CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROGJECT

User Manual for KRAUT —
The Interim Spice Debugger

Bernd Bruegge
10 Feb 84

. Abstract

This manual describes version 5.0 of KRAUT, the debugging system for Perg Pascal running on the Perg
Systems PERQ computer under the Accent operating system. KRAUT provides most of the cormnands of
traditional symbolic debuggers such as setting of breakpoints, state inspection/modification and source file
aceess. {t also contains MACE, a low ievel debugger for the inspection of the target process ¢n the geode and
microcode level. The novel feature of KRaUT is Parh Rules, a flexible debugging mechanism based on path
eXpressions.

Spice Document S156
Keywords and index categories:
Location of machine-readable file:

Zustr/spicedoc/manual/spiceprogram/kraut/kerman. mint@CMU-CS-Spice
Copynght © 1984 Bernd Brucgge

KRAUT is a contribution of Siemens RTL., Princeton, New Jersey to the SPICE project. This document is a
revised version of the technical report RTT.-83TR-008 from Siemens R'1T..

This is an internal working document of the Computer Science Department, Carnegie-Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213 USA . Some of the ideas expressed in this
document may be only partially developed, or may be erroneous. Distribution of this document
outside the immediate working community is discouraged; publication of this document is forbidden.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force Avionics Laboratory under contract F3361 5-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government.

Table of Contents

1 Introduction
1.1 Getting Started

2 Naming
2.1 Constants
2.2 Types
2.3 Scope Rules

3 Path Rules
3.1 Generalized Path Expressions
3.2 Path Actions
3.3 Manipulating Path Rules

4 Command Language
4.1 Scarch I.ist Commands
4.2 Trace Commands
4.3 Breakpoint Commands
4.4 Editor Commands
4.5 Definition Commands
4.6 Path Rulec Commands

4.7 Variable Inspection Commands

4.8 Next Command
4.9 Runtime Stack Commands

4.10 Target Process Control Commands

4.11 Miscellancous Commands
4.12 Window Commands
4.13 Model Commands

5 MACE
5.1 Mact Commands

6 Coping with Dcbugger Bugs

7 Current Restrictions and Known Bugs

A Kraut Command Summary

—

[P NS S N

OO 2)

36

37

39

Chapter One
Introduction

KRAUT is a remote symbolic debugger for Perq Pascal running under the Accent operating system. One of
the novel features of KRAUT is that the user can specify the expected behaviour of a computation with path
expressions. ‘The debugger runs in its own address space and inspection and modification of the target
process address space is done by means of Accent kernel calls. Currently both the debugger and the target
process have to reside on the same Perg, but later it will be possible to debug processes which are located on
a physically remote Perq.

The manual is organized as follows: Scction 1.1 explains how to retrieve the newest version of the debugger,
how to gencrate symbolic information and how to invoke the debugger. Pascal’s scope rules have been
extended in KRAUT and are described in Section 2. The major design objective of KRAUT was to test the
viability of path expressions in the context of debugging. Path expressions are embedded in path ruies
which arc introduced in Section 3. In addition to path rule commands, KRAUT provides traditional
debugging commands for sctting breakpoints, inspecting and modifying variables in the user process
address space, opening source files and scarching for text strings. The complete command language of
KRAUT is described in Section 4. KRAUT contains the low level debugger MACE, which allows the
inspection and modification of the target process on geode and (partially) on microcede level. MACE is
intended mainly for compiler writers and microprogrammers and is described in Section 5. KRAUT is still
actively being developed and internal debugger errors might show up while you are debugging vour
program. Scction 6 shows you how to cope with these crrors and Section 7 mentions the current restrictions
and known bugs of the debugger.

1.1 Getting Started

If KRAUT is not yet part of your Accent system or if you want to get a newer version, you have to retrieve it
from the CFS Vax@CMU. KRAUT can be retricved using the update program with the following
command:

update krautrun/test
The run filc is debugger. run and it has to reside in the partition <boot>.

Symbolic information for a module is produced by the compiler if the module is compiled with the
/scrounge switch. For cxample

KRAUT - User Manual

compile test.pas/scrounge

generates the symbolic information for test. pas. I'he scrounge switch is on by default. If you want to
suppress the generation of the symbolic information usc noscrounge. The symbolic information is
contained in two files with the extension sym and qmap" KRAUT must have access to these files to allow
symbolic debugging at other than a routine and module name level.

KRAUT can be invoked in the following ways.

1. 1t can be called on the shell level by closing the run command with the t character: for example
RUN testt. This allows the definition of path rules, debugger variables and breakpoints before
the exccution of the program.

2. Typing the Shell command DEBUG? will suspend the exccution of a running process. In this
casc the Spice Process Manager reports a Trap 0 in the target process and invokes the
debugger. 'This allows you to catch processes in dead loops or in 170 wait states.

3. Any uncaught exception in the target process will invoke KRAUT.

4. KRAUT can be invoked via SAPPHIRE if the item Debug Process is sclected from the Pop-Up
Mcnu. The menu is displayed from a window or an icon in a manner that is consistent with
regular SAPPHIRE window management.

In all of the above methods of invoking KRAUT, a bug symbol appears in the icon corresponding to the
window running the process in question. The SAPPHIRE cursor appears on the screen and prompts for the
creation of a Debug Window,

KRAUT tries to set the current directory to the directory where the main program was compiled. If that
dircctory docs not exist, a warning is given and the current directory is left as <current>.

KRAUT dogs a consistency check between symbolic information and object files: if a symbol table was not
produced at the same time as the object file or if the source file is younger than the scg file a warning is
issucd. In this case the debugger should be used with caution, because any information from those modules
could be wrong. Any information retricved from inconsistent symbol tables is marked with a7,

KRAUT has a transcript facility to document errors that cannot be reproduced and bugs in modules not
written by yourself. If you encounter a bug you cannot cope with, you might want to send the transcript file
to the maintainer of the module (scc MAINTAINER and REPORT commands). ‘Lranscript files are
generated by default, but you can turn the transcript switch ON or OFF (see SCRIPT command). If the
transcript switch is turned OFF in the default command file the generation of a transcript file is suppressed.

1 The sym file contains the nanes of the variables and routines declared in the program. The qmap file contains a mapping between
qcode offscts in the seg file and the corresponding source stalements.

2 DEBUG expects the name or the number of the target process as paramcter, which can be found with the shell command SYS.

KRAUT = User Manual

A transcript file has the name “M.kscr.i”, where M is the extensionless name of the file containing the main
program, and where i = A,....Z. If the nane space of the transcript files is exhausted, you are prompted for
a tile name.

‘At the beginning KRAUT prints out a stack trace of the last 4 routine calls. If the symbol table information
files exist, calls are written out in terms of the source program. 1f no symbolic information is available, the
low level debugger MACE writes out the routine call in terms of the target code. IFor example

| Uncaught exception: Division by zero

| [EXCLPT''RAISEP] 0Q321(19,4,2306,2306, ...)

| DODIV (23 test.pas;1) j := a div parm;

| EXECUTE (17 sys>user>bob>bug.pas;1) Dodiv(a,parm); :
| ? MAIN (34 test.pas;1) parm := 0; Execute(parm);

shows the trace of a program that did not catch the exception Division by Zero. The source line for
the routine on top of the stack could not be found, because the defining module was compiled with the
noscrounge switch. The next three lines arc given in terms of the source text. The last source line is
marked with a 7 indicating that the symbolic information was not generated at the same time as the seg
file. I the top routine is a predefined exception, the current routine is autematically set to the routine below
the top routine, otherwise the current routing is st to the top routine.

KRAUT looks for 2 files® whose names are derived from the extensionless file name M contairing the main
program declaration. The file M. switches defines certain user definable constants and switches such as
the prompt sign and whether a transcript file of the debugging dialoguce is to be generated. The M. kmd file
must be a KRAUT command file and its commands arc exccuted before any other command can be typed in
by the user. If M. switches does not exist the debugger assumes the following defaults: The prompt sign
is "|'" and the transcript switch is ON. If M. kmd does not exist, control is immediately handed over to the
user.

3 File lookup is always done with Accent’s file search list.

KRAUT - User Manual

Chapter Two
Naming

Since KRAUT is a symbolic debugger it should be able to access any object mentioned in the source
program. However, in many cascs the current symbol table format does not provide enough intormation to
access the full name space or o enforce Pascal’s type rules. ‘This scction describes several extensions made
o the Pascal syntax to allow symbolic debugging despite these constraints.

2.1 Constants

A constant can be prefixed by a*#°, a basc indicator and a type indicator. T'he base is indicated by B, D, H
or O (binary, decimal, hexadecimal or octal) and the type by L. or I (long or integer). If the basc or type
indicator is omitted, the defaults 1D (decimal) or 1 (16 bit constant) arc assumed. A normal Pascal constant in
the range -32768 to + 32767 is of type integer, otherwise of type long.

FExamples:
#0L4743337 32 bit octal Tong
#HLABF9DC93 32 bit hexadecimal long
#b0101110101111100 16 bit binary
#3434 16 bit decimal integer
3434 16 bit decimal integer
986966 32 bit decimal long
2.2 Types

‘The debugger tries to do some type checking and issues a warning if it finds a violation of Pascal’s type
rules. However, only simple types are checked correctly. Arrays are of the same type if they have the same
subtype. Records arc considered equivalent if they have the same length. All pointers arc of the same type.

The type of any variable or Pascal expression can be explicitly specified by onc of the following type
qualificrs:

Kraur - User Manual

zarray[n] Array
:boolean Byte
:char Char
sinteger Integer
:long Long
:pointer Pointer
:record[n] Record
sreal Real
:string String
ssetfn] Set

Each type qualifier is uniquely specified by the underlined characters. "The optional expression [n]
specifies the wordsize of the structure. If [n] is not given, the default [1] is assumed.

Examples:

Var
a: array[0..10] of integer;

rec: record
a,b,c : integer;
d : pointer;
end;
i,gi : integer;
afjl-iong denotes a 32 bit variable.
(rec.3t:long+ 5*gizinteger):s is interpreted as string.

gizint := #b110101111] assigns the bit pattern 0000001101011111 to gi.

irsetfl]= prints out the value of /i as 16 bits?.

2.3 Scope Rules

KRAUT allows you to circumvent the scope rules of Perq Pascal. For example, variables from the private
section of a module can be accessed, even if they are not visible. The Pascal notation for an identifier has
been extended: To denote the variable Foo in routine P you can write P' Foo. And M' 'P ' Foo denotes the
variable Foo in routinc P in module M. More generally, M''Py' ... "P;' P, i denotes variable i in

4 Note that the least significant bit is printed out first.

KRAUT - User Manual

routine P, nested in P _y..... nested in P, which is declared in module M. One can also access local variables
of routines currently allocated, but not visible. Local variables of activated routines that are outside the
current static scope can be accessed by specifying the call chain in front of the variable name. A call chain
consists of names of routines separated by a back slash (*\"). IFor example M' "PAM1' ' foo\M1' 'foo0 ' i
denotes the variable i in the second invocation of routine foo in module M1 called fromn routine P in
module M.

Such a denotation may specify an object that is currently not in existence. I it is not part of a predicate (see
scction 3.1), the debugger prints an error message and returns to the user level. For predicates, a
three-valued logic is assumed and predicates that cannot be cvaluated will yield the predefined value
“UNDEF INED. Any composite predicate containing undefined valucs will also yicld «UNDEF INED.

Identificr scarch in-KrAUT follows the following algorithm:

1. 1f the name docs not contain a module or routine qualifier, then it is parsed according to Perq
Pascal’s scope rules: First the name is looked up in the runtime stack starting at the current
routine. If this is not successful, then the name is looked up in the current module. 'T'he current
routine and module can be sct by the CURRENT command.

2. If the name is of the form P ' i, KRAUT scarches the runtime stack for cach module mentioned in
KRAUT’s scarch list for a routine with name P. If such a routine is found, KRAUT looks for the
local variable 1. The symbol tables of the modules are scarched in the order defined by KRAUT'S
module search list (sce section 4.1).

3. If the name is of the form M* ' i, KRAUT looks for variable 1 in module M. Note that KRAUT does
not distinguish, whether 1 is in the private or in the exported scction.

5 A note concerning the double quote: Tt is not possible to use only one quote because of the possibility of name con[‘hcts For
cxample, in the following program

program foo;
var i : integer;

procedure foo;
var i : integer;

the name foo ' i could cither mean the global i in module Foo, or the local variable 1 in routine foo.

KRALUT - Usar Manual

Chapter Three
Path Rules

Originally path expressions were developed for the synchronization of concurrent processes. In KRAUT they
arc used as pattern recognizers to monitor the behaviour of a target process. Path expressions are embedded
in the more genceral notion of a path rule. In this section we show how path rules are defined and give some
cxamples for their use in debugging. A path rule consists of two parts: an cvent recognition part and an
action part. The event recognition part consists of a generalized path expression which is discussed in section
3.1. The purpose of the action part is to describe what the debugger has o do in the case of a match or
mismaich of the actual computation with the computation described by the recognition part. ‘The action
part is described in section 3.2.

3.1 Generalized Path Fxpressions

Generalized path expressions are basic path expressions extended by counters and predicates.

A basic path expression is a regular expression of operands connected with the operators repetition (%),
scquencing () and exclusive selection (]). "The operands are called path functions in the following. Any
routine defined in the source program is a predefined path function. Other path functions can be defined
during the debugging session with the DEFINE command described in section 4.

If a path function R is used in a path expression it matches cither the activation or termination of the
exccution of R in the target process. Path functions can be postfixed with an event qualifier to specify cither
the activiation or termination of a routine: If R is a path function, then R! A denotes the activation of R and
R!T denotes the termination of R. Thus R can be scen as a shorthand notation for the generalized path
expression (R!YA | RIT).

A counter can be defined cxplicitly with the Counter command described in section 4. Furthermore, there
arc two predefined counters for cach path function mentioned in a path expression: The «ACT counter
describes how many times the path function has been activated and the «TERM counter describes how
many times it has been complctcdé.

A predicate is a rclational cxpression consisting of implicit or explicit counters and names from the name

6 If these counter names conflict with names of objects in the target process, they have to be prefixed with the escape character '«

KRAUT - User Manual

space of the program. Predicates have to be enclosed in curly brackets and can be associated with any path
function”. There is a predefined predicatc ALWAYS which is equivalent to TRUE =TRUE.

An cxample of a generalized path expression is

InitStack;
(Push{(«TERM(Push) - «TERM(Pop)) < N)} .
(Pop | Top){(<TERM(Push) - «TERM(Pop) > 0};)

which states the operational constraints on a bounded stack of length N: First the routine InitStack has
to be called. One of the following can then happen: Either Push can be called as long as the size of the
stack is smaller than N, or Top or Pop can be called if the size of the stack is larger than 0.

Generalized path expressions can be used in two different ways: 1f a generalized path expression is prefixed
by the keyword Find, the specificd exccution sequence is matched against the observed exccution
scquence and the path action specifies what to do in the case of a match and a mismatch. Find expressions
arc useful in scarching for the pattern of a particular exccution sequence. For example,

FindPath BeginlLoop
WhiteLoop(«ACT(Push)= N and «ACT(Pop) = 1}

looks for the activation of the while loop when the routine Push has been called N timies and Pop once,

The other use of generalized path expressions is to enforce a particular cxecution sequence. If a generalized
path expression is prefixed by the keyword Check, the specified execution sequence is matched against the
obscrved cxecution sequence. ‘The path action contains commands about what to do in the case of a
violation or nonviolation. For cxample,

CheckPath Loop .
(WhileLoop{<ACT(Whileloop) < 6} | Pop)

says that the while loop should rot be executed more than 6 times before a call to Pop occurs.

Any identifier that is used in a predicate of a generalized path cxpression is called a parh variable.
Predcfined path variables are identificrs explicitly declared in the source program and accessible via the
symbuol table.

7 If a path function P is mentioned without counters or predicates the defaults « ACT(P) >= 0 and «TERM(P)>= 0 arc assumed.

KRAUT - User Manual

3.2 Path Actions

A path action is declared by the keyword Action followed by the identifier of the path expression with
which the path action is to be associated. The keywords Match and NoMatch arc followed by the actions
to be taken in case of a maich and mismatch, respectively. Any sequence of debugger commands not
containing an assigimment or routine call is a valid action. Assignments and routine calls have to be preceded
by a HAL'T command. I1f an action contains more than one command, the commands have to be separated
by "~". Lither the Match or the Mismatch part or both can be omitted, in which case no action will be
associated with the missing part.

For example

Action Loop : ’
Match => Writein("I = ", I) >> LoopWindow
NoMatch => HALT

associates the debugger commands HALT and WreiteIn{("I = ", > lLoopWindow) with the path
expression Loop. Thus whenever the evaluation of Loop 8 yiclds a violation of the specified ordering the

el waales AP T o wreitian
1 ritict

compuiation is suspended and control is turned over (o the debugger, otherwise the valuc of Tis w

into the window LoopWindow.

The association of a path action with a gencralized path expression is dynamic. Thus you can remove a path
action from a path rule and replace it by another path action. This can be done any time the target process
is suspended: If the process is still running, you can suspend it with the characters tBEL k or tDEL d (sce
page 19).

3.3 Manipulating Path Rules

Path rulcs arc automatically ecnabled when they are defined. They can be disabled and cnabled again by the
DISABLY and ENABLFE commands described in section 4.6. Note that it a Match or a Mismatch occurs,
the path rule is not automatically disabled. Disabling a path rule and successive cnabling has to be done
explicitly. Every time the Match part of a path rule is executed the path rule is set to its initial state, that is,
is starting over again to look for the pattern specified in the generalized path expression.

8 Note thal the generalized path expression LOOP is only evaluated when one of its path functions is exccuted

KRAUT - User Manual

10

Chapter Four
Command Language

Any command can be abbreviated as long as the abbreviation is unique. For convenience, an attempt has
been made to allow two lfetter abbreviations for nearly all commands. Because of this reason some of the
command names might look a little bit strange. Commands and variable namnes are not case sensitive. For
example, 'R* and 'r" mean the same command or identifier. If more than one command is entered per line,
the commands have to be separated by the character *~". A command or command sequence can be
extended over several lines. Fach of the lines of such a command has to be terminated with a ™\" character.
For example,

callstac\

k 1~writ\
eln('I = ', I)~\
go

is parsed as:
callstack l~writeIn('I = ',I)~go

At any time the debugger maintains a current line number and a current source file which can be denoted
by the dot character (“.™).

4.1 Search List Commands

KRAUT maintains a scarch list of open modules which determines the order in which symbol tables are
scarched for identifiers. The scarch order is the reverse of the order in which the modules are entered; The
module opened latest will be scarched first. By modifying the scarch list appropriately you can speed up the
dcbugger significantly. The module scarch list is initially empty. Any time the target process is suspended,
the modules of routines on the runtime stack not yet in the module scarch list are appended to the tail of
the module scarch list. Modules are never implicitly removed from the list.

Kraut looks up the source, gqmap and sym files of a module using the current file scarch list. The
SETSEARCH command can be used to add directories to the file scarch list. "This makes it possible to
access remote files from inside the debugger. If the file scarch list did not contain the directory in which the
source or symbolic files are located, when the module was OPENed, KRAUT will try to open the module
without this information. If you want to add thescs files later, CLOSF, the module, call SETSEARCH with
the appropriate (remotc) directory and then call OPEN again.

KRAUT - User Manuai

Chbir D

Open M

Close M

11

Sct the current directory to 1. If no argument is specified, show the current directory.

[nsert module M at the head of KRAUT'S module search list. If the module is already in the
scarch list, it will be moved to the head of the list. The variable Current File is changed to
the file name of the module opened. 1f M is a list of modules M, M, ..M, then open cach
of the modules as described above. IfM = * | then open all the modules of the target
process, except for the modules of the Pascal runtime system. The latter ones can be
opened with the System command.

Delete module M from KRAUT's scarch list. If M is a list of modules M, M, ..M, then
delete cach of the modules. IFM = * | then close all the modules of the target process.

SetSearch F’,...F

If no arguments are given, then show Accent’s file scarch list. Otherwise modify the file
scarch list as follows: If F; is a directory name, push it on the scarch list, if I, is a "-" then
pop the top entry from the scarch list.

Show Modules M

System

If M is not given, show all open medules from KRAUT's moduie search list. Otherwise give
some information about module M. This includes date of compilation, names of seg, qmap
and sym filcs, name of imports, ctc.

[nitially the Pascal runtime system modules are not in the scarch list, even if they are
explicitly imported by the user program. The Pascal runtime system consist of the module
Pascallnit and all its imports. System opens these modules and adds them to the search
list.

4.2 Trace Commands

Traces are implemented internally as path rules. For cach routine R to be traced, two path rules arc created.
The first one has the name «AR and monitors the Activation of R. The second one has the name « TR and
monitors the Termination of R. The MATCH part in the path action is preset to print whether the routine is
entered or cxited. Traces can be edited with the EditPathRule command (sce page 15).

KRAUT - User Manual

12

Trice [Before JAfter] R [UserActions]
R can be cither a module or a routine. If R is a module tracing path rules are created for
cach routine defined in the module. If it is a routine and ncither Before nor After is
specified, both path rules «AR and «TR arce created. IfBefore is given, only the path rule
+AR (o trace the entry of R is created. [FAf ter is given, only the path rule «TR to trace the
exit of R is created. If "UscrActions” is specified, then "UserActions” are cexccuted
whenever one of the trace path rules fires,

DTrace [Before |After] R
If R is a routine delete the tracing path rules for R. IR is a module delete the traces for all

routincs of R. If Before (After) is given, delete the only the path rule for the cntry
(exit) of R,

4.3 Breakpoint Comnhands

Sctting of breakpoints can be done cither by specifying a source line or by a routine name. In the following,
the symbol R denotes a routine. R can be of the form M' ' P or P, The symbol "#° denotes a source ling in a
source file in a certain directory. If the file name is omitted, the current file is assumed. The line number
must correspond to a source line containing the beginning of a Perg Pascal statement, otherwise KRAUT
writes an crror message. Breakpoints are implemented internally as path rules. ‘I'he name of the path rule is
of the form «B# °, where # is in the range 1..150. The MA'TCH part in the path action is presct to the
command sequence Halt~Exception~Callstack 1. Breakpoints can be edired with the EDITPATHRULE
command (sce page 15).

NOTE: The Halt command is part of the definition of a break point and cannot be removed from the
MATCH part.

Break (after) R, Break #

Set Breakpoint at (after) routine R or at line #. For example Break 4 main.pas
means: Set a break point at source line 4 in file main.pas.

Note that the character *'+” is actually the character . on your keyboard

Kraut - User Manuai

DBreak *

13

Delete all Breakpoints.

DBreak (after) R, DBreak #

Show Breaks

Delete Breakpoint at (after) routine R or line #.

Show current breakpoint list. This command is the samc as Show Pathrules if no other
pathrules but breakpoints arc active.

4.4 Editor Commands

The following commands allow you to inspect source file and scarch for string patterns. If a new filc name
is specified, the current file will be sct to the new name.

TypeijF

Aroundi F

Scrolli F

Search’S? F

Show source lines i to j in file F. The current source line is sct to the last line displayed. F
must be visible with Accent’s {ile scarch list. There are several abbreviations of the type
command: The keyword Type can be omitted. If the file name is also omitted, then the
current file is assumned. Furthermore, the commands i ¥ or’i will display line i in file ¥ or
in the current file, respectively.

Show 20 source lines around line i in file F. Linc i is indicated by "***. If F is omitted, the
current file is assumed. If i and F arc omitted the current source line is assumed.

Type 20 source lines starting at the current source line. The Next command can be used
after the first scroll.

Secarch backward in file F for string S. If S is omitted take the string from the last scarch
command. If S contains a ™", then two "™ have to be specified. Note that the scarch is not
casc sensitive. If F is omitted, the current file is assumed. If 'S is found, the current source
line is sct to the line containing ’S’.

KRAUT - User Manual

Search’'S' F

Grep'S'F

14

Search forward in file ¥ for string S. The 't can be omitted if S is given. If S is omitted
take the string from the last scarch command. If S contains a ™", then two ™™ have to be
specificd. Note that the scarch is not case sensitive. If I is omitted, the current file is
assumed. IF°S™ is found, the current source line is set to the line containing 'S’.

L.ook for all occurences of string S in file F. The search is casc insensitive. If 1< is omitted
than do string scarch starting at the current source line in the current source file, IF°S” is
replaced by !, then look with the last string pattern specified. Currently neither S nor F can
contain wildcards.

4.5 Definition Commands

KRAUT allows the definition of new path functions, counters and path variables which can be used in

generalized path expressions in the same way as that for predefined naines.

CounterC:=1

Counter C

Declare 2 counter variable C and assign it the valuc I. If the assignment is omitted, the
counter is initialized to 0. Counters are regarded as global variables defined i a static
scope surrounding the main program. If there is a variable with the same namie defined in
the program, KRAUT prefixes the counter variable with the escape character "« and asks
you for confirmation.

Delete the counter variable C.

Define Function PB E

Associate the path function P with a group of statements indicated by the source lines B
and Ein file I. B and E must belong to the same source file and the source line denoted by
B must be smaller than the source line denoted by E.

4.6 Path Rule Commands

The debugger maintains a list of path rules which can be defined and manipulated. In the following, R
denotes the name of a path rule and can be any identifier.

KrAUl - User Manual

Action R A

CheckPath R G

Disable R

Fditpathrule P

15

Bind action A to path rule R. 'The arguments R and A can be omitted, in which case you
arc prompted for them. R must have been defined before by a FindPath or CheckPath
command. A is of the form:

MATCH Coid! NOMATCH Cmd2

Cmdl and Cmd2 can be any KRAUT command or command scquence. 'The Match part
has to be defined before the NOMATCH part. Command sequences must be enclosed in
parcntheses. If the execution sequence matches the sequence specified by the generalized
path expression, then Cmid|{ is exccuted. If there is no such match, then Ciid? is exccuted.
For cxample

Action R1 MATCH (calls~br firstcall~disable Rl~enable R2)

executes the Calls command, scts a breakpoint at routine firstcall, disables itself and
cnables path rule R2.

Qualify R as a Check rule and add it to the active path rule list. G is a generalized path
I oS Y P Y RPN B ad

expression (see section 3.1). If the arguments R and G are omitted, you arc prompted for
them and for the associated path action.

Disable the currently active path rule R. T'his command takes the path rule R from the
active path rule list and appends it to the list of inactive path rules.

'This command allows to change the components Generalized Path Fxpression, Maich and
NoMatich of path rule P. Furthermore the user is prompted for the setting of two switches:
The ENABLED switch cnables P if sct to true, otherwise disables it. If the VERBOSE
switch is set to true, the interpretation of the path actions is done verbose, otherwise quict.
Note that editing of path rules created by the BREAK command is restricted in the following
way: [t is not possible to change the whole Generalized Path Fxpression associated with the
breakpoint, but only its predicate. Predicates can be entered when the CONDITION prompt
is given.

KRAUT - User Manuat

16

The following example sets a breakpoint at line 86 and changes the default action to do the
following commands: Print out the callstack to depth 4. print the locals of the current
routine, write the value of i and continue. The action will only occur if the target process
exccutes line 86 and i has the value 1000.

|BREAK 86 test3.pas
[Set Breakpoint «B1 at line 86 in TEST.PAS: write('First;');

|EDIT «B1

| CONDITION [] : i = 1000

| MATCH [] : Callstack 4~locals~writeln('i = ', i)~go
| NOMATCH [1] :

| ENABLE [] : TRUE

| VERBOSE [] : TRUE

Enable R

Enable the currently inactive path rule R. This command takes the path rule R from the
inactive path rule list and appends it to the list of active path rules.

FindPath R G

Qualify R as a Check rule and add it to the active path rule list. G is a generalized path
expression(sec section 3.1). If the arguments R and G arc omitted, you are prompted for
them and for the associated path action.

Show PuathRules (enabled | disabled)

Show the active or inactive path rule list. If no argument is specified show the entire path
rule list. (This command is equivalent to Show PathRules).

Show PathRules F
Show the components of path rule F.

RemovePath P

Delete path rule P from the path rule list. If P is a list of path rules P Py ... P, then remove
cach of these path rules from the list.

Remove Action R
Delete the action bound to path rule R.

KRAUT = User Manual

17

4.7 Variable Inspection Commands

In the following V and Id denote identifiers as defined in section 2, page 4, counters as defined in section

4.5, page 14 or history variables. Id can also be an arbitrary Pascal expression with the restrictions

in scction 7, page 37.

Globals M

Locals R

Parameters R

Radix N
Y=
Vi=1Ul

Display all globals of module M. 1f M is not specified, display the locals of the current
module.

Display all locals of routine R. If R is not specified, display the locals of the current routine.

Show the current values of the parameters of R. If R is not specified, then show the
paramcters of the current routine.

Set the current radix to N where N is a decimal number from the set { 2,8,10,16}. Initially
the current vadix is 10.

Get the value of V following the scope rules as described in section 2.3. If the name of the
variable is not also a KRAUT command, then the equal sign (=) can be omitted. To avoid
confusion arising from names used in more than one module, values are always written out
in the form "value [Modale]". Module is the name of the module containing V or it is the
string Internal Counter if V has been defined as a counter variable. If the value was
retrieved from an inconsistent symbol table, the module name is marked with a 7" sign.

Assign the value of Id to V following the scope rules described in section 2.3. V cannot be
a history variable. The debugger tries to do some kind of type checking as described in
section 2 and issues a warning if there is a violation.

Write(p1,p2,....pu), Writeln{pl,p2,....pn)

Write and Writeln are similar to Pascal’s write and writeln. The only difference is that the
output is always written in the current window. Py,P,.....P can be any Pascal cxpressions
with the restrictions and extensions described in scction 2, page 4. For example, if foo =
*df" and bas = 1, then Writeln('FOO =7, foo, 'BAS =, bas) results in the output:

FOO ="dBAS = 1

KRAUT - User Manual

18

4.8 Next Command

. KCR>

This command is interpreted in the context of (he last command. The next command is
implemented for the following commands:

$ © Mace command: Display the next focation in the current mode and
current radix.

Around Show the next 20 source lines in the current file.

Calls Display onc more call. The current source line and file arc updated

to the linc displayed, so typing Around after this command
displays the context around the source line. Note: The current
routine is not changed.

DownStack Move down once activation record in the dynamic call chain.

Forward Scarch Continuc the scarch with the previous argument starting at the
current source line.

Scroll) Show the next 20 source lines in the current file.

SingleStep Exccute one more source line.

Type Show the next 20 source lines in the current file.

UpStuck Muove up one activation record in the dynamic call chain.

4.9 Runtime Stack Commands

BottomStack

Sct the current routine to the routine described by the activation record at the bottom of
the runtime stack.

Calls N

Display the dynamic calling sequence of the target process. N specifics the number of calls
to be printed. If N is omitted, then the whole sequence will be printed.

KRAUI - User Manuai

DownStack N

TopStack .

UpStack N

19

Move down one activation record towards the bottom of the runtime stack and update the

current routine. If N is omitted, N=1 is assumed.

Sct the current routine to the routine described by the activation record at the top of the
runtime stack.

Move up N activation records towards the top of the runtime stack and update the current
routine. I N is omitted, N=1 is assumed.

4.19 Target Process Control Commands

These commands allow to modify or observe the exccution of the target process.

Process Control Characters

The process control characters tDEL ¢, tDEL d, tDEL k and tDEL t are intercepted by
KrauT. Their interpretation depends on the context of the last comimand:

EXECUTE.GO

tBEL t: Show the state of the target process. (Not yet implemented)

?I)ELI ¢, tDEL d, +DEL k: Suspend the target process and return to command level.
tDel r: NOOP

All other commands

tDEL t: Show the state of the target process. (Not)'/ct implemented)

tDEL r,tDEL d: Abort the current command.

+DEL ¢: NOOP

KRAUT -~ User Manual

20

Execute R(py,pyye.py)

Exccute routine R with parameters p.ps....p,. R can be the main program, any global
routine or a nested routine statically visible from the current point of exccution. IMR is the
main program, you are prompled whether the run time stack shall be cleared or not. If R
has been defined with parameters, they have to be passed, but the debugger does no type
checking at all. If the closing parenthesis is omitted. the debugger writes out the type
information for cach parameter and asks for confirmation. ‘The syntax for parameters is
similar to Pascal’s syntax cxcept for the following two cases: 1. Var parameters must be
prefixed with a "t". 2. Normal Pascal constants are treated as integer decimals if they are in
the range -32768..32767, otherwise as long decimals. Other constants have to be prefixed
by a"#°, a basc indicator and a type indicator as described in section 2.1. For example:

Execute Foo(tBar, 34, #HS5FA4, #BL0O111, Count)

calls procedure I'oo with reference parameter Bar, decimal integer 34, hexadecimal integer
5FA4, binary long 0111 and valuc paramcter Ceunt. ‘The variables Bar and Count are
visible from the current point of execution.

If R is a function, more restiictions have to be observed, most of them duc to the
insufficient symbol table information provided by the compiler: Functions names must
always be indicated by parentheses followed by a Type Qualifier. Parentheses are needed
cven if the function does not have any parameters, otherwise the result of the function is
denoted. Functions can be used in arbitrary cxpressions, but cannot be passed as
paramciers.

WARNING: [t is eusy to do something wrong when calling a function from inside the
debugger. The following examples show how to use function calls and how not:

Type REC = record i : integer; 1 : Tong end;
Var b : boolean; r : REC;

Function foo(i : integer): boolean;

Function fool: boolean;

Function bla(s : string[80]): REC;

[.egal calls:

b := foo(i):boolean

b := fool()

fool() -- displays result of function call on screen.

r := bla('sdfsfd':string{80]):record[3] -~ assignsthevalueofblator
bla('sdfsfd’':string[80]):record[3] --typesthe value of bla on on the display.

THegal calls:

KRAUT - User Manual

Go

Halt

RunT

21

b := foo(i) -~ niissing type qualifier

Problenuitic calls:

b := fool -~ Missing parcntheses:
The debugger tukes the current return value
of fool instead of calling fool .
r := bla('sdfsfd'):record[3] -~ rakesdefault yalue of string length.

Resume the exccution of the suspended target process.

Suspend the execution of the target process.

Delete the link to the current target process and start the exccution of target process T.
This command is uscful for debugging a new target process, for cxample it the current
program has been recompiled and refinked, without leaving the debugger. NOTE: if you
just want to restart the current target process, use the Execute command with the name of

the main program as parameter.

TerminateTarget YES|NO

Unwind

Terminate or do not terminate the target process on QUIT. Initially TerminateTarget is sct
to YES.

Remove all activation records from the runtimestack up to and including the last routine
that was called with the EXECUTE command. If there is no such routine the stack is not
changed.

4.11 Miscellaneous Commands

@r

Exccute command file F. If F is not specified, the command file M.kimd is cxecuted,
where M is the extensionless file name of the main program‘lo. Command files can be
nested to an arbitrary depth. If F does not contain an extension and there is no file with
the name F, then the extension .kmd is appended.

10 M.kmd is the default command file. IF it can be found with the initial file search list, it is automatically cxecuted at the beginning
of the debugging session.

KRAUT - User Manual

M

Address ID

Compute E

Current M

22

Exccute the MACE command M without lcaving the KRAUT command interpreter. MACE
commands are described in section 5.

Start of a comment. Any string following the two dashes up to the end of the linc is
regarded as comment.

If the result of the last debugging command was a numeric valuc, it can be denoted by the
symbol &. & can be used in any Pascal expression. ‘The symbol &* interprets the value of
the last command as a pointer. Thus it especially uscful for pointer chains.

Show the target address of 11D, 11D denotes an identificr as defined in section 2.3. If 1D is a
routine, then show the addresses of its entry and ¢xit points. If 11D is omitted. the identificr
from the last debugger command is taken. The address command allows you to inspect
1)'s more closcly with MACE if KRAUT does not provide any help (for example for record
ficlds).}

Compute expression E. The Compute command cvalnates (nearly) any pascal expression.
The keyword COMPUTE can be omitted it the expressicn starts with a constant ' If the
type of a variable is not known or has to be recasted, use type qualifiers. For examiple, if 1
is an integer and W a function of type integer and the result is of type real, the following
command coinputes ihe real valuc 400022 + 5*7-i+ w(i):

COMPUTE (400022 + 5*7-i+w(i):integer):real

If M is a module, set the current module to M (This is equivalent to Open M). Otherwise, if
M is an active routine, sct the current routine to M. If M is not active, do not change the
current routine. If no argument is specificd the current module and routine arc displayed.

1 Note that any single digit will be interpreted as a source ling number of the TYPE command.

KRaUI - User Manual

Fxception

Help

Indent N

Maintainer M

Mace

News

Quit

23

Show the current exception.

Creates a help window and allows the user to interactively peruse the appendix of this
manual,

Concatenate N blanks with the prompt sign. NOTE: In the case of a command error or
when 1DEL ¢, tDEL k or tDEL dis typed, INDENT 0 is automatically executed.

Print out the name of the maintainer of module M. This command prints out the string
following the key word Maintainer in the comment switch in module M. For example, if
module TEST contains {$Comment Maintainer bob@cmux x3828} in the source
file, then “bob@cmux x3828” is the maintainer of TEST. If M is omitted in the
command, then the maintainers of all maintained modules are printed out.

Enter the command interpreter of MACE, the low level Accent debugger. MACE commands
arc described in section 5. To return back to the KRAUT command interpreter type the
MACE quit comimand.

Print out news about undocumented features, new bugs and fixes of old bugs.

There arc four possible courses of action when choosing to quit the debugger. They are as
follows:

Quit Exits the debugger.
Continue Resumes the debugging interaction.
Report Refer to the Report Command below.

SaveScriptAndQuit Automatically saves a transcript of the current dialogue if the
transcript switch was On at least once during the debugging
session;then exits from the debugger.

KRAUT - User Manua’

Report M

Script on|off

Silence onloff

Shell

24

Creatc the transcript of the debugging session to be deposited in the outgoing mail for the
mailing address M when the QUI'T command is typed. 1f M is omitted, the account
Spice@spice is assumed as the receiver., When quitting you are asked to confirm the
mailing address, the I'ROM field (which is taken from the first line of the file
<hoot>sysname) and whether you want (o provide an additional message. The message can
be in a file or it can be typed in the window. A typed message has to be terminated with a
single dot on a linc. The Report command can be typed at any time of the debugging
session. Note that KRAUT is not doing the actual mailing. It only puts the transcripl in a
file <hootdperqout.R*, from where it has to be picked up by the mail system.

EXAMPLE (user input is underlined):

|Report bob, dzg

|[Mail request to bob, dzg registered

] ...

|Quit

|Action (Quit, Continue, Report, SaveScriptAndQuitl) [REPORT] ? <CR>
|Mailing transcript...

|TO: [bob, dzg] bob@cmu-cs-spice, hibbard@cmua, ets

| FROM [bob@cmu-cs-spice]: <CR>

|Subject [Bug in test]: <CR>

|Go you want to add an initial message? (Yes, No) [YES] Yes
|Enter file name or hit <RETURN>: <CR>

|Type message (terminate with a ”." alone on a line):

Hi, I found the following buq:

TPreparing mail. ..
| ...Mail deposited for bob@cmu-cs-spice, hibbard@cmua, ets

Turn the transcript on or of f. If Script off is contained in the default command file,
no transcript file will be gencrated at all,

[f silence is on, then the commands exccuted in a command file will not be echoed on the
curent window. If silence is off, they are echoced. 'The default value is off.

Spawn another shell, inheriting the environment in which KRAUT is currently running,

KrAUT - User Manual

Show P

Version

25

Depending on the parameter P the following is displayed:

P=Brcaks
P=Counters
P=Modecls
P=Modules M

P =Pathfunctions M
P=Pathrules Pl
P=Routines M

P=RunFile (R M)

P=ScarchL.ist
P=Window

Show the current break point list.
Show the currently defined counter variables.
Show the current models.

If M is omitted, then type KRAUT'S module list. Otherwise give
some information about module M. This includes date of
compilation, names of scg, gqmap and sym files, name of imports,

ctc.

Show the user defined path functions for module M. If M is
omitted show the user defined path functions of all modules.

If Pl="active’ then display the list of cnabled pathrules: if
Pl ="inactive’, then display the list of disabled path rules, otherwise
display all path rules currently defined.

Show the routines and user defined path functions for module M.
M must be in the module search list. If M is omitied show the
routines and uscr defined path functions of all modules.

If R and M are omitted, print the core image of the current target
process into the file M.umap, where M is the extensioniess filename
of the main program. 1f R and M are given, then print the contents
of run file R into file M. Note that in this case some ficlds in the file
and scgment entry descriptors arce set to 0 and do not describe
locations in the address space!

Display Accent’s file scarch list.

Display the currently defined windows.

Type the version number of the debugger.

4.12 Window Commands

The following commands allow the user to define typescript windows, change from onc window to another
and display information in any dcfined window. There are two predefined windows, which arc treated
differently from user defined windows: The DEBUG window is the window allocated by Accent when the
debugger is started up. The DEBUG window is treated in such a way that it allows the debugger to run even
if the window manager is not running. The BargraphWindow is a graphic window in which variables can
be bound to bargraphs (sce section 4.13).

KRAUT - User Manual

26

There is always a current window, which is originally set to DEBUG. There may be a maximum of ten
windows, cach of which may be manipulated by all of the normal SAPPHIRE commands (Lop, bottom, move,
grow, cic.).

Window WLXTYWH

Creates window W with upper-left corner 1L.X, TY and W characters per line and H lincs.
If these coordinates are omitted, default coordinates are used.

Window W

Creates window W. Typing Window W a sccond time brings window W to the top and
mukes it the lisiener. This command is used to move the listener {rom one window to

another.
DWindow W

Deletes the window with the name W.
DWindow *

Deletes all windows but the current one.
C>»W

Redirect the output of the KRAUT command or command sequence C into window W but
do not leave the current window. If W has not yet been defined, a window with default
coordinates will be created.

4.13 Model Commands

Model commands atlow you to display variables with a format different from the built-in display format. A
model is a display template defined by a Medel command. Bargraphs arc predefined models. Models are
instantiated by the Bind command and it is possiblec to bind several variables to the same model.

Model Bargraph B MAX S

Create or rescale a bargraph with the name B, where B can be any identifier. If B has not
yet been defined. a template for B is created. The maximal value of the template is given
by the integer MAX. S describes the scale and can be cither LINEAR (Jinear scale) or LOG
(logarithmic scale). MAX and S can be omitted in which case the defaults MAX = 32767
and S = LINEAR arc assumed. If the bargraph B alrcady exists, the template and all its
instantiations are rescaled according to the new values MAX and S. Note that the keyword
Mode1 can be omiticed in the command.

KRAUT - User Manual

27

Model Routine M R

Bind IDM

Create a model with the name M, where M can be any identificr, and bind the routine R to
it. ‘The keyword Mode 1 can be omitted in the command. R can be any procedure defined
in the user program and may have parameters. All except for one of R’s parameters have to
be bound at the definition of the model. It is possible to mark one of the parameter’s slots
with a “$" character and this parameter will be bound by the Bind command. For
cxample, :

Model Routine M Foo(tgi, #123, §)

binds the routine Foo with gi, #123 and $ to the model M, and $ will be provided by the
Bind command.

Bind the variablc ID to a model with the name M. Currently two classes of bindings arc
possible:

1. IfMis a bargraph. then ID can be a counter, a history variable (ACT or TERM)
or a variable of type integer. The debugger ailocates a slot in the lx\z/indow
BargraphWindow and displays 1D according to the attributes of M'°. For
cxample

Bind «ACT(fco) M

binds the history variable «ACT(Foo) to the bargraph M. After a variable is
bound to « bargraph, any display command will dispiay its value according to the
scale and maximum value of the bargraph. If 11D is & counier or a history variable,
the bargraph is updated on any assignment. However, if 11 is a program variable,
the bargraph is not updated until the next display command is issucd.

2. IfMis a routine, then ID can be a variable of any type. [f'M has been defined with
parameter “$”, then ID is substituted for “$” in M. For cxample, the commands

Model Routine M Foo(tgi, #123, 13)
Bind grec M

define a model M for routine Foo and bind grec to it. Displaying grec will
result in calling Foo(tgi,#123, tgrec).

12 ifBargraphWindow does not yet exist, you arc prompted for thie screen locations.

KRAUT - User Manual

28

DModel M
Delete the model M.

DBind ID
Delete 1D's binding to a modcl and rebind it to text format.

KRAUT - User Manual

29

Chapter Iive
MACE

The command syntax for MACE is quite different from that for KrauT. Some MACE commands may
contain MACE expressions and qualifiers to change the radix and mode of the entitics being displayed. ‘The
radix or mode qualifier is optional and if omitted the current radix or mode is assumed, respectively. The
radix qualificr controls the radix of numbers and can have one of the following valucs:

Octal radix
Decimal radix

The mode qualifier specifics the type of object(s) to be displayed and can have onc of the following values:

o]

16 bit integer, 32 bit long, byte,
character and string (max 15 characters)
Byte

Character

16 bit 1integer

32 bit Tong

IPC Message

Qcode

Floating point

Pascal string

e - A -

A MACE expression is a parenthesized expression of primary values using once or more of the following
operators: '

-

Dereference (written after the value)
Negation

Logical dinversion
Multiplication
Division

MOD

Addition
Subtraction
Logical And
Logical Or
Leftshift
RightShift

R R R RENDNLCOLOLOMOTD

VANRI 4 = %2

The operators arc ordered in decreasing precedence. Parentheses can be used to indicate different
precedences.

KRAUT - User Manual

30

A primary value is onc of the following constructs, where <M>, <P>, <N> and <E> arc MACE: expressions
denoting addresses and numbers.

892 Any decimal constant
#3717 Any octal constant
. The last location referenced.
<M> Base address of the code segment of module M.
<P> Entry point of routine P,
<M>.GCE> Offset E in the global frame of module M,
<M>.R<E> The E'th word in the routine dictionary of module M.
<M>XP> Entry point of routine P in module M.
<P>.(KE> Offset E in routine P.
<PYALES The E'th word of the ACB for last call to P.
<P>.KN>AKED The E'th word of the ACB for

the N'th call to P.
<P>.FKE> The E'th local word of last call to P.
<P>.R<E> The E'th word in P's routine dict entry.

Examples for MACE cxpressions are

Test3.Procl + #5657+ Procedure Proe/ in module Tesi3
plus contents of address octal 557.

Proc1.4A3 The third word in the ACB for the
Jourth call of procedure Procl.

Foo.Q23 - . Qcode offset 23 in routine [foo minus
last expression referred to.

The following example shows the order of evaluation of MACI: expressions:

Foo.Q5 * Test.G45 & ~3 - 57

is evaluated as

(Foo.Q5 * Test.G45) & ((~3) - (5t)).

KRAUT - User Manual

31

5.1 MACE Commands

In the following <E> and <V> denote MACE expressions, <R> a radix qualifier, <M> a mode qualifier and
<12> a decimal integer. Note that comimand names are case sensitive, whercas MACE expressions arc not.

2 h, H?

Type help information. 'The commands ?,h and H explain MACE expressions and the ;™
"="and ":=" commands. The command ' ? cxplains the "' " commands.

<ED; RO MK
Display <I>> target memory locations starting at <E> in the format specified by mode <M>

and radix <R> in units appropriate for the given type. <12> must be a decimal integer. <E>
can be any MACE expression. For example:
Foo.q54;.q23

displays 23 locations starting at address Foo.q54 as gcode instructions with decimal
arguments,

<D =<R><KM>
Calculate the MACE expression <E> in mode <M> using radix <R>. For cxample:

87506 + 45*7=#i

displays the valuc of 87506 + 45*7 as an octal integer.
<E>i=<KV>
Store the value <V> in the 16 bit location <E>. <E> and <V> can bec arbitrary MACE

expressions. For example:

Test.G456 := Foo.F4

stores the vatue of the 4°th local word of routine Foo into offsct 456 in module Test.

KRAUT - User Manual

<H>'a

<E>b

<BE>d

<D>TFLVD

<E>h

32

IF<D> = 1,2..,100, then show the contents of the <D>'th activation record (ACB) on the
stack. <12> = 1 mcans the ACB of the top routine and <I13> = n means the n'th ACB down
towards the bottom of the stack. If <> is larger than 100, MACE assumes you have typed
the address of the ACB', The ACB consists of the following information:

ACBSL: Activation pointer (AP) of enclosing routine
ACBLP: lLocal pointer (LP) of this routine

ACBDL: Activatlion pointer of calling routline

ACBGL: Global pointer (GP) of calling routine

ACBTL: Top pointer (TP) of calling routine

ACBRS: - System Segment number (SSN) of calling routine
ACBRA: Program counter (VPC) of caliing routine
ACBRR: Routine Number of calling routine

ACBEP: Pointer to current exception enable record
ACBStackSize: Size of EStack of calling routine

ACBStackSize+i: Saved EStack values ,i= 1,...,ACBStackSize

Set a breakpoint at address <i2>. If <E>=0. show the list of current breakpoints.

Delete a breakpoint at address <E>.

Display expression stack (from the bottom towards the top).

If<ID>= -1, then assign <V to the micro state register EStkCount. which holds the current
size of the EStack. 1£<13> in [0..15] then assign <V> to expression stack register <12, (Note:
0 is the bottom of the expression stack).

Display the history for message <E>. If <E>=0 then display the history of all messages.
This command assumes that the program you arc debugging imports the module
AccCall from AccCali.pas. If this is not the casc, you get the error message No
module specified.AccCall must be specially compiled to cnable the message
history mechanism. (The message history mechanism is currently disabled.)

13 The activation pointer (AP) of a routine points to the address of its ACB. Sce 'm command,

KRAUT -~ User Manuail

33

<DO>m
. 14 .
If <1D>=0, show the qeode state of the current routine . Otherwise show the geode state
for the <ID>'th activated routine on the stack, counting downward towards the bottom of
the stack. Thus, <D>= 1 means the routine on top of the stack, etc. 'The geode state consists
of the following information:
SB: Stack base
CB: Base address of code segment
GP: Global pointer
VPC: Program counter
RN: Routine number
LP: Local pointer
AP: Activation pointer (Base address of ACB)
TP: Top pointer
‘M
Displays the contents of registers 5 to 16 and 110 of Accent’s micro context block. A typical
output for the 'M command looks as follows:
Program counter TR B]: 172[#254]
Top pointer [R 6]: 21290{#51452]
Activation Pointer [R 7]: 21280[#51440]
Global Pointer [R 8]: 2562[#5002}
Local Pointer [R 9]: 21236[#51364)
Routine Number [R 10]: O[#0]
Code Segment [R 11]: 152[#230]
Stack Segment [R 12]: 1{#1]
B8reakpoint register [R 13]: -1[#-1]
Exc handler code segment [R 147: 152[#230]
Exc handler global pointer [R 15]: 2562[#5002]
Encode overlay # and entry [R 167: 3[#3]
VM status [R 1107: 1280[#2400]
<BE>p

[f<E> is an address within the code of any routine, then display the routine dictionary of
that routine. The routine dictionary has the following format:

RDPS: Size of parameters

RDRPS: Size of result + parameters
RDLTS: Size of locals + temporaries
RDLL: Lexcial Level

RDEntry: Entry address relative to segment
RDExit: Exit address relative to segment

14 The current routine can be changed with the KRaUT runtime stack commands UpStack, DownStack, cte.

KRAUT - User Manual

34

<E>'P
If <E>=0, then show the code segment base address (CB) and the globai pointer (GP) of
cach module. Otherwise, show the segment header block for module <E>. The time stamp
attached to a filc name indicates the last time the file was updated. For example, the
command test3'P might display the following information:

Program TEST3 [Compiled at: 11 Apr 83 11:33:29]
Src file <booi>user>bob>test3.PAS [20 Aug 82 10:53:01]
QVersion 3
GDB size 184 words
Version v
Comment
QMapFile <boot>bob>test3.QMAP [11 Apr 83 11:33:29]
SymFile <boot>user>bob>test3.SYM [11 Apr 83 11:33:29]
Imports 3 files: (Import info at block 2)

TEST3A from test3a.PAS

WRITER from WRITER.PAS

STREAM from STREAM.PAS

v

LU | S LN | S | N | B 1

Terminate MACIE and return to KRAUT command level. Note: This command should only
be exccuted on MACE command level.

Resume execution of the target process.

Suspend execution of the target process.

<>t
Show the last <I2> routine calls starting at the top of the stack.

<D>u
Show the contents of micro state register <DD>.

<ARULKVD
Assign the value <V> to micro state register <[D>.

KRAUT - User Manual

'@

35

Toggle MACE debug flag (for debugging purposes only).

Toggle Expression trace flag (for debugging purposes only).

1.ow, low level debugging aids (type "@? for help if you are really desperate).

KRAUT - User Manual

36

Chapter Six
Coping with Debugger Bugs

KRAUT is still actively being developed and an internal error might show up while you are debugging your
own program. If the crror is an exception defined in "except.dfs”, the debugger writes out an
explanation such as DIVISION BY ZERO, otherwisc the exception is written out as a segment and routine
number-pair. You have one of the following options:

e RECOVER (Default): T'ry to return to command level.

¢ DEBUG: Recursive debugging mode. You are prompted for a new window to debug the
dcbugger.

o QUIT: Quit the session.
The following command is intended for debugging the debugger.
Verbose
Set debugging switches interactively. ‘The switches can also be sct initially by a file
M.switches, where M is the name of the file containing the inain program.

If you run across an uncaught exception in the debugger, it would be helpful il'"yuu could do the following:

¢ Recover from the bug.

Turn on the switches with the Verbose command.

Bepeat the command that caused the exception.

Enter the recursive debugging mode and print the call stack of the current state of the debugger.

Save both transcript files and send them to bob@CS-SPICE (Use the Maintainer and Report
commands).

KraUtT - User Manual

37

Chapter Seven
Current Restrictions and Known Bugs

[t is not possible to Open modules which are not imported by onc of the modules of the program.

o Call chains are not yet implemented 1,

Consistency checks between source and object files are not implemented.

The predicate «UNDEFINED (sce page 5) is not implemented.

The general notation M 'Py* ... "P, ' P, i denoting variable i in routine Py nested in Ppy....,
nested in Py, which is declared in module M has not yet been implemenied. Only P'Foo to
denote the variable Foo in routinc P and M' 'P ' Foo to denote the variable Foo in routine P in
module M arc implemented.

Because of restrictions in the symbol table, it is not possible to access record ficlds by name.
Word (= 16 bit) offscts relative to the base address of the record must be used instcad. To
determine word offscts, you have to know how the compiler allocates storage for record fields.
For example, in the following record definition
Var Recl : record
Rec2: record
i : integer;
Rec3d: record

p : long;
foo: tinteger;
end;
end;
b: boolean;

end;

the ficld Recl . Rec2.Rec3.foot is denoted by the cxpiession Recl.0.1.2+, where
Rec1.0 is the offsct uf ficld Rec2 in record Rec, cte. Note that the compiler allocates ticld list
identificrs scparated by commas in the reverse order in which they are mentioned in the
declaration. For example, in the following definition
Var Recl : record
i,j,k,1,m,n : integer;

end;
the cxpression Rec1.0 denotes the field Rec1.n and Recl.4 denotes Recl. k. The above
cxamples arc only valid for unpacked records. Ask a compiler hacker if you want to examine
packed records!

e Array clements are not fully supported: Because there is no symbolic information available for
the bounds of arrays, the debugger assumces 0 as the lower bound for array variables. Thus for
arrays starting on a different lower bound, the lower bound has to be normalized to 0.
Multidimensional arrays are not supported.

15 However, one can access allocated but unvisible variables by positioning with TopStack, BoltomStack, DownStack and UpStack
followed by Locals.

KRAUT - User Manual

38

+ Named Constants (defined with CONST) arc not supported.

e Display_of Records: Records arce displayed on a rather low level. KRAUT calls MACE to
successively interpret cach word of the structure as an integer, a long (using two words) , two
bytes, two characters or the start of a string. 'The number of words to be displayed can be
specified or a detault value is assumed: For records the number of words necessary to store the
record and for arrays the size of the subcomponent type. For example, given the program
fragment

Var grec : record
int: integer;
bool: boolean;
end;

grec.int:= 11111;
grec.bool := true;

grec can be displayed as follows:

lgrec
|Record! [TEST3]

|Display how many words? [2]1
| Integer Long LSB MSB Char String[15]
|TEST3.G172: 11111, 76647. 103. 43. | g +| [103]"+##UNUAHRHRKRER"

‘i'he next command (KCR>) can be used to display successive words:

|<CR>

|TEST3.G173: 1. 131073. 1. 0. |tAt@| [1]"#"

[<CR>

|TEST3.G174: 255. 65791. 255. 0. |XXT@| [2551"#AH#KANAKHARKRAH"

The pair XX is uscd to indicate a byte which cannot be interpreted as an Ascii character.

e Because therc is no symbolic information for enumecrated types, scts are displayed as bit
sequences. The leftmost bit refers to the first literal, and the n'th bit from the left to the n'th
literal of the set. For example, given the program fragment
type)

color = (red, green,brown,yellow,black,pink);

var
cset: set of color;

cset := [red,green,pink];

the variable cset will be displayed as
set

le
|TEST3.G200: (bits 0..15) 1 100010000000000

e User defined cnumerated types must be denoted by their integer equivalent,

o String scarch does not work correctly for files that contain one or more INCLUDE files.

KrAUT - User Manual

Breakpoints. Page 12

Break [after] R|#
DBreak R|#
DBreak *

Constant syntax. Page 4

39

Appendix A
Kraut Command Summary

Set breakpoint at [after] routine R or line #.
: Delete breakpoint at routine R or line #.
Delete all breakpoints.

Any Pascal constant is a valid constant. DECIMALI. Pascal constants in the range -32768.. 4+ 32767 are of type integer (16 bits), otherwise

of type long (32 bits). Constants in a different radix have to be prefixed by a #, a radix indicator (B.D,0.11) and a size indicator (11.).

(B ==binary,1D=decmial.O = Octal,lf = hexadecimal, I =integer, . =long). The default radix is D, the default size 1.

Examples:
#01.4712347 32 bit octal
#LHABFDACDY 32 bit hexadecimal
#b10101011 16 bit binary (default: I)
#bL10101011 32 bit binary
3434 16 bit decimal

9896968 32 bit decimal

Declarations. Page 14

Counter C {:= I)
DCountar C
Define Function F

tditor comimands. Page 13

Around (i F)
Grep 'S’ (F)
Scroll (i F)
(Type) 1 (J F)
"S'(!) F

Identifier syntax. Page 4
Foo
Proc'Foo

Mod' 'Proc'Foo
Foo:T

: Define Courter C and initialize it to 0 (to I).
: Detete Counter C.
: Define path function F.

: Show 20 source lines arcund current line.

(around line 1 in file F).

: Look for all occurrences of string S.

starting at current line (starting at line 1 in F).

: Show next 20 source lines from current line

(from 1ine i in file F).

: Show source lines i (to j in file F).
: Search forward in file F for string S.

Identifier Foo (following Pascal's scope rules)
Identifier Foo in routine Proc

Identifier Foo in routine Proc in module Mod
Coerce identifier Foo into type T, where T can be
any type qualifier.

KRrRAUT - User Manual

40

Inspection commands. Page 17

& : Value of last command.
Address (ID) : Get address of last variable (of ID).
Compute E : Compute expression E.
Current R : Move down in the run time stack to R and make it the
current routine.
Globals (M) : Show all glohals of current module (of module M).
Locals (R) : Show all variables of current routine (of routine R).
Parameters (R) : Show all paramelers of current routine (of routine R).
Radix N : Set the current radix to N where N is a DECIMAL (!)
number in { 2,8,10,16}). lnitjally the current radix is 10.
V(=) : Type the value of V ('="' is needed, if V is also a command).
VAR:= ID : Assign the value of ID to VAR.

Write(pl,...,pn),
Writeln(pl,...,pn): Write the pascal expressions pl,...,pn (and CRLF).

Line number syntax.

. Current line in current source file.
24 Line 24 in curreni file.

24 test3 Line 24 in file test3.pas;1.

24 test3.pas;2 Line 24 in file test3.pas;2.

24 sys>accent>tastd Line 24 1in file sys>accent>test3.pas;1.
Mace. Page 29

Type MACE to enter the Mace interpreter. Type *? to Mace for further help. Mace commands can also be typed to Kraut; Type $M Lo

the Kraut interpreter Lo exccute the mace command M.

Miscellancous. Page 21

@FILE.kmd : Execute default command file (FILE.kmd).

M : Execute Mace command M,

-- : Start of a comment.

Current M : Set current module to M (same as OPEN M).
Exception : Show the current exception.

Expert (ON|OFF) : Expert switch. (Default: OFF).

Indent N : Concatenate N blanks with the prompt sign.
Shell : Create another shell with current eavironment.

Model commands. Page 26

(Model) Bargraph B MX S : Define (or rescale) bargraph B with maximum
value MX and scale S (Linear or Log).

(Model) Routine M R : Define a model M and bind the routine R to it.

Bind ID M : Bind variable ID to model M,

DModel M : Delete model M.

DBind ID : Delete ID's binding to a model,

Next command. Page 18
<CR> : Execute the previous command with new arguments,

Implemented for $, Around, Calls, DownStack, Search,
SingleStep, Type, UpStack.

KRAUT - User Manual

41

>athrule Commands. Page 14

The following commands are defined for path rules. I only the name R of the path rule is typed, you are prompted for the missing

arguments:
Action R A : Bind action A to path rule R.
CheckPath R G : Qualify G as a CHECK path rule with name R.
Disable R : Enable path rule with name R.
EditPathRule R : Edit path rule R.
Enable R : Disable path rule with name R.
FindPath R G : Qualify G as a FIND path rule with name R.
PathRules (active|inactive): Show (active or inactive) path rules. -
PathRules verbose : Verbose while interpreting path actions.
Remove (Action) R : Delete path rule R (or action only).
Reporting bugs.
Maintainer (M) : Get name of maintainer of all modules (of module M).
News : Print any news about new features, known bugs, etc that
are not undocumented in the Spice manual.
Report AGM : When QUITting the debugger, the script file will be
given to the Spice Mail system to mail it to address A at
machine M. ’
Script ONJOFF : Set transcript switch ON or OFF (default: ON).
Verbose : Set various debugging switches (For internal debugging).
Version : Geil the current version of KRAUT.

Runtimestack commands. Page 18

BottomStack : Move to bottom of stack.

Calls (#) : Show current call sequence(# levels).

DownStack (#) : Move backward 1 (#) routine(s) in dynamic call chain.
TopStack : Move to top of stack.

Unwind : Remove last EXECUTED routine from stack.

UpStack (#) : Move forward 1 (#) routine(s) in dynamic call chain.

Show command.

Show P : P can be one of the following values:
P = Breaks : Show the current break point list.
P = Counters : Show the currently defined counter variables.
P = Models : Show the current models.
P = Modules : IT M is omitted, then type KRAUT's module list.

Otherwise give some information about module M.
This includes date of compilation, names of seg,
- gmap and sym files, names of imports, etc.

P = Pathfunctions M: Show the user defined path functions for module M.
If M is omitted, show them for all modules.

P = PathRules P1 : If Pl="active', then display the 1ist of enabled
pathrules, if P1='inactive', then display the 1list
of disabled path rules, other display all currently
defined path rules.

P = Routines M : Show the routines and user defined path functions
for module M. IF M is omitted then show them for
all modules.

P = Runfile R M : Dump the contents of run file R into file M.

KRAUT - User Manual

42

o
aon

Searchlist : Display Accent's file search list.
Windows : Display the currently defined windows.

Scarchlist commands. Page 10

ChDir D : Set current directory to D. If D is missing,
show current directory.

Close M : Close module M (* for all modules).

Open M : Open module M (* for all modules).

SetSearch L : Modify file search 1ist : - (pop), ID (push).

System : Open Pascallnit and all its imports.

Target Process commands. Page 19

I the target process is RUNNING, the following commands and control characters can be typed. Note that control characters have to
be typed in the window of the debugger, not that of the target process:

+DEL t : Show the state of the target process.
(Not yet implemented)

+DEL ¢, *DEL k, tDEL d : Return to command level.

Halt : Suspend execution of target process.

If the target process has STOPPLD the following commands can be executed:

P(pl,...pn),

Execute F(pl,...pn) : Exccute routine R with parameters pl,...,pn. R can
also be the main program. Omit closing ')' for
parameter check.

Go : Resume execution of target process.

Run (A) : Start execution of target process (with arguments A).

TerminateTarget YES|NO : Do or do not terminate target process on QUIT,

Trace cemmands. Page 11
Trace [Before|After] R [C] : Trace routine R (only its entry or exit)

and perform commands C. If R is a module
set traces for all of the routines of R.

DTrace [Before|After] R : Delete trace of R (only entry or exit).
If R is a module, delete all traces for
module R.

Type qualifier. Page 4

Array[n] array (n words) | Pointer pointer
Boolean byte (8 bit) | Record[n] record (n words)
Char char | REal real
‘Integer integer (16 bit) | String string .
Long long (32 bit) | SEt[n] set (n words)
KRAUT - User Manudi

Window commands. Page 25
Window W LX TY W H

Window W

DWindow W
DWindow *

C> W

43

Create window W with upper left corner LX,TY and
W characters per line and H lines.

Move to W if it exists, otherwise create window
with default coordinates.

Delete window W.

Delete all existing debug windows except lor the
current one.

Redirect output for command C into window W.
Window W is created with default coordinates,

if it does not yet exist.

KRAUT - User Manual

	0001
	0002
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

