CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Mint
Reference Manual

Peter Hibbard
14 February 84

Abstract

This document describes version 2B(12) of Mint, the Spice Document Formatter. This is an early draft, and
not all the facilities of Mint are accurately described. The whole of the document has been produced by
Mint and DP, executing on a Perq.

Spice Document S153
Keywords and index categories: none

Location of machine-rcadable file: refman

Copyright ©@ MCMLXXXIV Peter Hibbard

This is an internal working document of the Computer Science Department, Carnegic-Mellon University,
Schenley Park, Pittsburgh, PA 15213. Some of the ideas expressed in this document may be only partially
developed, or may be erroneous. Distribution of this document outside the immediate working community
is discouraged; publication of this document is forbidden.

~

" Table of Contents

1 Notes about this version

1.1 Changes since the last release
1.1.1 Syntactic changes
1.1.2 Units of measurement
1.1.3 Galley properties
1.1.4 Fonts
1.1.5 Macrogenerator
1.1.6 Presentations
1.1.7 Tables of contents
1.1.8 Libraries
1.1.9 State files
1.1.10 Separate formatting
1.1.11 Annotations

1.2 Quirks and Oddities

2 Basic propertics of documents
2.1 Input conventions
2.2 Document syntax

O\ A D BB B W W NN e e

2.2.1 Syntactic metalanguage

2.2.2 Pseudo-Syntactic properties

22.3 Standard environments

1.2 4 Production rules common across several document types
2.2.4.1 Document environment syntax
2.2.4.2 Terminal environment syntax
2.2.4.3 Heading environment syntax
2.2.4.4 Section environment syntax
2.2.4.5 Ttem environment syntax
2.2.4.6 Title page environment syntax
2.2.4.7 Galley environment syntax
2.2.4.8 Page environment syntax

2.2.5 Document Syntax

2.2.6 Altering the syntax

2.3 Units of length

2.3.1 Absolute units

2.3.2 Internal units

2.3.3 Relative lengths

2.3.4 Scaling

2.3.5 Modifying environment parameters

2.4 Errors

3 Galleys

11
12
12
16
17
17
17
17
18
18
18
18
19
19
20
21
21
21
22
22
23

ii

3.1 Galley componcents

3.1.1 Procedure families

3.1.2 Font familics

3.1.3 Styles

3.1.4 Dominating environments

3.1.5 Installing a galley

3.1.6 Changing galley properties

3.2 Standard Galley Properties

3.2.1 Procedure families
3.2.1.1 Procedure family MainPFO0
3.2.1.2 Procedure family MainPF1
3.2.1.3 Procedurc family MainPF2
3.2.1.4 Procedure family FootPF0
3.2.1.5 Procedure family ContPFO0
3.2.1.6 Procedure family OddsPF0

3.2.2 Font families

3.2.3 Standard styles

3.2.4 The galley parameters for the document types
3.2.4.1 Text, form0
3.2.4.2 Text, form 1
3.2.4.3 Report, form 0
3.2.4.4 Article, form 0
3.2.4.5 Thesis, form 0
3.2.4.6 Slides, form 0
3.2.4.7 Manual, form 0
3.2.4.8 Manual, form 1

4 Boxes and Shags

4.1 Box Environment Parameters
4.1.1 Standard attributes
4.1.2 Additional parameters
4.1.2.1 Style parameters for document types
4.1.2.2 Style parameters for other environments
4.1.2.3 Additional parameters for title pages
4.1.2.4 Itemize and Enumerate
4.1.2.5 Maths
4.2 The standard values for the environment values
4.3 Box procedures
4.4 Computations
4.4.1 Standard computations
4.4.2 Arbitrary computations
4.5 Miscellaneous layout statcments
4.5.1 Spacing statements
4.5.2 Tabulations
4.5.3 The A11ign environment
4.5.4 The Describe environment

25
26
27
28
28
28
29
30
30
30
i1
32
33
33
34
35
37
38
38
38
39
39
39
39
39

41
41
42
45
45

47

.47

48
48
55
57
51
58
59
59
60
60
61

4.6 Slug Environments
4.6.]1 Face Codes
4.6.2 Font Sizes
4.6.3 User Face Codes
4.6.4 Underlines, Overlines and Erasclines
4.6.5 Raster Functions
4.6.6 Scripting
4.6.7 Overprinting

5 Foats .
5.1 Font representations
5.2 Font families
5.2.1 Creating font families
5.2.2 Associating fonts with a font family
5.3 Logical fonts
5.3.1 Changing font mappings
5.3.2 Icons
5.3.3 New fonts
5.4 Character information
54.1 The values describing a glyph
54.2 Applying character information
5.4.3 Extracting character information
5.5 Spacing adjustments
5.5.1 Italic corrections
5.5.2 Kerning
5.5.3 Optical adjustments

6 Macrogenerator
6.1 Macro expansion
6.1.1 Input conventions
6.1.2 Defining macros
6.1.2.1 Accessing parameters
6.1.2.2 Accessing system values
6.1.3 Deferred Macros
6.2 Standard Macrogenerator Facilities
6.2.1 Special Macros
6.2.2 Extra macros
6.2.3 Summary of other macros
6.2.4 System attributes accessed via @Value

7 Cross references
7.1 Counters
7.1.1 Overview of Counters
7.1.2 Counter manipulations
7.2 Labels

63
63

65
65
66
66
67

69
69
69
70
70
71
71
72
73
74
74
76
77
71
78
78
79

81
81
81
83
83
84
84
85
85
86
87
89

91
91
92
92
93

iii

iv

7.2.1 Referring to labels 94

7.2.2 Undcfined labels 94

7.3 Conversions 95
7.4 Standard Conversions and Counters 9%
7.4.1 Conversions : 96
7.4.2 Pseudo-counters ' 97
7.4.3 Non-basic conversions 97
7.4.4 Counters : 98
7.4.4.1 Counters common to all document types) 98

7.4.4.2 Counters in document types with footnotes and annotations 93

7.4.4.3 Counters in document types that have chapters 98

7.4.4.4 Counters in document types that have sections 98

7.5 Prefixes and postfixes 99
7.5.1 Standard prefixes 9

8 Page layout 101
8.1 Presentations 101
8.1.1 The structure of a presentation 101
8.1.2 Page styles 103
8.1.3 Layout routines 103
8.1.4 Defining new presentations 104
8.1.5 Making representations 104
8.1.6 Printing a presentation 105

8.2 Layout routines 105
8.2.1 Sorting the stugs and boxes 106
8.2.2 Page areas 106
8.2.2.1 Area parameter objects 106

8.2.2.2 Standard values of the page area parameters 107

8.2.3 Creating layouts 108
8.2.4 Actions of the layout procedures 109
8.2.4.1 The Default layout routine 109

8.2.4.2 The Tit1ePage layout routine 109

8.2.4.3 The Contents layout routine 109

8.2.4.4 The Pasteup layout routine 110

8.3 Standard presentations and printing 110
8.3.1 Page styles 110
8.3.2 Standard presentations 110
8.3.3 Printing the standard presentation 111

8.4 Page commands 111
8.4.1 Page headings and footings 111
8.4.2 Page offsets 112
8.4.3 Page skips 112
8.4.4 Example of headings and footings 113

9 Documentation aids 115

9.1 Bibliographies 115

9.1.1 Defining bibliographies

9.1.2 Citation collections

9.1.3 Citations

9.1.4 Causing the bibliography to appear

9.1.5 The standard bibliographies
9.2 Indexes

9.2.1 Index collections

9.2.2 Index entries

9.2.3 Causing the index to appear

9.2.3.1 The Style1 indexing routine

9.3 Tables of contents

9.3.1 Declaring tables of contents

9.3.2 Generating the table of contents

10 Decorations
10.1 Borders and Border Styles
10.1.1 Border Styles
10.1.1.1 Lines
10.1.1.2 Patterns
10.1.1.3 Border Styles
10.2 Colours
10.2.1 Defining colours
10.2.2 Associating colours with objects

10.2.2.1 Associating colours with page areas

10.2.2.2 Associating colours with boxes

10.2.2.3 Associating colours with borders
10.2.2.4 Associating colours with characters and lines

10.2.3 The order of overlaying

11 Devices
11.1 Device definitions
11.1.0.1 Device drivers’
11.1.0.2 Font formats
11.1.1 Device classes
11.1.2 Devices
11.2 Cross proofing

12 Mathematical Typesetting
12.1 Mathematical Typesetting
12.1.1 Basic Concepts
12.1.2 Simple formulae
12.1.3 More complex formulae
12.1.3.1 Formula types
12.1.3.2 Labelled equations
12.2 Advanced concepts

115
116
116
117
117
118
118
119
119
120
122
122
123

125
125
126
126
126
126
127
127
128
128
129
129
129
130

131
131
131
132
132

133

133

135
135
136
138
139
139
141
141

vi

12.2.1 Mathematical fonts
12.2.1.1 Changing fonts
12.2.2 Defining symbols
12.2.2.1 Inflected symbols
12.2.2.2 Replaccment text
12.2.3 Grouping subformulae
12.2.4 Controlling the style

12.2.5 Mathematical environment parameters

12.2.6 Tabular layout of formulae
- 12.2.7 Equation counters
12.3 Rcally advanced features
12.3.1 Non-fanatics stop here
12.3.2 Mathematical layout vectors
12.3.3 Styles
12.3.4 Types
12.3.5 Spacings, etc.
12.3.5.1 Spacings
12.3.5.2 Rows and columns
12.3.5.3 Positioning parameters
12.3.6 Mathematical font parameters

13 Alternative interpreters
13.1 Line drawings
13.1.1 DP and Plot

14 State Files and Libraries
14.1 Definition files
" 14.1.1 Standard state files
14.1.2 Creating standard state files
14.1.3 Low-level state file manipulations
14.1.4 Using definitions files
14.2 Libraries
14.3 Defining state
14.3.1 Basic definitions
14.3.1.1 The SpecialForm statement
14.3.1.2 The lexeme tables
14.3.1.3 Units
14.3.2 Syntax definitions
14.3.2.1 Syntax classes
14.3.2.2 Production rules
14.3.3 Galley definitions
14.3.3.1 Styles objects
14.3.3.2 Font families
14.3.3.3 Procedure families
14.3.3.4 Declaring galleys
14.3.3.5 Miscellancous properties

142
142
143
144
145
145
146
146
148
150
151
151
151
153
154
154
154
154
155
155

157
157
157

159
159
159
160
161
161
162
165
165
166
166
167
167
168
168
169
169
169
170
170
1711

14.3.4 Font definitions
14.3.4.1 Characteristics vectors
14.3.4.2 Font value objects
14.3.4.3 Font information
14.3.5 Counter and conversion definitions
14.3.5.1 Registering conversions and counters
14.3.5.2 Declaring counters
14.3.5.3 Associating conversions
14.3.5.4 Prefixes
14.3.5.5 Place conversions
14.3.5.6 Cross reference
14.3.6 Presentation definitions
14.3.6.1 Page styles
14.3.6.2 Presentations
14.3.6.3 Layouts
14.3.7 Bibliographies, contents definitions and indexes
14.3.8 Device definitions
14.3.9 Mathematical definitions
14.3.9.1 Composite symbols
14.3.9.2 Spacings
14.3.9.3 Standard symbols
14.3.9.4 Mathematical fonts
14.3.10 State file definitions

171
172
173
173
175
175
176
176
177
178
178
179
179
179
180
180
182
183
183
183
184
185
185

vil

Part One
Notes about this version

This section of the Reference Manual describes the principal changes that have cccurred in
Mint since the last major release in November 1983, and describes some of the problems that
still remain. :

1.1 Changes since the last release

<+ ~L

Mint has been extensively changed since the last major release; however most of the changes have been
in internal organisation and in features that are not used by most users. The following summarises the
changes; the reference at the beginning of each section points to the part of the Reference Manual that has
more details. -

1.1.1 Syntactic changes

[2.2] The opportunity was taken, with the introduction of state files (part 14), to revise the form of
the parser and its tables. Mint has now very little in-built understanding of any environment, and what
remains will be removed in a later version. This revision will be invisible to users.

o Mint now uses syntactic classes to describe the syntax, rather than nonterminals. This allows many
of the restrictions in the old syntax to be lifted, and provides a simple means of defining new
environments. The principal difference users will notice is that the syntax is more liberal,
although the description is more complex.

o The statements addrule and remrule have been renamed to addclass and remclass, in
order to reflect the change in the syntactic structure of documents. It is unlikely that users will
need to use either of these statements.

e Make is no longer equivalent to begin; instead it is a statement that directs Mint how to set up
the environment in which the document is processed. I have tried to make its effect be similar to
that of the old make command, so in general you should not need to change your document.
However, you should note that make now takes four parameters — document, the type of the

Sys:User>Hibbard>sredreferz.ine

Pecter IHibbard

1-2 Notes about this version Mint Reference Manual

document: form, the form of the document; device, the device the document is intended for;
and rest. a collection of parameters that get passed to the begin command for the document.
Thus, the statement

@Make(Document=Text,Form=1 ,Device=Dover,Rest=@"{Indent=01n,Gap=3points})

corresponds to

@Make (Text, Form 1, Indent 0Oin, Gap 3points)

in the old system. The cquals symbols are mandatory. This is because the make statement is
interpreted by the macrogenerator. You can omit the rest parameter, the device parameter
.and the form parameter (for example you can write @make(thes s)). If your document does
not start with a make statement, @make(document=text,form=0,device=perq) is

assumed, as in the previous version. Be warned that there are a few flakey features lingering out
there in the make statement, so follow the pattern I have given when you use it.

e The formal attribute Need now takes a value a11 as well as a vertical distance. This specifies that
all the environment should be placed on the same page.

o The formal attribute TabSet now takes a list of horizontal distances:
@Begin(Describe, TabClear, TabSet lin, 2ins, 31ins, 4ins)

1.1.2 Units of measurement

[2.3] A number of changes have been made in the way in which Mint handles units. These changes
have been made to increase Mint's consistency, and to reflect a new treatment of devices and fonts.

e The major change that users will notice is that the misnamed raster unit has now been
renamed to iu (internal unit).

o Mint now allows documents that are intended for photoreduction or magnification to be scaled,
so that units refer to the final photocopied document, and not to the immediate output of the
target device.

o The font-relative measures em and quad may be used in both horizontal and vertical directions.
In the horizontal direction they measure the width of the letter ‘M’; in the vertical direction they
measure the vertical height above the baseline of the bounding box of the font. These two values
need not be the same. This non-traditional treatment proves to be useful when describing
characters (section 5.4).

1.1.3 Galley properties

[3] Based on experience gained with the previous version, I have been able to make Mint more
comprehensively object-oriented, with statements that allow several types of object to be created and
manipulated. Two areas have benefited from this approach — galleys, described here, and presentations,
described in section 1.1.6.

Sys: User>Hibbard>sred>referz.ine

Peter Hibbard

Mint Reference Manual Notes about this version 1-3

o Procedure families and font familics are now objects that can be manipulated within Mint. They
can be declared, procedures and fonts can be associated with them, and they can be associated
with galleys by means of statements in the .Mss file. The advantage is that the same procedure
family and font family can be associated with scveral galleys, thus allowing a consistent behaviour
of several related galleys, and allowing a wholesale change of fonts and procedures to be made to
a galley at any time during processing the document. The principal effect users will observe s in
the statements assocproc and assocfont, which now refer to procedure families and font
families. '

o There are several changes associated with creating galleys. Since these are not normally created
by users, the differences will not be described here.

o Prefixes are now a part of the procedure family, rather than the environment, so allowing
different galleys to have different prefixes for the same environment. Users are unlikely to make
direct use of prefixes.

1.14 Fonts

[5] Major changes have occurred in Mint’s treatment of fonts. There are three classes of change.

Mint now allows sequences of characters to be replaced by a character, gap or icon. This allows
Mint to use ligatures (for example, the sequence of characters f and 1 can be replaced by a single
character fi), and provides a way of introducing accented characters (for example the sequence of
characters a and " can be replaced by the single character &).

o Mint now performs kerning, which is a second order adjustment of the position of characters. For
example the two characters o followed by x need to be made closer together than they would
otherwise be if they were simply placed adjacent to each other. The amount that character pairs
need to be kerned is a property of the font design.

« Mint can now use a very complete description of the appearance of each character, to allow it to
do high-quality typesetting. The information is not mandatory — Mint will make reasonable
guesses about the values it needs, but mathematical typesetting does not make sense without
some of the information.

~

1.1.5 Macrogenerator

[6] The days of the macrogenerator are numbered. Nonetheless it has managed to survive into this
version, held together with string and bent pipe-cleaners. Most of the changes are patches to fix problems
that have arisen in macroexpansion.

e Macro parameters are evaluated at most once, on being parcelled up prior to a macro call. The

only time a string will be rescanned is when it is the body of a macro definition. A macro ev alis
provided to force re-evaluation.

Sys:User>Hibbard>sredreferz.inc

§ e . Peter Hibbard
14 Notes about this version Mint Reference Manual

e A macro argument is expected to be syntactically well-formed. It is syntactically well-formed if
every embedded macro call is well-formed, by having maiching brackets. For example

@mymacro(@yourmacrofargument)and a bit mo‘re]to finish off)

will be scanned as

yourmacro called with argument)and a bit more
and
mymacro called with <result of previous call>to finish off

o Quoted strings (for example @""quoted string") are also expected to be well-formed, so
that

@""This is a quoted string @"(with a " in it)"
is all one quoted string.

e There are mahy more statements. They are described in section 6.2.

1.1.6 Presentations

[8] Presentations now make use of page styles, which are environment parameters, and layouts,
which are collections of rules describing how to lay out pages. The correspondence between page styles and
layouts is established by the user for each different presentation, so allowing fine control over the
appearance of the document. Presentations, page styles and layouts are objects that can be declared in Mint;
only layout routines, which take a layout specification and some set of galleys, are built in to Mint.

Presentations are not normally manipulated by users, so no further details will be given here.

1.1.7 Tables of contents

[9.3] Some document types now have a table of contents galley associated with them. When this is
the case, Mint automatically generates a table of contents, though it is the user’s reponsibility to supply
definitions of several macros to lay out the entries. A useful default set is provided in the standard release of

Mint.

1.1.8 Libraries

[14.2] A number of collections of Mint statements are available in library files, which are ASCII files
that have the extension . L1ib. The statement 1ibrary is a convenient way of including them:

@Library (TimesRomanKern)

Sys:User>Hibbarddsredreferzine

Peter Hibbard

Mint Reference Manual Notes about this version 1-5

1.1.9 State files

[14.3] The initial internal state of Mint is now read from a state file which is a binary file that loads up
tables of definitions. Virtually all the internal state needed for a document can be stored in a state file —
macro definitions, borders arid border styles, mod i fys and def ines, the effects of the use of assocfont
and substitutions, etc. A state file therefore provides a convenient closed-form encapsulation of a document
design, and is a useful adjunct to a .mss file. A state file is created by Mint itsclf from normal .mss files;
new state files can be created by incremental addition to a state file that already exists. Along with every
release of Mint comes the set of source files necessary to construct the lowest level state files, those that
correspond to the primitive document types (text, form 0: manual, form 1; etc). These files all have the
extension .Mint; they will be refered to as “the .Mint files”.

Mint provides a version control mechanism as a part of the state file facility; however, it relies on the
operating system’s notions of version control to implement it, so that any particular implementation of Mint
may be deficient. ,

Because the state is constructed from Mint statements, it is misleading to talk about the “standard
properties of Mint” — there is far greater flexibility in programming Mint than before. However, to avoid
confusion the rest of this document describes the operation of Mint when it is fed the state files created
from the statements that are part of the general release; those interested in programming different
document designs should read section 14.3, and study the .Mint files.

1.1.10 Separate formatting

[1.1.10] The latest version of Mint permits documents to be broken into parts that can then be formatted
separately. Mint saves the context that it uses for formatting each part, so that page numbers, section
numbers, etc., are correct. The feature is not described yet in the documentation, but I will explain its use
individually for those who need it.

1.1.11 Annotations

[1.1.11] Facilities now exist for including the editorial annotations of several editors in a document, and
for these annotations to be viewed selectively. I have not yet included all the apparatus this facility needs in
order to be used smoothly, so I will not describe it here. I am willing to explain it individually to anyone
who needs it.

Sys: User>Hibbard>srcdreferz.inc

1-6 Notes about this version Mint Rcfc';‘éfc‘e'&‘?,‘.’]%’adx

1.2 Quirks and Oddities

Mint has only just emerged from its shell into the light of day, so it still needs shaking down. In general,
I have found it rcasonably bug-free for my particular style of .Mss file, but others who have a different
style have unearthed bugs. In addition it is not yet very robust, and the crror messages it gives are
sometimes mislcading. The main problems are as follows — they will be fixed as soon as possible.

e The multiple environment is not like Scribe's®. Itis a fully-fledged environment, in which nest
other environments: thus it can be used with the describe environments for the architectural
design of box layouts. When used with itemize and enumerate it works as expected; with
description it reveals all too clearly that description is a nasty hack, which should be
replaced by describe.

e The clipping algorithm for box borders clips to page boundaries, not page arca boundaries, so
that a box which gets split between two pages and which has a visible border will appear very
strange. Since you probably didn’t want the box split over two pages anyway, you could regard
the appearance of the page as a quaint Mint warning message.

e Comments are handled by the macrogenerator, not the rest of the system. Since the
macrogenerator’s command conventions differ from those of the rest of the system (= is
mandatory, and @begin(x) is not permitted) you have to be careful when commenting out text.

e Because there is no bullet in the Perq fonts, itemize environments are stripped of this
necessary adornment.

e There seems to be a problem with the @zsp environment; or rather it has well defined formal
properties, but these are not the properties expected by the unprepared user. Always place
several new lines around the command, and then the new page may occur where you expect it.
The definition of the NewPage macro has been fixed so that it adds the necessary new lines.

e The maths environment seems to work satisfactorily if it is fed the correct input; feed it incorrect
input and it will corrupt the rest of Mint. If you use this environment and you get an unusual
error message, it's worth while looking at yourmaths input carefully.

o If you put pageheading and pagefooting statements before the first chapter
environment, Mint will create a couple of blank pages at the beginning of the document.

o The output driver for press files is not handling ligatures correctly on the last line ofa pafagraph.
The character that follows a ligature is likely to be too close to it.

e EDefs are not being expanded at quite the right time, and they are interacting with the
macrogenerator in all sorts of ill-mannered ways. Straightforward textual substitution is all right,
though.

o Bullets occasionally become divorced from their text when an item occurs at the bottom of a
page. (Later note: I think this is now fixed.)

1 Scribe is the registered trade mark of Unilogic Ltd.

Sys: User>Ilibbard>sredreferz.ine

Peter Hibbard Notes about this version 1-7

e Labels that are attached to pageheading, pagefooting and foot environments get lost.
Attach them to the nearest environment that is intended for the main galley.

« The macrogenerator is a whole can of worms.

Sys: User>Hibbard>sredreferz.ine

Part Two
Basic properties of documents

This part of the Reference Manual describes the lexical and syntactic properties of
documents, and a few other basic properties of the system. The first section describes the
input conventions — these are similar o those of Scribe, but there are sufficient differences
that you should not expect Scribe documents o be processed by Mint without change.
Mostly, however, the changes will be simple. The second section describes the syntax of
documents. In general the syntax is sufficiently free that you do not need to be aware of it
when you creale a document. The next two sections describe the units of length that Mint
uses, and the form of the error messages.

2.1 Input conventions

Mint allows several front-ends to coexist, and it will take lexemes from which ever one of them is
needed for the current environment. At present there are four front-ends: that for Scribe-like text, that for
DP, that for Plot, and that for mathematics. It is likely that others will be added in the future. The input
conventions for DP and Plot are described in section 13.1.1, and the input conventions for the mathematical
environments are described in part 12; this section describes the Scribe-like text input.

As far as has been possible, I have made the Mint input conventions for text the same as those for
Scribe: however, there are some differences which have been caused by the very different internal
structures of Mint and Scribe. Rather than go into a detailed comparison, 1 will itemize the principal
features of Mint’s conventions.

e Environment identifiers (such as Itemize and ovp), statement identifiers (such as Include),
macro identifiers (such as 1ibrary) and Mint commands (such as beg in) are case-free, as are
the formal attribute identifiers used to modify environments (such as Need and width), and the
formal parameter identifiers of macros.

o Attributes which take a length as their value must have the units explicitly specified (for example
Need 1 inch). The parameter identifier can be separated from the value by ecither a space or
an equals. Alas, formal parameter identifiers of macros must be followed by an equals,
introducing a regrettable lack of consistency.

Sys:User>Hibbard>sredrefera.ine

2-10 Basic propertics of documents Mint Mc‘;g‘,fge"{jg?,‘:f;%

o In many situations a blank line is intcrpreted as completing onc environment and starting
another of the same type. Generally whether this occurs or not is determined by the syntax of the
document (described in the next section), and not by attribute parameters of environments, as is
the case with Scribe. Since the syntax is not casily accessible to the user, you have to live with
what [have chosen; however, other facilities in Mint provide you with similar features. One
environment where this may cause some surprises is the quotation environment: this does not
allow blank lines within it. However, the multiple environment will do what Scribe users
would expect quotation to do.

e If two cnvironments have another environment between them, and there arc no blank lines
separating them, as for example in the case of

If two environments have another environment between them, and there are
no blank lines separating them, as for example in the case of
@begin(example)

This illustrates the continuation feature

@end(example)

then the last paragraph will be treated as a continuation of the first.
If blank lines separate the environments, however, the last paragraph
will start with an indented 1ine (provided that the document type has
indentations for the first line).

then the last paragraph will be treated as a continuation of the first. If blank lines separate the
environments, however, the last paragraph will start with an indented line (provided ihat the
document type has indentations for the first line).

e Enter and Begin are synonyms, as are Leave and End. Document environments do not need
to have an end. The make statement performs two actions: first, it indicates which state file to
use for the document; and second, it automatically creates a begin command for the document.
See section 14.1.1 for more information.

o Mint will expand or contract spaces to fill out the lines of some environments (like the current
one, for example). The rate of expansion or contraction is determined by the type of the space,
with spaces after the end of a sentence expanding faster than those between words. If a fullstop,
exclamation mark or question mark has two or more spaces after it, or is followed by a new line,
then the space is regarded as an end-of-sentence space, otherwise as a between-word space. For
this reason always start a sentence on a new line, or precede it by two spaces; follow a fullstop
used for an abbreviation with one space only. Spaces after commas, semicolons and colons also
expand at different rates. They can be converted to between-word spaces by using @#.
Non-expanding spaces are obtained using @w in the same way as Scribe, or by using @ (@
followed by a space).

¢ Mint does not number pages automatically. See section 8.4.1 to find how to include page
numbers.

o New environments can be defined in terms of current ones by using De f ine, which is similar to
the Define and Equate commands of Scribe; environments can also be modified by using
Mod i fy. Both of these commands understand the block structure of a document, and at the end
of the environment in which they occur the definitions and modifications are popped.

Sys: User>Hibbard>sredrefera.ine

Peter Iibbard

Mint Reference Manual Rasic propertics of documents 2-11

2.2 Document syntax

Mint has a more rigid notion of the syntax of a document than do many other document preparation
systems. The syntax is enforced by a parser that acts as the front end to the system; this parser performs
error-correction, so that in general it is not necessary to specify the complete structure of the document —
this can usually be inferred. However, not all general nestings of environments that are possible with Scribe
are possible with Mint, so there may be occasions where the structure of a document needs to be changed
somewhat. Facilities exist for the disciplined hacker to alter the syntax; see section 2.2.6.

Each document type has a different syntax; however there are similarities between them, and it is
convenient to describe the syntactic structure of all document types together.

2.2.1 Syntactic metalanguage

The syntax is described by a simplified version of a two-level grammar. A notion specifies a Mint
environment, such as centre and description, and a syntax class specifies a collection of notions. For
example, the syntax class Head ings specifies the notions Ma jorHeading, Heading and SubHeading.
A production rule is written in terms of syntax classes as

SyntaxClass = [SyntaxClassj + SyntaxClassy + ... + SyntaxClassg]

or

SyntaxClass

[l
The first rule is an abbreviation for the production rules

SyntaxClass = SyntaxClass,*
SyntaxClass, = SyntaxClassy | SyntaxClassy | ... | SyntaxClassy

which describes the environments that can nest within the environments described in the collection
SyntaxClass; these are the environments specified by SyntaxClass;, SyntaxClass,, efc. The
second rule specifies that the collection of environments specified by SyntaxClass have no other
environments nested within them.

In addition to the production rules, the input language to Mint is described by the error-correcting
rules. Currently these are somewhat crude (which is reflected by the parser occasionally misguessing the
correct parse when a trivial amount of analysis would yield it). The error-correction is driven by supplying
each production rule with a set of default notions, from which one is selected if the standard syntax is
violated. These defaults are written as

Sys: User>Hibbard>src>refera.ine

2-12 Basic propertics of documents Mint Rcfg,’.g';fge’ m‘r’;}jﬁ

{Notiony, Notiony, ... , Notion,}

An empty set of defaults implies that the parser will not take corrective action if the parse fails; in general
there is at most one default.

2.2.2 Pseudo-Syntactic properties

Several other properties are associated with the notions of a document; these are termed -
pseudo-syntactic properties since they affect the interpretation of a document but also have semantic
propertics. Two of them, pack and blank1ines, are described in this section. Pack takes a valuc from
(true, false, skip). and specifies whether the environment causes typographical display features (such
as a blank linc, or several consecutive spaces) to be interpreted as a horizontal gap of the appropriate size
needed for normal typographical text layout. An environment that does not use pack sets its value to
skip. Blank1ines takes a value from (ignored, kept, invalid), and specifies whether consecutive
blank lines in an environment are to be compressed into a single one or not. A value of invalid indicates
that blank lines cannot occur in the environment. The interaction between these two values is somewhat
subtle, and will not be described in this version of the document. The other pseudo-syntactic properties are
described elsewhere; they are: dominating, which is described in section 3.14; autoincrement,
which is described in section 2.2.2; and autocrossref, which is described in section 2222

2.2.3 Standard environments

The following are the standard environments. They are used in the same way as they are in Scribe. For
example

@begin(example, tabclear, tabset 8ems, 14ems, 22ems)

The brief descriptions below indicate informally the properties of each environment. More details are given
in section 4.2.

Abstract This places a paragraph of text in the position occupied by an abstract on a title
page.
Align An environment like verbatim, which treats tabulations in a way that is useful

for laying out tables. It is described more fully in section 4.5.3.

2 Well, all right then. An environment can have a cross-reference string that gets automatically inserted into a galley, such as occurs
when an annotation or a page command appears; such environments have an autocrossref that isnot null. If autoincrement is
true then it indicates that the dominating environment counter is to be incremented for each occurrence of the environment. The
annotating environments have autoincrements that are true.

Sys: User>Hibbard>sredrefera.ine

Peter Hibbard
Mint Reference Manual

‘Basic properties of documents 2-13

Annotation

Appendix
AppendixSection

Article

Caption

Centre

Chapter

Commentary

Contents

CopyrightNotice

Default

Describe

Description

Display

DItem

DP

Enumerate

Example

Sys:User>Iibbarddsrcdrefera.ine

An annotation is similar to a footnote, though at present it does not appear in the
pages. This environment is used in the editorial annotation feature that will be
described in a later edition of the manual.

An appendix is similar to a chapter, except for the numbering style that is used.
An appendix section is similar to a section, but is used in appendices.

A document type with numbered sections, subsections, etc., and no table of
contents.

A caption occurs under a figure, or over a table. It is preceded by the figure or
table number.

An environment which centres the text within the margins, breaking the lines at
the same places as in the manuscript. It uses the normal roman font. (This
environment can also be spelled center.)

A chapter is preceded by a number, the style of which depends on the document
type. The chapter heading is centred, and uses a large bold typeface.

A commentary environment is used to place two pieces of text side-by-side. The
left side is in the normal size of font, the right side in a smaller font.

This is used to create tables of contents. You will never need to use this
environment directly.

This creates a copyright notice, preceded by the copyright symbol, on the title
page. ‘

The default environment type for all documents except s11ides. It fills the lines,
and uses the normal roman font.

The describe cnvironment can be used for laying out tables. It is described
more fully in section 4.5.4.

This environment produces a list of paragraphs, with the first line outdented.
This environment is being used to produce this text.

An environment that narrows the margins, and breaks the lines in the same
places as in the manuscript. It uses the normal roman font.

A ditem is what each of the paragraphs is in a description environment.
You usually won’t need to use this environment explicitly.

This is used for DP drawings.
environment,

Section 13.1.1 describes how to use this

This produces a list of paragraphs, each preceded by a letter or number,
depending on the depth of enumeration. (Paragraph is used here in the informal
sense, not the sense defined below.)

An environment that narrows the margins, and breaks the lines in the same
places as in the manuscript. It uses a fixed width font.

2-14

Peter Hibbard

Basic properties of documents Mint Reference Manual

Figure

FlushLeft

FlushRight

Foot

Format

Gloss

Heading

Item

Itemize
MajorHeading

Manual

Maths

Multiple

Notice

PageCommand

PageHeading

PageFooting

A figure compriscs a paragraph of text, or a mathematical formula, etc, or a
diagram produced by Plot or DP, followed by a caption.

An environment that narrows its margins, and breaks the lines at the same places
as in the manuscript. Lines arc flushed up against the left margin. It uses the
normal roman font. :

Similar to flushleft, except that the lines are flushed up against the right
margin.

This is used for a footnote. The footnote appears at the bottom of the page in
which the text that refers to it appears, and it uses a smaller typeface.

An cnvironment that breaks the lines in the same places as in the manuscript. It
does not narrow the margins. It uses the normal roman font.

A gloss is the right-hand environment of a commentary. You have to specify
explicitly an environment as being a g10ss, otherwise it will be assumed to be a
textpart.

This produces a centred heading in a bold typeface that is smaller than that used
formajorheading.

An item is what each of the paragraphs is in an itemize and enumerate
environment. You usually won’t need to use this environment explicitly.

This produces a list of paragraphs, each preceded by a bullet.
This produces a centred heading in a large bold typeface.

A document type with numbered chapters, sections, subsections, etc, and a table
of contents. There are two forms of manual: form 0 labels chapters with the
word Chapter, form 1 labels them with Part. (This reference manual is using

form 1.))

This environment uses special processing of its body to do high quality
mathematical typesetting. Details are given in part 12. (The environment can
also be spelled math.)

An environment that groups together other environments within it. It narrows
the margins and the line spacing.

This environment allows you to put other paragraphs on the title page. Their
positions are determined by the tit1epage environment.

The pagecommand environment is used for several actions concerned with page
layout. Normally you will never use this environment directly.

This environment is used for creating page headings. The environments that are
nested within it are placed at the top of the pages. It is described in more detail
in section 8.4.1.

This environment, similar to the pageheading environment,. places footings
on the pages. It is described in more detail in section 8.4.1. (There should also
bepageleftmarginandpagerightmargin. Watch this space.)

Sys:User>Hibbarddsredrefera.ine

Peter Hibbard
Mint Reference Manual

Basic propertics of documents 2-15

PageOffset
Paragraph
Plot

Portion

PrefaceSection

ProgramExampie

Quotation
Report
ResearchCredit
Section

Slides
SubHeading
SubSection
Table

Text

TextPart

Thesis

Sys:User>H{ibbard>sredrefera.ine

You need this environment if you want to offset the text on pages to the left or
right, or up or down. It is described in more detail in section 8.4.2.

A paragraph is the lowest level of section heading. It has a number, and is
flushed left.

This environment is used to introduce a diagram produced by the Plot program.
Section 13.1.1 describes how to use this environment.

This environment is used in the separate formatting facility. You would not
normally use this directly, but instead you would use a statement. This facility
isn’t described yet.

A preface section will start a new page, and produce the heading in a large
typeface.

This environment is currently identical to examp Ve. In the future it will be used
for examples of program text, and will apply conventional program formatting
rules. (Maybe.)

An environment that narrows the margins and line spacing, and fills the lines. It
uses the normal roman font.

A document type with numbered chapters, sections, subsections, etc, and a table
of contents.

This environment places a paragraph of text in the usual position occupied by a
research credit on a title page.

A section has a number, and is flushed left. It uses the same typeface as that used
forchapter.

A document type without numbered sections, with spacings and fonts suitable
for making overhead transparency slides. The default environment for slides is
verbatim.

A subheading is in a bold typeface, and is flushed left.

A subsection has a number, and is flushed left. It uses a bold typeface that is
smaller than that used for chapter and section.

A table comprises a caption, followed by a paragraph of text, a mathematical
formula, etc, or a diagram preduced using Plot or DP.

The default document type. It has no numbered sections, and occurs in two
forms. Form 0 has wide-spaced lines, and form 1 has narrower lines.

The textpart environment is the left-hand environment of a commentary.
Normally you will not need to use this explicitly.

A document type with numbered chapters, sections, subsections, etc., and a table
of contents.

Peter Hibbard

2-16 Basic properties of documents Mint Reference Manual

TitleBox The environments that arc allowed within the title box are majorheading,
headingand centre.

TitlePage This environment is used for laying out title pages. It controls the positions of
the environments which nest within it.

Verbatim This environment narrows the margins, breaks the lines in the same positions as
in the manuscript, and uses a fixed width font.

Verse This environment breaks lines in the same position as that in which they are

broken in the manuscript, unlcss the line is too long to fit within the margins. In
this latter case it indents the broken line.

In addition to these environments, there are the environments document, mroot, mfoot,
mannotation, moddsandsods and mcontents, which are inaccessible to you. They control the
creation of the galleys.

Note that there is no equation environment. The maths environment allows equations to be laid out.

2.2.4 Production rules common across several documnent types

In the description below, the syntax class is followed by the notions it produces, the default notions, the
value of Pack and the value of B1ankL ines. There are several syntax classes that contain only one notion.
To avoid the proliferation of identifiers, these syntax classes are shown as <Notion> when they occur on
the right hand side of production rules.

The following syntax classes are used.

Headings

Items

Pages

Sections

Terminals

Titles

"

MajorHeading, Heading, SubHeading

Commentary, Describe, Description, Enumerate, Figure, Itemize,
Multiple, Portion, Table

PageCommand, PageHeading, PageFooting, PageOffset

Appendix, AppendixSection, Chapter3, Paragraph, PrefaceSection,
Section, SubSection

Align, Centre, Default, Display, DP, Example, FlushLeft, !
FlushRight. Format, Maths, ProgramExample, Plot, Quotation,
TextPart, Verse, Verbatim

Abstract, CopyrightNotice, Notice, ResearchCredit, TitleBox

3

Chapter does not occur in all document types.

Sys: User>Hibbarddsredrefera.ine

Peter Hibbard

Mint Reference Manual Basic propertics of documents 2-17

2.2.4.1 Document environment syntax

Article = [Headings + Items + Sections™ + Terminals + <TitlePage>]
{Default} Skip Invalid

Manual = [Headings + Items + Sections’ + Terminals + <TitlePage>]
i {Default} Skip Invalid
Report = [Headings + Items + Sections® + Terminals + <TitlePage>]
{Default} Skip Invalid
Slides = [Headings + Items + Terminals] '

{Verbatim} Skip Invalid
Text = [Headings + Items + Terminals]
{Default} Skip Invalid
[Headings + Items + Sections’ + Terminals + <TitlePage>]
{Default} Skip Invalid

Thesis

Those document types with sections marked by + have the chapter environment, those with - do
not.

2.2.4.2 Terminal environment syntax

Align = [] O False Kept
Centre = - [1 {3 False Kept
Default = n { True Invalid
Dispiay = [] {3 False Kept

bP = [1 {3 True Ignored
Example = {1 {3} False Kept
FlushLeft = [] {1 False Kept
FlushRight = L[] {3} False Kept
Format = [] {3 False Kept
Maths = [] { False Ignored
Plot = [] {} True Kept
ProgramExample = [] {3 False Kept
Quotation = [1] {3 True Invalid
TextPart = [] {3 False Kept
Verbatim = [1] {3} False Kept
Verse =] { False Kept

2.2.4.3 Heading environment syntax
Heading = [] O False Kept
MajorHeading = [] {3} False Kept
Subheading =] {3 True Invalid
2.2.4.4 Section environment syntax

Appendix = [] {3 False Invalid
AppendixSection = [] {3 True Invalid
Chapter = [] {3 False Kept
Paragraph =] {3 True Invalid
PrefaceSection = [] {3 False Kept '
Section = [] {3 True Invalid
SubSection = [] {3 True Invalid

Sys:User>Hibbard>sredrefera.inc

2-18 Basic propertics of documents

Peter Hibbard
Mint Reference Manual

2.2.4.5 Item environment syntax

Commentary = [Terminals + Items + <Gloss>]
{TextPart} Skip Invalid
Describe = [Terminals + Items] {FlushLeft} Skip Invalid
Description = [Terminals + Items + <DItem>]
{DItem} Skip Invalid
Enumerate = [Terminals + Items + <Item>]
{Item} Skip Invalid
Figure = [Terminals + Items + <Caption>]
{TextPart} Skip Invalid
Itemize = [Terminals + Items + <Item>]
{Item} Skip Invalid
Multiple = [Terminals + Items] {Default} Skip Invalid
Table = [Terminals + Items + <Caption>]
{Align} Skip Invalid
Caption = [] {} True Invalid
DItem = [] 8 True Invalid
Gloss = [] {3 True Invalid
Item =] {3 True ~ Invalid
2.2.4.6 Title page environment syntax
Abstract = [Terminal + Items] {Default} Skip Invalid
CopyrightNotice = [] {3} True Invalid
Notice = [Terminal + Items] {Default} Skip Invalid
ResearchCredit = [Terminal + Items] {Default} Skip Invalid
TitlePage = [Titles] {Notice} Skip Invalid
TitleBox = " [Terminals + Headings] {Centre} Skip Invalid
2.2.4.7 Galley environment syntax
Annotation = [Terminals + Items] {Default} Skip Invalid
Foot = [Terminals + Items] {Default} Skip Invalid
Contents = [Terminals + Items + Headings]
{Align} Skip Invalid
MAnnotation = [<Annotation>] {Annotation}
Skip Invalid
MContents = [<Contents>] {Contents} Skip Invalid
MFoot = [<Foot>] {Foot} Skip Invalid
MRoot = One of [<Article>], [<Manual>], [<Report>], [<Slides>],
[<Text>], [<Thesis>] {} Skip Invalid
2.2.4.8 Page environment syntax
PageCommand = {3 True Invalid
PageHeading = [Terminals] {Centre} Skip Invalid
Pagefooting = [Terminals] {Centre} Skip Invalid
PageOffset = [] {Centre} True Invalid
MOddsandSods = [Pages] {3 Skip Invalid

Sys: User>!libbard>sredrefera.ine

Peter Iibbard

Mint Reference Manual Basic properties of documents 2-19

2.2.5 Document Syntax

Each document type has a different syntax. Thé syntax for a document consists of the sum of the
_ syntaxes needed for each of the galleys into which the document will be formatted. More information about
galleys is given in part 3.

Article Syntax [<Article> + Pages + <Foot> + <Annotation>]

Manual Syntax [<Manual> + Pages + <Foot> + <Annotation> + <Contents>]
Report Syntax [<Report> + Pages + <Foot> + <Annotation> + <Contents>]
Slides Syntax [<S1ides> + Pages] .
Text Syntax [<Text> + Pages + <Foot> + <Annotation>]

Thesis Syntax [<Thesis> + Pages + <Foot> + <Annotation> + <{Contents>]

2.2.6 Altering the syntax

Sometimes you will discover that the Mint syntax is too restrictive to allow some layouts that you want.
For example, you might want an itemize environment in a titlebox. Mint provides a means of altering the
syntax from within the .Mss file, using the statements: AddC1ass, which adds a new right hand side to a
production rule; RemC1ass, which removes a right hand side; AddDefault, which adds a default to be
used by the error correcting parser; and RemDe fault, which removes a default. Of these, only AddClass
is likely to be used by any but the most fearless Minter, and even then, I will not be responsible for the
havoc that can arise from inappropriate use of the statement.

The form of these statements is

@AddClass (LHS, RHS}
@RemClass (LHS, RHS)

which add and remove environments from the syntax class LHS, and

@AddDefauit (LHS, RHS)
@RemDefault (LHS, RHS)

which add and remove defaults from the environment LHS.

The new syntax allows a greater variety of document structures than was previously available. Only in
extreme cases should it be necessary to alter the syntax. For example, the syntax in the previous version of
Mint did not allow you to incorporate commentaries into figures. It now does, so that:

Sys: User>Hibbard>src>refera.ine

2-20 Basic propertics of documents Mint Rcé;gfgg&g?ﬁ’ﬁ

@begin(figure, width = 6in, borderstyle widthl, border = 0.1 in)
@begin[commentary]
@begin[dp, width = 3 inJ]@include[bargraph.dp]@end[dp]

@begin[gloss, fontsize = n]

Total execution times for the three parsers (for two Lambda output
files). The three bars at the left show the execution times for the
simpler Lambda file (59 lines of text): the three bars at the right
correspond to the more complex file (211 Tlines of text).

The lower part of each bar indicates the user time; the upper part is the
system time.

'C' indicates the hand-written C program.

@end[gloss] :

@end[commentary]

@caption[A performance comparison of the three methods.@label[bargraph]]
@Gend(figure)

produces the following:

Total execution times for the three parsers (for

t(sec) \ awk two Lambda output files). The three bars at
8.0 4 the left show the execution times for the
70 . simpler Lambda file (59 lines of text); the
three bars at the right correspond to the more
5-0 4 yacc + lex complex file (211 lines of text). The lower part
5.0 4 of each bar indicates the user time: the upper
4.0 J aWk, +1 part is the system time. °C’ indicates the
3.0 J yace -+ ex hand-written C program.
2.0 4
1.0 4

Figure 1. A performance comparison of the three methods.

2.3 Units of length

Mint has a fairly precise notion of units of length, and the units must be specified wherever a distance is
required. There are three classes of units of length — absolute units, measured in lengths of platinum,
lengths of Saxon kings’ beards, etc; device relative units, measured in internal units; and layout relative
units, measured in terms of the sizes of pages, or characters in some font.

Mint classifies device relative and layout relative units into horizontal and vertical measures. Wherever
it says, in this manual, something like “Mint expects a vertical unit”, then Mint will require the unit of

Sys: User>Ilibbard>srcdrefera.ine

Petor Hlibbard - vl Basic propertics of documents ' 2-21

length to be an appropriate vertical unit, such as a 11ine, or a unit that can be used in the vertical direction,
such as an inch. In addition, during galley creation it is not appropriate to talk about the size of a page
{Oh dear, that sccms wrong>, and during page layout there is no default font to use for deriving the size of
a character. Mint checks that the appropriate relative units are being used in these circumstances.

The units are as follows.

2.3.1 Absolute units

The units are expressed in ratios relative to one inch (remember the Saxon king?). They may be used for
both horizontal and vertical distances.

inch Also inches, in, ins. Just as you would expect.

point Also points. Printers’ units of measure, appropriate for fonts.
1 point = 0.013837 inches.

pica Also picas. Ditto. | pica = 0.166044 inch.

cm Also cms. 1 cm = 0.3937 inch.

mica Alsomicas. 1 mica = 0.001 cm = 0.0003937 inch.

2.3.2 Internal units

Mint assumes that there is some device-dependent unit of distance, the iu (internal unit), which may not
necessarily be the same in absolute units in the X and Y directions. Mint uses these units internally, and
converts all other units into them. The absolute size of an internal unit is specified when a device class is
declared. Normally you will never use these units, though they are generated by the charinfo statement.

2.3.3 Relative lengths

There are two sets of relative lengths. During galley preparation, the unit of distance is the em, a
traditional typesetting measure of distance. An em describes the size of the letter M, which in many classical
fonts has the same width as height. Since many modern fonts do not have this property, Mint uses two
values for the em, according to whether it is used vertically or horizontally: this has some useful features
when describing font properties. In the horizontal direction the size of an em is the value of the EmWidth
parameter for the font, if it has been defined, otherwise it is the value of XX — X0 for the character ‘W’. In
the vertical direction the size of the em is the value of the EmHe ight parameter for the font, if it has been
defined, otherwise it is the value of YY for the character ‘M’. See section 5.4 for more details. When used

Sys:User>Hibbard>srcdrefera.ine

-2 Basic propertics of documents Mint Refoogr Hibbard

as a unit of measure in a box, an em refers to the default font for the box. Units in this measurc can be
expressed as em or ems, or as quad or quads4.

The unit of distance 1ine and 11ines measures the distance between the baselines of consccutive lines
in a box — this distance is the size of a vertical em plus the gap that separates the slugs.

During page layout, the relevant measures are pagewidth, the width of the page for the target device,
and pageheight respectively.

2.3.4 Scaling

Documents are frequently reproduced by photographic processes which allow magnification or (more
frequently) reduction. It is useful to be able to describe lengths in terms of the photographically reproduced
document, rather than in terms of the original from the printer. This means that if you want to have a
diagram that is to be 3 inches wide after reproduction at 90% reduction, you can describe it as 3 inches
wide, even though it is actually 3.33 inches wide on the output page.

This scaling should be done not only to the units of length, but also to the representation of the fonts
that are used in the document. Unfortunately scaling of fonts cannot be done easily for raster devices like
the Perq and Dover; fortunately Metafont fonts exist which, although nominally of one point size, are
actually magnified. To produce a scaled document you must therefore set the font families with the
appropriate scaled fonts, and use the setscale statement to set the scaling for units of length. For
example

@setscale(1.11)

will scale all the units appropriately for 90% reduction.

2.3.5 Modifying environment parameters

In addition to setting environment parameters using the appropriate units, the current value may be
modified. For example,

@begin(muitiple, width -1in, above *2, below /2, need +3cms)

will decrease the value of the width paramcter by one inch, double the above parameter, halve the

Note that a quad does not measure the point size of the font. This will be fixed in future versions of Mint, and [will probably
rename the em to avoid confusion with its traditional meaning,

Sys:User>Hibbarddsre>refera.ine

Peter Eé?gﬂ;%e Manual Basic propertics of documents 2-23

be1ow parameter, and incrcasc the need paramcter by three centimeters. The need parameter can be set
to a11, when it specifies the vertical size of the box.

2.4 Errors

There are four classes of error: Warnings, Errors, Heresies and Fatal E'rrors, in increasing severity.
Warnings arc given if Mint detects suspicious input that is not otherwise incorrect and that can be
formatted appropriately; Error messages are given if the input cannot be formatted, but where it is possible
to continue formatting the rest of the document. Heresies generally indicate problems inside Mint, where
there is doubt about its ability to continue: and Fatal Errors indicate serious problems that prevent Mint
from continuing. After a Warning or Error Mint continues; after a Heresy or Fatal Error it halts. It may be
resumed by responding appropriately to the prompt, but the effects are unpredictable. You should report
Heresies and Fatal Errors to me using the report mechanism described in the User Manual.

Error messages appear in the typescript window on the Perq screen, and are written off to a file with
extension .Error. The message gives the input file location, and the reason for the error. If Mint hasn’t yet
been able to read any input, the part of the file name before the dot will be empty (thus you will find the
errors listed in a file named . E rror). There is nc complete list of error messages available, but they should
be self-explanatory.

Sys: User>1libbard>srcdrefera.inc

Part Three
Galleys

Galleys are the principal data structures within Mint. They specify the formatting rules that
will be applied within the various environments, they specify the fonis that will be used, and
they specify the devices for which the information in the galley will be targetted. In addition
to carrying passive information used internally by Mini, and the contents of the manuscrip!,
galleys are also formatiing processes. The interactions between these processes help create
the relationships that exist between pieces of the manuscript — the text and a Sfloating figure,
or the text and a footnote, for example. In section 3.1 I describe the principal properties
of galleys: section 3.2 describes the default properties of the galleys that are set up
automatically when Mint starts.

3.1 Galley components

The properties of a galley are specified by several collections of information. The information that
specifies how the galley is to format the document is collected into procedure families, which can be
declared and manipulated within Mint. Since a procedure family specifies the behaviour of a galley when
interpreting the manuscript, associating the same procedure family with several galleys is sometimes useful.

The information that specifies which fonts will be used in the galley is collected together into a font
Jamily, which is also an object that can be declared and manipulated within Mint, and which can similarly
be associated with several galleys.

Global values that describe the style of a galley are collected into a styles object. This is a collection of
values, describing for example, several values for margins, the above and below, the gap between lines,
etc., that can get extracted by each environment. Styles objects can also be associated simultaneously with
several galleys.

To specify a galley fully several other items of information are required. These are described together in
section 3.1.5.

Sys:User>Hibbard>sredreferb.ine

. Peter Hibbard
3-26 Galleys Mint Reference Manual

Centre Plot

BoxStandard0| BoxStandard0

Galley
EnvCentrel EnvP10t0 - - - -

/ X .
NoPrefix NoPrefix - - - -
! Procedure Family
]
I r t c
i
: TimesRoman14 [n
TimesRomanil - - - -]
- -—"“‘-.____;> TimesRomanio | 6achald CapsFont oo . - "
TimesRomang | Gachad .- - - s
—
TimesRoman6 - - - - ss

Font Family

RLM NLM RGap| NGap| - - - -

AN
/

Styles Object

Figure 2. Structure of a galley

3.1.1 Procedure families

The procedure family associated with a galley determines which information the galley will receive from
the manuscript, and how it will format the information. Basically the procedure family of a galley specifies a
top-down parser and secmantic analyser that takes the output of the error-correcting parser and performs the
transformations on it necessary to produce the formatted text. Whether a galley receives the output from the
error-correcting parser is determined by two factors — whether the galley has a formatting procedure for
the particular environment being currently treated by the error-correcting parser, and whether a dominating
environment has excluded the galley or not. See section 3.1.4 for a description of dominating environments.

The procedure family of a galley is maintained as a vector, indexed by the environment identifier —
Itemize, Caption, etc. An entry in the vector comprises three parts, a procedure indicator an
environment indicator and a prefix indicator. The procedure indicator specifies which (recursive) procedure
will be used to parse and analyse the input; the environment indicator specifies which set of box
environment parameters will be used for this analysis, and the prefix indicator specifies what prefix (or

Sys:User>tibbarddsredreferb.ine

Peter 1libbard
Mint Reference Manual

Galleys 327

postfix) string will be gencrated automatically for the environment. There are fewer procedures than
environment parameter sets, because several environments can be analysed using the same procedure. For
example, the FlushLeft, the Verbatim and the Gloss environments arc analysed by the same
procedure, because the differences between these environments arc captured completely by the differences
between the environment parameters. See section 4.3 for a description of the procedures, see section
4.1 for a description of the box environment parameters, and see section 7.5 for a description of the
prefixes.

A new procedure family is created by the statement
@NewProcFamily (FloatingFigures)

which creates a new vector, named FloatingF igures, and initializes all the entries to null. (You should
also be able to copy procedure families, but you can’t yet.)

A procedure is associated with some entry in the procedure family vector by the statement AssocProc,
which takes the name of a procedure family, the identifier of the environment. the identifier of the
procedure, the identifier of the environment parameters, and the identificr of the prefix. For example

@AssccProc (FloatingFigures, DP, BoxStandard0, EnvDPO, NoPrefix)

specifies that the FloatingFigures procedure family is able to handle the DP environment, using the
procedure BoxStandard0 and the environment parameters EnvDPO0, and that no prefix string is to be
used. If the entry was already occupied, it is overwritten.

A word of caution. By placing entries in the procedure vector, you are (meta-) programming a parser
and semantic analyser. There are many ways that you can make mistakes, and there are only a limited
number of checks it is reasonable for Mint to do to help you out. You are probably in good shape adding
terminal environments, though.

3.1.2 Font families

A font family is a two dimensional array of font indicators that indicates the fonts to use in the box
environments. Font families are described in more detail in section 5.1, which explains how to add fonts
to the font family, and how to manufacture fonts from existing ones.

Sys:User>Hibbard>sre>referb.inc

‘ _ Peter Libbard
3-28 Galleys Mint Reference Manual

3.1.3 Styles

A styles object is a collection of values that is associated with a galley when it is created. When an
environment starts, the environment parameters can be selected from the styles object (possibly after
transformations), though an environment can obtain its values in other ways as well. The values in the styles
object, together with the inheritance rules used by the environments, determine to a large extent the
appearance of documents. For example, a styles object contains two values, the ngap and rgap, that are
used by most environments to specify the leading between lincs. That is, most environments specify their
gap attribute to be either ngap or rgap; by using appropriate values in the styles object of a galley you
can control the inter-line spacing throughout the document. In fact the major difference between text,
form 0 and text, form 1 is in these two styie values.

A styles object is created by the makesty1e statement; this takes an identifier, a device identifier and a
collection of values. Section 14.3.3.1 shows an example of the statement, and section 3.2.3 lists the values of
the style objects used in the principal document types.

3.1.4 Dominating environments

As mentioned above, two factors determine whether a galley will reccive the output from the
error-correcting parser: first, whether the galley has a procedure fo1 the current environment, and second,
whether a dominating environment has excluded other galleys. It is necessary to be able to exclude galleys
that are cligible by the first rule, since many galleys may be able to format a default environment, for
example; however, if this environment occurs within a footnote, only the galleys handling footnotes should
receive the output of the error-correcting parser.

In order to restrict the set of galleys, environments can be made dominating. If a dominating
environment is current, then only those galleys that have the dominating environment in their procedure
family will receive input, and all the others will remain blocked until the environment terminates. The
specification of whether an environment is dominating or not is made during the specification of the syntax
of the document. The following environments are specified as dominating in the current system.

Foot Annotation PageHeading PageFooting
PageOffset PageCommand

3.1.5 Installing a galley

In addition to maintaining passive information, a galley is an active process, which has associated with it
an execution context and the stack of activation records of the procedures of the parser and analyser that
have been entered and not vet left. When a galley is first created, you have to specify the procedure family,

Sys: User>Hibbard>sredreferb.ine

Peter 11ibbard .
Mint Reference Manual Galleys 329

the font family and the style valucs that are associated with it, and the environment whose procedure is at
the bottom of the invocation stack. An additional parameter specifies whether the galley becomes active
immediately or not (the only galley which does not is the Contents galley, which is started automatically
after the other galleys).

A galley is created by the statement NewGa1ley, as in the statement

@NewGalley (FootNotes, Annotations, Fontsl, FootPF, Style0, MFoot, True)

This statement creates a new galley called FootNotes, which belongs to the class of galleyé called
Annotationss, with font family Fonts1, procedure family FootPF, styles StylesO, and with the
procedure MFoot at the bottom of the invocation stack. The procedure will be invoked immediately. Mint
will check that the device specified in the styles object belongs to the class of devices specified in the font
family; the galley is made for that particular device. Usually the galley will suspend immediately, because it
requires lexemes to proceed, and it will become active only when the error-correcting parser finds the
appropriate environment in the manuscript. Thereafter the error-correcting parser will feed information to
the galley until the environment ends, at which time the galley will again suspend. In order to be useful,
therefore, the lowest invocation in the galley’s execution context should be a procedure that loops, and calls
other procedures to format specific environments. Because the error-correcting parser handles the input
first, the looping procedure need not have an explicit environment identifier available to the user. More
details are beyond the scope of the reference manual; but see how the Footnotes galley is constructed for
a model.

3.1.6 Changing galley properties

The properties of a galley can be changed after it has been created. It is possible to use assocfont and
assocproc to change individual entries in the font and procedure families associated with a galley. Since
the same family may be associated with several galleys, each galley will change its properties. It is not
possible to change individual entries in the styles object associated with a galley, except by using the make
statement. See section 4.1.2.1 for an explanation of how to do this.

Alternatively, the whole of the font family, procedure family or styles object can be changed. The
following statements perform these actions.

@SetFontF (Main, Kanjifonts)
@SetProcF (Main, KanjiProcs)
@SetStyle (Main, Scroll)

5 It is no place here to describe the different classes of galley. Mint handles each class differently. The classes are main,
annotations,miscellaneous and contents.

Sys:User>Hibbard>src>referb.inc

Peter Hibbard
Mint Reference Manual

3-30 Galleys

These statements will change the font family, procedure family and styles object to those specified (they
should have been created already, of course). The font family and the procedure family can be changed at
any time; however, it does not make scnse to change the styles object after there are slugs in the galley, so
normally you will want to put the setsty1e statement at the beginning of the document, or in the .Defs
file (section 14.1). Note that you can change the device associated with the galley, but it must belong to
the same device class as the original device (see section 11.1).

3.2 Standard Galley Properties

This section describes the properties of the standard galleys that are made available by using the
standard state files (section 14.1.1) in the current version of Mint. I describe several procedure families, font
families, prefixes and styles before showing in section 3.2.4 how each of the galleys is composed.

The current version of Mint uses five galleys — the main galley, into which most of the document is
placed; the footnotes galley, which is used to receive footnotes; the annotations galley, which
receives annotations; the oddsandsods galley, which receives page layout information; and the
contents galley which receives the table of contents. At present DP and Plot drawings go into the main
galley.

3.2.1 Procedure families

The following procedure families are defined. The name of each environment is followed by the
procedure indicator and environment indicator that the environment uses. See section 3.1.1 for the
meanings of these terms.

3.2.1.1 Procedure family MainPFO0

BoxStandard0

Centre EnvCentrel NoPrefix
Display BoxStandard0 EnvDisplay0 NoPrefix
Example BoxStandard0 EnvExample0 NoPrefix
. ProgramExample BoxStandard0 EnvProgrambEx0 NoPrefix
FlushlLeft BoxStandard0 EnvFlushLeft0 NoPrefix
FlushRight BoxStandard0 EnvFlushRightO0 NoPrefix
Verbatim BoxStandard0 - EnvVerbatimO NoPrefix
Format BoxStandard0 EnvFormato0 NoPrefix
Quotation BoxStandard0 EnvQuotation0 NoPrefix
Default BoxStandard0 EnvDefault0 NoPrefix
Align BoxStandard0 EnvAlign0 NoPrefix
Plot BoxStandard0 EnvPlot0 NoPrefix
DP BoxStandardO EnvDPO NoPrefix
Verse BoxStandard0 EnvVersel NoPrefix
Maths BoxMathsO EnvMathsO PostfixEqn

Sys:User>Hibbard>src>referb.ine

Sys:User>Hibbard>srcdreferb.inc

—
}\%:S{ II{]eﬂf)g?:;dce Manual Galleys 331

MajorHeading BoxStandard0 EnvMajorHeading0 NoPrefix
Heading BoxStandard0 EnvHeading0 NoPrefix
SubHeading BoxStandard0 EnvSubHeading0 NoPrefix
PrefaceSection BoxStandard0 EnvPrefaceSecd NoPrefix
Chapter BoxSectionEnv0 EnvChapter0 PrefixChapter
Section BoxSectionEnv0 EnvSection0 PretixSection
SubSection BoxSectionEnv0 EnvSubSection0 PrefixSubSection
Paragraph BoxSectionEnv0 EnvParagraph0 PrefixParagraph
Appendix BoxSectionEnv0 EnvAppendix0 PrefixAppendix
AppendixSection BoxSectionEnv0 EnvAppendixSec0 PrefixAppendixSec
Itemize BoxItemize0 EnvIitemize0 NoPrefix
Item BoxStandard0 EnvIitem0 NoPrefix
Description BoxMultiplel EnvDescription0 NoPrefix
DItem BoxStandard0 EnvDItemO NoPrefix
Commentary BoxCommentary0 EnvCommentary0 NoPrefix
TextPart BoxStandard0 EnvTextPartd NoPrefix
Gloss BoxStandard0 EnvGlossO MoPrefix
Figure BoxFigurel EnvFigured PrefixFigure
Table BoxTable0 EnvTabie0 PrefixTable
Caption BoxCaption0 EnvCaptiono NoPrefix
Enumerate BoxEnumeratel EnvEnumeratel MoPrefix
Describe BoxDescribel EnvDescribel MoPrefix
Multiple BoxMultipleO EnvMultipled NoPrefix
TitlePage BoxMultiplel EnvTitiePaged NoPrefix
TitleBox BoxMultiple0 EnvTitieBox0 NoPrefix
ResearchCredit BoxMultiple0 EnvResearchCr0 NoPrefix
Abstract BoxMultipliel EnvAbstract0 MoPrefix
Notice BoxMultiplel EnvNotice0 NoPrefix
Portion BoxPortion0 EnvPortiond NoPrefix
CopyrightNotice BoxSectionEnv0 EnvCopyrightNO PrefixCopyrtN
Dokument BoxGalley0 EnvDokument0 NoPrefix
MRoot BoxRoot0 EnvRoot0 NoPrefix

3.2.1.2 Procedure family MainPF1
Centre BoxStandardo0 EnvCentref NoPrefix
Display BoxStandard0 EnvDisplay0 NoPrefix
Example BoxStandard0 EnvExample0 NoPrefix
ProgramExample BoxStandard0 EnvProgramEx0 NoPrefix
FlushlLeft BoxStandard® EnvFlushLeft0 NoPrefix
FlushRight BoxStandard0 EnvFlushRight0 NoPrefix
Verbatim BoxStandardQ EnvVerbatim0 NoPrefix
Format BoxStandardQ EnvFormat0 NoPrefix
Quotation BoxStandard0O EnvQuotationd NoPrefix
Default BoxStandard0 EnvDefaulto NoPrefix
Align BoxStandard0 EnvAlign0 NoPrefix
Plot BoxStandard0 EnvP10t0 NoPrefix
DP BoxStandard0 EnvDPO NoPrefix
Verse BoxStandard0 EnvVersel NoPrefix
Maths BoxMaths0 EnvMathsO PostfixEqgn
MajorHeading BoxStandard0 EnvMajorHeading0 NoPrefix
Heading BoxStandard0 EnvHeading0 NoPrefix
SubHeading BoxStandardO EnvSubHeading0 NoPrefix
PrefaceSection BoxStandard0 EnvPrefaceSecO MoPrefix
Section BoxSectionEnv0 EnvSection0 PrefixSection
SubSection BoxSectionEnv0 EnvSubSection0 PrefixSubSection

Peter 1ibbard

3-32 Galleys Mint Reference Manual
Paragraph BoxSectionEnv(EnvParagraph0 PrefixParagraph
Appendix BoxSectionEnv0 EnvAppendixl PrefixAppendix
AppendixSection BoxSectionEnv0 EnvAppendixSecl PrefixAppendixSec
Itemize BoxItemizel EnvIitemizel NoPrefix
Item BoxStandard0 EnvIitemO NoPrefix
Description BoxMultiplel EnvDescription0 NoPrefix
DItem BoxStandard0 EnvDItem0 NoPrefix
Commentary BoxCommentary0 EnvCommentary0 NoPrefix
TextPart BoxStandard0 EnvTextPart0 NoPrefix
Gloss BoxStandard0 *EnvGlossO NoPrefix
Figure BoxFigurel EnvFigure(PrefixFigure
Table BoxTableO EnvTable0 PrefixTable
Caption BoxCaption0 EnvCaption® NoPrefix
Enumerate BoxEnumerate0 EnvEnumerate0 NoPrefix
Describe BoxDescribel EnvDescribel NoPrefix
Multiple BoxMultiple0 EnvMultiple0 NoPrefix
TitlePage BoxMultiplel EnvTitlePage0 NoPrefix
TitleBox BoxMultiple0 EnvTitieBox0 NoPrefix
ResearchCredit BoxMultiplel EnvResearchCr0 NoPrefix
Abstract BoxMultiple0 EnvAbstract0 NoPrefix
Notice BoxMultiple0 EnvNoticel NoPrefix
Portion BoxPortion0 EnvPortion0 NoPrefix
CopyrightNotice BoxSectionEnv0 EnvCopyrightNO PrefixCopyrtN
Dokument BoxGalley0 EnvDokumentO NoPrefix
MRoot BoxRoot0 EnvRoot0 NoPrefix

3.2.1.3 Procedure family MainPF2

Centre BoxStandard0 EnvCentrel NoPrefix
Display BoxStandard0 EnvDisplay0 NoPrefix
Example BoxStandard0 EnvExample0 NoPrefix
ProgramExampie BoxStandard0 EnvProgramEx0 NoPrefix
FlushLeft BoxStandard0 EnvFlushlLeft0 NoPrefix
FlushRight BoxStandard0 EnvFlushRight0 NoPrefix
Verbatim BoxStandard0 EnvVerbatim0 NoPrefix
Format BoxStandard0 EnvFormat0 NoPrefix
Quotation BoxStandardO EnvQuotation® NoPrefix
Default BoxStandard0 EnvDefault0 NoPrefix
Align BoxStandard0 EnvAlign0 NoPrefix
Plot BoxStandard0 EnvPlot0 NoPrefix
DP BoxStandard0 EnvDPO NoPrefix
Verse BoxStandard0 EnvVerse0 NoPrefix
Maths BoxMathsO EnvMathsO PostfixEgn
MajorHeading BoxStandard0 EnvMajorHeading0 NoPrefix
Heading BoxStandard0 EnvHeading0 NoPrefix
SubHeading BoxStandard0 EnvSubHeadingO0 NoPrefix
Itemize BoxItemize EnvIitemizel NoPrefix
Item BoxStandard0 EnvItemO NoPrefix
Description BoxMultiplel EnvDescription0 NoPrefix
DItem BoxStandard0 EnvDItem0O NoPrefix
Commentary BoxCommentary0 EnvCommentary0 NoPrefix
TextPart BoxStandard0 EnvTextPart0 NoPrefix
Gloss BoxStandard0 EnvGlossoO NoPrefix
Figure BoxFigure0 EnvFigure® PrefixFigure
Table BoxTable0 EnvTablel PrefixTable
Caption BoxCaption0 EnvCaption0 NoPrefix

Sys:User>Hibbard>sredreferb.ine

Peter Hibbard .

Mint Reference Manual Galleys 3-33
Enumerate BoxEnumerate0 EnvEnumerate0 NoPrefix
Describe BoxDescribel EnvDescribel NoPrefix
Multiple BoxMultiplel EnvMultipled NoPrefix
Portion BoxPortion0 EnvPortion0 NoPrefix
Dokument BoxGalleyO EnvDokument0 NoPrefix
MRoot BoxRoot0 EnvRoot0 NoPrefix

3.2.1.4 Procedure family FootPFO0
Centre BoxStandard0 EnvCentrel NoPrefix
Display BoxStandard0Q EnvDisplay0 NoPrefix
Example BoxStandard0 EnvExample0 NoPrefix
ProgramExample BoxStandard0 EnvProgramEx0 NoPrefix
FlushlLeft BoxStandard0 EnvFlushLeftO NoPrefix
FlushRight BoxStandard0 EnvFlushRight0 NoPrefix
Verbatim BoxStandard0 EnvVerbatim0 NoPrefix
Format BoxStandardO EnvFormat0l NoPrefix
Quotation BoxStandardQ EnvQuotationd NoPrefix
Default BoxStandardd EnvDefaultl NoPrefix
Align BoxStandardO EnvAlign0 NoPrefix
Plot BoxStandard0 EnvP10ot0 NoPrefix
DP BoxStandard0 EnvDPO NoPrefix
Verse BoxStandard0 EnvVerse(NoPrefix
Maths BoxMaths0 EnvMathsO PostfixEqn
Itemize BoxItemized Envitemizel NoPrefix
Item BoxStandard0 EnvItemd NoPrefix
Description BoxMultipiel EnvDescription0 NoPrefix
DItem ‘ BoxStandard0 EnvDItem0 NoPrefix
Commentary BoxCommentary0 EnvCommentary0 ~ NoPrefix
TextPart . BoxStandard0 EnvTextPartl NoPrefix
Gloss BoxStandard0 EnvGlossO NoPrefix
Figure BoxFigurel EnvFigurel FrefixFigure
Table BoxTah1el EnvTablel PrefixTable
Caption BoxCaption0 EnvCaption0 NoPrefix
Enumerate BoxEnumerate0 EnvEnumeratel NoPrefix
Describe BoxDescribel EnvDescribel NoPrefix
Multiple BoxMultiplel EnvMuitipleO NoPrefix
Foot BoxCrossRef0 EnvFcot0 NoPrefix
MFoot BoxGalleyO EnvMFoot0 NoPrefix

3.2.1.5 Procedure family ContPF0
Centre BoxStandard0 EnvCentred NoPrefix
Display BoxStandardQ EnvDisplay0 MoPrefix
Example BoxStandardO0 EnvExampleO NoPrefix
ProgramExample BoxStandard0 EnvProgramEx0 NoPrefix
FlushLeft BoxStandardd EnvFlushLeftO NoPrefix
FlushRight BoxStandard0 EnvFlushRightO0 NoPrefix
Verbatim BoxStandard0 EnvVerbat im0 NoPrefix
Format BoxStandard0 EnvFormat0 NoPrefix
Quotation BoxStandard0 EnvQuotation0 NoPrefix
Default BoxStandard0 EnvDefaultl NoPrefix
Align BoxStandard0 EnvAlign0 NoPrefix
Plot BoxStandard0 EnvPlot0 NoPrefix

Sys:User>Hibbard>stedreferb.inc

Peter Hibbard

3-34 Galleys Mint Refercnce Manual
DP BoxStandard0 EnvOPO NoPrefix
Verse BoxStandard0 EnvVerse0 NoPrefix
Maths BoxMaths0 EnvMathsO NoPrefix
MajorHeading BoxStandard0 EnvMajorHeading0 NoPrefix
Heading BoxStandard0 EnvHeading0 NoPrefix

- SubHeading BoxStandardd EnvSubHeading0 NoPrefix
Itemize BoxItemize0 Envitemizel NoPrefix
Item BoxStandard0 EnvItemO NoPrefix
Description BoxMultiple0 EnvDescriptiong NoPrefix
DItem BoxStandard0 EnvDItem0 NoPrefix
Commentary BoxCommentary0 EnvCommentary0 NoPrefix
TextPart BoxStandard0 EnvTextPart0 NoPrefix
Gloss BoxStandardO EnvGlossO NoPrefix
Figure BoxFigure0 EnvFigurel NoPrefix
Table BoxTablel EnvTable NoPrefix
Caption BoxCaption0 EnvCaption0 NoPrefix
Enumerate BoxEnumerate0 EnvEnumerate0 NoPrefix
Describe BoxDescribel EnvDescribe0 NoPrefix
Multiple BoxMultiplel EnvMultiple0 NoPrefix
Contents BoxMultiple0 EnvContentsO NoPrefix
MContents BoxGalley0 EnvMContentsO NoPrefix

3.2.1.6 Procedure family OddsPFO
Centre BoxStandard0 EnvCentrel NoPrefix
Display BoxStandard0 EnvDisplay0 NoPrefix
Example BoxStandard0 EnvExample0 NoPrefix
ProgramExample BoxStandard0 EnvProgramkEx0 NoPrefix
FlushlLeft BoxStandard0 EnvFlushleftO NoPrefix
FlushRight BoxStandard0 EnvFlushRight0 NoPrefix
Verbatim BoxStandard0 EnvVerbatim0 NoPrefix
Format BoxStandard0 EnvFormat0 NoPrefix
Quotation BoxStandard0 EnvQuotationO NoPrefix
Default BoxStandard0 EnvDefaultld NoPrefix
Align BoxStandard0 EnvAlign0 NoPrefix
Plot BoxStandard0 EnvPlot0 NoPrefix
DP BoxStandardd EnvDPO NoPrefix
Verse BoxStandard0 EnvVersed NoPrefix
Maths BoxMathsO EnvMathsO PostfixEgn
PageHeading BoxCrossRef0 EnvPageHeading0 NoPrefix
PageFooting BoxCrossRef0 EnvPageFooting0 NoPrefix
PageOffset BoxCrossRef0 EnvPageOffsetl NoPrefix
PageCommand BoxCRTerm0 EnvPageCommand0 NoPrefix
MOddsandSods BoxGalley0 EnvMOddsandSods0 NoPrefix

Sys: User>Hibbard>sredreferb.inc

Peter {libbard .
Mint Reference Manual - Galleys 3-35

3.2.2 Font families

The following font familics are defined.

Table 1. PerqScreen font family fonts0 (Main and contents galleys)

Face Font size
code ss s n 1 1
r - Gachag TimesRoman12 - -
i - - TimesRoman12i . - -
b - Gacha9 TimesRoman12b TimesRoman14 TimesRomanl8
c - - - - -
g - - - - -
t - Gachag Gachal2 - -
p - - - - -
z - - - - -

Table 2. PressFile font family fonts0 (Main and contents galleys)

Face - Font size
code ss s n 1 11
r TimesRomané TimesRoman8 TimesRoman10 TimesRoman1l TimesRomanl4
i - TimesRoman8i TimesRomanl10i - -
b - TimesRoman8b TimesRoman10b TimesRomanllb TimesRomanl4b
c - - CapsFont? - -
g - - Hippo10 - -
t - Gacha8 Gachal0 - -
p - - TimesRomani0bi - -
z - - ZFont10 - -

a) This is constructed from TimesRoman10 and TimesRoman8.

Table 3. PerqScreen font family fonts1 (Annotations and footnotes galleys)

Face i Font size

code $S S n 1 1
r - Gacha$ - -
i - - - - -
b - - - - -
c - - - - -
g - - - - -
t - - - - -
P - - N) '
z -- - - - -

Sys:User>Hibbard>srcoreferb.inc

3-36

Galleys

Peter Hibbard
Mint Reference Manual

Table 4. PressFile font family fonts1 (Annotations and footnotes galleys)

Face Font size

code ss s n 1 n
r - TimesRoman6 TimesRoman8 - -
i - TimesRoman6i TimesRoman8i - -
b - TimesRoman6b TimesRoman8b - -
¢ - - - - -
g - - - - -
t - - - - -
p - - - - -
z - - - - -

Table 5. PergScreen font family fonts2 (Oddsandsods galley)

Face Font size

code ss S n 1 n
r - Gacha9 TimesRoman12 - -
i - - TimesRomani2i - -
b - - TimesRomanl12b - -
c - - - - -
g - - - - -
t - - Gachal2 - -
p - - - - -
z - - - - -

Table 6. PressFile font family fonts2 (Oddsandsods galley)

Face Font size

code ss s n 1 11
r - TimesRoman8 TimesRoman10 - -
i - - TimesRomanl101i - -
b - - TimesRoman10b - -
c - - - - -
g - - - - -
t - - Gachal0 - -
p - - - - -
2z - - - - -

Table 7. PerqScreen font family fonts3 (Slides main galley)

Face Font size

code Ss S n 1 11
r TimesRomani2 TimesRoman12 TimesRomanl4 TimesRoman18 TimesRomani18
i - - - - -
b - TimesRoman12b TimesRoman14 TimesRoman18 TimesRoman18
c - - - . - -
g - - - - -
t - - - - -
p - - - - -
2 - - - - -

Sys:User>Hibbard>sredreferb.inc

Peter Hibbard
Mint Reference Manual Galleys 337
Table 8. PressFile font family fonts3 (Slides main galley)

Face Font size

code Ss s n 1 11
r Helvetical2 Helvetical4d Helvetical8 - -
i - Helvetical4i Helvetical8i - -
b Helveticaldb Helvetical8b Helveticad24 Helveticad30
c - - - - -
g . = - . - -
t - - Helvetical8 - -
p - - - - -
z - - - - -

Table 9. PerqScreen font family fonts4 (Slides oddsandsods galley)

Face Font size

code sS s n 1 1
r TimesRomani2 TimesRoman12 TimesRomanl4 TimesRoman18 TimesRomanl8
-i - - - -
b - - -
¢ - - - - -
g - - - - -
t - - - - -
p - - - - -

Table 10. PressFile font family fonts4 (Slides oddsandsods galley)

Face Font size

code ss s n 1 11
r Helvetical2 Helvetical2 Helveticald Helveticals Helvetical8
-i - - - - -
b - - -
c - - - - -
g - - - - -
t - - - - -
P - - - - -
2z - - - - -

3.2.3 Standard styles

Styles are parameters that control the general appearance of a document, and are set by default, or
altered when the document is made. See section 4.1.2.1 for a description of their actions. The following two
styles objects are specified. Let XWidth be the width of the page on the target device, and YHeight be the
height of the page. Also let XInc be equal to XWidth/40, and Y Inc be equal to YHe ight/50. The styles
objects are as follows.

Sys:User>Hibbard>sredreferb.ine

Peter 1libbard

3-38 Galleys Mint Reference Manual
Styles0O
Width Xwidth*3/4 RAbove YInc
RLM 0 NAbove YInc div 2
NLM XInc RBelow YInc
RRM 0 NBelow YInc div 2
NRM XInc RGap YInc div 4
Indent XInc NGap YInc div 10
JustifylLeft True HGap YInc div 10
JustifyLeftLast True JustifyRight ~ True
ImageColour Black JustifyRightLast False
RasterFunction ROr BackgroundColour Transparent
Stylesl
Width XWidth*3/4 RAbove YInc * 2
RLM 0 NAbove YInc
NLM XInc RBelow YInc * 2
RRM 0 NBelow YInc
NRM XInc RGap YInc div 2
Indent 0 NGap YInc div 3
Justifyleft True HGap YInc div 10
JustifylLeftlLast True JustifyRight True
ImageColour Black JustifyRightLast False
RasterFunction ROr BackgroundColour Transparent

3.2.4 The galley parameters for the document types

3.2.4.1 Text, form0

The féllowing galleys are defined.

@NewGalley (Main, Main, Fonts0, MainPFx, Stylel, MRoot, True)

@NewGalley (FootNotes, Annotations, Fontsl, FootPFO, Style0, MFoot, True)

@NewGalley (Annotations, Annotations, Fontsi, NotePF0, Style0, MAnnotation,
True)

@NewGalley (OddsandSods, Miscellaneous, Fonts2, 0ddsPF0, Stylel,
MOddsandSods, True)

3.2.4.2 Text, form 1

The following galleys are defined.

@NewGalley (Main, Main, Fonts0, MainPFx, Style0, MRoot, True)

@NewGalley (FootNotes, Annotations, Fontsl, FootPFO, Style0, MFoot, True)

@NewGalley (Annotations, Annotations, Fontsl, NotePF0, Style0, MAnnotation,
True)

@NewGalley (OddsandSods, Miscellaneous, Fonts2, OddsPFO, Style0,
MOddsandSods, True)

Sys: User>iibbard>sre>referb.inc

Peter 1libbard .
Mint Reference Manual Galleys

3-39

3.24.3 Report, form 0

The following galleys are defined.

@NewGalley (Main, Main, FontsO, MainPFx, StyleO, MRoot, True)

@NewGalley (FootNotes, Annotations, Fontsl, FootPFQ, Style0, MFoot, True)

@NewGalley (Annotations, Annotations, Fontsl, NotePF0, Style0, MAnnotation,
True)

@NewGalley (OddsandSods, Miscellaneous, Fonts2, OddsPF0, Styled,
MOddsandSods, True)

@NewGalley (Contents, Contents, Fonts0, ContPFQ, Style0, MContents, False)

3.2.4.4 Article, form 0

The following galleys are defined.

@NewGalley (Main, Main, FontsO, MainPFx, Style®, MRoot, True)

@NewGalley (FootNotes, Annotations, Fontsl, FootPF0, Style0, MFoot, True)

@NewGalley (Annotations, Annotations, Fontsl, NotePFO, Style0, MAnnotation,
True)

@NewGalley (OddsandSods, Miscellaneous, Fonts2, OddsPF0, StyleO,
MOddsandSods, True)

3.2.4.5 Thesis, form 0

The following galleys are defined.

@NewGalley (Main, Main, Fonts0, MainPFx, Style0, MRoot, True)

@MewGalley (FootNotes, Annotations, Fontsl, FootPFQ, Style0, MFoot, True)

@NewGalley (Annotations, Annotations, Fontsl, NotePFO, Style0, MAnnotation,
True) :

@NewGalley /(0ddsandSods, Miscellaneous, Fonts2, OddsPFO0, Style0,
MOddsandSods, True)

@NewGalley (Contents, Contents, Fonts0O, ContPFQ, Style0, MContents, False)

3.2.4.6 Slides, form 0

The following galleys are defined.

@NewGalley (Main, Main, Fonts3, MainPFx, Stylel, MRoot, True)
@NewGalley (OddsandSods, Miscellaneous, Fonts4, 0ddsPFO, Stylel,
MOddsandSods, True)

3.2.4.7 Manual, form 0

The following galleys are defined.

Sys:User>Hibbard>srcdreferb.inc

’ Peter Ilibbard
340 Galleys Mint Reference Manual

@NewGalley (Main, Main, Fonts0, MainPFx, Style0, MRoot, True)

@MewGalley (FootNotes. Annotations, Fontsl, FootPFO, Style0, MFoot, True)

@NewGalley (Annotations, Annotations, Fonts1l, NotePF0, Stylel, MAnnotation,
True)

@NewGalley (OddsandSods, Miscellaneous, FontsZ, 0ddsPF0, Styled,
MOddsandSods, True)

@NewGalley (Contents, Contents, FontsO, ContPFO, Style0, MContents, False)

3.2.4.8 Manual, form 1

The following galleys are defined.

@NewGalley (Main, Main, FontsO, MainPFx, Style0, MRoot, True)

@NewGalley (FootNotes, Annotations, Fontsl, FootPFO, Style0, MFoot, True)

@NewGalley (Annotations, Annotations, Fontsl, NotePFO, StyleO, MAnnotation,
True)

@NewGalley (OddsandSods, Miscellaneous, Fonts2, OddsPF0, Style0,
MOddsandSods, True)

@MewGalley (Contents, Contents, FontsO, ContPFO0, Style0, MContents, False)

Sys: User>libbard>sredreferb.inc

Part Four
Boxes and Slugs

Boxes are the subcomponents of galleys. They correspond 1o paragraphs, figures, tables, etc,

in the document. The properties of a box specify how the contents of the box will be laid out
— for example what its width is, and how the margins will be calculated. These properties
are determined by the environment parameters of the box. Slugs are the subcomponents of
boxes. In text they correspond to single lines, but in line drawings they may correspond to a
component of the entire drawing. Slugs for text can have slug environments which allow
changes in font and which perform underlining, for example.

4.1 Box Environment Parameters

The attributes of a box determine the appearance of the box and the way in which the information in
the box is laid out. The attributes are set to standard values on entering an environment, but they may be
changed by using environment parameters, or globally by using define and modify. Several related
environments, such as centre, flushleft, etc, differ only because they use different values of some of
the environment parameters. For a complete list of the standard values for all the environments, see section
42. In general the environment parameters do not affect the appearance of a box directly; instead they
do so by being parameters to computations, which generate the values needed by the low level Mint
formatting routines. Since the Mint user has control over which computations will get applied, it is a little
misleading to say, for example, that the width parameter specifies the width of a box. However, there is
usually a direct relation between an environment parameter and the value generated for the low level
routines, so this distinction can be ignored by the casual user. In the description below I am assuming that
the standard computations will be applied.

Environment parameters are of two classes: the standard ones, which are defined for all the
environments (though they are not necessarily always meaningful), and additional environment parameters,
which are usually specific to a particular environment.

Sys: UseryHibbard>sredreferl.ine

44 ‘ Peter Hibbard
2 Boxes and SIUgs Mint Reference Manual
b Lert Right ﬁ
. Edge |, Edge {
- | '6"'\ Stug Indent T\ Gap —5: I —
Slug ' Sug l
Left ' Right
Margin) Margin
—————————> Tab 1
> Tab 2
Tab 3
Box Border Extra Tab
/]
—F Box Width

Figure 3. Box and slug parameters

4.1.1 Standard attributes

The following are the standard attributes, and the types of the values they may take. See section 2.3 for a
description of these types, and how values of them are represented. <<Since the device characteristics are
associated with the galley, one ought to be able to use page-relative units below. It's an oversight that you

can’t.>>

Above, Below

BackGroundColour

Border

BorderStyle

These specify the minimum space above and below a box (this statement applies
to the standard environments; see section 4.4 for more details on this). The
gap between two boxes, A followed by B is computed as the maximum of the
below of 4 and the above of B. The values of above and be1ow are specified
in absolute units or lines, e.g.

@begin(Heading, Above = 3 lines, Below = 1.3 lines)

BackGroundColour determines the colour of the background of a box. See
section 10.2 for a description of how to use this parameter.

This determines the width of the border that exists between the outer edge of the
box and the inner edge; see figure 3. It is specified in absolute units, (horizontal)
ems or lines.

The border style determines the appearance of the border drawn around the
box. Two border styles are predefined — NoBorder, which leaves the border

Sys:User>Hibbard>sredreferline

Peter Hibbard
Mint Reference Manual

Boxes and Slugs 4-43

ComplLM

CompRM
CompGap
CompXPosn

CompYPosn

CompWidth
CompFont

Continue

ExtraLeftMargin

FaceCode

FontSize

Gap

ImageColour

Justifyleft

Sys:User>Hibbard>sredreferl.inc

empty, and Width1 which draws a border of width 1/100" inch around the
box. See section 10.1 for more details about creating border styles.

This determines the computation that will be used to obtain the left margin of
the slugs. Several standard computations are provided to handle the normal
cases of indented text, verse, etc., but the hacker can also provide his own, for all
sorts of exotic purposes. The parameter takes small integer values. See section
4.4 for more details.

In a similar way, this specifies the computation for the right margin.
This specifies the computation for the gaps separating the shugs.

This specifies the computation to be uscd to determine the X position of the box
relative to its neighbours; that is, its horizontal position in the galley.

This specifies the computation to be used to determine the Y position of the box
relative to its neighbours; that is, its vertical position in the galley.

This specifies the computation to determine how the width of the box is derived.
This specifies the font for each of the slugs in the box.

This determines how the computations for the margins should be performed in
the case where two boxes have a third box of a different kind between them. If
this parameter has the value allow, and there are no blank lines separating the
three boxes, then the margin computations for the third box are performed as
though the third box is a continuation of the first; if the value is disallow,
then the margins of the third box are computed independently of the context in
which that box occurs; and if this parameter is t rue the margins are treated as if
the box is a continuation of the previous box of this kind.

This specifies the horizontal distance of the slug’s left margin from the internal
dimension of the box for continuation lines in the verse environment. It is
specified in absloute units or ems, e.g.

@begin(verse, extraleftmargin = 4 quads)
This specifies the default face code of the box. It takes values from (r, 1, b, ¢, g,

t, p, z, m0, m1, m2) or from the face codes defined by the user. See sections
4.6.1 and 4.6.3 for the meaning of these values.

This determines the default font size used for the fonts in the box. It takes values
from (11, 1, n, s, ss). See section 4.6.2 for the meanings of these values.

This parameter specifies the gap that will be placed between the slugs in the box.
See figure 3. It is specified in absolute units or ems (yes, ems).

This determines the colour of the image; that is, the colour of the characters
which are put into boxes or the lines that are drawn in diagrams. See section
10.2 for a description of how to use this parameter.

And JustifyRight, JustifyLeftLast, JustifyRightLast. These
specify the nature of the justification actions taken when formatting text slugs.

) Peter Hibbard
Boxes and Slugs Mint Reference Manual

LeftMargin

Need

PageStyle

RasterFunction

RightMargin

TabSet

TabClear

TabDivide

JustifyLeftLast and JustifyRightLast control the justification of the
last line of a box; JustifyLeft and JustifyRight control the justification
of the other lines in the box. They take values from (True, False). Suitable
combinations of these values are used to produce most of the different box
formats; for example, if all are false the information in a box is centred, if
JustifylLeft and JustifyRight only are true, then the information in
the box is flushed left.

This specifes the horizontal distance of the slug’s left margin from the internal
dimension of the box. The left edge of the slug’s contents may be further
indented by the value of Indent or ExtralLeftMargin, depending on other
environment parameters. See figure 3. It is specified in absolute units or ems, e.g.

@begin(itemize, lef:tmargin = 5.5 ems)

The need of a box is the amount of space that should be available at the bottom
of a page area for slugs from this box to be placed in the page; if the space
remaining is less than this amount, a new page is started. It takes an absolute
distance or one specified in lines, or it takes the value a11, which is interpreted
to mean that the box must not be split across pages.

This determines the page style that will be used to display the contents of the
box when pages are made. It takes values from (Skip. Default, TitlePage,
Contents). See section 8.1 for more details on how choices of this
parameter affect the page layout.

This determines the raster function used to draw the characters in the slugs. It
can assume values from the set specified in the device properties. See section
11.1.

This specifies the horizontal distance of the slug’s right margin from the internal
border of the box. See figure 3. It is specified in absolute units or in ems, e.g.

@begin(itemize, rightmargin = 20 picas)

This parameter takes an absolute distance or one specified in ems, and sets a
tabulation at that point (measured from the exterior border of the box). This
parameter can be used several times for a single box; each use sets a different
tabulation. Up to 10 tabulations can be set, and there will be an additional
tabulation set at the right edge of the inner border. See figure 3. Several values
can be set by the same tabset. For example ’

@begin(example, tabset 5cm, 6.656666666cm, 8.33333333cm)
This does not take a value. It clears all the tabulations that have been set so far.

Since the parameters are processed from left to right, the TabClear should
precede any uses of TabSet.

This takes an integer value. It sets up that number of equidistant tabulations
across the inner border of the box, with the last one on the right inner border.
See figure 3. Any previous tabulations are destroyed.

Sys: User>Hibbard>sredreferl.ine

Peter Hibbard
Mint Rél‘crence Manual Boxes and SIUgS 4-45
UnderLine This determines whether slugs in the box will be underlined, erasclined or
overlined. It takes values from the set (None, NonBlank, A1l

Alphanumeric, EraseNonBlank, EraseAll, EraseAlphaNumeric,
OverNonBlank, OverAll, OverAlphaNumeric). Several non-conflicting
values can be set at the same time.

Width This defines the width of the external dimensions of the box that encloses the
information in an environment. Sce figure 3. The width is specified in absolute
units or ems, for example

@begin(plot, width 3.25 inches)
Note that the height of a box relative to its width is determined by its contents.

4.1.2 Additional parameters

Parameters additional to those above may be passed to certain environments. Facilities exist, buried
within Mint, to extract the parameter identifiers and their values, and act upon them. If an additional
parameter has not been used at the end of the environment, an error massage is produced. Thus misspelled
attributes will be indicated at the end, rather than the beginning, of an environment.

The following environments take additional parameters — the document type environments; several
environments, such asmultiple and describe, that allow others to nest within them; the itemize and
enumerate environments; the maths environment; and the Tit1ePage environment.

4.1.2.1 Style parameters for document types

The following parameters alter the values of an additional set of environment parameters that are
associated with each box, and from which the default values of the attributes above are sometimes derived.
These additional parameters have been designed to cause global changes in the “style” of the document,
and for this reason they are called style parameters. If you wish to change the appearance of a document,
you should change these parameters, since it is from these that the box environment parameters are
inherited. It is no use changing, for example, the gap parameter of a document if you want to change the
inter-line gap. Change the value of RGap or NGap. <<These attributes cannot be set to page-relative values,
even though, anomolously, the styles object can be set in this way. This will get fixed.>>

BibStyle This sets the citation style for the document. It takes the value stdnumeric,
stdalphabetic, cacm or ieee; its default value is stdnumeric. See
section 9.1 for a description of the bibliography facility, and a description of
how to create new bibliographic styles.

Filler This sets the filler lexeme that is placed in a slug in place of a cross reference to a
label should the label not yet be defined. It takes an arbitrary string. If the string

Sys:User>Hibbard>srcdreferline

Peter Hibbard
Mint Reference Manual

Boxes and Slugs

HGap

Indent

IndexStyle

NAbove

NBelow

NGap

NLM

NRM

RAbove

RBelow

RGap

RLM

RRM

is 1abe1, then Mint will place the identifier of the label, converted to capital
letters, in the place of the cross reference should it not be defined.

This sets the size of the “heading gap”, an extra gap used to compute the gaps
for heading and section environments. It is specified in absolute units or ems.

This sets the size of the indent, used by the CompLM computations to determine
the indentation for the first lines of boxes. See figure 3. It is specified in absolute
units or ems. '

This sets the style in which the index will appear. It takes the value macro or
stylel; the default is stylel. See section 9.2 for a description of the index
facility.

This sets the size of the narrow above leading. It is specified in absolute units or
lines.

This sets the size of the narrow below leading. It is specified in absolute units or
lines.

This sets the size of the narrow gap leading. It is specified in absolute units or
ems. :

This sets the size of the narrow left margin of the document. It is specified in
absolute units or cms.

This sets the size of the narrow right margin of the document. It is specified in
absolute uniis or ems.

This sets the size of the regular above leading. It is specified in absolute units or
lines.

This sets the size of the regular below leading. It is specified in absolute units or
lines.
This sets the size of the regular gap leading. It is specified in absolute units or
ems.

This sets the size of the regular left margin of the document. It is specified in
absolute units or ems.

This sets the size of the regular right margin of the document. It is specified in
absolute units or ems.

4.1.2.2 Style parameters for other environments

In order to allow the user to impose stylistic requirements on portions of a document, several
environments take style parameters. These environments are: abstract, annot ation, commentary,
contents, describe, description, enumerate, figure, foot, itemize, multiple, notice
portion, researchcredit, and table. Not all the style parameters are meaningful, though. In
particular, filler, indexstyle and bibstyle arc not allowed. The other style paraineters have the
same effects as described in the previous section.

Sys:User>Hibbard>sredreferl.ine

Peter Hibbard e v
Mint Reference Manual Boxes and Slugs 4-47

4.1.2.3 Additional parameters for title pages

The Tit1ePage environment takes a set of additional parameters that allow the default positions of
the various boxes on the title page to be changed. See scction 8.2.4.2 for the way in which the title page
layout procedure works. All these additional parameters take vertical distances for their values — these are
the distances of the top external border of the corresponding box from the top of the page. The default
values are shown in parenthesis, and are measured in units of PageHe ight for the target device.

TitleBox This specifies the position of the title box. Inside the title box other
environments may be nested — the relative positions of these environments are
not altered (0.18 pageheight).

ResearchCredit This specifies the position of the research credit box (0.80 pageheight).
CopyRightNotice This specifies the position of the copyright notice box (0.75 pageheight).

Abstract This specifies the position of the slug that is created with the heading; a suitable
gap is inserted to separate it from the abstract box (0.55 pageheight).

Notice This specifies where the (first or only) notice will appear (0.39 pageheight).

Noticel..Notice6 These specify where the corresponding notices will appear, counting in
lexographic order of appearance of the notices in the original manuscript.

4124 Itemiie and Enumerate

The itemize and enumerate environments take two parameters that allow you to control the
position of the margin against which the bullets and counters are flushed, and the width of the box in which
the bullets and counters are placed.

BulletPosn This specifies the horizontal distance of the bullets or numbers from the left
margin. Its default value is 0.05 of the width of the box.

LeftMPosn This specifies the horizontal distance of the left margin of the text in an
jtemize and enumerate environment. Its default value is 0.0625 of the width
of the box.

The itemize environment also takes another parameter, mark, that allows you to specify the mark
that will precede each of the items. The characters of the mark come from the font MintFontn which
contains a collection of bullets and copyright symbols, and is otherwise empty. To use alter the mark you
need to:

O] Substitute the characters of the mark into MintFontn. Most positions are free, but to be safe,
substitute for one of the ASCII printing characters. For example

@SubstituteChar(PressFile, MintFontn, A, ZFont10, @char(#10))

Sys: User>Hibbard>srcdreferl.ine

j . Peter 1libbard
4-43 Boxes and Slags Mint Reference Manual

O Specify the mark environment parameter for the itemize cnvironment. For example

@begin(itemize, mark A)
4.1.2.5 Maths

The maths environment takes a number of additional parameters. These are described in part 12.

4.2 The standard values for the environment values

Below are the tables of the standard values for the environment parameters that are associated with the
environment when the box routine is invoked. Environment parameters typically are derived in three ways
— they are inherent properties of the environment (for example, a centred environment has
JustifyLeft, JustifyRight, JustifyLeftlLast, JustifyRightlLast all False); they are
inherited from the parent’s environment parameters (for example the width is normally inherited in this
way); and they arc inherited from the extra style parameters (for example, the Above, BeTow and Gap are
normally inherited from the style parameters). In addition to these three ways, the parameters may be set
using parameter modifiers specified by the Define or Modify commands, or specified when the
environment is invoked.

The interpreter associated with the environment is one of Text. DP, P1ot or Maths. The computation
values are listed in the order CompLM, CompRM, CompGap, CompXPosn, CompYPosn, CompWidth,
CompFont. The width of the box is abbreviated to W; one eighth of the width is abbreviated to W8. If
explicit constant values are given, the environment sets the parameters to these values; otherwise
parameters are inherited from the parent environment. Justifications inherited from the parent are written
as JL, JR, JLL, JRL; a face code inherited from the parent is written as FC, and a font size as FS; a border
style inherited from a parent is written as BStyle. Be warned that these tables do not yet show all the
inheritances of the environments.

Sys:User>Hibbarddsredreferl.inc

Peter Ilibbard .
Mint Reference Manual Boxes and Slugs 449
EnvAbstract0 EnvAlign0 EnvAnnotation0
Interpreter Text Text Text
Width Width Width Width
Above and Below RAbove, RBelow NAbove, NBelow NAbove, NBelow
Margins RLM, RRM RLM, RRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap NGap NGap NGap
Justifications JL, JR, JLL, JRL T, F, T, F JL, JR, JLL, JRL
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Normal, Roman Normal, Typewriter Normal, Roman
Underlining of f off off
Raster Function RasterFunction RasterFunction RasterFunction
Page Style Skip . Skip Skip
Need Box Y size 0 0
Border size [} 0 0
Border style NoBorder NoBorder NoBorder
Computations 0,0,0,0,0,0 0, 0,0,0,0,0 0, 0,0,0,0,0
Tabulations 7 7 None
EnvAppendix0 EnvAppendixl EnvAppendixSecO
Interpreter Text Text Text
Width Width Width Width
Above and Below RA+4*RG, RB+2*RG RA+4*RG, RB+2*RG RA+4*RG, RB+2*RG
Margins RLM, RRM RLM, RRH RLM, RRM
Continue Disallowed Disaliowed Disallowed
Gap RGap+2*HGap RGap+2*HGap RGap+2*HGap
Justifications F, F, F, F T, F, T. F T, F, T, F
Image Colour ImageColour ImageColour ImageCalour
Background Colour BackgroundColour BackgroundColour BazkgroundColour
Font Extra large, Bold Extra large, Bold Extra large, Bold
Underlining off off off
Raster Function RasterFunction RasterFunction RasterFunction
Page Style DefaultPS Skip Skip
Need RAbove*5 RAbove*5 RAbove*5
Border size 1} 0 0
Border style NoBorder NoBorder NoBorder
Computations 0, 0,0, 0, 0,0 3, 0,0,0,0,0 3, 0,0,0,0,0
Tabulations 7 7 7
EnvAppendixSecl EnvCaption0 EnvCentre0
Interpreter Text Text Text
Width Width Width Width
Above and Below RA+3*RG, RB+RGap NAbove, NBelow NAbove, NBelow
Margins RLM, RRM RLM, RRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap RGap+HGap NGap NGap
Justifications T, F, T, F JL, JR, JLL, JRL F, F, F, F
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Large, Bold FS, FC Normal, Roman
Underlining off UnderlLine off
Raster Function RasterFunction RasterFunction RasterFunction
Page Style Skip Skip Skip
Need RAbove*4 Need 0
Border size 0 0 0
Border style NoBorder NoBorder NoBarder
Computations 3,0,0,0,0,0 0, 0,0,0,0,0 0,0,0,0,0,0
Tabulations 7 3 © 7

Sys:User>Hibbard>sre>referl.inc

Peter Hibbard

4-50 Boxes and Slugs Mint Reference Manual
EnvChapter0 EnvCommentary0 EnvCopyrightNO
Interpreter Text Text Text
Width Width Width Width
Above and Below RA+4*RG, RB+2*RG RAbove, RBelow RAbove, RBelow
Margins RLM, RRM RLM + W8/4, RRM + W8/4 RLM, RRM
Continue Disaltlowed Disallowed Disallowed
Gap RGap+2*HGap NGap NGap
Justifications F, F, F, F JL, JR, JLL, JRL F, F, F, F
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColiour BackgroundColour
Font Extra large, Bold Normal, Roman Normal, Roman
Underlining off off off
Raster Function RasterFunction RasterFunction RasterFunction
Page Style DefaultPS Skip Skip
Need RAbove*5 Box Y size Box Y size
Border size 0 0 0
Border style NoBorder NoBorder NoBorder
Computations 0, 0,0,0,0,0 0, 0,0,0, 0,090 0, 0,0, 0,0, 0
Tabulations 7 7 7
EnvDefaulto EnvDescription0 EnvDisplay0
Interpreter Text Text Text
Width Width Width Width
Above and Below Rabove, RBelow NAbove, NBelow NAbove, NBelow
Margins RLM, RRM 0.0 NLM, NRM
Continue Allowed Disallowed Disallowed
Gap RGap NGap NGap
Justifications Justifications Ju, JR, JLL, JRL T, F, T, F
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Normal, Roman Normal, Roman Normal, Roman
Underlining off Off of f
Raster Function RasterFunction RasterFunction RasterFunction
Page Style Skip Skip Skip
Need 0 RAbove*2 0
Border size 0 0 0
Border style NoBorder NoBorder NoBorder
Computations 1, 0, 0,0,0, 0 6, 0, 0,0,0,0 0, 0,0,0,0,0
Tabulations 7 6 7
EnvDItem0 EnvDokument0 EnvDPO
Interpreter Text Text DP
Width Width Width Width
Above and Below NAbove, NBelow RA, RBelow RAbove, RBelow
Margins RLM, RRM RLM, RRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap NGap RGap RGap
Justifications JL, JR, JLL, JRL JL, JR, JLL, JRL JL, JR, JLL, JRL
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Font size,Face code - Normal, Roman
Underlining * UnderLine UnderLine off
Raster Function RasterFunction RasterFunction RasterFunction
Page Style Skip Skip Skip
Need Need 0 Box Y size
Border size 0 0 0
Border style NoBorder NoBorder NoBorder
Computations 4,0,0,0,0,0 0, 0,0,0,0,0 0, 0,0,0,0,0
Tabulations Tabs None None

Sys: User>Hibbard>sredreferline

Peter Hibbard .
Mint Reference Manual Boxes and Slugs 4-51
EnvEnumeratel EnvExamplel EnvFigurel
Interpreter Text Text Text
Width width Width Wd * 3/5
Above and Below RAbove, RBelow NAbove, NBelow RAbove, RBelow
Margins NLM+W8/3.5, NRM NLM, NRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap NGap NGap
Justifications JuL, JR, JLL, JRL T, F, T, F JL, JR, JiLL, JRL
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Normal, Roman Normal, Typewriter FS, FC
Underlining off off UnderLine
Raster Function RasterFunction RasterFunction RasterFunction
Page Style - Skip Skip Skip
Need RAbove*2 Box Y size Box ¥ size
Border size 0 0 0
Border style NoBorder NoBorder NoBorder
Computations 0, 0,0,0,0,0 0, 0,0,0,0, 0 0, 0, 0,0, 0,0
Tabulations 0 7 3
EnvFlushLeft0 EnvFlushRight0 EnvFoot0
Interpreter Text Text Text
Width Width Width Width
Above and Below NAbove, NBelow NAbove, NBelow NAbove, NBelow
Margins RLM, RRM RLM, RRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap NGap NGap NGap
Justifications T, F, T, F F, T. F, T JL, JR, JLL, JRL
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Normal, Roman Normal, Roman Normal, Roman
Underlining off of f off
Raster Function RasterFunction RasterFunction RasterFunction
Page Style Skip Skip Skip
Need 0 0 0
Border size 0 0 0
Border style NoBorder NoBorder NoBorder
Computations ¢, 0, 0,0,0,0 0, 0, 0, 0, 0,0 0, 0, 0,0,0,0
Tabulations 7 7 None
EnvFormat0 EnvGlossO EnvHeading0
Interpreter Text, Text Text
Width Width W - W(siblings) Width
Above and Below NAbove, NBelow NAbove, NBelow RA+3*RG, RB+RG
Margins RLM, RRM RLM + W8/8, RRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap NGap NGap RGap+HGap
Justifications T, F, T, F JuL, JR, JLL, JRL F, F, F, F
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Normal, Roman Succ (FS), FC Large, Bold
Underlining off UnderLine of f
Raster Function Rasterfunction RasterFunction RasterFunction
Page Style Skip Skip Skip
Need 0 Need RAbove*4
Border size 0 0 0
Border style NoBorder NoBorder NoBorder
Computations 6, 0,0,0,0,0 0, 0,0,0,0,0 0,0,0,0,0,0
Tabulations 7 3 7

Sys:User>Hibbard>sr>referline

4-52

Boxes and Slugs

Peter Hibbard

Mint Reference Manual
EnvItem0 EnvIitemize0 EnvMajorHeading0
Interpreter Text Text Text
Width Width Width Width
Above and Below NAbove, NBelow RAbove, RBelow RA+4*RG, RB+2*RG
Margins 0, 0 NLM+W8/3.5, NRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap NGap 0 RGap+2*HGap
Justifications JL, JR, JLL, JRL JL, JR, JLL, JRL F, F, F, F
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font Font size,face code Normal, Roman Extra large, Bold
Underlining UnderlLine off of f
Raster Function RasterFunction RasterFunction Rasterfunction
Page Style Skip Skip Skip
Need Need RAbove*2 RAbove*$5
Border size (1] 0 0
Border style NoBorder NoBorder NoBorder
Computations 0, 0,0,0,0,0 0,0,0,0,0,0 0, 0, 0,0,0,0
Tabulations 7 0 7
EnvMAnnotation0 EnvMFoot0 EnvMOddsandSods0
Interpreter Text Text Text
width Width Width Width
Above and Below RAbove, RBelow RAbove, RBelow RAbove, RBelow
Margins RLM, RRM RLM, RRM RLM, RRM
Continue Disallowed Disallowed Disallowed
Gap RGap RGap RGap
Justifications JL, JR, JLL, JRL JL, JR, JLL, JRL JL, JR, JLL, JRL
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font - - -
Underlining UnderLine UnderLine UnderLine
Raster Function RasterFunction RasterFunction RasterFunction
Page Style Skip Skip Skip
Need 0 0 0
Border size 0 [t} 0
Border style NoBorder NoBorder NoBorder
Computations 0, 0,0,0,0,0 0, 0,0,0,0,0 6, 0,0,0,0,0
Tabulations None None None
EnvMultipleO EnvNoticel EnvPageCommand0
Interpreter Text Text Text
Width Width Width Width
Above and Below RAbove, RBelow RA, RBelow NAbove, NBelow
Margins 0, ¢ RLM, RRM RLM, RRM
Continue EnvContinue Disallowed Disallowed
Gap RGap NGap NGap
Justifications Ju, JR, JLL, JRL JL, JR, JLL, JRL T, F, T, F
Image Colour ImageColour ImageColour ImageColour
Background Colour BackgroundColour BackgroundColour BackgroundColour
Font FS, FC Normal, Roman Normal, Roman
Undertining UnderLine off off
Raster Function RasterFunction RasterFunction RasterFunction
Page Style Skip Skip Skip
Need Need Box Y size RAbove*2
Border size Border 0 0
Border style BStyle NoBorder NoBorder
Computations 0, 0,0,0,0,0 0, 0, 0,0, 0,0 0, 0,0,0,0,0
Tabulations Tabs 7 » 7

Sys: User>Hibbard>sredreferl.inc

Peter Hibbard .
Mint Reference Manual Boxes and Slugs 4-53
EnvPageHeading®l EnvPageFooting0 EnvPageOffsetl

Interpreter Text Text Text

Width Width Width Width

Above and Below Above,Below, 0, 0 0, 0 Above,Below, 0, 0

Margins RLM, RRM RLM, RRM RLM, RRM

Continue Disallowed Disallowed Disallowed

Gap NGap NGap NGap

Justifications JL, JR, JLL, JRL Ju, JR, JLL, JRL JL, JR, JLL, JRL

Image Colour ImageColour ImageColour ImageColour

Background Colour BackgroundColour BackgroundColour BackgroundColour

Font Normal, Roman Normal, Roman Normal, Roman

Undertining off off off

Raster Function RasterFunction RasterFunction RasterFunction

Page Style Skip Skip Skip

Need 0 [t} 0

Border size 0 0 0

Border style NoBorder NoBorder NoBorder

Computations 0, 0.0, 0,0, 0 0, 0, 0,0,0,0 0, 0,0,0,0,0

Tabulations None None None
EnvParagraph0 EnvP1ot0 EnvPrefaceSecO

Interpreter Text Plot Text

Width Width Width width

Above and Below RA+RGap, RBelow RAbove, RBelow RA+4*RG, RB+2*RG

Margins RLM, RRM RLM, RRM RLM, RRM

Continue Disallowed Disallowed Disallowed

Gap RGap-HGap RGap RGap+2*HGap

Justifications T, F, T, F JL, JR, JLL, JRL F, £, F, F

Image Colour ImageColour ImageColour TmageColour

Backgreund Colour BackgroundColour BackgroundCoiour BackgroundColour

Font Normal, Bold Normal, Roman Extra large, Bold

Underlining orf off off

Raster Function RasterFunction RasterFunction RasterFunction

Page Style Skip Skip DefaultPS

Need RAbove*4 Box Y size RAbove*5

Border size \] 1] 1]

Border style NoBorder NoBorder NoBorder

Computations 3,0,0,0,0,0 0, 0,0,0,0,0 0,0, 0,0,0,0

Tabulations 7 None 7
EnvProgramEx0 EnvQuotation0 EnvResearchCr0

Interpreter Text Text Text

Width Width Width Width

Above and Below NAbove, NBelow NAbove, NBelow RA, RBelow

Margins NLM, NRM NLM, NRM RLM, RRM

Continue Disallowed Allowed Disallowed

Gap NGap NGap NGap

Justifications T, F, T, F Justifications Ju, JR, JLL, JRL

Image Colour ImageColour ImageColour ImageColour

Background Colour BackgroundColour BackgroundColour BackgroundColour

Font Normal, Algol Normal, Roman Normal, Roman

Underlining off off off

Raster Function Rasterfunction RasterFunction RasterFunction

Page Style Skip Skip Skip

Need Box Y size 0 Box Y size

Border size 0 0 0

Border style NoBorder NoBorder NoBorder

Computations 0, 0,0,0,0,0 1, 0,0, 0,0,0 0,0,0,0,0,0

Tabulations 7 7 7

Sys:User>Hibbard>srcdreferl.inc

Peter Hibbard

4-54 Boxes and Slugs Mint Reference Manual

EnvSection0 EnvSubHeading0 EnvSubSection0

Interpreter Text Text Text

Width Width Width Width

Above and Below RA+4*RG, RB+2*RG RA+RG, RBelow RA+3*RG, RB+RG

Margins RLM. RRM RLM, RRM RLM, RRM

Continue Disallowed Disallowed Disallowed

Gap RGap+2*HGap RGap-HGap RGap+HGap

Justifications T, F, T, F T, F, T, F T, F, T. F

Image Colour ImageColour ImageColour ImageColour

Background Colour BackgroundColour BackgroundColour BackgroundColour

Font Extra large, Bold Normal, Bold Large, Bold

Underlining off off off

Raster Function RasterFunction RasterFunction RasterFunction

Page Style Skip Skip Skip

Need RAbove*5 RAbove*4 RAbove*4

Border size 0 0 0

Border style NoBorder NoBorder NoBorder

Computations 3,0,0,0,0,0 0,0, 0,0,0,0 3, 0,0,0,0,0

Tabulations 7 7 7
EnvTextPart0 EnvTitlieBox0 EnvTitlePagel

Interpreter Text Text Text

Width wd * 3/5 Width Width

Above and Below NAbove, NBelow RAbove, RBelow RAbove, RBelow

Margins RLM, RRM + W8/8 RLM, RRM RLM, RRM

Continue Disallowed Disallowed Disallowed

Gap NGap RGap RGap

Justifications JL, JR, JLL, JRL JL, JR, JLL, JRL Ju, JR, JLL, JRL

Tmage Colour ImageColour ImageColour ImageColour

Background Colour BackgroundColour BackgroundColour BackgroundColour

Font FS, FC Normal, Roman FS, FC

UnderTining UnderLine off UnderLine

Raster Function RasterFunction RasterFunction Rasterfunction

Page Style Skip Skip TitlePS

Need Need 0 0

Border size 0 0 0

Border style NoBorder NoBorder NoBorder

Computaticns 0,0,0,0,0,0 0, 0,0,0,0,0 0, 0,0, 0,0,0

Tabulations 3 None none
EnvVerbatim0 EnvVerse0

Interpreter Text, Text

Width Width width

Above and Below NAbove, NBelow NAbove, NBelow

Margins RLM, RRM RLM, RRM

Continue Disallowed Disallowed

Gap NGap NGap

Justifications T.F, T, F T, F, T, F

Image Colour ImageColour ImageColour

Background Colour BackgroundColour BackgroundColour

Font Normal, Typewriter Normal, Roman

Underlining of f off

Raster Function RasterFunction RasterFunction

Page Style Skip Skip

Need 0 0

Border size 0 0

Border style NoBorder NoBorder

Computations 0,0,0,0,0,0 2,0,0,0, 0,0

Tabulations 7 7

Sys: User>tiibbarddsreoreferiine

Peter Hibbard
Mint Reference Manual

Boxes and Slugs 455

4.3 Box procedures

The box procedures form the basis of the semantic analysers associated with a galley. It is the box
procedures that create the boxes, load them with slugs, and associate the boxcs together in the appropriate
way. They operafe together as a collection of recursive routines, which call each other in a way partly
determined by themselves, and partly by the document syntax. Since they are tied fairly closely to the
syntax. and operate right in the guts of Mint, you should gencrally leave them alonc unless you are an
expert. However, Mint has been designed to allow box procedures to be added by the system maintainer, so
a description of them is not out of place.

A box procedure is written in a stylized form of Pascal, and is compiled into Mint. (There are facilities,
currently disabled, for reading box procedures into Mint during document formatting.) In order to write a
box procedure, you must understand the conventions of the stylized Pascal — this document isn’t the place
to describe these conventions. They operate in conjunction with the environment indicators that get passed
to them by the galley, and together they determine the layout and appearances of the boxes.

Since examining the code is not likely to yield too much information, the procedures are described
informatly.

BoxCaptionO This environment is very similar to the BoxSectionEnv0 envircnment,
differing only in that it places the prefix of its parent environment (which will be
either tab1le or figure) at the beginning of its first slug.

BoxCommentary0 This was written originally to illustrate how the notion of box procedures
allowed you to create environments net easily obtained in other ways. It turned
out to be reasonably useful. The routine operates by invoking a
sub-environment, and then checking to see if a gToss follows, and if so, placing .
the gloss in a box adjacent to the first environment.

BoxCrossRef0 This procedure is used by all the environments that need to leave pointers from
one galley into another galley. A cross reference is placed in the galley, and the
routine then recursively calls some other box routine. It is used by Foot,
Annotate and the page heading and footing environments.

BoxCRTerm0 This is a specialized procedure used by the PageCommand environment. It sets
up a cross reference before scanning in its body in a manner similar to
BoxStandardo.

.6 Because the galleys operate as independent processes, conventional Pascal is not usable. Since the amount of sharing between the
processes is large, it was not appropriate to use processes provided by the operating system. The solution used by Mint is to implement

~ a simple multi-process interpreter which executes the recursive analysers. The interpreter operates on the code that is generated from
the box routines, which are self-compiling: when executed, they generate the code which will perform the analysis. And that is why
they are written in a stylized Pascal. -

Sys:UserdHibbard>srcdreferl.inc

4-56

] Peter [libbard
Boxes and Slugs Mint Reference Manual

BoxDescribe0

BoxEnumerate0

BoxFigure0

BoxGalieyO

BoxItemizel

BoxMaths0

BoxMultipleOl

BoxPortion0

BoxRoot0

BoxSectionEnv0

BoxStandard0

This is a generalisation of BoxCommentary0. It placcs several inncr boxes side
by side; the numbcr of boxes that are placed adjacent to each other is
determined by the number of tabulations within the environment passed to the
procedure. The procedure can be used for a variety of display purposes — for
the description environment and the commentary environment.

This procedure is very similar to BoxItemizeO0, except that it generates a
sequence of labels. These nest three deep; the first level counts through the
integers, the second through the letters, and the third through lower case roman
numerals. Deeper nesting will cause the counter styles to repeat. You will need
to take a crow-bar to Mint if you want to change the order or styles.

This procedure repeatedly accepts the bodies of the figures, and places a caption
below cach figure if there is such an environment in the .Mss file. Thus several
figures can be collected together into one box.

This is the driving procedure for each of the galleys. Basically, it sits and loops
over other non-terminal procedures. This is the procedure that usually gets
interrupted when the inner environment ends — for example when a footnote or
annotation has ended. Because the procedure loops, it is always ready to accept
input, and so gets awoken whenever the galley manager provides it with lexemes.

This procedure creates two boxes that are beside each other. The left-hand one is
used to contain the bullets, the right hand one is used to contain the items. The
procedure iterates until the last item of the environment is read. The
environment . parameters adjust the margins appropriately so that nested
jtemizes have the correct indentations. There are two levels of bullets: solid
black and open circles.

This environment is similar to the BoxStandard0, but it invokes some special
processing to handle the maths environment.

This routine is another general-purpose routine, which, instead of reading in
slugs, as does BoxStandard0, recursively invokes other box routines, as
determined both by the syntax and by the input from the .Mss file. It is used by
many of the non-terminal environments (and by Multiplein particular).

This rountine is used in the separate formatting of documents. It is similar to
BoxMultiple0, except that it invokes some additional routines needed by the
separate formatting facilities.

This is the grand-daddy of them all. It sits right at the bottom of the invocation
stack of the principal galley, and causes everything else that is needed to create
galleys to occur.

This procedure is similar to BoxStandard0, except that it injects a prefix for
the environment into the first slug that is made.

This box procedure simply reads input into slugs, and places the slugs into the
boxes, until the end of the environment is reached. This procedure (like most of
the others) is indifferent to which interpreter analyses the input to determine

Sys:User>Ilibbard>sre>referl.ine

Peter 1Hibbard ' o s
Mint Reference Manual Boxes and Slugs 4-57

how to lay out the slug. For example it is used for most of the standard
environments, and also for DP and Plot input.

BoxTable0 This procedure repeatedly accepts the bodies of the tables, and places a caption
above each table if there is such an environment in the . Mss file. Thus several
tables can be collected together into one box.

4.4 Computations

During the processing of the text in a galley, several pieces of information arc required by the slug
layout routine in order for it to be able to format the slugs and boxes. For example, the sizes of the margins,
the fonts to use, and the sizes of the boxes are needed. Usually, for technical documents, the information
can be presented to the slug layout routine in a straightforward way — the margins are generally fixed, the
same font is used throughout, and the size of the box is simply determined from the size of its parent. The
complexity that is needed for advertising copy, where baselines of slugs may not be straight, where the size
of characters may change along the line, and where text may wrap around diagrams, is not needed for
technical documents. However, occasionally you do need more control over these parameters than is usually
supplicd.

Mint gives you this control, though in a fairly crude way since I am not certain yet what is needed. Each
of the parameters required by the layout routine is obtained by calling a computatior., a Pascal procedure
built into Mint. One of the parameters to these procedures is the computation number provided through the
environment parameters of the box in which the slug will be placed. The computations that are built in
handle the standard cases, for example the crooked left margin for the description environment;
further built-in routines can be added as needed. The computation numbers are specified by passing small V‘
integer values to the computation parameters (CompLM, CompWidth, etc.) in the environment parameters. ‘
There is also an escape mechanism that provides the fearless document formatter the freedom to supply
arbitrary computations without having to take the code of Mint apart; this mechanism is described below.

4.4.1 Standard computations

Computations are provided to set left and right margins, the gaps between the slugs, the positions of
boxes relative to their neighbours, the width of boxes, and the fonts to be used in the slugs. Each in-built
computation is specified by a value less than 8; values greater than or equal to 8 are used to specify arbitrary
computations.

CompFont Only one computation-is provided: 0. This sets the font to the font in the
environment parameters.

Sys: User>ITibbard>sredreferl.inc

i Peter Hibbard
4-58 Boxes and Slugs Mint Reference Manual
CompGap Only onc computation is provided: 0. This scts the gap between slugs to be the

value of the gap parameter in the environment.

CompLM 0 specifies a straight left margin; 1 specifies a margin that indents on the first
line; 2 specifies a margin that indents a further distance if a line is continued
into the next slug — this is used for the verse cnvironment; 3 specifies a
margin that indents all lines except the first, which is needed for multi-line
section headings; 4 specifies a margin that indents to the first tab setting for all
lines except the first, which is used for the description environment.

CompRM Only one computation is provided: 0. This sets up a straight right margin.

CompWidth Only one computation is provided: 0. This sets the width of the box to be the
width in the environment parameters.

CompXPosn Three computations are provided. Computation 0 centres the box within the
surrounding box; computation 1 flushes the box left against the border of the
surrounding box; and computation 2 flushes it right.

CompYPosn Two computations are provided. Computation 0 computes the y position of the
box from its above and the below of the previous box; computation 1 places
the box directly under the previous box.

4.4.2 Arbitrary computations

In the most general case, you might want to determine the size of a character, its font, and some
arbitrary transformations on it, as a function of the position of the character within the box. Doing this with
reasonable cfficiency is not feasible; however, Mint does provide a limited facility which is at a sufficiently
low level that many useful (and many more useless) effects can be obtained, without reducing the efficiency
of the normal text layout.

Four statements are provided. They allow arbitrary values to be yielded by the computation routines,
based on the slug number, which is the number of the slug in the box counting from zero. These
computations are associated with a computation number, so that several can be installed and used. The
statements take the general form

@setcompxx (computation number, slug number, value)

which specifics that if you have specified computation number, and the slug you are processing is sTug
number, then you should pass the value to the layout routine.

More specifically, to set the left margin to some value, you write
@setcompim (8, 0, 1lin)

Then, if you specify compim to be 8 for some environment, a left margin of 1 inch will be used when

Sys:User>Hibbard>sre>referl.ine

Peter Hibbard
Mint Reference Manual Boxes and Slugs 4-59

creating the zeroth slug (the first to be put into the box). You should always have a computation specified
for slug number -1: this is used if no other explicit value is found. If you specify several values for some
computation, the most recent value is the one that will be used.

Currently you have available setcompim, setcomprm, setcompgap, which all take parameters as
described above, and setcompfont, which takes parameters as follows

@setcompfont(dover, 8, 0, TimesRomanl2)

Each of the computations operates independently, thus it is possible to
achieve a variety of effects, not all of which seem to be useful, but

which nevertheless illustrate the ability of Mint to handle
strange and unusual type-setting situations. It should be
quite easy, after this description, for even the casual

Mint user to obtain the cffect that I am using to lay out

this paragraph. While I cannot maintain that the
effect that you are seeing here is so very useful, it
is the case that it has been achieved without
any extra-ordinary effort. This is good news

for those who have the need for unusual

effects. Look out for even better effects in
the future; in particular, I will be able to

alter the baseline, and change the size, slope
and thickness of characters along a line.

4.5 Miscellaneous layout statements

This section describes several layout commands: vertical and horizontal spacings, and tabulations. Two
environments that are useful for laying out tabular information are also described.

4.5.1 Spacing statements

hsp This takes a single parameter, which is a horizontal distance. If the statement
occurs in an environment other than pageoffset the specified amount of
space is left in the slug in which it occurs. If the distance is negative, backspacing
within the slug occurs, and overprinting may occur.

vsSp This takes a single parameter, which is a vertical distance. If the statement occurs
- in an environment other than pageoffset then a slug of the specified size is
inserted into the box; the slug is otherwise empty. The distance may be negative,
in which case lines may overwrite each other. This statement will produce
unusual results if it occurs on a line that contains other characters.

Sys: User>Hibbard>sredreferl.ine

' Peter Hibbard
4-60 Boxes and Slugs Mint Reference Manual
newline This takes a single paramcter, which is the number of slugs to terminate. If the

paramcter is absent or is empty, then the current slug is terminated. You can
. obtain the effect of @newline(1) with @%.

newpage This is a macro that calls zsp, which is the basic statement controlling the
generation of new pages. Newpage is defined in section 6.2.2.

The effects of Hsp and Vsp, if they cause the slug or box to exceed its normal size, are unpredictable (or
rather, I don’t know what will happen).

If you find yourself making extensive use of these statements you are probably misusing Mint. Think
how to describe the effects you want with environments and page layouts instead.

4.5.2 Tabulations

Tabulations are a part of the Mint environment parameters, and are set and cleared when the
environment starts; thus the casual use of tabulations that Scribe allows is not permitted.

To clear the standard tabulations of an environment, the TabClear environment parameter is used.
Tabulations are set using TabSe t followed by several horizontal distances. Alternatively tabulations can be
set equidistant along the box by TabD1vide, which clears all previous tabulations. The tabulations are set
from the inner border of the box. The environment parameters arc scanned from left to right, so that to set
a pair of tabulations, one does

@begin(description, tabclear, tabset 8 ems, 18 ems)

Tabulations can be set dynamically by the use of @t; this adds another tabulation to the collection for
the enviroment. To move to a tabulation stop, @\ is used.

At most 10 tabulations can be set in the box parameters for an environment. Any number of additional
tabulations can be set using @+.

4.5.3 The A1ign environment

The align and maths environments treat @\ differently from the way in which other environments
treat it. (For more details about the maths environment see part 12.) On encountering a @\, Mint
searches backwards in the slug until it finds a space, and it then stretches the space so that the tabulation
oceurs at the correct position. Thus if the tabulation occurs in the middle of a sequence of characters, all the
characters are shifted to the right. This allows vertical lists to be aligned around arbitrary points. For
example,

Sys: User>1libbard>sre>referl.inc

Peter Hibbard ;
Mint Reference Manual Boxes and Slugs . 4-61

@newpattern(line2,2,1)
@newbordersityle(width2.n,n,n,n,1ine2 . 1ine2,1ine2,1ine2)
@begin(table, width 5.5in, borderstyle width2)
@begin(caption, border 0.1lin, borderstyle widthl)
Personal Expenses Claimed against Income

@end(caption)
@begin(align, tabclear, border 0.11n)
@u(Nature of exp@~ense claimed) @u{Amount c@~laimed)

@w(Depreciation @\- Fabric) $125@\
@w(Depreciation @\- Furnishings) $95@\.50
pw(Heating @\- Gas) $26@\.25

@w(Heating @\- Electricity) $578\.0
@end(align)

Qend(table)

produces the following effect

Table 11. Personal Expenses Claimed against Income

Nature of expense ciaimed Amount claimed

Depreciation - Fabric $125

Depreciation - Furnishings $95.50
Heating - Gas $26.25

Heating - Electricity $57.0

The A11ign environment also allows you to centre text around some tabulation. The marker 8< causes
Mint to search backwards in the slug to find the preceding tabulation, and it then adjusts the spacing so that
the text between the two is centred about the tabulation. To help in the visual appearance of the .Mss file, I
have provided the tabulation mark @>, which has the same effect as @\. Thus you would normally write

@>Text to be centred@<

In order to simplify the use of @< and @\ in the al ign environment, Mint inserts a space of width zero
after them; this allows you to write @>x@<y@\.

45.4 The Describe’ environment

Sometimes you need to place two or more environments side by side when, for example you are
providing a commentary or gloss on a piece of text. The commentary environment allows you to do this
kind of layout. In fact the commentary environment is a degenerate case of the describe environment,
which allows several environments with different widths to be placed side by side. The default values of the

7 Pronounce it as des’cribe, or de’scribe, as you wish.

Sys:User>Hibbard>sre>referl.inc

' o . Peter Hibbard
4-62 Boxes and Sl“gs Mint Reference Manual

parameters that describe takes allow it to be used in a way similar to the description cnvironment as
well.

The number of environments that are placed adjacent to each other, and their widths, are determined
by the tabulations of the describe environment. For example, if you wanted to place three DP drawings
next to each other, you could do

@begin(describe, tabclear, tabset 2.75in, tabset 4.75in, border 0.15in,
borderstyle widthl)

@dp(@include(mouse.dp))

@dp(@include(mouse.dp))

@dp(@include(mouse.dp))

@end(describe)

which produces the following

But there is no need to the left.
for the environments In fact, I could
to be the same. have used an
For exampie, itemize,
you can flush one enumerate,
environment or even another
to the right describe
and another here, to produce a
number of effects.

Sys: User>Hibbard>src>reterl.ine

Peter Hibbard .
Mint Reference Manual Boxes and Slugs 4-63

One particular use of the describe is to lay out tables; those in section 3.2.2 have been produced in
this way.

If you do not specify the tabulations explicitly, the describe environment provides one tabulation
only, at a quarter of the distance across the box. This is the same distance as that at which items normally
occur in a description environment.

If the boxes within the describe environment are not the same size in the Y direction, space is added
to the bottom of the smaller boxes. Normally this space will not be visible; however, if borders are drawn
round boxes. this rule will cause the borders to appear at the expected places.

4.6 Slug Envircnments

Slug environments define the appearance of the items within a box. For example, they specify the font
size and face codes to be used for characters, whether underlining is to be used, etc. Slug environments may
be nested, for example @b(@+(3)). A slug environment must finish in the same box as that in which it
starts.

For the purpose of description, it is convenient to classify the slug environments, as follows.

4.6.1 Face Codes

The following are available:

@r[roman] The roman (non-italic, non-bold) face.
@i[italic] The italic face. .
@b[bo1d] The bold face.

@c[Small Caps] The SMALL CAPs face. Note that upper-case produces LARGE CAPITALS,
lower case SMALL CAPITALS. To see how this effect is achieved, see section 5.3.3.
(Standard typographical practice provides a set of small capitals for each font, in
addition to the lower case and large upper case letters. ASCII does not recognize
such niceties, however, and fonts designed for computer output have only lower
case and large upper case letter sets. As a consequence it is necessary to use small
capitals from a smaller font; this is not ideal because the weight of these small
capitals is less than it would be if they were a part of the font. There is a
trade-off, therefore, between the size of the small capitals and their weight. The
small capitals used above are too large; if they were smaller they would be too
light. Sigh! Alternatively, use the Metafont CMCSC font.)

Sys:User>Hibbard>src>referl.inc

4-64 Boxes and Slugs Mint Rcfgl"(e“rxcgelil\ifg?xﬂ;ldl
@g[greek] The ypeex type face.
@t[typewriter] The typewriter face.

@p[bold italic] The bold italic face.

@z[symbols] A collection of mathematical gymB°Ao.
@m0[maths font 0] The maths font 0 used in the maths environment.
@mi[maths font 1] The maths font 1 used in the maths environment.

@m2[maths font 2] The]—u(f—{vAL«E€ used in the maths environment.

-

Using a face code slug environment causes the text within it to use the specified face code in the current
size of font. Note that the a font is no longer available, and that the z font is only retained for compatibility
with old .Mss files: the maths fonts now provide the facilities of the z font.

4.6.2 Font Sizes

The following font sizes are available:

@11[extra large] Ane€Xxtra large font.

@1[1arge] A large font.
@n[normal] The normal font size.
@s[small] A small font.

@ss[extra small] AR exnsma font.

If you need to change the font size and the face code simuitaneously, you can combine the two slug
environments. For example, @s(@i(small italic)) can be written as @si(small italic). All
combinations of font sizes and face codes are allowed.

The font sizes are not absolute — in a galley that specifies its default font size to be 8 point (for
example), then 1 may specify a font of point size 11, which could be the normal font size for some other
environment.

If some combination of font size and face code has not been defined for the galley (see section 3.1.2),
then Mint will supply some default font.

Sys:User>Hibbard>sredreferline

Pcter Iibbard ’
Mint Reference Manual Boxes and Slugs 4-65

4.6.3 User Face Codes

Sometimes the face codes above are not adequate — you may want to use sans serif bold headings, or
old english, or bold greek in your document. Mint allows you to declare new face codes using the statcment
newfacecode. A face code that has been declared can then be used to indicate slug environments, or as
an argument to the facecode paramcter of a box. For example, assume that you are preparing a text in
which technical terms are to appear in an italic sans serif font. You can declare a new face code iss by
writing

@NewFaceCode (iss)

after which you can write in your document

The elaboration of a @iss{label-definition) involves no action and
yields no value.

You still need to decide which fonts will be used in the iss environment. This is done using assocfont,
described in section 5.2.2. '

The previous version of Mint allocated user face codes f0, .., f9. The library userfacecodes
contains the newfacecode definitions that declare these face codes, in case you do not want to change
your manuscript. See section 14.2 for a description of the library facility.

4.6.4 Underlines, Overlines and Eraselines

The following are available:

@u[phrase] Underlines non-blank characters.
@ux[phrase] Underlines all characters.

Bun[phrase] Underlines alphanumeric (letters & digits) only.
@o[phrase] Overlines non-blank characters.
@ox[phrase] Overlines all characters.

@on[phrase] Overlines alphanumeric (letters & digits) only.
@e[phrase] Eraselines non-blank characters:
@ex[phrase] Eraselines-ali-characters:

@en[phrase] Erasclines alphanumerie (letters & digits) enly.

Several non-conflicting combinations can be used (fikethis):

Sys: User>Hibbard>sredreferline

. Peter Hibbard
4-66 | Boxes and Slugs Mint Refercnce Manual

4.6.5 Raster Functions

The raster function used to display information within a box determines how the pixels of the new
information are combined with the pixels of the information already in the box at the position at which the
information is being placed. The implied operation is

Destination := Destination RasterOp Source

where RasterOp is a bitwise operation. The facility is device dependent: each device specifies in its device
characteristics (see section 11.1) which RasterOps are available. The following are available in Mint.

RRp1 Replace the destination by the source.

RNot Replace the destination by the inverted pixels of the source.

RAnd Replace the destination by the conjunction of the destination and the source.

RAndNot Replace the destination by the conjuction of the destination and the inverted
source.

ROr Replace the destination by the disjunction of the destination and the source.

ROrhot Replace the destination by the disjunction of the destination and the inverted
pixels of the source.

RXOr Replace the destination by the exclusive or of the destination and the source.

RXNor Replace the destination by the exclusive nor of the destination and the source.

All these raster functions are available on the Perq; only ROr is available on the Dover. All the
environments have ROr as their default RasterOp.

4.6.6 Scripting

The following scripting slug environments are available:

@+(phrase) Super™P*" the phrase.
@-(phrase) Subgepips the phrase.

The amount of the baseline shift is determined by the font size of the text, and is not currently able to
be altered by the user. In general you should use the maths environment for superscripting and
subscripting. See part 12.

Sys: User>Hibbard>sre>reterl.ine

Peter Ilibbard ' .
Mint Reference Manual Boxes and Slugs 4-67

4.6.7 Overprinting

The @ovp environment remembers the current position in the slug, and then backs the slug up to that
point again when the environment finishes. @0vp may be used for hacking new symbols, such as %, or for
primitive mathematics, such as X%, though in general you should be using Mint’s mathematical typesetting
facilities (part 12). Ovp environments can be nested.

Sys:User>Hibbard>sredreferl.inc

Part Five
Fonts

Mint allows you to create documents using a variety of fonts. Fonts are collected up into
families, and the families are associated with galleys. It is possible to create new font
families, change which fonts are in the family, and alter which font family is associated with
a galley. This section describes how to do this, and how lo tailor fonts by selectively replacing
some characters by characters from other fonts.

5.1 Font representations

Mint can handle several different font representations (simultaneously if needed — this occurs when
cross-proofing, or when a document is being sent to several galleys, each with a different associated device).
The understanding of a font representation has to be built into Mint, and at the moment it can handle two
representations — XeroxFormat, used for press files, in which font information is extracted from a
Fonts.Width file; and KstFormat, used for the Perq fonts, in which the font information is extracted
from a file with extension .Kst. However, because all the information that Mint needs can be fed to it
using Mint statements, it is also able to handle fonts for which no other external information is provided;
also, since Mint is able to convert the information into a binary form, no penalty is imposed if this is done.
Section 11.1.0.2 contains more details.

5.2 Font families

A galley accesses a font by indexing into the font family associated with the galley when it is created. A
font family is a rectangular array of font indicators indexed by fon! size and face code; see sections 4.6.1 and
4.6.2 for more information about these terms. A font indicator must be written into the appropriate position
in the font family for the galley to be able to use the given font size and face code. The standard font
families have several font indicators already present; see section 3.2.2 for which ones are put there. If a
position is accessed which does not have a font indicator, Mint will supply a (device specific) default font.

Sys: User>Hibbard>srooreferc.ine

’ Peter Hibbard
5-70 Fonts Mint Reference Manual

5.2.1 Creatiﬁg font families

A font family is an object that can be created within Mint, loaded with font indicators, and associated
with galleys. For example the statement

@NewFontFamily (ContentsFF, PressFile)

creates a new font family named ContentsFF which will be used to hold font indicators suitable for
pressfile devices; all the elements of the array are initialized to a distinct value that allows Mint to
recognize there is no font there. See section 11.1 for a description of devices and device classes. The next
section describes how to associate fonts with the family.

A font family is associated with a galley when the galley is created: the newgalley statement takes a
font family name as one of its parameters, see section 3.1.5. The font family associated with a galley can be
changed at any time by the statement SetFontF, which takes a galley identifier and a font family
identifier:

@SetFontF (Contents, ContentsFF)
wili cause the contents galley, when it is activated. to use the fonts in the contentsff family.

The same font family can be asscciated with several galleys; changes in the font family will then be
available to all the galleys.

5.2.2 Associating fonts with a font family

A font is associated with some element of the font family by using the statement AssocFont. This
takes a font family identifier, the element position, and the name for the font. Mint can accept both Xerox
and TEX font names.

@assocfont(mainff, n, z, zfonti0)

AssocFont does not cause the font to be loaded (or the fonts width information to be loaded). Only
when information from the font is needed is a check made to see if the font information is already available,
and if not, the font is loaded into memory. Note that Mint uses the device class that has been associated
with the family to determine the location of the font information, and understand its representation. If the
document is being prepared for several devices simultaneously, Mint will use the device class identifier to
disambiguate the font identifiers (just as you would expect).

Svs: User>Hibbarddsredreferc.ine

Peter Hibbard .
Mint Reference Manual Fonts 5-71

5.3 Logical fonts

It is frequently desirable to substitute a character in one font by a character from another font. This
saves frequent changes of slug environment, for example. In general, though, merely replacing one
character by another is not sufficient. You may want to introduce into your document an icon, which is
some picture created by (say) a drawing package, and have the picture displayed instead of some character.
In this way you can build up new characters that are not found in the fonts available on the target device,
without having to go to the labour of creating a whole new font (using, for example, Metafont). In addition,
you may want some sequence of characters in the manuscript to be replaced by a single character — for
example the sequence f i to be replaced by fi, or the sequence a" by a.

The appropriate way of regarding this is to draw a distinction between physical fonts, which are
provided to drive some device, and which supply some specific mapping between ASCII character codes and
glyphs, and logical fonts, which provide an arbitrary mapping between character codes and glyphs. Mint
deals with logical fonts, so you have control over what the mapping will be. Normally you will be happy
with the mapping chosen by the font designer, and that is the mapping that Mint uses unless you tell it
differently; occasionally you will want to change the mapping. In this section I describe the mechanisms
that are used to alter the mappings, and to create new logical fonts.

53.1 Changing font mappings

Mint provides a general mechanism for replacing a sequence of characters in one font by a character in
another, for replacing a sequence of characters by a blankspace of some user-specified size, and for
replacing a sequence of characters by an icon. The only restrictions are that the fonts and icons have all
been created for the same device (naturally); the substitution process is transitive, so that it is possible to
substitute a character which has itself already been substituted.

Four facilities are provided.

« A sequence of characters can be substituted by the statement substitutechar
@substitutechar(dover,timesroman10r,@char(#17) ,symbo112,@char(#12))

which replaces character #17 in Dover font TimesRomanl Or by character #12 from font
Symbo112 (a fairly eccentric thing to do, but there’s no accounting for lack of taste).

o A range of characters can be substituted using SubstituteCharR which takes a range of
characters in the destination font, and a starting character in the source font. It acts in the same
way as repeated use of SubstituteChar. For example,

@substitutecharr(Dover, TimesRomanl0i, A, Z, TimesRoman10b, a)

will cause all upper case letters in TimesRoman101 to appear as lowercase bold letters.

Sys:User>Hibbard>sredreferc.inc

5 Peter Hibbard
572 lonts Mint Reference Manual

» A sequence of characters can be replaced by a gap of some specified size by SubstituteGap.
This will causc the output of a gap of the specified size instead of the sequence of characters. This
feature is of use for creating narrow gaps in fixed width fonts, for example.

@SubstituteGap (Perq, Gacha9, @char(sp), .5 quad)
The gap can be specified in internal units, ems or quads, or absolute units.

o A sequence of characters can be replaced by an icon by the statement SubstituteIcon. Icons
are dealt with in the next section.

When Mint is looking for a glyph it applies the transformations implied by the substitute statements
repeatedly until they yield a printable object or a gap. (It doesn’t bother to test whether this procedure
terminates.) There can be several ways to specify some substitutions. For example, to specify that the
ligature ff i should be replaced by ffi can be done in two ways: either

@substitutechar (pressfile, timesromanl0, ff, timesromanl0, @char(#06))
@substitutechar (pressfile, timesromani0, ffi, timesroman10, @char(#21))

or

@substitutechar (pressfile, timesromanl0, ff, timesromanlQ. @char(#06))
@substitutechar (pressfile, timesromanl0, @char(#06)i, timesromanl0,
@char(#21))

5.3.2 Icons

One way of looking at a font is to regard it as a collection of representations of characters, which are
displayed by an interpreter (let’s call it the fext interpreter) when the character is to be displayed. Usually
the same interpreter is invoked for all the characters of the font. We are not usually concerned with the way
the interpreter works, or how the representations of the characters are stored. For example, the characters
may be stored as bit-maps, or as splines, and the interpreter may determine where in the page the pixels
should be placed; alternatively, the characters may be stored as raised pieces of metal on a daisy wheel, and
the interpreter works by selecting the appropriate leaf, and bashing it against the paper.

The interpreters above have the luxury of being able to work the same way for all characters. Life in the
real world is seldom so simple, though. Sometimes it is not possible to find the glyph that you would like in
some font; for example, you might want to use a small picture of the mouse buttons, with one of the
buttons blackened, to allow you to say “press button ® instead of “press the yellow button on the
mouse”. Mint allows you to associate an arbitrary glyph with a character in a font, using the MakeIcon and
SubstituteIcon statements. These allow you to invoke an arbitrary interpreter to display information in
the document; currently you will have to read “DP” for “arbitrary” in this sentence, but that will change
shortly.

Sys: User>Hibbard>srcoreferc.ine

Peter Hibbard ’
Mint Reference Manual Fonts 573

An icon must first be prepared using DP — since the icon will normally be greatly reduced in size when
it is printed, the icon should be made very simple. An icon is then associated with an identifier with the
MakeIcon statement

@MakeIcon (DP, Mouse, S'imp1éMouse.DP)

which associates the DP drawing in file Simp1eMouse .DP with the identifier Mouse. Mint will store the
representation of the drawing, with information about the aspect ratio. To substitute the icon for some
character, Mint requires several picces of information — the desired width of the icon; the X and Y
positions of the top left-hand corner of the bounding box, relative to the current position in the slug; and
the distance from the current position to the next character after the icon. These four pieces of information
allow you to adjust the icon horizontally and vertically relative to the other characters on the line. Note,
however, that it does not cause the line to be thicker in the vertical direction, because Mint assumes that the
nominal height is the same as the height of the font in which the icon has been substituted.

To substitute an icon, use

@substituteicon (Dover, TimesRoman10, 0, Mouse, 0.124n, 0in, 0.201in, 0.121n)

which specifies that 0 in T imesRoman10 on the Dover will be replaced by the mouse icon. In terms of the
quantities shown in figure 4, XX — X0 = 0.12in. XRel = Oin, YRel = 0.20in and X7 = 0.12in. I
leave it as a simple exercise to work out how the tail of the mouse has been drawn.

®®®®®®®®®® |

53.3 New fonts

The statements SubstituteChar, SubstituteGap and SubstituteIcon (and Kern and
SubstituteInfo, dealt with below) cause changes to the copy of the font stored internally. Since
normally only one copy of the font information is kept, and a font can occur at several positions in the font
arrays of the galleys, these statements can cause surprising side-effects. The well-disciplined hacker will take
a private copy of any font that he is about to modify; this is done using CopyFont.

@CopyFont (PressFile, MyDirtyFont, Sailal0)

In this case the font substitutions should be made on mydirtyfont, which can then be associated with
some element in the font array. All the substitutions and kerns that have been made to Sai1a10 before the
copyfont statement will be copied intomyd 1 rtyfont.

The ¢ slug environment has been created using

Sys: User>Hibbard>sredreferc.inc

Y Peter Hibbard
5-74 Fonts Mint Reference Manual

@copyfont(PressFile, CapsFont, TimesRomanl10) :
@substituterange{PressFile, CapsFont, a, z, TimesRoman8, A)
@assocfont(Fonts0O, n, c, CapsFont)

Sometimes it is not meaningful to start with some existing font when doing the char, gap and icon
substitutions; you simply want to start off with an empty font, and place all the characters, gaps and icons
there yourself. To allow you to do this the EmptyFont statement creates a new, empty font. This font has
to be specified to be used with some device, and has to have its Y'Y and Y0 given, using the conventions
described in the next section. After it has been created, characters can be filled in using the substitute
statements.

The statement

@EmptyFont (PressFile, MyFont, 11points, -1point)

creates a new 12 point empty font, with the top of the font bounding box 11 points above the crigin, and
with the baseline one point below the origin.

5.4 Character information

In order to place a character on the page, Mint needs to have several pieces of information. The
minimum information it needs is the height of the top of the bounding box of the character above the
baseline, the depth of the bounding box of the character below the baseline, and the width of the character.
This minimum information is contained in the font representations; however, the quality of the typesetting
that can be achieved by this minimum information is limited, and additional information is needed if better
results are desired. Rather than require this information for all the fonts that it uses, Mint allows the
information to be supplied optionally — if it is there, Mint will use it, and produce better quality
typography; if it is not, Mint will fall back on using default information. The speed of Mint is not affected a
great deal by making use of all the information (measurements show it runs about 5% slower if all the
information about characters is given, than if only the minimum is given), however press files are much
larger. The limitation on using the extra information is posed by the (personal) cost of extracting the
information and representing it in a form that Mint can use. Normally you will not be concerned with what
this information is, or how it is represented, since it will have been incorporated into the state files. You can
regard this section as a collection of insights into the way Mint handles character information.

5.4.1 The values describing a glyph

The two drivers that Mint uses at present, the Perq driver and the Press driver, assume that each
character is described by a bounding box and an origin. If you specify to the drivers that a sequence of

Svs:User>Hibbard>sredreferc.ine

Peter 1libbard .
Mint Reference Manual Fonts . 5-75

characters is to be placed side by side, then the driver will place the characters such that their origins are on
the same horizontal line, and their bounding boxes arc touching. This is a characteristic of the device that is
understood by Mint. Should the information with which onu describe each character correspond to Mint’s
understanding of the way the device works, then Mint will drive the device in a straightforward way. That
is, if you need a sequence of characters on the page, and you have not specified that the origin is shifted for
any of the characters, and you have not specified that there are to be gaps between the characters, then Mint
will present a sequence of characters to the device and request it to output the sequence in the default way.
If, however, you alter the character values then Mint may need to specify to the driver the position of each
character.

Mint allows you to specify the size of the character bounding box and the position of the origin, in
addition to several other values. Note however, that the size of the bounding box and the position of the
origin are the basis of a contract between Mint and the driver: Mint assumes that whatever values these
parameters have will indeed be the values that the driver uses, so if they are incorrect Mint will not be able
to guarantee the appearance of the output. The possibility of setting these values has been provided to allow
font characteristics to be defined entirely within Mint, without need to go to some other source of
information (such as a fonts width file or a . TFM file). If you wish to cause the vertical or horizontal placing
of characters to differ from the design placings, the correct way of doing this is to use other features of Mint,
described below.

Fach character is described by 16 values, which are related to the bounding box of the character and the
bounding box of the ink of the character, and to two origins, as shown below.’

The vector X0, Y0 measures the distance from the X origin to the bottom left corner of the bounding
box of the character, and the vector XX, Y'Y measures the distance to the top right corner of the bounding
box of the character. Similarly the vectors IX0, Y0 and IXX, IYY measure the distances to the ink
bounding box. The vector VX0, VY0 measures the distance from the Y origin to the bottom left corner of
the bounding box. The distance X7 measures the horizontal translation from the X origin of one character
to the X origin of the next adjacent character; the distance Y7 measures the vertical translation when one
character is placed on top of another (this normally only happens in mathematical layout). The value ICR
measures the right hand italic correction, that is, the distance that the top right corner of the ink bounding
box overhangs the bottom right hand corner; similarly the value /CL measures the distance that the bottom
left hand corner protrudes to the left of the ink bounding box. Finally, the vector XRel, YRel specifies the
displacement from the position that the origin would normally be placed to where Mint instructs the device
to place the origin. Nonzero values of XRel shift the ink of the character in the horizontal axis, without
affecting the position of adjacent characters; nonzero values of YRe! similarly shift it vertically.

Sys: User>Hibbard>sredreferc.ine

) Peter 11ibbard
5-76 Fonts Mint Reference Manual
YT
(XX, YY)
1CR
(IXX, YY)
Boundin
box 9
X orig ;/
N
-
#le,IYO) V XT

IcL
(X0.Y0)

(vxo:;;;;E\“‘-.

™ Y origin

Figure 4. Character information

Since Mint can handle up to 128 fonts, each having up to 255 characters, and each character can have up
to 16 values describing it, there are problems that have to be solved in order to store the information in a
reasonable amount of space. Basically this is done by using several levels of indirection, which allows the
same information to be used to describe several fonts and several characters. The way in which this
information is stored and the way in which it is presented to Mint is beyond the scope of this section;
section 14.3.4 gives more details.

5.4.2 Applying character information

Mint will automatically apply the character information when it is in the maths box environment and
the m slug environment. If an item of information it needs has not been specified, it will use default
information. The particular form these defaults take are too detailed to be included here, though they are
just what you would expect.

In non-mathematical environments Mint will not normally use the information above; this is because
press files are much larger when the information is uscd. In order to cause Mint to use the information you
should use the statement substituteinfo, which takes the form

Sys:User> 1 libbard>srerefercine

Peter Hibbard
Mint Reference Manual

Fonts 5-717

@SubstituteInfo (PressFile, TimesRoman18, X)

This will cause Mint to use the character information for X in T imesRoman 18 in Press Files, but otherwise
to use the default information. The statement

@SubstituteInfoR (PressFile, TimesRomanl18, a, z)

will cause Mint to use the information it has for all characters between a and z.

5.4.3 Extracting character information

Occasionally it is useful to extract information about a character from a font in a form that allows it to
be used as a parameter to another Mint statement. For example, you might want to substitute a gap that is
the same width as some character. The statement Char Inf o extracts the information. For example

@CharInfo (Dev = PressFile, Font = TimesRoman1O0, C = @Char(Sp), Info = XT)

which will extract the information in the form 18 iu. The info parameter takes the values x0, y0, xx, yy,
ix0, iy0, ixx, iyy, vx0, vyC, xt, yt, icl, icr, xrel and yrel.

5.5 Spacing adjustments

If characters are placed with their bounding boxes adjacent, the results are not always pleasing. Some
characters appear too close together, and others too far apart. The reason for this is that the edges of the ink
are not vertical, so that characters such as o next to x appear to have too much space separating them,
whereas f next to ? have too little. By careful design of the font it is possible to reduce the effect, but in
general the use of only first order information (the widths of individual characters) to determine positions is
not sufficient, and you need both second order information (dependent on consecutive characters), and
information about the optical edge of a character to get good layout. Traditionally this information has
been captured in three ways: by italic corrections, which are used when an italic character is adjacent to a
nonslanting character, by kerning, which is a second order adjustment of positions, and by optical
adjustments, which are needed when a character is adjacent to white space, such as at the end or beginning
of a line. ’

Mint allows all this information to be used. This section describes how it is specified, and its effect on
the output.

Sys: User>Hibbard>sredreferc.inc

7 Peter Ilibbard
5-78 Fonts Mint Reference Manual

55.1 Italic corrections

Left and right italic corrections are specified in the character information. The correction is applicd if a
character in an italic font is adjacent to a character in a non-italic font, this attribute being determined from
the slope of the font, a part of the information that is associated with a font when character valucs are
specified. Mint uses the height (or depth) of the characters to determine the amount of extra space to leave.
For example, an italic x followed by a roman comma gcts hardly any additional space, but an italic y
followed by a roman brace gets the extra space specified for the y. This cffect can be seen in the formula on
page 137. The difference between text that is set with italic corrections and text that is set without can also
be seen in the following. In (fuff) the parentheses intrude upon the f and /7 but with italic corrections in
use the effect is (fuff). The amount of correction that Mint applies depends upon the relative slopes and
sizes of the adjacent characters, so that if the roman characters are smaller, as are the full stops in .fuff. they
are placed closer to the italic characters, though still not as close as they would be if italic correction were
not applied, when you would get .ﬂuﬁ‘.8

Italic corrections are normally applied only in the mathematical environments. Subst ituteInfo
must be used to cause italic corrections in normal text.

5.5.2 Kerning

The kern of two characters is the extra space that is inserted between their bounding boxes; normally
this space is negative. Since kerning adjustments can be made rapidly while scanning text, Mint does
kerning in all contexts. A kern between two characters is specified by the Kern statement:

@Kern (PressFile, CMR10s10, ox, -10 micas)
This will cause Mint to close the gap between o and x in font CHR10s10 by 10 micas.

Mint processes this statement by constructing a finite state recognizer; if there are several kerns and
multicharacter substitutions rooted at the same character the finite state recognizer can become quite
complex, but once constructed can operate quickly. For this reason it is advisable to put all the kerning
statements into a definitions file so that they can be saved in a binary representation in the state file. Because
of the way that Mint constructs the finite state recognizer, you have to specify all the substitutions that are
rooted at a character before any of the kerns. Mint recognizes a kern after a sequence of substitutions in just
the same way as a sequence of substitutions; that is, if you want to kern the ligature fi with a question mark,
and also have ffi as a ligature, you write '

8 Because the Dover driver has evolved piecewise, it produces more bulky output than it should. For this reason I elected not to use
italic corrections regularly in this printing of the manuai, However, by the time you read this the problem will have been fixed.

Sys: UsardHihbarddsredrefere ine

Peter Hibbard)
Mint Refercnce Manual Fonts

5-79

@substitutechar (pressfile, cmr10s10, ff, @char(#173))
@substitutechar (pressfile., cmr10s10, @char(#173)1, Gchar(#176))
@kern (pressfile, cmr10s10, @char(#173)?, 39 micas)

5.5.3 Optical adjustments

Mint does not yet perform optical adjustments. Watch this space.

Sys: User>Hibbard>srcoreferc.ine

Part Six
Macrogenerator

Mint has a macrogenerator front-end which feeds the lexical scanner. The macrogenerator is
intended to be used for simple textual replacements and not as a general computational
facility — other facilities in Mint provide the features obtained using the macrogeneralor in
Scribe. Mint’s macrogenerator is modeled on that described by Strachey in Computer
Journal, 1963, though many cosmetic changes have been made. In addition to
straightforward textual replacements, the macrogenerator plays three other essential roles: it
is used to access system information, such as the time of day, or the current source input Sile;
it is used io pre-process several siatements that change the actions of Mint, for example
AssocFont, NewGalley etc; and finally it is used as an integral part of the Note facility,
within which the bibliography facility acts as a subset.

6.1 Macro expansion |

Let us start off with a few words of warning. First word of warning: macroexpansion is at best a feeble
computational tool, which is made more dangerous because the parsing of a string that is to be
macroexpanded can only be done incrementally, after the results of the macroexpansions in progress have
been obtained. This is because a macro can generate a bracket, for example, that can alter the
macrogenerator’s scanning action. Those languages that keep a more decent distance between their data and
their program text allow a formal evaluation of programs (corresponding to syntactic and semantic analysis)
that is independent of the actual computation the program performs. If you infer from this that I believe
macroexpansion is a mess, you are accurate. However, until I design a better front end you will have to live
with its oddities. Second word of warning: the balance between the macroprocessor and the error-correcting
parser has been a little delicate in the past, and it may well still be so.

6.1.1 Input conventions

A macrogenerator statement has the following appearance:

Sys: User>Hibbard>srcdreferd.inc

') , Peter Ilibbard
6-82 Macrogencrator Mint Reference Manual

@IsEq (abcd, efgh)

with the command identifier preceded by @, and the parameters enclosed in brackets and separated by
commas. In agreement with the conventions of the rest of Mint, any pair of bracketing characters may be
used: (and), [and]. { and }, < and >, "and ", ' and ', and ‘ and . Spaces may follow the macro
identifier (but not the @), and may precede and follow the arguments.

A macro that takes no arguments may be written as, for example
@newline()

Alternatively, if the next character after intervening spaces is a comma, Of an equal, or the current closing
bracket. of a surrounding macro call, or is the end of file, newline or newpage, then the call can be
abbreviated to

@newline
This convention catches most of the macro call conventions of Scribe, but some do get past.

Note that the parameters do not need to be quoted. If not quoted, the macrogenerator will interpret
commas, equals, @ symbols, and the close bracket of the surrounding macro call, so the argument should
not normally contain any of these; to quote a string the quote used is " (argh!) with the string to be quoted
enclosed in any of the normal brackets. The only interpretation that is performed on a quoted string is to
look for the closing bracket, and to balance the brackets of the (unevaluated) calls within the quoted string;
thus some care is needed when using nested quotations. The macrogenerator strips off the quote;
subsequent rescanning during macro expansion will cause the control characters (@, comma, equals, etc) to
be acted upon.

In addition to providing positional parameters, the macrogenerator also provides named parameters, for
example

@AssocFont (Galley = Main, FontSize = N, FaceCode = FO, FontName = Noniel0i)

Named and positional actual parameters can be mixed; parameters are bound from left to right, with the
™ actual parameter being bound to the a formal unless the actual parameter is named. It is possible to
assign several values to the same formal parameter; the last one bound is the value passed to the macro
expander. Leading and trailing spaces are stripped from both the formal and actual arguments (even if
quoted, alas — I should fix that), and the case of the characters of the formal parameters is not significant.

Default values for arguments that are omitted from the parameter list may be specified at the time the
macro is defined. See section 6.1.2 for more details.

Sys:User>Hibbarddsredreferd.inc

Peter Hibbard

Mint Reference Manual Macrogenerator 6-33

In order to modcl quite closely the Scribe conventions about text macros, which do not interpret any
characters cxcept for the closing bracket, the Mint macrogenerator adopts the following conventions. If the
identifier before the equals symbol is not a formal parameter of the macro, then it is incorporated as a part
of the actual parameter, together with the equals symbol and any surrounding lexographic display symbols.
In addition, if a positional convention is used for expressing the actual parameters, then all the characters
that remain in the actual parameter list after prior parameters have been satisfied are incorporated into the
last actual parameter. Thus, given that Comment is a one parameter macro, the macro call

@comment(This is a string that contains an = symbol, in addition to a comma)

will place the whole of the argument string into the only parameter.

6.1.2 Defining macros

Macros are defined in one of two ways — using Form, which creates the macro template, and using
Defer, which allows a variety of forms to be associated with a macro. Discussion of Defer will be deferred
to section 6.1.3. (There are two other ways. SpecialFormis used to create state files, and is discussed in
section 14.3.1.1. EDef can only be used in the maths environment, and is discussed in section 12.2.2.2.)

Form is a macro that takes three arguments: the identifier of the macro to be defined; the parameter list,
with default valucs if needed; and the body.

@form(id = MyMacro, params = X, body = Just outpui this string)

This defines a macro MyMacro, that takes one parameter, X, whose body comprises the string Just
output this string. This macro does not use the value of its parameter, so it will Just output
this string for all the following calls

@MyMacro() @MyMacro(X = Foo) @MyMacro(Bah)
6.1.2.1 Accessing parameters

To access the value of a parameter, the macro call

@value(Id = X) or @Value(X)

is used. Value performs an inside-out search down the static chain (in good old algebraic language
tradition) to find a macro definition with a formal macro parameter with identifier X. Thus you could write

@Form({MyMacro, X, @"{Just output @value(X)})

The Params parameter of the Form macro takes a string which is then picked apart to find the

Sys:User>Hibbard>sredreferd.inc

) . Peter Iibbard
6-34 Macrogenerator Mint Reference Manual

identifiers of the formal parameters, and the default valucs. Normally this string contains commas and
equals, so it is necessary to quote it. Its general form is

@Form(MyMacro, Params = @"(P1, P2 = defaultl, P3 = default2), SomeBody)

The Params argument is analysed in the same way as a macro call. Thus this example specifies a macro
with threc parameters, whose formal identifiers are P1, P2 and P3, with the second and third parameters
having defaults defau1t1 and default2. The defaults will be used if MyMacro is called without a P2 or
a P3 parameter.

6.1.2.2 Accessing system values

The Value call provides access to macro parameters down the static chain. At the end of the static
chain are the parameters of a macro call within which Mint can be considered to have been invoked. The
actual parameters of this macro call are various useful system values, for example the time of day and
version number. Section 6.2.4 lists the values accessible in this way.

6.1.3 Deferred Macros

Macros may be defined so that calls of the macro occur immediately, or they may be defined in such a
way that calls are deferred. When a macro call is deferred, it is not evaluared immediately, but instead it is
saved, and can later be reinvoked. This subsequent reinvocation may use any (non-deferred) macro
definition to interpret the call.

To specify that macro calls on macro Book are to be delayed, the call

@defer(Book)

is made. Any subsequent call on the Book macro will result in the call being parcelled up and placed on a
list (which, for reasons which will become apparent later, is called the Plagiary List). Calls of the Book
macro will normally have several parameters; one of them must be a CodeWord parameter, written either
as an explicit named parameter, or as the first actual parameter.

@Book(CodeWord = Knuth68a,
Key = Knuth,
Author = D.E. Knuth,
Title = Fundamental Algorithms,
Year = 1968)

As many other parameters as one wishes may follow the codeword; they are not interpreted at this stage.

Mint will place this call, without evaluating it, on the Plagiary List. The Plagiary Listisa

Sys: User>Hibbard>sredreferd.ine

Peter [ibbard

Mint Reference Manual Macrogenerator 6-85

heavy duty data structure, intended to store many hundreds or thousands of delayed macro calls. In
particular, it is used to store the bibliographic entries used by the bibliography feature (which can be seen
now to use just a general-purpose feature); however, it is also of value in saving the random card-index of
notions, notes, quotations, plagiarized cuttings from papers, efc, that make up a part of any academic’s
intellectual property. '

To invoke a delayed macro, the call ReInvoke is used, with a codeword as parameter. Assume we have
a macro OutBook, that takes parameters Key, Author, Title, and Year, then the call

@OutBook (@RelInvoke(Knuth68a))

will be equivalent to

@0utBook (Key = Knuth, Author = D.E. Knuth, Title = Fundamental Algorithms,
Year = 1968)

In this way the notes, comments, etc., can be stored in a free format, to be retrieved when nceded using
a specific format suitable for the current document. The bibliography feature uses this facility, by
generating the reinvocations for the delayed macro calls in the bibliographic database. The macros used for
these expansions are specific to the reference style.

6.2 Standard Macrogenerator Facilities

This section lists the predefined macros (actually those defined in the standard state files). We have
called predefined macros statements elsewhere, and .you should look in the relevant sections to see what
they do. The only predefined macros described in detail are those termed special macros, which are
concerned with macro expansion.

6.2.1 Special Macros

Following each macro identifier is the list of parameters it takes. The default value of these parameters is
the empty string.

andm <up to 16 parameters>
brkt b,a

char ch

cond if,then,else

defer macro

form id,params,body

iftrue if,then

incptn file

isdefined param

Sys:User>Hibbard>sre>referd.inc

6-86 Macrogenerator Mint Refggfgclﬁgg‘ﬁ

iseq X,y

message msg

notm X

orm <up to 16 parameters>

reinvoke dm

value id

w word

Form, Value, Defer, and ReInvoke have been dealt with in scctions 6.1.2 and 6.1.3. Char takes an
integer in decimal or octal notation (octal being indicated by a lcading # symbol), or a character preceded
by a quote (for example @char (',)) or the string sp for space or the string 1n for new line. It creates a
character of that value. This character is specially quoted so that it cannot be interpreted by the
macrogenerator; thus any character can be created using this macro. (Actually, this is not quite so, but you
should regard this as a special feature.)

Cond is a macro that returns its then parameter or its e1se parameter, according to whether its if
parameter is a non-empty string or an empty string, respectively. IfTrue returns its then parameter if its
if parameter is a non-empty string. IsEq returns a non-empty string if its two arguments are the same,
after case-folding; IsDef ined returns a non-empty string if its argument is non-empty. Andm, Orm and
Notm perform the logical operations on their arguments.

Include causes input into the macrogenerator to come from the specified file. The standard search list
is used to find the file; if the search fails, Mint will try again with .Mss appended, and finally with .Mint
appended. Includes can be nested arbitrarily deeply. Note that an Include does not cause the
macrogenerator to start taking input from the file immediately; if it happens to be scanning some macro
bedy when it evaluates the Include, it will continue to evaluate the body, until it again needs input from
the file, when it will then take input from the new file. Incptn is only used internally in the separate
formatting facility.

W causes any spaces within its parameter to be treated as words, thus preventing line breaks, and
inhibiting the expansion or contraction of the spaces. It turns out that W can have anomolous effects on
characters created by Char, and on certain strings created by NConv. That's a bug.

Message outputs a message onto the screen, in the typescript window.

6.2.2 Extra macros

These macros are defined in terms of other macros; they are here for convenience.

@Form (ref, lab, @""@nconv(placestyle,place,@value(lab})")

@Form (egn, lab, @""@nconv(equationstyle,equation,@value(lab))")
@Form (pageno, lab, @""@nconv(pagestyle,pageno,@value(lab))")
@Form (figref, Tlab, @""@nconv(figurestyle,figureno,@value(lab))")

Sys:User>Hibbard>sredreferd.inc

Peter Hibbard

Mint Reference Manual Macrogenerator 6-87

@Form (tabref, 1lab, @""@nconv(tab]esty]e,tab]eno.@va]ue(1ab))")
@Form {newpage, n,
@""@pagecommand(@zsp(@cond(@isdefined(n),+@va1ue(n),+1)))")

@Form (blankspace, n, @""@vsp(@value(n))")

@Form (eval, x, @ " eform(ev2, ,@value(x))@ev2()")

@Form (portion, x, :
@""@brkt(@"[@begin{portion}].@"[@end{portion}])@incptn(@value(x))“)

Because of an undesirable feature of the zsp statement, the newpage macro inserts two new lines
before and after its body.

6.2.3 Summary of other macros

The following is a complete list of the statements accepted by the macrogenerator, together with their
formal parameters, and the section in which they are described <<in the next edition, anyway>>.

addclass nterm,rhs

adddefault nterm, def

addpageinfo pparams,area,backgroundco]our,border,bordersty]e
alter id,by

andm <up to 16 parameters>

applictrans cn,cv

assoccontents id,env

assocconv conv,nstyle

assoccref e,c

assocfont fontf,fontsize,facecode,fontname
assoclayout pres,part,pstyle,layout

assocpart pres,part

assocprefix e.pi

assocprivf fontf,type,fontname

assocproc procf,environment,boxroutine,parameters,prefix
bibinclude <up to 16 parameters>

bind id,value,binding

bindcurval id,binding

brkt b,a

char ch

charinfo dev,font,c,info

cite <up to 16 parameters>
citeincollection collection,<up to 16 parameters>
comment body

cond if,then,else

copycharbbis d,s

copycharbbrs d,s :

copycharbbxs d,s

copycharbbys d,s

copyfont device,dfont,sfont
crossproofingdefault targetdevice,viewingdevice,font
crossproofingfont targetdevice,targetfont,viewingdevice,viewingfont
crsyntax e,p

defer macro

dumpstate file

edef id,body

Sys:User>Hibbard>sredreferd.inc

Peter Hibbard

indexinclude
indexincollection
initlexmap
isdefined
iseq

hsp

kern

label
library

make
makecref
makeicon
makerep
makeprefix
makestyle

mathsvca
mathsparams
mdef

message

moveto

ncenv
newareaparams
newbib
newbibcollection
newborderstyle
newcharbbis
newcharbbrs
newcharbbxs
newcharbbys
newcolour
newcontents
newcontentstable
newcounter
newdclass
newdefault
newdevice
newfacecode
newfontfamily
newfontvalues
newgalley
newindexcollection
newline
newpagestyle
newpasteup
newpattern
newpcs
newpresentation
newprocfamily
newproduction
newsyntaxclass

<up to 16 parameters>
collection,key,seckey,rest

m,c,e,v
param

X,y
length

device,dfont,dstring,sliver

id
file

documenttype,form=0,device=perg,rest

t,n,c
slugtype,id,file

pres,pg,agl,ag2,ag3,ag4,agb,ag6

i,t,.pl,p2,p3

6-88 Macrogencrator Mint Reference Manual
emptyfont device,dfont,height,baseline
form id,params,body
iftrue if,then
include file
incptn file
index key,seckey,rest

dev,id,wd,r1m,nlm,rrm,nrm,elm,rab,nab,rbe,nbe,rg,ng,hg,ri,

j1,jr,j1,jr1,ic,bc,rf

vca,p,a,b,c,d,v0,v1,v2,v3,v4,v5,v6,v7,v8,v9
f1,fz,f3,f4,p1,p2,p3,b1,b2,b3,bd,e1,g1,i1,12

slex,dlex,stype,fcode

msg

dev,x,y
conv,counter,labhel
id

id,st,sp,tm,sfn,vfn,l1s

collection

id,mt1,mtr,mbr,mb1,patt,patr,patb,patl

id
id
id
id

colour,hue,saturation,brightness
id,fe,xb,yb,ap,hf,exp

id,cap

id,within,start=1,change=+1
id,dr,fm,xs,ys,is,rset
id,fe,xb,yb,ap,hf,exp

id,dc,xsz,ysz

id,gt,ff,pf,s,e,a
collection

Tines

id,cont
id,fe,xb,yb,ap,hf

id,w0,s0,c0,wl,s1,c1,w2,s2,c2,w3,s3,c3,wd,s4,c4

c
pres
id

id,c,d,de,pk,bl,ac,cr,h0,h1,h2,h3,h4,h5,h6,h7

id

Svs: User>Hibbarddsredreferd.ine

Peter 1libbard .
Mint Reference Manual Macrogenerator 6-39

newtitlepage id,fe,xb,yb,ap

next id

notm X

orm <up to 16 parameters>

putchar dev,c,font,x,y

putline dev,x,y,w

readdefs defs

readstate file

register c,0

registerenv env

reinvoke dm

remclass nterm,rhs

remdefault nterm, def

set id,value

setcharbbi id,ch, ix0,iy0,ixx,iyy,icl,ier
setcharbbr id,ch, xr,xt

setcharbbx id,ch,x0,y0,xx,yy

setcharbby id,ch,vx0,vy0,yr,yt
setcompfont dev,cno,sno,val

setcompgap cno,sno,val

setcomplm cno,sno,val

setcomprm cno,sno,val

setdumpp dc,fm,dv

setfontf gid,ff

setfontinfo dc,fi,wt,wd,ps,s1,fv,ew,eh, iv,xv, yv,rv
setfontvalue id,c,e,v

setnext id

setnotearea §g,a,ss,ns

setprocf gid,pf

setscale s

setsptype left,right,spacing

setspvalue " spacing,fs,value

setstyle gid,s

setunit id, s

specialform id,params,varp,no

stdconv i,n

substitutechar device,dfont,dstring,sfont,schar
substitutecharr device,dfont,from,to,sfont,schar
substitutegap device,dfont,dstring,size
substituteicon device,dfont,dstring,icon,s,x,y,w
substituteinfo device,dfont,dchar
substituteinfor device,dfont,from,to

tag id

value id

vsp length

W word

within file

zsp page

6.2.4 System attributes accessed via @Value

The following values are available by using Value.

Sys:User>Hibbard>sredreferd.inc

6-90 Macrogenerator Mint Reference Mangal
BibStyle The current bibliography style.
Date Yields the current date, as provided by the Perq. There are not yet any
transformations on the format of the date.
Device The device ideniifier.
DocType The document type.
Form The value passed to the form parameter of the make statement.
IndexStyle The current index style.
Manuscript The root file for the manuscript. The string retuined by this parameter is the full

SourcefFile

Time

TimeStamp

Version

path name, less the extension.

The current source file from which input is being taken. The string returned by
this value is the full path name.

Yields the current time of day, as yielded by the Perq. The same comments as
those for Date apply.

The time stamp, comprising the date and time.

The current version number of Mint.

Sys:User>Hibbard>sredreferd.inc

Part Seven
Cross references

A technical document needs o have cross references between its parts. This is normally done
by numbering sections, figures, etc, and using the numbers. You need then to have counters
which can increment through the document, and you need to be able to refer to the values of
the counters in a variety of styles. This section first introduces the notion of a counter, and
describes the operations on i, then describes how you can control how the value of a counter
appears in the document, and it finally describes the prefixes and postfixes which are attached
to some environments.

7.1 Counters

In order to reference one part of a document from another part, fags need to be attached to parts of the
document, and a mechanism provided to refer to the tag. (The term fag is not being used here in the sense
that Scribe uses it. Consider a tag as a defining occurrence of some internal label, that causes Mint to record
the location of the tag — the slug or box in which the definition of the tag occurs).

Internal tags are a poor facility to help the reader of a document find his way around it, since he
generally has a notion of different classes of information in the document, such as chapters, sections, figures,
formulae, etc. It is therefore helpful to have each of these use distinct labelling schemes, so that one can
refer to chapter one, figure VI, etc, independently of the numbering of the other classes of information.

Several labelling schemes could be conceived; however, to generate label values automatically, it is
useful to employ counters, each associated with a different class of information. Thus the chapter counter,
used to generate chapter numbers, can be independent of the page counter, used to generate page numbers.

Mint provides a general scheme to allow counters to be created, and associated with classes of
information. In addition the values of the counters can be displayed in a variety of styles. This section
describes the facilities provided.

Sys:User>Hibbard>srcdrefere.inc

Peter 1libbard
7-92 Cross references Mint Reference Manual

7.1.1 Overview of Counters

Assume that several counters have been defined (more'details are given below on how to define a new
counter; several are predefined in Mint). A counter has an integer value, that can be changed (usually
simply incremented) during the processing of the manuscript. This may occur automatically (such as is the
case with the counter associated with figures), or it may be changed explicitly. Every counter, at some point
in the processing of the manuscript, has some value, and the collection of values of the counters is called the
counter contour at that point in the document.

A snapshot of the contour is taken when a label is defined, using the Labe1 statement. It is possible to
extract the value of any of the counters in the contour, and to introduce its value, converted in any of a
number of conversion styles, by referring to the label in the appropriate way. This is the case not only for
the standard counters used by Mint, but also for any of the counters declared by the user. Furthermore, the
applied occurrences of counters are only resolved at page layout time, so that forward references to labels
can be handled without having to re-Mint the documentg.

Since several copies of slugs that define labels may get taken during page layout, Mint has mechanisms
to ensure that the final appearance of a document is as though several (unique) labels have been defined.

In addition to counters from which it is possible to extract a single value, you need to have
pseudo-counters, which yicld a composite value: for example the value of the chapter counter foliowed by
the value of the equation counter. Several such counters are built into Mint, with the hope that they provide
all the standard needs. If they don’t satisfy your requirements, you will have to hack new ones using macros.

In review, then, Mint’s facilities comprise a means of specifying counters, defining labels, and extracting
the values of the counters from the contour associated with a label, in a variety of styles. We consider each
of these in more detail below.

7.1.2 Counter manipulations

A new counter is defined by the statement NewCounter. This takes a counter identifier, another
counter within which the counter will count, and an initial value and increment value. For example

H

@newcounter(TheoremCounter, ChapterNo, 1, +1)

defines TheoremCounter to start at 1, and be incremented in steps of +1. Theo remCounter will be
reset back to 1 each time ChapterNo is changed. If a counter is required to count independently of other

9 Even better, the snv/e with which the counter value is converted need not be specified until page layout time, so that different
presentations can use different conversions. Mint re-evaluates the contour for each presentation, on the expectation that the
presentations may not have the same contents, and hence the same lines with counter-changing statements.

Sys: User>Hibbard>sredrefere.inc

Pcter Ilibbard

Mint Reference Manual Cross references 7-93

counters, the second parameter should be empty. Counters can start at any positive or negative integer
value, and the increment can be any positive or negative integer value.

It is possible to set a counter to some arbitrary value by the statement Set, and to cause it to be
incremented by the increment value using the statement Ne xt. For example, after

@Set (TheoremCounter, 5)
@Next (TheoremCounter)

TheoremCounter will have the value 6. The value of a counter can be altered by the statement
Alter. For example, after the statements above, the statement

@Alter (TheoremCounter, -3)
will assign the value 3 to TheoremCounter.

Mint rescans a presentation after it has made it, in order to find all the occurrences of Set, Alter and
Next, and only then does it remake the slugs that refer to the counters. 1t is for this reason that a
presentation can omit parts of the galleys that have incremented counters using Next, but Mint will still
cause all the applied occurrences of counters to be consecutively numbered. The only way you can avoid
this happening is if you explicitly set a value using Set — in this case Mint will cause the counter to have
the specified value. You sometimes need to increment a counter and also set it, especially when using the
Binding conversion which is described in section 7.3; in this case you should use the statement
SetNext; for example

@setnext (authorcounter)

Unless you know what you are doing you should always use next for counters that are converted using the
numeric conversions, and setnext for those that use the binding conversion, or that need to have the
same value in several different presentations.

7.2 Labels

A label is defined by the statement Labe1 (Tag may also be used); this takes a snapshot of the counter
contour, and associates it with the label. The label identifier can be any valid macrogenerator strmg 10 For
example

8Label(Current position)

10 Not, it seems, for labels defined in the maths box parameters. Sigh!

Sys:User>Hibbard>srcorefere.inc

. Peter Hibbard
7-94 Cross references Mint Reference Manual

Labels may be defined in any of the gallcys. When the galleys are created, the contour associated with a
label is that appropriate for scanning the galleys in some canonical order (the order in which the galleys
have been defined); when pages are created, the contour associated with a label is that appropriate for a
sequential scan of the slugs and boxes in the pages. Thus the contours may change, depending on how page
layout is performed, and how counters have been incremented in each of the galleys.

7.2.1 Referring to labels

Mint provides a basic operation for recovering the value of a counter from the contour associated with a
label: NConv. This statement takes a conversion, a counter or pscudo-counter, and a label, and returns the
value of the counter in the contour, converted according to the specified conversion. Conversions are dealt
with in more detail below; assume for the moment that we have conversions such as RomanUC, to convert
to upper case roman, and Arab ic to convert to arabic numerals.

For example

@nconv(Arabic, PageNo, Your Label)

will produce the value of the PageNo counter in the contour of Your Label. Note that this value will
depend upon the way that page layout is done, and may differ from one presentation to another.

Frequently you want to use the current value of a counter, rather than the value at some label. This is
generally the case with the page number that is placed in the heading or footing of a page. It is tedious to
have to declare a new label every time, and then refer to it, as follows.

@label(Yet_Another_Label)@nconv(Arabic, PageNo, Yet_Another_Label)

Sometimes it isn’t even possible to do this. To get over the problem, Mint allows the label field in NConv to
be empty. It then effectively generates a defining occurrence of a unique label automatically, and uses it as
an argument to NConv. Thus

@NConv (Arabic, PageNo,)

will produce the current page number converted to arabic numerals.

7.2.2 Undefined labels

- Since Mint is intended to be an interactive system, it must be possible to define labels at any time while
the document is being created. When a label that has been used is finally defined, Mint will patch up the
references to it automatically. Since the philosophy of Mint is that there may always be a label definition

Sys:User>ilibbard>srerefere.ing

Peter Hibbard .
Mint Reference Manual Cross references 7-95

coming along later, it does not regard an unresolved label as an error. However, in the non-interactive
version this means that warnings are not generated. Since this is somewhat surprising to the casual user, [
will fix Mint soon.

When Mint is making slugs that contain counter conversions that it is not yet able to resolve, it places a
filler lexeme into the slug. The lexeme is normally ?. When the value becomes known, the slug is remade.
In general, Mint’s guess for the size of the final counier conversion is close enough that only one slug needs
to be remade: however, if several consccutive stugs need to be remade, Mint will do this. Should it be the
casc that replacing the filler lexeme by the counter conversion causes the number of slugs in the box to
change, Mint will throw up its hands and admit defeat. The problem is that if a box changes its size, the
page layout may need to be redone, and I'm not prepared to do that in the current non-interactive version.
You will know that Mint has problems, since it will tell you, and it will then proceed to overlay the new slug
on top of the last one in the box. All is not lost, though; the extra style parameter Fi1ler is a {crude) way
of changing the size of the filler to be closer to the size of the final lexeme. Try something like

@Make (Thesis, Rest = @""Filler = ***")
if you run into the problem, and Mint the document again.

When you are first creating a document, there are generally many unresolved labels. It is useful to know
which ones they are, and where they occur in the manuscript. If you set filler to the special value
1abe1, then Mint will use a filler that comprises the label identifier in upper case.

7.3 Conversions

Mint provides a number of in-built basic conversions, such as RomanUC, a complete list of which is
given in section 7.4.1. One of the conversions, Binding, allows the user to set up an arbitrary binding
between the values a counter can assume and strings.

The identifier that occurs in the NConv statement can be either the identifier of a basic conversion, oran
identifier that has been associated with a basic conversion by the AssocConv statement. For example

@AssocConv(TableStyle, RomanlC)
specifies that Tab1eSty1e is currently RomanLC. Thus we can also write
@NConv (TableStyle, TableNo,)

If you do this, you can change the binding between TableStyTe and the basic conversion at any time

Sys:User>Hibbard>src>refere.inc

’ Peter Hibbard
7-96 Cross references Mint Reference Manual

(again using AssocConv) and thereby change the appcarance of the references. Itis to allow this flexibility
that the standard prefixes are defined in terms of non-basic conversions.

Most of the conversions supplied by Mint are standard conversions from the internal counter value to
an external representation of it, in roman numerals, arabic numerals, etc. The Biinding conversion allows
the Minter to establish an arbitrary mapping between internal values and external strings, which can be
used to maintain section headings, for example. Every counter has a binding conversion that is
independent of the bindings of other counters. The statement B ind allows an arbitrary string to be bound
to some value of a counter. For example

@ind (AuthorCounter, 4, Peter Hibbard)

specifics that the Binding conversion, applied to counter AuthorCounter, will yield the string Peter
Hibbard if the value of the counter is 4. The value is retrieved using the NConv statement. For example, if
the current value of AuthorCounter is 4, then

@NConv (Binding, AuthorCounter,)
will yicld Peter Hibbard.

Usually you do not want to specify some explicit value for the counter — you are content to bind to the
current value of the counter. This is done by

@8indCurVal (AuthorCounter, Harry Q. Bovik)

You should also be aware of the exhortation in the previous section, about the use of SetNext.

7.4 Standard Conversions and Counters

The following section describes the ‘standard conversions, counters and pseudo-counters that are
available in Mint.

7.4.1 Conversions

The following basic conversions are available.

RomanlLC Converts a value into lower case Roman numerals, e.g. vii, xxiv.

RomanUC Converts a value into upper case Roman numerals, e.g. MCMXLL.

Sys:User>]libbard>sredrefere.ine

Peter Hibbard nual Cross references 7-97

Arabic Converts a value into arabic numerals. Both negative and positive valucs can be
converted.

AlphalC Converts a number into cardinal English numbers, ¢.g. one hundred and
three.

AlphaucC Converts a number into cardinal English numbers in which the first letter of
each word is a capital letter, e.g. Fifty Five.

LetterLC Converts a number into a lower case letter, 1 = a, 2 = b, efc.

LetterUC Converts a number into an upper case letter, 1 = A, 2 = B, etc.

Binding Retrieves the arbitrary binding associated with the counter. The binding can be

7.4.2 Pseudo-counters

any string.

Pseudo-counters are referred to in the same way as other counters; however, they cannot be set,
altered, or used in any statement except nconv. The following are the pseudo-counters.

Place

EnvType

Citation

Equation

This pseudo-counter yields the location of the label as a sequence of counter
values, for example 7.4.2. Each individual value is converted according to the

style in the nconv statement in with the pseudo-counter occurs, except possibly

for the first value, which will appear as a letter if the label is in an appendix.

This counter yields the environment type of box in which the label occurs,
irrespective of the conversion style applied to it. I tried fairly hard to give this
pseudo-counter a natural interpretation, given that the Mint error-correcting
parser is generating new environments all over. I wasn't too successful; for
example, @nconv(arabic,envtype,pscount) @ref(pscount) yields
default 7.4.2, whereas I wanted subsection 7.4.2. T'll try again.

I must confess I've forgotten what this does.

This yields the equation number, represented as a chapter number, followed by
the equation number within the chapter. See section 12.1.3.2 for more details.

7.4.3 Non-basic conversions

The following conversions are defined for the use of the standard counters. Their initial bindings are

shown.

AnnoteStyle
PartStyle
PageStyle
PlaceStyle
ChapterStyle

Sys:User>Hibbard>sredrefere.inc

Arabic
Arabic
Arabic
Arabic
AlphaUlC

4

7-98 Cross references Mint R ere’;‘éf!elﬁh‘;?ﬁfﬁ
SectionStyle Arabic
SubSectionStyle Arabic
ParagraphStyle Arabic
TabieStyle Arabic
FigureStyle Arabic
AppendixStyle LetterUC
AppendixSecStyle Arabic

7.4.4 Counters

The following counters arc defined for use in the standard prefixes (section 7.5), the standard
annotations (section 14.3.5.6), and in the standard presentation (section 8.3). The counter identifier, the
counter within which it counts (if any), the initial value and the increment arc shown.

7.4.4.1 Counters common to all document types

PartNo 1 +1
PageNo PartNo 1 +1
FigureNo 1 +1
EquationNo 1 +111
7.4.4.2 Counters in document types with footnotes and annotations
AnnoteNo 1 +1
7.4.4.3 Counters in document types that have chapters
ChapterNo 1 +1
SectionNo ChapterNo 1 +1
SubSectionNo SectionNo 1 +1
ParagraphNo SubSectionNo 1 +1
AppendixNo 1 +1
AppendixSecNo AppendixNo 1 +1
EquationNo ChapterNo 1 +1
7.4.4.4 Counters in document types that have sections
SectionNo 1 +1
SubSectionNo SectionNo 1 +1
ParagraphNo SubSectionNo 1 +1
AppendixNo 1 +1
AppendixSecNo AppendixNo 1. +1
EquationNo SectionNo 1 +1

n In document types with sections or chapters, the equat i onno counter counts within the corresponding counter.

Sys: User>Hibbarddsredrefere.ine

Peter Hibbard

Mint Reference Manual Cross references 7-99

7.5 Prefixes and postfixes

The first slug of a box can have a prefix string generated for it. This prefix string appears in the slug
before any of the input from the manuscript. Normally it consists of numbering information that gets
generated by Mint, though therc is no need for this to be so. Prefixes are specified along with the
procedures and the environment parameters in the procedure family of a galley. The maths environment
has a postfix string generated for it, but I'll call all inserted strings prefixes to avoid confusion.

Prefixes are not source strings introduced early in the processing of the input for a (box) procedure; the
reason why this is not so is because Mint keeps a tight control over the processing of the input — the need
for a prefix can only be recognrized after syntactic analysis has been performed, and introducing an arbitrary
string at this point could destroy the formal properties of the output from the parser. While this implies a
lack of generality compared with Scribe, the counter facility in Mint appears to allow all the meaningful
uses of prefixes (or at least all those I can think of). The loss is a certain flexibility, since the prefixes
essentially have to be programmed into the system using a language different from that used for the
manuscript. I've worried about this for some time, and sce a way of hacking a route out, but I need to put
more thought into it.

s &

Since prefixes are not programmable by the casual user, this section simply presents those
available. Eventually it will be possible to read prefixes in from some data base, thereby overcomin
of the inflexibility.

+lan

=

are

much

E
-

o

75.1 Standard prefixes

Several prefixes are defined in Mint. A general description of them follows.

Place Prefix Place prefixes are used for the standard section environments. They comprise a
definition of a new cross reference point, followed by an applied occurrence of
the appropriate counter (Section, SubSection, Parag raph), using the
PlaceStyle conversion style. When the cross reference is resolved (at page
layout time), the applied occurrence will appear in the current PlaceStyle,in
the font size and face code of the section slug.

Figure Prefix A figure prefix is used to create the numbers for the captions of figures. It
comprises a definition of a new cross reference point, the word Figure,
followed by an applied occurrence of the Figure counter, using the
FigureStyle conversion style. The prefix string appears in the prevailing b
face code.

Table Prefix A table prefix is used to create the numbers for the captions of tables. It
comprises a definition of a new cross reference point, the word Tab1e, followed

Sys:User>Hibbard>sredrefere.inc

7-100

Peter Hibbard

Cross references Mint Reference Manual

Chapter Prefix

Appendix Prefix

Copyright Prefix

Equation Postfix

Editor Postfix

by an applied occurrence of the Table counter, using the TableStyle
conversion style. The prefix string appears in the prevailing b face code.

The chapter prefix is used to create the chapter prefix for those document styles
that have chapters in their section environments. It comprises a definition of a
new cross reference point, the word Chapter or the word Part, followed by an
applied occurrence of the Chapter counter, using the ChapterStyle
conversion style. The chapter title follows on the next line.

The appendix prefix is used to create the appendix prefix for those document
styles that have appendices in their section environments. It comprises a
definition of a new cross reference point, the word Appendix, followed by an
applied occurrence of the Appendix counter, using the AppendixStyle
conversion style. The appendix title follows on the next line.

The copyright prefix is used to create the copyright notice on title pages. It
comprises the word Copyright, followed by the copyright symbol, followed by
the year. Eventually a counter will be set with the year value, and a conversion
style associated with the counter, so that the year can be output in any of the
conversion styles. (Later note: this is now done.)

The equation postfix is appended to the end of a formula created by the maths
environment if it has a label parameter. It comprises an equation number (see
section 12.1.3.2) enclosed within parentheses.

This postfix is used in the annotation feature, to distinguish the annotations of
several editors. It will be described more fully later.

The prefixes that are available are as follows. The counter associated with the prefix is given in the

second column.

PrefixChapter0
PrefixChapterl
PrefixAppendix0
PrefixSection0

PrefixSubSection0

PrefixParagraph0
PrefixAppendixl

PrefixAppendixSecO

PrefixFigurel

PrefixTablel

PrefixCopyrtNO
" PostfixEgn0

ChapterNo A chapter prefix using Chapter
ChapterNo A chapter prefix using Part
AppendixNo A appendix prefix
SectionNo A place prefix
SubSectionNo A place prefix

ParagraphNo A place prefix

AppendixNo A place prefix
AppendixSecNo A place prefix

FigureNo A figure prefix

TableNo A table prefix

CopyrtNo A copyright prefix
Equation An equation postfix

Sys: User>Hibbard>srcdrefere.ine

Part Eight
Page layout

The purpose of Mint is to take a manuscript and prepare from it a nimber of presentations.
A presentation comprises a collection of document parts, each of which comprises some
number of pages. The information in the pages comes from the original manuscript, of
course, but the manner in which the information is presented — the appearance of the pages,
the way that cross-references are indicated, and even which portions of the original
manuscript get displayed, is a property of the presentation. In this section presentations and
layout routines, which create pages, are described. -

8.1 Presentations

‘Mint allows several different presentations to be created from the same galleys. Each presentation
corresponds to the application of some set of page design rules, which are algorithmically described by
layout routines. Some of the flexibility of having different presentations is lost because all presentations that
are created during an execution of Mint come from the same set of galleys; however, the user can select
which galleys wili contribute to a presentation, so that this loss of flexibility may be disguised. It is possible,
for example, to have two separate Main galleys, each receiving the document, but having different style
parameters, different procedures, different fonts, and different target devices. The only restriction, in fact, is
the obvious one that all the galleys that contribute to a presentation must use the same target device.

In this section I describe the structure of a presentation, and the means by which the default

presentation can be modified.

8.1.1 The structure of a presentation .

A presentation has two components: first, a vector that maps between the page styles that are specified in
the box environment parameters, and page layouts, which are collections of formatting rules that lay out
pages; and second, a collection of document parts, which are the pages which have been produced using the
particular layout rules. To obtain any particular page layout, you specify the appropriate page style in the

Sys:User>Hibbard>sredreferfline

. Peter Hibbard
3-102 Page layout Mint Reference Manual

box cnvironment parameters. For example, the TitlePage cnvironment specifics the page style
parameter of its environment to be Tit1ePS. Conscquently, when a presentation comes to be made, the
particular collection of rules in the Tit1ePS$ entry of the Jayout mapping vector of the presentation will be

used.

Each collection of page layout rules is associated with a part, which receives the pages as they are
created. Pages are placed consecutively in the part by order of arrival. However, the printing order of the
pages in a presentation is quite arbitrary, since all the pages are created before any printing is performed.

Presentation

R

WV
) -
PageStylel Layfut —_— PartA
—>
PageStyle2 LGY;UT- —
] y
1
' v
‘ L
' Part8 N
' —>
:
L]
1

Figure 5. Structure of a presentation

As] understand page layout requirements more, I may be able to bind more of the page layout rules as
declarative information, but at present the major burden of defining the appearance of a page according to
some formatting rules is specified by procedural knowledge. However it is possible to change several of the
parameters the layout routines use, such as those specifying the size of the page, the style of the berders
around areas, and the background colours of arcas. These are dealt with in section 8.2.2.2.

Sys:User>Hibbard>sredreferfine

Peter Hibbard ‘ " p.
Mint Reference Manual Page layout 8-103

8.1.2 Page styles

Any particular document may need several different page styles. For example, the title page will differ
from the layout of the main text of the document, which may be single column, and that may differ from
the index which could be laid out using two columns. More elaborate document designs may require more
page styles. Mint provides for this requirement by allowing you to declare page styles, and then to specify
-which boxes are to be laid out according to that page style. For example

@NewPageStyle (Acknowledgements, True)

@begin(heading, pagestyle=acknowledgements)

Acknowledgements :

@end(heading)

I wish to thank all those battle-scarred pioneers who helped me with
invaluable comments

during the writing of this system.

declares a new page style, and then associates it with the heading. The page style is ignored during galley
creation, but it is carried through to the presentation, where it is used to select one of the layout routines,
and parametrize it with suitable parameters for laying out an acknowledgements page. (The layout routine
might well be the same one as is used for title pages, but with different parameters.)

The second parameter to the newpagesty1e statement specifies whether the page style is continuing.
A continuing page style causes all the boxes that follow it to be treated using the same page style, unless
they explicitly specify some other page stylel?‘.

Several page styles are already declared; they are described in section 8.3.1.

8.1.3 Layout routines

Layout routines are built in to Mint._ Each layout routine has an identifier; currently Mint has four
layout routines: TitlePage which understands how to lay out title pages and other single page displays,
Contents which helps lay out tables of contents, Pasteup which allows you to specify the appearance of
pages interactively, and Default which lays out everything else. More details of these are given in section
8.2. Soon there will be layout routines for letters, multi-column pages, etc.

From a layout routine you can create a layout: this is an association of a layout routine and a collection
of parameters that will get passed to the routine when it is called to lay out some pages. It is these layouts
that are associated with page styles in the presentation mapping vector. Each layout routine uses different

12 This isn’t quite true, but it’s a good approximation.

Sys:User>Hibbard>sredreferf.ine

av Pcter Hibbard
8-104 Page layout Mint Reference Manual

paramcters, so it is more appropriate to describe them separately in scction 8.2.3; the statcments that create
layouts all have a similar form though. For example

@NewTitlePage (TLayout, True, , ,)

creates a layout that will result in the Tit1ePage routine being called with the four parameters specified
(the last three of which will be whatever the default values are).

8.1.4 Defining new presentations
The NewPresentation statement creates a new presentation, and sets the elements of its layout
mapping vector to undefined values. Empty parts are created by the AssocPart statement. For example,

@NewPresentation (Standard)
@AssocPart (Standard, TitlePage)
@AssocPart (Standard, MainBody)

creates a presentation named Standard, and associates two parts with it.

8.1.5 Making representations

A representation of the manuscript is made from the galleys, by giving a presentation a collection of
galleys. Each galley given to the presentation must have the same target device, but there are no other
restrictions. One of the gaileys in the collection is specified to be the principal galley; it is from this galley
that shugs and boxes will be drawn initially to make the representation. The other galleys of the collection
are associated galleys: if there are cross-reference relations from the principal galley into an associated
galley, then the page layout routines will combine the boxes and slugs from the associated galley into the
pages according to the routine’s rules. .Currently the only way this can be done is by placing the
cross-referenced material into footnotes, so that the usual way of making a representation is to have the
principal galley be the Main galley, and the associated galleys be that subset of the Footnote and
Annotation galley from which it is desired to extract notations. l

Mint currently creates a single representation after the galleys have been created. By default this
representation uses a presentation called standard that is automatically declared, and uses the main
galley and the footnotes galley. A table of contents is created if the contents galley exists (sce section
9.3). If you want a different presentation you can use the makerep statement. This takes a presentation,
a principal galley, and up to six associated galleys. For example

@MakeRep (Standard, Main, FootNotes, Annotations)

will create a representation with both footnotes and annotations (which will come out looking like

Sys: UservHibbard>sierieferfine

Peter Hibbard) .
Mint Reference Manual Page layout 8-105

footnotes). This statement can occur at any point in the manuscript. Mint will storc its parameters, and
apply them when the galleys are complete.

8.1.6 Printing a presentation

After a presentation has been made, it may be printed in whole, or page by page, or part by part. There
is no requirement that the printing device be the same as the target device of the galleys that went in to
make the preéentation. If they are not the same, they will be printed on the viewing device in cross-proofing
mode; see section 11.2.

The following illustrate the methods of causing printi’ng to occur.
@PrintPage (Standard, Dover, TitlePage, 1)
will cause page 1 of the Tit 1ePage part of presentation Standard to be printed on the Dover,
@PrintRange(Standafd, Perq, MainBody, 1, 10)
will print pages 1 to 10, and
@PrintPresentation (Standard, Dover)

will print the whole presentation. (None of these statements can be used directly at present, though they are
used implicitly when Mint interacts with you after it has formatted a document.)

8.2 Layout routines

Layout routines are used by Mint to take the slugs and boxes from the galleys and place them into the
pages. I am still a long distance from being able to formalize this activity as well as I can formalize the
activity of creating the slugs and boxes in the galleys. Thus the description of the action of the page layout
procedures is less precise than I desire. Nonetheless, the current page layout routines appear to operate
fairly well, though I can imagine that they will collapse in horrible ways if presented with pathological
layout problems.

In the sections below I first describe the sorting action which precedes page layout, and then describe
informally the action of each of the routines.

Sys:User>Hibbardsrcdreferfine

) an 1 Peter [libbard
3-106 Page layout Mint Reference Manual

8.2.1 Sorting the slugs and boxes

The galleys have a rich, detailed representation of the structure of a document; this structure is
produced by a parse of the manuscript.. The task of page layout is to create another structure, based on the
galley structure, but which selectively ignores some of the structural information (since this is normally
deduced by the reader from the representation of the document), and has imposed upon it another
structure, caused by the constraints of the two-dimensional pages. One such piece of information which is
hidden in the galleys but which is vital for page layout is the ordering of the slugs and boxes along the ¥
axis. Two slugs which need to appear adjacent to each other on a page may be separated in the galley into
different leaves of the structure. An example occurs with the bullets that introduce items in an itemized list
— they are not in the same slug.

To assist the page layout routines a second structure is created which is a list of all the slugs and boxes,
sorted by Y value. This sorted list is used to help find which slugs and boxes are intended for which layout
routine. Several collections of slugs are then created from the sorted list. Each collection is passed to one of
the page layout procedures for processing; several consecutive collections may be passed to the same page
layout procedure, but each collection will result in initializations occurring in the layout procedures that
affect the appearance of the presentation (which is why each chapter reinitializes the headings and footings).

8.2.2 Page areas

Each layout procedure regards the page as being divided into a number of nested areas. The number of
areas, and the way they nest is determined by the lavout routine itself; however the sizes, positions, border
widths, border styles and background colours of these areas are determined by the parameters that are
passed to the layout routines. Since the number of areas in a page can be large (the Defau1lt routine uses
nine areas per page), it is not convenient to specify all the parameters explicitly. Instead Mint assumes that
there are default values for the parameters, and that a list of modifications is passed to the routine. The
manner in which this is done is somewhgt arcane, but changing the area parameters is not done by the
casual user.

8.2.2.1 Area parameter objects

It is possible to change the border width, border style, and background colour of each of the areas for
each of the layout routines (see part 10). The parameters affect all the pages that are made by the
routine.

First, an area parameter object must be created. This is done with the statement NewAreaParams; for
example

Sys:User>Hibbard>sredreferfine

Peter Hibbard
Mint Reference Manual Page layout 8-107

@NewAreaParams(ColouredSiides)

After an areas parameter object has been declared, any number of modifications can be attached to it. They
form a list which will get processed by the layout routine to which the list is passed in the order in which the
modifications have been attached. Modifications are attached by the statement addareainfo:

@AddArealnfo (ColouredSlides, Main, Yellow, 0.05cm, Width2)

which will cause the layout routine to which ColouredS1ides is passed to colour the main area of each
page ye11ow, and to leave a border of 0.05cm, with a width?2 border style.

Since the way that the arcas parameter object is passed differs for each layout routine, sample calls will
be shown later.

8.2.2.2 Standard values of the page area parameters

The following are the areas specified by the current layout routines. The parameters are presented in the
order: parent area, within which this area is nested: the sibling area, which is the next area with the same
parent; the son area, which is one of the areas into which the considered area is divided; and then four
distances: the coordinates of the top left-hand corner relative to the parent, and the X and Y sizes of the
area.

The values PH and PW are the page height and page width; they are derived from the device
characteristics (section 11.1). The values BH and BW specify the page border sizes in the vertical and
horizontal directions: they can be set when a layout is created, as described below. If they are not set, they
take the values of one eighth of the page height and one eighth of the page width. The border widths,
border styles and background colours can also be set when a layout is created; their default values are 0,
noborderand transparent.

Default, Contents, Pasteup

Page

NoArea NoArea Heading 0 0 PU PH
Heading

Page Body LeftMargin 0] PW BH
Body -

Page Footing NoArea 1] BH PW PH-2*BH
Footing

Page NoArea NoArea 0 PH-BH PW BH
LeftMargin

Bady Middle NoArea 0 0 BW PH-2*BH
Middle

Body RightMargin Main BW 0 PW-2*BW PH-2*BH
RightMargin

Body NoArea NoArea PW-BW 0 BW PH-2*BH
Main

Sys: User>Hibbarddsrc>referf.inc

Peter Ilibbard

8-108 Page layout Mint Reference Manual

Middle FootNote NoArea 0 0 PW-2*BW PH-2*BH
FootNote

Middle NoArea NoArea 0 PH-2*BH PW-2*BW 0
TitlePage
Page

NoArea NoArea Heading 0 0 PW PH
Heading

Page Body LeftMargin 0 0 PW BH
Body

Page Footing NoArea 0 BH PW PH-2*BH
Footing

Page NoArea NoArea 0 PH-BH PW BH
LeftMargin

Body Middle NoArea 0 0 BW PH-2*BH
Middle

Body RightMargin NoArea BW 0 PW-2*BW PH-2*BH
RightMargin

Body NoArea NoArea PW-BW 0 BW PH-2*BH

8.2.3 Creating layouts

A separate Mint statement exists for each layout routine. The Mint statement takes several parameters
and parcels them up into a layout object that can then be associated with an entry in the layout vector. The

statements are:

NewTitlePage

The first parameter is the identifier of the layout, the second a boolean specifying

whether a blank page is to be produced to make the number of pages created by
the layout an even number. The third and fourth parameters are the size of the X’
and Y border widths (if omitted, the defaults are used), and the final parameter
is the area parameters object, which may be omitted.

NewPasteup This takes six parameters. The first five parameters are the same as those for
NewTitlePage, and the sixth parameter specifies whether a heading is to

appear on the first page.

NewDefault This takes seven parameters. The first six parameters are the same as those for
NewPasteup, and the seventh parameter specifies whether the gap between the
slugs is to be increased to fill the ma i n area. This feature is not yet implemented.

NewContents

This takes seven parameters. They are the same as those taken by NewDefault.

Sye UserdMibhardderedroferfing

Peter Hibbard
Mint Reference Manual

Page layout 8-109

8.2.4 Actions of the layout procedures

8.2.4.1 The Default layout routine

The routine operates by extracting élugs and boxes in sequence from the principal galley, and forming
them into collections. All the slugs of a collection must be placed into the same page. Normally only one
slug occurs in a collection; however, several slugs will occur if it is necessary to avoid a widow or orphan, or
if an annotation or footnote is associated with a slug, and the galley in which the annotation or slug occurs is
in the associated galleys. In this latter case the slugs of the annotation or footnote are placed at the bottom
of the page, and the boundaries of the Main area and FootNote area are adjusted. The procedure makes
two attempts to fit a box with a negative Need parameter into a page: first it tries to fit the box into the
current page; and if this fails, it tries to fit the box into a new page. If this also fails, the box is treated as
though Need had been set to 0.

When a page is full, the next box from the PageHead ing is placed into the Heading area and the
next box from the PageFooting is placed in the Footing area, except on the first page if
HeadingFirst is false, when only the page footing box is used. Thus if you are using alternating titles
and footings on even and odd numbered pages, you must remember that the footing starts on the odd
numbered page, the heading on the even numbered page. I ought to fix that.

8.2.4.2 The Tit1ePage layout routine

This routine produces a page laid out according to information that is passed to it in the extra
environment parameters of the Tit1ePage environment; see below for details. Each of the boxes that
occurs in the TitlePage is placed at a specified position on the page, and no attempt is made to shift
boxes around to make them all fit on the page without overlapping. If there are cross references into other
galleys, these are ignored (almost a matter of principle — I dislike footnotes in titles). If an abstract occurs, a
heading slug containing the centred word Abstract is created.

The position of each of the boxes i§ specified in the environment parameters of the TitlePage
environment. These values, measured as vertical distances from the top of the page, are placed in the
Tabulations entries of the environment, and picked out by the Tit1ePage procedure. The values can be
changed by passing parameters to the environment. See section 4.1.2.3 for details.

8.2.4.3 The Contents layout routine

This routine is used to lay out the table of contents; it is parasitic on the layout routine in the Default
position of the layout vector, which it calls when it has loaded up the Contents galley with information
extracted from the representation. More details about tables of contents are given in section 9.3.

Sys:User>Hibbard>srcdreferf.ine

] Peter Hibbard
8-110 Page layout Mint Reference Manual

8.2.4.4 The Pasteup layout routine

This routine interacts with the user, to allow page layouts that arc not easily described algorithmical]yf
This layout routine will be of particular value in creating slides; it is not useful for large documents that
have a regular page structure, because the appearance of a page can be easily destroyed if the box spacings
are irregular:

The routine allows boxes and slugs to be selected from any of the galleys, to be rescaled to be wider or
narrower (in fact any of the box environment parameters can be changed), to be sliced into parts, and to be
moved on the page. I won't describe the routine further, since there are some problems it has with slugs that
have cross references, but I'in happy to give a tutorial to anyone who wants (o use it

8.3 Standard presentations and printing

In this section the standard presentations, parts and layout routines are described, together with the
standard printing action with which Mint finishes its execution.

83.1 Page styles

The following are the standard page styles.

@NewPageStyle (, False)
@NewPageStyle (Skip, True)
@NewPageStyle (Default, True)
@NewPageStyle (TitlePage, False)
@NewPageStyle (Contents, False)

A description of these page styles is given in section 14.3.6.1. Since anyone declaring page styles must be an

expert, they will certainly be familiar with that section.

8.3.2 Standard presentations

The following layout routines are specified. Their actions are described in section 8.2.

Default Contents TitlePage Pastup

The following is the standard presentation.

.

@NewPresentation (Standard)

Sys:User>Hibbard>sredreferf.ine

Peter Hibbard
Mint Refcrence Manual Page layout 8-111
@AssocPart (Standard, TitlePage)
@AssocPart (Standard, Contents)
@AssocPart (Standard, MainBody)
@NewTitlePage (TLayout, True, , ,)
@NewContents {CLayout, True, , , , False, False)
@NewDefault (DLayout, True, , , . False, False)
@NewPasteup (PLayout, True, , ., , False)

@Assoclayout (Standard, TitlePage, TitlePage, TlLayout)
@AssoclLayout (Standard, Contents, Contents, ClLayout)
@AssoclLayout (Standard, MainBody, Default, DLayout)

The table of contents is created only if there is an entry in the Contents entryiof the page layout of the

presentation, and if there is a galley named Contents. Information is sent to the Contents galley

“automatically, and it finally comes to be laid out using the layout routine in the Default entry of the
vector. See section 9.3 for more details about tables of contents.

8.3.3 Printing the standard presentation

If there has not been any makerep statement in the manuscript, Mint will create the following
representation after it has created the galleys.

@MakeRep (Standard, Main, FootNotes)

After creating the presentation, Mint interacts with the user, calling PrintPage and
PrintPresentation, as requested.

8.4 Page commands

Commands are passed to the page layout procedures via the OddsandSods galley, which basically
allows several commands to be delayed. These commands allow for running headings and footings to be
inserted on pages, for pages to be offset to allow binding margins, and for page skips to be made.

8.4.1 Page headings and footings

The PageHeading and PagéFooting environments allow -any of the standard terminal
environments to be nested inside them. The cross references that these environments leave in the Main
galley are picked up by the Default layout procedure, and the boxes within them are then placed in the
heading and footing area of the page as it is completed. The boxes are selected sequentially, and the

Sys:User>Hibbard>src>reférf.inc

' oo I Peter Hibbard
8-112 Page layout Mint Reference Manual

PageHeading and PageFooting box is restarted after it is complete. In this way scveral headings and
footings can alternate at any cycle length.

Note that if a slug contains a definition of a label (either explicitly, or implicitly through using NConv
with an empty label parameter), Mint will create new, unique labels to ensure that cross references are
correct. Thus, to obtain a page number at the bottom of each page, the statement

@pagefooting(@pageno())

suffices.

8.4.2 Page offsets

The PageOffset environment feeds slugs to the layout procedures in a manner similar to that for
PageHeading and PageFooting. Each slug is scanned for Vsp and Hsp statements. If either is found,
the page is offset by that amount. Thus it is possible to shift pages either horizontally or vertically, and to set
up cycles. For example, pages that are to be reproduced back-to-back, and stapled in the top left-hand
corner, can by adjusted by

@begin(Pagelffset)
@Hsp(+0.25in)@Vsp(+0.251n)
@Hsp(-0.25in)@Vsp(+0.251n)

@end(PageOffset)

8.4.3 Page skips

The PageCommand environment is a general way of passing information to the layout procedures.
Currently they only recognize one item in the slugs within the environment, the Zsp statement. Zsp takes
one parameter, which is cither an unsigned number, or a signed number. If an unsigned number, the layout
procedure will skip to that page number ih the current part, if the page has not already been finished; if a
signed number, the layout procedure will skip that number of pages. To skip one page, the statement

@PageCommand (@Zsp (+1))

is used. The Newpage macro provides a convenient way of using this statement. Soon it will be possible to
pass other information, such as colour and border style, to the layout routines, to allow the appearance of
individual pages to be controlled.

Sys: User>Hibhard>src>referf.ine

Peter 11ibbard
Mint Reference Manual Page layout 8-113

8.4.4 Example of headings and footings

-~

A comprehensive example of the usc of PageHead ing and PageFooting environments is provided
by the macro that is used for the heading and footing of this manual. It is

@form(chpgno,,@"“@nconv(arabic,chapterno,)-—@pageno()")

eform (chap,@"(chapid,authid,docid,1ab),@“"@Chapter(@va]ue(chapid))
@iftrue(@isdefined(]ab),@1abe](@va1ue(1ab)))
@begin(pageheading)
@begin(a]ign,border=0.1in,bordersty]e=width1,tabdivide 2)
@r(@chpgno()) @>@b(@value{chapid))@< @ovp(@+{Bw(@value(authid)))e\)e-(
@w(@value(docid)))@\
@end(align)
@begin(a]1gn,border=0.1in,bordersty1e=width1,tabdivide 2)
@0vp(@+(@w(@value(authid))))@-(@w(@va]ue(docid)))
@>@b(@value(chapid))@< @r(@chpgno(})8\
@end(align)
@end(pageheading)
@begin(pagefooting)
@begin(align, tabdivide 1)
@s(@value(sourcefile})
@end{align)
@begin(align,tabdivide 1)

@s{@value(sourcefile))@\
@end(align)
@end(pagefooting)

")

Sys:User>Hibbard>sredreferf.ine

Part Nine
Documentation aids

Technical documents generally contain citations to other works, and are supported by tables
of contents and indexes. Mint supplies facilities for generating bibliographies, for creating
_ tables of contents and for managing indexes; they are described in this section.

9.1 Bibliographies

Mint supplies a general bibliography feature, similar to that of Scribe, but obtained using delayed and
reinvoked macros. Since these are general facilities, Mint pas much more ability than Scribe to handle
unusual reference formats, to add additional reference types, and to place references in line.

The principal facilities of the bibliography feature are provided through other mechanisms. The use of
delayed macros has already been mentioned; in addition the citations are introduced into the text using the
general cross reference facility (so that if a presentation omits some references, the reference numbers of the
references that are present will be changed without having to re-Mint the document).

9.1.1 Defining bibliographies

Bibliographic styles can be declared in Mint using the statement NewB ib. This takes severdl parameters
that control the way in which citations will appear, and the way in which the entries will be sorted. For
example:

@NewBib (SolChem,
@""@begin(r)@begin(+)(", @Char (’,). @"")@end(+)@end(r)",
CiteOrder, Numeric, **)

specifies the appearance of the bibliography for the Journal of Solution Chemistry. The style is named
So1Chem, and the appearance of citations is determined by the second, third and fourth-parameters. The
second parameter specifies the string that will appear before the citation, and the fourth specifics the string

Sys: User>Hibbard>src>referg.inc

9-116 Documentation aids Mint Refooer Hibbard

that will appear after the citation. The third parameter is used to scparate citations if scveral appear in a list.
Thus the citations appear as raised values in parentheses, like this'™?. The appearance of the citations
values is determined by the sixth parameter — numeric épeciﬁcs roman numbers, alphabet ic specifies
the author name followed by the last two digits of the year, and shortalphabetic specifics the first
three letters of the author name followed by two digits of the year. <<I really should have a conversion there
instead.>> The fifth parameter specifies the way in which the entries are ordered: codeword causes them to
be sorted by code word, citeorder by citation order, and keyword by keyword.

9.1.2 Citation collections

When a citation is made, the keyword of the delayed macro is noted in some collection; when the
bibliography comes to be placed into the document, it is necessary to specify which collections will
contribute to the bibliographic listing. Thus it is possible to send citations to several collections, and place
the collections where appropriate — at the end of each chapter, with a general collection at the end of the
document, for example. A new citation collection is created by the NewBibCollect ion statement:

@NewBibCollection (EndofBook)
creates a collection.

There is a collection created by Mint: its identifier is Standard. Citations will be placed in this
collection if it is not specified that they should go into other collections.

9.1.3 Citations

To place citations in the Standard collection, use the Cite statement:

@cite(knuth68a, knuth68b)

To place citations in some specific collection, use

@CiteinCollection(EndofBook, knuth68a, knuth68b)
Up to 16 citations can be included in these statements.

There is no mechanism yet for including citations in a collection without a reference to them appearing
at the point of citation; I'll fix that shortly.

Sys: User>iTibbarddsredreferg.inc

Poter ylibbard tanual Documentation aids 9-117

9.1.4 Causing the bibliography to appear

The citations that have been placed in a number of collections can be introduced into the document
using the BibInclude statement. This takes up to 16 collection identifiers, and constructs the properly
sorted bibliography from them.

@BibInclude (EndofChapter, EndofBook)

If you do not pass a parameter to the bibinclude statement (that is, you write @bibinclude or
@bibinclude() then Mint will assume you want the standard collection.)

The style of the citations, and the appearance of the bibliography, is determined by the bibliographic
style. The value of the style is set using the BibSty1e parameter in the make statement for the document;
for example

@Make (Report, @""BibStyle=So1Chem")

The style can be set before the bibliography is defined. Initially default values are assumed for the
parameters of the bibliography, and then they are reset when the newb ib statement is made.

9.1.5 The standard hibliographies

The following bibliographies are defined:

@NewBib (StdNumeric,
@""@begin(r}[", @Char (*,)@eChar (Sp). @""J@end(r)",
KeyWord, Numeric, %)

@NewBib (StdAlphabetic,
@""@begin(r)[", @Char (’.)@Char (Sp). @""J@end(r)",
KeyWord, Alphabetic, KEHEEE)

@NewBib (CACM,
@""@begin(r)[", @Char (',)ecChar (Sp), @""]@end(r)",
KeyWord, Numeric, **)

@NewBib (IEEE,
@""@begin(r)@begin(+)", @Char ('.). @""Qend(+)@end(r)",
CiteOrder, Numeric, **)

Two collections of macro definitions have been written, for the StdAlphabetic style and for the
StdNume ric style. If you want to create a bibliography, you should include the appropriate library, which
is StdAlphabeticRefs or StdNume ricRefs:

@Library (StdNumericRefs)

or somewhat better

Sys:User>Hibbard>sredreferg.inc

9-118 Documentation aids Mint Refo.cier ibbard

@Library (@Value(BibStyle)Refs)

9.2 Indexes

The indexing facility in Mint is similar in design to the bibliography feature. In particular, it allows
arbitrary parameters to be associated with an index entry, and it allows an arbitrary macro to be used for
laying out the entry. In this way it is possible to include notes in the index entry, to provide cross references
to other index entries, and to display the location of the entry in any of the conversicns available in Mint, as
well as to build multi-level indexes. Because the appearance of the index does not need to be determined
until it is laid out, the facility provides a uscful degree of flexibility for creating the indexes for complex
documents. I expect to provide a number of standard macros for laying out index entries in the future.

Now it turns out that the platitudes penned in the paragraph above would be inoffensive if it weren’t for
the fact that writing useful index macros is very difficult. The difficulties arise because you necd to maintain
global state between macro calls, and to use a general algorithmic control flow facility, neither of which can
be done easily in a macro language. Since therc probably will only be a small number of different styles of
index needed in Mint documents, it seems reasonable to build a few of them directly into Mint, and
provide an extension mechanism to cover unusual cases. The language I have chosen to allow this is Pascal
— there is a module in Mint that can be hacked if the facilities I have provided don’t suit you. However, I
think that the indexing routine I have supplied will satisfy most requirements, and the masochist can still
use the macro-driven facility.

I describe below the general facilities, and then the indexing routine I have provided in more detail.

9.2.1 Index collections

When an index entry is made, it is associated with a collection; when the index entries come to be
placed in the document, it is necessary to 'specify which collections of entries are to be included. Thus it is
possible to send entries to several collections, and include the entries selectively throughout the text — at
the end of a section, at the end of a chapter or at the end of the whole document, for example. Collections
can also be used to classify the index entries if several indexes are nee(}ied.

A new index collection is created by the NewIndexCo1l1lect ion statement:
@NewIndexCollection (Acyclic Organic Compounds)

A default index collection is created by Mint: its identifier is Standard. Index entries are placed in this
collection if it is not specified that they should go into other collections.

Sys: User>dHibbard>src>referg.inc

Peter Hibbard

Mint Reference Manual Documentation aids 9-119

9.2.2 Index entries

There are two statements for placing index entries into collections — Index, which places the entry
into the Standard collection; and IndexinCollection, which places the entry in some specified
collection. In both cascs two keys can be provided: a primary key and a secondary key. together with any
number of additional parameters: The keys are used for sorting the index entries; the additional parameters
are stored, and are made available when the index finally comes to be made.

| The simplest form of index entry just has a primary key. Its form is
@index(apples)
which will place the entry in the standard collection; and
@indexincoll ect;ion(fruit , apples)
which will place the entry in the F ruit collection. A secondary key can also be included. For example
@index(apples, granny smith)

As many more parameters as desired can follow the primary and secondary key parameters {or the
collection, primary key and secondary key parameters in the case of IndexinCollection); these are not
interpreted at this stage, but are saved along with the index entry, in a manner similar to a delayed macro
call. For example, if you want to have a “see also” and a “notes” parameter with an index entry, you can
write

@Index{Key = Apples, SecKey = Granny Smith,
SeeAlso = Uncle Ben, Notes = Green and firm)

(My advice is to include the formal parameter identifiers if you are using this extended form of Index
statement. They are collection for the collection identifier, key for the primary key, and seckey for
the secondary key.)

9.2.3 Causing the index to appear

The index entries that have been placed in a number of collections can be introduced anywhere in the
document using the IndexInclude statement. This takes up to 16 collection identifiers; for example

@IndexInclude (Fruit, Vegetables)

If indexinclude is not passed any parameters (that is, you write @indéxinclude or
@indexinclude() then Mint will create the index for the standard collection).

Sys:User>Hibbard>sreoreferg.ine

9-120 Documentation aids Mint RefoSer 1 ibbard

The entrics in the collections are first sorted using the primary key. If several entrics have the same
primary key, they are then sorted using the secondary key. Finally, if several entrics have the same primary
and secondary keys, they are sorted using the order of appearance of the entries in the document.

After sorting has been performed Mint will then take one of two actions depending on the value of the
style parameter indexsty1e which is set in the parameters to the document’s mak e statement.

o If the style parameter indexstyle has been set to macro, then a call of the macro OutlIndex
is created for each entry, and is injected into the input stream. OutIndex is passed all the
parameters in the Index statement, together with a label parameter (whose formal identifier is
Lab). The label parameter gives the identifier of the label that Mint automatically attached to the
document at the point where the index statement was made. It is expected that a definition of

" OutIndex will have been provided by the Mint user; the macro has complete freedom to handle
the call as it wishes.

For example, one of the macro calls that will be generated by the IndexInclude statcment
above will be

@outindex(key=Apples, seckey=Granny Smith, 1ab=IX00008,
seealso=Uncle Ben, notes=Green and firm)

(The label identifier is created by Mint; users should avoid creating labels comprising the letters
IX followed by five digits.)

o If the style parameter indexstyle has been set to stylel, Mint will instead call the Pascal
indexing routine that I have provided. This routine accumulates a number of items of
information that are passed to it, transforms the information, and finally emits it in a style
appropriate for making two-level indexes. I describe the actions of the routine in more detail in
the next section.

(1 expect eventually to have style2, style3, etc., each providing different forms of index.)
The default index style is sty lel.
9.2.3.1 The Sty1e1 indexing routine

This routine expects the index entries to have a key, seckey and style parameter; other parameters
are ignored. The output comprises an entry for each primary key, in alphabetical order, with the entries for
each secondary key associated with a particular primary key set out in alphabetic order, and with the
document locations following the secondary key in reference order. Fine details of the layout of the index
are left to the user, because a number of macro calls are output, which Mint expects will be supplied.

The following example shows what Mint generates. Assume that the fnanuscript is:

Mint is fairly lax about the way that it uses the word @i(default).
It is used as an environment@index(Default, environment)

and also as a layout@index(Default, layout). When it is used as
an environment@index(Default, environment, style=boldpageno) it

Sys: User>Hibharddsredreferg.ine

Peter Hlibbard »tanual Documentation aids 9-121

creates run-of-the-mill paragraphs, but when it is used as

a layout@index(Default, layout) it provides fairly flexible page
layouts. Other environments are the)

@t(describe) environment@index(Describe, environment) and the
@t(exampie) environment@index(Example, environment).

The output created by indexinclude is

@ininit()

@beginentry(D)

Default@\environment @pageno(IX00001), @boldpageno{IX00003); layout @pageno(IX00004)
Describe@\environment @pageno(IX00002), @pageno{1x00005)

@endentry()

@beginentry(E) .
Example@\environment @pageno(1X00006)
@endentry()

The labels will have been attached to the appropriate parts of the document.

The style parameter determines how the teference to the entry will appear in the index. Mint
generates a cali to a macro having the same name as the actual parameter, and expects that the macro will
convert the label in an appropriate way. For example, if the style parameter is ref the reference will
appear as a section number. You can provide your own conversion macros if you wish. You can obtain bold
page number entries by defining

@form (BoldPageNo, X, @" "@b{@pageno(@value(X))}")
If there is no sty1e parameter, Mint uses pageno to do the conversion.
The output is intended to be formatted by the verse environment. For example, if you declare

@form(beginentry,1,@""@begin(verse, facecode t, width 5in, tabclear,
tabset 1.5in, extraleftmargin 2.5in)")

@form(endentry, ,@""@end(verse)")
your output will come out like

Default environment 121, 121; layout 121

Describe environment 121, 121
Example environment 121

Eventually I will supply a library of macros to help create indexes.

Sys:User>Hibbard>sredreferg.inc

9-122 Documentation aids Mint Referorer Hibbard

9.3 Tables of contents

Tables of contents are generated by Mint in two stages. First, if some tables of contents have been
declared, Mint scans the presentation when it is complete and collects up information from it; then Mint
outputs the information it has gathered in the form of macro calls. The uscr is expected to provide
definitions of these macros that then cause the table of contents to be laid out appropriately. (Of course
there is a library that hides most of these details away.) The following document types create tables of
contents: report, thesis and manual.

This section first of all describes how to dcclare tables of contents, and then how the macro calls are
generated.

9.3.1 Declaring tables of contents

) A table of contents is declared by the statement NewContentsTable, which takes two parameters.

The first is an identifier for the table, and the second specifies whether the search for entries for the table
will look for captions or not. More details are given later about how this search is done. For example, to
declare a table of contents named sections, do

@NewContentsTable (Sections, False)
If the second parameter is false, it may be omitted.

Once the table has been declared, a collection of environments is associated with it, for example

@AssocContents (Sections, Chapter)
@AssocContents (Sections, Section)
@AssocContents (Sections, SubSection)
@AssocContents (Sections, Paragraph)

During the scan of the presentation, Mint acts as follows. If the second parameter of the
NewContentsTableis false, the information for the table of contents is extracted directly the from text
of the specified environments; if it is t rue then the text is extracted from the capt ion environment that is
assumed to be nested within the specified environment.

Mint does not perform a simple textual extraction; instead it scans the text and ensures that only text
which physically appears in the environment is extracted. Thus footnotes in the text are ignored.

e T T oL ATYIT o N N form fo o
Sys:Userriiibbardrsicieieg.inc

Petor libbard @ @ mal Documentation aids 9-123

9.3.2 Generating the table of contents

Once the information has been gathered up, Mint then generates a sequence of macro calls. The first
call is on a parameterless macro TCInit. Then, for each table of contents in the order in which they have
been declared, Mint will gencrate the following calls.

1. A call on a parameteriess macro. The identifier of the macro is of the form BeginXXX, where
XXX is the name of the table of contents;

2. A sequence of calls on macros with two parameters. The identifiers of the macros are of the form
TCYYY, where YYY is the name of the environment that is contributing text for the next entry in
the table of contents. The parameters are as follows: first, a label that Mint automatically attaches
to the box in the presentation; and second, the contents of the box;

3. A call on a parameterless macro. The identifier of the macro is of the form EndXXX, where XXX is
the name of the table of contents.

For example, the sequence of macro calls generated for the first part of this manual were

@tcinit()

@beginsections()

@tcchapter(TC00001,@""Notes about this implementation")
@tcsubsection(TC00003,8""Syntactic changes”)
@tcsubsection(TC00004,68""Galley properties")
@tcsubsection(TC00005.@""Units of measurement™)
@tcsubsection(TC00006,@""Fonts")
@tcsubsection{TC00007,8""Tables of contents")
@tcsubsection(TC00008,@""State files")
@tcsubsection(TC00009,8""Separate formatting™)
@tcsection(TC00010,@""Quirks and Oddities")
Gendsections()

The library ContentsMacros contains the collection of macro definitions that were used for this
document. Its contents are

@form(tcinit,,
@""@begin(pageheading)
@begin(align, tabdivide 1)@r{@nconv(romanic,pageno,)} @end(align)
@begin(align, tabdivide 1)@r{@nconv(romanic,pageno,)}@\@end(align)
@end(pageheading)")

@form(beginsections,,
@""@majorheading(Table of Contents)
@begin(align, facecode r, width 5.5in, tabdivide 1)")
@form(beginfigures,,)
@form(begintables,,)

@form(endsections,,

@""@end(align)")
@form{endfigures,,)

Sys:User>Hibbard>srcoreferg.inc

9-124 Documentation aids Mint Reforr 1ibbard

@form(endtables,,)

@form{tcchapter,

@""lab,string",

@""@vsp(0.25in)

@b(@ref(@value(lab)) @value(string) @pageno{@value(lab)))@\")

@form(tcsection,

@""lab,string”,

@""@hsp(0.25in)@ref(Cvalue(lab)) @value(string)
@pageno(@value(lab))@\") '
@form(tcsubsection,

@""lab,string”,

@""@hsp(0.50in)@ref(@value(lab}) @value(string)
@pageno(@value(lab))@\")
@form(tcparagraph,

@""lab,string”,

@""@hsp(0.75in)@ref(@value(lab)) @value(string)
@pageno(@value(lab))@e\")

@form(tccaption,
@""lab,string",)

Note that no entries are created for figures or tables. I could have removed the definitions of these tables
from the state files, but felt that it was easier done here.

Sys: User>Hibbard>sredteferg.inc

Part Ten
Decorations

This part of the Reference Manual describes how to draw borders round boxes and page
areas, and how to produce coloured documents (if you have a device that is able to paint in
different colours).

10.1 Borders and Border Styles

Mint provides a facility for drawing a border round any box and any page area. This facility may be

P

used to set off pieces of text, to frame diagrains, and to contain tables.

There are two abstractions provided — the border and the border style. Every box has a border between
the outside of the box and the inside: the margins of the slugs coincide with the inside of the box; see figure
3 on page 42. The size of the border is specified in the environment parameters, and normally is zero. To
set it non-zero the environment parameter border is used:

@begin(figure, border = 0.5cms)

Similarly every page area has a border between the outside of the area and the inside; slugs and boxes are
placed within the inside border. The size of the border is specified by the addareainfo statement
described in section 8.2.2, and normally is zero.

The border style of a box or a page area specifies the appearance of the border; it is possible to construct
different border styles. The border is drawn on the inside of the box, and if the width of the border is not
enough to contain the border style, then part of the box contents may be overwritten. The border style for a
box is specified as an environment parameter. Normally it is cqual to NoBorder, but it may be set to other
values:

@define(boxed = description, border = 0.05inches, borderstyle = widthl)

The border style for a page area is specified by the addareainfo statement.

Sys:User>Hibbard>sredreferm.inc

: Peter Hibbard
10-126 Decorations Mint Reference Manual

Border styles are built up using lower level abstractions. Thesc are described below.

10.1.1 Border Styles

To create a new border style ybu first of all create some patterns by collecting together several lines; then
you collect the patterns together to create the border style. Below I describe how you go about this task.

10.1.1.1 Lines

Line styles are built into Mint (at present). There are four styles provided; you refer to these patterns by
their number:

Line style 0 This is an empty line.

Line style 1 This is a solid black line.

Line style 2 This is a dashed line in which long black and short blank spaces alternate.

Line style 3 This is a dashed line, in which a long and a short black line are alternated, and

separated by a short blank space.

10.1.1.2 Pattems

From the primitive line styles you build up a pattern, using the statement NewPattern. This takes up
to five triplets of parameters, which specify the width of the line style, the line style number, and the colour
of the line to be used to create the pattern. (Colours are described in the next section.) Thus a pattern
comprises up to five different adjacent line patterns. The NewPatte rn statement associates an identifier
with the pattern.

@newpattern(baroque,s,1,b1ack,Z.O,transparent,1.1,b1ack,2,3,black,1,1,b'|ack)

This specifies the pattern Baroque, comprising of 8/ 100% inch of solid black, 2/ 100% inch that are blank,
and a 2/100" inch of dashed line encased by two 1/100% inch black lines. The pattern specifies the
appearance of a pattern, from the outside towards the inside of the box.

10.1.1.3 Border Styles

A border style is built up from four patterns, one for each edge of the box, starting at the top and
working round in a clockwise direction; and four mitring modes (which take parameters Y and N). These
modes specify how the corners will be mitred, starting at the top left, and working round in a clockwise
direction. The border style is specified and associated with an identifier with the statement

Sys: User>Hihbard>sredreferm.ine

Peter ibbard ’ .
Mint Reference Manual Decorations 10-127

NewBorderStyle. The following example shows how a border style has been created, and the effect of
drawing it around the box.

@newpattern(baroque,

8,1.black,2,0,transparent,1,1,black,2,3,black,1,1,black)
@newpattern(1ine3,3,1,black)
@newborderstyle(myborder,n,n,y,n,1ine3,baroque,baroque,iinel)
@begin(example, width -0.41in, border 0.2in, borderstyle myborder)
@Gnewpattern(baroque,

8,1,black,2,0,transparent,1,1,btack,2,3,black,1,1,black)
@@newpattern(1ine3,3,1,black)
@@newbordersty]e(myborder,n,n,y,n,1ine3,barque,baroque,]inel)
@end(example)

Etc -~ it’s recursive.

10.2 Colours

Although the majority of devices allow only two colours — black and white — Mint provides a general
mechanism for producing colourcd output; whether these facilities will be useable on any particular device
will depend upon the device’s characteristics, and upon whether the driver for the device is able to accept
Press Files having colour information encoded within them. Note that the Grinnell driver takes only a
subset of the facilities that Mint provides, and that anyone wanting to produce coloured output (e.g. for
slides) should consult me before doing so.

Mint’s facilities provide a means of overlaying objects of one colour by objects of another colour.
Objects are cither completely transparent and colourless, so that objects beneath them show through
without any change in the colour; or they are completely opaque and coloured, and obscure totally the
objects beneath them. To determine the appearance of a document requires, therefore, a knowledge of the
order in which objects are laid down.

In this section I first describe how to specify colours, and how to specify how to colour objects, and then

describe the order of overlaying.

10.2.1 Defining colours .

Mint uses a widely accepted colour encoding known as the Munsell colour encoding. In this encoding a
colour is described by three values: The colour’s hue is 0 for red, 40 for yellow, 80 for green, 120 for cyan,
160 for blue, and 200 for magenta; intermediate values represent mixtures of hues. The colour’s saturation
determines the contribution of the hue to the colour, with 0 contributing no hue, and 255 being fully

Sys:User>Hibbard>src>referm.inc

ol Peter ibbard
10-128 Decorations Mint Reference Manual

saturated. The colour’s brightness is specified by a number between 0 and 255. In terms of these
parameters (in the order hue, saturation and brightness) white has values (9,0,255); black has
values (0,0,0); full saturated red has the values (0 ,255,255); full saturated green has the values
(80,255,255); and full saturated blue has the values (160,255,255).

Within Mint an identifier is associated with every colour. To associate a colour with an identifier use the
statement '

@NewColour (BrightGreen, 80, 255, 255)

This specifics that the identificr BrightGreen will have the corresponding hue, saturation and
brightness (in that order). If the same identifier is used more than once, the most recent definition is
used.

Three colours are predefined within Mint. They correspond to the following definitions.

@NewColour (Black, 0, 0, 0)
@NewColour (White, 0, 0, 255)
@NewColour ‘(GreyHT, 0, 0, 155)

GreyHT is a grey that is recognised by the Dover driver; an object that is coloured greyht will be
shaded using the grey dover font. The effect is not too satisfactory, because the object has to be filled in by
a mosaic of characters which may not totaily fill the area being coloured, and because the xerographic
copying technology is very bad at colouring areas.

In addition to the colours above, a special colour, transparent, is defined. Objects that are specified
to be transparent will allow the underlying objects to show through (though images are not allowed to
be transparent; see below).

10.2.2 Associating colours with objects

Colours can be associated with page arcas, with box backgrounds, with box and area borderstyles, and
with lines and characters drawn within boxes.

10.2.2.1 Associating colours with page areas

A colour can be associated with each page area. Transparent is associated by default; the colour is
changed if a layout routine is passed an arca paramcters object that specifies a colour. Section 8.2.2 gives
more details.

Svs: User>Hibbard>sredreferm.ine

Peter 1libbard
Mint Reference Manual

Decorations 10-129

10.2.2.2 Associating colours with boxes

The box environment parameter backgroundcolour sets the colour of the background. For example
@modify(Figure, BackgroundColour = Yellow)

will set the background colour of all figures to be whatever the colour ye11low has been defined to be. The
background colour is inherited in the same way as other box environment parameters; so that after the
statement above, the statements

@begin(figure)
@dp(@include(mouse.dp))
@caption(A cowardly mouse)

@end(figure)

will cause both the DP draWing and the caption to have yellow backgrounds.

10.2.2.3 Associating colours with borders

Each of the lines of a pattern that is created using the statement newpattern can be drawn a different
colour, allowing multi-coloured borders to be created. For example

@NewPattern (Patriotic, 8, 1, Red, 8, 1, White, 8, 1, Blue)

will draw a border pattern- that has a line that is 8/ 100" inch red, 8/ 100 inch white, and 8/ 100™ inch
blue. The default colour is b1ack, and the colour specified for a line style of 0 is ignored, allowing the
background colour to show through.

10.2.2.4 Associating colours with characters and lines

Objects that are drawn within boxes can be coloured in two ways: First, the box environment parameter
imagecolour can be used to determine the colour of all the objects drawn in the box (for example,
characters from any font, lines drawn by DP, and by Plot); second, colours can be used in the same way as
slug environments to cause local colour changes. Images cannot be specified to be transparent.

For example
@begin(caption, imagecolour=green)

will cause all the colours in the caption to be coloured green, and
@make (slides, imagecolour blue)

will cause all the object drawn in boxes (and in particular, the lines drawn by DP and Plot, and the

Sys: User>Hibbard>sre>referm.inc

’ . Peter Hibbard
10-130 Decorations Mint Refercnce Manual

characters in all the other boxes), to be coloured blue. The imagecolour is inherited in the usual way; if
it is not otherwise specified in the style parameters itissetto black.

If you just want to colour a few characters a different colour from the current imagecolour, you can
use any of the colours that you have defined in the same way as a slug environment. For example

@begin(description, imagecolour brown)
@red(Red)@\is used for the polysilicon layer

@blue(Blue)@\is used for the metal conductors
@end(description)

will cause the word Red to be coloured red, the word B1ue to be coloured b1ue, and the rest of the letters
to be coloured brown. (If you define a colour to use the same identifier as a slug environment, the slug
environment will take precedence.)

'10.2.3 The order of overlaying

Ali objects are completely opaque, unless they have been specified to be transparent, in which case
they allow the colour of the objects beneath them to show through without modification.

The order in which objects are laid down is as follows: First, each page area is laid down with its border,
in the order shown in section 8.2.2.2; next, each box is laid down with its border, in the inverse order of
nesting (thus a Tigure box is laid down before a plot box and a caption box); finally, the images
within the box are laid down. I'm not willing to specify the order that images are laid down in the case
where one image overlays another.

Sys: User>! libbard>sredreferm.inc

Part Eleven
Devices

Mint allows output to be generated for several different devices, simultaneously if needed,
and allows a presentation created for one device to be cross proofed onto another device.
Devices are collected into classes, such that all the devices in a class have the same driver and
the same font format; they differ from each other in secondary characteristics, such as the
size of paper or screen they use. This section first of all shows how devices can be declared,
and then how output intended for one device can be transformed so that it is suitable for
another device.

11.1 Device definitions

Mint has built into it an understanding of how to generate output that can drive certain classes of
device, and an understanding of how to interpret font information in different representations. Adding
more drivers and representations requires programming effort, but Mint does allow some flexibility by
allowing you to specify the properties of device classes. Particular devices are declared to belong to some
class, and have certain other explicit characteristics. In this section I first show how device classes are
declared, and then how devices are declared.

11.1.0.1 Device drivers
Mint has the following drivers:

PressFile This driver is able to convert the internal representation of a presentation into a
Press File. Not all the information in the representation can be converted; in
particular the colour greyht is handled as a mosaic of half tone grey patterns.
Colour information is placed in the press file, though the Dover drivers ignore it.

PerqScreen This driver is able to convert Mint’s internal representation into a form suitable
for display on the Perq screen. The final stage of this driver is an operating
system specific interface, which is not strictly a part of Mint, so the same driver is
used for both Pos and Sapphire. Colour information is ignored.

Sys:User>Hibbard>srcoreferh.inc

: Peter Hibbard
11-132 Devices Mint Reference Manual

11.1.0.2 Font formats

Mint understands the following font formats:

XeroxFormat This is the format that is present in the fonts.width file. Mint uses the
bounding box information and the width information from the file, and
supplements it with character information if it is available. This additional
information is a superset of the information in the .TFM files, from which
information is extracted to allow Mint to operate with Metafont fonts.

KstFormat This is the format in which font information is stored on the Perq. The
information describes the bounding box and the widths; unfortunately the
format is deficient in several ways, and the baseline information is generally
incorrect. This causes characters to be displaced vertically. The extra character
information could correct this, but I've not yet felt it worth the effort to
accumulate it.

Since Mint can have all the character information it needs presented to it via statements, [should define
a MintFormat, which uses no other external source of information. This could be very useful for getting
Mint to drive non-standard devices.

11.1.1 Deyvice classes

A device class is characterised by having some device driver, font format, resolution in the X and ¥
directions, an inner scale, and a specification of the raster operations the device can perform. The inner scale
is used to prevent overflow of two 16-bit values that measure the horizontal size of a slug, and its vertical
offset from the start of its box. For example, the resolution of the PressFile device class that is declared
as a part of the normal configuration of Mint is 2540 units to the inch. To allow boxes that contain slugs to
grow to be as large as five pages, the inner scale is set to 5. Clearly a better solution would be to use 32-bit
quantities — a trivial change, though tedious to effect.

Examples of device class declarations are

@NewDClass (PergScreen, PergDriver, KstFormat, 90, 96, 1, #377)
@NewDClass (PressFile, PressDriver, XeroxFormat, 2540, 2540, 5, #20)

The resolutions in the X and Y directions are specified in terms of some unit of measure; the only
requirement that Mint places on this is that all other units are expressed in terms of it. In the case of the
standard configuration, inches have been chosen, so the values above are the number of rasters per inch.

Sys:User>Hibbard>sre>referh.ine

Peter Hibbard ’ .
Mint Reference Manual Devices 11-133

11.1.2 Devices

Devices may be declared quite freely in Mint. There are some restrictions on altering device properties
once galleys have been created that are associated with these devices, however. The newdev ice statement
declares a new device:

@NewDevice (Perq, PerqScreen, 8.4 in, 9.5 in)
@NewDevice (Dover, PressFile, 8.5 in, 11 in)

The first parameter is the identifier for the device, the second is the device class to which it belongs, and the
third and fourth parameters are the values of pagewidth and pag eheight. Normally the page area sizes -
are expressed in terms of these quantities, though there is nothing intrinsic in these values.

If the newdevice statement identifier refers to a previously existing device, then Mint will alter its
properties. If. however, galleys have been created that use the device, the attempt to change the properties
will fail if any slugs have been created for the galley. For this reason, if not for others, all newdevice
statements should be at the beginning of the manuscript, or in the definitions file.

(As it happens, Mint will create new devices automatically under Sapphire if the window changes size.)

11.2 Cross proofing

Mint provides a general mechanism for viewing the output intended for one device (the target device)
on another device {the viewing device). It does this by scaling the page size for the target device so that it fits
on the viewing device’s page. It then computes where to place each character and line intended for the
target device on the scaled image of the page on the viewing device.

For lines generated as box outlines, or by the P1ot and DP environments, the scaling can be done with
reasonable accuracy; however, Mint is not able to scale fonts, and for this reason it must select a font on the
viewing device to replace that on the target device. In general, the result will not be as pleasing or readable
as it would be if the document were printed on the target device, but since each character is in the
appropriate relative position, cross proofing can be of great value in reducing the turn-round time for
documents, especially where the layout must be carefully controlled.

Mint selects a font to replace the target device font based on choices made by me; however, these
choices can be changed by the user. Currently I use Gacha9 on the Perq to view all fonts for the Dover,
and Gacha12 on the Dover to view all the fonts for the Perq.

The following statements may be used to alter this meagre state of affairs. The statement
CrossProof ingDefault will alter the default font:

Sys: User>Iibbard>sre>referh.inc

’ . Peter Hibbard
11-134 Devices Mint Refercnce Manual

@CrossProofingDefault (PerqScreen, Dover, TimesRoman10)

specifies that when some device that belongs to the PerqScreen class has been specified as target device,
and the document is viewed on the Dover, then Time sRoman 10 will be used as the default font. A specific
replacement can also be made: '

@CrossProofingFont (PerchreEn, Gacha9, Dover, Gacha8)

specifies that if some character for a PergScreen target device, is in Gacha9, then it is to appear as
Gacha8 on the Dover.)

One can build up a reasonable set of cross proofing font pairs — one such collection is in the library
CrossProofTR, which improves the appearance of documents prepared for the Dover using the default
Times Roman fonts when they are viewed on the Perq.

Note that the viewing device is specified as an explicit device, and not as a member of some device class.
Because of this a situation can arise in which cross proofing fonts have not been specified for the viewing
device (in particular this will occur if the screen size is changed under Sapphire, since Mint automatically
creates a new device for each change). In this case Mint will use the cross proofing fonts for some arbitrary
device that belongs to the same class as that of the viewing device.

There are some subtletics in cross proofing documents when character substitutions have been made.
Consider the following example. A document is prepared for the Dover using the Times Roman fonts, and
ligatures have been specified. In particular, the sequence f followed by 1 is to be replaced by fi, which in
the Times Roman fonts has the ASCII value #24. In the internal representation of the document are
occurrences of this character. If the document is to be viewed on the Perq, using the Metafont Cmr fonts,
we want the fi ligature to appear. Unfortunately the ligature is at ASCII value #174 in these fonts, so it is
necessary to have a substitutechar in the viewing fonts as well. Mint applies two series of
transformations: the first using the substitutions for the target device, and then a second set using the
substitutions for the viewing device. (In fact all the standard character manipulations of kerning,
substitution, etc, are performed on both sides of the transformation.)

Sys: User>ITibbard>sredreferh.ine

Part Twelve
Mathematical Typesetting

Mathematical typesetting is described in this section of the manual. ~Mathematical
typeselting uses two environments — a slug environment for in-line formulae, and a box
environment for displayed formulae. In these environments Mint applies special scanning
rules, that mean that formulae are laid out according to standard typeselting rules without
you needing to be aware of these rules. The first section describes straightforward typesetting,
which should be sufficient for most needs. The next section describes typesetting rules that
are needed for more sophisticated formulae. The last section explains in more detail the
underlying rules that Mint employs.

< Extensive revision of this section of the Manual will be happening soon. Also, several parameters still
need to be tuned — especially those for accents. What is here now is mainly truthful.>>

12.1 Mathematical Typesetting

Mint provides a range of mathematical typesetting facilities which are similar to those provided by TEX
— namely semi-automatic choice of the fonts and of the positions of the characters for a wide variety of
common mathematical formulae, and the automatic generation of special characters. Also, in a manner
similar to TEX, Mint allows the rules to be overridden when necessary.

The principal 2im in implementing these features in Mint has not been to explore issues about which
language facilities are appropriate for mathematical typesetting; but instead it has been to provide a means
of obtaining good quality mathematical formulae in Mint documents. For this reason the input language
has been chosen for ease of implementation, rather than elegance; however, the semantics that are applied
to the input, whereby the fonts and positions of characters are chosen, are intended to be the same as those
for TEX, so that (potentially, at least) any formula that can be typeset using TEX can be done with
comparable effort using Mint, and it will produce identical, or better, output.

A word of caution. Mint's mathematical typesetting facilities are still being developed, and are far from

Sys: User>Hibbarddsredreferi.inc

12-136 Mathematical Typesetting Mint Refaser Hibbard

complete or robust. What is available now should satisfy many requircments, but I would appreciate
hearing from users who have particular requircments that the current facilitics do not satisfy.

In the description below I will be assuming that you have a superficial understanding of TEX. In the first
section I will review bricfly the main ideas of mathematical typesetting, and then describe the features in
Mint in increasing detail.

12.1.1 Basic Concepts

This review is not intended to be a mathematical typesetting handbook, and many of the concepts are
treated superficially. The material here is essential for an understanding of Mint's facilities, though.

Mathematical formulae occur in documents and papers in a wide variety of styles. However, two major
classes can be distinguished — formulae that occur in-line, such as sin?@ + cos’@ = 1, and formulae that
occur out-of-line, such as

P\ 2 p-2__1 1 —
(z)x y? 1 (12-1)

Depending on the class of the formula, different rules need to be applied to determine the choice of
fonts and the placing of characters. These rules are subtly different according to whether the formula is
in-line or out-of-line, and also whether the text being formatted is within a fraction, etc. For example,
notice in equation 12-1 that the widths of the gaps around a minus sign differ according to whether the sign
occurs in a superscript or not, and that the distance that superscripts are raised differs according to whether
the superscript is in a denominator of a fraction or not. Not all the differences are as subtle as these, though.
Fractions that occur in-line should be typeset as ;f;—c, whereas if they occur out-of-line they should be
typeset as

b+c

In accordance with TEX the collection of rules that need to be applied is determined by the style of the
formula; in-line formulae are in fext style (StyleT), and out-of-line formulae are in display style
(StyleD). Several other styles occur in formulae — script style (StyleS) uses a smaller font size for
superscripts, and script script style (Sty1eSS) uses a still smaller font size in superscripts of superscripts. In
addition there are four other styles that differ in certain finely tuned details.

In addition to choosing the fonts and positions of superscripts, good quality mathematical typesetting
requires judicious selection of the amount of space between symbols; for example in

x+ y = max{x,y} + min{x, y}

Sys: User>Hibbard>sredreferi.ine

Bt T bard « Manual Mathematical Typesetting 12-137

the spacings between the characters has been chosen according to the class of the symbols: whether they

are operators, brackets, punctuation, ctc. Furthermore note that the gap between the y and the close brace
has been increased by the so-called italic correction. Without these subtle choices, the formula would have
looked like)

x+y = max{xy} +min{x,y}

which is probably the best you can do with naive use of slug environrnentsB. The different classes of
symbol are ordinary (corresponding to variables), operators (such as), binary operators (such as
+ and -). relational operators (such as = and <), open backets, close brackets, and
punctuation. You will occasionally need to chose a class for a new symbol that you want to introduce
into a formula; if so, read Knuth’s description [TEX, Chapter 18].

Finally, mathematical formulae frequently require large parentheses to be constructed. For example in
the case of the matrix

(20]
1+ 02 3.14159 1
L= at+—

x-+-y a+b
U 3 4+5+6 sinx siny j

the braces need to be constructed from simpler fragments.

An effective mathematical typesetting system will automatically decide on which rules to apply, without
the need for the user to be aware of them. For example, the first four formulae in this section were obtained

by typing :
@m{@sup(sin,2) @g(q) + @sup(cos,2) @g(q) = 1}
@begin{maths, label TEX-p68}
@paren[@atop(p,2)]@sup(x,2)@sup(y,p—2)-@fract[1.1-x]@fract[1,14@sup(x,2)]
@end{maths}
@m{@fract(a,b+c)}

@maths{@fract(a,b+c)}

13 Incidentally, the two examples have been produced as follows:
@maths[x+y=max{x,y}+min{x,y}]

and .
@centre[@i(x)+Ri(y) = max{@i(x),@i(y)}+min{@i(x),@i(y)}}]

showing that you do not always have to work hard to get good quality output.

Sys:User>Hibbard>srodreferi.inc

12-138 Mathematical Typesetting Mint Relioeer Hibbard

12.1.2 Simple formulae

To place a mathematical formula in line, use the m environment. This acts like a slug environment, but
it invokes special processing of its body. Spaces and blank lines are ignored (with the exception noted
below), and Mint automatically places the appropriate amount of space between symbols. For example,
both @m(x=y) and @m(x = y) produce x = y. The only time you will need spaces will be to scparate
operators from variables in cases where there is otherwise an ambiguity. For example @m(sinx) produces
sinx, whereas @m(sin x) produces sin x. Note that you do not need to specify that sin should be in the
regular face, or that x should be in the italic face; Mint uses tables to find out this information. (These
tables are loaded as a part of Mint’s initialization. You can load other entries into the tables if you wish; see
below.) Occasionally you will need to select a font within the m environment: this is donc using slug
environments in the normal way. For example @m(sin @g(q)) produces sin §. Only face codes and font
sizes can be altered in this way — you cannot (for example) use @+ or @-.

Always use the m environment for variables. Even though it is superficially like the i environment, it
places the italic correction after the identifier, which makes the output much more pleasing. For example,
- @i(j) produces j; and @m(j) produces j; the first j is too close to the semicolon.

Mint will place the whole of the formula on one line; sometimes this may not produce pleasing layout.
If you feel that better layout can be obtained by breaking the formula across two lines, vou can indicate to
Mint where the best place o do this is by using cbreak; this has no effect if the formula does not need to
14 .
be broken .

A formula is displayed out of line using the maths box environment™. The maths box environment,
apart from processing its contents using special formatting rules is otherwise like any other box
environment: it takes all the same box environment parameters (though not all of them are used), and it can
be incorporated into other box environments (figures, tables, etc.) or placed into headings or footings, in
just the same way as that of any other box environment.

If you want several formulae together in the same box, separate them by at least one blank line: the
distances between the formulae will be the same as the current line gap.

4 Console yourself that it is easy to check your text using cross proofing.

15 math is also allowed.

Sys: User>Hibbarddsre>referi.inc

Peter Hibbard

Mint Reference Manual Mathematical Typesectting 12-139

b—a\¥ This cquation states that, if we perform the
(T) trapezoidal rule to approximate J using a spacing
hy=(b—a)/2**1 and hy = (b—a)/2* then
the resulting approximation has a leading term in
the error of the order of #3. The approximation
Ty is, in fact, precisely the parabolic rule for 2k

subintervals™ .

~1(4
Tk = J—j;g(ﬁ— 1)a,~

Figure 6. Example of a mathematical formula in a figure

12.1.3 More complex formulae

12.1.3.1 Formula types

To obtain formulac more complex than simple algebraic equations, it is necessary to tell Mint about the
type of the formula. This is done using a statement of the form

@FormulaType (Paraml, Param2, ..., Paramn)

Several formula types are built into Mint. which understands which formatting rules to apply to the whole
formula. and to each of the parameters. These formula types are only understood within the in-line and
out-of-line mathematical environments.

There are formula types to describe most of the commonly occurring situations, and others can be
added on request”. For example, to obtain an in-line fraction, you write @m(@fract(a,b+c)).
Mathematical formula types can, of course, be nested arbitrarily, and the change of formatting rules for
each formula type is made automatically. Currently the following formula types are defined.

@sup(a,b) This superscripts the first argument; for example a®. The amount the superscript
is raised is a function of the style of the formula.

@sub(a,b) This subscripts the first argument; for example a,. The amount the subscript is
lowered is a function of the style of the formula.

@supb(a,b,c) This both superscripts and subscripts; for example ab. The amount of raising and
lowering depends on the style of the formula.

16 From Ralston, A First Course in Numerical Analysis. McGraw-Hill.

1 And after paying a suitable fee.

Sys:User)Hibbard)érc)referi.inc

12-140

Mathematical Typesctting Mint Rcfc‘;gg’ge‘g‘}’a‘,’;g‘}

@fract(num,den)

@sum(from,to,arg)

@int(from,to,arg)

@paren(arg)

@matrix(arg)

@1brace(arg)

This creates a fraction. The numerator and denominatcr are centred, and the
divisor line is placed on the samc horizontal line as a — sign. @atop(a, b) is
similar to @f ract, but there is no divisor line, and the formula rests on the
reference line (sec figure 7).

In in-line formulae the limits are placed after the sigma, in out-of-line formulae
they are placed below and above the sigma. Either or both the limits can be
omitted; you should do this by using skip in place of the parameter, €.8.
@sum(skip,skip,@sup(i,2)). @prod, @union and @inter produce
products, unions and intersections.

The limits are placed after the integral sign in both in-line and out-of-line
formulae. Either or both of the limits can be omitted, by replacing them by
skip.

This encloses the argument in parentheses that are just larger than the argument.
First several standard parenthesis characters are examined, to determine whether
any of them are large enough; if not, Mint constructs parentheses from simpler

fragments. For example, in
a
b

the parentheses are constructcd from fragments. In addition to parentheses, Mint
allows brackets (@bracket(arg)), braces (Bbrace(arg)), diamond brackets
(@diamond(arg)), floor symbols (@floor{arg). ceiling symbols
(8ceiling(arg)), single bars (@bar(arg)), and double bars
(edbar(arg)).

This allows matrices to be constructed. The argument must be either several
@mrows or @mco1s; for example @matrix(@mrow(1,2),@mrow(3,4)) will
construct a 2 X 2 matrix. There can be up to 8 elements in each of the rows and
columns, and it is required that the rows (or columns) have the same number of
elements. Mint will create a matrix in which each clement is centred horizontally
and vertically, and with the spacing between the rows and columns equal to one
quad. @mrow and @mco1 should only be used within @matrix.

This creates a left brace that is just bigger than the argument, as for example in

X, if x>0
x| = ,
- x if x<0.

RBrace places a right brace after its argument.

Sys: User>iTibbardrsicrrefert.ing

Peter Hibbard

Mint Reference Manual Mathematical Typesetting 12-141

@1imop(op,1im,arg) This is used for operators which have expressions placed beneath them, as in the
case of

. sinx
max log; P, and lim—==1
1<nm x—0

The op must be a single lexeme; otherwise there are no restrictions on it.

12.1.3.2 Labelled equations

Some mathematical formulae in documents require labels, whereas others may not require them. Mint
provides a means of attaching labels to selected formulae through the use of counters; these labels have all
the properties of other labels: they can be used to extract any counter value from the contour associated
with them, and they can be converted using any style. To associate a label with a formula, include the
optional parameter 1abe1 in the environment parameters of the maths box environment. For example

@begin(maths, label = Newton-Raphson)
@sub(x,i+1) = @sub(x,i) - @fract{f(@sub(x,1)),f’(@sub(x,i))}
@end(maths) .

will cause Mint to append an equation number to the end of the equation, as follows:

f{x;) :
Xi+1 = X =58 » -2

L)

The equation can ther be referred to by the label. The macro eqn produces the equation number;
however, the label can be referred to in any other way. For example :

equation Beqn(Newton-Raphson) on page @pageno(Newton-Raphson) is the familiar
Newton-Raphson iteration formula

tells you that equation 12-2 on page 141 is the familiar Newton-Raphson iteration formula.

The equation number in the maths environment is centred vertically about the equation it labels {not
yet}; if several formulae occur in amaths environment, only the last one is labelled.

12.2 Advanced concepts

In this section I describe several advanced features that allow fine tuning of formulae. Not all the
notions expressed in this section are quite firmly grounded.

Sys:User>Hibbard>srcoreferi.ine

12-142 Mathematical Typesetting Mint Refoaoer Hibbard

12.2.1 Mathematical fonts -

When performing mathematical typesetting, Mint assumes that there arc 10 fonts associated with each
galley. These are fonts m0, m1 and m2, in each of the sizes n, s and ss, and a private font maths. Mint uses
characters from these fonts to construct its output; it assumes that face code m0 will contain regular
characters to be used for operators like sin; that face code m1 will contain italic characters to be used for
variables like x; that face code m2 will contain special characters for operators, etc.; and that maths will
contain a collection of special symbols for constructing large parentheses, etc. Font size n is used for
StyleT and Sty1eD; font size s is used for StyleS: and fontsize ss is used forStyleSsS.

The only difference between the maths font and the other fonts is that the maths font is a private font;
that is, it is associated with a font family using assocprivf rather than assocfont. Apart from this all
the fonts used for mathematical typesetting are handled in the same way as any other fonts — they have
their font characteristics specified in the same way, and they can have other characters, gaps or icons
substituted for characters in them. The slug environments m0, m1 and m2 can be used in the same way as r,
i. etc. Note that the fonts m0, m1. m2 and maths need to be associated with each font family that is to be
used for mathematical formulae'®.

12.2.1.1 Changing fonts

Normally Mint will make the appropriate choice of font size and face code for formulae; these choices
can be overridden by using slug environments within the m and maths environments. If you use a face
code slug environment, this will override the automatic face code changes, but not the automatic font size
changes; similarly if you use a font size slug environment, this will override the automatic font size changes,
but not the automatic face code changes. For example

@maths{@sub(a,1)+@fract(1,@sub(a,2)+Cfract(1,@sub(a,3)+@fract(1,b)))}

produces

whereas

@maths{@n[@sub(a,1)+@fract(1,@sub(a,2)+Cfract(l,u@sub(a,3)+@fract(1,b)))]}

produces

18 In particular, you cannot put formulae into footnotes and page headings and footings unless you have associated the fonts with the
font families of the appropriate galley.

Sys: UserdHibbarddsredreferiing

e ance Manual Mathematical Typesetting 12-143
al + 1 3
a2+ — 1
a3+ =
b

(Both rather nasty.)

If you use both font size and face code slug environments, Mint’s automatic choice is completely
overridden.)

Spaces and other typographical layout characters become significant if you use a slug environment
within @m or @maths. For example

x + a constant greater than zero

12.2.2 Defining symbols

Mint’s spacing rules are applied by classifying each symbol that occurs in a formula, and thereafter by
selecting the gaps needed between two symbols according to their classification. There are basically no
in-built rules; instead symbols are placed in a table with their class. and this table is examined when
needed. Several symbols are placed in the table when Mint starts; others can be added as needed. The
statement

@MDef (Source, Destination, SymbolClass, FaceCode)

specifies that if Source occurs in the input, then it is to be replaced by Destination in face code
FaceCode, and that for the purposes of determining the spacings, it is to be regarded as a Symbo1C1ass.
The spacing classes are

relop used for relaﬁoﬁal operators;

binop used for binary operators such as +; .

monop used for monadic operators (Mint will change a binary operator to a monadic
operator according to simple parsing rules);

op used for operators such as sin;

ord used for multi-character variables;

ordl used for single-character variables;

open used for left parentheses and other left delimiters;

close used similarly for right delimiters;

Sys:User>Hibbard>sredreferi.ine

12-144 Mathematical Typesctting Mint Refoor Hibbard
num the style automatically given to numbers;
word used for components of programs;
punct uscd for punctuation.
flush used for tabulations and for special symbols, when you need to control the

amount of space precisely.
Symbols can also be defined as over, under and af ter; these are described in the next section.
For example, to cause Mint to recognize Max as an operator, to be output in m0, do
@MDef (max, max, op, m0)
and to allow eqv to be used in formulae such as @m(x eqv b),do
@MDef (eqv, @char(#21), relop, m2)
when you will obtain x = b.

If Mint cannot find a symbol in its table, it will assume that it is either a variable, and so regard it as an
ord1 or ord (and output it in face code m1), or a number (and output it in face code m0), in the current
font size. These are the only assumptions that Mint makes which concern the maths fonts.

12.2.2.1 Inflccted symbols .

Symbols, such as variables and operators, can be inflected. If a symbol is inflected it has an accent above
it. below it, or after it. For example, x, x, and x" are all inflected. Mint provides a general means of
inflecting symbols, and allows several simultaneous inflections, as in Z’; up to seven accents can be
associated with a symbol, though generally you will need only one.

To be able to use an accent it must first be defined. An accent belongs to a symbol class, in just the same
way as an operator, open and close does; the classes are over, under and after (others will be
added later), and mde f is used in the same way to define one. For example,

@MDef (Vec, ~, Under, MO)
@Mpef (0Tilde, ~, Over, MO)
@MDef (OBar, -, Over, MO)

specifies that vec will be an accent that will appear as a tilde in font m0. under the inflected symbol. Also,
otilde and obar will cause the corresponding accent over the symbol.

To inflect a symbol, it is simply followed by the accent; if there are several accents they will be placed
above each other, below each other or after each other, in the order in which they appear. For example

Sys:User>Hibbarddsredreferi.ine

Peter Hibbard

Mint Reference Manual Mathematical Typesetting 12-145

" @m(x obar odot) produccs k. Note that you don’t need to be concerned about the positioning of the
accent; Mint has enough information about the characters to place the accents in the correct place.

The following accents are defined in Mint. 0Ti1de, OBar, OHat, OVec and ODot place accents over
the symbol; UTi1de, UBar, UVec and UDot place accents under the symbol; and T1ick places a tick after
the symbol. You may choose better identifiers if you wish. For example, the definition

@Mpef (~, ~, Over, MO)

will allow you to write @m(xt+yt) to obtain £ + .

12.2.2.2 Replacement text

Many symbols that occur in mathematical formulae, like E;, are thought of as single objects even’
though they are composite. Although you can use a macro for these composite objects, the presence of the @
and the parentheses of the macro call make formulae more difficult to write, and more difficult to read in
the manuscript. Mint provides a simple means of introducing new symbols that expand into a primitive
mathematical statements, without having to use the heavy-weight support of the macrogenerator. The
statement edef allows you to specify the replacement string for a lexeme, such as

@EDef (Ei, @""@sub(E,i)")

After this statement you can write @m({Ei=0) and you will obtain E; =0 (note the need to quote the
second argument to avoid it being interpreted within the edef). The replacement will only occur within
the mathematical environments, and the symbols are case-sensitive.

It would be good to be able to say that edef's could be used without caution, and used in all the ways
you would expect them to able to be used. Alas, that isn’t the case. There are some dirty interactions with
the macrogenerator that are difficult to describe; however the problems will go away when the
macrogenerator goes away. In the meantime you should only use edef's for simple substitutions like the
one above. :

12.2.3 Grouping subformulae

Within the m and maths environments it is sometimes necessary to group together the symbols of a
subformula: the expr environment performs this grouping action. This is frequently required when there
is a comma in a formula: for example @m(@sub(K,@expr(i,j))) produces K;;; other examples occur
when it is wished to cause some of the mathematical environment parameters described below to applytoa
subset of the symbols in a formula.

Sys:User>Hibbard>srereferi.inc

12-146 Mathematical Typesctting Mint Reéﬁfgﬁg‘,’ﬁ{ﬁ

12.2.4 Controlling the style

Sometimes Mint’s automatic choice of styles is not appropriate. There are several ways that the choice
can be overridden; for example, the use of font size slug environments has some of the effect of controlling
the style, though as was scen in the continued fraction example, defining only the font size may not always
produce pleasing results. Mint allows fine control over the siyle, without however preventing automatic
style changes from occurring subsequently.

If a style different from StyleT is needed for in-line formulae, the environments md, ms and mss (as
well as mt, which is the same as m) can be used in place of m. For example, @md(@fract(a, b)) produces
‘—;. If a style different from StyleD is needed for out-of-line formulae, the additional box environment
parameter sty 1e can be used with the maths environment:

@begin(maths, style=stylet)

12.2.5 Mathematical environment parameters

The appearance of a formula that is within a formula type is determined in part by several mathematical
environment parameters, which control the style and positions of symbols. Mathematical environment
parameters are inherited from the parent formula type, and are modified in accordance with formatting
rules built into the formula type, in a manner very similar to that for box environment parameters. The user
can change the values that are inherited using similar techniques. For example, you can write

@begin(fract, style = stylet)
1, b+c
@end(fract)

inside both in-line and out-of-line formulae. The syntax for mathematical environment parameters is the
same as that for box environment parameters — they may occur in any order; they are scparated by
commas; and the argument may be preceded by an equals.

The parameters are as follows.

Style This takes values from StyleT, StyleD, StyteS and StyleSS. The specified
style is imposed on the formula type. See below for easier ways of using this style
parameter.

Xposn This takes values from Left, Cent re” and Ri ght. It specifies how the

mathematical formula will be positioned inside the parent formula: Left
flushes the formula to the left; Right flushes it to the right; and Centre

19 also Center.

Sys: User>Hibbard>sredreferi.ine

Peter Tlibbard janual Mathematical Typesetting 12-147

centres it. This only has an cffect in those environments where a subformula has
this degree of freedom — in particlar, this is so with fractions. See below for
easier ways of using this style parameter.

Yposn This takes values from Relative, Above, Centre (Center) and Below.
Relative causes the reference point of the subformula to line up with that of
the parent formula; Above and Below cause the subformula to be positioned
above and below the position of a — sign, and Centre centres the formula
about this line. Sce below for casier ways of using this style parameter.

Xgap, Ygap These specify the gaps that will occur between rows and columns of matrices;
they are specified in quads. Their default values arc 1 quad; the inner matrix
in the example in section 12.1.1 had Xgap and Ygap specified to be 0.5quad.

Type This takes one of the values relop, binop, op, etc., {and, because I can’t easily
prevent it, over, under and af ter, although these won't have any effect), and
coerces the subformulae to be of the specified spacing type. The value of this is
when you want a composite object, such as £ not to be regarded as an ord,
which it normally would be. For example, assume that you want L tobea
relop; then you write

A @begin(col,type=relop) e, @vsp(-0.3em), rarrow @end(col) B
The effect is

whereas if you simply write
A @begin{col) e, @vsp(-0.3em), rarrow @end(col) B
you'get

A5 B

Some people are concerned about the difference. See below for easier ways of
using this style parameter.

Since instances of @begin(expr, style = s), @begin(expr, type = t), @begin(expr,
xposn = x) and @begin(expr, yposn = y), for values of s, f, x and y occur frequently, Mint
provides abbreviations. In each of these cases you can write, for example, @styles(formula),
Qord(formula), @1ef t (formula), and @below(formula). In all cases the identifier you use is the same as
the style, type, xposn or yposn you require; alas, since centre is both an xposn and yposn parameter,
you must write @xcent re (formula) or @ycentre(formula) (or xcenter, ycente r).

You can modify any of the maths environment parameters, using @beg in(parameters), in the usual
way. (However, if you use write, for example, @begin(stylet, style=styled), you will get
styled.)

Sys:User>Hibbard>sredreferi.inc

12-148 Mathematical Typesetting Mint Refoorer Hibbard

A comprchensive example of the use of these parameters is provided by the following continued
fraction. First, I wanted to override the style changes associated with @f ract, but I did not want to use the
@n slug cnvironment, since [wanted style changes to occur in the subscripts. Second, I wanted the
numerators to be flushed to the left, rather than being centred. The box

@maths{@sub(a,1) +
@begin(fract, style styled)
@left(1), @sub(a,2) +
@begin(fract, style styled)
@left(1), @sub(a,3) +
@begin(fract, style styled)
1,b
@end(fract)
@end(fract)
@end(fract)

}

(I never said it was going to be elegant) produces

1

a2+1

a3+3

a +

12.2.6 Tabular layout of formulae

Tabulations may be used in the maths environment to position several independent formulae on one
line, and to position formulae on several lines one above another. The maths environment responds to
tabulations in much the same way as the al1ign environment; that is, @+ lays down a tabulation, @\ drags
the lexemes to its left up to the next tabulation, and @> and @< centre the text between them around the
next tabulation. They can only occur outside formula types, and each of them causes the current formula to
end and a new one to start on the same line (I really should alter that some time). For example,

@maths{a+b+c@\+d+e}
produces two formulae, and
emaths{@fract(a+b+@\c+d,x+y)}
is illegal.

The maths environment is defined to have justifyleft and justifyleftlast both true,
justifyright and justifyrightlast both false, and to have its tabulations initially set up by
tabdivide 2. Formulae are centred by default because the maths environment places a @> at the
beginning of its body, and @< at the end; and the equation number is flushed right because the string which

Sys:UserdHibbardpsrodraferiine

Peter Hibbard - fanual Mathematical Typesetting 12-149

is injected into the maths body is terminated by @\. If you are controlling the layout yourself, you
probably do not want the > or the @<; to prevent them occurring, use the extra environment parameter
autotab, which takes values on and of f. For example

@begin(maths, tabdivide 9, autotab off, label Aho-Hopcroft-Uliman-p238)
@\@\@>E = @bracket(@matrix(@mrow(1,0),@mrow(0,2)))C<

@>@r(and)@<
@>F = @bracket(@matrix(@mrow(0,0).@mrow(0,0)))@<@\@\@\
@end(maths)
produces
10 00
E= and F= (12-3)
0 2 00
and

@begin(maths, tabclear, tabset 1.54n, tabset 2.75in, tabset 4.0in, autotab
of f}

@>@sub(s,1)=@sub(a,21)+@sub(a,22)@>@sub(m,1)=@sub(s,2)@sub(s,6)
@>@sub(t,1)=@sub(m,1)+@sub(m,2)

@>@sub(s,2)=@suh(s,1)—@sub(a,11)@>@sub(m,2)=@sub(a,ii)@sub(b,il)
@>@sub(t,2)=8sub(t,1)+@sub(m,4)

@>@sub(s,3)=@sub(a,ll)-@sub(a,Zl)@>@sub(m,3)=@sub(a,21)@sub(b,21)

@>@sub(s,4)=@sub(a,12)-@sub(s,2)@>@sub(m,4)=@sub(s,3)@sub(s,7)
@end(maths)

produces
si=aptan m = N5 h=m+m
S =85—an my = anbn h=08H+my
53=an—an my = anbn
S4=an— my = 5357

In fact there is a subtle difference between @> and @\ in the maths environment. The tabulation @>
places an empty separator before the tabulation, whereas the tabulation @\ doesn’t. The effect of this is that
the @> tabulation always moves the input that follows up to the next tabulation, or centres it about the
tabulation, whereas the @\ tabulation may act as a normal tabulation, and shift all the lexemes that follow it
out to the next tabulation. It turns out that the rules are difficult to remember, so I have prepared the
following tables which show the effect of the various tabulations.

Sys:User>Hibbard>sredreferi.inc

12-150

Mathematical Typesetting

Peter Hibbard
Mint Reference Manual

Input L [| |
123@>456 123 456
123@>456@< 123 456
123@>456@\ 123 456
123@\456 123456
123@\456@< 123456
123@\456@\ 123 456
Input | I [J
@>123@<456 123456
@>123@<456@< 123456
@>123@<456@\ 123 456
@>123@>456 123 456
@>123@>456@< 123 456
@>123@>456@\ 123 456
@>123@\456 123456
@>123@\456@< 123456
@>123@\456@\ 123 456
Input L | I |
@\123@<456 123456
@\123@<456@< 123456
@\123@<456@\ . 123 456
@\123@>456 123 456
@\123@>456@< 123 456
@\123@>456@\ 123 456
@\123@\456 123456
@\123@\456@< 123456
@\123@\456@\ 123 456

12.2.7 Equation counters

The counter associated with equations is EquationNo; it has no parent counter in document types
without sections or chapters (for example text and s1ides)— in such documents it counts sequentially.
In document types with sections or chapters its parent counter is Sect ionNo or ChapterNo, respectively;
thus in a thesis, for example, it is reset to 1 at the start of every chapter. Mint also defines a pseudo-counter,
Equation, which yields a reference comprising the chapter (or section) number, followed by the equation
number. This is used for numbering equations in the maths environment, and is also used by the eqn

macro.

The best way of understanding these statements is by example. The macro eqn is defined as

Sys:User>Hibbard>sredreferi ine

Peter 11ibbard

Mint Reference Manual Mathematical Typesetting 12-151

@form (eqn, lab, @""@nconv (equationstyle, equation, @value (lab))")

and if we define a macro bareeqn as

@form (bareeqn, lab, @""@nconv (equationstyle, equationno, @value (lab))")

then we will get for

@Eqn (TEX-p68) is the full reference, and @BareEqn (TEX-p68) is the number
of the equation within the chapter

the statement that 12-1 s the full reference, and 1 is the number of the equation within the chapter.

(Beware: in appendices the equation numbering will appear like A-5, for example; however, the
counter EquationNo is not reset to 1 at the start of each appendix. I should fix it, but it's messy; on the
other hand, if you have read so far, you should know how to reset the counter back to 1 yourself))

12.3 Realiy advanced features

The features that have been described above should allow most users to produce high quality
mathematical output. However, it seems to be a characteristic cf those who wish to produce really high
quality output that they are not satisfied until they understand all the inner workings of the tools they are
using. It is for these people, and also incidentally for those for whom the above facilities are not sufficient,
that this section has been written. Unless you are a fanatic, you should stop reading this now.

12.3.1 Non-fanatics stop here

Well, so you are a fanatic. Several of the features I am about to describe are repetitions, in more detail,
of what has been said before. In addition I will describe two other mathematical environments and some
more environment parameters.

12.3.2 Mathematical layout vectors

Every object in the mathematical environments in Mint is characterized by three vectors. These vectors,
together with the font and characters making up the object, are sufficient to describe any formula that is laid
out using Mint. Understanding how the values of the -vectors are computed should, then, be sufficient to
understand how Mint will treat each formula.

Each object (single character, or sequence of characters making up a single lexeme, such as sin or +), is

Sys: User>llibbard>srcdreferi.ine

12-152 Mathematical Typesetting Mint Refaoaer Libbard

assumed to sit within a rectangular bounding box and to have an origin, which is used for determining how
to place characters next to cach other. The position of the bounding box from the origin is described by two
of the three vectors: (X0, YO), the vector to the bottom left corner of the bounding box, and (XX, YY), the
vector to the top right hand corner of the bounding box. These vectors are intrinsic to the symbol; that is,
they are independent of the context in which the symbol occurs. (Just which symbol corresponds to a
particular sequence of characters in the manuscript file is determined by the style — part of the context —
in which the symbol occurs.) The third vector, (XRe1, YRel), determines the position of the origin relative
to the origin of the enclosing parent mathematical environment. Each environment applies different rules
for determining this last vector; these rules describe, to a large extent, the differences between the different
mathematical environments. The diagram below shows the (XRe1, YRe1) vectors for a simiple formula.
The dimensions have been distorted to show the origins and bounding boxes.

[— /|-='
£

*_\

e

Figure 7. Mathematical vectors for Y]'
L

One important characteristic of this description is the placing freedom — the freedom to shift the object
in the X or ¥ plane according to environment specifications given by the user. Two classes of freedom are
recognized by Mint: weak freedom, which can be overruled by Mint’s internal rules, and strong freedom,
which Mint always responds to. An example of weak freedom, which is overruled, occurs in the formula

@m{A @begin(expr, xposn=left) B @end(expr) C}

since in, this case B will simply be placed in the same position in which it would be if there were no
specification of the xposn. An example of a strong freedom occurs in the formula

@m{A @begin(expr, xposn=3.5quads) B @end(expr) C}

Sys: User>!ibbard>sredreferi.ine

Peter 1libbard
Mint Reference Manual

Mathematical Typesetting 12-153

since in this case the origin of B will be placed 3.5 quads from the origin of the parent environment. All
frecdoms specified in section 12.2.5 are weak; those described below are strong.

Even in this really advanced section, it isn’t appropriate to give all the details of the computations Mint
performs. Instead I will summarize them, omitting details of how italic corrections are incorporated.

Expr

Fract
Sum
Sup
Paren
Matrix

Row

Col

12.3.3 Styles

The style of a formula

And m, etc. The bounding box of the first object is set flush with the bounding
box of the parent; subsequent objects are placed such that the X part of the
origins are coincident with the right-hand edge of the bounding box of the
preceding object; Y freedoms are honoured, though if not otherwise specified
the Y part of the origins lie on the same horizontal linc as the Y part of the origin
of the bounding box of the parent. The size of the bounding box of the parent is
such that it just encloses all the symbols within it. There are, however, details of
italic correction calculation which have been omitted from this description.

Etc, etc.

And Prod, Inter, Union. Etc.
And Sub, Supb. Etc.

Etc.

This environment is superficially similar to the expr environment and to the
mrow environment. It takes up to cight subformulae, and places them next to
each other. Each subformula can be strongly shifted in the X plane, and weakly
and strongly shifted in the Y plane, and are otherwise placed flush with each
other in the X plane, and with the Y origins on the same horizontal line. A
subformula that has its X position specified will push to the right all the
subformulae that are on its right.

This environment is similar to the row environment. It places formulae above
each other, such that the Y origin of one box sits on the top of the bounding box
of the subformula beneath it, and with the boxes centred in the X direction. The
environment responds to both weak and strong shifts in the X plane, and strong
shifts in the Y plane.

determines various appearances of the formula, for exampie the fonts to use, the

positions of limits in summations, and the positions of superscripts and subscripts. The description given by

Knuth is complete.

Sys: User>Hibbard>srcdreferi.inc

12-154 Mathematical Typesetting Mint Reforer Hibbard

12.3.4 Types

The type of a symbol determines the space that is plaécd between the symbol and its neighbours. A
two-dimensional array is needed to describe the spacings; in addition, the spacings are a function of the
current style. The description by Knuth is barcly adequate. To obtain high quality output it has been
necessary to make many modifications to the spacings, and it has been necessary to introduce several new
types. These are as follows: Num, the type of a number, which allows a different space to be placed between
the 2 and the 7 in 27 than that between the i and j in ij (note how this also differs from i); Ord1, which
differs from ord because all those computer scientists want to have multi-character identifiers, such as
wirein, and need wider spaces than in wi; and f1ush, which causes no space to be placed between such a
symbol and its ncighbours (for example, @m(x;) produces x;, and @m(@flush(x);) produces x;). All
spacings are of type Flush.

12.3.5 Spacings, etc.

Fanatics frequently have need to control precisely the layout of a formula. Mint provides several
facilities for this: spacings; the row and col environments; and positioning parameters. These are all
described in this section.

12.3.5.1 Spacings

You can put an arbitrary amount of space between two symbols using vsp and hsp. These effectively
generate empty lexemes of zero width and the specified height, and of zero height and the specified width,
respectively. In both cases the symbols belong to the type f1ush, so there is no extra space added by Mint.
As in other contexts, the parameters to vsp and hsp can be absolute units, font-relative or page-relative.
For example, assume you want precisely a quarter of an inch of space between A and the equals symbol in a
formula. You write @m(A @hsp(0.25 inches) = B)andgetd = B.

12.3.5.2 Rows and columns

The row and col environments play a similar role in the mathematical environments as do the
describe and multiple environments when manipulating boxes; that is, they allow you to create
composite objects in which inner objects are placed side by side, or stacked on top of each other. Row places
objects side by side; each of its parameters is placed flush with each other. For example

@maths(@row (A, +, B))
produces

A+B

Sys:Userdilibbard>sredreferiine

Kf,‘ﬁ{ Eé?g%ﬁe Manual Mathematical Typesetting 12-155

Note the difference between this and

@maths(A + B)

which produces

A+ B

The co1 environment places oi)jects on top of each other; there is an example in scction 12.2.5. Note
that the parameter to hsp and vsp can be negative.

12.3.5.3 Positioning parameters

The xposn and yposn environment parameters take, in addition to the values specified in section
12.2.5, explicit values and /abel values. An explicit value is given as a value of some length, for example
3inches or 4ems. These specify the distance the object will be placed from the origin of the parent’s
bounding box. A label value is used for aligning equations within a single mathematical environment, or
across several environments. In order to use a label, it must first be declared — either in the same m or
maths environment as it is being used, or in some previous environment. The environment parameter
Tabe1 declares the label; for example

@begin(expr, label here) a + b @end(expr)

defines the label here. Labels can be used as values for the xposn and yposn environment parameters;
for example

@begin(expr, xposn here) p +q @end(expr)

will strongly set the xposn of the second expr to the same value (relative to the origin of the enclosing
box) as the first expr.

12.3.6 Mathematical font parameters

There are several parameters that control the spacings between the components of mathematical
formulae; these have been carefully chosen by your implementer to give the most pleasing appearance to
formulae. You can alter some of them, using the statement MathsParams, but my advice is to leave them
alone, unless you find you really need to do so. The statement

@MathsParams(F1 = 0.30ems, F2 = 0.07ems, F3 = 0.05ems,
P1 = 0.17ems, P2 = 0.1dems, P3 = 0.09ems,
B1 = -0.09ems, B2 = -0.07ems, B3 = -0.07ems, B4 = -0.08ems,
E1 = 0.04ems)

Sys:User>Hibbard>stc>referi.ine

12-156

Mathematical Typesetting Mint Reforos Hibbard

will sct the valucs of those parameters that arc accessible; there are many other parameters that can only be
set by taking apart Mint. The choice of which can be altered and which cannot has been determined in part
by reading the TEX book; however, I regard Knuth's choice as fairly arbitrary, and T have not hestitated to
choose other values for parameters where 1 feel that more pleasing output can be achieved. The parameters
that can be altered have the following effect.

F1
F2

F3

P1

P2

P3

B1

B2

B3 .

B4

El

The height of the divisor line in a fraction above the base line.

The height of the bottom of the numerator of a fraction above the divisor line.
Twice this value is used to separate the top of the denominator from the divisor
line. -

The amount that the divisor line is shorter at the left.

The extra height of a superscript in DMode above the position it would have with
style parameter YPosn equal to Be 1ow.

The extra height of a superscript in TMode, SMode and SSMode above the
position it would have with style parameter YPosn equal to Below.

The extra height of a superscript in numerators and denominators above the
position it would have with style parameter YPosn equal to BeTow.

The extra height of a subscript in DMode above the position it would have with
style parameter YPosn equal to Above.

The extra height of a subscript in TMode, SMode and SSMode above the
position it would have with style parameter YPosn equal to Above.

The extra height of a subscript in numerators and denominators above the
position it would have with style parameter YPosn equal to Above.

An additional height to add to subscript positions in the case that there is a
superscript present. (Note that all the B parameters are negative.)

The size of the gap to leave between a superscript or subscript and the
expression being scripted. This gap is in addition to any italic corrrection that
may be applied.

The values shown in the MathsParams statement are the values that the parameters take by default.

Sys:User>ITibbard>sredreferi.ine

Part Thirteen
Alternative interpreters

Mint provides a simple interface to interpreters. It expecls thai these interpreters will
construct objects that will later come to be displayed in presentations. The interprelers
should, therefore, understand the requirements of the device drivers and font formats, and
they should respect the stipulations that Mint makes about the size and position of the
objects they display. Mint supplies interpreters with a variety of services for scanning texi,
managing memory and creating output for devices, bul there are no requirements that the
interpreters use these facilities, and they may, for example, use their own syntax or their own
channels 1o the devices. In this section I describe two interpreters that have been interfaced
to Mint.

13.1 Line drawings

Both the interpreters that have been interfaced so far are for line drawings. They illustrate a range of
interfacing strategies: DP has a very simple interface, and both Mint and DP inhabit different universes,
with little communication between them. Nonetheless the interface is effective and efficient. The Plot
interface is more extensively programmed, because there was no Plot driver for the Perg. It was therefore
worth while building an interface that incorporated the device drivers.

13.1.1 DP and Plot

<<Information on how to incorporate DP and Plot output into Mint will be given later. The following
has proved to be of use to those who already have used DP and Plot.

Mint provides two environments, DP and P1ot, that have their interpreters set so that they accept and
interpret input appropriate for DP and Plot.

The input to the DP environment should be a file as produced by DP; it is normally included as
follows

Sys:User>Hibbard>sredreferk.inc

13-158 Alternative interpreters Mint Reforasr Hibbard

@begin(DP, width = 3in)
@Include (Mouse.Dp)
@end(DP)

Mint will perform the appropriate scaling, both for the target device and for the viewing device, should
cross proofing be requested.

The input to the P1ot environment should be a file as produced by Plot, with the device spccified as
generic. Mint will perform the appropriate scaling, as in the case of DP, but the quality of the output is
much more dependent on having the resolution and size close to that which is finally needed.>>

Sys: User>Hibbarddsredreferk.ine

Part Fourteen
State Files and Libraries

This part of the reference manual describes a collection of facilities that are useful for
managing document designs. A document design is implemented by a sequence of Mint
statements that describe the appearance of environments and pages, and describe the way
that a document is built from these environments and pages. In most cases users of Mint will
use several standard designs that are distributed as a part of Mint, possibly extended with
additional definitions. In section 14.1 I describe the facilities that can be used lo maintain
these definitions, and in section 14.2 I describe some of the standard collections of
definitions. Section 14.3 contains a detailed description of the structure of the files which
are used to make the standard documents. It is unlikely that this section will be needed by
most users, though it forms essential reading for system maintainers, and will yield lots of
insights for the curious.

14.1 Definition files

Before processing a manuscript file, Mint reads a state file; this is a binary file that sets up Mint’s
internal state. State files are useful because they can establish Mint’s internal state far more quickly than if
Mint had to interpret the corresponding statements, and because they can be used for encapsulating
definitions that are used to describe document designs. With the appropriate supporting tools, state files can
complement manuscript files as components for creating documents.

In this section I describe the basic features of state files, indicate how the state files for the standard
document types are created, and describe the tools that Mint supplies to help tailor state files by adding
additional definitions.

14.1.1 Standard state files

For each different document type, in each of its different forms, and for each different device, there is a
different state file that contains, in binary form, the definitions that specify the properties of the document.
Thus the state file for creating a manual, form 0 for the Perq differs from the state file for creating a manual,

Sys:User>Hibbard>sredreferj.inc

14-160 State Files and Libraries Mint Refoor Hibbard

form 0 for the Dover. Mint determines which state file to usc by cxamining the make statement; the first
three parameters are concatenated together (using defaults, or interacting with the user if necessary), to
create the state file name. For cxample, if the make statement is

@Make (Manual, 0, Dover)

then Mint will read the file Manua10Dover.State; if it cannot find the file then it is unable to proceed.
There is nothing sacred about these three parameters except for the way the defaults are supplied: if no
second parameter is given, then 0 is assumed; if no third parameter is given, then if the device reduest on
start-up was a specific device (e.g. P, D, or I1Ge11atio, for example) that is the third parameter, otherwise
(X was given, and) the third parameter is perq. Should a third parameter be given, then the previous
sentence applics, except that “perq” is replaced by the specific third parameter. If there is no make
statement, then Mint provides a default of @make(text,0,perq). (If all the parameters are empty, then
Mint doesn’t read a state file. This is used to boot-strap the standard state files; sce below.)

If there are additional parameters in the make statement, they are packaged up and handed on to the
begin staterment for the document. The way to understand what happens is to realize that the make
statement is a macro with four parameters; its effective definition is

@Form {Make, @" (DocumentType,Form=0,Device=Perq,Rest), @"(Some Body)}

and the rest parameter is handed on. To ensure that everything works in the right way, you should do
something like

@Make (Slides, Rest=@"{ImageColour=Red,Width=5inches})

14.1.2 Creating standard state files

Under normal circumstances the state files you need will have come along as part of the standard release
of Mint. If it complains that it cannot find the state file, though, you will have to construct one. In this
section 1 describe how to do this task starting from several Ascl! files I supply; if you don’t have these you
have no chance whatsoever of getting yourself off the ground. Read section 14.3 if you don’t believe me.

The files to create the state files are called state creation files; they all have the extension .Mint. There
are state creation files for all the document types that are supported by Mint at present. Altogether there are
some 120 files you need, and there are many levels of inc1ude. However provided you have all the files,
all you need to do to create the state file for (say) a manual, form 1. for the Dover, is to start up Mint, and
when it requests the file name, give it Manual1Dover, and device D. It will then go about its business for
some minutes, and eventually write off a state file with the name ManualiDover.State. You can then
exit from Mint (it does create a document, but it consists of just one single fullstop).

Svs: User>Hibbarddsredreferj.inc

Peter 11ibbard tanual State Files and Libraries 14-161

The state file format is fairly dependent on the version of Mint you are using, so when a new version of
Mint comes along, you should retrieve new versions of the state files, or go about creating new ones
yoursclf. If Mint finds that its own version number differs from the version of Mint that created the state
file, it will issue a warning. It may later issue a fatal crror, or even collapse, if there are debilitating
incompatibilities. '

14.1.3 Low-level state file manipulations

There are two low-level statements for manipulating state files. Normally you will use the better
structured facilities described in the next section, so this is for the hackers.

The make statement can be replaced by the readstate statement; this takes a single parameter which
is the name of the state file to read. Thus @make(text,0,perq) is cquivalent to
@readstate(textOperq). Like the make statement, this should be the first staiement in your

manuscript file.

Miat’s internal state is a merge of the state read from the state file and state created as a result of
executing statements, such as form, newcolour, etc. (Read section 14.3 to see all the statements that can
contribute to the state.) At any time you can dump out the current internal state using the dumpstate
statement. The standard state creation files call dumpstate when they have incorporated all the definitions
needed for some particular document type into Mint’s internal state. A state file is just a snapshot of Mint’s
internal state which can be reconstructed using readstate. Because some parts of Mint’s state take a long
time to create from statements, you gain a lot by saving the state in binary form (this is especially the case
with the font operations, which have been optimized for fast execution once the internal state exists, at the
expense of very slow creation of the internal state).

One way of using the state file facility of Mint is to start off with a standard state file, read it in (using
make or readstate), add to it the collection of definitions that you regard as important, and dump it out.
You then have a state file that contains a collection of document design definitions. However, if you have
any taste, you won’t hack it at this level, you will use the facilities described in the next section. -

14.1.4 Using definitions files

Assume that you have a collection of Mint definitions that define the appearance of galleys, pages,
environments, etc. You should separate these definitions from the body of the manuscript file that uses
“them for several reasons: you may want to use the definitions for several different documents, or you may
want to impose a global style on several different authors, without them having to be aware of the details of
the definitions you have used. Mint provides a facility to help achieve these goals. It is based on automating

Sys:User>Hibbard>sredreferj.ine

14-162 State Files and Libraries ‘ Mint Rcfc‘;ﬁifge‘ﬁ‘;?&,ﬁ

the reading and dumping of state files; it relies on a good separation of the definitions from the manuscripts
that use the definitions.

Let’s assume that you have indeed separated out a collection of definitions from the body of the
manuscripts that will want to use the definitions. You now need to be able to create the state file
automatically, and ensure that if you alter the definitions file, a new state file will get created that contains
the changes in the definitions file (very strictly, Mint regards a state file as an optimization of a collection of
ASCII definitions).

You achieve this as follows: Put the definitions, preceded by the make statement for the documentzo, in
a file whose extension is .defs. For example, assume that Ninerva.Defs contains a collection of
definitions. In the manuscript file that needs Ninerva.Defs include the statement
@ReadDefs(Ninerva). This statement does the following. Mint checks to see if there is a file
Ninerva.State. If there is not, it reads the file Ninerva.Defs, and at the end it dumps out its current
state into file Ninerva.State. Mint then continues processing the manuscript. If there is a file
Ninerva.State, Mint checks to see if the current version number of Ninerva.Defs and of all the files
thatit includes match the version numbers stored in the state file; if they do then Mint uses the state file,
othenwise it renames the state file (to Ninerva.State$) and processes Ninerva.Defs as though the
state file did not exist.

In this way Mint supplies you with mechanisms to separate out the design abstractions from the
documents that use them, and allows you to have some confidence that the optimizations that Mint
performs in order to keep the definitions in binary form will continue to reflect the current state of the
definitions files.

For an example of these facilities, read the file RefMan.Def's, which contains the definitions for this
manual.

14.2 Libraries

Mint library files provide a number of facilities to help crcate documents. Library files consist of Mint
statements that are interpreted in the usual way; normally they comprise some statements that set up Mint’s
internal state, or they provide collections of useful macros. They can be incorporated into manuscript files
by using the Library statement, for example

@library(SpiceTitlePage)

20 Actually it can start with another readdef's statement. 'm sure that there will be plenty of people out there making sure that the
. statements I now make really do apply to nested def's files.

Sys: User>iHibbardosrcoreferj.ine

Peter Hibbard
Mint Reference Manual

State Files and Librarics 14-163

All library files have the extension . 11ib; thus the statement incorporates the file SpiceTit1ePage.Lib.
The library is incorporated into the document as though the appropriate include statccment had been
made; however, Mint searches to see if the library has alrcady been incorporated, and it only includes the

library if it is not there.

The libaries that are available now are

Cmr10Kern

ContentsMacros

CrossProofTR

CrossProofSlides

SpacefFont

Sys:User>Hibbarddsredreferj.ine

This library contains the many statements that define the kerns and ligatures for

the Cmr fonts. You should include this library if you are using the TEX Cmr
fonts. This library, together with the TimesRomanKern library described
below, has been produced mechanically from the . TFM files that describe the
TEX fonts, so other libraries can be created quite easily.

This defines a set of macros that set out the tables of contents. The table of
contents for this manual has been produced using them; they provide entries for
sectioned statements, but not for tables or figures; however, you should have no
problem adding further macros if you need them. Section 9.3 contains a
description of the way tables of contents are produced.

If you are creating a document for the Dover, using the Times Roman fonts that
Mint supplies as the defaults, and you wish to see what the document looks like
on the Perq screen, then you should use this library. It sets up several
crossproofing statements for the TEX Cmr fonts, which almost acceptably match
the Dover Times Roman fonts, and modifies them so that most of the
incompatibilities between ASCII encoding and TEX encoding are handled. The
mapping isn’t complete, though, so I need a public-spirited person to improve
them. Also, the maths extension font for the Perq is the wrong size, which causes
mathematical formulae to appear strange.

This plays a similar part to CrossProofTR, for the s1ides document types,
using the default fonts supplied by Mint.

This provides a single macro, SetSpac ing, that modifies a font so that the gap
between individual letters differs from the design gap. The parameters of the
macro are a font values object, a device class, a font identifier, and then two
lengths, which are the distance that the bounding box of every character will be
displaced in the X direction, and the extra translation in the X direction that is
used between characters. The final parameter is an integer value between 1 and
7, which should be different for each use of SetSpacing (that’s not quite true,
but it’s a good guide). This parameter allows the same fonts value object to be
used with different displacements and translations.

An example is useful. Assume that you wish to increase the spread between the
characters of the T imesRoman 18b font, to lighten the appearance of a title. The
following shows what the original unspread font looks like, and what a font that
is derived from it looks like:

Peter Hibbard

14-164 State VFiles and Libraries Mint Reference Manual
@library (spacefont) :
@copyfont (pressfile, titlefont, timesromani8b)
@assocfont (fonts0, 11, f8, timesromani8b)
@assocfont (fonts0, 11, f9, titlefont)
@setfontinfo (pressfile, titlefont, bold, regular,
18 point, 0, standardr, , , standardbbi)
@setspacing (standardr, pressfile, titlefont,
0.02 em, 0.04 em, 1)

@begin(majorheading, facecode f8)
CARNEGIE-MELLON UNIVERSITY
@end(majorheading)
@begin(majorheading, facecode f9)
CARNEGIE-MELLON UNIVERSITY
@end(majorheading)
Good typographic practice only modifies the gaps between letters in three
circumstances: the case above, where a heading is otherwise too dense; a small
adjustment (usually a reduction) of character gaps throughout the whole of a
document; and the use of wider spacing for emphasis, though this practice is
almost entirely confined to German-speaking countries. Use this library
sparingly.

SpiceTitlePage This library contains the macros for laying out the Spice title page. It was used

for this manual. The parameters it uses are as follows:

title
author
dt

abs
doc
cats
file

ext

excl

The title of the document.
The author of the document.

The date of the document; if omitted, the current date will
be used.

The abstract; it may be omitted.
The document number.
The filing categories; it may be omitted.

The location of the machine-readable form; it may be
omitted, when the current file will be used.

Nonblank if the document is to get general distribution;
otherwise the Spice disclaimer notice will be incorporated.

If nonblank the copyright notice will refer to the author;
otherwise to CMU.

Sys:User>Hibbard>sredreferi.inc

Peter I1ibbard

Mint Refetence Manual State Files and Libraries 14-165

This library incorporates three others automatically: spacefont, spicedisc
and rescrnote.

StdAlphabeticRefs This library contains the bibliographic reference macros for the standard
alphabetic reference format, and it should be incorporated if you want to cite
references. Since it also contains the definitions of which macros are delayed (see
section 6.1.3), it should be incorporated before you include your bibliography
data base“". It incorporates another library automatically: standard refs.

StdNumericRefs This libary is similar to StdAlphabeticRefs, except that it contains the
: macros for the standard numeric reference format. It also incorporates the
StandardRefs library. (Other Ref's libraries will become available some day.)

TimesRomanKern This library contains the kerning and ligature statements for the TimesRoman
fonts used in the standard Mint font families. The Xerox TimesRoman fonts
have been well hand-tuned, and require oniy minor second-order modifications
of character spacings to make the output pleasing. Rather more important are
several ligatures; these are fi which produces fi, ff which produces ff, 1
which produces fl, £f1i which produces ffi, 1 which produces fll, -~ which
produces -, and --- which produces —. I don’t regard these as exhaustive, so
you may wish to add your own.

UserfaceCodes This library contains definitions of the face codes f0 ..., f9. It should be
included in any document that is using the default user face codes that were
imposed by the previous version of Mint. '

14.3 Defining state

This section describes the Mint statements that are most likely to occur in state files. The description is
tied closely to the standard state files, and in particular to Manual0Dover.State. A word of warning:
several of these statements do not perform exhaustive checking of their parameters, and in some cases the
order of statements is important, so you should check all uses of them carefully before releasing them on
unsuspecting users.

14.3.1 Basic definitions

Several definitions are built into Mint, for example some lexemes such as begin and end, and some
statement identifiers such as include and make. Eventually all lexemes will be read in from the state files,
but at present this restriction means that there are some parts of the Mint input language that are not

2 A convenient way of incorporating the references libraries is to use @Library(@val ue{BibStyle)Refs)

Sys: User>Hibbard>sredreferj.inc

14-166 State Files and Libraries Mint Reforer {ibbard

amenable to translation into other natural languages. This is not the case, however, with the in-built
statements, since these can be cquated to other identifiers using the macrogenerator. For example, if you do
not want include you can provide a definition like

@form(Inclusione.x,@"{@Incldde(@Va1ue(X))})

The statement identifiers that are built in are those that are useful for bootstrapping the rest of the state file;
they are: include, readdefs, comment, make, readstate, dumpstate and specialform. All
others are defined using specialform, as described below.

14.3.1.1 The SpecialForm statement

Each statement that Mint can execute is identified by a small integer number, which is used internally as
an index for a case statement. The SpecialForm statement binds the identifier for the statement, the
identifiers for the formal parameters, and a flag indicating whether the statement allows a variable number
of parameters, to the case statement index. The following is a short extract from the file
BasicDefs.Mint. ‘

9SpecialForm (form, @"(id,params,body), , 17)
@Specialform (value, id, , 18)
@Specialform (defer. macro, , 19)

@SpecialForm (reinvoke, dm, , 20)
@SpecialForm (newbibcollection, collection, , 21)
@SpecialForm (citeincollection, @"(col1ection, s yusrversrrrsas)s t, 22)

@SpecialForm (cite, @"(,,vsuvrssrrnsrsss)s T, 23)

@Specialform (bibinclude, @"(,,ssssrrsessrsas)s by 24)
@SpecialForm (newcounter, @"(id,within,start=1,change=+1), , 26)
@SpecialForm (next, id, , 27)

@SpecialForm (set, @"(id,value), , 28)

If the third parameter is not empty, then the statement can take as many parameters as are indicated, or
fewer. SpecialForm does not check that the number of parameters is appropriate for the statement being
specified.

14.3.1.2 The lexeme tables

The lexeme tables are set up by the initlexmap statement (the identifier of which is defined by a
specialform statement, of course). This statement takes three integer values which specify the module,
table and entry to be set by the fourth parameter. The lexemes are not case sensitive. The following is a
short extract from the file BasicDefs.Mint.

@InitLexMap (2, 5, 0, false)
@InitLexMap (2, 5, 1, true)
@InitLexMap (2, 6, 0, disallow)
@InitLexMap (2, 6, 1, allow)
@InitLexMap (2, 6, 2,)

Sys:User>Hibbard>sredrefer].ine

Pelr Liibbard @ el State Files and Libraries 14-167

@InitLexMap (2,
@InitLexMap (2,
@InitLexMap (2.
@InitLexMap (2,
@InitLexMap (2,

3, true)
0,)

1, text)
2, plot)
3, dp)

NN N

- e e e e

The module, table and entry numbers are built into Mint.

14.3.1.3 Units

Units are declared in terms of some basic unit, which is that used to express the raster unit resolution of
the devices. The standard state files use inches for this measure. An extract from the file BasicDefs.Mint
is:

@SetUnit (in, 1.0)

@SetUnit (inch, 1.0)
@SetUnit (ins, 1.0)
@SetUnit (inches, 1.0)
@8SetUnit (point, 0.013837)
@SetUnit (points, 0.013837)
@SetUnit (pica, 0.166044)
@SetUnit (picas. 0.166044)

14.3.2 Syntax definitions

Statements exist that allow you to create the directed syntax graph used by the parser, and to specify the
pseudo-syntactic properties of the environments. These statements cxpect that other definitions (of
counters, for example) have already been made. If you are in doubt about the order that statements should
occur in, follow the examples in the standard .Mint files.

Since the syntax graph has cycles, it is necessary to introduce the identifiers of the nodes of the syntax
graph before the graph is specified; this is done by the RegisterEnv statement. The following is an
extract from the file SyntaxDefs.Mint.

@RegisterEnv (default)
@RegisterEnv (align)
@RegisterEnv (itemize)
@RegisterEnv (enumerate)
BRegisterEnv (describe)
@RegisterEnv (maths)
@RegisterEnv (commentary)
@RegisterEnv (textpart)
BRegisterkEnv (gloss)
@RegisterEnv (figure)
@RegisterEnv (table)

Since Mint performs special actions on some of these cnvironments, the order in which they occur is

Sys:User>Hibbard>sre>referj.inc

14-168 State Files and Libraries Mint Refmess Hibbard

significant. The file contains a comment about which environments Mint treates specially. All other
environments can be introduced in any order. If you wish to add new notions to the syntax, and define
and modify arc not appropriate ways of doing this, you can usc registerenv, and specify all the
properties of the environment. Follow the example of (say) centre to see how to do this.

After the environment identifiers have been registered, the syntactic description of the document is built
up in several stages, described below.

14.3.2.1 Syntax classes

The syntax is described not in terms of environments directly, but instead in terms of syntax classes.
These are specified by the NewSyntaxClass statement. The following is an extract from the file
SyntaxDefs.Mint.

@NewSyntaxClass (Terminals)
@NewSyntaxClass (Sections)
@NewSyntaxClass (Headings)
@NewSyntaxClass (Items)

14.3.2.2 Production rules

Production rules are specified by the NewProduction statement. This alléws you to create a named
production ruie, and specify the pseudo-syntactic properties. Examples drawn from the file
ProdDefs.Mint are: '

@NewProduction (terml, terminals, , false, false, 0).

@NewProduction (item2, items, flushleft, false, skip, 2, , ,
terminals, items)

@NewProduction (foott, foots, default, true, skip, 2, annoteno, crannote,
terminals, items)

The statement is somewhat arcane, so you are well advised to follow the patterns carefully. The third
example above corresponds to the rule

1) Rule id Rule Default Environment Dominating Pack BlankLines
Footl Foots : Terminals | Items. Default True Irrelevant Invalid

2) Automatically increment the counter AnnoteNo whenever this rule creates a box.

3) Insert the lexeme sequence CrAnnote into the parent environment.

Several of these parameters can be omitted. <{Some changes have been made in this file for the annotation
feature.>>

Finally, the environment identifiers are associated with particular production rules (and thereby placed

Sys:User>Hibbard>sredrefer.ine

Mint Ililcﬂf)cb}%;%e Manual State Files and Libraries 14-169

into particular syntax classes) by the statement CrSyntax. The following is taken from the file
TerminalSyntax.Mint; the other xxxSyntax.Mint files arc similar.

@CrSyntax (centre, terml)
@CrSyntax (flushleft, terml)
@CrSyntax (flushright, terml)
@CrSyntax (plot, terml)
@CrSyntax (dp, term4)
@CrSyntax (verse, terml)
@CrSyntax (quotation, term2)
@CrSyntax (maths, term3)

14.3.3 Galley definitions

In order to define a new galley several pieces of information are required — for example the procedure
and font families to use, the device to use, and the styles to use. It is convenient to describe how to create all
this information here, though other sections contain related material.

14.3.3.1 Styles objects

The style of a gallcy defines many of its global properties. In Mint a styles object can be declared and
associated with galleys (thus making it easy to declare new galleys with properties similar to existing
galleys). The following statement, extracted from file DoverStyles.Mint, declares the styles object
Style0 for device Dover.

@MakeStyle (dover, styled,
0.75 pagewidth, 0 pagewidth, 0.025 pagewidth, 0 pagewidth,
0.025 pagewidth, 0.025 pagewidth, 0.02 pageheight,
0.01 pageheight, 0.02 pageheight, 0.01 pageheight,
0.005 pageheight, 0.002 pageheight, 0.002 pageheight,
0.025 pagewidth,
True, True, True, False, Black, Transparent, ROr)

See section 4.1.2.1 for the meaning of each of the parameters.

14.3.3.2 Font families

A font family is declared using the NewFontFami 1y statement; after it has been declared fonts may be
associated with it. This is done in two ways. First, private fonts are associated by means of the AssocPrivF
statement; private fonts are used by Mint for the special symbols it needs (such as bullets and copyright
symbols), and for mathematical typesetting. Second, the fonts that correspond to the standard face codes
and font sizes are associated with the AssocFont statement. The following is from file
FontsODover.Mint.

Sys:User>Hibbard>srcdreferj.inc

_ - S Peter Ilibbard
14-170 State Files and Libraries Mint Reference Manual

@NewFontFamily (fontsO, pressfile)
@AssocPrivF (fonts0O, mint, MintFontn)
@AssocFont (fontsO, r, TimesRoman10)
@AssocFont (fonts0, , TimesRoman10i)
@AssocFont (fontsO, , TimesRoman10b)
@AssocFont (fontsO, , TimesRoman10bi)
@AssocFont (fontsO, , CapsfFont)

“ . e e e .

@AssocFont (fontsO, Hippol0)
@AssocFont (fontsO, ZFont10)
@AssocFont (fontsO, Gachald)

3 D232 09205 50 3 3
o NE©Q OO T -

- e

The identifiers that may be used as second parameters to AssocPrivF are either mint, for the font
used for special characters, or maths, for the mathematics extension font. See section 14.3.9 for the
associations used for mathematical typesetting. (Of course, mint, n, g. etc, are themselves specified by
InitLexMap statements.)

14.3.3.3 Procedure families

Procedure families are declared in a similar way to font families; once declared they can then have
procedures associated with them. An entry in a procedure family specifies the box procedure, the
environment parameters and the prefix to use for that particular environment. The following is an extract
from file Main0.Mint.

@NewProcFamily (mainpf)

@AssocProc (mainpf, Centre, BoxStandardO, EnvCentre0, NoPrefix)

@AssocProc (mainpf, Display. BoxStandardO0, EnvDisplay0, NoPrefix)
@AssocProc (mainpf, Verse, BoxStandard0, EnvVerse0, NoPrefix)

@AssocProc (mainpf, Maths, BoxMaths0, EnvMathsO, PostfixEgn)

@AssocProc (mainpf, MajorHeading, BoxStandard0, EnvMajorHeading0. NoPrefix)
@AssocProc (mainpf, Chapter, BoxSectionEnv0. EnvChapter0, PrefixChapter)
@AssocProc (mainpf, Section, BoxSectionEnv0, EnvSectiond, PrefixSection)
@AssocProc (mainpf, Enumerate, BoxEnumerate0, EnvEnumerate0, NoPrefix)

14.3.3.4 Declaring galleys

Galleys are declared using the NewGalley statement. A galley requires a name (first parameter); a
galley class which specifies how the galley will be used (sccond parameter); the font family; procedure
family and style to be associated with the galley (third, fourth and fifth parameters); the environment whose
box procedure will be invoked at the bottom of the interpreter stack (sixth parameter); and finally a
boolean that specifies whether the galley is to start up immediately. The statements in
Manual0Galleys.Mint are

@NewGalley (main, main, fonts0, mainpf, style0, mroot, true)

@NewGalley (footnotes, annotations, fontsl, footpf, style0, mfoot, true)

@NewGalley (annotations, annotations, fontsi, notepf, style0,
mannotation, true)

@NewGalley (oddsandsods, miscellaneous, fonts2, oddspf, styleO,

Sys: Uscr>Hibbard>sredrefer.ine

Peter Hibbard

Mint Reference Manual State Files and Libraries 14-171

moddsandsods, true)
@NewGalley (contents, contents, fontsO, contpf, styleG, mcontents, false)

The allowed galley classes are as follows: main, annotations, miscellaneous and contents.
There may be one or more main galleys but they must all have the same starting procedure; there can be
any number of annotat jons galleys, and they are not restricted to having the same starting procedure;
therc can be only one miscellaneous galley; and the rules for contents galleys are the same as for
ma in galleys.

14.3.3.5 Miscellaneous properties

The following statements are taken from BasicDefs.Mint; their actions can be understood from the
rest of the Reference Manual.

@NewColour (Transparent, 0, 0, 255)
@NewColour (Black, 0, 0, 0)
@NewColour (White, 0, 0, 255)
@NewCoiour (GreyHT, 0, 0, 155)

@NewPattern (EmptyPattern)
@NewPattern (Linel, 1, 1, Black)

@NewBordarStyle (NoBorder, False, False, False, False, .

EmptyPattern, EmptyPattern, EmptyPattern, EmptyPattern)
@NewBorderStyle (Widthl, false, False, False, False,

Linel, Linel, Linel, Linel)

14.3.4 Font definitions

Mint allows very complete descriptions of the characters that occur in fonts; normally however it can
produce pleasing output without these descriptions. The exception arises with mathematical typesetting,
where full descriptions are needed. The state files contain information for typesetting using the Xerox
Times Roman fonts; other fonts (such are those produced by Metafont) could use this information, but
documents will look better if they use information specific to these fonts. This information can be extracted
from the . TFM files in the case of fonts produced by Metafont.

The information is collected into several collections — characteristics vectors — that are named; these
vectors arc then associated with font value objects; finally font value objects are associated with particular
fonts. In this way the same information can be reused.

Sys: User>Hibbard>sredreferj.inc

14-172 State Files and Libraries Mint Rcfgﬁifge‘?\}‘;%},;‘}

14.3.4.1 Characteristics vectors

Each vector element is a 16-bit number, one for cach character; packed into each number are a
collection of indirect pointers to specific values that exist in a font value object; using a level of indirection
allows the same characteristics vectors to describe several fonts. Character information has been grouped
into the four vectors according to the likelihood with which the several items will be needed
simultaneously. The information is:

CharBBI IX0', IY0, IXX', IYY, ICL, ICR
CharBBX X0,Y0, XX, YY

CharBBY VX0',VYO0,YRel, YT'

CharBBR XRel, XT'

The primed quantities are related to the unprimed ones described in section 5.4.1 as follows:

XT' = XT - XX

YT' = YT - YY + Y0 - VY0
IX0® = IX0 - X0

IXX' = XX - IXX

VX0' = VX0 + 0.5 * (XX - X0)

The following is an extract from file CharDefs.Mint

@NewCharBBIs (StandardBBI)

@SetCharBBI (StandardBBI, @Char (#041), 0, 1, 0, 3, 1, 4)
@SetCharBBI (StandardBBI, @Char (#042), 0, 6, 0, 1, 1, 4)
@SetCharBBI (StandardBBI, @Char (#043), 0, 1, 0, 4, 1, 4)
@SetCharBBI (StandardBBI, @Char (#044), 0, 1, 0, 1, 1, 4)
@SetCharBBI (StandardBBI, @Char (#045), 0, 1, 0, 1, 1, 5)
and the following from file MexDover.Mint
@NewCharBBXs (MathsBBX) .
@SetCharBBX (MathsBBX, @Char (#0), 0, 1, 0, 1)
@SetCharBBX (MathsBBX, @Char (#1), 0, 1, 0, 1)
@SetCharBBX (MathsBBX, 8Char (#2), 0, 1, 0, 1)
@SetCharBBX (MathsBBX, @Char (#3), 0, 1, 0, 1)
@SetCharBBX (MathsBBX, @Char (#4), 0, 1, 0, 1)
@NewCharBBYs (MathsBBY)
@SetCharBBY (MathsBBY, @Char (#0), 0, 0, 1, 0)
@SetCharBBY (MathsBBY, @Char (#1), 0, 0, 1, 0)
@SetCharBBY (MathsBBY, @Char (#2), 0, 0, 1, 0)
@SetCharBBY (MathsBBY, @Char (#3), 0, 0, 1, 0)
@SetCharBBY (MathsBBY, @Char (#4), 0, 0, 1, 0)

Sys:User>Ilibbard>sredreferi.ine

ﬁf}ﬁ{ ll{‘é?g-?;dcc Manual State Files and Libraries 14-173

14.3.4.2 Font value objects

The characteristics vectors describe very 'general appearances of fonts, such as the the fact that a lower
case a and x both sit on the base-line, and have the same height. For this reason the same characteristics
could describe a wide range of font families (such as all Times Roman fonts and all Univers fonts,
irrespective of their slope, weight or width). A font value object gives specific values to the indirect values
specified by the characteristics vectors. For example it will describe the actual height of the a and x;
moreover, these values are given in terms of font-relative units (such as ems), which in Mint need not be
the same size in horizontal and vertical directions. For this rcason a font value object can describe a family
of fonts (for example, all Univers fonts can be described to a reasonable degree of accuracy by the same
font value object).

Font value objects are defined in two steps. First, an object is declared using the NewFontValue
statement, and then specific values are given to it by the SetFontValue statement, which takes the name
of a characteristic, such as Y0, and an indirect pointer number, and the size of the value.

In the state files three font value objects are defined — that for normal and italic Times Roman fonts,
that for the mathematics symbol fonts, and that for the mathematics extension font. Extracts from the files
CharDefs.Mint,MathsDefs.Mint and MexDover.Mint follow.

@NewFontValues (StandardR)

@SetFontvalue (StandardR, IYO, 1, 1.00em)
@SetFontValue (StandardR, IYO, 2, 1.05em)
@SetFontValue (StandardR, IYY, 1, 0.00em)
@SetFontValue (StandardR, IYY, 2, 0.30em)
@SetFontValue (StandardR, ICL, 1, 0.00em)
SetFontValue (StandardR, ICR, 1, 0.00em)
@NewFontValues (StandardS)

@SetFontValue (StandardS, Y0, 1, -0.25em)
@SeiFontValue (StandardS, Y0, 2, -1.25em)
@SetFontValue (StandardS, YY, 1, 1.00em)
@SetFontValue (StandardS, YY, 2, 0.00em)
@NewFontValues (StandardM)

@SetFontValue (StandardM, YO, 1, -4.23em)
@SetFontValue (StandardM, Y0, 2, -2.12em)
@SetFontValue (StandardM, YO, 3, -6.35em)
@SetFontValue (StandardM, YY, 1, 0.00em)
@SetFontValue (StandardM, YY, 2, 2.64em)
@SetFontValue (StandardM, YY, 3, 0.39em)

14.3.4.3 Font information

The final stage of associating information with a font is to specify the characteristics vectors, the font
value object, and several other items of information (not all of which are used by Mint at present). The
following information is from file MexDover.Mint, which specifies the information for performing

Svs:User>Hibbard>sredreferj.inc

14-174 State Files and Libraries Mint Refoosr Hibbard

mathematical typesetting using the TimesRoman fonts; information is not associated with other fonts since

they are used only for normal text, and Mint's defaults are sufficiently good to produce reasonable-quality
2

output .

L“—----M\\ :> Font Value Object
Font ANY4
ediun £ §sg82¢8 8 222
Regular 1X0'
10 point 1Y0
CharBBI XX
ar
0 7 Yy
—— ICL
ICR
© = N T D O~ ﬁl‘g:
o O © o © © O 9 oM ™
- ™ ® R W W TR T Bk
X0
CharBBX Yo
_______._-/"—"" ar
/1 XX
—] Yy
S 0 2 w9 O 9O 9 m M,
‘\ ® O® T X ™! X R X X Ok ®
Font Information vve
vXo'
CharBBY
. YRel
YT
O = N M W 0D © ™~ 22:
o O 0 O © 9 © O ™m M m
® ® O T T T ™ x w® W
XRel
CharBER
XT'

Figure 8. Font information structures

@SetFontInfo (PressFile, CMathX10s10, Medium, Regular, 10 point, 0,
StandardM, 100 micas, 100 micas, , MathsBBX, MathsBBY)

@SetFontInfo (PressFile, TimesRoman10, Medium, Regular, 10 point, 0,
StandardR, , , StandardBBI)

@SetFontInfo (PressfFile, TimesRoman7, Medium, Regular, 7 point, 0,
StandardR, , , StandardBBI)

@SetFontInfo (PressfFile, TimesRoman6, Medium, Regular, 6 point, 0,

StandardR, , , StandardBBI)

@SetFontInfo (PressFile, TimesRoman10i, Medium, Regular, 10 point, 0.16,
StandardR, , , StandardBBI)

@SetFontInfo (PressFile, TimesRoman7i, Medium, Regular, 7 point, 0.16,
StandardR, , , StandardBBI)

@SetFontInfo (PressFile, TimesRoman6i, Medium, Regular, 6 point, 0.16,

2 However, the Se tSpac ing statement needs additional font information. The . Mss file for this section gives an example.

Sys: User>Hibbard>sreoreferj.ine

Peter I1ibbard
Mint Reference Manual

State Files and Libraries 14-175

StandardR, , , StandardBBI)
@SetFontInfo (PressFile, CMSy10s10, Medium, Regular, 10 point, 0,
StandardS, 8 poiants, 8 points, , SymbolBBX)
@SetFontInfo (PressFile, CMSy7s7, Medium, Regular, 7 point, 0,
StandardS, 5.6 points, 5.6 points, , Symbol1BBX)
@SetFontInfo {PressFile, CMSy6s6, Medium, Regular, 6 point, O,
StandardS, 4.8 points, 4.8 points, , SymbalBBX)

The third, fourth and fifth parameters specify the weight, width and nominal point-size; this
information is not used by Mint at present. The sixth parameter is the slope of the font, in radians measured
clockwise from the vertical; this is used to calculate the displacement of accents and the size of italic
corrections. The seventh parameter is the font value object that gives the specific values of the font
parameters. The cighth and ninth are the sizes for the em in the X and Y dircctions — if omitted the actual
size of the character at position #115 is used. The remaining parameters are the characteristics to be used.
Mint has a sequence of defaults to determine values for character parameters if information is not provided.

14.3.5 Counter and conversion definitions

Counters enter into the state files in two ways. First, they need to be declared with their accociated
parent counters, starting values and increments; second, they are used in prefixes. Over the first you have
full control, but over the second most of the decisions are buried inside prefix declarations built into Mint.
Some day it may become possible to specify prefixes at the . Mss levcl.

14.3.5.1 Registering conversions and counters

The conversions are built-in; identifiers are associated with the basic conversions using the StdConv
statement (from file BasicDefs.Mint; conversion 0 is required for internal reasons):

@StdConv (0)

@StdConv (1, RomanlC)
@StdConv (2, RomanUC)
@StdConv (3, Arabic)
@StdConv (4, AlphalLC)
@StdConv (5, AlphaUC)
@StdConv (6, LetterLC)
@StdConv (7, LetterUC)
@StdConv (8, Binding)

The statement Register is used for registering conversion styles and counters that are used in prefixes
before they are declared (this is the case with all the standard conversion styles and counters, but is unlikely
to be the case for other conversions and counters declared by the user). The following are in file
OtherDefs.Mint.

@Register (annotestyle, 0)
@Register (partstyle, 0)

Sys: User>Hibbard>src)referj.ine

14-176 State Files and Libraries Mint Refioier Hibbard

BRegister (pagestyle, 0)
@Register (chapterstyle, 0)

@Register (ChapterNo, 1)
@Register (SectionNo, 1)
@Register (SubSectionNo, 1)
@Register (ParagraphNo, 1)

@Register (PartNo, 2)
@Register (PageNo, 3)
@Register (AnnoteNo, 4)
@Register (EquationNo, 5)

A second parameter of 0 is used for the non-primitive styles, 1 is used for counters, and values greater than
1 are used for pseudo-counters. The meanings of these values are built into Mint.

14.3.5.2 Declaring counters

Counters that do not appear in prefixes do not need to be registered. However, they all need to be
declared. A declaration specifics the parent counter, the starting value and the increment:

@NewCounter (PartNo, , 1, 1)

@NewCounter (PageNo, PartNo, 1, 1)
@MewCounter (EquationNo, ChapterNo, 1, 1)
@NewCounter (ChapterNo, , 1, 1)

@NewCounter (SectionNo, ChapterNo, 1, 1)
@NewCounter (SubSectionNo, SectionNo, 1, 1)
@NewCounter (ParagraphNo, SubSectionNo, 1, 1)

These examples come from file Manual0Defs .Mint.

14.3.5.3 Associating conversions

For cach style that will be used in the document, a basic style must be associated using the AssocConv
statement. The following statements come from file Manual0Defs. Mint.

@AssocConv (AnnoteStyle, Arabic)
@AssocConv (PartStyle, Arabic)
@AssocConv (PageStyle, Arabic)
@AssocConv (PlaceStyle, Arabic)
@AssocConv (ChapterStyle, AlphauC)
@AssocConv (SectionStyle, Arabic)
@AssocConv (SubSectionStyle, Arabic)
@AssocConv (ParagraphStyle, Arabic)

Svs: User>Hibbard>sredreferj.inc

Peter Llibbard
Mint Reference Manual

State Files and Libraries ' 14-177

14.3.5.4 Prefixes

There are seven styles

of prefix. All of them are creatéd using the MakePref ix statement. The first

parameter is the identifier for the prefix, and the second is the style of the prefix. The rest of the parameters
are used in different ways by the different prefixes; they are:

Style 0

Style 1

Style 2

Style 3

Style 4

Style 5

Style 6

Declares a null prefix.

Declares a prefix that will centre a heading; the prefix that creates the heading
for each major section of this manual is defined by a prefix in this style. The
third parameter is the counter to be used, the fourth parameter is the conversion
style for the counter, and the fifth parameter is the lexeme that precedes the
number (in the case of this manual, which is form 1, the lexeme is Part).

Declares the standard section heading prefix. The third pafamcter is the counter
that gets incremented whenever such a prefix is used, and the fourth parameter
is the conversion style.

Declares the prefix used for tables and figures. The third parameter is the
counter that is used and incremented, the fourth parameter is the conversion
style, and the fifth parameter is the lexeme that precedes the counter.

Declares the prefix that generates the copyright notice and year. The third
parameter is the counter to be used, the fourth parameter is the conversion style
for the counter, and the fifth parameter is the lexeme that precedes the cypyright
symbol.

Declares the postfix that generates the equation number for cquations. The third
parameter is the conversion style.

Declares an prefix for an annotation. The third parameter is the lexeme that will
precede the annotation.

The following statements come from file Manual10Defs.Mint.

@MakePrefix (PrefixChapter, 1, ChapterNo, ChapterStyle, Chapter)
@MakePrefix (PrefixSection, 2, SectionNo, PlaceStyle)
@MakePrefix (PrefixSubSection, 2, SubSectionNo, PlaceStyle)
@MakePrefix (PrefixParagraph, 2, ParagraphNo, PlaceStyle)
@MakePrefix (PrefixFigure, 3, FigureNo, FigureStyle, Figure)
@MakePrefix (PrefixTable, 3, TableNo, TableStyle, Table)
@MakePrefix (PrefixCopyrtN, 4, CopyRtNo, CopyRtStyle, Copyright)
@MakePrefix (PostifixEgn, 5, EquationStyle)

The prefixes are associated with galleys through procedure families.

Sys:User>Hibbard>srcdreferj.inc

14-178 State Files and Libraries Min Referenco Mangal

14.3.5.5 Place conversions

Pscudo-counters generate a sequence of counter valucs, rather than a single one; there necds to be some
more control on the appearance of these values than that provided by the conversions. For example, the
PlaceConv style is set to be Arabic in the Manual document type, but for an appendix scction, the
place reference should appearasA.5,not 1.5. The statement ’

@ApplicTrans (AppendixNo, LetterUC)
specifies that the AppendixNo counterinaplacest y1e conversion should differ from the rest.

Finally, when place conversion is done, Mint needs to know where in the family of counters it should
stop searching for descendent counters. Thus if you declare (for example) a subparagraph counter that
counts within the paragraph counter, but you do not want it to appear when you should use the
placestyle conversion, you use the NewPCS statement. The following statements are in
Manual0Defs.Mint.

@NewPCS (ParagraphNo)
@NewPCS (AppendixSecNo)

14.3.5.6 Cross reference

When a dominating environment occurs within another environment, Mint needs to leave a cross
reference within the latter environment. This can be invisible (as is the case when a page command occurs
in a manuscript), or it can be visible (as is the case when a footnote occurs in a manuscript). These cross
references are declared using MakeCRef; the statement takes several paramcters, the first of which is an
indication of the style of cross-reference, and the second is the identifier for the cross reference. There are
three such styles:

Style 0 This declares the null cross reference.
Style 1 This declares the invisible cross reference used by page commands.
Style 2 This declares a footnote cross reference. The counter associated with the cross

reference is given by the third parameter.

The following is taken from file Manua10Defs.Mint.

@MakeCRef (0)
@MakeCRef (1, crpageactn)
@MakeCRef (2, crannote, annotestyle)

The null cross reference must occur first.

Svs:User>Ilibbarddsre>referf.inc

Potcr Hibbard State Files and Libraries 14-179

14.3.6 Presentation definitions

14.3.6.1 Page styles

Page styles are associated with box environments through the use of the PageStyle environment
parameter. This parameter specifics which entry in the layout vector of a presentation will be used for
creating the pages for this environment. Two page styles, skip and default, play a special role in page
layout, as follows. A page style may specify that the current box, and all that follow it that have skip for
their page style. are to be laid out using the same routine; such a page style is comntinuing. Alternatively, a
page style can specify that it is not continuing, in which case only the current box and those nested within it
that have skip for their page styles will be converted using the specified layout. Examples of these two
cases are the chapter environment, which specifies the page style default (which is continuing), and
forces all boxes that follow to be laid out using the same layout; and the titlepage environment, which
only controls the layout of environments nested within it. If a non-continuing page layout is followed by an
environment that specifies sk ip, then a layout of default is assumed.

The following are the page style declarations in PageDefs.Mint:

@NewPageStyle (Skip, True)
@NewPageStyle (Default, True)
@NewPageStyle (TitlePage, False)
@NewPageStyle (Contents, False)

The second parameter specifies whether the page style is continuing or not.

14.3.6.2 Presentations

Presentations map between page styles and layouts, and provide the data structures — the parts — that
contain the finished pages. Parts are associated with a presentation using the AssocPart statement; the
second parameter is the name of the part. The following are from file PageDefs.Mint:

@NewPresentation (Standard)
@AssocPart (Standard, TitlePage)

@AssocPart (Standard, Contents)
@AssocPart (Standard, MainBody)

The printing routines that are invoked by the Mint command interface simply print the pages in each of the
parts in the order in which the parts are associated with the presentation.

Sys: User>Hibbard>src>referj.inc

14-180 State Files and Libraries Mint Refaor Hibbard

14.3.6.3 Layouts

A layout has to be associated with each entry of the layout vector. The vector contains an entry for each
page style except for skip. A layout comprises an indication of a layout routine, and the parameters that
will get passed to it when it is invoked. There are four layout routines; each has a different statement to
specify the parameters. For example NewDefault is used to create a layout that will usc the Default
layout routine. In general two sorts of parameter can be passed to the layout routines — thosc that have a
global effect, like FinishonEven, and those that control the appearance of the page arcas. Parameters of
the second sort are collected up into page area parameters, which are objects that can be declared. More
details are given in section 8.2.

No page area parameters are used by the standard layouts; however, a null set of page area parameters
must be declared.

To associate a layout with the layout vector of some presentation, it is necessary to specify which part
the pages will get sent to by using the AssocLayout statement. The first and sccond parameters specify
the presentation and the part, the third parameter specifies the page style. and the fourth parameter
specifies the layout that will be used to create the pages.

'The following arc from PageDefs.Mint.

@NewAreaParams ()

@NewTitlePage (TLayout, True, , ,)

@NewContents (CLayout, True, , , , False, False)
@NewDefault (DlLayout, True, , , , False, False)
@NewPasteup (PLayout, True, , , , False)

@AssoclLayout (Standard, TitlePage, TitlePage, TLayout)
@AssocLayout (Standard, Contents, Contents, CLayout)
@AssoclLayout (Standard, MainBody, Default, DLayout)

14.3.7 Bibliographies, contents definitions and indexes

Several bibliographies are declared in the standard state files, however it is the user’s responsibility to
ensure that the correct set of bibliography macros are used to lay out the bibliography. The following occur
inBasicDefs.Mint

@NewBib (StdNumeric,
@""@begin(r)[", @Char (’,)@Char (Sp), @""J@end(r)",
KeyWord, Numeric, **)

@NewBib (StdAlphabetic,
@""@begin(r)[", 8Char (',)@Char (Sp). @""J@end(r)>",
KeyWord, Alphabetic, ******)

@NewBib (CACM,

Sys: User>Hibbard>sre>referj.ine

Peter Hibbard ranual State Files and Libraries 14-181

@""@begin(r)[", @Char (',)@Char (Sp), @""]@end(r)",
KeyWord, Numeric, **)

@NewBib (IEEE,
@""@begin(r)@begin(+)", @Char (',), @""@end(+)@end(r)",
CiteOrder, Numeric, **)

The first parameter is the bibliography identifier — this occurs in the bibstyle parameter in the make
statement. The next three parameters specify the starting string, the separating string, and the terminating
string in citations. The fifth and sixth parameter specify the way the citations will be sorted into the
bibliography, and the way the citations will appear. The last parameter gives the filler lexeme that will be
placed into the slugs before the citation is known.

Several conditions need to be satisfied for tables of contents to be created. First, the document type
must have a galley whose type is Contents; this is the case for document types manual, report and
thesis. Second, the presentation must have an entry in the contents position of the layout vector; this
is the case for the document types above. Third, contents tables must have been defined: the statements
below show how to do this. Finally, macros definitions must be available: the contentsmacros library
supplies suitable ones.

Contents tables are declared using the NewContentsTab1e statement. Each contents table will appear
on a new page (possibly an odd numbered page, depending on the value of FinishonEve n). The first
parameter is the name of the table; the second parameter is non-null if the entry in the table is to be the text
of the caption within an environment, rather than the text of the environment itself. The following are from
file BasicDefs.Mint.

@NewContentsTable (Figures, True)
@NewContentsTable (Tables, True)
@NewContentsTable (Sections)

After a contents table has been defined, environments are associated with it. The text from these
environments, or from the captions within-them, will be used to create the table of contents. The following
occur in Manual10Defs.Mint.

@AssocContents (Figures, Figure)
@AssocContents (Tables, Table)
@AssocContents (Sections, Chapter)
@AssocContents (Sections, Section)
@AssocContents (Sections, SubSection)
@AssocContents (Sections, Paragraph)
@AssocContents (Sections, Appendix)
@AssocContents (Sections, AppendixSection)

The mechanism that is used to create the tables is as follows (illustrated for the Sections table). Mint first
calls a macro beginsections, with no parameters; then it calls macros tcchapter, tcsection, et,

Sys:User>Hibbard>srcdreferj.inc

14-182 State Files and Libraries Mint Reforoicr Hibbard

with a label parameter and the text of the environment? for each environment that is to appear in the
table; finally Mint calls a parameterless macro endsections. The macro definitions in the library file
contentsmacros illustrate how to use these calls.

Currently there are no statements in the state files to help create indexes.

14.3.8 Deyice definitions

Mint specifies the characteristics of devices using a hierarchy of definitions. At the lowest level are device
drivers and font formats. Mint's understariding of these is built-in, and major programming is needed to add
more drivers and font formats. At the next level device classes arc defined. A device class corresponds to a
collection of devices, all using the same driver and same font representation, and having the same raster
resolutions. Finally specific devices are declared. A device gives specific values to some characteristics, in
particular the size of the page, and in addition is associated with specific crossproofing fonts (that may be a
mistake).

It is unlikely that any driver will be able to handle any more than one font format, so users don’t get
much frecdom to define their own device classes. The statement NewDClass specifies the name of the
device class, the driver and fornat, the resolutions in the X and Y directions (in rasters, pixels, or whatever
it is that the device driver understands, per basic unit of length, whatever that has been chosen to be, see
section 14.3.1.3), the internal scaling factor (used to avoid 16-bit overflow), and the raster drawing
operations available to the device, expressed as a bit string. The following are from BasicDefs. Mint.

@NewDClass (PergScreen, PergqDriver, KstFormat, 90, 96, 1, #377)
@NewDClass (PressFile, PressDriver. XeroxFormat, 2540, 2540, 5, #20)

Devices can be declared at any time (in the Sapphire version they are declared automatically when you
change the document window size). A device declaration gives an identifier, which appears in the
crossproofing statements, and may be used interactively while the presentation is being viewed, and also
binds the size of the page. Mint requires no modification to make use of devices with different page sizes
(e.g. large flat-bed plotters, A4 paper, landscape displays). The following are from BasicDefs.Mint.

@NewDevice (Perq, PerqScreen, 8.4 in, 9.5 in)
@NewDevice (Dover, PressFile, 8.5 in, 11 in)

B Footnotes are stripped from it, of course.

Sys:User>Hibbard>stedreferj.inc

Peter Hibbard sanual State Files and Libraries 14-183

14.3.9 Mathematical definitions

Most of the fine-structure of the mathematical typesetting facilities arc obtained through statements that
are in the state files. Should the facilities I have provided not prove rich enough, it is likely that you will
need to alter these statements. In particular, the appearance of the mathematical typesetting has been tuned
for a particular set of fonts (a non-standard blend of Times Roman and Metafont fonts) and if you chose to
use other fonts you will probably wish to re-tune the parameters.

14.3.9.1 Composite symbols

The large brackets are created by combining several separate glyphs. For example, a large brace consists
of a top picce (1), several repetitions of an extension piece (1), a middle part (’}), several more repetitions
of the extension part (1), and finally a boitom part (J). Such a brace can be described by the finite state
expression AB*CB*D. Mint uses such expressions, together with knowledge of which glyphs correspond to
A, B, etc, to create the brackets. The MathsVCA statement is used to describe such glyphs. The first
parameter is a smail number that identifies the glyph (this number gets used in the paren, brace, e,
statements in the maths environments), the second is a small number that specifies the finite state
description of the glyph, then follow four glyphs (which wiil come from the maths extension font) that go to
make up the glyph, followed by some number of glyphs, which are single character representations of the
glyph, in increasing size. For example, 8 is an open parenthesis, 9 is the finite state expression AB*C for
vertical glyphs (there’s ancther value for horizontal glyphs), characters #100, #102 and #60 are the
bottom part, middle extension and top part of large open parentheses, and characters #0, #20, #22 and

#40 are single character open parentheses of increasing size.

The following is from MathsDefs.Mint.

@MathsVCA (7, 0)

@MathsVCA (8, 9, @Char (#100), @Char (#102), @Char (#60), @Char (#377),
@Char (#0), @Char (#20), @Char (#22), @Char (#40))

@MathsVCA (9, 9, @Char (#101), @Char (#103), @Char (#61), @Char (#377),
@Char (#1), @Char (#21), @Char (#23), @Char (#41))

@MathsVCA (10, 10, @Char (#72), @Char (#76), @Char (#74), @Char (#70),
@Char (#10), @Char (#32). @Char (#50))

14.3.9.2 Spacings

To define the spacings that occur between symbols, two steps are taken. First, for each ordered pair of
symbol types you have to specify symbolically the spacing that is needed between them; this is done using
the statement SetSpType. Then you have to give the size of each spacing type using the statement
SetSpValue, for each of the font sizes n, s and ss, in terms of thousandths of an em — the absolute size
of the em is determined from the font characteristics of the m0 font used for the current maths mode. The
following come from MathsDefs.Mint.

Sys:User>Hibbard>srcdreferj.inc

14-184

State Files and Libraries

Peter [libbard
Mint Reference Manual

@SetSpType
@SetSpType
@SetSpType
@SetSpType
@SetSpType
@SetSpType
@SetSpType
@SetSpType
@SetSpType
@SetSpType

@SetSpValue
@SetSpValue
@SetSpValue
@SetSpvalue
@SetSpValue
@SetSpValue
@SetSpValue
@SetSpValue
@SetSpValue

(Ord, Ord, Thin)
(Ord, Ordl, Thin)
(Ord, Num, Thin)
{Ord, Op, Thin)
(Ord, BinOp, Op)
(Ord, RelOp, Thick)
(Ord, Word, Fat)
(Ord1, Ord, Thin)
(Ord1, Ordl, Hair)
(Ord1, Num, Thin)

(Thin, n, 167)
(Thin, s, 167)
(Thin, ss, 167)
(Control, n, 222)
(Control, s, 167)
(Control, ss, 167)
(Op., n, 222)

(Op, s, 67)

(Op, ss, 67)

In addition to the inter-symbol spacings, there are other values that are used by the mathematical

typesetting parts of Mint. The MathsParams statement sets these values. See section 12.3.6 for what they

@MathsParams (0.30em, 0.07em, 0.14em, 0.05em, 0.17em. 0.14em, 0.09em,
-0.10em, -0.09em, -0.09em, -0.06em, 0.04em, 0.04em, 175)

14.3.9.3 Standard symbols

I have included a few common definitions in the file MathsDefs.Mint. They aren’t intended to be

exhaustive, and they aren’t representative either. Anyone who wants to come up with a short list of
definitions should let me know. The following are some of the definitions.

eMDef
@MDef
eMDef
@MDefT
@MDef
@MDef
@MDef
GMDef
GMDef
@MDef
eMDef
@MDef
@MDef
@MDef

(otilde, @Char (#176), Over, MO)
(sin, sin, Op, MO)

(cos, cos, Op, MO)

(+, +, BinOp, M0)

(-, @Char (#30), BinOp, MO)
(*, @Char (#02), BinOp, M2)
(1e, @Char (#24), RelOp, M2)
(ge., @Char (#25), RelOp, M2)
(ne, @Char (#34), RelOp, M2)
(<, <, RelOp, MD)

(>, >, RelOp, MO)

((, (. Open, MO)

(s, ;. Punct, MO)

(inf, @Char (#61), Ord, M2)

Sys: User>Hibbard>sre>referj.ine

§ﬂ§{ gélf)gg,%e Manual State Files and Libraries 14-185

14.3.9.4 Mathematical fonts

The following are the font associations; they are extraced from file mfontsOdover.mint.

@AssocFont (Fonts0, n, m0, TimesRoman10)
@AssocFont (Fonts0, n, m1l, TimesRoman10i)
@AssocFont (Fonts0, n, m2, CMSy10S10)
@AssocFont (Fonts0, s, m0, TimesRoman7)
@AssocFont (FontsO, s, ml, TimesRoman7i)
@AssccFont (Fonts0O, s, m2, CMSy7S7)
@AssocFont (Fonts0, ss, m0, TimesRoman6)
@AssocFont (Fonts0, ss, ml, TimesRoman6i)
@Assocfont (Fonts0, ss, m2, CMSy6S6)

@AssocPrivF (Fonts0, maths, CMathX10S10)

14.3.10 State file definitions

The first three parameters to a make statement are simply concatenated together to vield a state file
name that is then read; there is nothing intrinsic in these parameters that specifies that the state file will be
appropriate for the document type, form and device given24, nor are the document type, form number and
device recorded in the file automatically. The statement SetDumpP specifies the values that will get
returned by @value{documenttype), @value(form) and @val ue(device). This statement occurs
in file ManualODover.Miat. A

@SetDumpP (manual, 0, dover)

2 Of course, all the standard state files that I have created do conform to expectations.

Sys:User>Hibbard>sredreferj.inc

	0001
	001
	002
	003
	004
	005
	006
	007
	01-001
	01-002
	01-003
	01-004
	01-005
	01-006
	01-007
	01-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	03-025
	03-026
	03-027
	03-028
	03-029
	03-030
	03-031
	03-032
	03-033
	03-034
	03-035
	03-036
	03-037
	03-038
	03-039
	03-040
	04-041
	04-042
	04-043
	04-044
	04-045
	04-046
	04-047
	04-048
	04-049
	04-050
	04-051
	04-052
	04-053
	04-054
	04-055
	04-056
	04-057
	04-058
	04-059
	04-060
	04-061
	04-062
	04-063
	04-064
	04-065
	04-066
	04-067
	04-068
	05-069
	05-070
	05-071
	05-072
	05-073
	05-074
	05-075
	05-076
	05-077
	05-078
	05-079
	05-080
	06-081
	06-082
	06-083
	06-084
	06-085
	06-086
	06-087
	06-088
	06-089
	06-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	08-101
	08-102
	08-103
	08-104
	08-105
	08-106
	08-107
	08-108
	08-109
	08-110
	08-111
	08-112
	08-113
	08-114
	09-115
	09-116
	09-117
	09-118
	09-119
	09-120
	09-121
	09-122
	09-123
	09-124
	10-125
	10-126
	10-127
	10-128
	10-129
	10-130
	11-131
	11-132
	11-133
	11-134
	12-135
	12-136
	12-137
	12-138
	12-139
	12-140
	12-141
	12-142
	12-143
	12-144
	12-145
	12-146
	12-147
	12-148
	12-149
	12-150
	12-151
	12-152
	12-153
	12-154
	12-155
	12-156
	13-157
	13-158
	14-159
	14-160
	14-161
	14-162
	14-163
	14-164
	14-165
	14-166
	14-167
	14-168
	14-169
	14-170
	14-171
	14-172
	14-173
	14-174
	14-175
	14-176
	14-177
	14-178
	14-179
	14-180
	14-181
	14-182
	14-183
	14-184
	14-185

