CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Cousin Users Manual

Philip Hayes Richard Lerner and Pedro Szckely
23 Aug 84 '

Tt is easier with a Cousin

23 August 1984
Spice Document S175 .
Location of machine-readable file: [cfs]/usr/spice/spicedoc/aug84/intro/cousin/cousin.mss

Copyright © 1984 Carnegie-Mellon University

This is an internal working document of the Computer Science Department, Carnegie-Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate"working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government.

Table of Contents

1 Introduction
2 Overview of interaction through a Cousin form

3 Field States
3.1 No active command
3.2 Active command

4 Interacting with individual form fields
4.1 Command fields
4.2 Parameter fields
4.2.1 Packed Fields
4.2.2 Table Fields
4.3 Typescript Fields

5 ErrorCorrection, Completion, and Help
6 Form commands
7 Menus

8 Command Lines, Profiles, and Command Files
8.1 Command lines
8.2 Profiles
8.3 Command files

9 Retrieving and Starting Cousin

10 Summary of Cousin commands
10.1 Commands applicable to a form as a whole
10.2 Commands applicable to an individual field
10.3 Commands applicable to an individual field value
10.4 Commands applicable to a table field
10.5 Line editor commands

A The Chili File Manager
A.1 Overview

Lo W

ERIP= N T

10
10

11

12
12

12
13
13

14
14

A.2 Obtaining and starting Chili

A.3 Browsing

A.4 Manipulating Files

A.5 Confirmation and other safety features
A.6 Help and Error Messages

14
14

1
4

15
16

it

1 Introduction

CoUsIN is a program that provides uniform, cooperative, graphical, command interfaces for a variety
of SPICE applications. This manual describes the COUSIN interface system from the viewpoint of the end
user of applications which use COUSIN to provide their user interface. If you wish to construct a COUSIN
interface to one of your own applications, you will also need the Cousin documentation for application
builders which can be found in the SPICE Programmers Manual.

CoUsIN interfaces employ a form-based model of communication. Each application has an
associated form analogous to the kind of business form in which information is entered by filling in blanks,
or circling alternatives. The ficlds of the form correspond to the various picces of information that the user
and application nced to exchange during an interactive session including input parameters, output from the
application, and commands to the application. Forms of this kind show the user what his options are and
provide a simple yet powerful interface through which COUSIN can provide error detection and correction
services.

The end user controls and communicates with a COUSIN application by reading and updating the
fields of the form for that application. Since all interaction with forms is conducted via COUSIN, the details
of this interaction remain the same for all applications, only the numbers, types, and names of the fields in
the forms of the different applications vary. The remainder of this manual describes these interaction
details. Information about the forms for specific applications arc provided with the descriptions of the
applications themselves.

2 Overview of interaction through a Cousin form

Instead of intcracting with their user through a typescript, COUSIN applications conduct their
interaction through a graphical form. Each application has its own form, and all the forms on a perq are
managed by the COUSIN server process. This server process is started automatically in the background
without a window when a COUSIN application is run.! COUSIN applications are invoked, just like any other
SPICE application, by typing their name followed by initial parameter specifications in a shell command
line. CousIN will then prompt you for the position of a window for the form and the shell will return to the
command prompt. After start-up, all interaction with the application is conducted through its form, which
may be activated, just like any other Sapphire window, by moving the cursor into it and clicking,

In the current version of COUSIN, there are three basic kinds of fields that can be in a form:

o command fields: through which the user can issue commands to the application. They look and
behave like buttons — one button for each appiication command.
o parameter ficlds: which contain values that serve as parameters to application commands.

1 This automatic startup involves seme time overirexd wiich cam beavoidep by starting the server (Cousin.Run) yourself in the
background before any Cousin applications are run. Eventuatly, the cousin server will be started when Spice is booted, just like other
servers.

23 Aug 84

Cousin Users Manual -2

o typescript fields: through which the application can conduct arbitrary typescript interactions with
the uscr, though they arc normally uscd only for output messages. Note that typescript ficlds are
implemented as separate Sapphire windows, so to type to them it is necessary to make them the
listener in the standard Sapphire manner.

Information on what each command or parameter field is for can be obtained by pointing at the field and
pressing the Perq “help” key.

A uscr issues a command to an application by clicking the appropriate command ficld. The first time
acommand ficld is clicked, the parameter ficlds which provide parameters to that command are highlighted
by drawing a hecavy border around the ficld. If all the relevant parameter ficlds are correctly filled, a second
click on the command button will cause the command to be issucd to the application. On the other hand, if
one or more of the relevant parameter fields is incorrectly filled or empty (appropriate feedback will inform
the user of these conditions), seccond and subsequent clicks will have no effect until the user corrects or fills
in the offending ficld(s). After the command has completed, the highlighting is undone, and the parameter
ficlds either revert to their default state (possibly empty) or retain their current values (as specified in the
form dcfinition).

There are two standard scenarios for issuing commands, which might tend respectively to be used by
experts and novices (relative to the particular application). In the former, the user first edits all parameter
ficlds to be used by the command so that they are correct and complete and then presses the command
button twice. In the latter, the user presses the command button once, obscrves what parameters will be
used, makes surc that the values in those ficlds are all to his liking, and finally presscs the command button
again. The editing of parameter ficlds, in either case, is accomplished by direct line editing, value cycling, or
menu selection as described in the more detailed descriptions of the interaction facilities provided by
COUSIN that follow.

3 Field States

As outlincd above, form fields may be in different states at different points in an interaction. This
section describes the various states that can occur and what the states depend on. In general, the state of
cach field is determined by its value and which command field (if any) is currently active. We will treat
situations in which a command is active and in which no command is active separately.

2 which, of course, means that the form as a whole is no longer the listener, and must be reselected if you wish to interact with it
further.

23 Aug 84

Cousin Users Manual - 3

3.1 No active command

Initially and immecdiately after the execution of an application command, there is no active
command. In this case, all command ficlds are in the Neutral state (thin border) and parameter fields are in
one of three states:

Correct: The ficld contains the correct type and number of values (thin border)
Empty: The field contains no value (thin border)
Incorrect: The field contains an incorrect value (white on black)

When there is no active command, the user can alter or otherwise interact with any of the parameter ficlds
which may change statc depending on what is done to them. Clicking a command ficld will cause that
command to become active.

3.2 Active command

There can only be one active command at a time. Clicking a command button when there is no
active command will make that command the active one. Clicking a command button when a different
command is active will deactivate the previous command and activate the new command. When a
command is active, all other command ficlds are in the Neutral state as described above. The active
command can be in one of three states, depending on the state of those ficlds that serve as parameters to
that particular command; we will call them the relevant parameters.

Ready All relevant parameters are correct. In this state, one more

click on the command will cause the command to be issued to the
application (thick raised lines)

Bad One or more relevant parameter fields arc incorrect or empty
and must be corrected or filled in before the command can be issued to
the application (white on black)

Started The command has been issued to the application. This state occurs
after a click on the ficld in the Ready state, and persists until the
application indicates it is ready for morc commands. During this time,
it is not possible to change the form and any attempt to do so
will be ignored (no raised lines)

Note that the only way to issue a command to the application is to click an active command ﬁéld that is
Ready. Repeated clicking on Bad or Started command fields will not do anything (except produce
informative messages).

When there is an active command, parameter fields are in one of the following three states:

Correct The parameter is relevant and correct (thick border)

Incorrect The parameter is relevant, but is empty or contains an

23 Aug 34

Cousin Users Manual -4

incorrect value (white on black)

Irrelevant The parameter is not relevant (thin border)

4 Interacting with individual form fields

COUSIN provides several ways to interact with the various ficlds of a form according to their class:
command, parameter, or typescript. We call these manipulations COUSIN commands to distinguish them
from the commands the user can issue to an application through its COUSIN form. The ficld to which a
CouSIN command is directed is determined by the position of the mouse cursor.

4.1 Command fields

Command fields arc displayed as buttons containing the name of the command. There is only one
CousIN command applicable to such ficlds:

Activate/Start

(Any button except

WHITE/LEFT): This command activates a command that is in its neutral
state, or sends to the the application a command that is Ready as
described above.

4.2 Parameter fields

A parameter field is displayed in one of two forms distinguished by their placcment of values within
the field. Packed ficlds are displayed as a box with the name of the ficld followed by its one or more, values,
or in some cases as a box (with diffcrently shaped borders) just containing a single value without a field
name. Formatted or Table ficlds arc boxes with their values displayed in columns (in row major order).
Table fields may also have a scroll bar at their left which can be uscd to scroll through the values and also
displays the relative location of the cntries being shown. The commands which are special to Table fields
are described in the section on table ficlds which follows.

4.2.1 Packed Fields

There are COUSIN commands to change the value of a packed ficld and to find out about what values can
possibly go in it. In those cases where the COUSIN command acts on a particular value in a ficld, it is
necessary to click on the value with the mouse (the YELLOW-BLUE/MIDDLE button) to make it the
current value. The COUSIN commands for packed parameter fields are:
Display Alternatives
(WHITE/LEFT): For those fields that require their values to be drawn from a
fixed set, holding down this button causes a pull-down menu to appear,
containing the possible values for the ficld having the current value as

an 1nitial substring, allowing the user to choose
from it (see Scction 7).

23 Aug 84

DeleteValue
(DEL):

DefaultValue
(Ctrl-O0PS):

CycleValue

(GREEN/RIGHT):

CompleteValue
(INS):

InsertValue
(Carriage Return):

ExpandSubform
(CtrlD):

Cousin Users Manual - 5

This command causes the current value to be deleted.

Invoking this command causes the current value to be replaced by
the default if one is defined.

If the current field has a known universe of values, they can
be cycled through using this command. Each time it is invoked the
current value is replaced by the next value in the universe of values.

If the current field has a known universe of values, this command
will cause COUSIN to try to expand the current value. If the completion
is ambiguous, the longest initial substring is displayed.

This command causes the current value to be given to COUSIN

for interpretation and correction, or acceptance. As well as being given
explicitly from the keyboard, this command is invoked on a modified
value when a different value or ficld is acted on by the user.

Values which are representations of other COUSIN forms
(subforms) are cxpanded into their form state through this command.
Such valucs are shown with a thin border around the vatue.

The user may also edit packed field values directly using a simple line editor with commands which
are similar to those of the typescript line editor. In particular, the COUSIN line editor has the notion of an
edit cursor which is distinct from the mouse cursor. To set the position of the cdit cursor, move the cursor
over a value and push a mouse button (the YELLOW-BLUE/MIDDLE button). The edit cursor will be
placed at the mouse cursor position. Thereafter, it is moved as expected according to the edit commands
given. The implemented commands together with their current key bindings are as follows:

Insert Character

(any alphanumeric character): The character typed is inserted into the

Delete character forward

(Ctrl-d):

Delete character backward

(Cul-h, RUBOUT/
BACKSPACE):

string at the current edit position.

The Character at the edit position is deleted.

The character preceding the edit position is dcleted.

23 Aug 84

Cousin Users Manual - 6

Delete to end of value
(Ctrl-k): All the characters from the edit position to the end are dcleted.

Delete to beginning of value
(O0PS): All the characters before the edit position are deleted.

Move to end of value
(Ctrl-e): the edit position is moved to the end of the value.

Move to beginning of value
(Ctrl-a): the edit position is moved to the beginning of the value.

Move forward

(Ctrl-f): the edit position is moved forward one character.
Move backward
(Ctrl-b): the edit position is moved backward one character.

Sct position

(YELLOW-BLUE/

MIDDLE): the edit position is placed at the character closest to
the mouse cursor.

4.2.2 Table Ficlds

The only operation allowed on the values of a tablc field are Selection, Deselection and Scrolling
commands. The usage of these COUSIN commands are:

Select/Deselect One
(any button cxcept
WHITE/LEFT): Pressing one of these buttons over an entry
in a table will invert the selection of the value.
SelectAll
(Ctrl-s): This command causes all entrics in the table to be selected.
DeselectAll
(Ctrl-S): Invoking this command causes all entries in the table to be
deselected.
ScrollPageBack .
(Ctrl-v): Causes the table to display the previous "page” of values.
ScrollPageForward
(Ctrl-v): Causes the table to display the next "page” of values.
ScrollLineBack
(Ctrl-Z): Causcs the table to scroll down one line.

23 Aug 84

ScrollLineForward
(Ctrl-z):

ScrollToBeginning
(Ctr1<):

ScrollToEnd
(Ctrl->):

ScrollLineToTop

(YELLOW/MIDDLE):

ScrollTopLineDown
(GREEN/RIGHT):

ScrollToBeginning
{any button except
WHITE/LEFT):

Cousin Users Manual -7

Causes the table to scroll up one line.
Displays the first line of the table at the top of the table display.

Displays the last linc of the table at the bottom of the table
display. -

Pressing this button when over the scroll bar causes the line
next to the cursor to be scrolled to the top of the table display.

Pressing this button when over the scroll bar causes the top
line in the display to be scrolled down to the line next to the cursor.

Pressing one of these buttons when in the
header over the scrollbar causes the first line of values to be displayed in
the first line of the table display.

In the current release NON-sclection is denoted by a line drawn through the value. The user may not
edit values in a table field at this time.

4.3 Typescript Fields

There are no COUSIN commands specific to typescript fields. These are standard sapphire windows
without titles. Once you have moved the cursor into one and selected it as the listencr, you can do anything
you could do in an ordinary Sapphire typescript window including scrolling and input line editing. You
must reselect the COUSIN Form Window when you are finished in the typescript window.

S ErrorCorrection, Completion, and Help

~ Whenever changes are made to a field value, COUSIN checks the value for validity. Whenever a value
is determined to be incorrect or ambiguous COUSIN tries to help the user make corrections or clarifications.

There are three cases:

Correction:

Completion:

If the value can be corrected unambiguously then COUSIN will
replace the incorrect value with the correct one.

If the value is determincd to be an initial substring of a

23 Aug 84

Cousin Users Manual - 8

valid value the completed value will replace the incomplete value.

Markinglnvalid: If COUSIN cannot find any single correct choice the value
will be marked (by background inversion) as incorrect.

In any case the user is free to make additional changes to the value or go on to something else.

Help on a particular ficld can be obtained by pressing the HELP key while pointing at the field in
question. This will print a short description of the ficld and its values above the field. For more detailed
help there is a Help Application program, and associated form, which can be activated by pressing
Ctrl-HELP. This system allows the user to receive help by travelling through a tree of help frames on
various topics. The placement of the cursor within the COUSIN form when Ctrl-HELP is pressed determines
the root frame. From there, the uscr selects which frame to sce next by selecting, with the mouse, a frame
from a sct of displayed choices. The first time the Help system is activated there will be a short pause while
the system is loaded.

Help and other messages, both from COUSIN and from some applications, are displayed as pop-up
messages written in white on black. After onc of thesc messages appear, any keystroke or mouse click will
remove the message. There are two COUSIN commands for dealing with these messages:

PreviousMessage

(Ctrl-R): This command causes the previous message to be displayed or, if no
message is currently displayed, to display the last message displayed.

NextMessage

(Cul-r): This command causes the ncxt message to be displayed.

Currently the last twenty messages are saved.

To get a listing of all the commands which can be exccuted from the keyboard, activate the
ShowKeyBindings command (Ctrl-?). This will open up a window at the top of your Perq screen and
display the key bindings for all of the commands. At this time, the listener is set to this help window and
you may scroll it up and down (Ctrl-V / Ctrl-v). To return to COUSIN, press CarriageReturn; COUSIN will
not do anything clse until you do.?

6 Form commands

In addition to the COUSIN commands applicable to fields and values, there are a number of
commands applicable to the form as a whole. '

RedrawForm

(Ctrl-D): causes the form to be redrawn.

RemoveSubForm

(Ctrl<): removes a form which was displayed as a result of an ExpandSubForm

3 This behavior is a compromise intended to overcome a deficiency in Sapphire and should eventually be remedied,

23 Aug 84

Cousin Users Manual -9

command.

Abort

(Ctrl-c): sends an abort event to the application.
The RedrawForm, Abort and Help commands (Help and Ctrl-?) can be executed even when the form is
locked. If the form is locked, all other commands will be ignored.

7 Menus

Pull-down menus are activated by pressing and holding the WHITE/LEFT mouse button over the ficld for
which you want to sclect a value. When the menu appears under the mouse, you simply move the cursor,
still holding the mouse button down, and release the button when you are over the value you wish to select.
Moving the cursor outside of the menu and releasing the button will cause no changes to be made to the
field. If the values do not fit in the menu, they may be scrolled up or down by moving the cursor to the
bottom or top of the menu. For those ficlds which do not have a set of values to choose from, the message
"Ng menu for this field" will appear while the button is held down.

8 Command Lines, Profiles, and Command Files

8.1 Command lines

Just like other applications in the SPICE system, COUSIN applications can accept initial parameter
specifications from command lines. These command lines are processed by COUSIN rather than the
application and so arc uniform in syntax across all COUSIN applications. A COUSIN command line consists
of the command name followed by a sequence of positional parameters, switches with parameters, and
switches without parameters. Following the "standard” spice convention, switches are preceded by the slash
character (-"). In quasi-bnf notation:

<command-1ine> ::= <{command-name> <parameter>* [&]

<{parameter> ::= <{token> | {positional parameters}
{switch> [=] <token)> | {switch with parameter}
{switch> {switch without parameter}

{switch> ::= -<identifier>

{token> ::= <identifier> | '<any character but '>*'

Whitespace, *-’,’ =", and "&’ act as separators.

The names of switches and the number of positional parameters naturally vary from application to
application. There is currently no interactive way of finding out what they are for individual applications. It
is necessary to look at the documentation for that application. However, when the applications are COUSIN
versions of pre-existing SPICE applications, the switches and positional parameters accepted by the CousIN
version will generally be a superset of those accepted by the existing application. For instance, a valid
command line for cupdate, the COUSIN version of update, is:

23 Aug 84

Cousin Users Manual - 10

cupdate cousin -host=cad -verbose -retrieve

Also, CousIN is fairly forgiving about order and spacing, so:
cupdate -host cad cousin -retrieve -verbose

would be interpreted cxactfy the same way.

All switches and positional parameters in a command line arc interpreted as changes to values of
ficlds of the form for the application named at the beginning of the command line. Thus, the above
command lines would mean set the RemoteHost ficld of the cupdate form to be cad, the LogicalName
field to be cousin, the verbosity ficld to be verbose feedback, and the Retrieve command button
ficld to be on. These valucs are inscrted in the form before it is displayed. Currently, it is not possible
actually to exccute application commands from the command line, so specifying command switches, like
Retrieve, is equivalent to pressing the corresponding command button just once. This limitation will be
remedicd in future releascs.

8.2 Profiles

COUSIN uses the same command line parser to interpret profile files for COUSIN applications. The
contents of a profile file for a given application should look like a sequence of command lines for that
application without the name of the application at the beginning. In terms of the above bnf-style notation, a
profile should contain <parameter>*. Profile lines are interpreted just like the corresponding command line,
so a profile for cupdate like:

-host=cad -verbose
cousin
-retrieve

would have the same cffect as our example command line.

When a COUSIN application is invoked, COUSIN first searches for the corresponding profile and
interprets that, and only then interprets any command line parameters given with the invocation. Profiles
thus may be used to sct personalized defaults for application parameters, with the possibility of still
overriding those defaults on the invoking command line. A profile file for an application has the same root
name as the application and an cxtension of ’.profile’. So the profile file for cupdate would be
‘cupdate.profile’. Profiles are looked up along the default search path, so it is best to place them in <boot>.

8.3 Cominand files

When it is possible to execute application commands from command lines, COUSIN will provide
interactive facilities to execute command files named by the user. The only difference between these
command files and profile files would be their time of exccution. Profile files are executed automatically at
start up, while command files would be executed interactively as requested by the uscr after his interaction
with the form had commenced.

23 Aug 84

Cousin Users Manual - 11

9 Retrieving and Starting Cousin

COUSIN can be retrieved from CMU-CS-CFS under the logical name COUSIN_a. You may update
this logical name into any convenient dircctory. It will-put the run files for COUSIN and two COUSIN
applications, and some .BSD files into your current directory and cousin.keytran, cousin.scursor and some
font files into your <boot> dircctory.

To help you decide where to put COUSIN the approximate sizes of the files are:

cousin.run 780 >-- 780 Blocks
cousin. keytran 1 \
cousin.scursor 15 |
timesromanl2.kst 6 |« 40 Blocks
timesromani2b.kst 6 i
timesroman12i.kst 6 |
ngl3.kst N 6 /
cupdate.run cee.. 200 \« 370 Blocks
cupdate.bsd ee.... 170 /

chili.run 100 \« 210 Blocks

chili.bsd ... 110 /
R o S e e S o e

1400 Blocks
The applications which are currently adapted to use the COUSIN interface currently include:

o cUpdate — a graphical interface to the Update program
e Chili — a File Manager

These applications are retrieved along with the COUSIN system, as above. COUSIN applications under
development include:

o Envinterface — a replacement for Show/Define .
e ProcMgr U a process manager
o HG — an interface to the Mercury mail system

Please note that these names may change when the applications are released.
~ CousiIN’s Help System requires that the environment variable Cousin-Help: be set to a scarch list
containing the heip frame files. This should be rem:Cousin-Help/.

A COUSIN applications are started like any other SPICE applications. When an application starts it
will print out a message telling you that it is establishing communication with the COUSIN server. If the
COUSIN server has not yet been started, the application initialization sequence will start it* A message in
the application window will tell you if this is happening. Once communication with the COUSIN server has

4 This automatic startup involves some time overhead which can be avoided by starting the server (Cousin.Run) yourself in the
background before any Cousin applications are run. Eventually, the cousin server will be started when Spice is booted, just like other
servers.

23 Aug 84

Cousin Users Manual - 12

been cstablished, the application’s window is resized to accommodate the application’s form. Once the form
has been drawn, you may start interacting with the application through the form.

10 Summary of Cousin commands

10.1 Commands applicable to a form as a whole

Ctrl-] Redraw Form.

Ctrl-] Remove SubForm (only applicable to subforms, of course).
Ctrl-c Send Abort command to application.

Ctrl-7 | Show key bindings.

Ctrl-R Show previous message.

Ctrl-r Show next message.

10.2 Commands applicable to an individual field

GREEN/RIGHT or

YELLOW/LEFT Activate/Start (for a command field).

HELP Show shdrt description of ficld and its values.
Ctrl-HELP Activatc the Help System Form.

10.3 Commands applicable to an individual field value

DEL Delete a value.

Ctrl-OOPS Default the value.

Ctrl-p Replace value with previous value.

GREEN/RIGHT Cycle the value.

_WHI’IE/LEFT Pull down a menu of values from which to choose.

INS Complete a value.

CR Send a new value to COUSIN for checking.

Ctrl-[Expand a value to its form representation (if it has one).

23 Aug 84

Cousin Users Manual - 13

10.4 Commands applicable to a table field

Ctrl-v Scroll to previous page of entries.
Ctrl-v Scroll to next page of entries.
Cul-Z Scroll down one linc of entries.
Ctrl-z Scroll up one line of entries.
Ctri< Scroll to beginning of entries.
Cul-> Scroll to end of entries.

Ctrl-s Select all entries.

Ctrl-S ~ Deselect all entries.

16.5 Line editor commands

Any Character Inserts the character.

Ctrl-d Deletes current character.
BS/Ctri-h Deletes previous character.
Ctrl-k Delete to end of Value.

COPS . Deletes to beginning of Value.
Ctrl-f Move forward one character.
Ctrl-b : Move backward one character.
Ctrl-e Move to end of Value.

Ctrl-a Move to beginning of Value.

YELLOW/LEFT, BLUE Set edit position to mouse position.

23 Aug 84

Cousin Users Manual - 14

Appendix A. The Chili File Manager

A.1 Overview

Chili is a file management utility for Spice. It allows you to browse through the files on your own or
other Pergs and delete, copy, rename, or invoke an editor on sclected subsets of files. Using Remdef, these
facilities arc also available for files on a remote Vax. While you can perform destructive file operations using
Chili, it contains various safety features to lessen the chance of your doing so inadvertently. Chili’s user
interface is provided by COUSIN and so is a graphical form. The full set of interface facilities available
through COUSIN is described in the COUSIN user’s manual which is part of the Introductory Spice Manual,
The following description of Chili can be understood without reading the COUSIN manual, but covers only
a subset of the features available. '

A.2 Obtaining and starting Chili

Chili comes as part of a package of COUSIN applications. This can be obtained from the CFS Vax
under the logical name cousin. It will occupy about 1400 blocks all told, but need not go in your boot
partit.ion.S To start Chili, type "Chili’ to the shell. Depending on circumstances, startup will take between 30
and 90 seconds.

A.3 Browsing

The upper part of the Chili form is concerned with displaying information about files. The File Spec
field in the upper left hand corner controls what files are displayed. To sct the field, click on it with the
mouse (middle or right buttons) to make it the listener ficld.® You can then type a file specification (using
standard Spice syntax including wildcards) into it. Most of the usual line-editing commands (ta, te, +f, td,
etc.) apply while you are typing. After you type carriage-return, the files you have specified will be listed in
the larger Files field immediately below File Spec.

The Display Mode ficld to the right of File Spec controls the amount of information displayed about
each file. It only has two values: Long and Short. You can type them in as for File Spec, or cycle them by
clicking with the right mouse button. You can also get a menu by kolding down the left mouse button. If
you are still pointing at a menu item when you let up, that value will be placed in the field. Menus and
cycling work this way for all ficlds with a fixed set of possible values.

Especially in Long format, it is common for the files display to require more space than is available
in the form. The ficld is therefore scrollable. You can use keyboard commands (tv, 1V, 1z, 1Z, 1<, 1) while

5 A few files (40 blocks out of the 1400) will automatically be placed in your boot partition.

6 The Chili form is a Sapphire window like any other, so if it is not the current Sapphire listener, the first click will merely make it
the Sapphire listener and will have no effect on the form itself,

23 Aug 84

Cousin Users Manual - 15

pointing at the field with the mouse, or you can use the scroll bar by the side of the ficld. The scroll bar
works similarly to 0il’s scroll bar.

The file specification in File Spec is interpreted relative to Current Directory (at the bottom of the
form), so if you want to change "where you’re at”, type a new directory into that field.

A.4 Manipulating Files

Below the Files display, there are command buttons to allow you to Copy, Rename, Delete, or Edit
files. Commands are invoked by clicking on the corresponding command button twice (using the middle or
right mouse buttons). The first click merely highlights the other ficlds which serve as parameters to the
command, thus giving you an opportunity to make sure they arc what you really want them to be. The
second click actually executes the command.

The primary argument to all Chili’s commands is the selected subset of files in the Files display. After
you give a new File Spec, all displayed files are sclected by default. You can deselect individual files by
pointing at them and clicking (middle or right button). Files are marked as deselected by a horizontal line
drawn through them, Clicking on a desclected file selects it again. You can also desclect (1S) or sclect (s)
all the files displayed. Selecting or deselecting a file has no cffect on the file itself. In particular, deselecting a
file does not delete it. You need to use the Delete command for that.

For instance, to delcte all Oil log files from the current directory, one would type ™*+ into File Spec,
‘and then press the delete button twice. To clean up a particular Mint file, one might type ’memo.* into File
Spec, resulting in memo.doc, memo.mint, memo.mint§, memo.mint+, memo.press being listed in the files
display. One would then type 1S to deselect everything, click on memo.mint§ and memo.mint+ to reselect
them, and then press the delete button twice.

The Copy and Rename commands take an additional destination argument as specified in
Copy/Rename To. This is a file specification, just like File Spec. It may contain wildcards, but they must
parallel those in File Spec. The interpretation of wildcarded destinations is the same as for the standard
Spice copy and rename commands. Like File Spec, Copy/Rename To is interpreted rclative to Current
Directory.

A.5 Coafirmation and other safety features

The Copy, Rename, and Delete commands all use the Confirmation Request field to ask for
confirmation of each individual file operation. You answer these questions by pressing the Yes or No
buttons to the side of Confirmation Request. You can also say "Yes (No), and yes (no) to all further
questions generated by this command" by pressing the All (None) buttons. This confirmation feature allows

7 If any parameters are incorrect or unspecified, they and the command button will turn black on the first click and no subsequent
clicks on the command button will have any effect. If that happens, you can correct the problem or go and do something different. If
you correct the problem, the black will go away, and the situation will be as though you had clicked the command button once.

23 Aug 84

Cousin Users Manual - 16

you to initiate destructive file operations without having to worry about destroying something you didn’t
expect to. :

If you don’t want to be bothered by any confirmation questions, you can cycle (right mouse button)
the Ask for confirmation field immediately above the answer buttons to No confirmation, and Chili will
perform all further file operations, destructive or not, without asking you for confirmation. Note that this
does not affect an alrcady started Copy, Rename, or Delete command, but only subsequent ones.

If you wish to abort a file manipulation command while it is exccuting, type tDel and then °c’. This
cancels the current command and returns Chili to the neutral state. It does not exit Chili. In fact, the only
way to cxit Chili is to kill it from a shell. However, in normal use, there is never any reason to exit Chili. If
you aren't using it at the moment and don’t want it on the screen, iconize it for later use.

A.6 Help and Error Messages

You can get a short explanation of the purpose of any ficld by pointing at it and pressing the help
button on the Perq keyboard. The explanation will appear in a pop-up inverse video message window close
to the ficld you requested help on. Error messages or other informative messages from Chili appear in
similar pop-up windows.)

All pop-up message windows stay around until you do something else. If you want a message to go
away without doing anything clsc in particular, point to a grey area of the form (outside a field) and click.

23 Aug 84

	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16

