CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Hemlock Command Implementor’s Manual

Rob MacLachlan
Skef Wholey

21 August 1984

Spice Document S177
Keywords and index categories: <not specified>
Location of machine-readable file: HEM0.MSS.20 @ CMU-20C

Copyright © 1984 Carnegie-Mellon University

This is an internal working document of the Computer Science Department, Carnegie-Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government. ’

INDEX

1. Introduction
2. Representation of Text
2.1. Lines
2.2. Marks
2.2.1. Kinds of Marks
2.2.2. Mark Functions
2.2.3. Making Marks
2.2.4. Moving Marks
2.3. Regions
2.3.1. Region Functions
3. Buffers
3.1. The Current Buffer
3.2. Buffer Functions
4. Predicates
4.1. Type Predicates
4.2. Text Predicates
5. Doing Stuff and Going Places

5.1. Altering Text

5.2. Searching and Replacing

6. The Current Environment
6.1. Different Scopes
6.2. Shadowing

7. Hemlock Variables
7.1. Variable Names
7.2. Variable Functions
7.3. Hooks

8. Commands

8.1. Introduction

8.1.1. Defining Commands

Table of Confents

8.1.2. Command Documentation

8.2. The Command Interpreter

8.2.1. Binding Commands to Keys
8.2.2. Transparent Key Bindings

8.2.3. Extended Commands

8.3. Command Types
8.4. Command Arguments

8.4.1. The Prefix Argument

8.4.2. Lisp Arguments
8.5. Recursive Edits
9. Modes

9.1. Mode Hooks

9.2. Major and Minor Modes

9.3. Mode Functions

VOO O AANANNWL B P AW W

1

INDEX

10. Character Attributes

10.1. Introduction

10.2. Character Attribute Names
10.3. Character Attribute Functions
10.4. Character Attribute Hooks

11. Controlling the Display

12.

13.

14.

15.

11.1. Windows

11.2. The Current Window
11.3. Modelines

11.4. Window Functions
11.5. Cursor Positions

11.6. Redisplay

Logical Characters

12.1. What a Logical Character is

12.2. Logical Character Functions
12.3. Standard Logical Characters
The Echo Area

13.1. Echo Area Clearing

13.2. Echo Area Functions

13.3. Prompting Functions

13.4. Control of Parsing Behavior
13.5. Defining New Prompting Functions
13.6. Standard Echo Area Commands
Hemlock’s Lisp Environment

14.1. Leaving the Editor

14.2.1/0

14.3. Hemlock Streams

14.4. Interface to the Error System
14.5. File Reading and Writing
Utilities

15.1. String-table Functions

15.2. Manipulating Ring Buffers

Index
Index

ii

28
28
29
30

3

3
31
31
32
3
34
35

35
35
36

38
38
39
42
42

45

45
45

4
48
48
49
50
51

INEMIL.OCK COMMAND IMPLEMENTOR'S MANUAL 2

Chapter 1

Introduction

Hemlock is a text editor which follows in the tradition of editors such as EMACS and the Lisp Machine
editor ZWEL In its basic form, Hemlock has almost the same command set as EMACS, and similar features
such as-multiple buffers and windows, extended commands, and built in documentation.

‘Both user extensions and the original commands-are written in Lisp, therefore a command implementor will
have a working knowledge of this language. Users not familiar with Lisp need not despair however. Many
users of Multics EMACS, another text editor written in lisp, came to learn Lisp simply for the purpose of
writing their own editor extensions, and found, to their surprise, that it was really pretty easy to write simple
commands.

This document describes the COMMON LISP functions, macros and data structures that are used to imple-
ment new commands. The basic editor consists of a set of Lisp utility functions for manipulating buffers and
the other data structures of the editor as well as handhng the display. All user level commands are written in
terms of these functions. To find out how to define commands see chapter 8.

HEMI.OCK COMMAND IMPLEMENTOR'S MANUAL 3

Chapter 2

Representation of Text

2.1. Lines

In Hemlock all text is in some line. Text is broken into lines wherever it contains a newline character;
newline characters are never stored, but are assumed to exist between every pair of lines. The implicit
newline character is treated as a single character by the text primitives.

line-string line [Function]
Given a line, returns as a simple string the characters in the line. turned. To change theructively
modify the string returned. To change the characters in a line this may be set with setf. If the
Tine-string he string it was set error to destructively modify the string it was set to. It is.an
error to set 1ine-string to a string which contains newline characters.

line-previous line [Function)
Given a line, returns the previous line or ni1 if there is no previous line.

Tine-next line [Function)
Given a line, returns the next line or ni1 if there is no next line.

line-buffer line [Function)
Returns the buffer which contains this /ine. Note that a line may not be associated with any buffer,
in which case 1ine-buffer returns nil.

line-Tength line [Function]
Returns the number of characters in the Jine. This does not include the newline character at the
end.

line-character line index [Function]

Return the character at position index within /ine. It is an error for index to be greater than the
length of the line or less than zero. If index is equal to the length of the line then a newline is
returned.

HEMILOCK COMMAND IMPLEMENTOR'S MANUAL 4

Tine-plist line [Function]
Returns the property-list for /ine, which is set to ni1 whenever the linc’s contents are changed, and
possibly at other arbitrary times. setf, getf, putf and remf can be used to change properties.
The primary use of this is to cache information about the line’s contents.

2.2. Marks

A mark indicates a specific position within the text represented by a line and a character position within that
line. Although a mark is sometimes loosely referred to as pointing to some character, it in fact points between
characters. If the charpos is zero, the previous character is the newline character separating the previous
line from the mark’s 1ine. If the charpos is equal to the number of characters in the line, the next character
is the newline character scparating the current line from the next. If the mark’s line has no previous line, a
mark with charpos of zero has no previous character; if the mark’s line has no next line, a mark with
charpos equal to the length of the line has no next character.

2.2.1. Kinds of Marks

A mark may have one of two lifetimes: temporary or permanent. Permanent marks remain valid after
arbitrary operations on the text; temporary marks do not. Temporary marks are used because less book-
keeping overhead is involved in their creation and use. If a temporary mark is uscd after the text it points to
has been modified results will be unpredictable. Pcrmanent marks continue to point between the same two
characters regardless of insertions and deletions made before or after them.

There are two different kinds permanent marks which differ only in their behavior when text is inserted at
the position of the mark; text is inserted to the left of a lefi-inserting mark and to the right of right-inserting
mark.

2.2.2. Mark Functions

mark-1ine mark [Function]
Returns the line that mark points to.

mark-charpos mark : [Function)
Returns the character position the mark points to.

mark-kind mark : [Function]
Returns one of :right-inserting, :1eft-inserting or :temporary depending on the
mark’s kind. A corresponding setf form changes the mark’s kind.

HEMILOCK COMMAND IMPLEMENTOR'S MANUAL 5

previous-character mark : [Function]

next-character mark [Function)
Returns the character immediately before (after) the position of the mark, or nil if there is no
previous (next) character. These characters may be set with setf. ‘

2.2.3. Making Marks

mark line charpos &optional kind [Function]
Returns a mark object that points to the charpos’th character of the line. kind is the kind of mark to
create, one of :temporary, :left-inserting or :right-inserting. The default is

:temporary.

copy-mark mark &optional kind [Function]
Returns a new mark pointing to the same position and of the same kind, or of kind kind if it is
supplied. '

delete-mark mark i [Function]
Deletes the mark. This should be done to any mark which may be permanent when it is no longer
needed.

with-mark ({(mark pos [kind])}*) {form}* [Macro]

Binds to each variable mark a mark of kind kind, which defaults to : temporary, pointing to the
same position as the mark pos. On exit from the scope the mark is deleted. The value of the last
form s the value returned. ’ '

2.2.4. Moving Marks

These functions destructively modify marks to point to new positions.

move-to-position mark charpos &optional line [Function]
Changes the mark to point to the given character position on the line line. line defaults to the line
the mark is currently on.

move-mark mark new-position [Function]

Moves mark to the same position as the mark new~position and returns it. .

line-start mark &optional line [Function]

line-end mark &optional line [Function]
Changes mark to point to the beginning or the end of /ine and returns it. Jine defaults to the line
that mark is currently on.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 6

buffer-start mark &optional buffer [Function)

buffer-end mark &optional buffer [Function]
Change mark to point to the beginning or end of buffer, which defaults to the buffer mark currently
points into. If buffer is not supplicd then it is an error for mark not to point into some buffer.

mark-before mark [Function]

mark-after mark [Function]
Change mark to point one character before or after the current position. If there is no character
before/after the current position then they return ni1 and leave mark unmodified.

character-offset mark n - [Function]
Changes mark to point n characters after (n before if n is negative) the current position. If there
aren’t n characters after (before) the mark, then ni1 is returned and mark is not modified.

line-offset mark n &optional charpos [Function]
Changes mark to point 7 lines after (n before if n is negative) the current position. The character
position of the resulting mark is '
(min (line-length resulting-line) (mark-charpos mark))
if charpos is unspecified, or '
(min (Vline-length resulting-line) charpos)
ifitis. As with character-offset, if there are not n lines then n1i1 is returned and mark is not
modified.

2.3. Regions

A region is simply a pair of marks: a starting mark and an ending mark. The text in a region consists of the
characters following the starting mark and preceding the ending mark (keep in mind that a mark points
between characters on a line, not at them).

By modifying the starting or ending mark in a region it is possible to produce regions with a start and end
which are out of order or even in different buffers. The use of such regions is undefined and may result in
arbitrarily bad behavior.

2.3.1. Region Functions

region siart end [Function]
Returns a region constructed from the marks start and end. It is an error for the marks to point to
non-contiguous lines or for start to come after end.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 7

make-empty-region [Function]
Returns a region with start and end marks pointing to the start of one empty line. The start mark is
a right-inserting mark and the end is a left-inserting mark.

copy-region region [Function]
Returns a region containing a copy of the text in the specified region.

region-to-string region [Function]

string-to-region string [Function]
Coerce regions to Lisp strings and vice versa. Within the string, lines are delimited by newline
characters.

line-to-region line [Function]

Returns a region containing all the characters on /ine. The first mark is right-inserting and the last
is left-inserting.

region-start region [Function]
region-end region [Function]
Returns the start or end mark of region.

region-bounds region [Function]
Return as multiple-values the starting and ending marks of region.

set-region-bounds region start end [Function]
Set the start and end of region to start and end. It is an error for the start to be after or in a different
buffer from the end. Someday this will be a setf form for region-bounds.

count-lines region ' [Function]
Returns the number of lines in the region, first and last lines inclusive. A newline is associated with
the line it follows, thus a region containing some number of non-newline characters followed by
one newline is one line, but if a newline were added at the beginning, it would be two lines.

count-characters region [Function]
Returns the number of characters in a given region. The line breaks are counted as one character.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 8

Chapter 3
Buffers

A buffer is an environment within Hemlock consisting of:

1. A name.

2. A piece of text.

3. A current focus of atténtion, thé point.
4. An associated file (optional).

5. A write protect flag.

6. Some variables (page 17).

7. Some key bindings (page 22).

8. Some collection of modes (page 26).

9. Some windows in which it is displayed (page 31).

3.1. The Current Buffer

current-buffer [Function]
Set Buffer Hook [Hemlock Variable]
After Set Buffer Hook [Hemlock Variable]

current-buffer returns the current buffer object. Usually this is the buffer that
current-window (page 31) is displaying. This value may be changed with setf, in which case
"Set Buffer Hook" is invoked beforehand with the new value. After the buffer is changed,
"After Set Buffer Hook" isinvoked with the old value.

HEMI.OCK COMMAND IMPLEMENTOR'S MANUAL 9

current-point [Function]
This function returns the buffer-point of the current buffer. This is such a common idiom in
commands that it is defined despite its trivial implementation.

puffer-list [Variable]
Holds a list of all the buffer objects made with make-buffer.

buffer-names [Variable]
Holds a string-table (page 48) of all the names of the buffers in *buffer-1ist*. The values of
the entries are the corresponding buffer objects.

3.2. Buffer Functions
make-buffer name &optional modes [Function}
Make Buffer Hook [Hemlock Variable]

make-buffer creates and returns a buffer with the given name. If a buffer named name already
exists, ni1 is returned. modes is a list of modes which should be in effect in the buffer, major mode
first, followed by any minor modes. If this is omitted then the buffer is created with the list of
modes contained in "Default Modes" (page 26).

Buffers created with make-buffer are entered into the list *buffer-1ist*, and their names
are inserted into the string-table *buffer-names*. When a buffer is created the hook
"Make Buffer Hook" isinvoked with the new buffer.

buffer-name buffer [Function]

Buffer Name Hook [Hemlock Variable]
buffer-name returns the name of the given buffer, a string. The corresponding setf form sets
the buffer name. If an attempt is made to set the buffer name to one that already exists then no
renaming is done and ni1 is returned. The hook "Buffer Name Hook" is invoked with the
buffer and the new name when the name is changed.

buffer-region buffer [Function)
Returns the buffer's region. This can be set with setf. *

buffer-pathname buffer . [Function)

Buffer Pathname Hook [Hemlock Variable]

buffer-pathname returns the pathname of the file associated with the given buffer, or nil if it
has no associated file. This is the truename of the file as of the most recent time it was read or
written. There is a setf form to change the pathname. When the pathname is changed the hook
*Buffer Pathname Hook" isinvoked with the buffer and new value.

HEMLOCK COMMAND IMPLEMENTOR’S MANUAL 10

buffer-point buffer [Function]
Returns the mark which is the current location within buffer. To move the point, use move-mark
ormove-to-position (pageS) rather than sctting buffer-point with setf.

buffer-writable buffer [Function]
Returns t if the buffer can be altered, ni1 if it can’t. There is a setf form to change this value. ‘

buffer-modified buffer [Function]
Returns t if the buffer has been modified, ni1 if it hasn’t. This attribute is set whenever a
text-altering operation is performed on a buffer. There is a setf form to change this value.

buffer-variables buffer [Function]
Returns a string-table (page 48) containing the names of the buffer’s local variables.

buffer-windows buffer [Function]
Returns the list of all the windows in which the buffer may be displayed. This list may include
windows which are not currently visible. See page 31 for a discussion of windows.

delete-buffer buffer [Function)

Delete Buffer Hook [Hemlock Variable]
delete-buffer removes buffer from *buffer-list* (page 9) and its name from
buffer-names (page9). Before the buffer is deleted the hook "DeTlete Buffer Hook"is
invoked with the buffer.

IIEMLOCK COMMAND IMPLEMENTOR'S MANUAL 11

Chapter 4

Predicates

4.1. Type Predicates

The following are implemented as structures and thus have type predicates defined: 1ine, mark, region,
buffer,window,string-table, ring, command and search-pattern.

4.2. Text Predicates

start-line-p mark [Function]
Returns t if the mark points before the first character in a line, ni1 otherwise.

end-1ine-p mark [Function}
Returns t if the mark points after the last character in a line and before the newline, ni1 otherwise.

empty-line-p mark [Function]
Return t of the line which mark points to contains no characters.

blank-1ine-p line [Function]
Returns t if /ine contains only characters with a "Whitespace" attribute of 1. See chapter 10 for
discussion of character attributes.

blank-before-p mark [Function)

blank-after-p mark [Function]
These functions test if all the characters preceding or following mark on the line it is on have a
"Whitespace" attribute of 1.

same-line-p mark! mark2 [Function)
Returns t if mark! and mark2 point to the same line, or ni1 otherwise. i.e.:
(same-1ine-p a b) <==> (eq (mark-line a) (mark-line b))

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 12

mark< mark! mark2 [Function)
mark<= markl mark2 [Function]
mark= markl mark2 [Function]
mark/= markl mark2 [Function]
mark>= markl mark2 [Function]
mark> markl mark2 [Function]

These predicates test the relative ordering of two marks in a piece of text, that is a mark is mark>
another if it points to a position after it. If the marks point into different, non-connected pieces of
text, such as different buffers, then it is an error to test their ordering; for such marks mark= is
always false and mark /= is always true.

line< linel line2 [Function]
line<= linel line2 ' [Function]
line>= linel line [Function]
line> linel line2 ' [Function]

These predicates test the ordering of line/ and line2. If the lines are in unconnected pieces of text it
is an error to test their ordering.

lines-related linel line2 [Function]
This function returns t if /inel and line2 are in the same piece of text, or ni1 otherwise.

first-1ine-p mark [Function]

last-line-p mark [Function)
first-1ine-p returns t if there is no line before the line mark is on, and nil otherwise.
last-line-p similarly tests tests whether there is no line after mark.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 13

Chapter 5
Doing Stuff and Going Places

5.1. Altering Text

A note on marks and text alteration: : temporary marks are invalid after any change has been made to the
text the mark points to; it is an error to use a temporary mark after such a change has been made. If text is
deleted which has pcrmanent marks pointing into it then they are left pointing to the position where the text
was.

insert-character mark character {Function]
insert-string mark string [Function)
insert-region mark region ' [Funciion]

Inserts a character, string or region at mark.

ninsert-region mark region ’ [Function]
Line insert-region, inserts the region at the mark’s position, destroying the source region. This
must be used with caution, since if anyone else can refer to the source region bad things will
happen. In particular, one should make sure the region is not linked into any existing buffer.

delete-characters mark n ' [Function]
Deletes n characters after the mark (or -n before if n is negative). If there are not s characters after
(or n after) the mark, then ni1 is returned; otherwise t is returned.

delete-region region » . [Function]
Deletes the region. This is faster than delete-and-save-region (below) because no lines are
copied.

delete-and-save-region region [Function)

Deletes the region, and returns a region containing the original region’s text.

HEML.OCK COMMAND IMPLEMENTOR'S MANUAL 14

filter-region function region [Function]
Destructively modifies region by replacing the text of cach line with the result of the application of
function to a string containing that text. function must obey the following restrictions:

1. The argument may not be destructively modified.
2. The return value may not contain newline characters.

3. The return value may not be destructively modificd after it is returned from function.
The strings are passed in order, and are always simple strings.

Using this function, a region could be uppercased by doing:
(filter-region #’'string-upcase region)

5.2. Searching and Replacing

Before using any of these functions to do a character search, look at character attributes (page 28). They
provide a facility similar to the syntax table in real EMACS. Syntax tables are a powerful, general, efficient,
and otherwise gencrally winning way of dealing with what characters do what in which mode. Character
attributes in Hemlock are even more general way of attacking this problem.

search-char-code-1limit [Constani]
An exclusive upper limit for the char-code of characters given to the searching functions. The result
of searches for characters with a char-code greater than or equal to this limit is ill-defined, but it is
not an error to do such searches. Bits and font are always ignored.

new-search-pattern kind direction pattern &optional result-search-pattern [Function]
Returns a search-pattern object which can be given to the find-pattern and
replace-pattern functions. A search-pattern is a specification of a particular sort of search to
do. direction is either :forward or :backward, indicating the direction to search in. kind
specifies the kind of search pattern to make, and pattern is a thing which specifies what to search
for.

The interpretation of pattern depends on the kind of pattern being made. Currently defined kinds
of search pattern are:

:string-insensitive
Does a case-insensitive string search, pattern being the string to search for.

:string-sensitive
Does a case-sensitive string search for pattern.

:character Finds an occurrence of the character pattern. This is case sensitive.

:not-character
Find a character which is not the character patrern.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 15

:test Finds a character which. satisfics the function pattern. This function may not be
applicd an any particular fashion, so it should depend only on what its argument
is, and should have no side-effects.

:test-not Similar to as : test, except it finds a character that fails the test.
:any Finds a character that is in the string pattern.
:not-any Finds a character that is not in the string pattern.

result-search-pattern, if supplied, is a scarch-pattern to destructively modify to produce the new
pattern. Where rcasonable this should be supplied, since some kinds of search patterns may involve
large data structures. '

"find-pattern mark search-pattern [Function]
Find the next match of search-pattern starting at mark. If a match is found then mark is altered to
point before the matched text and the number of characters matched is returned. If no match is
found then ni1 is returned and mark is not modified.

replace-pattern mark search-pattern replacement &optional n [Function]
Replace n matches of search-pattern with the string replacement starting at mark. If nis ni1 (the
default) then replace all matches. A mark pointing before the last replacement done is returned.

HEMIOCK COMMAND IMPLEMENTOR'S MANUAL 16

Chapter 6

The Current Environment

6.1. Different Scopes

In Hemlock the values of variables (page 17), key-bindings (page 22) and character-attributes (page 28) may
depend on the current-buffer (page 8) and the modes active in it. Therc are three possible scopes for
Hemlock values: '

buffer local The value is present only if the buffer it is local to is the current-buffer,

mode.local The value is present only when the mode it is local to is active in the current-buffer.
global The value is always present unless shadowed by a buffer or mode local value.

6.2. Shadowing

It is possible for there to be a conflict between different values for the same thing in different scopes. For
example, there be might a global binding for a given variable and also a local binding in the current buffer.
Whenever there is a conflict shadowing occurs, permitting only one of the values to be visible in the current
environment.

The process of resolving such a conflict can be described as a search down a list of places where the value
might be defined, returning the first value found. The order for the search is as follows:

1. Local values in the current buffer.

2. Mode local values in the minor modes of the current buffer, in order from the highest precendece
mode to the lowest precedence mode. The order of minor modes with equal precedences is
undefined.

3. Mode local values in the current buffer’s major mode.

4, Global values,

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 17

Chapter 7

Hemlock Variables

Hemlock implements a system of variables separate from the normal Lisp variables; this is done for the
following reasons.

1. Hemlock has different scope rules which are useful in an editor. Hemlock variables can be local
to a buffer (page 8) or a mode (page 26).

2. Hemlock variables have hooks (page 19), functions which are called when the variable is set.

3. There is a database of variable names and documentation which makes it easier to find out what
variables exist and what their values mean.

7.1. Variable Names

To the user, a variable name is a case insensitive string. This string is referred to as the string name of the
variable. A string name is conventionally composed of words separated by spaces.

In lisp code a variable name is a symbol. The name of this symbol is created by replacing any spaces in the
string name with hyphens. This symbol name is always interned in the Hemlock package, and referring to a
symbol with the same name in the wrong package will not work.

global-variable-names [Variable]
Holds a string-table of the names of all the global Hemlock variables. The value of each entry is
the symbol name of the variable,

7.2. Variable Functibns

In the following descriptions name is the symbol name of the variable.

defhvar string-name documentation & ey :mode :buffer :hooks :value [Function)
Defines a Hemlock variable. An error will be signaled if a reference is made to a variable which is
not defined.

string-name The string name of the variable to define.

HEMI.OCK COMMAND IMPLEMENTOR’'S MANUAL 18

documentation ~ The documentation string for the variable.

:mode :buffer If buffer is supplied the variable is local to that buffer, likewise if mode is sup-
plied it is local to that mode. If neither is supplicd it is global.

:hooks :value The initial hook-list and value for the variable, which default to ni1.

If a variable with the same name is alrcady declared in the same place then its hooks and value are
set to the value of hooks and value when these keywords are supplied.

variable-value name &optional kind where [Function]
This function returns the value of a Hemlock variable in some place. The following values for kind
are defined:) '
rcurrent Return the value present in the current environment, taking into consideration

any mode or buffer local variables. This is the default.

:global Return the global value the variable name.
:mode ~Return value for name in the mode named where.
:buffer Return the value for name in the buffer where.

When set with setf, the value of the specified variable is set and the functions in its hook list are
called with the values for name, kind, where and the new value,

variable-documentation name &optional kind where [Function]
variable-hooks name &optional kind where [Function]
variable-name name &optional kind where [Function]

These function return the documentation, hooks and string name of a Hemlock variable. The kind
and where arguments are the same as for variable-value. The documentation and hook list
may be set using setf.

string-to-variable string [Function]
This function converts a string into the corresponding variable symbol name. string need not be the
name of an actual Hemlock variable.

value name [Macro]

setv name new-value [Macro]
These macros get and set the current value of the Hemlock variable name. name is not evaluated.
Thereisa setf form for value.

hlet ({(var value)}*) {form}* [Macro)
This macro is very similar to 1et in effect; within its scope each of the Hemlock variables var have
the respective values, but after the scope is exited by any means the binding is removed. This does
not cause any hooks to be invoked. The value of the last form is returned.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 19

hemlock-bound-p name &optional kind where [Function]
Returns t if name is defined as a Hemlock variable in the place specified by kind and where, or
n1i1l otherwise.

delete-variable name &optional kind where [Function]

Delete Variable Hook [Hemlock Variable}
delete-variable makes the Hemlock variable name no longer defined in the specified place.
kind and where have the same meanings as they do for variable-value, except that :current
is not available, and the default for kindis : global

An error will be signaled if no such variable exists: The hook, "Delete Variable Hook" is
invoked with the same arguments before the variable is deleted.

7.3. Hooks

Hemlock actions often have hooks associated with them, which are lists of functions to be called before that
action is performed. Each variable and mode has such a hook, and the ways to manipulate these object-
specific hooks are described with the rest of the actions defined on these objects. Many events that affect
editor state also will call functions in a hook list; these hooks are described along with the functions that
invoke them.

A hook function may be specified either as a symbol with a function definition or a function, but it is
recommended to use symbols, since this results in better behavior if the hook function is redefined.

add-hook place hook-fun [Macro]

remove-hook place hook-fun . [Macro]
These macros add or remove a hook function in some place. If place is a symbol then it is
interpreted as a Hemlock variable, it is taken to be a generalized variable.

invoke-hook name &rest args [Function]
Call all the functions in the list which is the value of the Hemlock variable name. An error will be
signalled if no such variable is defined.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 20

Chapter 8

Commands

8.1. Introduction

The way that the user tells Hemlock to do something is by invoking a command. Commands have three
attributes:

name A command’s name provides a way to refer to it. Command names arc usually capitalized
words separated by spaces, such as "Forward Word".

documentation ~ The documentation for a command is used by on-line help facilities.

Sfunction A command is implemented by a Lisp function, which can also be called from Lisp.

command-names [Variable]
Holds a string-table (page 48) associating command names to command obJects Whenever a new
command is defined it is entered in this table,

8.1.1. Defining Commands

defcommand {command-name | (command-name function-name)} lambda-list

command-doc function-doc {form}* [Macro]
Defines a command named name. defcommand creates a function to implement the command
from the lambda-list and forms supplied. If not specified, the function name is made from the
command name by replacing all spaces with hyphcns and appending " -command®”. fiunction-doc
becomes the documentation for the function and should primarily describe issues involved in
calling the command as a function, such as what any additional arguments are. command-doc
becomes the command documentation for the command. '

make-command name documentation function [Function]
Defines a new command named name, with command documentation documentation and function
Junction. The command in entered in the string-table *command-names* (page 20), with the
command object as its value. Normally command implementors will use the de f command macro,
but this permits access to the command definition mechanism at a lower level, which is occasionally

1IEMI.OCK COMMAND IMPLEMENTOR’'S MANUAL 21

useful.
command-documentation command [Function]
command-function command [Function]
command-name command [Function)

Returns the documentation, function, or name for command. These may be set with setf.

8.1.2. Command Documentation

Command documentation is a description of what the command does when it is invoked as an extended
command or from a key. Command documentation may be cither a string or a function. If the documen-
tation is a string then the first line should briefly summarize the command, with remaining lines filling the
details. Example:

(defcommand "Forward Character" (p)
"Move the point forward one character.
With prefix argument move that many characters, with negative
argument go backwards."
"Move the point of the current buffer forward p characters."

2)

Command documentation may also be a function of one argument. The function is called with either
:short or : full, indicating that the function should return a short documentation string or do somethin,

to document the command fully. *

8.2. The Command Interpreter

The command interpreter is a function which reads keystrokes from the keyboard and dispatches to different
commands on the basis of what is typed. When the command interpreter cails a command, it is said in invoke
it. The command interpreter also provides several facilities for communication between sequential com-
mands and does various house cleaning operations.

invoke-hook [Variable]
This variable contains a function which is called by the command interpreter when it wants to
invoke a command. The function is passed the command and the prefix argument as arguments.
The initial value is a function which simply funcalls the command-function of the command
with the supplied prefix argument. This is useful for implementing keyboard macros and similar
things.

When Hemlock initially starts the command interpreter is in control, but commands may read from the
keyboard themselves and assign whatever interpretation they will to the characters read. Commands may call
the command interpreter recursively using the function recursive-edit (page 25).

HEMI.OCK COMMAND IMPLEMENTOR’'S MANUAL 22

8.2.1. Binding Commands to Keys

The command interpreter determines which command to invoke on the basis of key bindings. A key
binding is an association between a command and a sequence of keystrokes. A sequence of keystrokes is
called a key, and is represented by a single character or vector of characters.

The set of key bindings in effect at any given time is determined by the current environment (page 16),
since key bindings may be local to a mode or buffer. When the command interpreter tries to find the binding
for a key it checks first to see if there is a local binding in the current-buffer (page 8), then if there is a
binding in cach of the minor modes and the major mode for the current buffer (page 26), and finally checks to
see if there is a global binding. If no binding is found then the command interpreter beeps or flashes the
screen to indicate this.

8.2.2. Transparent Key Bindings

Key bindings local to a mode may be transparent. A transparent key binding does not shadow less local key
bindings, but rather indicates that the bound command should be invoked before the first normal key
binding. Transparent key bindings are primarily useful for implementing minor modes such as auto fill and
word abbreviation. There may be several transparent key bindings for a given key, in which case all of the
commands bound are invoked in the order they were found. If there no normal key binding for a key typed,
then the command interpreter acts as though the key is unbound even if there are transparent key bindings.

The : transparent-p argument to defmode (page 27) determines whether the key bindings in a mode
are transparent or not,

command-char-code-1limit [Constani]

command-char-bits-1limit [Constani]
Hemlock implementation is not required to support entirely arbitrary characters in key bindings;
command-char-code-1imit is the wupper bound on character codes, and
command-char-bits-1imit is the limit for bits. These constants are analogous to the
COMMON LISP constants char-code-1imit and char-bits-1imit, and will be less than or
equal to them. Bits not supported and font are ignored. Note that no attempt is made to define
somc virtual character set in which bindings can be specified in an implementation independent
fashion; key bindings should be set up in file that contains nothing else so that they may be easily
changed for different implementations.

bind-key name key &optional kind where [Function]
Make key be bound to the command name in some environment. There are three possible values of
kind:

:global The default, make a global key binding.
:mode Make a mode specific key binding in the mode whose name is where.

:buffer Make a binding which is local to buffer where.

HEMLOCK COMMAND IMPLEMENTOR’'S MANUAL 23

If the specified key is some prefix of a key binding which already exists in the specified place, then
the new one will override the old one, effectively deleting it. Normally global and mode bindings
are made only at load time.

command-bindings command [Function)
Returns a list of the places where command is bound. A place is specified as a list of the key vector,
the kind of binding, and then either the mode of buffer the binding is local to, or ni1 if it is a
global binding.

link-key keyl kindl wherel key? &optional kind2 where2 [Function]
Defines the binding for key! to be the same as the binding for key2. The kind and where arguments
arc the same as to bind-key. This facility should be used with caution when linking a key to
buffer or mode key binding between buffers and modes, since it could cause a command to be
invoked out of context.

delete-key-binding key &optional kind where [Function]
Removes the binding of key in some place. kind is the kind of binding to delete, one of : global,
the default, :mode or :buffer. If kind is :mode where is the mode name, if kind is :buffer
then whereis the buffer. An error will be signaled if key is not bound.

get-command key &optional kind where [Function]
Returns the command bound to key; if key is not bound return nil. If the sequence given is a
prefix and not a unique key then the keyword : pref ix is returned. There are four cases of kind:

:current Return the current binding of key using the current buffer’s search list. This is
the default. If there are any transparent key bindings for key, then. they are
returned in a list as a second value.

:global Return the global binding of key.
:mode Return the binding of key in the mode named where.
:buffer Return the binding of key local to the buffer where.
map-bindings fiunction kind &optional where - [Function]

This function maps over the key-bindings in some place. For each binding finction is passed the
key bound and the command bound to it. kind and where are as in get-command, except that
:current is not available. The key is not guaranteed to remain valid after a given iteration.

8.2.3. Extended Commands

A command may also be invoked by specifying its name in an Extended Command. Extended command
invocation is done by the "Extended Command" command, which prompts in the echo area for a com-
mand to execute. '

HEMIL.OCK COMMAND IMPLEMENTOR'S MANUAL 24

8.3. Command Types

In many editors the exact behavior of a command depends on what kind of commands have been invoked
before it. Hemlock provides a mechanism to support this: The concept of command type.

last-command-type [Function]
Return the command type of the last command invoked. If set with setf, the supplied value
becomes the value of 1ast-command-type until the next command completes or it is reset. It
the previous command did not bother to set the Tast-command-type then its value is nil.
Normally a command type is a keyword. The command type is not clearcd after a command is
invoked duc to a transparent key binding.

8.4. Command Arguments

There are three ways in which a command may be invoked: It may be bound to a key which has been typed,
it may be invoked as an extended command or it may be called as a Lisp function. Idcally commands should
be written in such a way that they will behave sensibly no matter which way they are invoked. The functions
which implement commands must obey certain conventions about argument passing if the command is to
function properly.

8.4.1. The Prefix Argument

Whenever a command is invoked it is passed as its first argument what is known as the prefix argument.
The prefix argument is always either an integer or ni1. When a command uses this value it is usually as a
repeat count, or some conceptually similar function.

prefix-argument argument [Function]
This function returns the current value of the prefix argument. When set with setf, the new value
becomes the prefix argument for the next command.

If the prefix argument is not set by the previous command then the prefix argument for a command isni1.
The prefix argument is not cleared after a command is invoked due to a transparent key binding.

8.4.2. Lisp Arguments

It is often desirable to cail commands from Lisp code, in which case arguments which would otherwise be
prompted for are passed as optional arguments following the prefix argument. A command should prompt
for any arguments not supplied.

8.5. Recursive Edits

HEMLOCK COMMAND IMPLEMENTOR’S MANUAL 25

use-buffer buffer {form}* [Macro)
The cffect of this is similar to that which would be obtained by setting the current-buffer to buffer
during the evaluation of forms. There are, however, restrictions placed on what the code can expect
about its environment. In particular, the value of any global binding of a Hemlock variable which
is also a mode local variable of some mode is ill-defined; if the variable has a global binding it will
be bound, but the value may not be the global value. It is also impossible to nest use-buffer’s in
different buffers. The reason for using use-buffer is that it may be significantly faster than
changing the current buffer to buffer and back.

recursive-edit [Function]

Enter Recursive Edit Hook [Hemlock Variable]
recursive-edit invokes the command interpreter. The command interpreter will read from
the keyboard and invoke commands until it is terminated with either exit-recursive-edit or
abort-recursive-edit. Before the command interpreter is entered the hook
"Enter Recursive Edit Hook" is invoked.

exit-recursive-edit &optional values-list [Function)

Exit Recursive Edit Hook [Hemlock Variable]
exit-recursive-edit exits a recursive edit, returning all the things in values-list, which
defaults to nil, as multiple-values. After the command interpreter is exited the hook
"Exit Recursive Edit Hook" isinvoked. If no recursive edit is in progress then ed returns
with the values.

abort-recursive-edit &rest args [Function}

Abort Recursive Edit Hook [Hemlock Variable)
‘abort-recursive-edit causes a recursive edit to terminate with the error given. The ar-
guments are the same as editor-error (page 47). "Abort Recursive Edit Hook" isin-
voked before the recursive edit is aborted with the editor-error arguments. If no recursive edit
is in progress then Hemlock returns with a string representing the message, if any, or NIL other-
wise.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 26

Chapter 9
Modes

A mode is a collection of Hemlock values which may be present in the current environment (page 16)
depending on the cditing task at hand. Examples of typical modes are "Lisp", for editing lisp code, and
"Echo Area", for prompting in the echo area.

9.1. Mode Hooks

When a mode is added to or removed from a buffer, its mode hook is invoked. The hook functions take two
arguments, the buffer involved and t if the mode is being added or ni1 if it is being removed.

Mode hooks are typically used to make a mode do something additional to what it usually does. One might,
for example, make a text mode hook that turned on auto-fill mode when you entered.

9.2. Major and Minor Modes

There are two kinds of modes, major modes and minor modes. A buffer always has exactly one major
mode, but it may have any number of minor modes. Major modes may have mode character attributes while
minor modes may not.

A major mode is usually used to change the environment in some major way, such as to install special
commands for editing some language. Minor modes generally change some small attribute of the environ-
ment, such as whether lines are automatically broken when they get too long. A minor mode should work
regardless of what major mode and minor modes are in effect.

Default Modes [Hemlock Variable]
This variable contains a list of mode names which are instantiated in a buffer when no other
information is available. The initial value of this is ("Fundamental").

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 27

mode-names [Variable]
Holds a string-table of the names of all the modes.

9.3. Mode Functions

defmode name &key :setup-function :cleanup-function :major-p [Function]
:precedence :transparent-p
This function defines a new mode named name, and enters it in *mode-names* (page 27). If
major-p is supplied and is not ni1 then the mode is a major mode; otherwise it is a minor mode. '

setup-function and cleanup-function are functions which are invoked with the buffer affected, after
the mode is turned on, and before it is turned off, respectively. These functions typically are used
to make buffer-local key or variable bindings and to remove them when the mode is turned off.

precedence is only meaningful for a minor mode. The precedence of a minor mode determines the
order in which it in a buffer’s list of modes. When searching for values in the current environment,
minor modes are searched in order, so the precedence of a minor mode determines which value is
found when there are several definitions. '

transparent-p determines whether key bindings local to the defined mode are transparent. Trans-
parent key bindings are invoked in addition to the first normal key binding found rather than

shadowing less local key bindings. .
buffer-major-mode buffer [Function]
Buffer Major Mode. Hook [Hemlock Variable]

buffer-major-mode returns the name of buffers major mode. The major mode may be
changed with setf; then "Buffer Major Mode Hook" is invoked with buffer and the new

mode.
buffer-minor-mode buffer name [Function]
Buffer Minor Mode Hook [Hemlock Variable]

buffer-minor-mode returns t if the minor mode name is active in buffer, ni1 otherwise. A
minor mode may be turned on or off by using setf; then "Buffer Minor Mode Hook" is
invoked with buffer, name and the new value.

mode-variables name . [Function)
Returns the string-table of mode local variables.

mode-major-p name *[Function]
Returns t if name is the name of a major mode, or ni1 if it is the name of a minor mode. Itis an
error for name not to be the name of a mode.

HEMILOCK COMMAND IMPLEMENTOR'S MANUAL 28

Chapter 10
Character Attributes

10.1. Introduction

Character attributes provide a global database of information about characters. This facility is similar to,
but more general than, the syntax tables of other cditors such as EMACS. For cxample, you should use
character attributes for commands that need information regarding whether a character is "whitespace” or
not. Character attributes are used for these reasons:

1. If this information is all in one place then it is easy the change the behavior of the editor by
changing the syntax table, much easier than it would be if character constants were wired into
commands.

2. This centralization of information avoids needless duplication of effort.

3. The syntax table primitives are probably faster than anything that can be written above the
primitive level.

Note that an essential part of the character attribute scheme is that character attributes are global and are
there for the user to change. Information about characters which is internal to some set of commands (and
which the user should not know about) should not be maintained as a character attribute. For such uses
various character searching abilities are provided by the function find-pattern (page 15).

character-attribute-char-code-Timit [Constani]
The exclusive upper bound on character codes which are significant in the character attribute
functions. Font and bits are always ignored.

10.2. Character Attribute Names

As for Hemlock variables, character attributes have a user visible string name, but are referred to in Lisp
code as a symbol. The string name, which is typically composed of capitalized words separated by spaces, is
translated into a keyword by replacing all spaces with hyphens and interning this string in the keyword
package. The attributec named "Ada Syntax" would thus become : ada-syntax.

HEMLOCK COMMAND IMPLEMENTOR’S MANUAL 29

character-attribute-names [Variable]
Whenever a character attribute is defined, its name is entered in this string table (page 48), with the
corresponding keyword as the value.

10.3. Character Attribute Functions

defattribute name documentation &optional type initial-value [Function]

Make Character Attribute Hook [Hemlock Variable]
defattribute defines a new character attribute with string name name. documentation describes
the uses of the character attribute.

type, which defaults to (mod 2), specifies what type the values of the character attribute are.
Values of a character attribute may be of any type which may be specified to make-array.
initial-value is the value which all characters will initially have for this attribute.

The hook, "Make Character Attribute Hook", is invoked with the same arguments after

the attribute is created.
character-attribute-name attribute [Function]
character-attribute-documentation attribute [Function)

Return the name or documentation for attribute.

character-attribute attribute character [Function]

Character Attribute Hook [Hemlock Variable]
character-attribute function returns the value of attribute for character. An error will be
signaled if attribute is not defined.

setf can be used to set a character’s attributes. The hook "Character Attribute Hook",is
invoked with the same arguments before the change is made.

If characteris n1i1, then the value of the attribute for the beginning or end of the the buffer can be
accessed or set. The buffer beginning and end thus become a sort of fictitious character, which
simplifies the use of character attributes in many cases.

character-attribute-p symbol [Function)
Returns t if symbol is the name of a character attribute, ni1 otherwise.

shadow-attribute attribute character value mode [Function)

Shadow Attribute Hook [Hemlock Variable]
Makes have attribute have value value when in mode mode. mode must be the name of a major
mode. "Shadow Attribute Hook" isinvoked with the same arguments when this function is
called. If the value for an attribute is set while the value is shadowed, then ohly the shadowed value
is affected, not the global one.

HEMI.OCK COMMAND IMPLEMENTOR'S MANUAL 30

unshadow-attribute auribute character mode [Function]
Unshadow Attribute Hook ' [Hemlock Variable]
Make the value of attribute for character no longer shadowed in mode.
"Unshadow Attribute Hook" is invoked with the same arguments when this function is

called.
find-attribute mark attribute &optional test [Function)
reverse-find-attribute mark attribute &optional fest [Function]

These functions find the next (or previous) character with some value for the character-attribute
attribute starting at mark. test is passed one argument, the value of attribute for the character to be
tested. If the test succceds then mark is modified to point before (after for
reverse-find-attribute) the character which satisfied the test, if no character is found
which satisfies the test then ni1 is returned and mark is unmodified. test defaults to not zerop.
It is not guaranteed that the test will be applied in any particular fashion, so it should have no side
effects and depend only on its argument.

10.4. Character Attribute Hooks

It is often useful to use the character attribute mechanism to as an abstract interface to other information
about characters which in fact is stored elsewhere. For example, some implementation of Hemlock might
decide to definea "Print Representation" attribute which controls how a character is displayed on the
screen.

To make this easy to do, each attribute has a list of hook functions which are invoked with the attribute,
character and new value whenever the current value changes for any reason.

character-attribute-hooks attribute [Function]
Return the current hook list for attribute. This may be set with setf. The add-hook and
remove-hook (page 19) macros should be used to manipulate these lists.

[EMLOCK COMMAND IMPLEMENTOR'S MANUAL 31

Chapter 11
Controlling the Display

11.1. Windows

A window is a mechanism for displaying part of a buffer on some physical device. A window is a way to
view a buffer but is not synonymous with one; a buffer may be viewed in any number of windows.

11.2. The Current Window

current-window [Function]
Set Window Hook [Hemlock Variable)

current-window returns the window in which the cursor is currently displayed. The cursor
always tracks the buffer-point of the corresponding buffer. If the point is moved to a position
which would be off the screen the recentering process is invoked. Recentering shifts the starting
point of the window so that the point is once again displayed. The current window may be changed
with setf. Before the current window is changed, the hook "Set Window Hook" is invoked
with the new value. ‘

11.3. Modelines

A window may have a modeline; a line of text which is displayed across the bottom of a window to indicate
status information, typically related to the buffer displayed.

A modeline is specified by two things, a string and a function. The string is a format control string to
generate the modeline, and the function is a function which when called with the window as an argument
returns multiple-values to be used as the format arguments.

window-modeline-string window [Function}
window-modeline-=function window [Function]
Return the modeline string or function for window. These may be changed with setf.

[IEMLOCK COMMAND IMPLEMENTOR'S MANUAL 32

Default Modeline String [Hemlock Variable]

Default Modeline Function [Hemlock Variable]
Contain the modelinc string and function which are used by make-window when none is sup-
plied.

update-window-modeline window [Function]

This function indicates to Hemlock that at some point in the near future it should recompute the
modecline for window. In order for changes to appear in the modcline, this function must be called.
Usually this is done by defining hooks for the things displayed in the modcline which do this.

make-window mark &optional modeline-siring modeline-function [Function]

Make Window Hook [Hemiock Variable]
make-window returns a window which displays text starting at mark, which must point into a
buffer.

modeline-string a_nd modeline-function specify the modcline for the window. If modeline-string is
ni1 then the window has no modeline.

"Make Window Hook" is invoked with the new window.

window-1list . [Variable]
Holds a list of all the window objects made with make-window (page 32).

delete-window window : [Function)

Delete Window Hook : [Hemlock Variable]
delete-window makes window go away, first invoking "Delete Window Hook" with the
hapless window.

11.4. Window Functions

window-buffer window [Function]

Window Buffer Hook [Hemlock Variable]
window-buffer returns the buffer from which the window displays text. This may be changed
with setf, in which case the hook "Window Buffer Hook" is invoked beforehand with the
window and the new buffer.

window-display-start window [Function)
Returns a mark pointing before the first character displayed in window. This may be changed with
setf. Note that if window is the current window, then moving the start may not prove much, since
recentering may move it back to approximately where it was originally.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 33

window-display-end window [Function]
Returns a mark pointing after the last character displayed in window.

window-point window [Function]
Returns as a mark the position in the buffer where the cursor is displayed. This may be set with
setf. If window is the current window then sctting the point will have little effect. It is forced to
track the buffer point. When the window is not current then the window point is the position that
the buffer point will be moved to when the window is made current. ‘

center-mark window mark &optional fraction ' [Function]
Attempts to adjust the display so the that mark appears at the specified fraction of the height of the
window from the top. fraction defaults to 0.5.

scroll-window window n [Function)
Scroll the window down # display lines; if » is negative scroll up. Leave the cursor at the same text
position unless we scroll it off the screen, in which case the cursor is moved to the end of the
window closest to its old position. ‘

displayed-p mark window [Function]
Returns t if cither the character before or the character afier mark is being dispiayed in window, or
n1il otherwise.

window-height window [Function)

window-width window [Function)

Height or width of the area of the window used for displaying the buffer, in character positions.
These values may be changed with setf, but the setting attempt may fail, in which case nothing is

done.
next-window window [Function]
previous-window window [Function)

Return the next or previous window of window.

11.5. Cursor Positions

A cursor position is an absolute position within a window’s coordinate system. The origin is in the
upper-lefi-hand corner and the unit is character positions.

mark-to-cursorpos mark window [Function)
Returns as multiple values the X and Y position on which mark is being displayed in window, or
nilifitisnot.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 34

cursorpos-to-mark X Y window [Function]
Returns as a mark the text position which corresponds to the given (X, Y) position within window,
or ni1 if that position does not correspond to any text within window.

last-key-event-cursorpos [Function)
Interprets mouse input. It returns as multiple values the (X, Y) position and the window where the
pointing device was the last time some key event happened. ni1 is returned if no information is
available.

mark-column mark - [Function]
Returns the X position at which mark would be displayed, supposing its line was displayed on an
infinitely wide screen. This takes into consideration strange characters such as tabs.

move=to-column mark column &optional line [Function]
This function is analogous to move-to-position (page 5), except that it moves mark to the
position on /ine which corresponds to the specified column. line defaults to the line that mark is
currently on. If the line would not reach to the specified column, then ni1 is returned and mark is
not modificd. Note that since a character may be displayed on more than one column on the
screen, several different values of column may cause mark to be moved to the same position.

show-mark mark window time [Function]
Highlights the position of mark within window for time seconds, possibly by moving the cursor
there. If mark is not displayed within window return nil. The wait may be aborted if there is
pending input; then t is returned.

11.6. Redisplay

Redisplay is the process by which the editor translates changes in the internal representation of text into
changes on the screen. Ideally this process should find the minimal transformation of the screen which would
bring it in correspondence with the text in orderto maximize the speed at which it is done.

redisplay [Function]
Cause the redisplay process to be invoked. This is usually done by the command interpreter after
the completion of each command. During the redisplay process the presence of input is repeatedly
checked for, and if detected causes the redisplay in progress to be aborted.

redisplay-all [Function)
Causes the entire screen to be completely redisplayed.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 7 35

Chapter 12

Logical Characters

12.1. What a Logical Character is

Some primitives such as prompt-for-key (page 41), and commands such as EMACS query replace,
read characters directly from they keyboard instead of using the command interpreter. In order to encourage
consistency between these commands and make them portable and easy to customize, there is a mechanism
for defining logical characters. 4

A logical character is a keyword which stands for some set of characters which are globally used to mean a
certain thing, for example, the : he1p logical character stands for whatever set of characters is uscd to ask for
help in a given implementation. It is important to note that this mapping is not a one-to-one mapping, but
rather a many-to-many mapping in that a given logical character may have several corresponding real charac-
ters, and each of those characters may have several logical characters.

12.2. Logical Character Functions

Jogical-character-names [Variable]
This variable holds a string-table of all the logical characters string-names, with the values of each
entry being the actual logical-character keyword.

define-logical-character string-name documentation . [Function]
Takes string-name and converts it into a keyword by replacing spaces with hyphens, as with
defattribute (page 29), and then defines the keyword to be a logical character having the
given documentation. ’

logical-character-characters keyword [Function)
Returns the list of characters that are equivalent to the logical character keyword,

HHEMLOCK COMMAND IMPLEMENTOR’S MANUAL 36

logical-character-name keyword [Function]

logical-character-documentation keyword [Function]
Return the string name and documentation given to define-logical-character when the
logical character keyword was defined.

logical-char= character keyword [Function]
Returns true if the specified character has keyword as a corresponding logical character. The value
that is returned for any character/ keyword pair may be sct by using setf; this is how a real
character and a logical character arc associated. It is a error for keyword not to be a defined logical
character. character is case-folded, thus comparisons are case inscnsitive, but bits and font are
significant. '

12.3. Standard Logical Characters

There a number of standard logical characters defined, some of which are used by functions documented in
this manual, and others defined simply so that commands can use them. If a command wants to read a single
character command that fits one of these descriptions then the character read should be compared to the
corresponding logical character instead of wiring the actual character into the code. In many cases the
command-case (page 39) macro can be used. This makes using logical characters easy, and takes care of
prompting and displaying help messages.

:yes Indicates that that some action, such as doing a replacement should be taken.

ino Analogous to : yes, but it indicates that the action should not be taken.

:do-all Indicates that the action under consideration should be repeated as many times as pos-
sible.

texit Tells the command to terminate in a normal fashion.

thelp Instructs the command to display some help information.

:confirm Confirms any input, or if none, indicates that the default should be taken.

:quote Indicates that the following character is not to be treated as a command, regardless of what

it is, but rather simply stands for itself. >

:recursive-edit
Indicates that the command should enter a recursive edit in the current context.
Define a new logical character whenever:

1. The character concerned represents a general class of actions, and thus might want to be known
about by several commands.

HEMLOCK COMMAND IMPLEMENTOR’S MANUAL

2. The exact character chosen to invoke the action concerned is likely to be a matter of violent
dispute, and thus should be casy to change.

3. The character concerned is not standard-char-p, and thus cannot be specified in a im-
plementation independent fashion.

37

HEM1.OCK COMMAND IMPLEMENTOR'S MANUAL 38

Chapter 13
The Echo Area

Hemlock provides a number of facilities for displaying information to and prompting the user. Most of
these work through a small window displayed at the bottom of the screen. This is called the echo area.

echo-area-window : [Variable]

echo-area-buffer . : ‘ [Variable]
echo-area-buffer contains the buffer object for the echo arca, which is named
"Echo Area". This buffer is usually in "Echo Area" mode. echo-area-window contains a
window displaying echo-area-buffer. It has no modeline.

It is considered in poor taste to perform text operations on the echo area buffer to display messages
-- the message function should be used instead.

13.1. Echo Area Clearing

clear-echo-area [Function]
Clears the echo area.

A command must use the message function or set buffer-modified (page 10) for the "Echo Area”
buffer to ni1 to leave text in the echo area after it completes.

13.2. Echo Area Functions

message control-string &rest format-arguments [Function]

Message Pause ‘ [Hemlock Variable]
Displays a message in the echo area. The message is always displayed on a fresh line. message
pauses for "Message Pause" seconds before returning to assure that messages are not displayed
too briefly to be seen.

message is usually the best way to display in the echo area since it goes to some trouble to assure
that message is displayed so that it can be seen.

HEMLOCK COMMAND IMPLEMENTOR’'S MANUAL 39

echo-area-stream : [Variable]
This is a buffered Hemlock output stream 46) which inserts text written to it at the point of the
echo area buffer.

Since this stream is buffered a force-output must be done when output is complete to assure
that it is displayed. '

13.3. Prompting Functions

Most of the prompting functions accept the following keyword arguments:

:must-exist

:default

If :must-exist hasanon-nil value then the user is prompted until a valid response is
obtained. If :must-exist is nil then return as a string whatever is input. The default
is t. :

If nuil input is given when the user is prompted then this value is returned. If no default is
given then some input must be given before anything interesting will happen.

:default-string

If a :default is given then this is a string to be printed to indicate what the default is.
The default is some representation of the value for : default, for example for a buffer it
is the name of the buffer.

:prompt This is the prompt string to display.

:help This is similar to :prompt, except that it is displayed when the help command is typed
during input.
This may also be a function. When called with no arguments it should either return a
string which is the help text or do some arbitrary action to help the user, and the return
nil.

prompt-for-buffer &key :prompt :help :must-exist :default [Function]

:default-string

Prompts with completion for a buffer name and returns the corresponding buffer. If must-exist is
nil then it returns the input string if it is not a buffer name.

command-case ({key value}*) {({({tag}*) | tag} help {form}*)}* [Macro]
This macro is analogous to the COMMON LISP case macro. It is intended to be used by commands
such as "Query Replace" which read single-character commands and dispatch from them.
Since the description of this is rather complex, here is an example:

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 40

(defcommand "Save A11 Buffers" (p)
"Give the User a chance to save each modified buffer."
"Give the User a chance to save each modified buffer."
(dolist (b *buffer-list*)
(select-buffer-command () b)
(when (buffer-modified b)
(command-case (:prompt "Save this buffer: [Y] "
:help "Save buffer, or do somthing else:")
((:yes :confirm)
"Save this buffer and go on to the next."
(save-file-command () b))
(:no "Skip saving this buffer, and go on to the next.")
(:recursive-edit
"Go into a recursive edit in this buffer."
(do-recursive-edit) (reprompt))
((:exit #\P) "Punt this silly loop."
(return nil))))))

Normally command-case prompts for a character, and then cvaluates the first option in the body
whose tag is equivalent to the character read. Each tag may be either a logical character (page 35)
or a standard character (one that satisfies the COMMON LISP standard-char-p predicate). If
the tag is logical-character keyword, then it is compared to the character read with
logical-char=. Ifthe tag is a character then is case-folded and compared with char=,

The keyword arguments are used to specify how the prompting is done. The following values for a

key are defined:

:help This string is displayed by the default :help option before each possibility is
described.

:prompt This is the prompt used when reading the character.

:change-window
If this is true (the default), then the echo area window is made the current
window while the character is read. Sometimes it is desirable not to change the
window since the user may want to answer the question on the basis of where the
point is in the current buffer.

:bind The argument to this keyword is a variable which is to be bound to the character
read.

:character If this is specified, then no character is read initially, and processing proceeds as
though the character of the corresponding value had been read.

There are default options for two logical characters: :help and :abort. If a help character is
read, then a help message is displayed. The message is created out of the string given to the :help
key and the help strings specified for each option. After the help message is displayed the prompt-
ing is repeated. If an abort character is read then an editor error is signalled. Either of these actions
may be overridden by explicitly specifying some option that subsumes these.

Instead of specifying a tag or tag list, t may be used -- this becomes the default option, and is
evaluated only if no other option, including the default ones can be. This option has no help string,

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 41

and is not mentioned in any help message. The default default option beeps and then does a
reprompt.

Within the body of command-case, the reprompt macro is defined. Use of this macro causes
the prompting and option sclection process to be immediately restarted.

prompt-for-character &key :prompt :change-window [Function]
Prompts for a character and does not wait for confirmation before returning. command-case
(page 39) is more useful for most purposes. When appropriate use logical characters (page 35).

prompt-for-key &key :prompt :help :must-exist :default [Function)
:default-string , .
Prompts for key, a vector of characters, suitable for being passed to any of the functions that
manipulate key bindings (page 22). If must-exist is true then the key must be bound in the current
environment and the command currently bound is returned as the second value.

prompt-for-file &ey :prompt :help :must-exist :default [Function]
. :default-string
Prompts for an acceptable filename in some system dependent fashion. Acceptable means that it is
a legal filename and it exists if must-exist is not ni1. prompt-for-file returns a COMMON
Lisp pathname.

If the file exists as entered then it is returned, otherwise it is merged with defaulr as by
merge-pathnames.

prompt-for-integer &key :prompt :help :must-exist :default [Function]
:default-string

Prompts for a possibly signed integer. If must-existis ni1 then prompt-for-integer returns
the input as a string if it is not a valid integer.

prompt-for-keyword string-tables &ey :prompt :help :must-exist [Function]
:default :default-string
Prompts for a keyword with completion using the string tables in the list string-tables. If must-exist
isnot ni1 then the result must be an unambiguous prefix of a string in one of the string-tables, and
the complete string is returned even if only a prefix of the full string was typed. In addition, the
value of the corresponding entry in the string table is returned as the second value.

If must-exist is ni1 then the string is returned exactly as entered. The difference between
prompt-for-keyword with must-exist ni1, and prompt-for-string, is that completion
may be done using the "Complete Parse" and "Complete Field" commands.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 42

prompt-for-expression &key :prompt :help :must-exist :default [Function]
:default-string
Reads a Lisp expression. If must-exist is ni1 and a read error occurs then the string typed is
returned. '

prompt-for-string &key :prompt :help :default :default-string [Function]
Prompits for a string; this cannot fail.

prompt-for-variable &key :prompt :help :must-exist :default [Function]
' :default-string '
Prompts for a variable name. If must-exist is non-ni1 then the string must be a variable defined in
the current environment, in which case the symbol name of the variable found is returned as the
second value. '

prompt-for-y-or-n &key :prompt :help :must-exist :default [Function]
:default-string

Prompts for "y" or "n" (or "Y" or "N" naturally), and returns t or nil without waiting for

confirmation. When a confirming key is typed, return the default if there is one. If must-exist is

ni1 then return whatever character was first typed if it was not "y" or "n". This is analogous to the
CoMMON Lisp function y-or-n-p.

prompt-for-yes-or-no &key :prompt :help :must-exist :default [Function]
:default-string
This function is to prompt-for-y-or-n as yes-or-no-p is to y-or-n-p. "Yes" or "No"
must be typed out in full and confirmation must be given.

13.4. Control of Parsing Behavior

The behavior of the parsing routines is parameterized by a variable and a character attribute.

The character attribute "Parse Field Separator", is a boolean attribute, a value of one indicating
that that character is considered to be a field separator by the "Complete Field" command.

Beep On Ambiguity [Hemlock Variable]
If this variable is true, then an attempt to complete a parse which is ambiguous will result in a
"beepll.

13.5. Defining New Prompting Functions

Prompting functions are implemented as a recursive edit in the "Echo Area" buffer. Completion, help,
and other parsing features are implemented by commands which are bound in "Echo Area Mode".

HEMLOCK COMMAND IMPLEMENTOR’S MANUAL 43

A prompting function passes information down into the recursive edit by binding a collection of special
variables.

parse-verification-function [Variable]
This function, which is called by Confirm Parse (page 44), does most of the work of parsing
something. The function which is bound to this variable is passed one argument, which is the string
that was in *parse-input-region* when thc "Confirm Parse" command was invoked.
The function should a list of values which arc to be the result of the recursive edit, or nil
indicating that the parse failed. In order to return zero values, a non-n1il second value may be
returned along with a ni1 first value.

parse-string-tables [Variable]
This is the list of string-tab1es, if any, that pertain to this parse.

parse-value-must-exist [Variable]
This is bound to the value of the :must-exist argument, and is referred to by the verification
function, and possibly some of the commands.

parse-default . [Variable]
The default value for this parse. If the *parse-input-region* is empty when
"Confirm Parse" is invoked, then the string representation of this,
parse-default-string is passed to the parse verification function.

parse-default-string [Variable]
The string used as the printed representation of the default for the object being prompted for, e.g.
when prompting for a buffer, this variable will be bound to the buffer name.

parse-prompt : [Variable]
The prompt being used for the current parse,

parse-help [Variable]
The help string or function being used for the current parse.

parse-starting-mark [Variable]
This variable holds a mark in the *echo-area-buffer* (page 38) which is the position at
which the parse began.

parse-input-region [Variable]

This variable holds a region with *parse-starting-mark* as its start and the end of the
echo-area buffer as its end. When "Confirm Parse" is called, the text in this region is the text
that will be parsed.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 44

13.6. Standard Echo Area Commands

Help On Parse [Command]
Display the help text for the parse currently in progress.

Complete Keyword [Command]
Attempt to complete the current region as a keyword in *string-tables*. Give an
editor-error if it is ambiguous or incorrect.

Complete Field : [Command]
Similar to "Complete Keyword", but only attempts to complete up to and including the first
character in the keyword with a non-zcro :parse-field-separator attribute. If there is no
field separator then attempt to complete the entire keyword. If it is not a keyword parse then just
self-insert.

Confirm Parse) ' [Command)
If *string-tables* is non-nil find the string in the region in them. Call
parse-verification-function with the current input. Ifit returns anon-ni1 value then
that is returned as the value of the parse. A parse may return a nil value if the verification
function returns a non-n1i? second value.

HEMLOCK COMMAND IMPLEMENTOR’S MANUAL 45

Chapter 14

Hemlock’s Lisp Environment

This chapter is sort of a catch all for any functions and variables which concern Hemlock’s interaction with
the outside world.

14.1. Leaving the Editor

exit-hemlock &optional value [Function)

Exit Hook [Hemlock Variable]
exit-hemlock leaves Hemlock and return to Lisp; value is the value to return, which defaults to
t. Thehook "Exit Hook" (page 45) is invoked before this is done.

L

14.2.170

beep [Function)
Causes some implementation-dependent action meant to attract attention.

editor-input [Variable]
editor-input is an input stream which reads characters from the keyboard immediately and
. without echoing,.

if the euf-errorp argument to the reading function is ni1 then input is quoted as far as possible to
enable the reading of interrupt characters and similar things.

text-character character [Function)
When given a character as returned by reading from *editor-input® this returns a character
suitable for inserting in text. Exactly what this does is implementation dependent, but on ASCII
implementations which support bits this might turn characters with the control bit on into the
corresponding ASCII control character.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 46

input-transcript - [Variable]
If this is non-ni1 then it should be an adjustable vector with a fill-pointer. When it is non-ni1 all
input read is also pushed onto this vector.

14.3. Hemlock Streams

It is possible to create strcams which output to or get input from a buffer. This mechanism is a quite
powerful one, which permits casy interfacing of Hemlock to Lisp.

make-hemlock-output-stream mark &optional buffered _ [Function]
All output directed to this strcam is inserted at the permancnt mark mark. buffered controls
whether the stream is buffered or not. buffered may be one of the following keywords:

:none ~ No buffering is done. This is the default.

:line The buffer is flushed whencver a newline is written or when it is explicitly done
with force-output.

:full The screen is only brought up to date when it is explicitly done with
force-output '

make-hemlock-region-stream region [Function]
Returns a stream from which the text in the region can be read.

with-input-from-region (var region) {declaration}* {form}* [Macro]
While evaluating forms, binds var to a stream which returns input from region.

with-output-to-mark (var mark [buffered)) {declaration}* {form}* [Macro]
During the evaluation of the forms, binds var to a stream which inserts output at the permanent
mark. buffered has the same mcaning as for make-hemlock-output-stream.

with-random-typeout (var n) {declaration}* {form}* [Macro]
Bind var to a stream which, when output to, displays the output on the screcn in some esthetic
fashion. n is an estimate of the number of lines that the output will take to display. Typically what
this will do is make a window n lines high on the screen, display the output in it in more-mode, and
then pause at then end until a character is typed to indicate that the input has been read. This is
useful for displaying information of temporary interest such as buffer lists.

14.4. Interface to the Error System

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 47

editor-error &rest args [Function]
This function is called to signal minor errors within Hemlock; these are errors that a normal user
could encounter in the course of editing such as a search failing or an attempt to delete past the end
of the buffer. Normally editor-error is called with no arguments, in which case it will beep and
abort the command in progress. If arguments are supplied then they are interpreted as format
arguments for an error message to be displayed. editor-error never returns.

catch-editor-error {form}* [Macro)
If an editor-crror is signalled within the body of this macro, then then the execution of the forms is
terminated and ni1 is returned, but no other action is taken. If no editor-error occurs then the
value of the last form is returned.

handle-lisp-errors {form}* [Macro)
Within the body of this macro any Lisp errors that occur are handled in some fashion more graceful
than simple dumping the user in the debugger. This macro should be wrapped around code which
may get an error due to some action of the user.

14.5. File Reading and Writing

COMMON LISP pathnames are used by the file primitives.

read-file pathname mark [Function]
Inserts the file named by pathname at mark. :

write-file pathname region [Function)
Writes the contents of the region to the file named by pathname.

For probing, checking write dates, and so forth, all of the COMMON LISP file functions are available.

HEMI.OCK COMMAND IMPLEMENTOR'S MANUAL 48

Chapter 15
Utilities

In this chapter, a number of utilities for manipulating some types of objects Hemlock uses to record
information are given. String-tables are used to store names of variables, commands, modes, and buffers.
Ring lists can be used to provide a kill ring, recent command history, or other user-visible features.

15.1. String-table Functions

String-tables are similar to COMMON LISP hashtables in that they associate a value with an object. There are
however, several useful differences: In a string table the key is always a case insensitive string, and primitives
are provided to facilitate keyword completion and recognition. Any kind of string may be added to a string
table, but the string table functions always return simple-strings.

make-string-table [Function]
Make an empty string table.
delete-string string table [Function]

Removes string from table.

getstring string table [Function]
Returns as multiple values, first the value corresponding to the string if it is found and ni1 if it
isn’t, and second t if it is found and ni1 if it isn’t. If sct with setf a new entry is made if
necessary and the old value is replaced with the new one.

complete-string string tables [Function]
Returns multiple values, first the longest common prefix of all the strings in the list of tables which
string is a prefix of, and if there is only one such string then the value of the corresponding entry
and t are returned as the second and third values, otherwise both of these values are ni1. If there
is no string which string is a prefix of then all three valuesare ni1.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL 49

find-ambiguous string lable [Function]

find-containing string table [Function]
find-ambiguous returns a list in alphabetical order of all the strings in table which have string as
aprefix. find-containing is identical except that it returns all strings which have string as a
substring.

do-strings (string-var value-var table) {declaration}* {1ag | statement}* [Macro]
Iterate over the strings in table in alphabetical order. On each iteration string-var is bound to the
string for the entry and value-var is bound to the value of the entry.

15.2. Manipulating Ring Buffers

There are various purposes in an editor for which a ring-buffer can be used, so in Hemlock a general
purpose ring buffer type is provided. It can be used for such purposes as maintaining a kill-ring or a
command history.

make-ring length &optional delete-function [Function]
Makes an empty ring object capable of holding up to length lisp objects. delete-function is a
function that each object is passed to before it falls off the end. /ength must be greater than zero.

ring-length ring [Function]
Returns as multiple-values the number of elements which ring currently holds and the maximum
number of elements which it may hold.”

ring-ref ring index - [Function)
Returns the index’th item in the ring, where zero is the index of the most recently pushed. This
may be set with setf.

ring-push object ring [Function]

Pushes object into ring, possibly causing the oldest item to go away.

ring-pop ring " ~ [Function]
Removes the most recently pushed object from ring and returns it. If the ring contains no elements
then an error is signalled.

rotate-ring ring offset [Function]

With a positive offSes, rotates ring forward that many times. In a forward rotation the index of each
element is reduced by one, except the one which initially had a zero index, which is made the last
element. A negative offset rotates the ring the other way.

HEMLOCK COMMAND IMPLEMENTOR'S MANUAL

Index

50

Index

command-char-code-1imit constant 22
Abort Recursive Edit Hook Hemlock variable 25 command-documentation function 21

abort-recursive-edit function 25 command-function function 21
add-hook macro 19 command-name function 21
After Set Buffer Hook Hemlock variable 8 *command-names® variable 20, 20
Altering text 13 Commands 20
Complete Field function 44
beep functon 45 Complete Keyword function 44
Beep On Ambiguity Hemlock varable 42 complete-string function 48
bind-key function 22 Confirm Parse function 43,44
blank-after~-p function 11 copy-mark function 5
blank-before-p functon 11 copy-region function 7
blank-line-p function 11 count-characters function 7
:buffer keyword count-1ines function 7
for defhvar 17 " Counting lines and characters 7
Buffer Major Mode Hook Hemlock variable 27 Current buffer 8
Buffer Minor Mode Hook Hemlock variable 27 Current environment 16
Buffer Name Hook Hemlock variable 9 Current window 31
Buffer Pathname Hook Hemlock variable 9 current-buffer function 8§, 16,22
buffer-end function 6 current-point function 9
puffer-1ist variable 9,10 current-window function 8,31
puffer-major-mode function 27 Cursor positions 33
buffer-minor-mode function 27 cursorpos-to-mark function 34
buffer-modified function 10,38
buffer-name function 9 defattribute function 29,35
puffer-names variable 9,10 :default keyword .
buffer-pathname function 9 for prompt-for-buffer 39
buffer-point function 10 for prompt-for-expression 42
buffer-region function 9 for prompt-for-file 41
buffer-start function 6 for prompt-for-integer 41
buffer-variables function 10 for prompt-for-key 4l
buffer-windows function 10 for prompt-for-keyword 41
buffer-writable function 10 for prompt-for-string 42
. Buffers 8 for prompt-for-variable 42
for prompt-for-y-or-n 42
catch-editor-error macro 47 for prompt-for-yes-or-no 42
center-mark function 33 Default Modeline Function Hemlock variable 32
:change-window keyword Default Modeline String Hemlock variable 32
for prompt-for-character 41 Default Modes Hemlock variable 9,26
Character Attribute Hook Hemlock variable 29 :default-string keyword
Character attributes 28 for prompt-for-buffer 39)
character-attribute function 29 for prompt~for-expression 42

for prompt-for-file 4l
character-attribute-char-code-1imit constant fo28prompt~for-integer 41
character-attribute-documentation function 29 for prompt-for-key 41

character-attribute-hooks function 30 for prompt-for-keyword 41
character-attribute-name function 29 for prompt-for-string 42
character-attribute-names® variable 29 for prompt-for-variable 42
character-attribute-p function 29 for prompt-for-y-or-n 42
character-offset function 6 for prompt-for-yes~or-no 42
:cleanup-function keyword defcommand macro 20

for defmode 27 defhvar function 17
clear-echo-area function 38 define-logical-character function 3§
Command interpreter 21 defmode function 22,27
command-bindings function 23 Delete Buffer Hook Hemlock variable 10
command-case macro 36, 39,41 Delete Variable Hook Hemlock variable 19
command-char-bits-1imit constant 22 Delete Window Hook Hemlock variable 32

-51 -

INDEX

delete-and-save-region function 13
delete-buffer function 10
delete-characters function 13
delete-key-binding function 23
delete-mark function 5§
delete-region function 13
delete-string function 48
delete-variable function 19
delete-window function 32
Deleting 13

displayed-p function 33
do-strings macro 49

Echoarea 39

echo-area-buffer variable 38,43
echo-area-stream variable 39
*echo-area-window® variable 38
editor-error function 25,47
editor-input variable 45
empty-1line-p function 11
end-1ine-p function 11

Enter Recursive Edit Hook Hemlock variable

Exit Hook Hemlock variable 45,45

Exit Recursive Edit Hook Hemlock variable 25

exit-hemlock function 45
exit-recursive-edit function 25

Files 47

filter-region function 14
find-ambiguous function 49
find-attribute function 30
find-containing function 49
find-pattern functon 15,28
first-1ine-p function 12

get-command function 23
getstring function 48
*global-variable-names® variable 17

handle-1isp-errors macro 47
:help keyword
for prompt-for-buffer 39
for prompt-for-expression 42
for prompt-for-file 41
for prompt-for-integer 41
for prompt-for-key 41
for prompt-for-keyword 41
for prompt-for-string 42
for prompt-for-variable 42
for prompt-for-y-or-n 42
for prompt-for-yes-or-no 42
Help On Parse function 44
Hemlock variables 17
hemlock-bound-p function 19
hlet macro 18
Hooks 19
:hooks keyword
for defhvar 17

Vo 45

input-transcript variable 46
insert-character function 13
insert-region function 13
insert-string function 13
Inserting 13

Interperter, command 21
Invocation, command 21
invoke-hook function 19
jinvoke-hook™ variable 21

Key Bindings 22

last-command-type function 24

last-key-eveni-cursorpos function 34

last-Tine-p function 12
line-buffer function 3
line-character function 3
line-end function 5
line-length function 3
line-next function 3
line-offset function 6
line-plist function 4
line-previous function 3
line-start function 5
1line-string function 3
line-to-region function 7
line< function 12

Tine<= function 12

line> function 12

line>= function 12

Lines 3

lines-related function 12
link-key function 23

Lisp environment 45

Logical Characters 35
logical-char= function 36

52

logical-character-characters function 35
logical-character-documentation function 36

logical-character-name function 36

logical-character-names variable 35

:major-p keyword
for defmode 27
Make Buffer Hook Hemlock variable 9
Make Character
variable 29
Make Window Hook Hemlock variable 32
make-buffer function 9
make-command 'function 20
make-empty-region function 7
make-hemlock-output-stream function
make-hemlock-region-stream function
make-ring function 49
make-string-table function 48
make-window function 32,32
map-bindings function 23
mark function §
mark-after function 6
mark-before function 6
mark-charpos function 4

Attribute Hook

46
46

Hemlock

INDEX 53

mark-column function 34 for prompt-for-file 41
mark-kind function 4 for prompt-for-integer 41
mark-1ine function 4 for prompt-for-key 41
mark-to-cursorpos function 33 for prompt-for-keyword 41
mark/= function 12 for prompt-for-string 42
mark< function 12 . for prompt-for-variable 42
mark<= function 12 for prompt-for-y-or-n 42
mark= function 12 for prompt-for-yes-or-no 42
mark> function 12 prompt-for-buffer function 39
mark>= function 12 prompt-for-character function 41
Marks 4 prompt-for-expression function 42
message function 38 prompt-for-file function 41
Message Pause Hemlock variable 38 prompt-for-integer function 41
:mode keyword prompt-for-key function 35,41

for defhvar 17 prompt-for-keyword function 41
mode-major-p function 27 prompt-for-string function 42
*mode-names”® variable 27,27 prompt-for-variable function 42
mode-variables functon 27 prompt-for-y-or-n function 42
Modelines 31 prompt-for-yes-or-no function 42
Modes 26 . Prompting functions 39
move-mark functon 5
move-to-column function 34 . read-file function 47
move~to-position function 5,10,34 Recursive edits 24
Moving marks 5 recursive-edit function 21,25
:must-exist keyword redispiay function 34

for prompt-for-buffer 39 redisplay-all function 34

for prompt-for-expression 42 region function 6

for prompt-for-file 41 region-bounds function 7

for prompt-for-integer 41 region-end function 7

for prompt-for-key 4l region-start function 7

for prompt-for-keyword 41 region-to-string function 7

for prompt-for-variable 42 Regions 6

for prompt-for-y-or-n 42 remove-hook macro 19,30

for prompt-for-yes-or-no 42 replace-pattern function 15

Replacing 14
new-search-pattern function 14 reverse-find-attribute function 30
next-character function 5§ Ring Buffers 49
next-window function 33 ring-length function 49
ninsert-region function 13 ring-pop function 49
ring-push function 49

*parse-default® varable 43 ring-ref functon 49
*parse-default-string® variable 43 rotate-ring function 49
parse-help variable 43
parse-input-region variable 43 same-line-p function 11
parse-prompt variable 43 scroll-window function 33
parse-starting-mark® variable 43 search-char-code-1imit constant 14
parse-string-tables variable 43 Searching 14 i
parse-value-must-exist variable 43 Set Buffer Hook Hemlock varigble 8
*parse-verification-function® variable 43 Set Window Hook Hemlock variable 31
Permanent marks 4 set-region-bounds function 7
:precedence keyword :setup-function keyword

for defmode 27 for defmode 27
Prefix arguments 24 setv macro 18
prefix-argument function 24 Shadow Attribute Hook Hemlock variable 29
previous-character function § shadow-attribute function 29
previous-window function 33 show-mark function 34
:prompt keyword start-line-p function 11

for prompt-for-buffer 39 String-tables 48

for prompt-for-character 41 string-to-region function 7

for prompt-for-expression 42 string-to-variable function 18

INDEX

Syntax tables 28

Temporary marks 4
text-character function 45
Transparent key bindings 22
:transparent-p keyword

for defmode 27

Unshadow Attribute Hook Hemlock variable 30
unshadow-attribute function 30
update-window-modeline function 32
use-buffer macro 25

Utilities 48

:value keyword

for defhvar 17
value macro 18
variable-documentation function 18
variable-hooks function 18
variable-name function 18
variable-value function 18

Window Buffer Hook Hemlock variable 32
window-buffer function 32
window-display-end function 33
window-display-start function 32
window-height function 33
window-1ist variable 32
window-modeline-function function 31
window-modeline-string function 31
window-point function 33
window-width function 33

Windows 31

with-input-from-region macro 46
with-mark macro 5
with-output-to-mark macro 46 .
with-random-typeout macro 46
write-file function 47

54

	0001
	001
	002
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54

