CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Cousin Application Builder’s Manual

Phil Hayes, Rick Lerner, and Pedro Szekely

%fb'\' '
—/ \' \
e

&
Y

Tt is easier with a Cousin

23 August 1984
Spice Document S158 _
Location of machine-readable file: [cad]/usr/cousin/doc/applbldr.press

Copyright © 1984 Carnegie-Mellon University

This is an internal working document of the Computer Science Department, Carnegie-Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government.

COUSIN APPLICATION BUILDER’'S MANUAL

Table of Contents

1. Introduction
2. Goals of COUSIN Project
2.1. Cooperative interfaces
2.2. Application-independent interfaces
3. Form-Based Communication
4. Application Descriptions
4.1, Example application description
5. CousiN Application Interface
5.1. Naming

' 5.2. Routines to Access and Update Values in the Form

5.3. Control functions
5.4. Example Application Program
6. Building a CousiN Application - A Summary

O OOWWwN = =

15

15
24
25
28

COUSIN APPLICATION BUILDER’S MANUAL

‘ List of Figures
Figure 1: Communication by Form-Filling
Figure 2: Form for cmuftp

1 Cousin Application Builaer's Manual August 23, 1984

1. Introduction

CousIN is a system that provides cooperative, form-based, command interfaces for a variety of
application progréms. The version of CousIN described here runs on the Perg under Accent and
provides graphically-oriented user interfaces for application programs running under Accent. COUSIN
communicates with the application programs via the Accent Interprocess Communication facility
(IPC) and with the user via the Sapphire window management systeim. The exact form of the interface
seen by the user for a particular application is defined by a declarative application description file,
which is interpreted by CousiN. To employ COUSIN, an application builder needs only to construct
this file for his application and to include the abpropriai'e IPC calls in his program. This document
explains the format of the application description file (Section 4), the kinds of messages that pass
between CousiN and an application system, and the Pascal' functions that are provided to facilitate
that message passing for the application builder (Section 5). A quick suimmary of all the steps
necessary to create an application that uses CousIN for its user interface is contained in Section 6.
Sections 4, 5, and 6 reflect the current implementation of CousiN under Accent. This implementation
is under active development, and someg_f the details given may be subject to change. Preceding
these manual sections, Sections 2 and 3 give some more general background on COUSIN (see [3,2]
for further details). While this document explains how to build a CousIN interface to an appiication
system, it does not give ful! details on hdw the end user can interact with such an interface to control
- the application program. For this information, the reader should consult the Cousin User’s Manual,
the reference manual for end users of applications with CousIN interfaces, available in

[cfs]/usr/spice/cousin/dev/cousin.press.

2. Goals of Cousin Project

The COUSIN (Cooperative User Interface) project is a research effort aimed at producing better user
interfaces. Currently, we are working only.on coarse-grained commanc interfaces (e.g. inferfaces to
electronic mail systems or operating systems, but not text editors or drawing systems). Our approach
is to produce interfaces that are not oniy cooperative (i.e. user-friendly) but -also
application-independent (i.e. the same monolithic interface can be used with a wide variety of
application systems.) There are two implementations of Cousin, one'for the Perq under Accent (see
Sections 4 and 5 for details), and the other for the Vax under Unix? (see [3] for details). The

background materiai in this and the next section is not specific to either of these implementations, but

1Analogous functions will be provided eventually for other languages.

2The Unix version is no longer supported

COUSIN APPLICATION BUILDER’S MANUAL 2

serves to explain the broad principles underlying both implementations.

2.1. Cooperative interfaces
We consider the following kinds of user-friendliness or cooperativeness to be crucial for command
interaction:

e Error handling:

o error detection and reporting: Detection of errors in the specification of
commands and/or their parameters, and informing the user what the command or
parameter should be.

oerror correction: Where possible, correction of erroneous commands or
parameters to valid values. The user should always be given the chance to refuse
the correction. ’

o error negotiation: Negotiation with the user about commands or individual
parameters when correction is not possible or results in several possible alternative
corrections. This negotiation can involve presenting the user with alternatives
(either corrections or from a universe of all possible values), giving the user more
general information about what is required, or allowing the user to execute any
other commands. Negotiating about one parameter need not involve other
parameters to the same command that have already been completely specified.

e Explanation facilities:

o constantly available: the user should be able to ask for help at any time.

o context sensitive: the kinds of help offered to the user should be sensitive to
what he is doing at the time, and in particular, to what problems he has run into.

o chunked in small pieces: as opposed to coming in, say, manual entries of
several pages in length.

o highly interconnected: so that a user can easily find material semantically
related to the material he is currently looking at.

e Personalization:

o vocabulary:
o screen layout:

0..

COUSIN APPLICATION BUILDER’S MANUAL 3

2.2. Application- mdepo’ndent mterfaces

CoOUSIN interfaces are desugned to provide interface services to a wide variety .of apphcatson
systems, and so contain no knowledge of any individual application, obtaining their information
instead from a declarative application description file that the application builder must provide. There

are several reasons for adopting this approach:

o Implementation effort: Building a highly cooperative interface requires a lot of
implementation effort, and such effort cannot be justified for each of a large number of
different application systems. The more sophisticated the interface hardware, the more
pressing the need to share interface effort becomes. Cooperative interfaces require
much more effort to construct for bit-map woikstation personal computers than for
terminal-based systems. '

e Consistency: Monolithic interfaces provide consistency across all applications that
they service. Again, this is much more important for workstations than for terminals
(e.g. mouse button usage).

e Easy incorporation and testing of new interface features: ltis only necessary to
change one program to implement and evaluate a new mterface feature on a system-wide
basis.

3. Form-Based Communication

To meet the twin goals of cooperative interaction and application-independence, CousIN interfaces
employ a form-based model of Communiéation. Each application has an associated form analogous
to the kind of business forﬁ\ in which information is eniered by filling in blanks, or circling alternatives.
The fields of the form correspond to the various pieces of information that the user and application
need to exchange during an interactive session including input parameters, _output from the
application, and subcommands to the appiication. The lower part of Figure 1 shows the form for a
generic print application program. In this example, the fields all correspond to input parameters.
Some fields have default values as indicated by the square brackets for 'Font’ and ’PaQeHeadings’.
Such defaults can be overwritten by the user on input fields as has happened in this form instance for
'Copies’ and ‘Recipient’ (defaults 1 and "Self" respectively). Some input fields, ’Files’ in this example,
have no default and must be specified by the user. The application description mentioned earlier can
be thought of as a prototype or blank form for its application, and contains additional information
associated with each field, including its type, the way to present it to the user, and how the user can
change it. The types can be of varying levels of specificity, ranging from String for 'Recipient’ through
Integer for 'Copies’ and RgadableFile for *Files’ to enumerated types for 'Font’ and 'PageHeadings’,
the latter being an enumeration of size two (Included, Notincluded). Methods of presentétion and

ways to change can include menus and buttons (not shown in the example).

COUSIN APPLICATION BUILDER’S MANUAL 4

_
subsystem | - COUSIN K<——> User
(print)
[print]
Files: humfact.mss cv.txt
Copies: g3 Font: [Gacha10]

Recipient: George Spencer

Page Headings: [Include]

Figure 1: Communication by Form-Filling

As indicated by the upper part of Figure 1, a user and an application program communicate
indirectly by reading and updating fields of the form for that apb!ication with all access to the form
controlled by the COusIN interface system. This effectively decouples the application system from
direct interaction with the user, and all-ow's CousiIN to be application-independent. The application
need only specify via its form what informétiori it wishes to have input and output, and CoOusIN will
manage the interaction that realizes that transfer of information to and from the user. The types and
defaults associated with the form also provide the basis for cooperative interaction by allowing
CousiN to enforce the field types on input fields through error-correcting dialogues with the user. In
addition, the information in the forms can be used to generate explanations about the application, its

parameters, and subcommands in response to requests for help by the user (see [1] for more details).

The example forms shown above contains only input fields. This kind of form is suitable for the
initial specification of the parameters of non-interactive applications, but is clearly less than sufficient

for interactive applications. Nevertheless, form-based communication can be used with interactive

COUSIN APPLICATION BUILDER’S MANUAL 5

applications. There seem to be three general styles of communication with applications that can be

supported straightforwardly through a form-based approach:

e Non-interactive: Parameters are specified. usually in a command line whiéh is
collected by a system command interpreter, before execution of the application begins. »
The application normally runs to completion after being invoked in this way.

e Information collecting: The application may accept (or request) additional information
after it gets control, either because necessary parameters were omitted in the initial
command line or because a need for additional information is discovered after execution
begins.

e Command loop: After start-up, the application enters an interactive command loop:
repeatedly accepting commands, executing them, and presenting the results to the user,
who then composes his next request.

The corresponding scenarios for the form-based approach of COUSIN are:

e Non-interactive: This is the simplest case. Form fields correspond directly to
application parameters. The user invokes the application through a menu or a command
line, which may specify values for some (or all) of the input fields for the application.
CousIN obtains the form for the application thus specified, and sets up its defaults. If a
command line was used, COUSIN parses it and transfers the various parameter values
thus obtained to the appropriate fields of the form. !f after this, all parameter fields are
correctly filled, CousiN executes the application in the normal way. If, on the other hand,
information is missing or incorrectly specified, Cousin reports the problems to the user,
and gives him an opportunity 16 correct the situation by editing the form. When both the
user and COUSIN are satisfied with the way all the fields are filled, the user may start
execution of the application explicitly. However, CousiN will not allow him to start
execution while problems remain with the form. If the user is unable to correct the form
satisfactorily, he must either abort the attempt at application mvocatlon or save the form
in its current state for later correction.

e Information collecting: This situation is similar to the previous one, except that COusIN
will start execution of a application with some of the required parameter fields
unspecified. After the application is started, it can request the value of any field in its
form. If a requested field is undefined, CousiN will inform the user that a value is required
and suspend execution of the application until the user specifies the required value which
is then checked and, if correct, passed back to the application. Using this type of
interaction, an application can be started without fillers for any of the fields in its form
being specified, and the user interface will prompt for whatever parameters are needed
when they are first referenced. It is a good example of how CousiIN insulates the
application from concerns about how and in what order its parameters are acquired, and
yet can make the parameters available as they are required.

» Command loop: The user specifies interactive commands to the application by inserting
the name of a command into a field whose type is an enumeration of all the commands
available; this insertion can be done by direct type in or by menu selection. Alternatively,
there can he a "button"-valued field for each possible command. In either case, the field
used to communicate the command has a special active status which means that a

COUSIN APPLICATION BUILDER'S MANUAL 6

message is sent to the application by COusIN every time the field changes value, thus
allowing the application to avoid inefficient polling of the field’s value.

When not actually executing one of its own commands, the application would wait for
notification that one of these active fields had been modified. Additional parameters for
application commands can be specified through other fields in the form in the same way
as the two previous cases, and information about which fields serve as parameters to
which subcommands can be included with the form. Using this information, when the
user issues a command, COUSIN can indicate to the user which fields provide parameters,
and make sure that these fields contain correct values, not informing the application of
the command unless they do. Facilities are also needed to allow the application to
determine whether such parameter fields are up to date or are merely an inappropriate
leftover from earlier invocations of subcommands.

In each of the above cases, results can be transmitted back from the application to the user as the
values of additional fields reserved for that purpose, and modifiable only by the application. CousIN

will display these field values to the user.

4. Application Descriptions

After the general background in the two preceding sections, this and the following section contain
material specific to the current implementation of CousiN for the Perq under Accent. This
implementation is under active development and some specific details given here may be subject to

change.

As already desuribed, in order to usé CousIN interface facilities, applications must have an
application description which specifies the form that Cousin will use for communication between the
user and that application. This section explains the format of application descriptions for the
Perq/Accent version of COUSIN. Forms in CousiN are composed of fields. Fields are just containers
for values, and they have a set of properties which describe the kind and number of values that can be
put in them, how those values are to be presented to the user, and how the user caﬁ modify the
values. The kind of values supported by CousIN are integers, strings, booleans, buttons, ports, and

forms; forms which are the values of fields in another form are called subforms.

Application descriptions are text descriptions of forms. We are planning a comprehensive special
purpose editor to create and edit these system descriptions. Currently, editing support exists only for
the layout attributes of the descriptions, but they can also be created with a regular text editor. The

format of application descriptions is a header which contains the name of the form:

COUSIN APPLICATION BUILDER’S MANUAL 7

StructureType: FormHeader
FormName: String
FormWidth: Integer
FormHeight: Integer

]
plus a description in the following format for each of the fields of the form:

StructureType: Field

Name: String

ExternalName: String

NamePosition: {Top, Left, NotPresent}

ValueType: ({Integer, Boolean, String, Button, SubForm, Port}

MaxNumber: Integer

MinNumber: Integer

EnumeratedValue: (valuel, value2,...)

LowerBound: Integer

UpperBound: Infeger

DefaultSource: {NoDefault, ExplicitDefault, ApplicationDefault, UseSubfieldDefault}

DefaultValue: String

ChangeResponse: {Passive, InformApplication, Command}

Parameters: (FieldNamel, FieldName2, ...)

InteractionMode: {Table, Editin, PushButton, CycleButton
isplayQOnly, Invisible, Typescript, Canvas}

NumRows : Integer

NumColumns: [nteger.

HasScroll1Bar: Boolean

DeselectedMark: {NoMark, Bold, Overstrike, LightBox, HeavyBox, Invert}

SelectedMark: {NoMark, Bold, Overstrike, LightBox HeavyBox, Invert}

Tokenize: Boolean

Presence: Boolean

LeftX: Integer

RightX: Integer

TopY: Integer

BottomY: Integer

Switches: (SwitchDescription1, SwitchDescription2, ...)

]

Some of these fields require further explanation:

ExternalName: this is the string that is displayed as the field name. The "Name" field is used for
communication between cousin and the application. If ExternalName is not
specified then Name is used.

NamePosition: Specifies the position of the external name in the field (only if InteractionMode is
Table).

MaxNumber, MinNumber: the minimum and maximum number of values permi'ited in the field (both
default to 1).

EnumeratedValue: an initial list of possible values that the field is restricted to.

COUSIN APPLICATION BUILDER'S MANUAL 8

LowerBound, UpperBound: on the value if the field has an integer value.

DefaultSource:

NoDefault:
ExplicitDefault:

the field has no default {the default).
the default is listed explicitly in the application description.

ApplicationDefault: the field has a default which will be determined dynamically by

the application, so the user can leave this field empty and yet it
is still counted as having a correct value.

UseSubfieldDefault:

the field has a ValueType of SubForm, and the default for the
field is whatever subform is obtained by taking the defaults of
all the fields of the subform.

ChangeResponse:
Passive: only check for validity when a new value is entered; do not tell
_ the application (the default).
InformApplication: tell the application as well
Command: first check the values of the fields listed as parameters, and
inform the application only if all these values are correct (see
Section 5).
Parameters: the list of parametérs for use when ChangeResponse is Command.

InteractionMode: the way the field is presented to the user and the way he is ailowed to interact with

it.
Table:

Editin:
PushButton:

CycleButton:

DisplayOnly:
Invisible:
Typescript:

Canvas:

displays a universe of values for the field in a tabular format.
The user can then select and deselect individual values from

the universe with the pointing device. Itis a kind of menu.

the user types the value into the field (the default).

the field appears like a button to be pushed and has two
values (ButtonOn and ButtonOff); requires ValueType to be
Button.

the field name does not appear, only the value, and repeatedly
selecting the field causes the value to cycle through the range
of possibilities.

for output from the application.

the value is not displayed (for use with passwords).

for typescript interaction between the application and user
directly, or for scrolled output from the application.

for any kind of output or direct user interaction that the
application wishes.

NumRows, NumColumns: This applies only if InteractionMode is Table. These fields set the number
of rows and columns in the table. If NumRows issetto 0 Cousin will pack the rows
as close as possible.

COUSIN APPLICATION BUILDER’S MANUAL 9

HasScrollBar:

If InteractionMode is Table, this specifies whether or not the table has a scroll bar.

SelectedMark, DeselectedMark: If InteractionMode is Table, these specify how the selected and
deselected entries are marked.

Tokenize:

Presence:

If set to true spaces will be interpreted as value separators within a field. Defaults

to true.

If set to false the field will not be displayed. Defaults to true.

LeftX, RightX, TopY, BottomY: specify the coordinates of the field in the form. The units are pixels
relative to the top left corner of the form.

Switches:

are used to specify values for fields from the command line. Switches are used to
indicate how to associate tokens in the command line with fields in the form.
There are two kinds o_f switches:

Positional.

Named switches:

A positional switch indicates that the field is filled from the
token in a specified position in the command line. The syntax
for positional switches is //Positionk where k canbe 1, 2, 3, .
... or //PositionAll. For example, //Position2 appearing as
the switch for a field means that the second token in the
command line should go into that field. //PositionAll means
that aii tokens in the command iine shouid go into that fieid.

the named switches define keywords that can be used in the
command line to refer to a field. If a switch doesn’t have a
value associated with it, the next token in the input is
interpreted as the value. This kind of switches are specified
just by giving a list of names that can be used in the command
line. Switches can have values assaociated with them, so when -
the switch name appears in the command line the

~ corresponding value is given to the field. Input tokens

accounted for by named switches are ignored from the point
of view of positional switches. The example. application
description that follows illustrates the use of switches.

4.1. Example application description

To make this definition more concrete, consider the following application description which would

allow CousIN to provide a graphical form interface for cmuftp, a program widely used in CMU CSD for

transferring files across the local area network.

COUSIN APPLICATION BUILDER’S MANUAL 10

[

‘StructureType: FormHeader
FormName: cmuftp

]

StructureType: Field
Name: "Files To Transfer”
ValueType: Strin93
MinNumber: 1

‘MaxNumber: 50%

]

L
StructureType: Field

Name: Send
ValueType: Button
InteractionMode: PushButton
ChangeResponse: Command
Parameters: ("Files to Transfer" Host Mode Account Password
"Foreign Prefix" "Foreign Suffix" "Local Prefix" "Local Suffix")
]

StructureType: Field

Name: Receive

ValueType: Button

InteractionMode: PushButton

ChangeResponse: Command

Parameters: ("Files to Transfer" Host Mode Account Password _
"Foreign Prefix" "Foreign Suffix" "Local Prefix" "Local Suffix™")

]
[:

- StructureType: Field
Name: Quit

ValueType: Button
interactionMode: PushButton
ChangeResponse: Command

3File types like ReadableFile and WritableFile are not impleménted yet, though they are planned

450 is an implementation restriction

COUSIN APPLICATION BUILDER’S MANUAL

L
StructureType: Field

Name: Host
ValueType: String
EnumeratedValues: (
(cad e)

(spice x)

(zog z)

(vlsi v)

(cmua a)

DefaultVilue: cad
Switches: (

Host
[Name: EVax
Value: cad
]
)
]
[

StructureType: Field
Name: "Host Number"
ValueType: String

11

a list in an EnumeratedValues
indicates several names for the
same member of the enumeration,
the first of which is the
canonical name

the switch "Host" can be used in the
command line to indicate that the next
token should be parsed as a value of the
host field. The switch "EVax" also defines
a value. When used in the command line it
indicates that the Host field should be
set to cad :

InteractionMode: DisplayOnly
DefaultSource: ApplicationDefault.

1

COUSIN APPLICATION BUILDER'S MANUAL

L

StructureType: Field
Name: Mode
ValueType: String
EnumeratedValues: (
auto

binary

text

DefaultValue: auto

]

StructureType: Field
Name: Account
ValueType: String
DefaultValue: ""

]

StructureType: Field

Name: Password

ValueType: String :
InteractionMode: Invisible
DefaultValue: ""

]

[
StructureType: Field

Name: "Foreign Prefix”
ValueType: String
DefaultvValue: ""

]

StructureType: Field
Name: "Fcreign Suffix”
ValueType: String ’
DefaultvValue: ""

]

StructureType: Field
Name: "Local Prefix"
ValueType: String
DefaultValue: ""

]

StructureType: Field
Name: "Local Suffix"
ValueType: String
DefaultValue: ""

]

12

COUSIN APPLICATION BUILDER’S MANUAL 13

StructureType: Field

Name: Confirm

ValueType: String
InteractionMode: RegularMenu
EnumeratedValues: (

Disabled

Enabled

)
DefaultValue: Disabled
]

StructureType: Field

Name: Transfer Progress
ValueType: String
InteractionMode: Typescript

]

Since this description contains no formatting information, the form that CousIN would produce from it
would be formatted autométicaliy The formatting algorithm is straightforward, and packs as many
fields as fit per line in the order specified in the description. A form that could be produced through
_ insertion of formatting attribute eﬂx, RightX, TopY, BottomY, and FormWidth and FormHelqht) is
shown in Figure 2. The only difference is in the layout; the mduvndual fields would look the same.
~ Thereis currently a form layout editor to assist with the layout task. We have plans to expand thisto a
‘full interactive form design editor through which all aspects of a form could be specified. Such an
editor could be used for personalization of forms by the end user, as well as for initial form design by
the application builder. To improve efficiency, Cousin does not interpet the text fo-rm description
directly, but uses a preprocessed binary version. The utility program compsf converts the text format

into binary format.

Figure 2 shows the form as it would appear to the user when it first started up: 'send’ and ’receive’
are command buttons; 'mode’ and ’cbnfirm’ are displayed as explicit menus with the current selection
shaded, selecting one of the other elements would cause the shading to move; 'Transfer Progress’ is
a scrolled typescript field in which the application can write messages to the user; 'Host Number is an
output only field that the user cannot type in; 'Password’ is a no- -echo field; all other fnelds are simple
type in fields for the user. Some of the fields have initial defaults as specified in the application

description.

In addition to maintaining the form on the screen and allowing the user to edit it, CoOusIN also

enforces the restrictions on field values, requiring 'Host’, for instance, to be filled by a string thatisa .

COUSIN APPLICATION BUILDER’S MANUAL 14

cmuftp
| send | | receive |
[File to transfer: | |
[Host cad] [HostNumber: = |

[Mode: | Autg/] Binary | Text |
[Account:] [Password: X X X X X X

|Foreign Prefix: | [Foreign Suffix: |
[Cocal Prefix: | [Cocal Suffix:__ ’]
[Confirm: | Endbled] Disabled |

Transfer Progress: '

Figure 2: Form for cmuftp
member of its enumeration. .The user can put incorrect values in the fields, but CousiN will complain,
and offer corrections if it can. When a command button is pressed, CousIN will also check that all the
fields listed as parameters to that command are filled in correctly and will not transmit the command

button push to the application until they are all correct.

COUSIN APPLICATION BUILDER’S MANUAL 15

5. CousiN Application Interface

In addition to providing a cooperative interface for the user, CousiN must aléo provide an interface
to the application system. On the perq under Accent, this interface is provided through Matchmaker
(the details of Matchmaker are described in the Spice Programmer’s Manual). The following is
description of the facilities that are implemented and of how to use them. All these facilities can be

accessed by importing module CousinCalls from file cousincails.pas.

5.1. Naming
In communicating with CousiN, an application must be able to refer to and understand references to
three different kinds of object: forms, the fields in the form, and the values in the fields. Each of these

objects is referred to by an /d of appropriate type.

- Forms are referred to by a Formid, which is a port assigned to the forms by cousin. The Formld of
the top-level form for an application is the global variable TopForm which is exported by the

cousinuser module.

The next level of naming is the fields. Fields have ids, called Staticlds, relative to the formin whiéh
they are defined. The ids of the fields are autom.a\tically calculated from the application description file
by a utility program called genconst, which takes an application description file and generates a
Pascal source file which is suitable to be‘imported vy the application program and which sets Pascal .
constants with the same éymbolic name as the name of the field to the corresponding Staticld. Care
should be taken to run genconst and recompile the application program when fields are added,
deleted or reorganized in the sdo (application description) file. The second way to name fields from
applications using full symbolic namtvas.5 Application builders are encouraged to use the ids because

they are easier to use and more efficient.

The values in the fields are viewed as a list of values, and the application can refer to them by their

position in this list.

5.2. Routines to Access and Update Values in the Form
There are numerous routines to access and update values in forms. The routines are in module
CousinUser which is automatically imported by CousinCalls. The following is a description of each

of the routines available®. This description is.in the form of an annotated copy of the Matchmaker

5The symbolic names arz rather clumsy and might be changed in the future so they are not documented here.

E'For the latest description see file cousin.defs from which which-the actual calls are generated.

COUSIN APPLICATION BUILDER’S MANUAL

interface definition file.

CForm
fid
index

val

Returns

{
{
{
{
{
{
{
{
{
{
{
{
{
r

}
outine GetIntField(

routine

routine GetStrField(

routine

routine GetButField(

routine

Success or Failure:

out

GetBoolField(

out

out

GetSubFormField(

out

out val:

GetPortField{

routines to get the value of a field

The form to get the value from
The static id of the field within the CForm form
Get the index-th value of the field. If the.field only has

one value use 1.

The value returned

: CForm;

fid: Staticld;
index: Integer;

val: Integer
);

: CForm;

fid: Staticld;
val: Boolean
);

: CForm; -

fid: Staticld;
index: Integer;
val: EString

):

: CForm;
fid: Staticld;
index: Integer;
val:-CForm

);

: CForm;

fid: Staticld;
ButtonValue

);

: CForm;
fid: Staticld;
index: Integer;

If return is failure the value in "val"
is undefined. The most likely reason for that is that
the parameters are incorrect., -

CGOUSIN APPLICATION BUILDER’S MANUAL

out val: Port

)

{
{ Not Implemented in the current version
{
r

outine GetContextForm(. : CForm;
out form: CForm;
out fid: Staticld;
out index: Integer

)s
{
{ Given the index-th value in the value list f1nd out its index in the
{ universe list
{ .
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ index The index in the value list
{ ulndex The index in the universe
{
{ Returns Success or Failure; If return is failure the value in "ulndex”
{ is undefined. The most li¥ely reason for that is that
{ the parameters are incorrect.
) :
Eout1ne GetUnivIndexField(' : CForm;
fid: Staticld;
index: Integer;
out ulndex: Integer
)
{
{ Get the indices in the universe of a11 the values in the field
{ : :
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ seq Will contain the indices. The storage for the array will
{ be allocated by COUSIN, so be careful to deallocate it.
{ Returns Success or Failure; If return is failure the value in "seq"
{ is undefined. The most 1ikely reason for that is that
{ the parameters are incorrect.
{}
routine. GetAl11IndexField(: CForm;

fid: Staticld;
out seq: pIntegerArray

routines to add a value to a field

0 don't care -

-1 at the end
val The value to add

Py A A P e e

17

CForm The form to get the value from
fid The static id of the field within the CForm form
index The place in the value list where the value should be added

COUSIN APPLICATION BUILDER’S MANUAL

} o
SimpleProcedure AddIntField(: CForm;
fid: StaticId;
index: Integer;
val: Integer

)s

SimpleProcedure AddStrfield(: CForm;
’ fid: Staticld;
index: Integer;
val: EString
)

Procedure AddSubFormField(: CForm;
fid: Staticld;
index: Integer;

out val: Integer;
out strRep: EString

)s
{ routines to replace a value in a field. If the field is empty the value
{ is added '
{
{ CForm The form to get the value from
{ fid The static id of the field wichin the CForm form
{ index The index of the value to replace
{ vai The value to add
{ . .
SimpleProcedure RepIntField(: CForm;

fid: Staticld;
index: Integer;
Val: Integer

)s

SimpleProcedure RepBoolField(: CForm;
fid: Staticld;
Val: Boolean:

);

SimpleProcedure RepStrField(: CForm;
fid: Staticld;
index: Integer;
Val: EString

);

COUSIN APPLICATION BUILDER’S MANUAL 19

procedure RepSubFornField(=~ : CForm;
‘ ' ' fid: StaticId;
index: Integer;
out Val: Integer;
out StrRep: EString

);

SimpleProcedure RepButField(: CForm;
o fid: Staticld;
Val: ButtonValue

)

Delete a value from a fieTd. The element is not deteted form the universe

{
{
{
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ index The index of the value to delete
{ .
SimpleProcedure DelField(: CForm;

fid: Staticld;

index: Integer

):
{ . . .
{ Delete all the values of the field. The universe is not deleted
{ , .
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{1}
SimpleProcedure WipeField(: CForm;
fid: Staticld
),
{ .
{ Set the value of a field to the default if there is one
{
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{} : | :
SimpleProcedure SetDefaultField(: CForm;
fid: Staticld
);

Routines to add values to universes. Adding elements to universes only is
MUCH faster than adding values (to value lists). The values are NOT - checked.

CForm The form to get the value from
fid The static id of the field within the CForm form

P Y e Y o Laan Yaon Y

COuSIN APPLICATION BUILDER’S MANUAL 20

{ index The place in the universe where the value should be added
{ 0 don't care

{ -1 at the end

{ val The value to add

{} 4

SimpleProcedure AddIntUniverse(: CForm;

fid:. Staticld;
index: Integer;
Val: Integer

):

SimpleProcedure AddStrUniverse(: CForm;
fid: Staticld;
index: Integer;
Val: EString

):
{
{ Add a sequence of string values into the universe. The result is the same
{ as repeatedly using AddStrUniverse, but is a LOT faster,
{ Adds strings Valt[first] to Valt[Last] instead of a single value.
{1}
SimpleProcedure AddStrSegUniverse(: CForm;
) Sid: Staticld;
index: Integer;
Val: pEStringArray;
first: Integer;
Tast: Integer
):
procedure AddSubFormUniverse{ : CForm;
fid: Staticld;
index: Integer;
out Val: Integer;
out strRep: EString
)
{ _ :
{ Mark an element of the universe as selected or deselected. Selecting a
{ value.means that the value is inserted to the value list. Deselecting means
{ that the value is deleted from the value list (not from the universe)
{
{ CForm The form to get the value from
{ fid - The static id of the field within the CForm form
{ index The in the universe of the value to select/deselect
{ val True ==> Select; False ==> Deselect.
{ .
SimpleProcedure SelectElementUniverse(: CForm;

fid: Staticld;
index: Integer;
Val: Boolean

)s

COUSIN APPLICATION BUILDER’S MANUAL 21

Select or deselect all the members of the universe

{
{
{ :
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ val True ==> Select; False ==> Deselect
{
SimpleProcedure SelectAllUniverse(: CForm;
fid: StaticId;
"~ Val: Boolean

)s
(
{ Select or deselect the elements listed in the seq array.
{ .
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ seq The array of indexes of elements of the universe
{ to select/deselect 3
{ only use the indices in seqt[first] to seqt[last]
{ val True ==> Select; False ==> Deselect -
{1} .
SimpleProcedure SelectSeqUniverse(: CForm;

fid: Staticld;

seq: pIlntegerArray;
first: Integer;
Tast: Integer;

Val: Boolean

)s
{ ;
{ Delete a value from a universe
{ ‘ :
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ index the index in the universe of the value to delete
{
SimpleProcedure DelUniverse(: CForm;

fid: Staticld;
index: Integer

)s

Routines to delete values from universes. These functions are used to delete
a value by giving the value you want to delete instead of the index.
This is very inefficient. :

P Y e Y n Yae Yan Yamn Y

CForm The form to get the value from

fid The static id of the field within the CForm form
val The value to delete

}

COUSIN APPLICATION BUILDER'S MANUAL

SimpleProcedure DelIntUniverse(: CForm;
fid: Staticld;
Val: Integer

)i

S1mp1eProcedure DelStrUniverse(: CForm;
fid: Staticld;
Val: EString

)i

SimpleProcedure DelSubFormUniverse(: CForm;
fid: Staticld;
Val: Integer

)i
{
{ Delete all the elements of the universe
{
{ CForm Thz form to get the value from
{ fid The static id of the field within the CForm form
{ val The value to delete
{
SimpleProcedure WipeUniverse(: CForm;
fid: Staticld
)i
S -
{ Not implemented in this version
{}
SimpleProceduire ShowAlternatives(: CForm;
fid: Staticld
):
{ . :
{ Get the name of a given foim
{
{ CForm The form to get the value from
{ val The name of the form
{}

procedure GetNameForm(: CForm;
out val: EString

);

{
{ Set a field to be present or not in the displayed form
{
{

CForm The form to get the value from

COUSIN APPLICATION BUILDER'S MANUAL

{ fid The static id of the field within the CForm form
{ val True ==> Make it present; False ==> Not Present
8
SimpleProcedure SetFieldPresence(: CForm;
fid: Staticld;
Val: Boolean
)
{ o
{ Set the lock value of a field
{ .
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ val True ==> Lock it; False ==> Unlock
{
SimpleProcedure RepfieldlLock(: CForm;

fid: Staticld;
Val: Boolean

);

{ :

{ Unlock everything; HAS to be called after commands are done
{

S

impleProcedure UnlockForm(- : CForm
E ‘
{
{ Set the listener for a field; The activation messages for that field
{ will be sent to the given port.
{ Not fully implemented yet.
{
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ pt The port where the messages should be sent
{3 o
SimpleProcedure SetFieldServer(: CForm;
fid: StaticId;
pt: Port
)
{ .
{ Set the field name that is printed on the display
{
{ CForm The form to get the value from
{ fid The static id of the field within the CForm form
{ name The name that-will appear on the display
{}
SimpleProcedure SetF1eldName(: CForm;

fid: Staticld;:
name: EString

);

23

COUSIN APPLICATION BUILDER’S MANUAL 24

{
{ Write a message in the pop up message windows
{
{ CForm The form to get the value from
{ fi The static id of the field within the CForm form; The message
{ will appear close to this field
{ 1line The message {only one line!!)
{1} _
Simpleprocedure CousinMessage(: CForm;
fid: Staticld;
line: EString
)
{
{ Exception will be raised when the request contains an error
{1}
Handler CousinError{ s: EString
)s

{
{ Not implemented
{
H

andler CousinAbort(form: Port;
field: Staticld

)s
5.3. Control functions
In the current implementation the control routines have been packaged in module CousinCalls.
The routines in this module completely hide the complexity of the message passing from the
application builder. In some cases fine control over the message passing is needed (for example if the
application communicates via messages with another process besides cousin). This fine control is
also available but will not be docuv'nented here; application builders who need it should contact one of

the members of the Cousin group.

The following are the two routines defined in module cousincalls:
procedure InitCousinInterface;

procedure WaitForActivation(< var form : CForm;.
var field : Staticld
)i

The routine InitCousininterface should be called at the beginning of the program to establish
communication with cousin. As a result of this-call the variable TopForm will be set to the top level

from associated with the application.

In addition to accessing and updating field values and universes, the application necds to be able to

COuUSIN APPLICATION BUILDER’S MANUAL ‘ 25

find out from COUSIN when its subcommands are invoked and to obtain the parameters to those
subcommands in a consisient state. This prevents, for instance, the user from changing- the
parameters between the time he issues the subcommand and the time CousiIN gets hold of the
parameters. The current mechanism requires each subcommand to list (using the Parameters
attribute of the field definition in the application description) the other fields that serve as pai'ameters
to it. When the user issues the subcommand, CousIN checks the current state of all the fields named
as parameters. If they are all correct, Cpusm locks them so that the user cannot change them, and
informs the application of the command. T'he_application is then supposed to retrieve the values it
needs and issue an unlock command to CousiN, whereupon all the fields become available for
modification by the user as before. If not all of the parameter fields are correct, CousiN does not
inform the application that the user has issued the command, but engages in its usual error correcting
_ behaviour on the incorrect fields. Once the fields are corrected, the user must reissue the
subcommand:; CousIN will not automatically continue the process of issuing the command from the

point at which the original attempt was blocked by the incorrect parameter fields.

The routine WaitFo rActivation is used _to wait for acfivations from Cousin. When
WaitForActivation is called it will wait until a message is sent to the application program. This routine
will decode the message and return the form id and the field id of the field modified. WaitForActivation
will receive messages for fields whpse ChangeRespose is either InformApplication or Command, and

~ itis up to the application program to know if the field corresponds to a sub-command or a parameter.

This locking mechanism is rather clumsy and facilities may eventually be added to allow a command
and its parameters to be packaged and sent to the application as a single unit, eliminating the need
for the application to request each value separately and then to.unlock the form. The routine to do
the unlocking is defined in module Cou;inUser (see UnlLockForm in the previous section).

5.4. Example Application Program
This section illustrates how a Perq Pascal application program can be written to use CousIN. The
following ‘program is the top level for the cmuftp application whose form was used as an example

earlier in this document.

COUSIN APPLICATION BUILDER’S MANUAL 26

program cmuftp;

imports CousinCalls from cousincalls;
{* the module that exports the functions
{* described above *}

imports cccmuftp from cccmuftp;
{* the file automatically generated from the
{* application description for cmuftp by the
{* genconst utility program to contain
{* definitions of constants whose names are
{* the field names and whose values are the
{* corresponding field ids *}

prdcedure DoSend; forward;
procedure DoReceive; forward;
{$include ccmuftpl.pas} {* bodies for the procedures *}

var
bool: Boolean;
form: CForm; _
fieldid: Staticld;
index: Integer;

begin
InitCousinInterface; {* initialize communication with COUSIN *}
while true do
begin .
{* wait until a command is invoked *}
WaitForActivation(form, fieldId);
. {* find out which command was invoked *}
{* invoke the proper command handler *}

case fieldld of : :
' {* the constants are defined in file ccmuftp.pas *}

CSend: DoSend;
CReceive: DoReceive;
CQuit: exit(cmuftp);
end;
end;

end.

Many simple CousIN applications will follow this pattern: initialization, followed by a loop which
waits for commands containing a case statement which dispatches on the command received. The
procedures DoSend and DoReceive, which execute the commands do the real work. The following

program fragment shows DoReceive:

COUSIN APPLICATION BUILDER’S MANUAL 27

procedure DoReceive;
var
gr: GeneralReturn;

hostName, mode, name: String;
fPrefix, 1Prefix, fSuffix, 1Suffix: String;
localFile, foreignFile: String;

i: Integer;

begin

host }

mode }

foreign prefix }
local prefix }

foreign suffix }

e e T e T e T e T

local suffix }

{* collect all the parameters that will be
{* the same for each file received *}

{* since the fields are parameters to the Receive
{* command we won't bother to check gr for success *1

gr := GetStrField(TopForm, CHostName, 1, hostName);

gr := GetStrField(TopForm, CMode, 1, mode);

gr := GetStrField(TopForm, CForeignPrefix, 1, fPrefix);
gr := GetStrField(TopForm, ClLocalPrefix, 1, 1Prefix);-

gr := GetStrField(TopForm, CForeignSuffix, 1, fSuffix);

gr := GetStrField(TopForm, ClLocalSuffix, 1, 1Suffix);

{* iteratively obtain the name of each
{* file to transfer and transfer it *}

iz=1; :
cr := GetStrField(TopForm, CFilesToTransfer, i, name);
while c~ = Success do '
begin
localFile := concat(1Prefix, name, 1Suffix});

foreignFile := concat(fPrefix, name, fSuffix);

{* SENDFILE does the actual sending *}

SENDFILE(localFile, foreignFile,)

i=9i+1; _

cr := GetStrField(TopForm, CFilesToTransfer, i, name);
end; ’

UnlockForm(form);

end;

{* if all the file names were collected before
{* sends were done, the unlock could be done
{* in less time *}

Again, this fragment illustrates a pattern that will be very common for Cousin applications: collect

parameters and execute command. In general, little or no parameter checking and interaction with

the user in case of error will be required, because COUSIN ensures that the parameters satisfy the

constraints specified in the form description, and the set of constraints supported by COUSIN cover

COUSIN APPLICATION BUILDER’S MANUAL 28

most common cases. Also, the application is unaware whether the parameters have been gathered
by menu selection, type in, etc. or whether the values it receives have been spelling corrected.

Because it relies on the services of CousIN, its user interface code is trivial.

6. Building a Cousin Application - A Summary

To create an application program called myapp1 that uses CousIN for its user interface, proceed as
follows:

e Retrieve a Cousin system for applications builders. The system for users doesn’t
include the files that are needed to compile the programs. An system appropriate for
application builders can be retrieved via update using the logical name cousinbuildkit - a
from the cfs vax.

¢ Create the application description file: according to the format described in Section
4. This file has to be created through an ordinary text editor. We are planning to build a
specialized editor to facilitate the creation and modification of this files. Right now the
best thing to do is to start from the description of another application. The resulting file
should be called myapp1.SDO.

e Create a binary_application‘desc ription: by running the utility program compsf with
the command line compsf myapp1. This will create a file called myapp1.BSD containing
a binary version of the application description file in the runtime format required by
COuUSIN.

¢ Create the constants file: which defines Pascal constants whose names are the
names of the form fields and whose values are the corresponding field Ids. To do this run
the utility program genconst with the command line genconst myappl. This will
create a file, cmyapp1.Pas, containing the constants, which you can Import into your
own application program, myapp1.Pas.

e Write the application program: using the Pascal calls described in Section 5 to
implement the necessary communication between it and CousIN. One example program
is given in Section 5.4, others can be found in the [cad]/usr/cousin/dev/.....
update directories.

e Compile and Link the Application program. In order for the linker to find the _
necessary .SEG files, you must link your application with cousin.RUN (eg. link myappl,
cousin).

Your application program can then be run with Cousin providing its user interface as described in the

CousiN User’s Manual for end users of COUSIN applications.

If you have any difficulties with the above procedure, please contact any of the authors of this

document directly or by sending them mail at CMU-CS-CAD.

COUSIN APPLICATION BUILDER’S MANUAL 29

References

1. Hayes, P. J. Uniform Help Facilities for a Cooperative User Interface. Proc. National Computer
Conference, AFIPS, Houston, June, 1982. :

2. Hayes, P.J. Executable Interface Definitions Using Form-Based Interface Abstractions. In
Advances in Computer-Human Interaction, H. R. Hartson, Ed.,Ablex, New Jersey, 1984.

3. Hayes, P. J. and Szekely, P. A. "Graceful interaction through the COUSIN command interface.”
International Journal of Man-Machine Studies 19, 3 (September 1983), 285-305. ‘

	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

