Theory of Operations

25 Aug 84

Spice Document S
Keywords and index categories: <not specified>

Location of machine-readable file: [cfs}/usr/spice/spicedoc/aug84/
program/theory.mss

Copyright © 1984 PERQ Systems Corporation

PERQ Systems Corporation
2600 Liberty Avenue

P.O. Box 2600

Pittsburgh, PA 15230
(412)355-0900

Accent and many of its subsystems and support programs were originally developed by the CMU
Computer Science Department as part of its Spice Project. The system described in this manual is
based upon the Kernel program by Richard F. Rashid.

This document is adapted from the paper by Richard F. Rashid, Accent Kernel Reference Manual.
Carnegie-Mellon University, Pittsburgh, PA 1984. This document is not to be reproduced in any form
or transmitted in whole or in part without the prior written authorization of PERQ Systems Corporation
or Carnegie-Mellon University.

The information in this document is subject to change without notice and should not be construéd as
a commitment by PERQ Systems Corporation. The company.-assumes no responsibility for any errors
that may appear in this document. PERQ Systems Corporation will make every effort to keep
customers apprised of all documentation changes as quickly as possible.

Accent is a trademark of Carnegie-Mellon University.

Table of Contents

O O O O

1 Introduction 3
1.1 Messages and Communications 3
1.2 Processes 3
1.3 The Network 4
1.4 The Window Manager 4
1.5 The File System S
1.6 Environments 5
1.7 Organization of this Document 6
2 System Structure 7
2.1 Process System 7
2.1.1 Structures 8
2.1.1.1 PCBHandle (VMTypes.Pas) 8
2.1.1.2 MicroContext (VMTypes.Pas) 8
2.2 Memory System
2.2.1 Process address space
2.2.1.1 Virtual memory management
2.2.1.2 Virtual memory and files
2.2.1.3 Process directed management of virtual memory and network paging 10
2.2.1.4 Virtual address make-up 10
2.2.1.5 Structures 10
2.2.1.6 Spice Process Map (VMTypes.Pas) 11
2.2.1.7 Lev2Index (VMTypes.Pas) 11
2.2.1.8 SCDIndex (VM Types.Pas) 12
2.2.1.9 SCD (VMTypes.pas) 12
2.2.1.10 AST (VMTypes.Pas) 13
2.2.2 System addressing 14
22.2.1 PVRecord 14
2.2.2.2 VPRecord 15
2.3 Queue System 16
2.4 IPC System 17

2.4.1 Creating, accessing and destroying ports
2.4.2 Software or pscudo interrupts
2.4.3 Flow control
2.4.4 Waiting for messages
2.4.5 Sending and receiving kernel messages
2.4.6 Mecssages
2.4.7 The message header
2.4.8 Exceptional condition handling
2.4.9 Optimizing message transfers
2.4.10 IPC and port structures.
2.4.10.1 Port structures
2.4.10.2 Process IPC structures

3 Major SubSystems
3.1 Kernel
3.2 File System
3.3 Window Manager
3.3.1 General
3.3.2 TypeScript
3.3.3 Tracker
3.4 Environment Manager
3.5 Net Server
3.6 Message Server
3.6.1 Name service
3.6.2 Network IPC operation
3.6.2.1 Finding a name
3.6.2.2 Sending a message
3.6.2.3 Deleting ports

3.7 Time Server

3.8 I70 System

4 Accent Environments
4.1 Native Accent Environment
4.2 UNIX System V

4.3 Al Workstation

18
18
18
19
20
20
20
21

23

23
23

26

28
28
29
29
29
29
30
30
30
30
) |

k)|

3
33
33

3

ii

iii

5 Programming Examples
5.1 Messages

5.2 Matchmaker

5.3 Graphics

5.4 FileSystem

5.5 Process Management
5.6 Network

5.7 Memory

A Process Numbers

B Registered System Ports

C Standard Environment Variables

D Standard System Servers

E Inter-Program Argument Format

35

35

49

50

58

60

66

72

75

77

79

81

Abstract: This document is adapted from the paper by R. Rashid and G. Robertson, “Accent:
A Communications Oriented Network Systems Kernel.” Proceedings of the Eighth Symposium on
Operating Systems Principles.

Part One
Introduction

Accent is an operating system which runs on the PERQ Systems family of single user graphic
workstations. It is the Accent operating system that permits a group of individual workstations to
become a unified computing environment distributed across many workstations connected via
Ethernet. To accomplish this, the design of Accent is based on a powerful communications
abstraction.

1.1 Messages and Communications

Accent is a message-based operating system. All communication is provided through the
sending and recciving of messages. The object upon which this abstraction is based is the
Interprocess Communication (IPC) port. Ports are protected objects. The only way to gain access to
a port is to have the Accent kernel provide that access.

The Accent IPC system supports multiple senders and a single receiver on IPC ports. In
addition to the multiple senders and single receiver, an Accent IPC Port also has an owner. When
the process that has received rights to a port dies, the owner of that port is notified. This allows a
third controlling process to establish the communication channel between two other processes.

The IPC system is built into the operating system at the lowest levels. There arc a number of
ways in which the IPC system and other portions of the operating system interact. This will become
apparent in later discussions of the IPC and Memory systems.

1.2 Processes

Accent supports the concurrent execution of multiple processes. A priority scheduling system
with preemption and aging is used. The aging system is used to lower the priority of
compute-bound processes. When a process completes a full time slice without blocking, the priority
of that process is lowered. When the process blocks, its priority is raised to its original level. This
keeps the priority of highly interactive processes high while lowering the priority of
compute-bound processes. In order to supply a degree of fairness the time quantum is longer for
the lower priorities. Processes are arranged in a tree of descendants. The operating system provides
facilities that can be used to control either single processes or entire trees of processes.

Accent provides a large paged virtual address space for processes. Each process has a 2132 byte
virtual address space. This space is broken into a number of 512 byte pages. In Accent it is not
possible for processes to share portions of their address spaces. If a process wants to give another
process access to part of its address space, the initial process sends that portion of the address space

25 Aug 84

Theory of Operations - 4

to the second process in an IPC message. This is a simple mapping operation; no data is actually
moved.

If both processes want to have access to the data, a logical copy is made. In this case each of the
pages is marked CopyOnWrite. As long as neither process wants to write any of the data, no copy is
made. If either process performs a write operation to some portion of the data, the page that
contains the data to be written is copied. It is important to notc that neither process knows that this
has happened. As far as both processes are concerned, they each have a separate copy of the data.

1.3 The Network

Accent is a communications oriented operating system. All requests made by clients are in the
form of IPC messages. The IPC facilities arc extended across the Ethernet by a set of servers. It is
important to note that the semantics of inter-machine and intra-machine IPC-facilities are exactly
the same. There is no need for a process to know if the other processes with which it is interacting
are on the local machine or on a remote machine. Because these facilitics are built into the lowest
levels of the operating system, all operating system facilities can be provided by local or remote
machines.

The best feature of the network under Accent is that neither the user nor the applications writer
needs to know that it is there. It is possible to use the system and the network without the
knowledge that you are doing so.

1.4 The Window Manager

Accent provides a sophisticated window management facility. This facility is used to provide
processes with a virtual display. The set of all processes’ virtual displays are mapped onto the single
PERQ physical display.

The Window Manager fully supports the covered window paradigm. Processes need not know
the current state of their windows. The Window Manager is responsible for displaying only the
portions of a process window that are visible at any given time.

If a window is a simple text window the Window Manager will "remember" what is in the
window. When the state of the window changes the Window Manager will redisplay the newly
uncovered portions of the window.

If the window is a graphics window the application program can request the same type of
facilities as a simple text window. This is done by keeping off-screen copies of the covered portions
of the window. In addition to this method, applications that wish to have more control over the
display can request a notification when the state of their windows changes.

In addition to text and graphics output, the window manager is responsible for the control of
the system keyboard and pointing device. Key strokes and puck presses are provided to the

25 Aug 84

Theory of Operations - §

application as a set of abstract events. The events that are gencrated when keys or buttons are
pressed can be defined by the application. The mapping of actual key and puck presses into
abstract cvents is achieved by a user-alterable translation table. PERQ provides translation tables
for all system functions. If you do not like these translations, you are free to change them, but in
general we suggest that for system functions you use the standard translations.

1.5 The File System

Accent provides a virtual memory mapped file system. All access to files are the same as access
to virtual memory.

When a file is "opened” the file is mapped into the virtual memory of the process that opened
the file. This is only a mapping operation; no data is moved. When a portion of the file is accessed,
that portion is faulted into physical memory.

To write a file, the application program first builds the file in its virtual address space. The
application program then requests the file system to save that portion of the address space on the
disk with a specific name.

Of course all File System facilities work in the same manner regardless of the actual location of
the file. Access to remote files is achieved in exactly the same manner as access to local files.

1.6 Environments

The Accent system provides three different user environments. The user of a system can use a
single environment or a combination of all three, The three environments are a) Accent, b) UNIX
software, and c) Lisp.

The Accent environment is entered at system boot time. The interface to this environment is
the Accent Shell.

The UNIX software environment is provided by the Qnix system. This environment provides a
standard Bell System V Unix.

The Lisp environment is provided by the Common Lisp system.

It is possible to have all of these environments running at the same time on the workstation.
Each environment runs in a different window on the screen. To change from environment to
environment it is only necessary to change to a different window. In a number of cases it is possible
to make cross use of the environments. It is possible to run Accent programs from a Unix software
shell. It is also possible to run Unix software programs from an Accent shell.

25 Aug 84

‘Theory of Opcrations — 6

1.7 Organization of this Document

The remainder of this document is organized as follows.

Chapter 2 describes in detail the operation of the kernei of the Accent system. If you are not
interested in the details of the operation of the system, you may skip this chapter.

Chapter 3 provides an overview of the major servers in the system.

Chapter 4 provides information about each of the three different environments available on the
system.

Chapter S provides programming examples. This is the most interesting chapter for most users
of this document.

25 Aug 84

Part Two
System Structures

This chapter describes in detail a number of the underlying system structures used and the
facilitics provided by the Accent kernel. Described in this chapter are: a) the process system, b) the
memory system, ¢) the queuing system and d) the IPC system.

The modules VMTypes.Pas and VMIPCTypes.Pas define most of the structures referenced
here. '

2.1 Process Systein

Accent provides for the concurrent exccution of multiple processes. Each process in the system
has a 2132 byte address space. All address spaces are disjoint.

The Accent scheduler provides a multiple priority scheduling system with preemption. The
system provides 16 priority levels, with level zero being the lowest and level fifieen being the
highest. Scheduling is round robin within a priority level. In addition the scheduler impiements an
aging algorithm that is used to lower the priority of compute-bound processes. If at any time a
process finishes its time quantum without biocking, the priority of that process is lowered. This
lowering will happen each time the process completes a time slice without blocking. Thus it is
possible for a process to move from priority fifteen to priority zero in sixteen time slices. The next
time the process blocks, its priority is raised to its original level. To implement a degree of fairness,
the time quantum is made larger as the priority level decreases. This system- provides rapid
response to highly interactive processes.

The process management system interacts with the virtual memory management and
inter-process communication systems to provide the execution environment for processes running
on a host machine.

All communication between a user process and the kernel is through a port, called its kernel
port, which is created when the process is created. Since ports can be sent in messages to other
processes, it is possible for process A to send its kernel port to process B. The process system is
designed so that process B can manage process A’s behavior, much the same way the virtual
memory system allows one process to manage another’s virtual memory. This mechanism forms the
basis for remote debugging and monitoring systems.

25 Aug 84

Theory of Operations — 8

2.1.1 Structures
2.1.1.1 PCBHandle (YMTypes.Pas)

The PCBHandle provides all of the information about a process that must be available to the
Accent microkernel. There is one PCB handle for cach process in the system. The set of all
PCBHandles is kept in a PCBTable, which is an array 0..MaxProc of PCBHandles. This array is
indexed using the process ID.

Figure 1 gives the definition of the PCBHandle.

PCBHandle = packed record

NextEntry : ProcID; { Word 0, 16 bits }
PrevEntry : ProcID; { Word 1, 16 bits }
QueuelD : QID; { Word 2, 6 bits }
MsgPending : boolean; { Word 2, 1 bit }
EMsgPending : boolean; { Word 2, 1 bit }
InUse : boolean; { Word 2, 1 bit }
SVCEntry : boolean; { Word 2, 1 bit }
LimitSet : boolean; { Word 2, 1 bit }
SVStkInCore : boolean; { Word 2, 1 bit }
Priority : PriorID; { Word 2, 4 bits }
MsgEnable : boolean; { Word 3, 1 bit }
EMsgEnable : boolean; { Word 3, 1 bit }
Fil13 : 0..16383; { Word 3, 14 bits }
SVStkPtr : ptrMicroContext; { Words 4,5 }
SleeplID : ptrinteger; { Words 6,7 }
RunTime : Bit32; { Words 8,9 }
LimitTime : Bit32; { Words 10,11 }
SleepTime : Bit32; { Words 12,13 }
SPMPtr ¢ ptrSPM { Word 14,15 }
end;
ptrPCBTable = tPCBTable;
PCBTable = array [0..MAXPROCS] of PCBHandle;

2.1.1.2 MicroContext (VMTypes.Pas)

The MicroContext is used to hold information about a process when that process does not have
control of the CPU. It holds the saved registers for the process as well as the EStk (contents of the
hardware’s expression stack) for the process. Figure 2 gives the definition of the MicroContext.

MicroContext = packed record
EStk : array [0..15] of integer;
Reg : array [0..63] of integer;
Fill1 : array [1..32] of integer;
TrapCode ¢ integer;
TrapArgs : VirtualAddress;
EStkCnt : integer;
State : ProcState;
Fill2 : Bit14;
RegCnt : integer;
Fi113 : array [1..8] of integer;

25 Aug 84

Theory of Operations - 9

Fil14 : Bit8;

BPC : Bit4;

Fil115 : Bit4;

Fi116 : integer
end;

2.2 Memory System

This section describes in detail the way in which memory is addressed in the Accent system.
The section is broken into two parts. ‘

The first part describes the way in which a process docs addressing. It describes all of the
structures that make up the memory map for a process and how those structures are accessed using
.a process virtual address.

The second part describes the way that the system translates a virtual address supplied by a
process inte an address in physical memory or into a page fault.

2.2.1 Process address space

2.2.1.1 Virtual memory management

In Accent virtual memory, file storage and IPC are integrated together in a way that preserves
the logical structure of inter-process communication while providing significant performance
advantages over previous communication-based operating systems. This same melding of virtual
memory with IPC makes it possible for Accent to allow one process to manage the virtual address
space of another (either by allocating virtual memory from the kernel and sending it to another
process or by explicitly managing page faults) and in so doing provides a clean, kernel-transparent
mechanism for cross-network paging.

2.2.1.2 Virtual memory and files

The virtual address space of an Accent process is flat and linearly addressable. On the PERQ
this address space is 2132 sixteen bit words. An Accent segment is the basic unit of virtual memory
allocation and secondary storage management. All randomly accessible secondary storage is
considered part of the virtual memory of the system and is organized into Accent segments and
managed by the kernel.

There are two kinds of Accent segments: temporary and permanent. Temporary segments are
allocated by processes as required for their memory needs and are released when all processes
which have access to them are terminated. The storage contained in permanent segments form the
basis for the Accent file system. Permanent segments are allocated by sending messages to a special
port normally supplied only to special processes. They do not disappear except by explicit request.

Normally, new segments are allocated by the kernei in response iv @ CreateSegment message,
with the kernel responding in a message with the newly created segment’s identifier. A segment can

25 Aug 34

Theory of Opcrations — 10

be explicitly destroyed through the usc of a DestroyScgment message. The data contained in a
segment can be read into a process’s virtual address space using a ReadSegment message. The reply
to a ReadScgment message contains the newly allocated pages which are mapped into the
requcsting process’s address space through reception of the message. Similarly, data can be
explicitly transferred out of a process’s address space through the use of a WriteSegment message.

2.2.1.3 Process directed management of virtual memory and network paging

An advantage of the Accent approach to virtual memory is that it allows virtual memory to be
considered a process-provided resource. A process can create an imaginary segment and "read” it
into an unused part of its address space. It is then possible for a process to send another process
these "imaginary pages’ in a message. When the message is received, these pages are placed into the
address map of the recciving process. When these pages are referenced by the receiving process,
messages requesting their contents are sent to a port belonging to the process which created the
segment. When a changed 'imaginary page’ is about to be purged from main memory, its new
contents are also sent in a message. This allows a process which is not the kernel to provide
kernel-like management of secondary storage. In particular, it makes cross-network paging possible
using the standard IPC facility.

2.2.1.4 Virtual address make-up

As indicated earlier, a virtual address under Accent is a 32 bit value. This value is made up a of
a number of ficlds that are used during the translation process. This section will give a brief
overview of those fields.

Bit 31 of the virtual address is the Supervisor/User bit. If the bit is set the prb;:ess is currently
executing in supervisor space. If the bit is clear the process is running in user space.

Bits 30 through 24 are used to pick one of 128 level 2 blocks. This value is used as an index into
the Lev2 field of the process control block.

Bits 23 through 16 are used as an index into the specific level 2 block.
Bits 15 through 8 are used to pick a single page from a list of Spice Chunk Descriptors.
Bits 7 through 0 are used to pick a single word in a page.

2.2.1.5 Structures

This section describes the data structures that define the virtual address space of a process.
These structures are searched when a page fault occurs. They are not used for addressing when the
desired page is in memory. There is a set of system tables that is used by the kernel to provide
addressing when no faults are going to be taken (see Section 2.2.2). The tables provide much faster
access to the required page than could be obtained by searching the three-level process map.

25 Aug 84

Theory of Operations— 11

2.2.1.6 Spice Process Map (VMTypes.Pas)

The Spice Process Map, SPM, is the starting point for the translation of a process virtual
address into a physical address. The SPM is pointed to by a field in the PCBHandle for the process. .

The F field is used to link a set of free SPMs. SCDFreeList is used to keep a list of free Spice
Chunk Descriptors. (more about the SCDs later). MapBlks is a virtual address in the kernel virtual
address space. It is the address of the start of the Map Blocks for this process. Map Blocks are a set
of pages that are used to hold information about the process address mapping. Any single page in
the set of pages that make up the map blocks holds a single type of information. A single map
block can hold either Spice Chunk Descriptors or SCDIndices. The sct of pages that make up the
process map blocks are contiguous in kernel virtual address space. This implies that given the start
address of the map blocks, simple address arithmetic can be done to get to a given map block. The
Lev2 portion of the SPM holds a number of Lev2Indices.

SPM = packed record
F : ptrSPM;
SCDFreelist : SCDIndex;
Proc ¢ ProcessNumber;
MapB1lks : VirtualAddress;
MapSize : long;
NextBlk : Bit8;
Lev2Size : Bit8;
NextFree : VirtualAddress;
EndFree : VirtualAddress; { Next allocated - 1}
Lev2 : array [0..127] of Lev2Index
end; :

2.2.1.7 Lev2Index (YMTypes.Pas)
Each of these indices points to a map block that holds SCDIndices.

A Lev2 index is picked by bits 30-24 of the process virtual address. This number is used as an
index into the Lev2 array in the SPM. It is possible for a process to validate a 32 mega-word portion
of virtual address space by making a single entry in the Lev2 portion of the SPM. No other
structures need to be created until a portion of the address spaces is referenced.

The BIk field of the Lev2Index picks a map block that contains a set of SCDIndices.

The WriteProtect and the CopyOnWrite fields in the Lev2Index provide the protection on the
entire portion of the process virtual address space.

Lev2Index = packed record
Blk : Bit7;
InUse : boolean;
Free : boolean;
case integer of
1:

WriteProtect : boolean;
CopyOnWrite : boolean;

25 Aug 84

Theory of Opcrations - 12

Valid
):
2: (
StatusBits
)s
3: (
ProtectBits
)
end;

2.2.1.8 SCDIndex (VMTypes.Pas)

: boolean

: Bit3

: Bit2

The Lev2Block is the second level in the translation map. There are a number of SCDIndices in
each map block. Bits 23-16 of the virtual address pick a specific SCDIndex. Once again it is possible
for a process to validate a 128k byte portion of address space by simply creating a single SCDIndex.

The WriteProtect and CopyOnWrite ficlds of the SCDIndex provide the protection information

for that portion of the address space.

The Blk ficld picks the map block that contains an SCD. The Blkindex picks a particular SCD

in that map block.

SCDIndex = packed record
case integer of

1:
(

Bk

BlkIndex
WriteProtect
CopyOnWrite
Valid

)s
2: (
Index
StatusBits

.
1]

Blank
ProtectBits
):
4: (
A1l
)

end;

2.2.1.9 SCD (VMTypes.pas)

: Bit7;

: Bit6;

: boolean;
: boolean;
: boolean

+ Bit13;
: Bit3

: Bit13;
: Bit2

integer

The SCD describes a "chunk” of the process’s virtual address space. Each SCD describes a
variable size portion of the address space of a process. The smallest portion described is a single

page. The largest portion described is 256 pages.

A larger portion of virtual address space is described by linking together a number of SCDs.

25 Aug 84

Theory of Operations - 13

Bits 15-8 of the virtual address are used to pick the SCD that describes the pages containing the
page picked by these bits.

The SegmentPtr points to a structure c.alled the Active Segment Table. This is a system-wide
table that describes all of the currently active segments. SCDs for a number of diffcrent processes
may point to the same AST entry. This allows the system to kecp a single physical copy of a
segment while allowing the different processes to see what they think are different copies of that
segment.

If a process changes a page that is shared by other processes, the process that changed the page
must get a new copy of it. This is done by the Shadow Scgment facilities described later.

SCD = packed record
StartPage : Bit8;
EndPage : Bit8;

SegmentPtr : ptrASTRecord;
SegmentOffset : integer;
case integer of

i:
SCDNext ¢+ SCDIndex
):
2: (
Blank : Biti3;

WriteProtect : boolean;
CopyOnWrite : boolean;

Blank1 : Bit1
)
3: (
Blank2 : Bit13;
ProtectBits : Bit2;
Bl1ank3 : Bit1
)
end;

2.2.1.10 AST (VMTypes.Pas)

The Active Segment Record is used to describe a memory segment that is being accessed by
one or more processes. The set of all active segments is kept in the Active Segment Table. Thisis a
system-wide table.

If a process changes a page of a segment, the system will assure that the process is the only one
that sees the change. This is accomplished using the shadow segment facilities. A new segment, a
shadow, is created. This segment is described by the SCD that was used to gain access to the page
that was changed. The ShadowOf field of the new segment points to the AST record of the original
segment. The IndexPtr points to the index blocks for the new shadow segment. There will be a
valid index block for the pages of the shadow that have been changed. Pages that have not been
changed have Index Blocks that contain a null value. When a reference is made to one of these
non-changed pages that are described by the shadow, the system will follow the ShadowOf field to
the original segment. The original segment will contain the desired page. This process allows the

25 Aug 84

Theory of Operations - 14

system to reduce the number of copics of pages that are kept, while still maintaining the "no shared

memory™ semantics of the system.

ASTRecord = packed record
case integer of

1: (
F : ptrASTRecord;
ShadowOf : ptrASTRecord;
SegmentID : SeglID;
UseCount : Bit13;
SegKind : SpiceSegKind;

case integer of

1: (PhysSize

: 0..MEMPAGES-1);

2: (ImaglID : 0..MAXIMAG-1);
3: (SegOffset : integer)
)s
2: (
IndexPtr : ptrIndexBlock;
Blank : ptrASTRecord;
OffsetInPagingArea : Bit16;
SizeInPagingArea : Bit1lé
3:
IndexAddr : DiskAddr
)
end;

2.2.2 System addressing

This section describes the set of system tables that is used by the kernel to provide addressing
when no faults are going to be taken.

2.2.2.1 PVRecord

The PVRecord is used to maintain information about the physical memory pages in the system.
There is a single PVRecord for each page in physical memory. When a memory request is made the
PVRecord for the page that contains the memory location is checked to see if the request is a valid
one.

A second important feature provided by the PVTable is that it maintains a list of all process
virtual addresses that point to a physical page. This is used when a page is to be removed from
physical memory. When the page is removed all virtual addresses that point to that physical page
must be removed from the VPTable (see section 2.2.2.2), The PVList field of the PVRecord is an
index into a second table maintained by the pager process.

PVRecord = packed record
WriteProtect : boolean;
CopyOnWrite : boolean;
Used : boolean;
Dirty : boolean;

25 Aug 84

Theory of Operations — 15

MappedToDisk : boolean;

Free : boolean;
Locked : boolean;
DontTouch : boolean;
HeaderChanged : boolean;
SwapIn : boolean;
SwapOut : boolean;
InStack : boolean;
SVStkFlag : boolean;
UseCnt : Bit2;
Flush : boolean;
PVList : VPIndex
end;
ptrPVv = tPV;
PV = array [0..MEMPAGES-1] of PVRecord;

2.2.2.2 YPRecord

The VPTable is used to map a process virtual address into a system physical address. The
VPTable is made up of a set of VPRecords. When a process presents a virtual address, the kernel
translates that virtual address into a physical address or into a page fault. The VPTable is the data
structure used during that translation.

When an address request is made, a hash is computed using the virtual address and the process
ID. The hash table used is the VPTable. The size of the hash table is determined by the number of
physical pages in memory. In general there are about twice the number of hash entries in the table
as there are physical pages in the memory. Hash collisions are chained together using the VPnext
field in the VPRecord. The VA/ProcID pair is used as input into the hash function. The function
returns an index into the VPTable. If the VA and ProcID presented to the hash match the VAddr
and Proc in the VPRecord, then the VPRecord provides the desired physical address. If they do not
match, the chain of VPRecord, linked on VPNext, is searched. If no match is found, the requested
page is not in memory and the process will be forced to take a page fault.

VPRecord = packed record
case integer of

1: (VAddr : VirtualAddress;

PAddr : PhysicalAddress
)s

2: (Proc : ProcessNumber;
Blank1 : Bit8; :
Blank2 : Bit16;

WriteProtect : boolean;
CopyOnWrite : boolean;

Used : boolean;
Dirty : boolean;
InUse : boolean;
MappedToDisk : boolean;
InPlace : boolean;

EndOfVPList : boolean;

25 Aug 84

Theory of Opcrations - 16

PLsw : Bit8;
PMsw : Bit4;
VPNext : ShortVPIndex
)s
3: (VPFreelList : PagelList;
StatusBits : integer

)

end;

2.3 Queue System

The queue system is used to provide process queueing. It is a very simple system. A process
must be on one and only one queue at any given time. The set of all queues is kept by the kernel.
Figure 11 gives the definition of the system queue tables.

The meaning of each queue in the queue table is defined by a set of constants in VMTypes.Pas
(see Figure 12). ‘

Queue = record
QHead : ProclD;
QTail : ProclD;
TimeSlice : integer;
Filler : integer
end;
ptrQueueTable = tQueueTable;
QueueTable = array [0..NUMQUEUES] of Queue;
NUMSLEEPQS = 32; - { must be power of two } .
QNIL = 0; { Ni1 Process ID or Nil QueueID}
Front = true;
Back = false;
All = true;
One = false;
NUMQUEUES = NUMSLEEPQS + NUMPRIORITIES + 6;
RUNQS = 1; { Run Queues }
{ One for each pricrity }
{ PCB locked in real memory }
PENDINGQ = RUNQS + MUMFRIORITIES;{ Pending Queue }

{ Either timeslice end }
{ or PCB not in real memory }

SLEEPQ = PENDINGQ + 1; { Sleep Queues }

{ Blocked on SleepID }
KILLQ = SLEEPQ +°NUMSLEEPQS;

{ Process termination queue }
FREEQ = KILLQ + 1; { Unallocated process queue }

25 Aug 84

Theory of Operations - 17

LIMITQ = FREEQ + 1; { Queue for processes which
{ have exceeded time limit }
SVCWAITQ = LIMITQ + 1; { Waiting on Supervisor busy }

2.4 1PC System

Although processes are the active components of the system, the notion of process is a poor one
- on which to base a communication facility. Different languages may define multiple concurrent
tasks within a single kernel-supported process. Moreover, a given service may be provided over a
period of time by a number of different processes.

The basic transport abstraction of the IPC is the notion of a port. A port is a protected kernel
object into which messages may be placed by processes and from which messages may be removed.
All services and facilities provided by a process are made available to other processes through one
Or more ports. '

Ports are intended to be used by processes to represent specific services or data structures. For
example, a file system process might associate a separate port with each open file, or a virtual
terminal handling process might allocate a port to represent each virtual terminal. However, no
restriction is placed on their use. Ports may be used by processes to communicate information irt
any mutually convenient way.

Logically associated with each port is a queue on which resides messages sent to that port but
not yet removed from it by a process. The ability to remove messages from a port is called receive
access. Only one process may have receive access to a port at a time, although receive access to a
port may be transferred to another process in a message.

Ports cannot be directly manipulated or named by a process. Instead, the kernel provides
processes with a secure capability to send a message to a port and/or receive a message from it. This
capability is a local name for a system object, much in the way a UNIX software file descriptor is a
local name for a system maintained file, pipe, or device UNIX. Port capabilities may be passed in
messages, handed down to process children, or destroyed. A given process may have only one local
name for a given port at a time. Whenever a port name is passed in a message the system kernel
must map that name from the local name space of the sending process into the name space of the
receiving process.

The ability to manipulate access to ports allows for the redirection of communication from one
process to another and the explicit management of communication between two processes by a
third process. It also allows a port to be used to refer to a specific service or process-provided object
even in situations in which that service or object is handled by different servers at different times.
Neither the address (i.e. the location) nor the name of a process can be determined from the
capability to send a message to one of its ports.

25 Aug 84

Theory of Operations — 18

2.4.1 Creating, accessing and destroying ports

A port is crcated by a process through an AllocatePort system call. It is a system object, distinct
from the process which created it but initially owned by the creating process. The result of the
AllocatePort call is a local port name which refers to the created port.

Initially the owner of a port also has reccive access to it. Ownership of a port and reccive access
are, however, logically distinct. Ownership of a port may be passed in a message from one process
to another, but not shared. Receive access to a port may also be passed in a message but not shared.
These restrictions prevent multiple servers from managing the same quecue, and are necessary to
avoid serious problems which occur when access to a single queue is shared by processes on
different machines.

If a single process both owns and has receive access to a port, that process may destroy the port
"by performing a DeallocatcPort system call. A process with a capability (local name) to a port may
release the capability via the same system call.

A port is automatically destroyed when its owner and the process with receive access to it both
die. In either case, all processes with access to that port are notified via emergency messages. If the
same process does not both own and have reccive access to a port, then the deallocation of the port
name by ecither process results in an emergency error message being sent to the other accompanied
by full access rights to that port (i.e., both ownership and receive rights).

The purpose of distinguishing receive access from ownership is to allow a process to take over
services or functions provided by other processes in the event those processes should die or
malfunction. This is particularly important when writing fail-soft software and can also be used to
provide orderly shut-down of services after catastrophic failures.

2.4.2 Software or pseudo interrupts

In the case where a process does not wish to wait for messages explicitly, it is possible to enable
a software interrupt which will be triggered upon message reception. The interrupt service routine,
executing in the context of that process, can then receive the incoming message and process it or
notify the main program of the event in a user-defined manner. A mechanism such as this can
allow processes which are inherently compute-bound to react quickly to incoming messages
without using some form of message polling.

2.4.3 Flow control

The message queues attached to ports have a finite length. This prevents a sending process from
queueing more messages to a receiving process than can be absorbed by the system and provides a
means for controlling the flow of data between processes of mismatched processing speed.

Subject to implementation restrictions on maximum port size, the process owning a port is
allowed to specify its backlog-the maximum number of normal messages which may be queued for

25 Aug 84

Theory of Opcrations — 19

that port at one time. Should a process attempt to send a message to a full port, onc of three things
may happen depending on options specified by the sender:

» The process is suspended until the message can be placed in the queue.

o The process is notificd of an error condition (after perhaps allowing itself to be suspended for up
to a specific period of time waiting for the message to be sent).

o The message is accepted and the kernel sends a message to the sending process when that
message can actually be placed in the queue. A maximum of one message per sending process
per receiving port may be outstanding in this fashion.

These three options correspond to three different programming situations:

The first option is the one most likely to be used by a "user
process’ when communicating with a ’scrver process.” In this
situation the user process docs not care ifit is suspended for
some time waiting for a message to be dclivered to the scrver
(as in the case of a remote procedure call).

The second option is used when a process does not care whether
" a particular message is sent to a destination, but is using the

the message only to wake up a dormant partner. The fact that

other messages are in the queue for the partner’s port indicates

that the partner is already scheduled to be activated.

The third option is the one most likely to be used by a service
process when dealing with a user process. The server probably
cannot afford to be suspended waiting on a user to clear its
queue. It may also not want'to just throw away the message or
poll the user explicitly until the message can be sent. The
system provides an explicit message event corresponding to the
unblocking of the user’s port queue.

2.4.4 Waiting for messages

Although particular protocols may specify synchronous behavior, the receipt of a message is
inherently an asynchronous event. In a network environment, in particular, it becomes possible for
error conditions to cause messages to be sent to a process at almost any time. Mechanisms must
therefore be provided for a process to check the state of its ports, to wait for activity on one or more
of its ports, and to receive messages selectively. It should also be possible for a process to specify a
maximum amount of time to wait for a message before reawakening.

Four basic primitives are provided for accomplishing this task.

o Receive(SetOfPorts, Message, Timeout) waits for at most Timeout milliseconds and if a message is
available during that time from any of the ports designated by SetOfPorts then the message is
read into Message and a boolean value of true is returned.

25 Aug 84

Theory of Operations — 20

o McssageWait(SctOfPorts, Timeout) performs a similar function, but does not receive the pending
message. It returns the capability of the port from which the next message would be received.

s Preview(SctOfPorts,Message, Timeout) is again similar to Receive, but it reads only the header of
the next waiting message and docs not actually dequeue that message from the port queue.

o PortsWithMessagesWaiting(SctOfPorts) is an informational routine which checks the status of all
ports and returns the set of ports with messages waiting,

2.4.5 Sending and receiving kernel messages

Each newly created process has access to two ports whose primary purpose is to allow messages
to be sent to and received from the Accent kerncl. The first is called the kernel port of the process,
and the kernel logically has the receive rights for this port while the created process has the send
rights. The second is called the data port, and it is normally used by a process to receive messages
from the kernel.

The parent of a process can, at the time of process creation, ask that other ports to which it has
access be given to its child process. The parent can also get access to the kernel and data port of the
child process. This, taken together with the ability to send port access rights in messages, is the
basic mechanism for establishing communication between processes.

2.4.6 Messages .

A message is logically a collection of typed data objects copied from the address space of the
sender at the time of a message send call into the address space of the receiver when a receive call is
performed. Physically, a message is divided into two parts: 1) the message hecader, which contains
information normally associated with all messages and 2) an optional description of structured data
to be sent. The purpose of this division is primarily to optimize the transmission of short control
messages and to make it easier for the kernel to find critical information which must always be
contained in a message—-such as its destination port.

2.4.7 The message header

The message header contains a small amount of system required message information and is
uscd to form an anchor for the structured part of a message. At minimum it specifies the message
type and contains a capability for the destination port of a message and a field for a capability
(which may be empty) to be used for a reply. The destination and reply ports are more commonly
referred to as the remote and local ports, respectively. The header also contains an ID field to be
used for discriminating messages and a pointer to the structured data part of the message.

The header may be checked without actually receiving the data portion of a message by calling
Preview. The purpose of this facility is to allow a process to check the ID of the message being
received and select an appropriate message structure for receiving it.

25 Aug 84

Theory of Operations - 21

The message type contains information which determines the kind of service it requires of the
IPC. Two types have been given special names and play a dominate role in communication:

Normal messages A ’normal’ message is flow controlled, sequential, reliable, not secure, of lowest
priority, and has no maximum age. This is the default message type and is
assumed to satisfy most communication requirements.

Emergency messages Emergency messages are specially flow controlled, sequential,

reliable, not secure, of highest priority, and have no maximum age. Emergency .

messages play an important role in error handling. Because of their high priority,
they are guaranteed to be reccived before any normal messages arc sent to a port.
Their purpose is to allow urgent information to be delivered to a process
regardless of that process’s current message backlog or message queue. They are
used for error notification, special event processing, and debugging.

The notion of message type allows the programmer the ability to specify the exact requirements
of his IPC use. This gives the underlying system more information about a message and thus makes
possible optimizations in the delivery and management of messages. This use of message types is
consistent with the overall goal of making as much of the inner workings of the communication
system as possible visible to the *outside world’ rather than hidden inside compiled algorithms, thus
allowing greater flexibility in optimization, management, and monitoring,

2.4.8 Exceptional condition handling

Distributed programming imposes a heavy responsibility to handle a multitude of error
conditions. Message activity can be pipelined or multiplexed, and the relationships between
incoming and outgoing messages can be much richer than in a conventional programming
environment (i.e., one in which subroutines are used as the primary structuring mechanism). A
faulty process could conceivably crash many processes by sending illegal messages, making it very
hard to identify the source of the problem. As a practical matter, it is difficult to ensure complete
compatibility between similar programs written by different individuals in different languages.
Supposedly interchangeable processes may differ in subtle ways. A failure in a message-based
system can quickly lead to finger-pointing.

A variety of facilities for protection, error detection, and error handling has been built into the
IPC. Illegal process addresses are noted within the send and receive primitives, and the appropriate
error returned to the offending process. In addition, processes are protected from accidental or
malicious access through the use of port capabilities rather than global port or process identifiers.
Whenever a port is destroyed the kernel notifies all processes which still have access to that port via
an emergency message. Emergency messages themselves are important because they give processes
a way to reliably communicate errors in situations where normal communication channels are
blocked. Software interrupts allow processes to handle error conditions without interfering with
normal execution.

25 Aug 84

Theory of Operations — 22

2.4.9 Optimizing message transfers

Messages are logically copied from a process’s address spacce into a kernel message data
structure upon transmission and arc logically copied from the kernel to a process’s address space
upon message reception. Since data is never shared between processes, message communication
over a network has precisely the same semantics as local message communication.

Double copy semantics need not, however, imply actually copying the data twice. If a process
sends a message pointing to pages in its virtual memory and either rcleases the memory or simply
never changes it, double copy semantics can be preserved by marking the pages referenced in the
message as copy-on-write and not actually copying them into the supervisor’s address space.
Morcover, if the receiver of the message doesn’t care about its placement or desires that it be placed
in its memory on the same page boundaries, no copy of data nced be performed at all. Instead, the
data pages may be placed directly into the address map of the receiving process.

Thus, when a process sends a message to a port, whole virtual memory pages referenced in the
message are not copied but instcad marked as copy-on-write in the address spacc of the sender.
Should the sender attempt to change any or all of these pages, new virtual pages will be allocated,
filled with the appropriate data, and placed in its address space. On reception into an area of the
receiver’s virtual memory which is properly aligned, pages referred to in the incoming message are
mapped in rather than copied. If the receiver desires a different alignment of data than that
specified by the sender, a copy operation will be performed.

The utilization of virtual memory by the IPC represents a functionally transparcnt optimization
which is not required either for the functioning of the IPC or the virtual memory management
facility. Nevertheless, this optimization can be of enormous value in increasing the speed of
communication between processes on the same host.

Example:

The advantage of integrating virtual memory, file storage, and IPC is graphically illustrated by
the example of file system access provided through messages sent to and from a file system process.
The file system process can read secondary storage by sending a message to the kernel. The kernel
then sends back a message which contains the virtual pages requested by the file system. This
message need look no different than any other message containing data. Moreover the requested
pages need never be copied, but are simply placed into the address space of the file system in the
normal way that data is placed into the address space of any process when received in a message. If
a user requests a block of data, however large, the file system can send it that block in a message,
again without ever having the underlying data referenced by either the kernel or the file system. In
this way the speed advantages of large memory mapped files can be obtained through the reception
of normal IPC messages without resorting to special file mapping primitives.

25 Aug 84

Theory of Operations - 23

2.4.10 1PC and port structures.

This scction describes the structures that are used by the IPC sytstem.
2.4.10.1 Port structures

Figure 13 gives the definition of the structure that is used to define an IPC port. Therc is a
single PortRec for each port in the system. The record keeps all information needed by the IPC
system on a per port basis.

It is interesting to note that the queue of messages for a port are not kept with the port. That
queue is kept in the per process IPCRecord (sce Section 2.4.10.2).

The SccondaryMsgQ is used to hold a single message. This is the message that can be sent to a
port when that port is full. When a process puts a message into this queue, the sending process will
be notified when it is possible fo place that message into its standard queue.

The Senders field of the record contains a bit array that has a bit for each process in the system.
If a process has send access to the port, the bit in the Senders ficld that corresponds to the
ProcessID of the sending process will be set. '

PortRec = record
SecondaryMsgQ : ptrKMsg;
NumQueued : integer;
Backlog : integer;
Owner ¢ ProcID;
Receiver : ProclD;
Locked : boolean;
InUse : boolean;
Senders : ProcBitArray;
RectanglePtr : ptrRectangle
end;

2.4.10.2 Process IPC structures

For each process in the system there is a per-process table that is used by the IPC system. This
table contains information about the IPC state for that process.

All messages for a process are linked using a field in the IPCRecord. In general the number of
messages that arc waiting for a process to receive at any given time is small. In addition to this fact,
most receives are done on the set of all ports to which the process has receive access. Based on these
two facts there is a performance improvement to be had by linking the message with the process.
When a process does a receive, the system necd only look at the process IPC table. The system does
not have to search the list of ports to which this process has receive access.

The DebugPort is a field that contains a port on which the system can send a message if this
process dies. The Limit and Wait ports are ports on which the system can send a message to notify
some process that something unusual has happened to this process.

MsgsWaiting is a pointer to the first message in a linked list of messages for this process.

25 Aug 84

Theory of Opcrations — 24

KPort contains the Kernel and Data ports for the process.

IPCRecord = record
Active : boolean;
State : IPCState;
DebugPort : Port;
MsgsWaiting : ptrkMsg;
PreviewMsg : ptrKMsg;
LimitPort : Port;
WaitOption : integer;

WaitPt : Port;
UseHashTable: boolean;
KPorts : array [KERNELPORT..DATAPORT] of Port
end;
ptrIPCRecord = tIPCRecord;
ptrIPCInfo = +IPCInfo;
IPCInfo = array[KERNELPROC. .NPROC+1] of IPCRecord;

25 Aug 84

Part Three
Major SubSystems

This chapter gives an overview of the major subsystems that make up the Accent operating
system. Each major subsystem, except the Message Server, is discussed in morc detail in its own
document in this manual.

Accent is structured as a set of cooperating processes. All requests arc made by building a
message and sending that message to a server request port.

This method of making requests is used throughout the operating system. Even requests of the
Kernel are made by building a message and exccuting a Send. The Send code will look at the
message to determine the port to which the message is to go. If the port is the kernel port of the
process, the send is turned into the correct Kernel trap for the requested function.

For details on how to make use of these servers, see the documents on the specific server or the
Programming Examples portion of this document.

For the name of ports that provide most of these functions, see Appendix B.

For system defined server ports, see Appendix D.

3.1 Kernel

The kernel of the Accent operating system provides the virtual machine on which Accent
processes execute. The kernel is implemented in a combination of microcode and Pascal. In theory
the only functions that must be provided by the kernel are the primitive IPC facilities. For
performance reasons a number of other facilities are currently provided by the kernel.

The kernel provides the following interfaces to the Accent virtual machine:
. IPC System facilities.

. allocation and deallocation of ports

changing port backlog

interposing a port for another port

send and receive primitives

control of software interrupts associated with the IPC system.

3. Process control facilities:

. Fork
Terminate
Priority
Setting limits

25 Aug 84

10.

11.
12.

Theory of Operations - 26

Suspend and resume process execution

. Memory management facilities:

. Validate and Invalidate (i.e., Allocate and Deallocate) process virtual address space

Reading and writing of process Stack and register sets
Reading and writing of process virtual memory space.
Segment control facilities:

Create, Destroy and Truncate segment

Read and Write Segments to and from backing store
Backing store control and status

Get information about the disks

Mount and DisMount disk partitions

Direct Disk 1/0 operations

Display opcrations

RasterOp

Line

DrawByte

The interfaces to the kernel provided facilities are found in AccentUser and AccCall in
LibPascal.

3.2 File System

Accent provides a single level store view of the memory hieriarchy. In the Accent system there
is only virtual memory. Some of that virtual memory can reside on disk and have a name. This long
term storage of virtual memory is the responsibility of the file system. When a file is to be read, a
request is made to the file system to provide that file. The file system will arrange to have the entire
file mapped into the requester’s address space. There are no actual data transfers that occur during
this operation. Only mapping operations are performed. When the process touches a piece of the
data, the page that contains the data is brought into memory using the normal page fault facilities.
When a file is to be written to disk, it is first created in virtual memory. The client process then asks
the file system to save that piece of virtual memory on the disk with a specific name.

The file system provides access to files that are on the local disk. In addition, it provides access
to files that may reside on other disks that are attached to other machines on the network. When a
request is made for a file that does not reside on the local machine, the file system does a number of
operations. First it must look to see if it has ever accessed a file on the remote machine before. If so,
it will have access to a port that is the request port for the remote machine. If this is the first access,

25 Aug 84

Theory of Operations - 27

the file system must try to find the desired machine. It does this by doing a simple IPC look up of
the remote file access port for that machine. Once the port is obtained, the request is made for the
file. If the desired file is small, the entire file is sent to the requesting machine in a single message. If
the file is large the remote machine sends an IOU for the data. Scgments of this type are called
imaginary segments. They are a picce of memory that is backed by another process. When the local
process touches a page of the imaginary segment, a request is made to the remote machine for the
desired page. ‘

A client of the file system does not need to know if a file is on a local disk or on a remote disk.
All opcrations on the file are accomplished in the same manner.

The direct interfaces to the file system in ScsUser.Pas are very low level. The module
PathName.Pas provides a much more uscr-oriented interface to the filing system. This is the
.recommended interface for users of the file system.

3.3 Window Manager

The Window Manager provides the facilities that are used to place text and graphics on the
screen and to obtain input from users. These facilities are provided by a set of three different
processes. These processes act in close cooperation to provide the user oriented input/output

facilities of the system.
The Window system is made up of three different abstractions. They are:

o Windows - Windows are a user abstraction. They are the objects that the user deals with on the
screen. Windows can be moved to different locations on the screen in all three dimensions.
Windows can be uncovered, partially covered, completely covered, or off screen. In addition to a
virtual display the window also provides a control point for a process or a group of processes. The
Window Manager provides process group control operations that can be invoked on the processes
that are associated with a window. The icons provided by the svstem describe the state of
windows and of the processes associated with those windows.

o ViewPorts - ViewPorts are abstractions that are presented to clients of the window manager. A
ViewPort is the output portion of a window. In general most windows are made up of two
viewports. One viewport (the "outer" viewport) covers the entire area of the window, including
its borders and title line. The second viewport is the client usable area of the window. This
viewport is usually called the "inner viewport.”

o TypeScripts - TypeScripts are the input abstractions that are presented to the clients of the
window.

25 Aug 84

Theory of Operations - 28

3.3.1 General

The Window Manager is the process that handles the window and display system. It supports a
full implementation of covered windows. The Window Manager also provides additional facilities
through the use of Icons.

The Icon window is controlled by the Window Manager. Clients of the Window Manager can
make requests for changes to be made to the Icon that is associated with that client.

3.3.2 TypeScript

The TypeScript manager maintains standard text windows (Typescripts), providing line editing
and redisplay functions for user programs that do not require graphics output or elaborate input
control. "

TypeScript remembers the last several pages (a window’s worth) of text output by the program
using a typescript.. When a text window changes state, size or coveredness, TypeScript will
redisplay to changed portion of the window. TypeScript will also redisplay information that may
have scrolled from the window.

TypeScript allows the user to edit input lines using a subset of the commands available in the
system editor. The user can use all of the editor’s single-line editing functions, and recall previous
input lines to be edited into new input lines.

TypeScript also handles Escape Completion for each typescript. The user may type a partial
filename and press the Escape key; TypeScript will ask the file system to complete the file name by
finding the longest unambiguous match to.the partial name. It will then add the name to the line of
input, so that the user can specify the rest of thc name or add more to the line.

TypeScript can either stop at the end of each screenful of output (more’ mode) or scroll output
continuously. The user can select which mode to use, under keyboard control.

In "More’ mode, when a full page of output has been displayed, a black bar appears at the
bottom of the window. The user then presses LineFeed to display the next page of output.

In continuous scroll mode, the user can use the Process Control Functions Suspend and
Resume to stop or start output.

3.3.3 Tracker

Tracker is the process that actually listens to the keyboard and the tablet. It receives data from
these input devices and then routes that data to the appropriate process. In addition it is Tracker
that keeps the cursor tracking the puck or mouse.

25 Aug 84

Theory of Operations - 29

3.4 Environment Manager

The Environment Manager provides processes with an exccution environment. This
environment can include any number of user and system dcfined variables. Environment Manager
variables can be of two types: a) simple strings or b) searchlists.

It is possible for a client of the Environment Manager to set an environment variable and then
to later obtain the value of that variable. In addition it is possible to ask the Environment Manager
to make the environment variable known to other processes in the system. .

Environment variables can be defined as simple strings or they can be defined in terms of other
environment variables.

The client interface to the Environment Manager is in EnvMgrUser.Pas in LibPascal.

3.5 Net Server

The Network Server is the process that is responsible for driving the Ethernet hardware. It
provides facilities that allow multiple client processes to use the network concurrently. The client
interface to the Net Server is found in two files: NetlOMBUser and NetlOMBRecvServer in
LibPascal.

3.6 Message Server

The Message Server is the process that is responsible for extending the IPC facilities across the
network. In addition the Message Server provides a simple name service facility.

3.6.1 Name service

The only client interface to the Message Server is for using the Naming Services. The client
interface to the name server portions of the message server are found in the file MsgNUser.Pas in
LibPascal.

The interface to the Name Server is very simple:

1. A process can register a port with a given name,.
2. A process can request the port associated with a name.

3. A process can destroy the name/port connection. In addition a call is provided to return status
information associated with a port.

25 Aug 84

Theory of Opcrations ~ 30

3.6.2 Network 1PC operation

The major function provided by the Message Server is to extend the IPC system across the
network. An exampic will be used to show the manner in which this is done.

3.6.2.1 Finding a name

. Process A on Machine A executes a LookUp. The LookUp is for a port provided by Process B on
Machine B.

. The Message Server on Machine A notices that it does not have an entry for Process B in its name
space.

. The Message Server on Machine A sends a broadcast message on the network asking all other
message scrvers if they have an entry for name B.

. The Message Server on Machine B receives the message and determines that it does have an
entry for name B.

. It will reply to the request from Message Server A saying "I have a port for B. Here is an ID that
you can use to talk to me about B."

. The Message Server on Machine A receives the message from the Message Server on B. It then
allocates a port, A’, that it associates with the ID provided by the Message Server on Machine B.

. Finally the message server on Machine A returns the port A’ to Process A.

Note that Process A does not know that the port A’ is a pori to the Message Server and not to
Process B. The fact that Process B is on another machine is transparent to Process A.

-3.6.2.2 Sending a message

. Process A wants to send a message to Process B. It executes a Send command using Port A’ as the
destination.

. Message Server A receives the message on port A’. It looks in its internal tables and notices that
port A’ is associated with a process on another machine.

3. Message Server A sends the message, using some network protocol, to Message Server B,

el A

. Message Server B looks at the ID provided by Message Server A and finds the port on Machine B
that is associated with that ID.

. Message Server B then sends the message to Process B on the port that Process B supplied during
a CheckIn command. ' :

3.6.2.3 Deleting ports
When a remote port is deleted, the following actions take place:
The owner of the Port B deletes it.
The Message Server B gets a Port Death message.
Message Server B sends a message to Message Server A, telling it that Port B has died.
Me§sage Server A deletes the port A’.

25 Aug 84

Theory of Opcrations - 31

5. Process A gets a Port died message for Port A”. The semantics of the Port Deleted processing is
exactly the same as if the port were on the local machine. This is because, in fact, it is a local port
that is delcted.

3.7 Time Server

The Time Server provides all of the timre of day facilities provided by the operating system. It
can return the time and date in a number of different formats. The interface to this server is found
in the file TimeUser.Pas in LibPascal,

3.8 170 System

The 1/0 system provides access to all I/0 devices except the disk and the network. There is a
single standard interface to all of the devices. The way in which a client picks the device to be
accessed is by sending the requests to the appropriate server. There is one server for each of the
supported I70 devices. The interface to the I/0 servers is found in IOUser.Pas in LibPascal.

25 Aug 84

Part Four
Accent Environments

Accent provides a number of environments for the user of the system. Each of the
environments provides its own user interface, command line processing, error processing, and style
of operation. All of the environments make use of the virtual machine provided by the Accent
kernel. In addition, all of the environments make use of the input and output facilitics provided by
the Accent window manager.

Any number of these environments may by active at any given time. In addition, it is possible .
for processes running in one environment to communicate with processes in other cnvironments
using the Accent IPC facilities.

At the current time Accent provides its user with three different environments. They are: a)
Native Accent, b) UNIX System V, and c) Accent Lisp.

4.1 Native Accent Environment

The native Accent environment is started when the operating system is booted. The user
interface to this environment is the Accent Shell. This Shell provides command processing, as weil
as a number of simple commands, for the Accent environment. Most commands used in this
environment are interactive.

4.2 UNIX System V

The UNIX System V environment is provided by the Qnix system. Qnix is an emulator that
provides a UNIX System V system call interface. This interface allows most UNIX software
programs to be ported to run on the PERQ workstation by simply recompiling the source.

The user interface to the Qnix system is provided by the UNIX software shell. This provides a
well known environment to a large number of users. There are very few differences between the
Qnix environment and the environment provided by UNIX System V.

It is possible to run native Accent programs from the Qnix environment in the same manncr as
running Qnix programs. The only limitation is that it is not possible to pipe between the two
environments.

To start the Qnix environment execute the command file QnixInit.Cmd.

4.3 Al Workstation

25 Aug 84

Theory of Opcrations - 34

The Al workstation environment is provided by running Accent Lisp on the machine. Accent
Lisp is a superset of Common Lisp.

Lisp is a programming language widcly used for Artificial Intclligence research. It was
conceived by John McCarthy in 1958. Because of its built-in facilities for symbol-processing and its
interactive programming cnvironment, the language is increasingly being used for such
applications as compilers, CAD systems, and editors.

Common Lisp is a new dialect of Lisp, closely related to MacLisp, Lisp Machine Lisp
(Zetalisp), and (somewhat less closely) Franz Lisp. It was developed jointly by several Lisp groups
to meet the need for a modern Lisp dialect that is stable, well-documented, and suitable for
implementation on a variety of machines.

Accent Lisp is the implementation of the Common Lisp language for the PERQ workstation. It
was developed by the Spice Lisp Group at Carnegie-Mellon University; it is nearly identical to the
Common Lisp implementations on VAX/VMS and VAX/Unix.

The Accent Lisp release includes Hemvlock, an editor written in Common Lisp. It is based on
TOPS-20 EMACS, an editor written by Richard M. Stallman of the Massachusetts Institute of
Technology.

25 Aug 84

O N A kWD

Part Five
Programming Examples

This chépter gives a number of example programs. These programs, in general, do not do
anything useful. They do however show how to use a number of the facilities of the Accent
operating system.

[

5.1 Messages

Below are two programs that send and reccive IPC messages.

The first program, Messagel, sends and receives both simple and complex messages. The
program performs the following functions:

Define types that can be used for messages.

Allocate ports.

Register a port/name pair with the name server.
Present a name to the name server and receive a port.
Send a simple message.

Receive a simple message.

Send a complex message.

Receive a complex message.

The second program, Message?2, is slightly different than Messagel. In Message2 the program
will be interrupted when a message arrives. The program will not do a receive until the message is
there. This method of interaction allows the program to perform other computations while waiting
for a message,

Generally, programs do not do actual IPC sends and receives. Most interprocess interaction is
done using Remote Procedure Call interfaces that were generated by Matchmaker. In these cases it
is the Matchmaker code that does the sends and receives. Using Matchmaker interfaces is the
preferred way of doing multiple process programs.

program Messagel;

Abstract:

This program demonstrates the use of the message system.

It will send and receive both "simple" and "complex" messages.
Written by: Don Scelza

Copyright (C) PERQ Systems Corp., 1084

25 Aug 84

imports Pascallnit
imports MsgN

imports AccCall
imports Acclnt
imports AccentType
imports SaltError
imports CommandDefs

type
DataArray

Theory of Opcrations — 36

from

from

from
from
from
from
from

Pascallnit;
{Many useful ports are defined here.}

MsgNUser; {For access to the
{name server}

AccCall; {For Send and Receive}

AccentUser; {AllocatePort}

AccentType; {GR values}
SaltError; {Error routines}
CommandDefs; {Get the value for ErAnyError}

array[0..10] of integer;

pDataArray = tDataArray:;

£ A o o P P N P e

A message has the following form:
1) There is a message header. This defines the entire message
to the system.
2) The header is followed by zero or more objects. An object is
made up of two parts.
a) A descriptor. This defines all of the information
about a single object.
b) The data for the object.
}
MySimpleMessage = record { A simple message does not contain }
Head: msg; { any ports or pointers to "out of }
{ line" data. }
MType: TypeType; { A descriptor for "Data"}
Data: DataArray; { The actual data to be passed. }
end;
pMySimpleMessage = tMySimpleMessage;
MyComplexMessage = record { A complex message may contain ports}
Head: msg; { or "out of line" data. In this
case} :
{ the }
MType: TypeType; { may have to translate the Ports or }
Data: pDataArray; { make new memory map entries for the}
end; { out of 1ine data }
pMyComplexMessage = tMyComplexMessage;
var
MyPort: Port; { We will do receives on this port.}
MsgExamplePort: Port; { We will do sends on this port. }

25 Aug 84

Theory of Operations — 37

const
MyName = 'MsgExample'; { Just a name to use }
PortBackLog = 3; .
{ Number of messages that may be queued on a port }
SimpleIndex = 12345; { An id for a simple message }
ComplexIndex = 54321; { An id for a complex message }

procedure RegisterName;

{--mmmmmmmm s eSS }
{
{ Abstract:
{ Register a named port with the Name Server.
{ :
{ Design:
{ The port that we will register is MyPort. It is
{ assumed that MyPort is a valid port at the time that
{ this procedure is called. It is also assumed that the
{ interface. to the NameServer has been initialized.
{
{mmm oo oo oo }
var Gr: GeneralReturn;
begin -
writeln{'Register ', MyName, ' with the name server.');
Gr := CheckIn(NameServerPort,{ NameServer from Pascallnit }
MyName, { The name for this port}
NuliPort, { Not used currently. Must be
NullPort} :
MyPort); . { The port to give to others }
if Gr <> Success then
begin .
GRWriteStdError(Gr, GR_FatalError, 'Could not "CheckIn"');
end;
end;
procedure LookUpMyName;
{ Abstract:
{ Lookup the port name MyName. Place the port returned
{ by the NameServer into MsgExamplePort.
{
var Gr: GeneralReturn;
begin
writein('Lookup ', MyName, ' from the name server.');
Gr := LookUp(NameServerPort, { NameServer from Pascallnit }
MyName, { The name that we want to find.}

, MsgExamplePort); { Will hold the desired port }
if Gr <> Success then
begin
GRWriteStdError(Gr, GR _FatalError, 'Could not "LookUp"');

25 Aug 84

Theory of Operations - 38

end;
end;
procedure AllocateMyPort;
{7 o }
{
{ Abstract:
{ This procedure is used to allocate a new port. The port
{ that is allocated will be placed into MyPort.
{
(7o e oo }
var Gr: GeneralReturn; :
begin

writeln('Allocate port.');
Gr := AllocatePort(Kernelport, {My port to the Kernel }
MyPort, {Put the new port in MyPort }
PortBackLog); {Allow this many messadges to be
queued}
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not allocate
MyPort'); :
end;
end;

procedure SendSimple;

{

{ Abstract:
{ Set-up and send a simple message on port MsgExamplePort
{ .

var Gr: GeneralReturn;
SendMyP: pMySimpleMessage;
I: integer;

begin
writein('Send a simple message.');
new(SendMyP); { Allocate the message }
1. . : .
{ First set up the message header. This describes the entire message
{ that is to be sent.
3

with SendMyPt.Head do
begin
SimpleMsg := true;
{ This is a simple message. No ports or pointers }
MsgType := NormalMsg;
{ This is a normal, not emergancy, message. }
LocalPort := NullPort;
{ The port for a reply. We don't expect to get one.}

25 Aug 84

Theory of Opcrations - 39

RemotePort := MyPort;
{ Destination for the message }
ID := Simplelndex;
{ An ID that the receiver can check }
MsgSize := wordsize(MySimpleMessage) * 2;
end;

Now set up the object descriptor for the data of the message.

AN

}

with SendMyPt MType do
begin
TypeName := TypeUnStructured;{ Just bits. No ports or
_pointers}

NumObjects := 1; { Only one object in the
message}

InLine := true; { The data is in the message. No
pointers}

LongForm := false; { This is a simple description }

Deallocate := false;
{ Don't remove the message from the senders address
space}
TypeSizelnBits := wordsize{DataArray) * 18;
end;

{ Put in some values for the data,

8
with SendMyPt do
begin
for I := 0 to 10 do Data[I] := I + 23;
end;

{ Now send the message

18

Gr := Send(SendMyPt.Head, { The message header }
o, { Don't time out }
Wait); { Wait for it to finish }

if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not Send
SimpleMessage');
end;

dispose(SendMyP);
end;

25 Aug 84

Theory of Operations — 40

procedure SendComp]ex;v

{m=mmmmmmm o m e oomoooos oo oooososososssssosooooosoooooooo }
{

{ Abstract:

{ Set-up and send a Complex message on port MsgExamplePort

{
e }

var Gr: GeneralReturn;
SendMyP: pMyComplexMessage;
DataP: pDataArray;
I: integer;

begin
writeln('Send a complex message.');
new(SendMyP); { Allocate the message }
new(DataP); { Allocate the data memory }
{
{ First set up the message header. This describes the entire message
{ that is to be sent.
8
with SendMyP+.Head do
begin
SimpleMsg := false; { This is a complex message. }
MsgType := NormalMsg; { This is a normal message. }
LocalPort := NullPort;
{ The port for a reply. We don't expect to get one. }
RemotePort := MyPort; { Destination for the message }
ID := ComplexIndex; . { An ID that the receiver can
check}
MsgSize := wordsize(MyComplexMessage) * 2;
end;
{
{ Now set up the object descriptor for the data of the message.
&

with SendMyPt.MType do
begin
TypeName := TypeUnStructured; { Just bits. No ports or
pointers}

NumObjects := 1; { Only one object in the
message}

InLine := false; { The data is referenced by a
pointer}

LongForm := false; { This is a simple description}

Deallocate := false;
{ Dea*l remove the message from the senders address
space}
TypeSizeInBits := wordsize(pointer) * 16;

25 Aug 84

Theory of Opcrations — 41

end;

Put in some values for the data.

A

}

for I := 0 to 10 do DataP+[I] := I + 23;
SendMyPr.Data := DataP;

{
{ Now send the message
{ .

3
Gr := Send(SendMyP+t.Head, { The message header }
o, { Don't time out }
Wait); { Wait for it to finish }

if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not Send
ComplexMessage');
end;

dispose(SendMyP);
dispose(DataP);
end;

procedure ReceiVeSimp1eMsg;

{

{ Abstract:

{ This procedure will receive a message. It will check the
{ ID of the message to see if it was one that was expected.
{

var Gr: GeneralReturn;
SimpleP: pMySimpleMessage;
begin
writeln('Receive a simple message.');
new(SimpleP);
SimplePt.Head.MsgSize := wordsize(MySimpleMessage) * 2;
Gr := Receive(SimplePt Head, { Receive the message into
SimpleP. }

0, { Don't time out. Just wait. }
Al1Pts, { Receive any messages on any
ports. }
Receivelt); { Actually receive the message. }
if Gr <> Success then
begin

GRWriteStdError(Gr, GR_FatalError,
'Could not receive a simple message.');
end;

if SimplePt.Head.ID <> Simplelndex then

25 Aug 84

Theory of Operations ~ 42

begin

GRWriteStdError(ErAnyError, GR_FatalError,
'Message was not a simple message. '):

end; :

{

{ Abstract:

{ This procedure will receive a message. It will check the
{ ID of the message to see if it was one that was expected.
{ R

var Gr: GeneralReturn;
ComplexP: pMyComplexMessage;

begin

writeln('Receive a complex message.');

new(ComplexP);

ComplexPt . Head.MsgSize := wordsize(MySimpleMessage) * 2;

Gr := Receive(ComplexPt.Head, { Receive the message into
ComplexP.}
0, { Don't time out. Just wait. }
AL1Pts, { Receive any messages on any
ports.}
Receivelt); { Actually receive the message. }
if Gr <> Success then
begin

GRWriteStdError(Gr, GR_FatalError,
‘Could not receive a complex message.');
end;

if ComplexPt . Head.ID <> ComplexIndex then
begin
GRWriteStdError(ErAnyError, GR_FatalError,
'Message was not a complex message. ');
end;
end;

begin

Allocate a new port. Register that port with the NameServer,
LookUp the port and get the Send rights to it.

Actually we already have all of the rights to the port.

In addition the values of MyPort and MsgExamplePort will be the
same because this is a single process. If the call to LookUpMyName
was in a different process the values of MyPort and MsgExamplePort
might be different. In that case the process that did the LookUp-

P Yoo Yo Yo Yo Y T Ve Yo

25 Aug 84

Theory of Operations — 43

{ MyName would have send rights to MsgExamplePort. It would not
{ have receive rights to it.

8

AllocateMyPort;
RegisterName;
LookUpMyName;

{ Send a simple message

{:
SendSimple;

{

{ Receive a message. We know that there is one there because
{ we just sent it.

{
ReceiveSimp]eMsg;

{
{ Send a complex message

8

SendComplex;

{ Receive a message. We know that there is one there because
{ we just sent it.

(3

ReceiveComplexMsg;

end.
program MessageZ2;

=== o oo oomosoomsssoo o ssso oo oo }
{ Abstract:
{ This program demonstrates the use of the message system.
{ It will send and receive a simple message using the software
{ interrupt facility to be notified when a message is available.
{
{ Written by: Don Scelza
{
{ Copyright (C) PERQ Systems Corp., 1984
{
{ ___
imports Pascallnit from Pascallnit;
{ Many useful ports are defined
here.}

25 Aug 84

Theory of Operations - 44

imports Msgh from MsgNUser; { For access to the name
server }
imports AccCall from AccCall; { For Send and Receive }
imports Acclnt from AccentUser; { AllocatePort }
imports AccentType from AccentType; { GR values }
imports SaltError from SaltError; { Error routines }
imports CommandDefs from CommandDefs; { Get the value for
ErAnyError. }
imports Except from Except; { For Message exceptions }
type
DataArray = array[0..10] of integer;
{ .
{ A message has the following form:
{
{ 1) There is a message header. This defines the entire message
{ to the system.
{
{ 2) The header is followed by zero or more objects. An object is
{ made up of two parts.
{
{ a) A descriptor. This defines all of the information
{ about a single object.
{
{ b) The data for the object.
{}

MySimpieMessage = record { A simple message does not contain
any }

Head: msg; { ports or pointers to "out of 1line"
data}

MType: TypeType; { A descriptor for "Data"}

Data: DataArray; { The actual data to be passed. }

end;

pMySimpleMessage = tMySimpleMessage;

var
MyPort: Port; { We will do receives on this port,
MsgExamplePort: Port; { We will do sends on this port. }
NoMessage: boolean; { True if waiting for a message }
Boo1Dum: boolean; { A dummy }
Gr: GeneralReturn;

const
MyName = 'MsgExample'; { Just a name to use }

25 Aug 84

Theory of Operations - 45

A A o e P P A P S

PortBackLog = 3;
{ Number of messages that may be queued on a port }
SimpleIndex = 12345; { An id for a simple message
}
procedure RegisterName;
__ }
Abstract:
Register a named port with the Name Server.
Design:
The port that we will register is MyPort. It is
assumed that MyPort is a valid port at the time that
this procedure is called. It is also assumed that the
interface to the NameServer has been initialized.
__ }
var Gr: GeneralReturn;
begin
writeln('Register ', MyName, ' with the name server.');
Gr := CheckIn{MameServerPort,{ NameServer from Pascallnit }
MyName, { The name for this port}
NullPort, { Not used currently. Must be
NullPort} ‘
MyPort); { The port to give to others }
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not "CheckIn"');
end;
end;
procedure LookUpMyName;
=== oo oo o oo }
{ Abstract:
{ Lookup the port name MyName. Place the port returned
{ by the NameServer into MsgExamplePort.
{
.. }
var Gr: GeneralReturn;
begin i
writeln('Lookup ', MyName, ' from the name server.');
Gr := LookUp(NameServerPort, { NameServer from Pascallnit }
MyName, { The name that we want to find. }

MsgExamplePort); { Will hold the desired port }
if Gr <> Success then
begin .
GRWriteStdError(Gr, GR_FatalError, 'Could not "LookUp"'):
end;
end;

procedure AllocateMyPort;

25 Aug 84

Theory of Operations — 46

{7 e)
{

{ Abstract:

{ This procedure is used to allocate a new port. The port

{ that is allocated will be placed into MyPort.

{
(oo }

var Gr: GeneralReturn;
begin
writeln('Allocate port.');
Gr := AllocatePort(Kernelport, { My port to the Kernel }
. MyPort, { Put the new port in MyPort }
PortBackLog);{ Allow this many messages to be
queued}
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not allocate
MyPort');
end;
end;

procedure SendSimple;

{
{ Abstract:

{ Set-up and send a simple message on port MsgExamplePort
{

var Gr: GeneralReturn;
SendMyP: pMySimpleMessage;
I: integer;

begin
writeln('Send a simple message.');
new(SendMyP); { Allocate the message }
! .
{ First set up the message header. This describes the entire message
{ that is to be sent.
{}

with SendMyP+ Head do

begin

SimpieMsg := true; { This is a simple message. No ports or
pointers}
MsgType := EmergencyMsg; { Send an Emergency message to be
different.}

LocalPort := NullPort;

{ The port for a reply. We don't expect to get

one.}

RemotePort := MyPort; { Destination for the message }

ID := Simplelndex; { An ID that the receiver can

25 Aug 84

Theory of Operations - 47

check}
MsgSize := wordsize(MySimpleMessage) * 2;
end;

{
{ Now set up the object descriptor for the data of the message.
{

}

with SendMyPt MType do

begin :

TypeName := TypeUnStructured; { Just bits. No ports or
pointers}

NumObjects := 1; { Only one object in the
message }

InLine := true; { The data is in the message. No
pointers}

LongForm := false; { This is a simple description
}

Deallocate := false;

{ Don't remove the message from the senders address

space}

TypeSizeInBits := wordsize(DataArray) * 16;

end;
S
{ Put in some values for the data.
8

with SendMyP* do

begin

for I := 0 to 10 do Data[I] := I + 23;

end;
{
{ Now send the message
{}

Gr := Send(SendMyPt.Head, { The message header }
, { Don't time out }
Wait); { Wait for it to finish }

if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not Send
SimpleMessage');
end;

dispose(SendMyP);
end;

procedure ReceiveSimpleMsqg;

25 Aug 84

Theory of Operations - 48

{ Abstract:
{ This procedure will receive a message. It will check the
{ ID of the message to see if it was one that was expected.
{
L }
var Gr: GeneralReturn;
SimpleP: pMySimpleMessage;
begin
writeln('Receive a simple message.');
new(SimpleP);
SimpleP*.Head.MsgSize := wordsize(MySimpleMessage) * 2;
Gr := Receive(SimplePt.Head, { Receive the message into
SimpleP.}
0, { Don't time out. Just wait. }
Al11Pts, { Receive any messages on any
‘ports.}
Receivelt); { Actually receive the message. }
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError,
'Could not receive a simple message.');
end;
if SimplePt.Head.ID <> Simplelndex then
begin
GRWriteStdError(ErAnyError, GR_FatalError,
'Message was not a simple message. ');
end;
end;
handler EmergMsg;
et it }
{
{ Abstract:
{ This handler will be called when an emergency message is
{ received. '
{
et }
begin
writeln('Enter message exception handler.');
ReceiveSimpieMsg;
NoMessage := false;
end;
begin

{ Allocate a new port. Register that port with the NameServer.
{ LookUp the port and get the Send rights to it.
{
{

Actually we already have all of the rights to the port.

25 Aug 84

Theory of Opcrations - 49

{ In addition the values of MyPort and MsgExamplePort will be the
zagzcause this is a single process. If the.call to LookUpMyName was
Ena different process the values of MyPort and MsgExamplePort might
?edifferent. In that case the process that did the LookUpMyName
¥Og;3e send rights to MsgExamplePort. It would not have receive

{ rights to it.

8;

AllocateMyPort;
RegisterName;
LookUpMyName;

NoMessage := true;

{ Tell the syétem to'interrupt the process when an emergency message
{ is received. When the message is ready an exception is raised.

8

BoolDum := true;

Gr := SoftInterrupt(KernelPort, { Send the request to the
Kernel }

false, { Allow exceptions on emergency
messages}

Boo1Dum); { Turn them on. Return the old value in
Boo1Dum} .

{ Send a simple message

{
SendSimple;

{ Now process until a message arrives.

{3

while NoMessage do ;

end.

5.2 Matchmaker

Matchmaker is a language for defining remote procedure calls. Remote procedure calls are

25 Aug 34

Theory of Opcrations — 50

message-bascd interfaces with declarations. These interfaces are generally between multiple
processes in a multiple-language programming environment. Once an interface between two
receiving messages. Both processes can understand the messages even though the processes may be
written in different languages. Matchmaker does all the work of appropriately packing the
procedure arguments into messages and extracting message fields for incoming procedure
arguments.

Matchmaker allows a programmer to write a server process and declare the types of all data to
be exchanged between the server and its user processes. Procedural interfaces can be declared
based on those types for sending data between processes in messages. When these procedures are
implemented they can begin to send and receive messages, rather than code within the same
process. Remote procedure call interfaces simplify and increase the reliability of writing message
based code.

Examples are given in the document "Matchmaker: The Accent Remote Procedure Call
Language".

5.3 Graphics

This section provides two simple graphics programs.

The first, Graphicsl, performs some simple graphics operations. It draws lines and does
rasterops.

The second program, Graphics2, shows how to enable and deal with notification that the size or
coveredness of a window has changed.

program Graphicsl;

{ Abstract:

{ This program demonstrates some simple uses of the window
{ manager. The program does all operations in the window

{ from which it was started. This program will NOT handle
{ any of the emergency messages that the window manager

{ provides to the client when a viewport changes.
{

{

{

{

{

ritten by: Don Scelza

O =

opyright (C) PERQ Systems Corp., 1984

imports Pascallnit from Pascallnit;

{ Many useful ports are defined here. }
imports AccentType from AccentType; { GR values }
imports SaltError from SaltError; { Error routines }

25 Aug 84

Theory of Operations — 51

imports CommandDefs from CommandDefs;{ Get the value for
ErAnyError}

{ Get the interface to the Window Manager.

{3
imports ViewPt from ViewPtUser;
imports Sapph from SapphUser;
imports ViewKern from ViewKern;
imports WindowUtils from WindowUtils;
var
MaxX: integer; { Max X coordinate }
MaxY: | integer; { Max Y coordinate }
VP: _ ViewPort; { Inner ViewPort of the user window.}

procedure GeitViewPoriinfo;

Abstract:
Get the information needed to draw in the current window.
UserWindow is a variable in Pascallnit. It is the window that
the program was run in. From this we can get the information
about the inner viewport of that window. This information

{

{

{

{

{ e
{ includes:
{

{

{

{

{

VP: The InnerVierPort
MaxX: The MaxX point of the inner viewport.
MaxY: The MaxY point of the inner viewport.

(o m oo }
begin
WindowViewPort(UserWindow, VP, MaxX, MaxY);
end;
procedure Clear;
{-mmmmmmmmmomosoomooooooooo mommmmesmssmssosoomooooooooooo- }
{
{ Abstract:
{ This procedure will clear the inner viewport of the
{ user window.
{
(= mmmm o oo
begin
VPColorRect(VP, RectWhite, 0, 0, MaxX, MaxY);
end;
procedure WaitForCr;
== oo oo }
{
{ Abstract:
{ Set the window attention flag and wait for a <cro.
{
(= oo }

25 Aug 84

Theory of Operations - 52

var S: string;

begin

ShowWindowAttentionFlag; { Turn on the "!". }
read1n(S);

RemoveWindowAttentionFlag;

end;

procedure DrawlLines;
{ Abstract:)
{ Draw a set of rectangles. One inside the other.

var StartX, StartY, EndX, EndY: integer;
Done: boolean;

begin

Done := false;

StartX := 0;

StartY := 0;

EndX := MaxX;

EndY := MaxY;

while not Done do
begin
VPLine(VP, DrawlLine, StartX, StartY, EndX, StartY);
VPLine(VP, DrawlLine, StartX, EndY, EndX, EndY);
VPLine(VP, DrawLine, StartX, StartY, StartX, EndY);
VPLine(VP, Drawline, EndX, StartY, EndX, EndY);
StartX := StartX + 4;
StartY := StartY + 4;
EndX := EndX - 4;
EndY := EndY - 4;
if (StartX >= EndX) or (StartY >= EndY) then Done := true;
end;

end;

procedure RasterOps;

{ Abstract

{ This procedure will do a set of rasterops. The

{ algorithm is the same as DrawlLines.

{

{ __

var StartX, StartY, EndX, EndY: integer;
Done: boolean;

begin

Done := false;
StartX := 0;
StartY := 0; it
EndX := MaxX;

EndY := MaxY;

25 Aug 84

Theory of Operations — 53

while not Done do

begin

VPRop(VP, { Source ViewPort for the rasterop}
RNot, { Use a Not function }
StartX, { Start X and Y locations }
Starty,
EndX - StartX, { width and height }
EndY - Starty,
VP, { Dest ViewPort for the rasterop}
StartX, { Start X and Y locations }
StartY);

StartX := StartX + 4;
StartY := StartY + 4;
EndX := EndX - 4;
EndY := EndY - 4; ’
if (StartX >= EndX) or (StartY >= EndY) then Done := true;
end;
end;

begin

GetViewPortInfo; { Get the information about the
viewport.}
Clear;

writeIn('This is a simple graphics test program.');

writeln('It runs a set of tests and then waits for the user to');
writeln('Type a <cr>. When the attention flag in the window Icon');
writeln('is set type <cr> to go onto the next display.');

WaitForCr;

Clear; { Clear the screen }
DrawLines; { Draw some lines }
WaitForCr; { Wait to go on. }

Clear;
RasterOps;
WaitfForCr;

end.
program Graphics2;

Abstract:
This program demonstrates some simple uses of the window
manager. The program does all operations in the window
from which it was started.

This version of the program has the code needed to handle
the messages from the window manager that signify changes

Y e Tace Yarm Loe Yoo Veoa

25 Aug 84

Theory of Operations - 54

{ to the state of the window.
{
{ Written by: Don Scelza
{
{ Copyright (C) PERQ Systems Corp., 1984
{
{ __
imports Pascallnit from Pascallnit;

{ Many useful ports defined here. }
imports AccentType from AccentType; { GR values }
imports SaltError from SaltError; { Error routines }
imports CommandDefs from CommandDefs; { Get the value for
ErAnyError}

"{ Get the interfaces needed to receive messages.

{3
imports Except from Except; { For Message exceptions}
imports AccCall) from AccCall; { For Send and Receive }

{ Get the interface to the Window Manager.

{

imports ViewPt from ViewPtUser;
imports Sapph from SapphUser;
imports ViewKern from ViewKern;
imports WindowUtils from WindowlUtils;

{
{ Get the portions of the Window manager that deal with
{ window state change notification.

(3

imports SaphEmrServer from SaphEmrServer:
imports SaphEmrExceptions from SaphEmrExceptions;

var

MaxX: integer; { Max X coordinate }

MaxY: integer; ., { May Y coordinate }

VP: ViewPort; { Inner VierPort of the user
window.}

Bool1Dum: boolean;

Gr: GeneralReturn;

procedure GetViewPortInfo;

P EEREEREECRLEEEEE }
{ Abstract:

{ Get the information needed to draw in the current window.

{ UserWindow is a variable in Pascallnit. It is the window that

25 Aug 84

Theory of Opcrations - 55

{ the program was run in. From this we can get the information
{ about the inner viewport of that window. This information
{ includes:
{ .
{ VP: The InnerVierPort
{ MaxX: The MaxX point of the inner viewport.
{ MaxY: The MaxY point of the inner viewport.
{
e }
begin
WindowViewPort(UserWindow, VP, MaxX, MaxY});
end;
procedure Clear;
el }
{
{ Abstract:
{ This procedure will clear the inner viewport of the
{ user window.
{)
it }
begin :
VPColorRect{VP, RectWhite, 0, 0, MaxX, MaxY);
end;
procedure WaitForCr;
ettt }
{
{ Abstract:
{ Set the window attention flag and wait for a <cr>.
{
e }
var S: string;
begin
ShowWindowAttentionFlag; { Turn on the "!", }
read1n(S);
RemoveWindowAttentionFlag;
end;
procedure DrawLines;
{-o-ooommoe- oo }
{ Abstract:
{ Draw a set of rectangles. One inside the other.
{
{ ..

var StartX, StartY, EndX, EndY: integer;
Done: boolean;

begin

Done := false;
StartX := 0;

25 Aug 84

Theory of Opcrations — 56

StartY := 0;

EndX := MaxX;

EndY := MaxY;

while not Done do
begin
VPLine(VP, DrawLine, StartX, StartY, EndX, StartY);
VPLine(VP, DrawlLine, StartX, EndY, EndX, EndY);
VPLine(VP, DrawLine, StartX, StartY, StartX, EndY);
VPLine(VP, DrawLine, EndX, StartY, EndX, EndY);
StartX := StartX + 4;
StartY := StartY + 4;
EndX := EndX - 4; .
EndY := EndY - 4;
if (StartX >= EndX) or (StartY >= EndY) then Done := true;
end; '

end;

handler EmergMsg;

Abstract:
This handler will be called when an emergency message is
received. The code will receive the message and then pass
it to the Client code of the Window Manager. If the message
was a window manager message, the code will raise the
correct exception for the type of change that happened to the
window.

P e e Y Laon T Lon Vann Yan Y e

const MaxMsgSize = 2048;
type space = array[0..MaxMsgSize div 2 - 1] of integer;
pDummyMsg = tDummyMsg;
DummyMsg = record
head: msg;
RetType: typetype;
RetCode: integer;
body: space;
end;

var Gr: GeneralReturn;
BDum: boolean;
pReply, pMsg: pDummyMsg;
begin

Receive the message.

}

A

new(pReply);

new(pMsg);

pMsgt.Head.MsgSize := MaxMsgSize * 2;

Gr := Receive(pMsgt.Head, 0, A11Pts, Receivelt);

25 Aug 84

Theory of Opecrations - 57

Call the Window Manager. If the message was a Window Manager
message an exception will be raised and the call will return
true. If it was not a Window Manager message no exception
will be raised and the call will return false.

P Lan Yan Yo Yaon T

}

if SaphEmrServer(pMsg, pReply) then
begin
end;

Turn on interrupts on messages receive again.

}

o

dispose(pReply);

dispose(pMsg);

BDum := true;

Gr := SoftInterrupt(KernelPort, false, BDum);
end;

handler EViewPtChanged(VP: ViewPort; X1, Y1, W1, H1, R: integer);

Abstract:
This exception is raised if the size of the viewport changes.
We will get the new size parameters and redisplay the lines.

A P A A

begin
GetViewPortInfo;
Clear;
DrawlLines;

end;

{ Abstract:

{ This exception is raised if the coveredness of the
{ viewport changes.
{

begin
GetViewPortInfo;
Clear;
DrawlLines;

end;

begin

25 Aug 84

Theory of Opcrations - 58

{ Tell the system to interrupt the process when an emergency message
{ is received. When the message is ready an exception is raised.

(3

BoolDum := true;
Gr := SoftInterrupt(KernelPort, { Send the request to the Kernel }

- false, { Allow exceptions on emergency
messages }

-Boo1Dum); { Turn them on. Return the old value in

Boo1Dum}
GetViewPortInfo; ' { Get the information about the viewport.}
Clear;

{ Tell the window manager to'generate exceptions when a
{ window state change happens.

(3

EnableNotifyExceptions(VP, DataPort, true, true);

writeln('This is a simple graphics test program.');

writeln('It will draw a display and wait for the user to type');
writeln('a <cr>. While waiting, if the state of the window
changes');

writeln('the display will be redrawn.');

WaitForCr;

Clear; { Clear the screen }
DrawLines; { Draw some lines }
WaitForCr; { Wait to go on. }
end,

5.4 FileSystem

The Accent file system presents a single level view of the memory hicrarchy. Files are mapped
into the process virtual address space. This means that access to portions of a file are the same as
access to portions of memory. When a file is read the contents of that file are mapped into the
address space. The filé systetu returns a pointer that is the virtual address of the start of the data. It
also supplies the number of bytes of data that were in the file.

25 Aug 84

Theory of Operations - 59

Filel is a simple program that will read a file and treat the contents of that file as integers.
program Filel;

{ --
{ Abstract:) .
{ This program demonstrates the use of the file system.
{ Read a file and print the first 100 integers in it.
{
1
{ Written by: Don Scelza
{ :
{ Copyright (C) PERQ Systems Corp., 1984
{
{mmmmmmmmmm oo oeoneeooooooooooosssssooossoooooe }
imports Pascallnit from Pascallnit;
{ Many useful ports are defined
here.}
imports AccentType from AccentType; { GR values }
imports SaltError from SaltError; { Error routines }

imports CommandDefs from CommandDefs; { Get the value for
ErAnyError.}

imports PathName from PathName; { High level interface to the
}
{ file sys. }
type
IntArray = array[0..0] of integer; { Used to access the file
data}

pIntArray = tIntArray;

var ArrayPtr: pIntArray;
1: integer;
FName: Path_Name;
NumBytes: Tong;
LastIndex: 1long;
Gr: GeneralReturn;

begin

{ First map the file into our address space.

{3

FName := 'Filel.Pas’;
Gr := ReadFile(FName, recast(ArrayPtr, File_Data), NumBytes);
if Gr <> Success then

begin

GRWriteStdError(Gr, GR_FatalError, 'Filel.Pas');

end;

25 Aug 84

Theory of Opcrations - 60

writeln('Full name of the file found is ', FName);

{ Now Took at the first 100 values. If there are less than 100
{ integers in the file only look at the ones that are there.
{

{ We must turn off range checking to access the data using the
defined

{ type.
{}

if NumBytes > 200 then
LastIndex := 100

else _

' LastIndex := shrink(NumBytes div 2);

{3r-}
for I := 1 to LastIndex do
writeln(ArrayPtrt[I]);

{$r=}

end.

There are two commonly desired changes to the above program that are simple to make in the
Accent file system. The differences are: a) the use of a specific search list and b) having the system
look for files with specific extensions. Both of these facilities are provided by the same system call,

The call to ReadFile in the above example can be replaced by a call to the procedure
ReadExtendedFile. This procedure allows the client to specify both a list of extensions and a

specific search list.
The Extension list is specified as a string, It has the form:
Xext;<{ext>;...Cext)’ ‘

You must remember that if a file without an extension is acceptable you must specify a null
<{ext> as the first value. To look for files that have a .Pas or a .Defs or no extension, the string that

should be supplied is:
’;.Pas;.Defs’

To specify a different search list you must supply the Environment Manager variable name that

is the search list. The standard search list is named <Default>.

3.5 Process Management

This section provides a number of examples of creating and using processes.

25 Aug 84

Theory of Operations — 61

The first program, ProcessSplit, docs a simple process split. After a split, one of the processes is
the parent and the other process is the child. The two processes arc exact copics of each other. The
Split call returns an indication of which process is the parent and which process is the child.

The second program, ProcessExec, does an Exec. The Exec system call starts a new process
running a specific program. The new process is not a copy of the parent, as in Split. This program
will Exec a number of copies of itself. Each copy will allocate a port and register it with the name
server. Because all of these processes are descendants of each other, they are all in the same process
control group. To end the chain of Execs when a new copy of ProcessExcc finds a specific name,
instead of doing another Exec that process will tell the process manager to kill the entire group of
processes.

program ProcessSplit;

Abstract:
This is a simple program that does a Split. After the call
to split there will be two processes. One process will be the
parent while the other process will be the child.

This program does a simple spiit and then both processes exit.
If desired it is possible for the parent process to wait for the
child to die. When the child dies the kernel will send a
message to the parent on its data port. This will be an
emergency message.

ritten by: Don Scelza

W
Copyright (C) PERQ Systems Corp., 1984

A Ay A o oy 2 o £ A P A A P e A

imports Pascallnit from Pascallnit;
{ Many useful ports are defined here.
}

imports AccCalil from AccCall; { For Send and Receive }
imports AccentType from AccentType; { GR values }
imports SaltError from SattError; { Error routines }

imports CommandDefs from CommandDefs; { Get the value for
ErAnyError}

imports Spawn from Spawn; { For Split }
var

CKPort: port;

CDPort: port;

Gr: GeneralReturn;

procedure IAmTheChild;

{
{ Abstract:

25 Aug 84

Theory of Opcrations - 62

{ This procedure will be executed by the Child process
{ after the split.
{

begin
writeln('I am the child');
end;

procedure IAmTheParent;

{

-{ Abstract: '

This procedure will be executed by the Parent process
after the split.

begin
writeln('I am the parent');
end;

begin

Gr := Split(CKPort, CDPort);

if Gr = IsChild then
begin
IAmTheChild;
end

else
begin
IAmTheParent;
end;

end.

program ProcessExec;

{

{ Abstract:

This program does an Exec. It will Exec itself a number of
times. Each time the new process will register its Data Port
with the name server. The first process will register a name of
"1". The second process will register a name of "2"., Each time
a process starts it will lookup these names. If the name "1"

is not registered that process will register it. If the name

is registered the process will go on to the next name.

A11 of these processes will be in the same process control
Poupﬁhen a process starts and is able to find a port with the name
"2" that process will kill the entire process group.
Written by: Don Scelza
c

opyright (C) PERQ Systems Corp., 1984

D Yo Yan Yo YaeYane Ve Yane 1= Wane Y aun T oo Yoo Yoo o Yoo T

25 Aug 84

Theory of Operations — 63

imports Pascallnit from Pascallnit;

{ Many useful ports are defined here.
}
imports AccCall from AccCall; { For Send and Receive }
imports AccentType from AccentType; { GR values }
imports SaltError from SaltError; { Error routines }
jmports CommandDefs from CommandDefs; { Get the value for
ErAnyError. }
imports Spawn from Spawn; { For Split }
imports MsgN from MsgNUser; { To register ports }
imports ProcMgr from ProcMgrUser; { To kill this set of

processes } .

var
CKPort: port;
CDPort: port;
Gr: GeneralReturn;
MyProcName: string;
TestP: port;
HisCommand: Command Block;
type
MySimpleMessage = record { A simple message does not contain any
3
Head: msg; { ports or pointers to "out of line"
data}
MType: TypeType; { A descriptor for "Data"}
Data: integer; { The actual data to be passed. }
end;

pMySimpleMessage = tMySimpleMessage;
function FindNextProcName: string;

=== m = oo omoooo oo osnsooooonoonono e }
{ Abstract:
{ This procedure will find the next name to register with
{ the name server. The names that will be searched for are:
{ "1* then "2" then "3".
{
{ Results:
{ Return the next name to be used.
{
{ ...
var Gr: GeneralReturn;
P: port;
begin

writeln('Looking for "1"');
Gr := LookUp(NameServerPort, '1', P);
if Gr <> Success then

begin

FindNextProcName := '1°';

25 Aug 84

Theory of Operations - 64

exit(FindNextProcName);
end;

writeln('Looking for "2"');
Gr := LookUp(NameServerPort, '2', P);
if Gr <> Success then
begin
FindNextProcName := '2';
exit(FindNextProcName);
end;

writeln('Looking for "3"');
Gr := LookUp(NameServerPort, '3', P);
if Gr <> Success then
begin
FindNextProcName := '3';
exit(FindNextProcName);

end;
end; . :
procedure RegisterName(Who: string);
(o e e e }
{
{ Abstract:
{ Register a named port with the Name Server.
{
{ Parameters:
{ Who is the name that we are to register.
{
{ Design:
{ The port that we will redgister is the TestP.
{
st }
var Gr: GeneralReturn:
begin
Gr := CheckIn(NameServerPort, Who, NullPort, TestP);
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not "CheckIn"');
end;
end;

procedure AllocateMyPort:

{ ..
{

{ Abstract:

{ This procedure is used to allocate a new port. The port

{ that is allocated will be placed into TestP.

{

{ ..

var Gr: GeneralRetur=r.....

begin

25 Aug 84

Theory of Operations - 65

Gr := AllocatePort(Kernelport, TestP, 1);
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not allocate

TestP');
end;

end;
procedure WaitToDie;
it }
{
{ Abstract: .
{ This procedure will wait for a message on our Test port.
{ Because no process will ever send a message there, we will
{ wait until a process group signal is generated.
{

var Gr: GeneralReturn;
SimpleP: pMySimpleMessage;

begin
new(SimpleP);
SimplePt.Head.MsgSize := wordsize(MySimpleMessage) * 2;
SimplePt.Head.LocalPort := TestP;
{ We only want messages that are on

TestP} .
Gr := Receive(SimplePt . Head, { Receive the message into
SimpleP}
0, { Don't time out. Just wait. }
LocalPt, { Only messages on TestP }
Receivelt); { Actually receive the message}
if Gr <> Success then

begin
GRWriteStdError(Gr, GR_FatalError,
'Could not receive a simple message.'};
end;
end;

begin
writeln('New process is looking for a name:'};

MyProcName := FindNextProcName; { Look for the next name }
writeln{'My name is ', MyProcName);

AllocateMyPort; { Get the port to be registered.
}
if MyProcName = '3' then { "3" is the last name. Kill the
group}

begin

writeln(MyProcName, ' is the last process. Killing the group');
PMGroupSignal(PMPort, UserWindow, SigLevellAbort);

25 Aug 84

Theory of Opcrations - 66

end
else
begin

writeln('Register ', MyProcName, ' with the name server.');
RegisterName(MyProcName);

writeln('Exec the next process.');
Gr := Exec(CKPort, CDPort, 'Exec.Run', HisCommand);

writeln(MyProcName, ' is waiting to die.');
WaitToDie;
end;

end.

‘5.6 Network

All requests for network services go through the NetServer. This process provides the device
driver for the network hardware.

The example network program is a simple process that will perform network time service.
When a time request is received on the network, this process will get the time from its local time
server and respond with a network packet to the machine that made the request.
program NetTimeServer;

T }
{ Abstract:
{ This program will respond to time requests from the network.
{ The time will be put into a string and returned to the
{ machine that made the request.
{
{ The time string will be in the form:
{ <dd>-<mmm>-<yyyy> <hhd>:<mm>:<ss>.<mmm>
{
{ e.g. 22-Jun-1982 13:05:21.001
{
{ Written By Don Scelza
{
{ Copyright (C) PERQ Systems Corp., 1984
{
{
{ ...
imports Pascallnit from Pascallnit;
: { Many useful ports are defined
here.}
imports MsgN from MsgNUser; { For access to the name
server}

25 Aug 84

AccCall
AccInt
AccentType
SaltError

imports
imports
imports
imports
imports
ErAnyError}
imports Except
imports Time

CommandDefs

Theory of Operations - 67

from AccCall
from AccentU

from AccentType;

from SaltErr
from Command

from Except;
from TimelUse

: { For Send and Receive }
ser; { AllocatePort }

{ GR values }
or; { Error routines }
Defs; { Get the value for

{ For Message exceptions }
r; { Time Server interface }

{ Get the interface to the ethernet.

8

imports Net1OMB
routines}

imports Net1OMBRecvServer from

packets.}

const
Request
Rply
TimelLength
TimeReqType
request.}

type

pTimePacket =
TimePacket =

Dest:

0..255;

var
NetServerPort:
requests.}
PacketPort:

pRecvPacket:
pSendPacket:
pNetMessage:
Server}
pRMessage:

from Net

Net

nuw e n
n
LI

-

{

2; {
; {

{

+TimePacket;
packed record

Dest:
E10Address;

Src:

PType:

Dummy :
TimeString:
end;

port;
port;
pTimePacket;

pTimePacket;

pE10Message;

{
{
{
{
{
{
{

pE10Mess$ge

10MBUser; { General interface
10MbRecvServer; .
{ Routines for receiving

Code for time server request }
Code for time server reply }
Expect 24 bytes for time }
Ethernet type field for a time

v

E10Address;

E10Address;
E10Type;

0..255;
string[Timelength];

Port for making netserver

The Net Server will send packets
to us on this port. }

Pointer to the received packet }
Pointer to the send packet. }

Used to hold messages from the Net

Reply message for

25 Aug 84

Theory of Opcrations — 68

Met10MBRecvServer}
Gr: GeneralReturn;
procedure InitNetTimeServer;
Rt }
{
{ Abstract:
{ Initialize the network time server.
{ The following initialization will be done:
{ 1) Initialize all server interfaces.
{ 2) Find a request port for the Net Server.
{ 3) Allocate a port that will be used to receive
{ messages from the Net Server
{ 4) Allocate memory needed for Net Server messages and
{ requests.
{ 5) Set up Address and Type fields in the packets.
{ 6) Tell the Net Server the types of packets that we are
{ interested in.
{
L ittt ittt }
var Gr: GeneralReturn; :
begin
{
{ First initialize the interfaces to the system servers.
18

InitNet1OMB(NuilPort); { Initialize the interface to the Net
Server}

{
{ Find a port to talk to the Net Server.
}

Gr := LookUp(NameServerPort, { NameServer from Pascallnit }
'EtherServer', { The name of the Net Server }
NetServerport); { Will hold the desired port }

if Gr <> Success then

begin
GRWriteStdError(Gr, GR_FatalError, 'EtherServer'):
end;

{
{ Allocate a port that the Net Server will use to send us
{ packets that were received on the network.

18

Gr := AllocatePort(Kernelport, { My port to the Kernel }
PacketPort, { Put the new port in PacketPort

10); { Allow this many messages to be

25 Aug 84

Theory of Operations - 69

queued }
if Gr <> Success then
begin)
GRWriteStdError(Gr, GR_FatalError, 'Could not allocate
PacketPort');

P o VoS

end;
{
{ Allocate the memory needed to hold packets and messages
0
new(pSendPacket);
new(pNetMessage);
new(pRMessage);
Set up the Address and type fields in the SendPacket.
First make a request of the Net Server to return the Ethernet
address of this machine.
}
Gr := E10GetAdd(NetServerPort, { Port for making Net Server
requests}
pSendPackett.Src); { The Address will be put
here. }

if Gr <> E100k then
begin
GRWriteStdError(Gr, GR _FatalError,
"Could not get Ethernet Address');
end;

pSendPackett.PType := TimeReqtype; { Time packets are of this
type }
pSendPackett.ReplyOrRequest := Rply;

{

{ Now tell the Net Server the type of packets that we want to
receive.

{ When we tell the server also give it a port. This port will be
used by

{ the server to send us packets of the desired type.

{3

Gr := E10SetFilter(NetServerPort, { Net Server request port }
PacketPort, { The NetServer --> Client
packet port}
. : TimeReqType); { Packets of this type. }
if Gr <> E100k then
begin
GRWriteStdError(Gr, GR FatalError, -

25 Aug 84

Theory of Operations — 70

'Could not set the Ethernet filter');
end;
end;

procedure ReplyWithTime;

{

{ Abstract:

{ Reply to a request with the current time.

{ - The request that we are to reply to will be in the packet
pointed

{ to by pRecvPacket.

var TForm: integer;
T: string;

begin

Get the time from the Time Server.

}

e T

TForm := TF«Dashes;

TForm := lor(TForm, TF_FullYear);
TForm := lor(TForm, TF_MilliSeconds);
T := GetStringTime(TimePort, TForm);

writein('Responding with ', T);

Fi11 in the fields of the packet. The other fields were
set during initialization., -

}

e Lo Tan Ve

pSendPackett.Dest := pRecvPackett.Sr¢;
pSendPackett.TimeString := T;

{ Now send the packet. Remember that the number of bytes given to
the

{ send is the total number of bytes in the packet. This also
includes

{ the headers. Not just the data portions.

{
{0
Gr := El10Send(NetServerPort, recast(pSendPacket, pE10Packet),
El10BytesInHeader + E10MinDataBytes);
if Gr <> E100k then
begin
GRWriteStdError(Gr. GR_FatalError, 'Could not send time
end;

end;

25 Aug 84

Theory of Operations - 71

handler E10Receive(ServPort: E10Port; Buff: pEl0Packet; NumBytes:
long);

{
{ Abstract:

{ This exception will be raised by Net10OMBRecvServer when
{ a packet is received from the Net Server.
{
{ This handler will check to make sure that the packet was a time
{ request. If so it will reply to the requestor with the current
{ time.
{
{ Parameters:
{ Buff is a pointer to the packet that was received.
{
{ NumBytes is the number of valid bytes of memory that are
{ pointed to by Buff.
{
{rmmmmm oo o oo oossmosoosooooosoooosooooooooooos
begin
pRecvPacket := recast({Buff, pTimePacket};
if pRecvPackett.ReplyOrRequest = Request then
begin
writeln('Time request received');
ReplyWithTime;
end;
Gr := InvalidateMemory(KernelPort, recast(Buff, VirtualAddress),
NumBytes);
if Gr <> Success then
begin
GRWriteStdError(Gr, GR FatalError, 'Could not Deallocate
memory');
end;
end;
begin
InitNetTimeServer;

{ Now we will just ioop receiving messages on NetServerPort.

{ When a message comes in hand it to the Net1OMBRecvServer.

{ If the message was from the Net Server, NetlOMBRecvServer will
{ raise an exception.

{

while true do
begin

{ Try to receive a message from the Net Server.

25 Aug 84

Theory of Operations - 72

(}

pNetMessaget.Head.MsgSize := wordsize(E1OMessage) * 2;
Gr := Receive(pNetMessaget.Head, 0, AL1Pts, Receivelt);

{ If the Gr was success we got a message. Give it to
Net1OMBrecvServer.

(}

if Gr = Success then
if Net10MBRecvServer(recast(pNetMessage, pointer), -
recast(pRMessage, pointer)) then ;

end;

“end.

5.7 Memory

Memory allocation and deallocation in Accent is a simple matter. There are two routines
provided by the system for these functions, ValidateMemory and InvalidateMemory.

ValidateMemory provides a portion of virtual memory of a spccific size. The amount of
memory provided is rounded up to a page boundry.

InvalidateMemory removes a portion of a processes virtual address space.
program Memoryl;

Abstract:
This program provides a simple exampie of memory
allocation and deallocation.

ritten by: Don Scelza

opyright (C) PERQ Systems Corp., 1984

PR AR A P e e e
(=) =

{ ..
imports Pascallnit from Pascallnit;
{ Many useful ports are defined here.
imports Acclnt from AccentUser; { For Send and Receive }
imports AccentType from AccentType; { GR values }
imports SaltError from SaltError; { Error routines }
const
ArraySize = 1024; { Size of the array in bytes. }
ArraylLIndex = ArraySize - 1; { Last index of the array }

25 Aug 84

Theory of Operations — 73

type
Byte = 0..255; { A byte }
ByteArray = packed array[0..ArraylLIndex] of Byte;
pByteArray = tByteArray;

var
Gr: GeneralReturn;
Ptr: pByteArray;
VA: VirtualAddress;
I: integer;

begin

f
1
{ Allocate a portion of address space.

{ We will allocate 1024 bytes at any address the system would like.
{ In addition aiiow any aiignment.

{
VA := 0; { No specific address required. }
Gr := ValidateMemory(KernelPort, { Port for the server }
VA, { Put the address of the memory
here.}
ArraySize,
-1}); { Any alignment will do. }
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not deallocate
memory');) :
end;
Ptr := recast(VA, pByteArray); { Put the VA into Ptr }

{ Now go through the memory and touch each byte.

{
for I := 0 to ArrayLIndex do Ptrt[I] := (I mod 256);
for I := 0 to ArrayLIndex do writeln(Ptrt[I]);
{ .
{ Dispose of the memory allocated.
{}
Gr := InvalidateMemory(KernelPort, VA, ArraySize);
if Gr <> Success then
begin
GRWriteStdError(Gr, GR_FatalError, 'Could not allocate memory');
end;
end.

25 Aug 84

Appendix A
Process Numbers

There are number of processes that are created when the system is booted. Because their order
is well-defined, they have well-defined process numbers. The numbers provided here are the
operating system internal process numbers. They are not the process numbers that arc given by the
Details -systat command.

Process
1 - Pager — Provides page access to the disk.
2 - Time Server — Provides time for the system.
3 - File System - Provides File level access to the disk.
4 - Environment Manager — Provides SearchList and Variables.
5 - BootUp - Dies after creating StartUp.
6 - StartUp - Provides Shell and Login creation.
7 - Window Manager - Provides graphic access to the display.
8 — Tracker - Keyboard and Tablet driver.
9 - TypeScript - Provides normal text refresh of windows.
10 - Process Manager — Provides process control.
11 - Message Server — Extends IPC across the Network.
12 - Net Server — Network device server.

25 Aug 84

Appendix B
Registered System Ports

This appendix provides a list of the system ports that are registered with the name server.

["MachineName"]SesNetPort Port for remote file access

NetServer Access to Net Server

NameServerPort Access to the Name Server

["MachineName"]RS232AServer Access to the RS232 A
RS232AServer

["MachineName"]RS232BServer Access to the RS232 B
RS232BServer

["MachineName"]GPIBServer Access to the GPIB
GPIBServer

["MachineName"]FloppyServer Access to the Floppy
FloppyServer

["MachineName"]SpeechServer Access to the Speech
SpeechServer output device

NOTE: "MachineName" is the name in the SysName file.

25 Aug 84

Appendix C
Standard Environment Variables

This appendix gives a list of the standard environment variables that arc used by the system.
Boot — Name of the device and partition from which the system was booted.
Current — Name of the current directory.

Default - Name of the default search list.

Dev — Name of the system device.

Run - Name of the search list to find run files.

MachineName — Name of the machine

ShellCommands — Name of the file that holds the Shell commands.
ShellName - Name of the program to use as a Shell.

ShellProfile - Namé of the default profile

PrintServerName - Name of the server to use for printing text files.
SidServerName ~ Name of the server to use for screen dumps.
UserName — Name of the current user of the machine,

FloppyServerName -Name Floppy will use to find Floppy Server.

25 Aug 84

Appendix D
Standard System Servers

This appendix gives a list of the standard system servers and their request ports, which are
defined in Pascallnit. The interfaces to these servers are initialized before control is given to client
code. This means that the Init call to these servers does not necd to be done in the client code.

Time Server - TimePort
File Server — SesPort
Environment Server - EMPort
Process Manager - PMPort

. Name Server — NameServerPort
TypeScript Server — TypeScriptPort
Window Manager - SapphPort

25 Aug 84

Wb

Appendix E
Inter-Program Argument Format

Program arguments are passed as a counted list of counted words, each potentially having an
arbitrary number of characters, along with an index to the beginning of each word.

A.Implementation
The ficlds:
WordCount: long; ! Actual number of words
WordDirIndex: long; ! Byte index to dir in WordArrayPtrt
WordArrayPtr: + packed array [*] of char; ! Words and dir -
WordArray Cnt: long; | Actual number of bytes in word array
are part of the initial message (InitMsgType).

. Within WordArrayPtrt, individual words are stored sequentially, with each word having the

following fields:
WordSize: long; ! Number of chars in the word
Data: packed array [0..WordSize] of byte;

The word. must be null-terminated (i.c. Data[WordSize] = chr(0)). All words must begin on the *
next even 32-bit boundary following the previous word.

A "“directory" to each word is contained in WordArrayPtrt at index WordDirIndex. The
directory will consist of WordCount longs, each one being the index into WordArrayPtrt of the
corresponding word. (i.e. for each i such that 0 < i < WordCount, WordArrayPtrt[[WordDirIndex
+ 4*i]] is the low byte of WordSize for word i.)

WordDirlndex must index to the next even 32-bit boundary following the last word.
B. Properties:

Arbitrary numbers of arbitrary length words as arguments.

Words can be built sequentially.

Random access to all words.

Arguments and directory should almost always fit into one page.

25 Aug 84

	0001
	0002
	001
	002
	003
	004
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83

