CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

User Manual for Mint —
The Spice Document Preparation System

Penny Anderson, Peter Hibbard, and Kathryn Porsche
14 Fcbruary 84

A %7 o
74 sy %4
e R T

14 February 1984
‘Location of machine-readable file: prman.mss

Copyright © 1984 Penny Anderson, Peter Hibbard and Kathryn Porsche

This is an internal working document of the Computer Science Department, Carnegie-Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate working.community.is discousaged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government.

Table of Contents

1 Getting Started
1.1 Mint and Scribe
1.2 Getting Started
1.2.1 Loading Mint onto a Perq
1.2.2 Running Mint
1.3 What to do in case of trouble

2 A Scribe-oriented Reference Manual
2.1 General Guidelines
2.2 Mint Goodics
2.3 Document Types
2.4 Environments ,
2.5 Mint Environment Examples
2.6 Scribe Commands

A Customizing documents
A.1 Mint Files
A.2 More about State files

N S N

O 0000~~~}

[y —y

L

13
14

Part One
Getting Started

This document describes version 2B(12) of Mint, a document preparation system that has been written
as part of the Spice project. Mint has been written as a research vehicle for exploring document preparation,
and interactive document preparation in particular. Although the current version of Mint does not have
interactive features, it is nonctheless a usable tool which is suitable for release to a wider community for use
and evaluation. In making this release, [am making a commitment to providing a stable and maintained
system.

The document is organized as follows. This introduction provides an overview of the system and gives
operating information; it is followed by a brief review of Mint for Scribe users. The information provided
should be sufficient to allow the casual user to prepare documents on the Perg of the same quality as those
produced by Scribe. More detailed information can be found in the Reference Manual.

1.1 Mint and Scribe

At a superficial level, Mint resembles Scribe’ — it takes as input a .Mss file, and produces a formatted
document for some device. Most .Mss files that just use the basic Scribe commands — those in sections 1
to 6 of the Scribe manual — will be accepted by Mint, and will produce results that resemble those from
Scribe. In addition, there are Mint equivalents for most of the rest of the Scribe facilities, though these are
obtained in different ways.

1.2 Getting Started

I assume that -you already have access to a Perq, and are sufficiently familiar with the machine to boot it,
run programs, create and edit files, etc. Other parts of the User Manual describe how to do these.

1 Seribe is a registered trademark of UNILOGIC, Ltd.

2 Mint User Magual

1.2.1 Loading Mint onto a Perq

Normally Mint will be on the Perg, and there will be no need to reload it. If, however, Mint has not yet
been installed, or the version currently available on the Vax is a more recent version than that on the Perq,
then you should load it as follows:

Qupdate mintrun<RETURN>

(when complete, Update will display the Mint change log). If Update cannot be found the Perq will return
an CIror message:

** Link-F-Update.Run not found

If that happens, you must retricve a new version of Update. The section of this User Manual that describes
Update tells you how to do this.

1.2.2 Running Mint

To invoke Mint, type

mint

1f the Perq responds with

** | oader-F-Mint.RUN not found

then Mint has not been loaded, and you should start again at section 1.2.1. If Mint is loaded, it will request
you to create a new window. This window will be used to display the formatted output, though your
dialogue and any error messages will appear in the first window.

Mint prompts for the name of the file to be formatted by asking

File to be read from:

The file name can be typed in as a full path name or just as the file itself, in which case Mint will search for
the file on the current search list. The extensions .Mss and .Mint may be omitted.

After it has asked for the file, Mint will ask for which device the output is intended.

Output to Perg, Dover, other (P, D, X, <string>) [X]

Mint User Manual 3

Currently there are two devices available — the Perq itself (type P), and the Dover (type D). Mint then asks
a couple of questions about debug output — respond with carriage return to both questions.

Debug output onto screen (Y or N) [N]:
Debug output into file (Y or N) [N]:

Mint then goes about its business. As it formats the document it places the current file and line number
in the banner of the original window, but as it only does this on cach change of environment, there may be
periods of several scconds when the screen does not change. If the output device has been specified to be
the Perq, the document galleys are written into the new window. Section numbers will appear as question
marks, and several galleys may get overlaid. Do not worry about this — what you arc secing is only an
intermediate version of the document. Error messages appear in the original window and are written off to
an error file. More details are given in the next section.

When the document has been completely formatted, Mint will ask the question

Print on Perqg, Dover, other; Report, Quit (P, D, <string>; R,Q) []:

You now have the option of choosing the device on which to view the document. If you specify the Dover,
then a press file will be created, with extension . Press, which can be shipped to the Dover for printing. If
you specify the Perq, the messages

Which part: TitlePage, Contents, Mainbody (T, C, M) [M]:
Page: number, A11, Dover, Quit, next (<integer>, A, D, Q, <CR>) []:

will appear. The first prompt asks which part of the document you want to see. Normally you will want the
main body, so just type a carriage return. Typing in a page number to the second prompt will cause that
page to be displayed on the screen, typing A or a will cause all the pages to be displayed, and typing a
carriage return will cause the next page to be displayed.

Text cross-proofed on the screen may look somewhat odd since Mint positions each character exactly
where it would appear on the printed page. The screen is smaller than the actual printed page so characters
may be closer together than they actually will be on paper.,

You may exit by typing Q or q, when the question
Print on Perg, Dover, other; Report, Quit (P, D, <string>: R,Q) []:

reappears. If you exit without creating a press file, you will have to run Mint all over again to produce a
press file for printing on the Dover. If you type R or r then a bug report will be prepared for the maintainer
(i.c., Peter Hibbard); more details are given in section 1.3.

Note that the viewing device may differ from the target device given in the first request. This allows you

4 Mint User Manual

to “cross-proof” a document intended for one device on another, Normally you would want to view Dover
output on the Perq screen in order to save the delay in shipping a Press file to the Dover; if it is satisfactory
you can create the Press file without reformatting the document. If you are cross-proofing on the Perq, you
can also select which page you want to incorporate into the Press file by typing the characters D or d when
Mint asks for which page to print.

In cross-proofing mode, each character appears on the viewing device in the position that it will have on
the target device, and diagrams are scaled appropriately. However, the fonts used on the two devices will
not be identical, so that the output will not be an exact representation. The Reference Manual cxplains how
to map different fonts to improve the appearance of cross-proofed documents.

1.3 What to do in case of trouble

Error messages generated by Mint fall into four classes.

Warning Mint issues a warning if it finds something suspicious in the input, but which is
quitc legal. The output from Mint may be satisfactory, but you should
investigatc the reason for the warning, as it may indicate some
misunderstanding.

Error Errors occur when Mint is not able to process the text as you ask, but it is able to
take some corrective action and continue. It is unlikely that the output will be
what is desired.

Heresy A heresy indicates that there is some serious problem that Mint is not able to fix

in a reasonable way. In general these are caused by internal problems, and
usually indicate Mint bugs, though improper use of the advanced facilities
described in the Refercnce Manual also can cause them. As in all organizations,
one can continue after a heresy, though subsequent actions by the systcm cannot
be predicted.

Fatal Error These cccur when Mint has discovered an internal error that will cause it to fail
if it continues. Usually these are caused by overflow of internal tables, and can
be fixed fairly easily in future releases.

In all cases, the error message is written in the original window, and sent off to a file with the extension
.Error, with an indication of the location of the error. In the case of a warning or an error, Mint
continues; in the case of a heresy or fatal error it halts with the message

Quit, Continue, Report or Alter Flags (Q, C, R, A) [R]:

Unless you are a Mint maintajner vou should.tvpe Q ar g (or R or r, which under these circumstances have
the same effect).

Mint User Manual 5

After a fatal error or a heresy, Mint will prepare a report for the maintainer and use the mail system to
deliver it. Mint will ask permission to include the .mss file in the report along with the error file.

To stop Mint, you can type *C if you are using POS and the message
Quit, Continue, Report or Alter Flags (Q, C, R, A) [C]:

will appear. Quit, continue or report, as you wish. (You can alter the Debug Flags also, but then you are out
on your own). Under Accent, type tDEL C to kill Mint; no message will appear as control is returned to
the Shell.

Part Two
A Scribe-oriented Reference Manual

This section provides a brief description of differences between Mint and Scribe, organized along the
lines of Appendix E of the Scribe User Manual. It is intended to help Scribe users get started with Mint.
The Scribe novice should be able to use Mint with the aid of this reference combined with the Scribe
documentation.

2.1 General Guidelines

In general, you should riot expectA Mint to behave exactly like Scribe under any conditions. The same
sorts of things can be done, in roughly the same ways, but the final product will almost never look like what
Scribe produces. It should, of course, look better.

Mint’s command syntax can be confusing to the Scribe user. Many Scribe commands, such as
@caption, arc environments in Mint, and are used in the same way as other environments, such as
@heading and @itemize. A few constructs, such as @begin and @end are built-in commands. The rest,
such as @make and @include, are macrogenerator commands. These require that parameter names be
either omitted, or separated from their corresponding values by an equals sign. If you have trouble, refer to
the Reference Manual.

2.2 Mint Goodies

Some reasons to use Mint instead of Scribe:

Borders You can draw borders round text to set off figures and tables. See the Reference
Manual for examples and an explanation of how to use them.

Page headings Much more flexible page headings and footings are available in Mint. For an
example see the reference manual which shows how the headings and footings in
this Reference Manual were obtained.

DP and Plot The output of DP and Plot can be incorporated directly into a document.
Mathematics Good quality mathematical typesetting is available via the @maths and @m

environments...

8 Mint User Manual

State Files Modifications which you make tvo Mint’s default choices about the style of a
document may be saved in a state file, which may then be used to control the
style of other documents you develop. Sce the Reference Manual for details of
how to use them. ‘

Cross-proofing Although Mint is not yet interactive you don’t have to print your document to
get an idea of what it will look like. Instead, you can simply tell Mint that the
document is destined for a Dover, but that you wish to view it on the Perq
screen.)

Kerning and Ligatures ~ These are now used where appropriate. The Reference Manual contains details.

2.3 Document Types

To select the document type, use the @mak e command with the syntax:

@make(document-type, optional-document-form, optional-device)

Warning: don’t write @make(article, form 1, ...); this will be misinterpreted. Instead, write '
@make(article, form=1, ...) or @make(article, 1, ...). Ifspecified, device refers to
the target device (not the viewing device which may be different if you are cross-proofing), and may be
overriden when you start up Mint,

Mint supports the Scribe-like document types Text, form=0 or form=1; Article, form=0 or
form=1; Report, form=0 or form=1; Manual, form=0 or form=1; Thesis; and S1ides. As an
example, Manual, form=1 formatted this document.

There is not as yet any support for the Scribe document types brochure, guide, letter,
letterhead, or referencecard.

2.4 Environments

Most Scribe environments are also provided in Mint. Mint also implements some environments not
available in Scribe; a complete list is given in the reference manual, section 4.2.3.

Scribe environments provided in Mint, with some differences, are:

B, C, G, etc. Fonts are selected in Mint pretty much as in Scribe. The default font for an
environment may not always be what you expect, however.

Mint User Manual 9

Center

Description

Example
FlushLeft
FlushRight
Format
Heading

Itemize

MajorHeading
Multiple

ProgramExample
Quotation
Subheading
TitlePage

Verbatim

Verse

May also be spelled “centre”.

This environment will work as expected unless you try to use @multiple. If
you must have multiple paragraphs within a description item, see the cxample in
section 2.5.

Works pretty much like Scribe, but may not give you the font you expect.
Like Scribe.
Like Scribe.
Like Scribe.
Like Scribe.

There are two things to watch out for here. First, there are no bullets available on
the Perq. Second, nested itemizations and enumerations require the use of
@multiple. Sce the example in section 2.5.

Like Scribe.

Has the same general meaning as in Scribe, but will be required under different
cirumstances.

Currently identical to Examp1e. This should eventually become a pretty-printer.
Like Scribe.
Like Scribe.

The Mint titlepage environment has a different syntax from that of Scribe. All
title page text must be enclosed in one of the sub-environments, Tit1eBox,
ResearchCredit, Abstract, CopyrightNotice, or Notice. The Spice
title page definition in the file SpiceTitlePage.Lib provides a helpful, if
somewhat elaborate, example.

Like Scribe, except possibly for the choice of font.

Similar to Scribe’s verse environment, but results in a different look.

The mathematics-oriented Scribe environments do not occur in Mint, since their capabilities are
supplied through other mechanisms. For instance, the Definition, Equation, Lemma, Proof, and
Proposition cnvironments can all be replaced by the use of the appropriate formatting environment
(which might be maths), together with user-defined counters, which are described in the Reference

Manual.

The Group environment does not exist in Mint. A similar, but not identical effect can be obtained via:

@begin(multiple, need all)
..text to be kept tocgether...

@end(multiple)

10 Mint User Manual

Text in Mint is a document type, not an environment. In some cases where you must use the text
environment in Scribe, no special environment is needed in Mint (e.g., in figures.) In other cascs, you might
try using the Default environment.

Some Mint environments that are not available in Scribe are:

Align Very useful for tables. This environment must be used if you need to center or
flush right with respect to tab stops. Two particularly treacherous differences:
first, Mint centers text on a tab stop where Scribc centers between tab stops;
second, text to be flushed right to a tab stop should in gencral be entered as

@w(text).

Commentary With Gloss, allows you to place two boxes side-by-side, with the right hand
side (the gloss) in a smaller font.

Describe A more general way to place environments side by side than Commentary.

DP, Plot For including drawings produced by the DP and Plot programs.

Maths For mathematical typesetting comparable to that of TEX.

2.5 Mint Environment Examples

One way to allow for more than one paragraph in a description-like environment (this example
corresponds to Figure 3-3 of the Scribe User’s Manual):

@begin(describe)
Segment

@begin(default)

One of the parts into which something naturally separates or is
divided; a division, portion, or section.

@end(default)

Section

@begin(multiple)
A part that is cut off or separated; a distinct part or subdivision
of anything, as an object, country, or class.

The act of subdividing some object into its distinct parts.
@end(muitiple)
@end(describe)

One way to get nested enumerations; the same principle applies to nested itemizations (this example
corresponds to Figure 3-2 or the Scribe User’s Manual):

Mint User Manual 11

@begin(enumerate)

@multiple{The numbers in an enumerate environment are filled in by Scribe.
Some styles use roman numerals instead of numbers.

@enumerate[When you nest one Enumerate inside another, the numbers and
margins are adjusted appropriately.

The switch from numbers to letters is specified as part of the document type.
Deeper nesting will produce other kinds of numbering.]}

@begin(multiple)
Normally each blank 1line starts a new item because each paragraph is an item.

When you need more than one paragraph in an item, use the ...
@end(multiple)

In an enumerated 1ist, Scribe generates the numbers automatically...
@end(enumerate)

2.6 Scribe Commands

Some Scribe commands correspond to Mint environments. For example, caption is an environment,
not a comunand. This means that @begin{caption), which is unacceptable in Scribe, is accepted by
Mint as well as the Scrite form @caption(...).

The Scribe commands which correspond to some Mint construct are:

Begin -...is the same in Mint, except that the attribute-value list is somewhat different.
) . The attributes are discussed in the Reference Manual.

Bibliography Mint supports bibliographics as described in the Reference Manual.

Blankpage Provided as a-Mint macro.

Blankspace Not defined. Use the macro @vsp instead. Other macros for defining blank
space are @hsp for horizontal space, and @new1ine for blank lines,

Caption is a Mint environment.

Define like Scribe. See the Reference Manual.

Device There is no such Mint command. A device can be spccified in the @make
command or when prompted by Mint.

Foot is a Mint environment.

Include is a Mint macro.

Index) The @index command has the same meaning as in Scribe, but also has a

parameterized form.

12

Mint User Manual

Label

Modify
NewPage

PageFooting

PageRef

TabClear

Use

is a Mint macro similar in function to Scribe’s labels. See the Reference Manual
for a discussion of Mint’s support for labels and counters.

like Scribe.
is a Mint macro with a similar function to Scribe’s.

and PageHeading are Mint environments. Mint does not number pages
automatically If you simply want the page number of the current page to appear
in, say, a footing, usc @pagefooting(@pageno()).

See the Mint Reference Manual for how to obtain page and other
cross-references in the text. A short example: @nconv(Arabic, PageNo,
YourLabel) obtains the page number, in arabic numerals, associated with
YourlLabel.

TabDivide, and Tabset are not commands in Mint; they are box
environment parameters. Examples: @begin(default, tabclear...)
and @begin(example, tabset 1in, 2in, 3in).

Generally, Mint uses @incTude for most references to other files, including
bibliographies.

Appendix A
Customizing documents

This appendix contains more detailed information than the average Mint user needs to know. The first
section is an overview of the facilities that need to be on a Perq in order for Mint to run. The second section
explains how to adapt an cxisting document format to your particular nceds. These adaptions can be added
to the rest of your library files. A certain amount of familiarity with Mint and with the concept of creating
document lay-outs is assumed. '

A.1 Mint Files

This section describes two files and three groups of files that should be kept on a Perq if one expects to
format 4 document with Mint, These files are as follows:

s Mint.Run (Mint itself)
This should be the most recent version. The second page of this manual explains how to retrieve
an up-to-date version from the CFS-Vax.

¢ Fonts.Width S
This file contains information about the letter widths for all the fonts used by the Dover.

e State fTiles
These files contain high-level specifications about how the different document types should look.
These files have the extension . state. More will be said about these files later on in this section.

e Perg font files
Files with the extension . kst used to produce the text on a Perq screen.

e Library files
Library files are a collection of Mint statements that typically alter existing environments, specify
new environments, or define macros; such files have the extension . 11b. The current library files
are listed below.

Cmr10Kern defines information for improving the appearance of documents that use
the CMR family of TEX fonts

ContentsMacros contains definitions needed for formatting a table of contents

CrossProofTR defines which Perq fonts will be used when cross-proofing a document
that uses the Dover’s TimesRoman fonts

CrossProofS1ides similar to CrossProofTR except that it is for slides document types

14 Mint User Manual

SpacefFont allows modification in the spacing between letters; this library will
produce larger or smaller spacing than normal

SpiceTitlePage contains definitions for formatting the title page for any Spice title page.

StdATphabeticRefs contains definitions for formatting standard alphabetic
bibliograhpic references

StdNumericRefs contains definitions for formatting standard numeric bibliographic
references

TimesRomanKern defines information for improving the appearance of documents using
the TimesRoman family of fonts

A.2 More about State files

This section explains some general concepts about formatting documents and how to customize a
document lay-out. The use of state files allows one to produce documents having various formats. These
files design a document in accordance with the three variables of document type (text, article, report,etc.),
document form (0 or 1 — this denotes slightly different forms of a document type), and output device
(Dover or Perg). The properties of a state file can be surmized from its generic name of
TypeFormDevice.state. One designates the lay-out of a document (or more accurately, one specifies a
state file) with the @make command at the beginning of the manuscript. The make statement takes the
three parameters listed above: for example,

@make (report,0,dover)

This instructs Mint to go off and read the corresponding state file (in this case reportOdover.state).
Mint also provides default parameters; if the second parameter is not specified, the default is 0. The default
for the third parameter is perq. If the make statement is entircly omitted, Mint will supply a make
statement with the parameters text, 0, and perq. A word of caution: there are no defaults for a
paramcterless make statement. A make statement without parameters is used in constructing a new state
file; hence, it does not read any existing state file. The form @make() is intended for system maintainers
only.

Customizing a specific lay-out is possible through the use of the readdef's statement. The high-levé&l
effect of a readdefs command is to add libraries, macros, definition files, etc. to an existing state file. A
file containing these modifications is created by the user and given the extension .defs. The readdefs
statement takes the argument of a filename having the extension of . defs.

@readdefs (your.defs file)

The first command in a defs file should be the @make command-this will specify the state file to be

Mint User Manual 15

modified. Actually, the state file itself is not altered; modifications are added to the state file so that the
document format defined by the def's files is a variation on the state file’s format. The rest of the file
consists of several lines of commands that will specifing the changes to be made to the state file. These
commands can be @1ibrary, @include, @form, or any Mint command. Obviously, a variety of defs
files can be constructed for a number of tailored formats. For instance, if the user wanted to add several
library files, modify commands, etc. to the state file reportOdover.state, he would create the file
called report.defs as follows:

@make(report,0,dover)
@library(ContentsMacros)
@library(StdNumericRefs)
@include(myreport)
@form(part,p,f,)
@modify{Figure, BorderStyle=LineAboveAndBelow, Border 0.051in)
@modify(Table, BorderStyle=LineAboveAndBelow, Border 0.051in)
@define(code=example,
fontsize=i, facecode=T, border=0.051n,
leftmargin=0in, rightmargin=0in)

To use the above . def's file, the first manuscript command would be
@readdefs{report)

The document would basically be formatted in accordance with reportGdover.state excepting those
customizations found in report.defs.

	0001
	0002
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15

