the port should it be destroyed by this call. There
are several system defined reasons for port death:
EXPLICITDEALLOCATION, PROCESSDEATH, and NETWORKTROUBLE.

" Returns
Success The port has been deallocated.
NotAPort The port is not allocated to this process.

27

Indexinterpose

function Indexinterpose
(.
ServPort : Port;
MyPort : Port;
Hisindex :long;
var HisPort : Port
)

: GeneralReturn;

NOTE

This function has been made obsolete. It will always return FAILURE.

28

Portinterpose

function Portinterpose
(
ServPort : Port;
MyPort : Port;
HisPort : Port;
var MyNewPort : Port
)

: GeneralReturn;

NOTE

This function has been made obsolete. It will always return FAILURE.

GetPortindexStatus

function GetPortindexStatus
(

ServPort :Port;
Portindex :Llong;

- var BacklLog :lInteger;
var NWaitingMsgs : Integer;
var EWaitingMsgs : Integer;
var PortRight : Port;
var PortType :Integer

: GeneralReturn; ‘
NOTE

GetPortIndexStatus provides information about a port given its index into the kernel port table. ltis
intended to be used by system implementers and not by normal clients of the kernel.

GetPortStatus

function GetPortStatus
(:
ServPort : Port;
PortRight : Port;
var Backlog :Integer;
var NWaitingMsgs : Integer;
var EWaitingMsgs : Integer;
var Portindex :Long;
var PortType :Integer
)

: GeneralReturn;

- NOTE
GetPortStatus provides information aboht a port given its index into the kernel port table. It is
intended to be used by system implementors and not by normal clients of the kernel.

ExtractAllRights

function ExtractAllRights
(
ServPort :Port;
Portindex :Long;
var PortRight : Port;
var PortType :Integer
)

: GeneralReturn;

NOTE

This call is not currently implemented.

31

InsertAllRights

function InsertAlIRights
(
ServPort : Port;
Portindex :Long;
- var PortRight : Port;
var PortType :Integer

: GeneralReturn;

NOTE

This call is not currently implemented.

32

3. Accenf process primitives

3.1. Basic terms

Accent supports a potentially large number of processes, each with independent paged address
spaces. Process scheduling is round-robin within a priority level and Accent supperts 16 priority
Ievéls‘ each with an installation dependent time quota. Once a'process exhausts its time quota at a
given priority level, its priority is decreased, allowing a form of aging. Process priorities are reinstated
at their default level following a message send or receive. Processes may be created either by forking
or by explicit process creation. Processes may only fork themselves, but may terminate either

themselves or others which they have created.

The following type definitions are used by the various message interface routines:

const
READONLY = 0;
READWRITE = 1;
MAXPROCS = 63; {Installation dependent}
NUMPRIORITIES = 16; {Instaliation dependent}
NUMSLEEPQS - 32: {Installation dependent}
NUMQUEUES = NUMSLEEPQS + NUMPRIORITIES + 5;
tvpe
Port = long;
VirtualAddress= long;
Microseconds = iong; .
PriorlID = 0..NUMPRIORITIES-1;
ProcState = (User, Supervisor);
-QID = 0..NUMQUEUES;
MemProtection = READONLY..READWRITE;
PStatus = record

State s ProcState;
Priority : PriorlID; -
MsgPending : boolean;
EMsgPending : boolean;
MsgEnable : boolean;

EMsqEnable : boolean;
LimitSet : boolean;
SVStkInCore : boolean;
QueuslD : QID;
SleeplD : ptrinteger;
RunTime :.long;
LimitTime ¢ long;

and;

3.2. Process management routines

Fork
function Fork
(.
KernelPort : Port;
var HisKernelPort : Port; { out parameter }
var HisDataPort : Port;, { out parameter }
Ports : PtrPortArray;
PortsCount :long
)
: GeneralReturn;
Synopsis

Fork creates a running clone of the process whose kernel port is used for call. The ports owned by
the child of the current process created by the Fork are provided by the father. A process may only
Fork itself. HisKernelPort and HisDataPort are created by the kernel and give the parent a handle on
the child. '

Arguments .

KernelPort The kernel port of the process to be copied.

HisKernelPort On return, the kerné€l port of the child.

HisDataPort ‘ On return, thé data port of the child.

Ports A pointer to an array of port capabilities to send to the child.

PortsCount The number of ports to.be sent to the newly created process.
Returns

IsParent The éurrent process is the father.

IsChild | The current process is the son.

TooManyProcesses

The system can no longer allocate processes.
NotCurrentProcess Kernel port does not helong to the current process.

NotAPort A port mentioned in the message is not accessible to the father.

CreateProcess
function CreateProcess
(
KernelPort : Port;

var HisKernelPort : Port; { out pérameter}
var HisDataPort : Port { out parameter }

)

: GeneralReturn;

Synopsis
CreateProcess creates a new process which has no state. This call can be used to create a orocess
which may then be loaded with memory and state through the use of the WriteProcessMemory and

Deposit (see below).

Arguments

KernelPort The kernel port of the process to be copied.

HisKernelPort The kernel port of the child.

HisDataPort The data port of the child.
Returns
Success The call succeeded.

Failure The request could not be performed.

NotCurrentProcess Kernel port does not belong to the current process.

Terminate
function Terminate
(T
KernelPort : Port;
Reason :long;
)
: GeneralReturn;
Synopsis

Terminate destroys the process associated with KernelPort. If that process is not the current

process, the cal! returns.

~ Arguments
KernelPort The kernel port of the process to be killed.
Reason An arbitrary 32 bit number which will be returned to those processes
which have access to ports affected by this call.
NoReturn The process has killed itseif.
Returns

Success The process has been killed.

37

SetDebugPort
function SetDebugPort
(
KerneiPort : Port;
DebugPort : Port
)
: GeneralReturn;
Synopsis

Associate a debugger (defined by DebugPort) with a process (identified by KernelPort, its kernel
port) in such a way that if that process should fail, the process will be suspended in its failed state and
a message will be sent DebugPort. The message sent by the kernel will be an Emergency Message
and will contain as its data a port (KernelPort), a 32-bit integer (the reason for the error, if any,

otherwise 0), and an error code as a 32 bit integer.

Arguments

KernelPort Kernel port of process to be debugged.

DebugPort . Portto which error messages should be sent when the process fails.
Returns

Success DebugPort has been associated with the process.

Failure . KernelPort Was not a kernel port for an active process.

Status
function Status
(
KernelPort : Port;
var Status : PStatus
: GeneralReturn;
Synopsis

Status returns the current process statﬁs of the process associated with KernelPort.

Arguments
KernelPort The kernel port of the process to be queried.
Status A var parameter used to return the process’ state. See the description of
PStatus above for details.
Returns
Success The data has been retrieved.

MemFault lllegal address reference.

SetPriority
function SetPriority
(!
KernelPort : Port;
Priority : PriorlD
)
: GeneralReturn;
Synopsis

SetPriority is used to change the priority of the process associated with KernelPort. The highest
priority is currerily 15, the lowest is 0.

Arguiments
KernelPort The kernel port of the process whose priority is to be changed.
Priority The new priority.

Returns
Success Priority changed.

BadPriority illegal priority value. A process may only decrease its own priority.

SetLimit
function SetLimit
(
KernelPort : Port;
ReplyPort : Port;
Limit :long
)
: GeneralReturn;
Synopsis

SetLimit sets a limit on the computation time available to the process associated with KernelPort.
When the time limit has been exceeded, a message will be sent to ReplyPort indicating that the

process has used its allotted computational resources.

Arguments
KernelPort The kernel port of the process to be limited.
ReplyPort A port to use both for the initial acknowledgement cf the success of the
call and for the message indicating that the limit was exceeded.
Limit The time limit in microseconds.
Returns

Success Limit set.

41

Suspend
function Suspend
(KernelPort : Port;
. ‘:’GeneralRetum;
Synopsis

Suspend suspends the process associated with KernelPort.

Arguments

KerneiPort The kernel port of the process to be suspended.

Returns

Success Process suspended.

42

Resume

function Resume .
(KernelPort : Port;
.? GeneralReturn;
Synopsis

Resume resumes the process associated with KernelPort.

Arguments

KernelPort The kernel port of the process to be resumed.

Returns

Success Process resumed.

Examine

function Examine

(-
KernelPort : Port;

RegOrStack : boolean;

Index :integer;
var Value :integer
)

: GeneralReturn;

Synopsis

Examine examines the microstate of the process associated with- Kerne/Port. |f the process

examined is not suspended, the values returned may not be accurate.

RegOrStack True if the microregister values are to be examined, false if the expression

Arguments
KernelPort The kernel pdrt of the process to be examined.
stack values are to be examined.
index The index of the register to be examined.
Value A var parameter to return the desired value.
Returns
Success " Process state returned.

MemFault " lllegal address specified.

Deposit

function Deposit
(
KernelPort : Port;
RegOrStack :boolean;
Index :integer;
Vailue :integer
)

: GeneralReturn;

Synopsis
Deposit changes the microstate of the process associated with Kernel/Port. If the process changed
is not suspended, the values of the registers may not actually be changed.

Arguments
KernelPort The kernel port of the process to be changed.
RegOrStack True if the microregister values are to be changed, false if the expression
stack values are to be changed.
Index The index of the register to be changed.
Value The new value of the register.
- Returns
Success Process state changed.

MemFault lllegal address specified.

Softlnterrdpt

function Softinterrupt
(.
KernelPort : Port;
NormOrEmerg : boolean;
var EnOrDisable :boolean

)
: GeneralReturn;
Synopsis
Softinterrupt enables or disables softwe{re interrupts for either normal or emergency messages.
- Arguments
KernelPort The kernel poﬁ of the process to be affected.
NormQrEmerg True if thé Normal message interrupt is to be enabied/’disabied, false if
the Emergency message interrupt is to be enabled/disabled.
EnOrDisAble True if enabled, false if disabled. Used to store previous value of
enable/disable flag on return. . ’
Returns

Success Action performed. Previous value of flag in EnOrDisAble.

GetlOSleeplD
function GetlQSleeplD
(
var SleeplD :Long
): GeneralReturn;
Synopsis

GetlOSleeplD returns the SieeplD that would be used to suspend the calling process if it did an IPC
receive. It is intended to be used by device driver processes that wish to use the kernel sleep trap and
be awakened if a message is received. The following code could be used to put the current process
to sleep for 1 jiffy (1/60 of a second), or until a message arrives.

begin
loadexpr(SleeplD);
Toadexpr(1); { NTicks = 1 means 1 jiffy }
Toadexpr(0); { ProcID = 0 means this process }
loadexpr(0); loadexpr(0); { FlagPtr=Nil }
nopagefauti(2);
inlinebyte(KOPS);

inlinebyte(KSleep)
end

Arguments

SleeplD Returns the value of the current process IPC Sleep ID.

Returns

Success SleeplD has been sét.

47

4. Accent virtual memory primitives

4.1. Basic terms
Accent provides two kinds of memory storage to processes: temporary virtual memory and more

permanent kernel'memcry objects which may be directly backed by disk or other storage media.

Each Accent process may have up to 2* *32 bytes of paged virtual memory. Virtual memory may be
written or read directly by a process using macro instructions defined by its micro-interpreter. The

size of an Accent page is 512 bytes.

Accent also provides as a service the notion of a segment which may created, destroyed, read or
written by explicit message operations. Segments have unique 32-bit identifiers and may be backed
by physical memory, disk, or by a process through a port identifier. Disk memory is divided by Accent
into logical disk devices called partitions and a separate port is provided for access to each partition.
Normally, the Accent f'ile system process, Sesame, is responsible for building a file system using
Accent disk segments, but the fécility can also be jrovided to other processes if they are given

access to the partition ports.

The following type definitions are used‘by the various message interface routines:

type

Port long;

VirtualAddress = long; ’

SpiceSegKind = (Temporary, Permanent, Bad, SegPhysical,
Imaginary, Shadow);

SegID = Tong;

4.2. Virtual memory management routines

CreateSegment

function CreateSegment

(.
SpecialPort : Port;
ImagSegPort : Port;
SegmentKind : SpiceSegKind;
InitialSize :integer;
MaximumSize :integer;
Stable :boolean;

var Segment :SegiD

) ,

: GeneralReturn;

Synopsis
CreateSegment creates a segment which may be permanent, segphysical temporary or imaginary.

e Permanent segments are allocated on disk and survive rebooting, etc. Their disk storage
is allocated on the partition with which SpecialPort is associated.

¢ SegPhysical segments are contiguous regions of physical memory and are normally used
for handling 1/0 devices, the bitmap display, etc. No disk storage is allocated for these
segments. :

e Temporary segments are the same as permanent segments but are deallocated when all
processes having access to their pages are gone. Disk storage for these segment is
allocaied on the TemporarySegmentPartition as set by SetTempSegPartition.

e Imaginary segments are segment ids without storage. They can be read into an address
space or written, but instead of disk operations being performed to get or write the data,
messages are sent to the ImagSegPort specified in the CreateSegment call asking to read
and/or write the specified pages of the imaginary segment. The imaginary segment
handling process can then respond directly to read/write requests and manage directly
the virtual memory of another process. This is also a tool which can be used to support
network paging. There is'no disk storage for these segments.

Arguments

SpecialPort The kernel port of the current process (in the case of temporary or
imaginary segments) or a specially protected port (in the case of
segphysical segments) or a port associated with a partition (in the case of
permanent segments). Partition ports and the protected port are usually
available only to system processes.

ImagSegPort A port for read and write operations on imaginary segments. May be a
NULLPORT for other types of segments.

SegmentKind One of physical, temporary, permanent, or imaginary.

InitialSize The size of the new segment in pages.

49

MaximumSize The maximum size to which the new segment will be allowed to grow.
Stable Whether or not the new segment is to be stable (not currently
implemented).
Segment A var parameter for returning the id of the created segment.
Returns
Success Segment created.
BadRights The SpecialPort used doas not have the right to create the kind of

segment desired.

OutOfDisk The partition specified does not have enough disk space to
accommodate the segment.

50

TruncateSegment

function TruncateSegment

(
SpecialPort :Port;
Segment : SeglD;
NewSize :integer
)

: GeneralReturn;
Synopsis

TruncateSegment truncates the segment specified by Segment.

Arguments
SpecialPort A protected port available cnly to selected processes (for Permanent or
Physical segments) or a kernel port (for Temporary or Imaginary
segments). '
Segment The segment id of the segment to be truncated.
NewSize The néw _size of the segment in pages.
Returns
Success Segment truncated.
BadRights

The SbecialPort used does not have the right to truncate the kind of
segment desired.

NotASegment The segment does not exist.

51

DestroySegment

function DestroySegment
(;
SpecialPort : Port;
Segment : SeglD
)

: GeneralReturn;

Synopsis

DestroySegment destroys the segment s_pecified by Segment.

Arguments
' SpecialPdrt A protected port available only to selected processes (for Permanent or
Physical segments) or a kernel port (for Temporary or Imaginary
segments).
Segment The segment id of the segment to be destroyed.
Returns
Success Segment destroyed.
BadRights The SpecialPort used does not havé the right to destroy the kind of
segment desired.

NotASegment The segment does not exist.

ReadSegment

52

function ReadSegment

(

SpecialPort : Port;
Segment :SegiD;
Offset :integer;
NumPages :integer;
var Data : pointer;
var DataCount :long

)

: GeneralReturn;
Synopsis
" ReadSegment reads the selected pages of Segment. The data read is pointed to by Data.
Arguments

SpecialPort A protected port available only to selected processes (for Permanent or
Physical segments) or a kernel port (for Temporary or Imaginary
segments).)

Segment The segment id of the segment to be read.

Cffset The page offset of the first page to be read {file pages start at zero). Can
be set to -1 to returrr the File Information Block. (For more information on
the File Information Block, see "File System" in this manual.)

NumPages The number of pages to be read. Specifying -1 returns the entire
segment. ’

Data On return, points to the data area into which the segment data has been
read. |

DataCount The number of bytes actually read.

Returns

Success Segment data read.

BadRights The SpecialPort used does not have the right to read'the kind of segment
desired.

NotASegment The segment does not exist.

MemFauit lllegal address specified.

WriteSegment

function WriteSegment

(

)

SpecialPort : Port;
Segment : SeglD;
Oftset :integer;

: pointer;

DataCount :long

: GeneralReturn;

Synopsis

WriteSegment overwrites the selected pages of Segment with the data pointed to by Data.

Arguments

SpecialPort

Segment

Offset

Data
DataCount

Returns

Success

BadRights

NotASegment

PartitionFull

MemFault

OutOfDisk

A protected port available only to selected processes (for Permanent or
Physical segments) or a kernel port (for Temporary or Imaginary
segments).

The segment id of the segment to be written.

The page offset of the first page to be written (file pages start at zero).
Specifying -1 allows you to write only FSData sections of -1 block (See

"File System” in this manual.)

A pointer to the data to be written to the segment.

The number of bytes to be written.

Segment data written.

The SpeciaiPort used does not have the right to write the kind of segment
desired.

The segment does not exist.

The partition specified does not have enough disk space to
accommodate the segment.

lllegal address specified.

Writing block -1 will only change the FSData area of the block.

In_terceptSégmentCalIs '

function InterceptSegmentCalls

(

ServPort : Port;
var OldSysPorts : PtrAllPortArray;
var OldSysPorts Cnt : Long;
var SysPorts : PtrPortArray;
var SysPorts Cnt : Long
): GeneralReturn;

Synopsis

This call is used by a process that wishes to intercept all calls to the segment system. It is intended

" to be used by trusted system processes only.

Arguments

ServPort

QldSysPorts

OldSysPorts Cnt

SysPorts

SysPorts Cnt

Returns.

Success

This is the port that is to be used to make the call. It is the Kernel port of
the process making the call.

This array will be sent to contain the current ports that are being used to
make segment calls. All segment calls by other pmresses in the system
will be received on this set of ports.

This is the count of valid ports in OldSysPorts.

SysPorts will contain the new set of ports that the calling process can use
to make segment system requests.

This is the count of the number of valid ports that are in SysPorts.

This is the only possible return.

55

SetPagingSegment

function SetPagingSegment
(
ServPort : Port;
Segment : SegiD
): GeneralReturn;

Synopsis
This call is used to specify a segment that can be used as the disk backup for virtual memory. This

segment is only used if the system cannot find a paging partition at system initialization time.

Arguments
ServPort The port of the process that is currently handling the paging system.
Segment This is the segment ID of the segment that is to be used for virtual memory
backing store.
Returns
Success The call completed without error.

BadSegment SeglD was not a valid segment.

56

AvailableVM
function AvailableVM
(
KernelPort : Port; _
var NumBytes :long { out parameter }
) ' .
: GeneralReturn;
Synopsis
AvailableVM returns the size in bytes of secondary storage remaining as backing store for virtual
memory.
Arguments
KernelPort Kernel port of calling process.
NumBytes Amount of remaining secondary storage available for virtual memory
backing store.
Returns

Success

57

ValidateMémory

function ValidateMemory

()
KernelPort : Port;

var Address : VirtualAddress;
NumBytes :long;
CreateMask : long

)

: GeneralReturn;

Synopsis

ValidateMemo:y marks a given part of a process address space as valid. References to data in this

- area will succeed and initial reads will return zero.

WARNING
Note that ValidateMemory will still return success, even if you have previously validated the same
space. Using ValidateMemory to validate existing addresses may cause the content of those

addresses to be overwritten.

Arguments

KernelPort Kernel port of process to be affected.

Address Starting address. If this address is nil, the kernel will find an area
NumBytes in size and whose starting address is consistent with
CreateMask and return that value in address.

NumBytes Number of bytes to validate (rounded by the system to validate only full
pages).

CreateMask A means of easiiy specifying a certain alignment for the memory to be
validated. The kernel wiil begin validating memory at the first address
greater than or equal to Address such that for every one bit in
CreateMask, the corresponding bit in the address is either zero or one,
and for every zero bit in CreateMask, the corresponding bit in the address
is also zero. Specifying -1 will give you the most convenient alignment.
Specifying -256 will give you page alignment.

Returns
Success . Memory validated.

MemFauit lllegal address specified.

InvalidateMemory

function InvalidateMemory
(

KernelPort : Port;
Address. : VirtualAddress;
NumBytes :long

)
: GeneralReturn;
Synopsis
InvalidateMemory marks a given part of a process address space as invalid. References to data in

this area will fail. Any secondary storage being used to support this area will be released.

Arguments
KernelPort Kernel port of process to be affected.
Address . Starting address.
NumBytes Number of bytes to invalidate (rounded by the system to invalidate only
full pages).
Returns
Success Memory invalidated.

MemFauit ~ lllegal address specifed.

59

SetProtection
function SetProtection
(
KernelPort : Port;
Address : VirtualAddress;
NumBytes :long;
Protection :integer
)
: GeneralReturn;
Synopsis

SetProtection changes the protection of valid pages in a process’ address space.

Arguments
KernelPort Kernel port of process to be affected.
Address Starting address.
NumBytes ‘Number of bytes to change protection of (rounded by the system to
change protection of only full pages).
Protection The new protection bits (i.e., ReadOnly, ReadWrite).
Returns
Success Memory protected.

MemFault lllegal address specified.

60

ReadProcéssMemo ry

function ReadProcessMemory
(g
KernelPort : Port;
Address : VirtualAddress;
NumBytes :long;

var Data : pointer;
var DataCount : long
)
: GeneralReturn;
Synopsis
ReadProcessMemory allows a process with access to another process’ kernel port to read its virtual
memory.
Arguments
KernelPort Kernel port of process whose data is to be read.
Address ' Starting address.
NumBytes Number of bytes to read.
Data Pointer to area into which data is to be read.
DataCount Number of bytes actually read.
Returns
Success Memory read.

‘MemFault lllegal address specified.

61

WriteProcessMemory
function WriteProcessMemory
(
KernelPort : Port;
Address : VirtualAddress;
NumBytes : Long;
Data : pointer;
. DataCount :long;
)
: GeneralReturn;
Synopsis
WriteProcessMemory allows a process with access to another process’ kernel port to write its virtual
memory.
Arguments
KernelPort 4 Kernel port of process whose memory is to be written.
Address Starting address in process to be affected.
NumBytes Number of bytes to read.
Data Pointer to data to be written.
DataCount Number of bytes to write.
Returns
Success Memory written.

MemFauilt lllegal address specified.

62

Touch
function Touch
(
KernelPort : Port;
Address : VirtualAddress;
: GeneralReturn;
Synopsis
Touch determines if a given Iocaﬁoh Address is a valid address for the process specified by
KernelPort. .
Arguments
KernelPort Kernel port of process whose memory is to be queried.
Address Address to check.
Returns
Success Memory exits.

Failure Memory is invalid.

5. Accent Disk Handling

5.1. Basic terms

The following type definitions are used by the various disk handling routines:

const

MAXPARTCHARS = 8; { maximum length for a partition name }

MAXDPCHARS = 25; { maximum length for dev:part name }

MAXPARTITIONS = 30; { maximum partitions on one device }

MAXDEVICES = 6; { maximum number of devices }

type

Port = long; .

PartString = string[MAXPARTCHARS];

DevPartString = string[MAXDPCHARS];

PartitionType = (Root,UnUsed,Segment,PLX {,...}):

DiskAddr = long;

SegID = long;

PartInfo =) :

record {entry in the PartTable} :
PartHeadFree : DiskAddr; {pointer to Head of Free List}
PartTailFree : DiskAddr; {pointer to tail of Free List}
PartInfoBlk : DiskAddr; {pointer to PartInfoBlock}
PartRootDir : SeglD; {SegID of Root Directory}
PartNumOps : integer; {how many operations done since

last update of PartInfoBlock}

PartNumFree : long; - {HINT of how many free pages}
PartInUse : boolean; {this entry in PartTable is valid}
PartMountad : boolean; {this partition is mounted}
PartDevice : integer; {which disk this partition is in}
PartStart : DiskAddr; - {Disk Address of 1st page}
PartEnd : DiskAddr; {Disk Address of last page}
PartKind : PartitionType; {Root or Leaf}
PartName : PartString; {name of this partition}
PartExUse : boolean; {Opensd exclusively}
Unused : long {Port is not returned}

end; .

PartList = array[1..MAXPARTITIONS] of Partlnfo;
ptrPartList = tPartList;

5.2. Disk management routines

GetDiskPartitions

function GetDiskPartitions
(.
ServPort : Port;
interface : Diskinterface;
log unit : Interfacelnfo;
var unitnum : Integer;
var DevName : DevPartString;
var Partl. : PtrPartList;
var PartL_Cnt : Long
)

: GeneralReturn;

Synopsis
GetDiskPartitions will return information about the partition structure of a specific disk. This call is

used by the file system. No other processes have access to this call.

Arguments

ServPort : The port of the disk server.

Interface Specifies which disk interface is to be used.

Log_ unit The drive number on which the disk is attached.

Unitnum " The unit number as mounted.

DevName Set to be the name of the device that is at the unit interface.

PartL A pointer to a siructure that contains a list of the partitions that are on the

device indexed by Interface.

PartL Cnt This is the count of teh number of valid partitions in Partl..
Returns

Success Operation Completed.

NotADev No such device.

PartMount

Synopsis

function PartMount

(
SpecialPort : Port;
PartName : DevPartString;
ExUse :boolean;

var RootID : SegiD;

var PartKind : PartitionType;

var PartPort : Port;

var PartS : DiskAddr;

var PartE : DiskAddr

)

: GeneralReturn;

PartMount makes the specified partition accessible through the port returned as PartPort. If ExUse

is true only one port at a time is allowed to access the partition. If ExUse is false, 'multiple shared

mounts are allowed.

Arguments

SpecialPort A privileged port to the system kernel. Usually only system processes
have access to this port.

PartName _A string name for the partition to be mounted. Includes the device name.

ExUse An option specifiying whether this process is willing to share access to
the partition. :

RootID The Segment ID of the root directory for this partition.

PartKind The Partition type of the partition. This is used as a hint to the formatting
of the partition.

PartPort The port that is associated with the partition. It is required to be the
SpecialPort in all the segment access calls to permanent segments on this
partitions.

PartS The virtual address of the start of the partition.

PartE The virtual address for the end of the partition.

Returns
Success Partition mounted.
NotADev Device part of the name is unrecognized.

66

NotAPart The partition does not exist.

PartNotAvail Either some other process has the partition' mounted for exclusive
access, or ExUse is true and the partition is already mounted.

67

PartDismount

function PartDismount

(
PartPort : Port;

) _
: GeneralReturn:
Synopsis

PartDismount makes the specified partition inaccessible on this partition port.

Arguments
PartPort A port associated with a partition. Only system procesées have access to
partition ports.
Returns

Success . Partition dismounted.

PartStillMounted This port can no longer access the partition, but some other ports can.

DirectlO

function DirectlO
{
ServPort : Port;
var CmdBik : DirectlOArgs;
- var DataHdr : Header;
var Data :DiskBuffer
): GeneraiReturn;

Synopsis
This call is used to perform disk I/0 while by-passing the paging mechanism. It should be used with

care so that it does not interfere with the pager’s view of the disk.

Arguments

ServPort This must be one of the kernel’s speciai ports.

CmdBlk A record describing the command to be executed is sent to the pager. It
returns the I0Status on completion.

DataHdr The 1.6 bit header to be written is passed in. For a head the header is
returned.

Data A single block can be read/written.

- Returns
Success It worked.

Failure It did not. |OStatus in CmdB!k has the error code.

6. Accent Display Facilities
The Accent kernel provides a number of facilities that are used to quickly update uncovered

portions of the display.

6.1. Overview

These operations are executed by the process that is making the call. In general, a client process
makes a call to the window manager to update some portion of the display. The client address spacé
window manager code will trap to the kefnel and execute the appropri'ate‘ function to perform the

requested operation.

If the portion of the display that was to be updated is on the screen and uncovered, the kernel will
perform the operations. If the kernel cannot perform the operation for some reason, it will return a
failure indication. At this point, the client interface code will make an IPC request of the window

manager process to do the display operation.

6.2. Display Management Routines
The functions described in this section can be found in the module AccCall in the file AccCall.Pas,

and in the module Acclnt in the file AccentUser.Pas.

CreateRectangle

70

function CreateRectangle

(

ServPort : port;

RecPort : port;

BaseAddr : VirtualAddress;
ScanWidth :lInteger;

BaseX : Integer;
BaseY : Integer;
MaxX : Integer;
MaxyY : Integer;
IsFont : Boolean

): GeneralReturn;

Synopsis

CreateRectangle allocates a rectangle (that can be used for. screen operations) and associates it

with a given port. The rectangle is Enabled to receive input.

Arguments

ServPort

RecPort

BaseAddr
ScanWidth
BaseX, BaseY
MaxX, MaxY

IsFont

Returns

Success
Failure

BusyRectangle

Service port (should be the permahent segment port).

Port to which the rectangle is attached. If the port already has a rectangle
that rectangle is replaced.

Physical address of memory containing the rectangle.

' Words per scan line for memory containing the rectangle.

Upper left corner of the rectangle relative to BaseAddress.
Lower-right corner of the rectangle.
This rectangle is really a font. The BaseAddress points to the bitmap area

of the font: the font header procedes it. RectDrawByte will only draw
characters from a source rectangle that is a font.

Operation completed.
Port was not the Permanent Segment Port.

RectPort has messages outstanding.

71

DestroyRectangle

function DestroyRectangle
(
ServPort :port;
RecPort : port

-): GeneralReturn;

Synopsis

Deallocate a rectangle record for the specified port.

Arguments
ServPort Service port (should be the permanent segment port).
RectPort Port from which the rectangle is to be detached.
Returns
Success Operation completed.
Failure Port is not the permanent segment port, or the specified port does not

have a rectangle.

72

EnableReciangles

function EnableRectangles
(.
ServPort : port;
RectList : PtrPortArray;
RectList Cnt :long;
Enable : Boolean
): GeneralReturn;

Synopsis
Enables or disables an entire list of recitangles. An enabled rectangle can receive input from the

keyboard. This call will not enable the rectangles if any rectangle has messages waiting (to ensure

| that all'requests are processed in tr_xe proper order).

Arguments
ServPort Service port (should be the permanent segment port).
RectList - Pointer to an array of ports whose reétangles are to be enahled or
disabled.
RectlList Cnt Number of ports in the array whose rectangles are to be enabled or
disabled.
Enable Set to True to enable; False to disable.
Returns
Success Rectangles were enabled or disabled.
‘Failure Port was not the perrhanent segment port, or any of the ports does not

corresspond to the rectangles.

BusyRectangle Messages were waiting on one of the ports.

73

SetKernelWindow

function SetKernelWindow

(
ServPort sport;
LeftX :lInteger;
TopY : Integer;
Width : Integer;
Height : Integer;
Inverted : Boolean

‘): GeneralReturn;

Synopsis

Sets up a window for the kernel typescript.

Arguments
ServPort Service port (should be the permanent segment port).
LeftX, TcpY ~ Upper Ieft corner of the kernel window in screen coordinates.
- Width, Height The size of the window.
Inverted If TRUE, the kernel typescript has white letters on a black background. If

FALSE, it has black letters on a white background.

74

RectRasterOp
function RectRasterOp
(

DstRectangle : port;
Action : Integer;
DstX : Integer;
DstY : Integer;
Width : Integer;
Height . :Integer;
SrcRectangle :port;
SrcX : Integer;
SrcY : Integer

): GeneralReturn;

Synopsis
Kernel protected RasterOp.

Arguments
DstRectangle *~ The port for the the destination rectangle.
Action RasterOp function.

DstX, DstY, Width, Height . .
The area within the destination rectangle for RasterOp destination.
_Relative to upper left corner of destination rectangle.

SrcRectangle The port for the source rectangle.

SrcX, SrcY The area within the source rectangle for RasterOp source. Relative to
upper left corner of source rectangle. :

Returns
Success Operation completed.
OutOfRectangleBounds

Source area is not completely inside source rectangle.

CoveredRectangle Source or destination covered. Must call window manager to perform
operation.

BusyRectangle Messages are queued up for the viewport. Must call window manager to
keep queued operations synchronized.

BadRectangle ~ Portis not a rectangle.

75

RectDrawLine

function RectDrawline

(s
DstRectangle : port;
Kind : Integer;
X1,Y1,X2,Y2 :lInteger

): GeneralReturn;

Synopsis

Kernel protected Line Draw routine.

Arguments
' DstRectahgle Port for destination rectangle.
Kind Kind of drawing operation:
0 Erase line
1 Draw line
é . | Invert line
X1, Y1 One end boint of the line.
X2,Y2 The other end of the line.
Returns
Success Line was drawn.
OutOfRectangleBounds

Source area is not completely inside source rectangle.

CoveredRectangle The source or destination is covered. Must call window

perform operation.

manager to

BusyRectangle Messages are queued up for the viewport. Must call window manager to

keep queued operations synchronized.

BadRectangle Port is not a rectangle.

76

RectPutString

function RectPutString

(
DstRectangle :port;
FontRectangle :port;
Action : Integer;
var FirstX : Integer;
var FirstY : Integer;
StrPtr : Pointer;
FirstChar : integer;
var MaxChar : Integer

): GeneralReturn;

Synopsis

Kernel protected String Draw routirie.

Arguments
DstRectangle The port for the destination rectangle.
FontRectangle The port for the Font. if NullPort, it uses the system font.
Action RasterOp Function for drawing characters.

FirstX, FirstY Drawing position for the origin of the first character. Returns the position

of the origin of the next character to draw.

StrPtr " Pointer to a packed array of characters containing the string to draw.
FirstChar Position of the first character in the string to draw (from 0).
MaxChar Position of the last character to draw. Returns the number of the last
character-actually drawn.
Returns
Success String was drawn.
OutOfRectangleBounds

Source area is not completely inside source rectangle.

CoveredRectangle Source or destination covered. Must call the window manager to perform
the operation.

BadRectangle Portisnota rectangle.

Messages are queued for the viewport. Must call the window manager to
keep queued operation synchronized.

BusyRectangle

77

NotAFont FantRectangle was not a font.

78

RectColor .

function RectColor

(.
Rectangle :port;
Action :linteger;
X : integer;
Y : Integer;
Width : Integer;
Height :Integer

): GeneralReturn;

Synopsis
Operates on one rectangle to set, clear, or invert all its bits. If part of the area to be colored is

outside the rectangle, it is ignored (RectColor does NOT return OutOfRectangleBounds).

Arguments
Rectangle Port for destination rectangle.
Action ' Function to use, as follows:
RectWhite .setallbitsto 0
RectBlack - set all bits to 1
Rectinvert - invert all bits
XY Upper left corner of destination (relative to Rectangle’s boundaries).
Width, Height Width and height of destination.
Returns’
Success Operation performed. May be clipped to DstRect's boundaries.
BadRectangle DstRect is not a rectangle.

CoveredRectangle DstRect is not enabled (covered).

BusyRectangle DstRect has messages queued.

79

RectScroll
function RectScroll
(
Rectangle :port;
X : Integer;
Y : Integer;
Width : Integer;
Height : Integer;
Xamt : Integer;
Yamt : Integer
): GeneralReturn;
Synopsis

Scrolls a portion of a viewport up, down, left, or right and erases the part that remains.

Arguments
Rectangle The port for the destination rectangle.
XY Upper left corner of destination (relative to Rectangle’s boundaries).
Width, Height Width and height of destination.
SreX Number of bits to move the area horizontally; negative numbers to move
to the left, positive nambers to move to the right.
SrcY Number of bits to move the area vertically; negative numbers to move up,
" positive numbers to move down.
Returns
Success Operation performed. May be clipped to Rectangle’s boundaries.
BadRectangle Rectangle is not a rectangle.

CoveredRectangle Rectangle is not enabled (covered).
BusyRectangle Rectangle has messages queued.

OutOfRcetangleBounds
Area to be moved (starting position) is partially outside Rectangle.

GetRectangleParms

function GetRectangleParms

(
ServPort : port;
RectPort : port;
- var BaseAddr : VirtualAddress;
var ScanWidth : Integer;
var BaseX : Integer;
var BaseY : Integer;
var MaxX : Integer;
var MaxY : Integer;
var IsFont : Boolean

): GeneralReturn;

Synopsis

Returns the rectangle parameters for a specified port.

Arguments

ServPort
RectPort
BaseAdadr
ScanWidth
BaseX, BaseY
MaxX, MaxY

IsFont

Returns

Success
Failure

BadRectangle

Service port(should be the permanent segment port).
Port for which the rectangle is to be returned.

Returns physical address of memory containing the specified rectangle.
g g

- F'{eturn_s words per scan line for memory containing rectangle.

Returns upper left corner pf rectangle, relative to BaseAddr.
Returns lower right corner of rectangle.
Returns "This rectangle is really a font". The BaseAddr points to the

bitmap area of the font; the font header precedes it. RectDrawByte will
only draw characters from a source rectangle that is a font.

Parameters are returned.
The ServPort was not the permanent segment port.

RecPort does not have a rectangle.

81

7. MatchMaker Interface Specification for Accent
The following is the current MatchMaker specification for Accent. Kernel primitive functions such

as Send and Receive are not message operations and are not specified using MatchMaker.

subsystem AccInt 100;

type Integer = (TypeInt16, 16);

type Long = (Typelnt32, 32);

type port = (TypePt, 32);

type PtrPortArray = tarray [] of (TypePt, 32);

type PStatus = (TypePStat, 240);

type Boolean = (TypeBoolean, 16);

type PriorID = (TypeInt16, 18);

type SpiceSegKind = (TypeInt16, 16);

type SegID = (Typelnt32, 32):

type Pointer = tarray [] of (TypeInt8, 8);

type VirtualAddress = (TypelInt32, 32);

type DiskAddr = (TypeInt32, 32);

type DevPartString = array[26] of (TypeChar,8); {MAXDPCHARS+1}
type PartitionType = (Typelnti6, 16);

type PtrAl11PortArray = tarray [] of (TypePtAll, 32);
type DiskInterface = (TypeIntl6, 16);

type InterfaceInfo = Array[3] of (Typelnt16, 16);
type String = (typeString, 648);

simports VMTypes from VMTypes;
simports AccInt from Acclnt;
simports VMAlloc from VMAlloc;
simports AccVersion from AccVersion3

routine SetBackLog(

¢ Port;
LocalPort ¢ Port; ’
BackLog : Integer);
routine AllocatePort(
: Port; -
out LocalPort : Port=(TypePTA11,32);
BackLog : Integer); -
routine DeallocatePort(
: Port;
LocalPort ¢ Port=(TypePT,32,Dealloc);
Reason : Long);
routine IndexInterpose(
: Port; .
MyPort : Port=(TypsPTReceive,32);
HisIndex ¢ Long; ’

out HisPort Port=(TypePTReceive,32));

routine PortInterpose(.
Port;

MyPort : Port=(TypePTReceive,b32);
HisPort "t Port; -
: Port=(TypePTReceive,32));

out MyNewPort

routine Fork(-
: Port;
inout HisKernelPort: Port;
inout HisDataPort Port;
inout Ports PtrPortArray):

.
.
.
.

routine Status(
out NStats :
routine Terminata(
Reason

routine SetPriority(
:Port;

Port;
PStatus);

Port;
Long):

Priority: PriorID);

routine SetLimit(

ReplyPort :
Limit :
routine Suspend(:
routine Resume(:

routine Examine(

RegOrStack
Index
out Value

et o8 os w0

routine Deposit(

.

RegOrStack
Index
Valuse

Faa

e oe ve

routine SoftInterrupt(

NormOrEmerg
inout EnOrDisable

s se o8

routine CreateSegment(

ImagSegPort
SegmentKind
InitialSize
MaxSize
Stable

out Segment

se oo oo os v ee oo

routine TruncateSegment(

Segment
NewSize

ee oo e

routine DestroySegment(

e oo

Segment

routine ReadSegment(

s oo

Segment

Offset

NumPages
out Data

routine WriteSegment(

o oo

Segment

Port;
Port;
Long);

Port);

Port);

Port;
Boolean;
Integer;
Integer);.

Port;
Boolean:
Integer;
Intager):

Port;
BooTean;
Boolean);

Port;

Port:
SpiceSegKind;
Integer;
Integer;
Boolean;
SegID);

Port;
Segld;
Integer);

Port;
Seqld);

Port;
Segld;
Integer;
Integer;

- pointer);

Port;
Segld;

82

Offset : Integer;
Data : pointer);
routine validateMemory(
: Port;
inout Address : VirtualAddress;
NumBytes Long;

CreateMask : Long);

routine InvalidateMemcry(

: Port;
Address : VirtualAddress;
NumBytes : Long);

routine SetProtection(

: Port;
Address : VirtualAddress;
NumBytes : Loang;
Protection : Integer);

routine ReadProcessMemory(

: Port;
Address : VirtualAddress:
NumBytes : Long;
out Data : pointer);

routine WriteProcessMemory(

: Port; .
Address : VirtualAddress;
NumBytes : Long;
Data " : pointer);
routine GetDiskPartitions(
: Port;
interface :- DiskInterface;
Tog_unit : Interfacelnfo;
out unitnum : integer;
out DevName : DevPartString;
out PartlL : Pointer=tarray [] of
routine PartMount(
: Port;
PartName : DevPartString;
ExUse : Boolean; -
out RootId : SegID;
out PartKind : PartitionType;
out PartPort : Port;
out PartS : DiskAddr;
out PartE : DiskAddr);)

routine PartDisMount(: Port);

routine SetTempSegPartition(

¢ Port;
PartName : DevPartString);
routine SetDebugPort(
: Port;:

DebugPort : Port);

routine Touch(
: Port: ’
Address : VirtualAddress);

routine GetPortIndexStatus(
: Port;

(TypeliT32,32));

PortIndex

Long;

out Backlog : integer;
out NWaitingMsgs : Tnteger;
out EWaitingMsgs : integer;:
out PortRight : Port;
out PortType : integer):;
routine GetPortStatus(
¢ Port;
PortRight : Port;
out Backlog : integer;
out NWaitingMsgs : integer; .
out EWaitingMsgs : integer;
out PortlIndex : Long;
out PortType : integer);
routine ExtractAl11Rights(
. . : Port;
PortIndex : Long;
out PortRight : Port; -
out PortType : integer);
routine InsertAl11Rights(
: Port;
PortIndex : Long;
PortRight : Port;
PortType : integer);
routine CresateProcess(
: Port;
out HisKernelPort: Port;
out HisDataPort : Porti):

routine InterceptSegmentCalls(

out 01dSysPorts :
out SysPorts :

routine Direct10(
inout CmdB1k

inout DataHdr
inout Data

routine SetPagingSegment(

Sggmget
routine CreateRectangle(

RectPort
BaseAddr
ScanWidth
BaseX
BaseY
MaxX
MaxY
IsFont

e oo se oo oe e

routine DestroyRectangle(

e o

RectPort
routine AvailableVM(

out NumBytes

Port;
ptrAliPortArray;
ptrPortArray);

Port;
Pointer;
Pointer;
Pointer);

Pori;
SegiD);

Port; .
Port;
VirtualAddress;
integer;
integer;
integer;
integer;
integer;
Boolean);

Port;
Port);

Port;
long):

routine

routine

routine

routine

EnableRectangles(

.

Port;

RectList : ptrPortArray;
Enable : Boolean);
SetKernelWindow()
¢ Port;
LeftX : Integer:;
TopY : Integer;
Width : Integer;
Height : Integer;
Inverted : Boolean);
Accent_Version(:Port;
AccVersion: DevPartString);
GetRectangleParms(
: Port;
RectPort : Port;
out BaseAddr : VirtualAddress;
out ScanWidth : integer; '
out BaseX : integer;
out BaseY : integer;
out MaxX : integer; .
out MaxY s integer;
out IsFont : Boolean);

I. Summary of Calls

The following is a summary of the Pascal calls to Accent. The page on which the operation is fully
described appears within square brackets. '

[12]
[14]
[18]

(7]

[19]
[20]

[21]

[22]

T

1£3]

[24]
| [25]

[26]
[27]

[28]

[29]
[30]

[31]
(32]

[34]

function Send (var MsgHdr : Msg; MaxWait : long; Option : SendOption) : GeneralReturn;
function SetPortsWaiting (var Ports : PortBitArray) : GeneralReturn;

function Receive (var MsgHdr : Msg; { inout parameter } MaxWait : long; PortOpt : PortOption;
Option : ReceiveOption) : GeneralReturn;

function EReceive (var xxmsg :Msg; MaxWait :long; PortOpt :PortOption; Option
:ReceiveOption) : GeneralReturn; . .

function PortsWithMeésages (MsgType : long; var Ports : PortBitArray) : GeneralReturn;

function LockPorts (LockOrUnlock : boolean; Ports : PtrLPortArray; PortsCount : long) :
GeneralReturn;

function MessagesWaiting (MsgType : long; var Ports : PtrLPortArray; var PortsCount : long {
inout parameter 1) : GeneralReturn;

function MoveWords (SrcAddr : VirtualAddress; var DstAddr : VirtualAddress; { inout }
NumWords : long; Delete : boolear; Create boolean; Mask : long; DontShare :
boolean) : GeneralReturn;

function SoftEnable (NormOrEmerg : boolean; EnOrDis : boolean): GeneralReturn;

function AllocatePort (KernelPort : Port; var LocalPort : Port; { out } Backlog : BacklogValue) :
GeneralReturn;.

function SetBacklog (KernelPort : Port; LocalPort : Port; Backlog : BacklogValue) :
GeneralReturn; . :

function DeallocatePort (KernelPort : Port; LocalPort : Port; Reason : long) : GeneralReturn;

function IndexInterpose (ServPort : Port; MyPort : Port; Hisindex : long; var HisPort : Port) :
GeneralReturn; . ,

function Portinterpose (ServPort : Port MyPort : Port; HisPort : Port; var MyNewPort Port) :
GeneralReturn;

function GetPortindexStatus (ServPort : Port; Portindex : Long; var BackLog : Integer; var
NWaitingMsgs : Integer; var EWaitingMsgs : Integer; var PortRight : Port; var
PortType : Integer) : GeneralReturn;

function GetPortStatus (ServPort : Port; PortRight : Port; var Backlog : Integer; var
NWaitingMsgs : Integer; var EWaitingMsgs : Integer; var Portlndex : Long; var
PortType : Integer) : GeneralReturn;

function ExtractAllRights (ServPort : Port; Portindex : Long; var PortRight : Port; var PortType :
Integer) : GeneralReturn;

function InsertAllRights (ServPort : Port; Portindex : Lorg; var PortRight : Port var PortType :
integer) : GeneralReturn;

function Fork (KernelPort : Port; var HisKernelPort : Port; { out parameter } var HisDataPort :
Port; { out parameter } Ports : PtrPortArray; PortsCount : long) : GeneralReturn;

[35]

[36]
[37]
(38]
- [39]
[40]
[41]
[42]
- [43]

[44]

[45]

[46]

[48]

(50]

(51]
[52]

(53]

[54]

(55]

(56]

[57]

[58]

[59]

87

function CreateProcess (KernelPort : Port; var HisKernelPort : Port; { out parameter } var
HisDataPort : Port { out parameter }) : GeneralReturn;

function Terminate (KernelPort : Port; Reason : long;) : GeneralReturn;

function SetDebugPort (KernelPort : Port; DebugPort : Port) : GeneralReturn;
function Status (KernelPort : Port; var Status : PStatus) : GeneralReturn;

function SetPriority (KernelPort : Port; Priority : PrioriD) : GeneralReturn;

function SetlLimit (KernelPort : Port; RepIyPort Port; Limit : Iong) GeneralReturn;
function Suspend (KernelPort : Port;) : GeneralReturn;

function R2sume (KernelPort : Port;) : GeneralReturn;

function Examine (KernelPort : Port; RegOrStack : boolean; Index : integer; var Value : integer)
: GeneralReturn;

function Deposit (KernelPort : Port; RegOrStack : boolean; Index : integer; Value : integer) :
GeneralReturn;

function Softlnterrupt(KernelPort Port; NormOrEmerg : boolean var EnOrDisable : boolean) :
GeneralReturn; :

function GetlOSleeplD (var SleeplD :Long): GeneralReturn;

function CreateSegment (SpecialPort : Port; ImagSegPort : Port; SegmentKind : SpiceSegKind;
InitialSize : integer; MaximumSize : integer; Stable : boolean; var Segment : SeglID
) : GeneralReturn;

function TruncateSegment (SpecialPort : Port; Segment : SegiD; NewSize : integer) :
GeneralReturn;

function DestroySegment (SpecialPort : Port; Segment : SegID) : GeneralReturn;

function ReadSegment (SpecialPort : Port; Segment : SeglD; Offset : integer; NumPages :
integer; var Data : pointer; var DataCount : long) : Ge.neraIReturn;

function WriteSegment (SpecialPort : Port; Segment : SegiD; Offset :'integer; Data : pointer;
DataCount ; long) : GeneralReturn;

function InterceptSegmentCalis (ServPort : Port; var OldSysPorts : PtrAllPortArray; var
OldSysPorts_Cnt : Long; var SysPorts : PtrPortArray; var SysPorts_Cnt : Long);
GeneralReturn;

function SetPagingSegment (ServPort : Port; Segment : SegID): GeneralReturn;

function AvailableVM (KernelPort : Port; var NumBytes : long { out parameter }) :
GeneralReturn;

function ValidateMemory (KernelPort : Port; var Address : VirtualAddress; NumBytes : long;
CreateMask : long) : GeneralReturn;

function InvalidateMemory (KernelPort : Port; Address : VirtualAddress; NumBytes : long) :
GeneralReturn;

function SetProtection (KernelPort : Port;- Address : VirtualAddress; NumBytes : long;
Protection : integer) : GeneralReturn;

[60]
[61]
[62]
[64]
[65]
[67]
[68]
[70]
[71]
[72]
(73]

[74]

(78]

[76]

[78]
[79]

[80]

88

function ReadProcessMemory (KernelPort : Port; Address : VirtualAddress; NumBytes : long;
var Data : pointer; var DataCount : long) : GeneralReturn;

function WriteProcessMemory { KernelPort : Port; Address : VirtualAddress; 'NumBytes : Long;
Data : pointer; DataCount : long;) : GeneralReturn;

function Touch (KernelPort : Port; Address : VirtualAddress;) : GeneralReturn;

function GetDiskPartitions (ServPort : Port; interface : Diskinterface; log_unit : Interfacelnfo; var
unitnum : Integer; var DevName : DevPartString; var PartL : PtrPartList; var
Partl_Cnt : Long) : GeneralReturn;

function PartMount (SpecialPort : Port; PartName : DevPartString; ExUse : boolean; var RootID :
SeglID; var PartKind : PartitionType; var PartPort : Port; var PartS : DiskAddr; var
PartE : DiskAddr) : GeneralReturn;

function PartDismount (PartPort : Port;) : GeneralReturn;

function DirectlO (ServPort : Port; var Crthlk : DirectiOArgs; \}ar DataHdr : Header; var Data :
DiskBuffer): GeneralReturn; .

function CreateRectangle (ServPort : port; RecPort : port; BaseAddr : VirtualAddress;
ScanWidth : Integer; BaseX : Integer; BaseY : Integer; MaxX : Integer; MaxY :
Integer; IsFont : Boolean): GeneralReturn;

function DestroyRectangle (ServPort : port; RecPort : port): GeneralReturn;

function EnableRectangles (ServPort : port; RectList : PtrPortArray; RectlList Cnt: long; Enable :
Boolean): GeneralReturn;

function SetKernelWindow (ServPort : port; LeftX : Integer; TopY : Integer; Width : Integer;
Height : Integer; Inverted : Boolean): GeneralReturn;

function RectRasterOp (DstRectangle : port; Action : Integer; DstX : Integer; DstY : Integer; '
Width : Integer; Height : Integer; SrcRectangle : port SrcX : Integer; SrcY : Integer
): GeneralReturn;

function RectDrawLine (DstRectangle : port; Kind : Integer; X1,Y1,X2,Y2 : Integer)
GeneralReturn;

function RectPutString (DstReétangle : port; FontRectangle : port; Action : Integer; var FirstX :
Integer; var FirstY : Integer; StrPtr : Pointer; FirstChar : Integer; var MaxChar :
Integer): GeneralReturn;

function RectColor (Rectangle : port; Action : Integer; X : Integer; Y : Integer; Width : Integer;
Height : Integer): GeneralReturn;

function RectScroll (Rectangle : port; X : Integer; Y : Integer; Width : Integer; Height : Integer;
Xamt : Integer; Yamt : Integer): GeneralReturn;

function GetRectangleParms (ServPort : port; RectPort : port; var BaseAddr : VirtualAddress;
var ScanWidth : Integer; var BaseX : Integer; var BaseY : Integer; var MaxX :
Integer; var MaxY : Integer; var IsFont : Boolean): GeneralReturn;

	0001
	0002
	0003
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88

