CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Hemlock User’s Manual

Rob Maclachlan
22 Aug 84

Abstract

This document describes the Hemlock text editor, as of version 0.99(24). Hemlock is a customizable,
extensible text editor whose initial command set closely resembles that of ITS/TOPS-20 EMACS. Hemlock
is written in the SPICE LiSP implementation of COMMON LISP, and can be ported to other implementations.

Spice Document S178
Keywords and index categories: <not specified>
Location of machine-readable file: >Sys>user>Ramduser.mss;1

Copyright © 1984 Carnegic-Mellon University

This is an internal working document of the Computer Science Department, Carnegie-Mellion
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediafz working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced

Projects Agency or the U.S. Government.

Table of Contents

1 Introduction 1
1.1 The Point and The Cursor 1
1.2 Notation 1

1.2.1 Characters 2
1.2.2 Commands 2
1.2.3 Hemlock Variables 3
1.3 Invoking Commands 3
1.3.1 Key Bindings 3
1.3.2 Extended Commands 4
1.4 The Echo Area 4
1.5 Online Help 6
1.6 Display Conventions 7
1.6.1 Pop-Up Windows 7
1.6.2 Buffer Display 8
1.7 The Prefix Argument 8
1.8 Modes 9
1.9 The Modeline 10
1.10 Entering and Exiting 10
1.11 Helpful Information 11
1.12 Recursive Edits 12
1.13 User Errors 12
1.14 Internal Errors 12
2 Basic Commands 15
2.1 Motion Commands 15
2.1.1 Using The Mouse 16
2.2 Other Motion Commands 17
2.3 The Mark and The Region 17
2.3.1 The Mark Stack 18
2.4 Modification Commands 18
2.4.1 Inserting Characters 18
2.4.2 Deleting Characters 19
2.4.3 Killing and Deleting 20
2.4.4 Kill Ring Manipulation 20
2.4.5 Killing Commands 21
2.4.6 Case Modification Commands 21
2.4.7 Transposition Commands 21
2.4.8 Whitespace Manipulation 2
2.5 Filtering 23

2.6 Searching and Replacing - 23

3 Files, Buffers and Windows
3.1 Introduction
3.2 Buffers
3.3 Files

3.3.1 Filename Defaulting and Merging

3.3.2 Type Hooks and File Options
3.4 Windows

4 Editing Documents
4.1 Sentence Commands
4.2 Paragraph Commands
4.3 Filling
4.4 Spelling Correction
4.4.1 Auto Spell Mode

5 Managing Large Systems
5.1 File Groups
5.2 SrcCom

6 Editing Lisp
6.1 Lisp Mode
6.2 Form Manipulation
6.3 List Manipulation
6.4 Defun Manipulation
6.5 Indentation
6.6 Parenthesis Matching

7 Interacting With Lisp
7.1 The Current Package
7.2 Input and Output
7.3 Compiling and Evaluating Lisp Code
7.4 Querying the Environment
7.5 Top-Level Mode
7.6 Error Handling

8 Other Languages

9 Simple Customization
9.1 Keyboard Macros
9.2 Binding Keys
9.3 Hemlock Variables
9.4 Init Files

27
27
27
29
30
31
31

KX)
33
33

35
37

39
39

43
43
43

45
45

47
47
47
47

49
50

s1

53
53

55
55

ii

Chapter One
Introduction

Hemlock is a text editor which follows in the tradition of EMACS and the Lisp Machine editor ZWEL In
its basic form, Hemlock has almost the same command set as ITS/TOPS-20 EMACSl, and similar features
such as multiple windows and extended commands, as well as built in documentation features. The reader
should bear in mind that whenever some powerful feature of Hemlock is described, it has probably been
directly inspired by EMACS.

This manual describes Hemlock’s commands and other user visible features, and then goes on to tell
how to make simple customizations. For complete documentation of the Hemlock primitives with which
commands are written, the Hemlock Command Implementor’s Manual is also available.

1.1 The Point and 'fhe Curéor

The point is the focus of editing activity at any given point in time. When text is typed in, it is inserted at
the point. Nearly all commands use the point as a indication of what text to examine or modify. Textual
positions in Hemlock are between characters. This may seems a bit curious at first, but it is really a
necessity, since text must be inserted between characters. Although the point points between characters, it is
sometimes said to point af a character, in which case the character after the point is referred to.

The cursor is the rectangular blotch that is displayed on the screen. The cursor is usually displayed on
the character which is immediately after the point, but it may be displayed in other places, and is not
displayed at all when computation is in progress. Wherever the cursor is displayed it indicates the current
focus of attention. When input is being prompted for in the echo area, the cursor is displayed where the
input is to go.

1.2 Notation

There are a number of notational conventions used in this manual which need some explanation.

1 In this document, "Emacs” refers to this, the original version, rather than to any of the large numbers of text editors inspired by it
which may go by the same name.

Hemlock User’s Manual Introduction 1-2

1.2.1 Characters

CTE T

are typed in the normal fashion; others need more explanation. Characters in Hemlock have bits, flags that
can indicate a special interpretation for that character. Although internally Hemlock can handle arbitrary
combinations of up to four bits, limitations of the Perq keyboard prevent more than two bits from being
used, and then only one at a time.

control A character char with the control bit on is represented as C-char. Except for a
number of arbitrary restrictions imposed by the hardware, any character can be
typed as a control character by holding down the control key while typing the
character. ‘

meta A character char with the meta bit on is represented as M-char. Since the Perq
has no meta key, Hemlock simulates it by turning uppercase control characters
into meta characters. To type M-A, hold down both the control and shift keys
while typing A. It is therefore not possible to type M-", for example, since this is
interpreted as C-". On the Perq2 keyboard, the characters transmitted by the
keypad are turned into meta characters.

Some characters such as Help, Return and Oops are not printable, and thus are represented by their
name, which usually corresponds to the legend on the keyboard. The down and up transitions of the left, *
middle and right mouse buttons are named Leftdown, Leftup, Middledown and so on.

1.2.2 Commands

Nearly everything that can be done in Hemlock is done using a command. Since there are many things
worth doing, Hemlock provides many commands, currently nearly two hundred. Most of this manual is a
description of what commands exist, how they are invoked, and what they do. This is the format of a
command’s documentation:

Sampie Command Command CZM-Q,C
This command’s name is Sample Command, and it is bound to C-ZM-Q and C,
meaning that typing either of these will invoke it. After this header comes a description of
what the command does:

This command replaces all occurrences following the point of the string "Pascal” with the
string "Lisp". If a prefix argument is supplied, then it is interpreted as the maximum number
of occurrences to replace. If the prefix argument is negative then the replacements are done
backwards from the point.

Toward the end of the description there may be information primarily of interest to

Hemlock User's Manual Introduction 1-3

customizers and command implementors. If you don’t understand this information, don’t
worry, the writer probably forgot to speak English.

Arguments:
target The string to replace with "Lisp".
buffer The buffer to do the replacement in. If this is :a11 then the

replacement is done in all buffers.

1.2.3 Hemlock Variables

Hemlock variables supply a simple customization mechanism by permitting commands to be
parameterized. For details see 9.3.

Sample Variable Hemlock Variable ' 36
The name of this variable is Sample Variable and its initial value is 36.

This variable sets a lower limit on the number of replacements that be dome by
Sample Command. If the prefix argument is supplied, and smaller in absolute value than
Sample Variable, then the user is prompted as to whether that small a number of occurrences
should be replaced, so as to avoid a possibly disastrous error.

1.3 Invoking Commands

In order to get a command to do its thing, it must be invoked. The user can do this two ways, by typing
the key to which the command is bound or by using an extended command. Commonly used commands are
invoked via their key bindings since they are faster to type, while less used commands are invoked as
extended commands, since they are easier to remember.

1.3.1 Key Bindings

A key is a short, usually one or two character, sequence typed on the keyboard. When a command is
bound to a key, typing the key causes the command to be immediately invoked. When the command
finishes doing whatever it wants to do, another key is read, and the process repeated.

Some commands read characters from the keyboard and interpret them however they please. When this

Hemlock User's Manual Introduction . 14

is done, key bindings have no effect, but you can invariably get out of such a state by typing C-G (see 1.11),
and can usually find out what options are available by typing Help (scc 1.5).

The user can easily make key bindings, aitering old bindings or binding commands not previously
bound. See 9.2.

In addition to the key bindings explicitly with each command, there are a number implicit key bindings
created by using key links®. These bindings are not displayed by documentation commands such as
Where Is. Here are the rules which detcrmine what implicit key bindings exist:

o Casc is not significant in key bindings, thus for each. uppercase character there is an implicit
binding to the corresponding lowercase character. Note however, that control-shift-letter
produces M-letter, and thus is not equivalent to control-letter.

e A binding to M-character implies a binding to Alt character. This is for compatibility with
versions of EMACS which run on conventional terminals.

¢ A binding to C-Z character implics a binding to C-Z C-character. In EMACS, C-Z means sct both
the control and meta bits, thus these two things are treated as the same, the second version setting
the control bit twice. The latter version is also often easier to type.

1.3.2 Extended Commands

A command is invoked as an extended command by typing its name to the Extended Command
command, which is invoked using its key binding, M-X.

Extended Command Command M-X
This command prompts in the echo area for the name of a command, and then invokes that
command. The prefix argument is passed through to the command invoked. The command
name need not be typed out in full, as long as enough of its name is supplied to uniquely
identify it. Completion is available using Alt and Space, and a list of possible completions is
given by Help.

1.4 The Echo Area

The echo area is the is the region which occupies the bottom few lines on the screen. It is used for two
purposes: displaying brief messages to the user, and prompting,

2 Key links are documented in the Hemlock Command Implementor’s Manual.

Hemlock User’s Manual

Introduction 1-5

When a command needs some information form the user, it requests it by displaying a prompt in the
echo area. The gencral format of a prompt is a one or two word description of the input requested, possibly
followed by a default in brackets. Here is a typical prompt:

Select Buffer: [Teco Mid /Sys/Emacs/]

There are three general kinds of prompts:

character

keyword

string

The response is a single character, and no confirming Return is needed.

The response is a selection from one of a limited number of choices. Completion
is available using Space and Alt, and only enough of the keyword necd be typed
to distinguish it from any other choice. In some cases the input need not be one
of the known keywords, indicating that a new entry should be created. If this is
the case then the keyword must be entered in full or completed using Alt so as to
distinguish entering an old keyword from making a new one which is a prefix of
an old one.

The response is a string which must satisfy some property, such as being the
name of an existent file.

These characters have special meanings when prompting:

Return

Help
Alt

Space

cP

C-N
cQ

Confirm the current parse. If no input has been entered then use the default. If
for some reason the input is unacceptable, the screen is flashed, and the user
given a chance to fix the problem.

Print some sort of help message. If the parse is a keyword parse then print all the

possible completions of the current input in a pop-up window.

Attempt to complete the input to a keyword parse as far as possible, flashing the
screen if the result is ambiguous.

In a keyword parse, attempt to complete the input up to the next space. This is
useful for completing the names of Hemlock commands and similar things
without flashing the screen a lot, for example, Forward Word can be invoked as
an extended command by typing M-X f o Space w Return.

In a string or keyword parse, insert the default so that it may be edited.

Retrieve from a history of echo area inputs, the text of the last string input.
Repeating this moves to successively earlier inputs.

Go the other way in the echo area history.

Quote the next character so that it is not interpreted as a command.

Hemlock User’s Manual Introduction 1-6

1.5 Online Help

Hemlock has a fairly good online documentation facility. Brief documentation for every command,
variable, character attribute, and many other things, can be obtained simply by typing a command.

Help Command Help, C-_
This command dispatches to a number of other documentation commands, on the basis of a
single-character command:

A List commands and other things whose names contain a specified
keyword.
D Give the documentation for a specified command.
G Give the documentation for any Hemlock thing,
C Describe the command bound to some key.
L . List the last sixty characters typed.
W List all the key bindings for a specified command.
T Describe a LISP object.
Q Quit without doing anything.
Help List all of the options and what they do.
What Lossage Command Helpl

This command displays the last sixty characters typed. This can be useful, if, for example, you
are curious what the command was that you typed by accident.

Where Is Command Help w
This command prompts for the name of a command, and lists all the key bindings for it, and
what environment they are available in, in a pop-up window.

Apropos Command Help a
This command lists all of the commands, variables and character attributes whose name contain

a specified string. Brief documentation is printed for each thing, and the bindings of commands
and values of variables are printed as well.

Describe Command Command Helpd
This command prompts for a command, and prints its full documentation.

Hemlock User's Manual Introduction 1-7

Describe Key Command Helpc
This command prints full documentation for the command which is bound to the specified key
in the current environment.

Generic Describe Command Help g
This command prints full documentation for any thing that has documentation. It first prompts
for the kind of thing to document, the following options being available:

attribute Describe a character attribute, given its name.
command Describe a command, given its name.

key Describe a command, given a key to which it is bound.
variable Describe a variable, given its name. This is the default.

1.6 Display Conventions

There are two ways that Hemlock displays information on the screen, one is normal buffer display, in
which the text being edited is shown on the screen, and the other is a pop-up window.

1.6.1 Pop-Up Windows

Some commands print out information that is of little permanent value. Such commands use a pop-up
window to display the information. It is known as a pop-up window, because it "pops up” on the screen,
overlaying text that may already be on the screen, and then goes away once the text has been read.

When the output is complete, the command displays the string "--F1 ush--" at the bottom of the
output, indicating that the text may be flushed by typing Space. If any character other than space is typed,
then the pop-up window will still go away, but the character will be re-read as well, and thus be interpreted
as a command.

If the amount of output is too great to fit in the size of pop-up window that was created, then the
message "--More--" will be displayed after each window full. Typing Space will go on to the next
window full, while C-G aborts the remaining output.

Hemlock User's Manual Introduction 1-8

1.6.2 Buffer Display

If a line is too long to fit within the screen width it is wrapped, consecutive pieces of the line being
displayed on as many lines of the screen as needed to hold it. The fact that a line is wrapped is indicated by
the presence of the line wrap character, currently "1 ", in the last column of each wrapped line. It is possible
for a line to wrap off the bottom of the screen or on to the top. Hemlock wraps on the last character on the
line instead of the second-to-last, as almost everyone else does. This means, among other things, that there
is always at least two characters on the extension of a wrapped line. When the cursor is at the end of a line
which is the full width of the screen, it is displayed at the last column, since it obviously cannot be
displayed off the edge.

Most characters are displayed as themselves, but some are treated specially:

o Tabs are treated as tabs, with eight character tab-stops.
o ASCII control characters are printed as “char, thus a formfeed is “L.

o Characters with the most-significant bit on are printed as < hex-code>, e.g. <E2>.

Since a character may be displayed using more than one printing character, there are some positions on the
screen which are in the middle of a character. When the cursor is on a character with a multiple-character
representation, it will always be displayed on the first character.

1.7 The Prefix Argument

The prefix argument is an integer argument which may be supplied to a command. It is known as the
prefix argument because it is specified by invoking some prefix argument setting command immediately
before the command to be given the argument. The following statements about the interpretation of the
prefix argument are true:

s When it is meaningful, most commands interpret the prefix argument as a repeat count, causing
the same effect as invoking the command that many times.

e When it is meaningful, most commands that use the prefix argument interpret a negative prefix
argument as meaning the same thing as a positive argument, but the action is done in the
opposite direction.

» Most commands treat the absence of a prefix argument as meaning the same thing as a prefix
argument of one.

e Many commands ignore the prefix argument entirely.

Hemlock User’s Manual Introduction 1-9

¢ Some commands do none of the above,

The following commands are used to set the prefix argument:

Argument Digit Command C-digit, M-digit
Typing a number using this command sets the prefix argument to that number, for example,
typing C-1 C-2 sets the prefix argument to twelve.

Negative Argument Command] C-
This command negates the prefix argument, or if there is none, sets it to negative one. For
example, typing C-- C-7 sets the prefix argument to negative seven.

Universal Argument Command C-U
This command sets the prefix argument or multiplies it by four. If digits are typed immediately
afterward, they are echoed in the ccho area, and the prefix argument is set to the specified
number. If no digits are typed then the prefix argument is multiplied by four. C-U - 7 sets the
prefix argument to negative seven. C-U C-U sets the prefix argument to sixteen. C-4 C-2 C-U sets
the prefix argument to one hundred and sixty-eight. C-U C-0 sets the prefix argument to forty.

Universal Argument Default Hemlock Variable 4
This variable determines the default value and multiplier for the Universal Argument
command.

1.8 Modes

A mode provides a way to change Hemlock’s behavior by specifying a modification to current key
bindings, values of variables, and other things. Modes are typically used to adjust Hemlock to suit a
particular editing task, e.g. Lisp mode is used for editing LISP code.

Modes in Hemlock are not like modes in most text editors, such as insert or alter mode in SOS, and in
fact Hemlock really a "modeless” editor. There are two ways that the Hemlock mode concept differs from
the conventional one:

1. Modes do not usually alter the environment in a very big way, i.e. replace the set of commands
bound with another totally disjoint one. When a mode redefines what a key does, it usually
redefined to have a slightly different meaning, rather than a totally different one. For this reason,
typing a given key does pretty much the same thing no matter what modes are in effect. This
property is the distinguishing characteristic of a modeless editor.

Hemlock User’s Manual Introduction 1-10

2. Once the modes appropriate for editing a given file have been chosen, they are seldom, if ever,
changed. One of the advantages of modeless cditors is that time is not wasted changing modes.

A major mode is used to make some big change in the editing environment. Language modes such as
Pascal mode arc major modes. A major mode name is usually turned on by invoking the command
mode-name Mode as an extended command. There is only one major mode present at a time. Turning on a
major mode turns off the one that is currently in effect.

A minor mode is used to make a small change in the environment, such as automatically breaking lines if
they get too long. Unlike for major modes, any number of minor modes may be present at once. Ideally
minor modes should do the "right thing” no matter what major and minor modes are in effect, but this is
not currently the case when key bindings conflict. If, for example, the major mode is Lisp and Fill is a
minor mode, then typing Linefeed will fill the line, but not do LISP indentation.

Modes can be envisioned as switches, the major mode corresponding one big switch which is thrown
into the correct position for the type of editing being done, and each minor mode corresponding to an
on-off switch which controls whether a certain characteristic is present.

1.9 The Modeline

The modeline is the line displayed in inverse video at the bottom of each window. This line is used to
display information about the buffer displayed in that window. Here is a typical modeline:

Hemlock (Fundamental Fi11) /sys/slisp/hemlock/user.mss#1

This tells us that the file associated with this buffer is "/sys/sTisp/hemlock/user.mss#1" and the
modes currently present are Fundamental and Fill. The major mode is always displayed first, followed by
any minor modes. If the buffer has no associated file, then the buffer name will be displayed instead. If such
a buffer’s name was Silly, then it would be displayed in the following fashion:

Hemlock (Lisp) Silly:

1.10 Entering and Exi}ing

Hemlock is entered by using the LISP ed function. Simply typing (ed) will enter Hemlock leaving you
in the state that you were in when you left it. If Hemlock has never been entered before then the current
buffer will be Main.

Hemlock User's Manual Introduction 1-11

ed may be given an argument which may cither be a file name or a symbol. Typing (ed filename) will
cause the spccified file to be read into Hemlock, as though by Find File. Typing (ed symbol) will
pretty-print the definition of the symbol into a buffer whose name is obtained by concatenating "Edit " to
the beginning of the symbol’s name.

Exit Hemlock Command CC,CXCZ
This command exits Hemlock, returning T. Exit Hemlock does not by default save modified

buffers, or do anything clse that you might think it should do, it simply exits. After cxiting, you
may reenter at any time without having lost anything by typing (ed) to LiSP. Before you quit
from LISP using (quit), you should save any modified files that you want to be saved.

1.11 Helpful Information

This section contains assorted helpful information which may be uscful in staying out of trouble,.or
lacking that, getting out of trouble.

o Itis possible to get some sort of help nearly everywhere by typing Help.

e Various commands take over the keyboard and insist that you type the things that they want to =
hear. If you get in such a situation and want to get out, you can invariably do so by typing C-G
some small number of times. If this fails you can try typing C-C to exit Hemlock and
then" (ed)" to reenter it.

o Itisa good idea to get into the habit of saving your changes periodically so that you will not lose
much work if the system crashes.

o If you save a buffer whenever you leave it, it is less likely that you will forget to write out changed '
buffers.

o Before you quit, a/ways do a C-X C-B to see if there are any buffers which need to be written out.

o If the screen changes unexpectedly, you may have accidentally typed an incorrect command. Use
Help 1 to see what it was. If you are not familiar with the command, use Help ¢ to see what is so
that you know what damage has been done. Many interesting commands can be found in this
fashion. This is an example of the much-underrated learning technique known as "Learning by
serendipitous malcoordination”. Who would ever think of looking for a command that deletes all
files in the current directory?

e If you accidentally type a "killing” command such as C-W, you can get the lost text back using
CY.

Hemlock User’s Manual Introduction 1-12

1.12 Recursive Edits

Some sophisticated commands, such as Query Replace, will, at your request, place you in a recursive
edit. A recursive edit is simply a recursive invocation of Hemlock done within some command. A recursive
edit is useful because it enables arbitrary cditing to be done during the execution of a command without
losing any state that that the command might have. Once the recursive cdit is exited, the command that did
it proceeds as though nothing had happened. Hemlock indicates that you are in a recursive cdit by putting
a "[" before and a "]" after the modeline in the current window. Nested recursive edits will cause nested
square-brackets to be displayed around the modeline.

Exit Recursive Edit Command CZz
This command exits the current recursive edit, returning ni1. If invoked when not in a
recursive edit, then Hemlock will exit, ed returning nil.

Abort Recursive Edit Command C]
This command causes the command which invoked the recursive edit to get an error. If

Abort Recursive Edit is invoked when not in a recursive edit, then Hemlock will exit, ed
returning the string "Recursive edit aborted.”.

1.13 User Errors

If you use a command and the screen flashes, possibly with a message such as "No next 1ine.”
appearing in the echo area, then you have attempted to do something that Hemiock does not want to do.
You had best try something else, since Hemlock, being far more stupid than you, is far more stubborn.
Since Hemlock is an extensible editor, another alternative is to change the command that complained to do
what you wanted it to do. ‘

1.14 Internal Errors

A message of this form may appear in the echo area, accompanied by a flash of the screen:

Internal error:
Wrong type argument, NIL, should have been of type SIMPLE-VECTOR.

If the error message is a file related error such as the following, then you have probably done something
illegal which Hemlock did not catch, but was detected by the file system.

Hemlock User’s Manual Introduction 1-13

Internal error:
No access to "/lisp2/emacs/teco.mid"

Otherwise, you have found a bug. Try to avoid the behavior that resulted in the error, and report the
problem to you system maintainer. Since LISP has fairly robust error recovery mechanisms, probably no
damage has been done. '

If a truly abominable error from which Hemlock cannot recover occurs, then you will be thrown into
the Lisp debugger. At this point it would be a good idea to use save-all1-buffers to save any changes,
and then start a new LISP.

The LISP function save-all-buffers may be used to recover from a seriously broken Hemlock. To
use this, simply type "(save-all-buffers)" to the top-level ("* ") or break-loop ("1> ") prompt and
answer the questions is asks. Do not call this function while in Hemlock.

Chapter Two
Basic Commands

2.1 Motion Commands

There is a fairly small number of basic commands for moving around in the buffer. While there are
many other more complex motion commands, these are by far the most commonly used and the easiest to
learn.

Forward Character Command C-F, Rightarrow
Backward Character Command C-B, Leftarrow

Forward Character moves the point forward by one character. If a prefix argument is supplied,
then the point is moved by that many characters. Backward Character is identical, except that
it moves the point backwards.

Forward Word Command M-F
Backward Word Command M-B

These commands move the point forward and backward over words. The point is always left
between the last word and first non-word character in the direction of motion. This means the
after moving backward the cursor appears on the first character of the word, while after moving
forward, the cursor appears on the delimiting character. Supplying a prefix argument moves the

point by that many words.
Next Line Comhand . C-N, Downarrow
Previous Line . Command C-P, Uparrow

These commands are used to move to adjacent lines, while remaining the same distance within a
line. Note that this motion is by logical lines, each of which may take up many lines on the
screen if it wraps. If a prefix argument is supplied, then the point is moved by that many lines.

The position within the line at the start is recorded, and each successive use of C-P or CN
attempts to move the point to that position on the new line. If it is not possible to move to the
recorded position because the line is shorter, then the point is left at the end of the line.

Hemlock User's Manual Basic Commands 2-16

End of Line Command CE
Beginning of Line Command C-A

End of Line moves the point to the end of the current line, while Beginning of Line moves to
the beginning. If a prefix argument is supplied, then the point is moved to the end or beginning
of the line that many lines below the current one.

Scroll Window Down Command C-v
Scroll Window Up Command M-V

Scroll Window Down moves forward in the buffer by one screenfull of text, the exact amount
being determined by the size of the window. If a prefix argument is supplied, then the screen is
scrolled by that many lines. When the point is moved off of the screen, it is moved to the vertical
center of the new screen. Scroll Window Up is identical to Next Screen, except that it moves
backwards.

Screen Overlap . : Hemlock Variable 2
This variable is used by Next Screen and Previous Screen to determine the number of lines
by which the new and old screen should overlap.

End of Buffer Command C->,Alt>
Beginning of Buffer Command C-{, Alt<

These commands are used to conveniently get to the very beginning and end of the text in a
buffer. Before the point is moved, its position is saved by pushing it on the position of the mark
stack (see 2.3). '

2.1.1 Using The Mouse

Especially when moving large distances, it can be convenient to use the mouse to point to positions in
text. Hemlock defines several commands for using the mouse.

Here to Top of Window Command Rightdown
Top Line to Here Command Leftdown

Here to Top of Window scrolls the window so as to move the line which is under the mouse
cursor to the top of the window. This has the effect of moving forward in the buffer by the
distance of the mouse cursor from the top of the window. Top Line to Here is the inverse
operation, it scrolls backward, moving current top line underneath the mouse.

If the mouse is pointing into a window other than the current one, then that window is switched
to before the scrolling is done.

Hemlock User’s Manual Basic Commands 2-17

Point to Here Command Middledown
This command moves the point to the position of the mouse, changing to a different window if
necessary.

2.2 Other Motion Commands

Back to Indentation Command M-M
Move point to the first non-whitespace character on the current line.

2.3 The Mark and The Region

Each buffer has a distinguished position known as the mark, which starts at the beginning of the buffer.
The area between the mark and the point is known as the region. Many Hemlock commands which
manipulate large pieces of text use the text in the region. Neither the region nor the mark are visible, so the
only way to be sure that the mark is in a particular piace is to move it there. This is usually not a problem,
the mark is usually in the wrong place anyway, so normal practice is to set it immediately before using it.

Due to the way the region is defined, it always exists, even if the user has not set any marks. Accidentally
typing a command which uses the region when it has not been meaningfully defined is a common source of
mysterious, catastrophic damage to your text.

Push Mark/Point to Here Command Middleup
This is a mouse command which is used to set the mark, and thus define the region. Note that
this command is bound to Middleup, that is releasing the middle button, while Point to Here is
bound to Middledown. To use these two commands to mark out a region, press down the middle
button at one end of the region and release it at the other. The mark is left at the place the
button is pressed, and the point at the place it is released.

What this command actually does is move the point to the position of the mouse, pushing the
old position of the point on the mark stack if it was different.

Exchange Point and Mark A Command CXCX
: Exchange Point and Mark interchanges the position of the point and the mark, thus moving to

where the mark was, and leaving the mark where the point was. This command can be used to
switch between two positions in a buffer, since repeating it undoes its effect. Unlike other
mark-modifying commands, this does not push the old mark on the mark stack.

Hemlock User's Manual Basic Commands 2-18

Mark Whole Buffer Command CXh
This command sets the region around the whole buffer. If a prefix argument is supplicd, then

the mark is put at the beginning and the point at the end. The mark is pushed on the mark stack
beforchand, so popping twice will restore it.

2.3.1 The Mark Stack

As was hinted at earlier, there is actually a stack of marks. The current mark is determined by the mark
which is on the top of the stack, but it is possible to recover earlier values of the mark by popping marks off .
of this stack.

Set/Pop Mark : Command c-@
With no prefix argument, C-@ sets the mark to the current location of the point. The use of the

prefix argument by this command is slightly bizzare. If the prefix argument is four the mark is
popped into the point, meaning that the point is moved to the mark, and the mark is moved to
the valuc before it on the mark stack. If the prefix argument is sixteen, then the mark stack is
popped without affecting the point.

The reason for these particular values for the prefix argument is that they can be easily generated
using the Universal Argument command by typing C-U or C-U C-U. This command examines
the variable Universal Argument Default so that this will still work even if the default value is
changed.

2.4 Modification Commands

There is a wide variety of basic text-modification commands, but once again the simplest ones are the
most often used.

2.4.1 Inserting Characters

In Hemlock, printing characters may be inserted by simply typing them, while others require extra
effort. Like everything else in Hemlock, basic text insertion is implemented by commands.

Self Insert Command
Self Insert inserts the character which was typed to invoke it into the buffer. This command is

normally bound all printing characters and Space. If a prefix argument is supplied, then the
character is inserted that many times.

Hemlock User’s Manual Basic Commands 2-19

New Line Command Return
This command, which has roughly the same effect as inserting a Newline, is used to move onto a

new blank line. If there are at least two blank lines beneath the current one then Return cleans
off any whitespace on the next line and uses it, instcad of inserting a newline. This behavior is
desirable when inscrting in the middle of text, because the bottom half of the screen does not
scroll down each time New Line is used.

Quoted Insert Command CQ
Many characters cannot be inserted by Self Insert because they are bound to another command,
or are otherwise magical (C-G, Help). C-Q gets around this problem by reading a character from
the keyboard with any special interpretation inhibited. A common use for this command is to
insert a Formfeed by doing C-Q C-L. If a prefix argument is supplied, then the character is
inserted that many times.

Open Line ' ' Command c-0
This command inserts a newline into the buffer without moving the point. This command may
also be given a prefix argument to insert a number of newlines, thus opening up some room to
work in the middle of a screen of text.

2.4.2 Deleting Characters

There are a number of commands for deleting characters as well. One should avoid‘giving numeric
arguments to these commands, since once the text is deleted it is gone forever.

Delete Next Character Command » C-D
Delete Previous Character Command Delete, Backspace, C-H

Delete Next Character deletes the character immediately following the point, that is, the
character which appears under the cursor. When given a prefix argument, C-D delctes that many
characters after the point. Delete Previous Character is identical, except that it deletes
characters before the point.

Delete Previous Character Expanding Tabs Command
Delete Previous Character Expanding Tabs is identical to Delete Previous Character,
except that it treats tabs as the equivalent number of spaces. Various language modes that use
tabs for indentation bind Delete to this command.

Henilock User’'s Manual Basic Commands 2-20

2.4.3 Killing and Deleting

Hemlock has many commands which kill text. Killing is a varicty of deletion which saves the deleted
text for later retrieval. The killed text is saved in a ring buffer known as the kill ring. Killing has two main
advantages over deletion:

1. Iftext is accidentally killed, a not uncommon occurrence, then it can be restored.

2. Text can be moved from one place to another by killing it and then restoring it in the new
location.

Killing is not the same as deleting. When a command is said to delete text, the text is permanently gone,
and is not pushed on the kill ring. Commands which delete text generally only delete things of little
importance, such as single characters or whitespace.

2.4.4 Kill Ring Manipulation

Un-Kill Command 160 4
This command "yanks" back the most recently killed piece of text, leaving the mark before the
inserted text and the point after. If a prefix argument is supplied then the text that distance back
in the kill ring is yanked.

Rotate Kill Ring , Command M-Y
This command rotates the kill ring forward, replacing the most recently yanked text with the
next most recent text in the kill ring. M-Y may only be used immediately after a use of C-Y or a
previous use of M-Y. This command is used to step back through the text in the kill ring if the
desired text was not the most recently killed, and thus could not be retrieved directly with a C-Y.
If a prefix argument is supplied, then the kill ring is rotated that many times.

Kill Region Command Cw
This command kills the text between the point and mark, pushing it onto the kill ring. This
command is usually the best way to move or remove large quantities of text.

Save Region Command M-W
This command pushes the text in the region on the kill ring, but doesn’t actually kill it, giving an

effect similar to typing C-W C-Y. This command is useful for duplicating large pieces of text.

Hemlock User’s Manual Basic Commands 2-21

2.4.5 Killing Commands

Most commands which kill text append into the kill ring, meaning that consecutive uses of Killing
commands will insert all text killed into the top entry in the kill ring. This allows large pieces of text to be
killed by repeatedly using a killing command.

Kill Line Command CK
This command kills the text from the point to the end of the current line, deleting the line if it is

empty. If a prefix argument is supplicd, then that many lines are killed. Note that prefix
argument is not the same as a repeat count.

Kill to Beginning of Line. Command Oops
Oops kills the text from the point to the beginning of the current line.

Kill Next Word Command M-D
Kill Previous Word Command C-Backspace, Alt Backspace, Alt Delete

Kill Next Word kills from the point to the end of the current or next word. If a prefix argument
is supplied, then that many words are killed. Kill Previous Word is identical, except that it kills
backward.

2.4.6 Case Modification Commands

Hemlock provides a few case modification commands, which are often useful for correcting typos.

Capitalize Word Command M-C
Lowercase Word Command M-L
Uppercase Word Command M-U

These commands modify the case of the characters from the point to the end of the current or
next word, leaving the point after the end of the word affected. A positive prefix argument
modifies that many words, moving forward. A negative prefix argument modifies that many
words before the point, but leaves the point unmoved.

2.4.7 Transposition Commands

Hemlock provides a number of transposition commands. A transposition command swaps the "things”
before and after the point and moves forward one "thing". Just how a "thing” is defined depends on the
particular transposition command. Transposition commands, particularly Transpose Characters and

Hemlock User’s Manual Basic Commands 2-22

transpose Words, are useful for correcting typos. More obscure transposition commands can be used to
amaze you friends and demonstrate your immense knowledge of exotic EMACS commands.

To the uninitiated, the behavior of transposition commands may seem mysterious, and some
implementors have attempted to "improve” the definition of transposition, but the true EMACS definition
used in Hemlock has two useful properties:

1. Repeated applications of a transposition command have a useful cffect. The way to visualize this
effect is that each usc of the transposition command drags the previous thing over the next thing.
It is possible to correct double transpositions easily using Transpose Characters.

2. Transposition commands move backward with a negative prefix argument, thus undoing the
effect of the equivalent positive argument.

Transpose Characters Command C-T
This command exchanges the characters on either side of the point and moves forward, unless at
the end of a line, in which case it transposes the previous two characters without moving.

Transpose Lines ' Command C-XC-T
This command transposes the previous and current line, moving down to the next line. With a

Z€ro argument, it transposes the current line and the line the mark is on.

Transpose Words Command , M-T
This command transposes the previous word and the current or next word With a zero ‘
argument, it transposes the words at the point and mark.

2.4.8 Whitespace Manipulation

Just One Space Command C
This command deletes all blank characters before and after the point, and then inserts one

space. If a prefix argument is supplied, then that number of spaces is inserted.

Delete Horizontal Space Command . C-\, Alt\
This command deletes all blank characters around the point.

Delete Indentation Command C-Alt”
Delete Indentation joins the current line with the previous one, deleting excess whitespace.
This operation is the inverse of the Linefeed command in most modes.

Hemlock User’s Manual Basic Commands 2-23

One space is left between the two joined line fragments, unless the Lisp Syntax attribute of first
non-blank character on the second line is : cTose-paren.

Indent Rigidly Command C-X Tab, C-X C-1
This command changes the indentation of all the lines in the region. Each line is moved to the
right by the number of spaces specified by the prefix argument, which defaults to eight. A
negative prefix argument moves lines left.

2.5 Filtering

Filtering is a simple way to perform a fairly arbitrary transformation on text. Filtering text replaces the
string in each line with the result of applying a LISP function of one argument to that string. The function
must neither destructively modify the argument nor the return value. It is an error for the function to return
a string containing newline characters.

Filter Region Command
This function prompts for an expression which is evaluated to obtain a function to be used to

filter the text in the region. For example, to capitalize all the words in the region one could
respond: :

Function: #'string-capitalize

Since the function may be called many times, it should probably be compiled. Functions for
one-time use can be compiled using the compile function as in the following example which
removes all the semicolons on any line which contains the string "PASCAL":

Function: (compile nil '(lambda (s)
(if (search "PASCAL"™ s :test #'char-equal)
(remove #\; s)

s)))

2.6 Searching and Replacing

Searching for some string known to appear in the text is a commonly used method of moving long
distances in a file. Replacing occurrences of one pattern with another is a useful way to make many simple
changes to text. Hemlock provides powerful commands for doing both of these operations.

Hemlock User’s Manual Basic Commands 2-24

Default Search Kind Hemlock Variable :string-insensitive

This variable determines the kind of search done by searching and replacing commands. There

re currently two useful values for this variable:

:string-insensitive Do acase-insensitive string search,

:string-sensitive Do a case-sensitive string search.
Incremental Search Command CS
Reverse Incremental Search Command CR

Incremental Search searches an occurrence of a string somewhere after the current location of
the point. It is known as an incremental search because it reads characters form the keyboard
one at a time, and immediately searches for the pattern it has read so far. This is useful because
it is possible to initially type in a very short pattern, and then add more characters if it turns out
that this pattern has too many spurious matches.

The following characters are interpreted as commands:

CS

CR
Delete, Backspace

CG

Alt

cQ

Search forward for an occurrence of the currcent pattern. This can
be used repeatedly to skip from one occurrence of the pattern to
the next, or can be used to change the dircction of the search if it
is currently a reverse search. If C-S is typed when the scarch string
is empty, then a search is done for the string that was used by the
last searching command.

Similar to C-S, except that it searches backwards.

Undoes the effect of the last character typed. If that character
simply added to the search pattern, then it removes the character
from the pattern, moving back to the first match for that string. If
the character was a C-S or C-R then the previous match is skipped
back to, and the search direction possibly reversed.

If the search is currently failing, meaning that there is no
occurrence of the search pattern in the direction of search, the C-G
deletes encugh characters off of the end of the pattern to make it
successful. If the search is currently successful, then C-G causes
the search to be aborted, leaving the point where it was when the
search started.

Exit at the current position in the text, unless the search string is
empty, in which case a non-incremental string search is entered.

Search for the next character, rather than treating it as a
command. '

If any non-printing, unquoted character other than those described above is typed, then the

Hemlock User’s Manual Basic Commands 2-25

search is exited and the character is processed again with its normal interpretation. Typing C-A
will exit the search and go to the beginning of the line.

Incremental Search Exit Char Hemlock Variable t
If this variable is false, then the action of Alt in Incremental Search is inhibited. Typing Alt
will then still cause the command to exit, but the character will be read again as a command.

Forward Search Command

Reverse Search Command
These commands do a normal dumb string search, prompting for the search string in a normal
dumb fashion. One reason for using a non-incremental search is that it may be faster, since it is
possible to specify a long search string from the very start. Since Hemlock uses the
Boyer-Moore search algorithm, the speed of the search increases with the size of the search
string,

Query Replace Command C-%, Alt %
This command prompts in the echo area for a target string and a replacement string, then

searches for an occurrence of the target following the point. When a match is found, any of a
number of actions may be taken, depending on a single character command read from the
keyboard. The following characters are used by Query Replace:

Space, Y Replace this occurrence of the target with the replacement string,
and search again. _

Delete, Backspace, N Do not replace this occurrence, but continue the search.

! Replace this and all remaining occurrences without prompting
again.

. Replace this occurrence and exit.

CR Go into a recursive edit (see 1.12) at the current location. The

search will be continued from wherever the point is left when the
recursive is exited. This is useful for handling more complicated
cases where a simple replacement will not achieve the desired

effect.
Alt Exit without doing any replacement.
Help Print a list of all the options available.

Any other character causes the command to exit, unreading the character, and thus causing it to
be reinterpreted as a normal command.

If the replacement string is all lowercase, then a heuristic is used that attempts to make the case

Hemlock User’s Manual Basic Commands 2-26

of the replacement the same as that of the particular occurrence of the target pattern. If "foo" is
being replaced with "bar" then "Foo" is replaced with "Bar” and "F00" with "BAR".

Case Replace : Hemlock Variable
If this variable is true then the case preserving heuristic in Query Replace is enabled, otherwise
all replacements are done with the replacement string exactly as specified.

Replace String Command .
Prompts for a target and replacement string and replaces all occurrences of the target string

following the point with the replacement string.

3.1 Introduction

Chapter Three
Files, Buffers and Windows

Hemlock provides three different abstractions which are used in combination to solve the text-editing
problem, while other editors tend to mash these ideas together into two or even one.

File

Buffer -

Window

3.2 Buffers -

A file provides permanent storage of text. Hemlock has commands to read files
into buffers and write buffers out into files.

A buffer provides temporary storage of text and a capability to edit it. A buffer
may or may not have a file associated with it, if it does, the text in the buffer
need bear no particular relation to the text in the file. In addition, text in a buffer
may be displayed in any number of windows, or may not be displayed at all.

A window displays some portion of a buffer on the screen. There may be any
number of windows on the screen, each of which may display any position in
any buffer. It is thus possible, and often useful, to have several windows
displaying different places in the same buffer.

In addition some text, a buffer has several other user-visible attributes, among them:

A name

A collection of modes

A modification flag

A write-protect flag

Select Buffer

A buffer is identified by its name, which allows it to be selected, destroyed, or
otherwise manipulated.

The modes present in a buffer alter the set of commands available and otherwise
alter the behavior of the editor. For details see 1.8.

This flag is set whenever the text in a buffer is modified. It is often useful to
know whether a buffer has been changed, since if it has it should probably be
saved in its associated file eventually.

If this flag is true, then any attempt to modify the buffer will result in an error.

Command CXb

This command prompts for the name of a buffer, and then makes that buffer the current buffer.
The newly selected buffer is displayed in the current window, and editing commands now edit
the text in that buffer. Each buffer has its own point, thus the point will be in the place it was the

Hemlock User's Manual Files, Buffers and Windows 3-28

last time the buffer was sclected. When prompting for the buffer, the default is the buffer that
was selected before the current one.

Select Previous Buffer Command C-Z1
This command selects the buffer that has most recently selected. Its effect is identical to that of
C-X b Return.

Create Buffer Command C-XM-B

This command is very similar to Select Buffer, except that the buffer need not already exist. If
the buffer does not exist a new, empty buffer is created with the specified name.

Kill Buffer Command C-Xk
This command is used to make a buffer go away. There is no way to restore a buffer that has
been accidentally deleted, so the user is given a chance to save the hapless buffer if it is
modified. This command is poorly named, since it has nothing to do with killing text.

List Buffers Command C-XC-B
This command displays a list of all that buffers that exist in a pop-up window. A "*" is
displayed before the name of each modified buffer, and the associated filename (or number of
lines if none) is displayed after the buffer name.

Buffer Not Modified Command C-~, Alt ~
This command resets the current buffer’s ‘modification flag — it does not save any changes.
Doing this is primarily useful in the case where a buffer was accidentally modified and the
change then undone. Resetting the modified flag the indicates that the buffer has no changes
that need to be written out.

Check Buffer Modified Command CX~
This command indicates whether the current buffer is modified.

Insert Buffer Command
This command prompts for the name of a buffer, the contents of which are inserted at the point.
The buffer inserted is unaffected

Rename Buffer Command
This command prompts for a new name for the current buffer, which defaults to a name derived
from the associated filename.

Hemlock User’s Manual Files, Buffers and Windows 3-29

3.3 Files

These commands either read a file into the current buffer or write it out to some file. Various other
bookkeeping operations are performed as well.

Find File Command C-XC-F
This is the command normally used to get a file into Hemlock, it prompts for the name of a file,
and if that file has already been read in, selccts that buffer, otherwise it reads file into a new
buffer whose name is derived from the name of the file. If the file does not exist then the buffer
is left empty and "(New File)" is displayed in the echo area; the file may then be created by
saving the buffer.

The buffer name created is in the form “name typedirectory”, thus the filename
"/sys/emacs/teco.mid” would have the corresponding buffer name
"Teco Mid /Sys/Emacs/". The reason for rearranging the fields in this fashion is that it
facilitates recognition since the components most likely to differ are placed first. If the buffer
cannot be created because it already exists, but has another file in it (an unlikely occurrence)
then the user is prompted for the buffer to use, as by Create Buffer.

Find File currently does not check to see if the file has been modified since the last time it was
read in, thus it is necessary to force the file to be read using Visit File if this is the case.

Save File Command ' CXCS
This command writes the current buffer out to its associated file and resets the buffer
modification flag. If there is no associated file then the user is prompted for a file, and that is
made the associated file. If the buffer is not modified, then the user is asked whether to actually
write it or not.

Visit File Command CXCV
This command prompts for a file and reads it into the current buffer, setting the associated
filename. Since the old contents of the buffer are destroyed, the user is given a chance to save
the buffer if it is modified. As for Find File, the file need not actually exist.

Write File Command CXCW
This command prompts for a file and writes the current buffer out to it, changing the associated
filename and resetting then modification flag.

Hemlock User’s Manual Files, Buffers and Windows 3-30

Backup File Command
This command is similar to Write File, but it neither sets the associated filename nor clears the
modification flag. This is useful for saving the current state somewhere else, perhaps on a
reliable machine.

Insert File Command C-XCR
Prompts for a file and inserts it at the point.

Add Newline at EOF on Writing File Hemlock Variable :ask-user
This variable controls whether Save File and Write File add a newline at the end of the file if
the last line is non-empty.

t Automatically add a newline, and tell the user it was done.
nil Never add a newline. '
:ask-user Ask the user whether to add a newline or not.

Some programs will either lose the text on the last line, or get an error, when the last line does
not have a newline at the end.

3.3.1 Filename Defaulting and Merging

When Hemlock prompts for the name of a file, a default is always offered. Unless otherwise noted, this
default is the current buffer’s associated filename. If there is no associated filename, then a filename is
created with the current buffer’s name as its name and the most recently used file type asits type.

When a default is present in prompt for a file, the input given is merged with the default filename. The
exact semantics of merging, which is described in the COMMON LISP manual, is somewhat involved, but the
general idea is that any part (device, directory, name, type or version) of the filename which is left
unspecified is filled in from the defaults. This can be quite convenient, as it often eliminates the need to
type in the directory and type components.

In order to get around some of the problems of merging, there are two cases which Hemlock treats
specially:

1. Ifa file can be found using the current search list which is identical to the name entered, then no
merging is done. This permits a file which is in a directory on the search list to be found when
default directory is not on the search list.

2. Entering an empty file type ("foo.") inhibits merging in of the default type. This permits the
creation of a file having no type, in this case "foo".

Hemlock User’s Manual Files, Buffers and Windows 3-31

Pathname Defaults Hemlock Variable (pathname "gazonk.del")
This variable contains a pathname which is used to supply defaults for file manipulation
commands when we don’t have anything better. Any command which prompts for a file should
set this to the pathname of the file specified.

3.3.2 Type Hooks and File Options

When a file is read either by Find File or Visit File, Hemlock attempts to guess the correct mode to put
the buffer in based on the file’s type, the part of the filename after the last dot. Any default action may be
overridden by specifying the mode in the file’s file options.

File options are specified by a special syntax in the first line of a file. If the first line contains the string
"_.*-" then the text until the next "-*-", which must be on the same line, is interpreted as a list of
"attribute: value” pairs separated by semicolons. A typical example:

:3: -*- Mode: Lisp; Package: Hemlock -*-
These attributes are currently defined:

Mode The argument is the name of the mode to put the buffer in when the file is read.

Package When in the buffer with this file in it, the LISP variable *package* is set to the
specified package. This is only meaningful for LISP code.

If the option list contains no ": " then the entire string is used as the name of the mode for the buffer.

Process File Options Command
This command processes the file options in the current buffer as described above. This is useful
when the options have been changed or when a file is created

3.4 Windows

The Hemlock window commands currently have some deficiencies, the most notable being that there is
no way to change the size of a window once it is made.

New Window Command CX2
This command creates a new window on the screen which displays the current buffer.

Hemlock User’'s Manual Files, Buffers and Windows 3-32

Next Window Command C-Xn
Previous Window Command CXp

These commands make the window below or above the current window the new current
window, wrapping around at the top and bottom of the screen. Doing so will often change the

current buffer as well.
Delete Window Command CXC-D,CXd
Delete Next Window Command CX1

Delete Window makes the current window go away, growing some other window to take up the
space. Delete Next Window does the same thing to the next window.

Line to Top of Window Command C-!, Ale!
Scroll the current window up until the current line is at the top of the screen.

Center Line - ~ Command C#
Attempt to scroll the current window so as to vertically center the current line.

Scroll Next Window Down Command CZv
Scroll Next Window Up Command C-ZM-vV
These commands are the same as Scroll Window Up and Scroll Window Down except that

they operate on the next window.

Refresh Screen Command . C-L
This command refreshes the entire screen, which is useful if got trashed somehow.

Chapter Four
Editing Documents

Although Hemlock is not dedicated to editing documents as word processing systems are, it provides a
number of commands for this purpose. If Hemlock is used in conjunction with a text-formatting program,
then its lack of complex formatting commands is no liability.

4.1 Sentence Commands

A sentence is defined as a sequence of characters terminated by a period, question mark or exclamation
point, followed by either two spaces or a newline. A sentence may also be terminated by by the end of a
paragraph. Any number of closing delimiters, such as brackets or quotes, may be between the punctuation
and the whitespace. This somewhat complex definition of a sentence is used so that periods in abbreviations
are not misinterpreted as sentence ends.

Forward Sentence Command M-A
Backward Sentence Command M-E.
Forward Sentence moves the point forward past the next sentence end. Backward Sentence

moves to be beginning of the current sentence. A prefix argument may be used as a repeat

count.
Forward Kill Sentence Command M-K
Backward Kill Sentence Command C-X Delete, C-X Backspace

Forward Kill Sentence kills text from the point through to the end of the current sentence.
Backward Kill Sentence kills from the point to the beginning of the current sentence. A prefix
argument may be used as a repeat count.

Mark Sentence Command
This command puts the point at the beginning and the mark at the end of the next or current
sentence.

4.2 Paragraph Commands

A paragraph may be delimited by a blank line or a line beginning with one of these characters: "@ , -
' ™ if so, that line is not part of the paragraph. A line with at least one leading whitespace character may

Hemlock User's Manual Editing Documents 4-34

also introduce a paragraph, and is considered to be part of the paragraph. Any fill-prefix which is present on
a line is disregarded for the purpose of locating a paragraph boundary.

Forward Paragraph Command Alt]
Backward Paragraph Command Alt [
Forward Paragraph moves to the end of the current or next paragraph. Backward Paragraph
moves to the beginning of the current or previous paragraph. A prefix argument may be used as
a repeat count.

Mark Paragraph Command M-H
This command puts the point at the beginning and the mark at the end of the current paragraph.

4.3 Filling

Filling is a coarse text-formatting process which attempts to make all the lines roughly the same length,
but does not alter the amount of space between words. Editing text may leave lines with all sorts of strange
lengths; filling this text will return it to a moderately aesthetic form.

Set Fill Column Command CXf
This command sets the fill column to the column that the point is currently at, or the one
specified by the prefix argument, if it is supplied. The fill column is the column past which no
text is permitted to extend.

Set Fill Prefix Command CX.
This command sets the fill prefix to the text from the beginning of the current line to the point.
The fill-prefix is a string which filling commands leave at the beginning of every line filled. This
feature is useful for filling indented text.

Fill Column Hemlock Variable 75
Fill Prefix Hemlock Variable nil

These variables hold the value of the fill prefix and fill column, thus setting these variables will
change the way filling is done. If Fill Prefix is n i1, then there is no fill prefix.

Fill Paragraph Command M-Q
This command fills the text in the current paragraph. The point is not moved.

Hemlock User’s Manual Editing Documents 4-35

Fill Region Command M-G
Fill Region Confirmation Threshold Hemlock Variable 50
This command fills the text in the region. Since this is good way to mangle a large quantity of
textt when there are more lines in the region than the value of
Fill Region Confirmation Threshold the user is asked for confirmation. This check can be
inhibited by setting the variable to ni1.

Auto Fill Mode Command
This command turns on or off the Fill minor mode in the current buffer. When in Fill mode,

Space, Return and Linefeed are rebound to commands that check whether the point is past the
fill column, and fill the current line if it is. This enables typing text without having to break the
lines manually.

If a prefix argument is supplied, then instead of toggling, the sign determines whether Fill mode
is turned off, a positive argument argument turns in on and a negative one turns it off.

Auto Fill Linefeed Command Fi11: Linefeed
Auto Fill Return Command Fi11: Return
This command fills the current line if it needs it, goes to a new line, as though by the New Line
command, and the inserts the fill prefix, if any. Auto Fill Return is identical, except that it does
not insert the fill prefix on the new line.

Auto Fill Space Command ~ Fil1: Space
If no prefix argument is supplied, this command inserts a space and fills the current line if it
extends past the fill column. If the argument is zero, then it fills the line if needed, but does not
insert a space. If the argument is positive then that many spaces are inserted without filling.

4.4 Spelling Correction

Hemlock has a spelling correction facility based on the dictionary for the ITS spell program. This
dictionary is fairly small, having only thirty thousand words or so, which means it fits on your disk, but it
also means that many reasonably common words are not in the dictionary. A correct spelling for a
misspelled word will be found if the word is in the dictionary and is only erroneous in that it has a wrong
character, a missing character, an cxtra character or a transposition.

Correct Word Spelling Command _ C$,AltS

Hemlock User’s Manual Editing Documents 4-36

This command looks up the previous or current word in the dictionary, and attempts to correct
the spelling if it is misspelled. There are four possible results of this action:

1L

The message "Found it." is displayed in the echo area. This means that the word was
found in the dictionary exactly as given.

The message "Found it because of word." is displayed, where word is some other
word with the same root, but a different ending. The word is no less correct than if the
first message is given, but an additional picce of useless information is supphcd to make
you feel like you are using a computer.

The message "Word not found." is displayed. Either the word is not in the dictionary
or is so badly mangled that the correct spelling cannot be found. If this happens, it is
worth trying some alternate spellings, as one of them is quite likely close enough to be
found.

The prompt "Correction choice:" appears in the echo area and a list of numbers
and words appears in a pop-up window. Typing a number selects the corresponding
correction, which replaces the erroneous word preserving case, as though by
Query Replace. Typing anything else rejects all the choices.

Correct Buffer Spelling Command
This command scans the entire buffer looking for misspelled words and offering to correct them.

A window into the Spell Corrections buffer is placed on the screen, and a log of any actions
taken is maintained in that buffer. When an unknown word is found, a single-character
command is prompted for:

A

L]

CR

Ignore this word. If it is encountered again, then the prompting is
repeated.

Insert this word in the dictionary.

Choose one of the corrections displayed in the Spell Corrections
window by specifying the correction number. If the same
misspelling is encountered again, then the correction will be done
automatically, leaving a note in the log window.

Prompt for a word to use instead of the offending one,
remembering the correction the same way that C does.

Go into a recursive edit at the current position, and resuthe
checking when the recursive edit is exited.

After this command completes it deletes the log window, but leaves the buffer around for future
reference.

Hemlock User's Manual Editing Documents 4-37

Add Word to Spelling Dictionary Command C-X$
This command adds the previous or current word to the spelling dictionary.

Augment Spelling Dictionary Command
This command adds some words from a file to the spelling dictionary. The format of the file isa
list of words, one on each line.

Append to Spelling Dictionary Command
This command appends incremental dictionary insertions to a file. Any words added to the
dictionary since the last time this was done will be appended to the file. All commands which
add words to the dictionary except Augment Spelling Dictionary add their insertions to this
list.

4.4.1 Auto Spell Mode

Auto Spell Mode checks the spelling of each word as it is typed. When an unknown word is typed the
user is notified and allowed to take a number of actions to correct the word.

Auto Spell Mode Command
This command turns Spell mode on or off in the current buffer.

Check Word Spelling Command Spel11: word-delimiters
This command checks the spelling of the word before the point, doing nothing if the word is in
the dictionary. If the word is misspelled but has a known correction then the correction is made.
If there is no correction then a message is displayed in the echo area. An unknown word
detected by this command may be corrected using the Correct Last Misspelled Word
command. These actions are performed in addition to the normal action for the key bound.

Check Word Spelling Beep Hemlock Variable ' T
If this variable is true, then Check Word Spelling will beep when an unknown word is found.

Correct Last Misspelled Word Command Spell: C
This command moves the cursor to after the last misspelled word detected by the
Check Word Spelling command and then prompts for a single character command:

C Oﬁ‘er a choice of possible corrections.

I Insert the word in the dictionary.

Hemlock User's Manual Fditing Documents 4-38

R Replace the word with another.

C-H, Backspace, Delete Skip this word and try again on the next most recently misspelled
word.

CR Enter a recursive edit at the word, exiting the command when the
recursive edit is exited.

Alt Exit and forget about this word.

As in Correct Buffer Spelling, the C and R commands add the correction to the known
corrections.

Chapter Five
Managing Large Systems

Hemlock provides two tools which help to manage large systems:

" 1. File groups, which provide several commands that operate on all the files in a possibly large
collection, instead of merely on a single buffer.

2. A source comparison facility with scmi-automatic merging, which can be used to compare and
merge divergent versions of a source file.

5.1 File Groups

A file group is a set of files, upon which various editing operations can be performed. The files in a
group are specified by a file, the syntax of which is compatible with an Update storage command file, and is
described here:

¢ Any line which begins with one "@" is ignored.
¢ Any line which does not begin with an "8" is the name of a file in the group.

¢ A line which begins with "@@" specifies another file having this syntax, which is recursively
examined to find more files in the group.

Although any number of file groups may be read into Hemiock, there is only one active group, which is the
file group implicitly used by all of the file group commands.

Select Group Command
This command prompts for the name of a file group to make the active group. If the name-

entered is not the name of a group whose definition has been read, then the user is prompted for
the name of a file to read the group definition from. The name of the default pathname is the
name of the group, and the type is "Upd".

Group Query Replace Command
This command prompts for a target and replacement string, and then does an interactive string
replace on each file in the active group. Each file is read in as though by Find File then
processed as though Query Replace had been given the specified target and replacement
strings.

Hemlock User's Manual Managing Large Systems 5-40

Group Replace Command
This is like Group Query Replace cxcept that it does a non-interactive replacement, similar to
Replace String.

Group Search Command

This command prompts for a string, and then scarches for it in each file in the active group.
When an occurrence is found, the user is prompted for a single-character command to indicate
what action to take. The following commands are defined:

Space, Y Continue searching for the next occurrence of the string.
Delete, Backspace, N Continue the search at the beginning‘of the next file, skipping the
remainder of the current file.
Alt - Exit Group Search.
CR Go into a recursive cdit at the current location, and continue the
search when it is exited.
5.2 SrcCom

These two commands can be used to find exactly how the text in two buffers differs, and to generate a
new version that combines features of both versions. There are some known bugs in these commands, but
they are still very useful.

Compare Buffers Command
This command prompts for three buffers, and then does a buffer comparison. The first two
buffers must exist, as they are the buffers to be compared. The last buffer, which is created if it
does not exist, is the buffer to which output is directed. The output buffer is selected during the
comparison so that its progress can be monitored. The output is self-explanatory. There are
various variables that control exactly how the comparison is done.

Merge Buffers ' Command
This command functions in a very similar fashion to Compare Buffers, the difference being
that a version which is a combination of the two buffers compared is generated in the output
buffer. Text that is identical in the two comparison buffers is copied unchanged to the output
buffer. When a difference is encountered, the two differing versions are displayed in the output
buffer, and the user is prompted for an action to take. The following single-character commands
are defined:

Hemlock User’s Manual Managing Large Systems 5-41

1 Use the first version of the text.
2 Use the second version.
B Insert both versions, distinctively marked with the string

"s**+ MERGE LOSSAGE *=*#**". This is useful if the change
that needs to be made is t00 complex to be done conveniently at
this point, or it is unclear which version is correct. After the merge
is complete, this string may be easily found with a search

command.
C-R Do a recursive edit, and ask again when the cdit is exited.
Source Compare Ignore Case Hemlock Variable A nil

If this variable is true, Compare Buffers and Merge Buffers will do comparisons
case-insensitively. Turning this on will slow down these commands significantly.

Source Compare Ignore Extra Newlines Hemlock Variable t
If this variable is true, Compare Buffers and Merge Buffers will treat all groups of newlines as
if they were a single newline.

Source Compare Number of Lines Hemlock Variable 3
This variable controls the number of lines Compare Buffers and Merge Buffers will compare
when resynchronizing after a difference has been encountered.

Chapter Six
Editing Lisp

Hemlock provides a large number of powerful commands for editing LISP code. It is possible for a text
editor to provide a much higher level of support for editing LISP than ordinary programming languages,
since its syntax is much simpler.

Currently the LISP specific commands do not parse LISP code totally correctly, the most serious flaw
being that they do not understand comments or quotation mechanisms. This is not usually a problem unless
there is a parenthesis in a command, quoted string, character literal or symbol. Another limitation is that all
LisP commands abort and signal an error if they cross a defun boundary when parsing. This is done to
speed the detection of errors, so that it is not necessary to parse all the way back to the beginning of the
buffer if, for example, an extra close parenthesis is typed.

6.1 Lisp Mode

Lisp mode is a major mode used for editing LISP code. It has a number of mode-iocal key bindings that
shadow global key bindings.

Lisp Mode Command
Set the major mode of the current buffer to Lisp.

6.2 Form Manipulation

These commands manipulate LISP forms, the printed representations of LISP objects. A form is either an
expression balanced with respect to parentheses or an atom such as a symbol or string.

Forward Form ' Command CZf
Backward Form Command C-Zh

Forward Form moves to the end of the current or next form, while Backward Form méves to
the beginning of the current or previous form. A prefix argument is treated as a repeat count.

Forward Kill Form Command C-Zk
Backward Kill Form Command C-Z Delete, C-Z Backspace

Hemlock User’s Manual Editing Lisp 644

Forward Kill Form kills text from the point to the end of the current form. If at the end of a list,
but inside the close parenthesis, then kill the close parenthesis. Backward Kill Form is the same,
except it gocs in the other direction. A prefix argument is treated as a repeat count.

Mark Form Command : C1@
This command sets the mark at the end of the current or next form.

Transpose Forms Command C-Zt
This command transposes the forms before and after the point and moves forward. A prefix

argument is treated as a repeat count. If the prefix argument is negative, then the point is moved
backward after the transposition is done, reversing the effect of the cquivalent positive
argument.

Insert () ' V Command Alt(
This command inserts an open and a close parenthesis, leaving the point inside the open

parenthesis. If a prefix argument is supplied, then the close parenthesis is put at the end of the
form that many forms from the point.

6.3 List Manipulation

List commands are similar to form commands, but the only pay attention to lists, igndring any atomic
objects that may appear. These commands are useful because they can skip over many symbols, and move
up and down in the list structure.

Forward List Command C-Zn
Backward List Command CZp

Forward List moves the point to immediately after the end of the next list at the current level of
list structure. If there is not another list at the current level, then it moves up to past the end of
the containing list. Backward List is identical, except that it moves backward and leaves the
point at the beginning of the list. The prefix argument is used as a repeat count.

Forward Up List Command Cz)
Backward Up List Command C-Zu
Forward Up List moves to the after the end of the enclosing list. Backward Up List moves to

the beginning. The prefix argument is used as a repeat count.

Hemlock User’s Manual Editing Lisp 645

Down List Command | C-Zd
This command moves to just after the beginning of the next list. The prefix argument is used as

a repeat count.

Extract List Command C-Zx
This command "extracts” the current list from the list which contains it. The outer list is deleted,

leaving behind the current list. The entire affected area is pushed on the kill ring, so that this
possibly catastrophic operation can be undone. The prefix argument is used as a repeat count.

6.4 Defun Manipulation

A defun is a list whose open parenthesis is against the left margin. It is called this because an occurrence
of the defun top level form usually satisfies this definition, but they will work on any top level form, such
asadefstruct or defmacro.

End of Defun Command C-Ze, C-Z]
Beginning of Defun Command C-Za, CZ[

End of Defun moves to the end of the current or next defun. Beginning of Defun moves to the
beginning of the current or previous defun. End of Defun will not work if the parentheses are

not balanced.

Mark Defun) Command C-Zh
This command puts the point at the beginning and the mark at the end of the current or next
defun.

6.5 Indentation

One of the most important features provided by Lisp mode is automatic indentation of LiSP code, since
unindented LISP is unreadable, poorly indented LISP is ugly, and inconsistently indented LISP is subtly
misleading.

Indent for Lisp Command Lisp: Tab, CI
This command indents a line of LISP according to the standard indentation conventions. If the
point is within the indentation, then it is moved to the first non-blank character, otherwise it is
left where it is. If a prefix argument is supplied, then that many lincs below the current line are
indented.

Hemlock User’s Manual Editing Lisp 6-46

Indent Form Command CZq
This command indents all the lines in the current form, leaving the point unmoved.

Lisp Indent Region Command C-Z\
This command indents all of the lines in the region.

Defindent ‘ Command CZ #
This command prompts for the number of special arguments to associate with thce symbol at the
beginning of the current of containing list.

Lisp New Line Command Lisp: Lincfeed
This command goes to a new line, as though by New Line, and then inscrts the correct amount
of indentation for LISP code.

Move Over) Command Alt)
This command moves past the next close parenthesis and then does what Lisp New Line does.

6.6 Parenthesis Matching

Another very important facility provided by Lisp mode is parenthesis maiching. Whenever a close
parenthesis is inserted in Lisp mode, the matching open parenthesis is indicated.

Lisp Insert) Command Lisp:)
Paren Pause Period Hemlock Variable 0.5

This command inserts a close parenthesis and then attempts to display the matching open
parenthesis by placing the cursor on top of it for Paren Pause Period seconds. If there is no
matching parenthesis then the screen is flashed. If the matching parenthesis is off the top of the
screen, then the line on which it appears is displayed in the echo area.

Chapter Seven
Interacting With Lisp

There are a number of facilities for querying and modifying the LISP environment while in Hemlock.

7.1 The Current Package

The value of *package* during the execution of these commands is the same as the package that ed
was called in, unless a Package file option has been specified for the current buffer, in which case it is the
specified package. Setting *package* using one of these commands will cause the current value to be
permanently changed, thus setting *package* in a buffer with a local package will only change the local
package.

Set Buffer Package Command
This command prompts for the name of a package to make the local package in the current
buffer.

7.2 Input and Output

Reading from a terminal stream (*standard-input®*, *terminal-io*) while in Hemlock is not
recommended, since it doesn’t work very well. The reading will be done from the "11isp” window even if
the prompt is displayed in Hemlock.

Output to *standard-output* is redirected by Top-Level mode and the compilation commands,
and is thus treated in a somewhat sensible fashion. Any output not redirected will be displayed in the
"11isp” window.

7.3 Compiling and Evaluating Lisp Code

These commands can greatly speed up the edit/debug cycle, since they enable incremental reevaluation
or recompilation of changed code, avoiding the need to compile and load an entire file.

Hemlock User’s Manual Interacting With Lisp 7-48

Evaluate Expression Command C-Alt, Alt Alt
This command prompts for an expression and prints the result of its evaluation in the echo area.

Load File Command
Load Pathname Defaults Hemlock Variable nil
This command prompts for a file and calls the 10ad function with it. Load Pathname Defaults

contains the default pathname for this command. This variable is set to the file loaded; if it is
ni1 then there is no default.

Evaluate Defun Command C-XCE
Evaluate Region Command :
Evaluate Buffer Command

These commands evaluate text out of the current buffer, reading the current defun, the region
and the entire buffer, respectively.

Compile Defun Command C-XCC
Compile Region Command

These commands recompile the text in the current defun and the region, respectively. Compiler
information output is directed to a pop-up window.

Compile File Command CXc

This command saves the current buffer if it is modified, and then calls compile-file on the
file. All compiler information is placed in the Compiler Warnings buffer, a window being made
into this buffer if there is not one already. Since there is a complete log of output in the
Compiler Warnings buffer, the creation of the normal error output (".err") file is inhibited.
Note that unlike the other compiling and evaluating commands, this does not have the effect of
placing the definitions in the environment, to do so, the resulting output (".sfas1") file must
be loaded. If a prefix argument is specified, then the user is prompted for a file to compile
instead of the one in the current buffer.

7.4 Querying the Environment

These commands are useful for obtaining various random information from the LISP environment.

Describe Function Call Command C-ZM-A
Describe Symbol Command C-ZM-S
Describe Function Call describes the symbel found at the head of the currently enclosing list.

Describe Symbol describes the symbol at or before the point. These commands are primarily
useful for finding the documentation for functions and variables.

Hemlock User’s Manual Interacting With Lisp 749

Lisp Describe Command Help t
This command prompts for an expression, evaluates it, and describes the result of the
evaluation.

Room Command

Call the room function, which displays information about allocated storage, directing output to
a pop-up window.

7.5 Top-Level Mode

Top-Level mode is a minor mode which is used to have the effect of a read eval print loop in a
Hemiock buffer. Warning: it is dangerous to interrupt Hemiock while it is inserting output into a buffer, as
the buffer structure may be damaged. If this happens there is no way to recover other than to start a new
LisP, although undamaged buffers may be saved using the save-a11-buffers function.

Top-Level Mode Command
this command turns on Top-Level mode in the current buffer, and sets the major mode to Lisp,
if it is not aiready. This is normaily done in a buffer specially created for the purpose, since the
output inserted into the buffer tends to trash it. If Top-Level mode is already on, then it is
turned off.

Top-Level Eval ' Command Top-Level: Return
This command evaluates all the forms between the end of the last output and the end of the
buffer, inserting the results of their evaluation in the buffer. If the point is before the position of
the prompt then the form which ends on the current line is inserted at the end of the buffer and
evaluated. This command will complain if there is not a complete form, so to insert line breaks
in the middle of a form, use Linefeed.

Kill Top-Level input Command Top-Level: Oops
This command kills input that would be read by Top-Level Eval.

Abort Top-Level Input Command Top-Level: C-Oops
This command moves the the end of the buffer and prompts, ignoring any input already typed
in.

Hemlock User’s Manual Interacting With Lisp 7-50

Next Top-Level Input ’ Command Top-Level: M-N
Previous Top-Level Input Command Top-Level: M-P

A history of inputs to Top-Level Eval is maintained. These commands step forward and
backward in the history, inserting the current entry in the buffer. The prefix argument is used as
a repeat count.

Top-Level Beginning of Line Command Top-Level: C-A
This command is identical to Beginning of Line unless there is no prefix argument and the
point is on the same line as the prompt; then it moves to immediately after the prompt.

7.6 Error Handling

When an error happens inside of Hemlock, Hemlock will trap the error and display the error message
in the echo area, possibly along with the "Internal error:" prefix. If you want to debug the error, type
?. This causes the prompt "Debug : " to appear in the echo area. The following commands are recognized:

D Enter a break-loop so that you can use the LiSP debugger. Proceeding with "$p"
will reenter Hemlock, and give the "Debug: " prompt again.
B Show a stack backtrace in a pop-up window.

Q, Alt Quit from this error to the nearest command loop.

Chapter Eight
Other Languages

Currently only one language other than LISP is supported, Pascal. This support, although not very great,
is comparable to that of many non-extensible editors.

Pascal Mode Command
This command sets the current buffer’s major mode to Pascal. This mode has a crude
indentation facility, and borrows parcnthesis matching from LISP.

Generic Indent Command Pascal: Tabh,CI
This command indents the current line the same distance as the previous non-blank line.

Generic New Line and Indent ' Command Pascal: Linefeed
This command goes to a new line like New Line, and then indents like Generic Indent.

Chapter Nine
Simple Customization

Hemlock can customized and extended to a very large degree, but in order to do much of this a
knowledge of LISP is required. These advanced aspects of customization are discussed in the Hemlock
Command Implementor’s Manual, while simpler methods of customization are discussed here.

9.1 Keyboard Macros

Keyboard macros provide a facility to turn a sequence of commands into one command.

Define Keyboard Macrc Command C-X{
End Keyboard Macro Command C-X)

Define Keyboard Macro starts the definition of a keyboard macro. The commands which are
invoked up until End Keyboard Macro is invoked become the definition for the keyboard
macro, thus replaying the keyboard macro is synonymous with invoking that sequence of
commands.

Last Keyboard Macro Command CXe
This command is the keyboard macro most recently defined; invoking it will replay the
keyboard macro. The prefix argument is used as a repeat count.

Keyboard Macro Query Command C-Xq
This command is used to conditionalize the execution of a keyboard macro. When invoked

during the definition of a macro, it does nothing, but when the macro is replayed it prompts the
user for a single-character command to indicate the action to be taken. The following commands

are defined:

Alt Exit all repetitions of this keyboard macro. More than one may
have been specified using a prefix argument.

Space, Y Pr8ceed with the execution of the keyboard macro.

Delete, Backspace, N Skip the remainder of the keyboard macro and go on to the next

repetition, if any.

o

Do all remaining repetitions of the keyboard macro without
prompting.

Hemlock User’s Manual Simple Customization 9-54

Complete this repetition of the macro and then exit without doing
any of the remaining repetitions.

C-R Do a recursive edit, then prompt again.
i 4 i o

Name Keyboard Macro Command
This command prompts for the name of a command, and then makes the definition for that
command the same as Last Keyboard Macro’s current definition. The command which results
is not clobbered when another keyboard macro is defined, so it is possible' to keep several
keyboard macros around at once. The resulting command may also be bound to a key using
Bind Key, in the same way any other command is.

Many keyboard macros are not for customization, but rather for one-shot use, a typical being performing
some operation on each line of a file. To add "de1 " to the beginning and ". *" to the end of every line in
in a buffer, one could do this: :

C-X(delSpaceC-E.*C-NC-ACX)C-U999C-Xe

First a keyboard macro is defined which performs the desired operation on one line, and then the keyboard
macro is invoked with a large prefix argument. The keyboard macro will not actually execute that many
times; when the end of the buffer is reached the C-N will get an error and abort the execution.

9.2 Binding Keys

Bind Key Command
This command prompts for a command, a key and a kind of binding to make, and then make
the specified binding. The following kinds of bindings are allowed:

bugfer ‘ Prompts for a buffer, and then makes a key binding which is only
present when that buffer is the current buffer.

mode Prompts for the name of a mode, and then make a key binding
which is only in present when that mode is active in the current
buffer.

global ' A global key binding is made, which is in effect when there is no

applicable mode or buffer key binding. This is the default.

Delete Key Binding Command

Index 55

This command prompts for a key binding the same way that Bind Key does, and makes the
specified binding go away.

9.3 Hemlock Variables

A number of commands user Hemlock variables as flags to control their behavior.

Set Variable . Command
This command prompts for the name of a Hemlock variables and an expression, then sets the

current value of the variable to the result of the evaluation of the expression.

9.4 Init Files

Hemlock customizations are normally put in the main LISP initialization file, "init.s1isp”, or when
compiled "init.sfas1". The contents of the init file must be LISP code, but there is a fairly

e sl mé T 7

straightforward correspondence between the basic customization commands and the equivalent LISP code.
Rather than describe these functions in depth here, a brief example will be given:

33; -*- Mode: Lisp; Package: Hemlock -*-

;53 It is necessary to specify that the customizations go in
;33 the hemlock package.
(in-package 'hemlock)

;3 Bind Kill Previous Word to M-H.

(bind-key "Kill Previous Word" '#(#\m-h))

, Bind ExtractList to C-Z? when 1in Lisp mode.
(bind-key "Extract List" '#(#\c-z #\?) :mode "Lisp")

;55 Make C-W globally unbound.
(delete-key-binding '#(#\c-w))

+33 Make string searches case-sensitive.

(setv default-search-kind :string-sensitive)

;33 Make query replace replace strings literally.
(setv case-replace nil)

For a detailed description of what these functions do, see the Hemlock Command Implementor’s Manual.

Index

Abort Recursive Edit

Abort Top-Level Input

aborting

Add Newline at EOF on Writing File
Add Word to Spelling Dictionary
Append to Spelling Dictionary
Apropos

Argument Digit

Augment Spelling Dictionary
Auto Fill Linefeed

Auto Fill Mode

Auto Fill Return

Auto Fill Space

Auto Spell Mode

Back to Indentation
Backup File
Backward Character
Backward Form
Backward Kill Form
Backward Kill Sentence
Backward List
Backward Paragraph
Backward Sentence
Backward Up List
Backward Word
Beginning of Buffer
Beginning of Defun
Beginning of Line
Bind Key

bindings, key

bits, character
buffer

Buffer Not Modified
buffers

Capitalize Word
case modification
Case Replace
Center Line
character

Check Buffer Modified
Check Word Spelling
Check Word Spelling Beep
commands

Compare Buffers

command 12
command 49
11

hemlock variable 30
command 37
command 37
command 6
command 9
command 37
command 35
command 35
command 35
command 35
command 37

command 17
command 30
command 15
command 43
command 44
command 33
command 44
command 34
command 33
command 44
command 15
command 16
command 45
command 16
command 54
3

2
comparison 40; display 8; merging 40
command 28
27 .

command 21

21

hemlock variable 26

command 32

deletion 19; insertion 18; motion 15;
notation 2; transposition 22
command 28

command 37

hemlock variable 37

2; basic 15; extended 4; killing 21;
modification 18; transposition 21
command 40

Index

57

compilation

Compile Defun

Compile File

Compile Region

Correct Buffer Spelling
Correct Last Misspelled Word
Correct Word Spelling

Create Buffer

cursor

customization

Default Search Kind
defaulting, filename
Defindent

Define Keyboard Macro
defun manipulation
Delete Horizontal Space
Delete Indentation
Deletc Key Binding
Delete Next Character
Delete Next Window
Delete Previous Character
Delete Previous Character Expanding Tabs
Delete Window
deletion

Describe Command
Describe Function Call
Describe Key

Describe Symbol
display conventions
display, buffer
documentation
documents, editing
Down List

echo area

ed

End Keyboard Macro
End of Buffer

End of Defun

End of Line
entering hemlock
error handling

€ITOr Tecovery
errTors

Evaluate Buffer
Evaluate Defun
Evaluate Expression

47

command 48
command 48
command 48
command 36
command 37
command 36
command 28
1

53

30

command 46
command 53
45

command 22
command 22
command 55
command 19
command 32
command 19
command 19
command 32
character 19
command 6
command 48
command 7
command 48
7

8

hemlock 6; lisp 48

33
command 45

4

function 10
command 53
command 16
command 45
command 16
10

50

11

internal 12; user 12

command 48
command 48
command 48

hemlock variable 24

Index

58

Evaluate Region
evaluation

Exchange Point and Mark
Exit Hemlock

Exit Recursive Edit
exiting hemlock
Extended Command
Extract List

file groups

file options

files

Fill Column

Fill Paragraph

Fill Prefix

Fill Region

Fill Region Confirmation Threshold
filling

Filter Region

Find File

form manipulation
formatting
Forward Character
Forward Form
Forward Kill Form
Forward Kill Sentence
Forward List
Forward Paragraph
Forward Search
Forward Sentence
Forward Up List
Forward Word

Generic Describe

Generic Indent

Generic New Line and Indent
Group Query Replace

Group Replace

Group Search

Help

hemlock variables

Here to Top of Window
history

Incremental Search
Incremental Search Exit Char
Indent for Lisp

Indent Form

command 48
47
command 17
command 11
command 12
11
command 4
command 45

39
i1
27,29

hemlock variable 34

command 34

hemlock variable 34

command 35

hemlock variable 35

34

command 23
command 29
43

34

command 15
command 43
command 43
command 33
command 44
command 34
command 25
command 33
command 44
command 15

command 7

command 51
command 51
command 39
command 40
command 40

command 6 .
55
command 16

echo area 5; top-level 50

command 24

hemlock variable 25

command 45
command 46

Index

Indent Rigidly
indentation

init files

Insert ()

Insert Buffer

Insert File
insertion, character
invocation

Just One Space

key bindings

Keyboard Macro Query
keyboard macros

Kill Buffer

Kill Line

Kill Next Word

Kill Previous Word

Kill Region

kill ring

Kill to Beginning of Line
Kill Top-Level Input
killing

Last Keyboard Macro
line

Line to Top of Window
lisp

Lisp Describe

Lisp Indent Region
Lisp Insert)

lisp mode

Lisp Mode

Lisp New Line

List Buffers

list manipulation

Load File

Load Pathname Defaults
Lowercase Word

major mode

Mark Defun

Mark Form

Mark Paragraph
Mark Sentence
mark stack

Mark Whole Buffer
marks

command 23

lisp 45; manipulation 22; motion 17;
pascal 51

55

command 44

command 28

command 30

18

command 3

command 22

3,54

command 53

53

command 28
command 21
command 21
command 21
command 20

20; manipulation 20
command 21
command 49

20; form 44; sentence 33

command 53

killing 21; motion 15;
command 32

editing 43; interaction with 47
command 49
command 46
command 46

43

command 43
command 46
command 28

44

command 48
hemlock variable 48
command 21

10
command 45
command 44
command 34
command 33
18
command 18
17

Index

60

Merge Buffers
merging, filename
minor mode
mode comment
modeline

modes

motion

mouse
Move Over)

Name Keyboard Macro
Negative Argument
New Line

New Window

Next Line

Next Top-Level Input
Next Window

online help
Open Line

package

paragraph

paragraph commands
Paren Pause Period
parenthesis matching
Pascal Mode

Pathname Defaults
pathnames

point

Point to Here

pop-up windows

prefix argument

Previous Line

Previous Top-Level Input
Previous Window
Process File Options
prompting

Push Mark/Point to Here

Query Replace
Quoted Insert

recursive edits
Refresh Screen
region
Rename Buffer

command 40

30

10

31

10

9, 31; auto fill 35; lisp 43; pascal 51;
top-level 49

15; defun 45; form 43; list 44;
sentence 33

16

command 46

command 54
command 9

command 19
command 31
command 15
command 50
command 32

6
command 19

31,47

filling 34; motion 34
33

hemlock variable 46
46

command 51
hemlock variable 31
30

1

command 17

7

8

command 15
command 50
command 32
command 31

4

command 17

command 25
command 19

12

command 32

17; filling 35; killing 20
command 28

Index

61

Replace String

replacing

Reverse Incremental Search
Reverse Search

Room

Rotate Kill Ring

Sample Command

Sample Variable

Save File

Save Region

save-all-buffers

Screen Overlap

Scroll Next Window Down
Scroll Next Window Up
Scroll Window Down

Scroll Window Up

scrolling

searching

Select Buffer

Select Group

Select Previous Buffer

Seif Insert

sentence commands

Set Buffer Package

Set Fill Column

Set Fill Prefix

Set Variable

Set/Pop Mark

Source Compare Ignore Case
Source Compare Ignore Extra Newlines
Source Compare Number of Lines
source comparison

spelling correction

Top Line to Here

Top-Level Beginning of Line
Top-Level Eval

Top-Level Mode

Transpose Characters
Transpose Forms

Transpose Lines

Transpose Words

" transposition

type hooks

Un-Kill
undoing

command 26
23; group 39
command 24
command 25
command 49
command 20

command 2

hemlock variable 3

command 29
command 20
function 13

hemlock variable 16

command 32
command 32
command 16
command 16
16, 32

23; group 39
command 27
command 39
command 28
command 18
33

command 47
command 34
command 34
command 55
command 18

hemlock variable 41
hemlock variable 41
hemlock variable 41

40
35

command 16
command 50
command 49
command 49
command 22
command 44
command 22
command 22
21

31

command 20
11

Index

62

Universal Argument
Universal Argument Default
Uppercase Word

variables, hemlock
Visit File

What Lossage
Where Is
whitespace
windows

word

Write File

command 9
hemlock variable 9
command 21

3,55
command 29

command 6

command 6

manipulation 22

27,31

case modification 21; killing 21;
motion 15; transposition 22
command 29

	0001
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62

