CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Sesame: The Spice File System
Draft

Michael B. Jones
Mary R. Thompson
Richard F. Rashid

24 August 1984
Spice Document S170
Location of machine-readable file: [qfs]/usr/spicedoc/au984/ program/sesame
Abstract
Sesame provides several distinct but interlated services needed to allow protected sharing of data
and services in an environment of personal and central computers connectéd by a network. It
provides a smooth memory hierarchy between the local secondary storage and central file system. |t

provides a global name space and a global user authentication protocol.

Copyright © 1984 Carnegie-Mellon University

This design evolved from the earlier Network-Based Central File System design document in
Technical Report CMU-CS-80-134 written by M. Accetta, G. Robertson, M.Satyanarayanan, and
M. Thompson. Gene Ball, Greg Harris, Peter Hibbard and others at CMU have also contributed to this

document.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA
Order 3597, monitored by the Air Force-Avionics Laboratory under contract F33615-81-K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Projects Agency or the U.S. Government.

SESAME: THE SPICE FILE SYSTEM

Table of Contents

1. Overview

1.1 Status
1.2 Environment
1.3 Goals

2. General Design

2.1 Authentication System

2.1.1 Overview

2.1.2 Establishing a connection

2.1.3 Proving identity

2.1.4 Passwords and Secure Connections
2.2 Authorization System

2.2.1 Overview

2.2.2 Access Groups
2.3 File System

2.3.1 Overview

2.3.2 Implementation and use of files

2.3.3 File System functions
2.4 Name System

2.4.1 Overview

2.4.2 Structure of a directory

2.4.3 Versions

2.4.4 Name syntax

2.4.5 Canonical form of names

2.4.6 Symbolic Links

2.4.7 Links and Copies

2.4.8 Access control

2.4.9 Directory access rights

2.4.10 Deleting Names

2.4.11 Recovering expunged names
2.5 Migration System

2.5.1 Overview

2.5.2 Migration policy

2.5.3 Functions of the Migration Server

3. Primitive Operations

3.1 Common Characteristics
3.2 Authentication Primitives

3.2.1 Primitives for establishing and breaking a connection

3.3 Authorization Primitives
3.4 Data transmision primitives
3.4.1 File 170 primitives
3.4.2 File header manipulation primitives
3.5 Name Manipulation Primitives
3.6 Name Policy Primitives
3.7 Access Control primitives
Acknowledgements

A. File header fields

—
P B 0w aaauumund B W -

et b b -
>R~ Rafaiafa- rE g R

SRESBBEEBEG

w
82

SESAME: THE SPICE FILE SYSTEM

B. Directory fields

C. Format of the Group Attribute List

D. Using Sesamoid, the first version of Sesame
E. Summary of Primitives

References

53

35
56
59

SESAME: THE SPICE FILE SYSTEM 1

1. Overview

1.1 Status

The Sesame system (Name, File and Authorization Servers) will become part of the Spice environment by
the end of 1984. Until then, the Sesamoid File Server provides a subset of the Sesame Name and File server

calls and an interim Authorization Server provides a list of authorized system users.

* This document describes the Sesame system. The only calls that are currently provided by Sesamoid are the
ones not marked with an asterisk (*) in the Primitives summary at the end of the document. Read this
document if you wish to understand the direction in which the Spice file facilities are evolving. If you are
simply looking for the calls that you can currently use, read the section on Sesamoid and the Authorization
Server in Servers document.

1.2 Environment

o User community of 200 to 300 faculty, staff and graduate students.

e Many members of the community have personal Spice machines with at least the power of a Perq
and a reasonable amount of secondary storage, e.g. 24 megabytes.

¢ Some Spice machines may be shared amoung a small number of users.

o Some Spice machineé may be available for public use.

¢ All the Spice machines in the environment are connected by one or more local networks.

e Also on the local network are two or more secure central machines with larger amounts of

secondary and archival storage. E.g. 300 megabytes secondary storage, and as many dismountable
300 megabyte disk packs as necessay for archival storage.

1.3 Goals

o Secure and reliable storage and migration of users’ files on local secondary storage, central
secondary storage and archival storage.

e Protected sharing of files and services amoung users.
¢ Uniform name space for data and services.
o Uniform access to data regardless of what level of storage it is on.

¢ Very high availability of basic system (no system-wide downtime).

SESAME: THE SPICE FILE SYSTEM

o Graceful expansion to a potential user community of over 10,000.

SESAME: THE SPICE FILE SYSTEM 3

2. General Design

This section describes the functions of the various subsystems which belong to Sesame. These subsystems
represent functions that are grouped together mainly because of the commonality of the data they use. The
user interface documented in chapter 3 is grouped according to more logical areas of functionality, and so is

not exactly parallel to this section.

2.1 Authentication System

2.1.1 Overview

The Authentication System has the responsibility of authenticating a user’s identity by checking a login
name and password against the list of recognized users and their valid passwords. Since only software
running on the central service machines is secure, only Authentication Servers running on the the central
machines can be trusted to provide authentication between users on different machines. Local Authentication
Servers can be used to provide authentication between processes on the local machine. Login and registration
requests made to the Local server are normally also reflected to the Central Authentication Server. The local
Authentication Server may maintain a cache of users and their group access lists, to be used in case the local
machine is detached from the central system.

Since the traffic to the Authentication System is not particularly heavy, especially the requests that modify
the data base, and since it is essential that an Authentication Server is always available, there will be
Authentication Servers running on at least two of the central machines. The data base that is used by the
Authentication Server will be duplicated on each machine that is running a server. Thus a verification request

can be handled by either server, but a login or registration request must be reflected to all the servers.

2.1.2 Establishing a connection

In order to use the services provided by Sesame, a user must first establish a secure connection with the
Authentication Server. This connection is established by sending a login message, consisting of a Sesame user
name and an encrypted login code (see 2.1.4), to a public port of the Authentication Server. Depending on
the local authentication policy, this login connection may be established explicitly at the request of the user or
implicitly when a user logs in to the local machine. As a resuit of a successful login, a user service port to the
Authentication Server is established and returned, and the message reply port registered so that it can be used
as subsequent proof by the user of his identity. The Authentication Server defines the identity associates with

each service port to be a list of the access groups (sce section 2.2.2) of which the user is a member.

The connection to the Authentication Server is terminated by sending a logout message to the user service

SESAME: THI SPICE FILE SYSTEM 4

port. This deallocates the service port, deallocates any sublogin service ports, and deregisters any other ports

that these service ports may have registered.

The Authentication connection may also be broken implicitly by events such as a time-out due to local

machine crash. In these cases too, the connection is terminated appropriately.

2.1.3 Proving identity

Many other servers need to have a way to identify a processes that is sending a request for service and to
associate its user with class of users that has specific rights to objects or services. The Authentication Server
provides a uniform mechanism for this purpose. Once a user has a service port connection to the
Authentication Server, he may create and register ports that belong to him. He can then send a registered port
to another server as a token of his identity. The server then verifies the registered port via its own connection
to the Authentication Server and receives back the name and Access Group list of the user that registered the
port.

If a user wishes to operate with a restricted set of rights, he can perform a restricted login through his
original Authentication Server connection. This restriction request returns a new Authetication service port

associated with an identity that is a subset of the user’s complete set of access groups.

2.1.4 Passwords and Secure Connections

Because the network is considered a public medium, some care is taken not to transmit secrets such as
passwords in clear text. The general mechanism is to use a secure connection between network servers. The
sender turns on the "secure" bit in the message type word, which tells the network server to send the message
encrypted. Each network server must know the correct encryption key for talking to every other network
server.

Shortly after the Spice machine comes up, the owner of the machine logs in to the central system. This
login message (SendLogin) is sent before a secure channel is established, since it is part of the handshake
between the new host and the central,secure hosts. The local system chooses a random encryption key. The
login message consists of the user’s name in plain text and the name and encryption key encrypted with the
password that the user has typed in. Passwords are stored by the Authentication Server on a secure machine,
SendLogin uses the password to decrypt the login code and find out the encryption code. The presence of
name in the encrypted message provides enough redundancy for the Authentication Server to know that the
message was actually encrypted with the correct password. Thus passwords act as the initial encryption key for
communication between the user and the Authentication Server. Now both parties to the central login can

inform their local network server of the new network server’s encryption key without ever scnding that key or

SESAME: TIIE SPICE FILE SYSTEM 5

the password in the clear. Subscquent logins from the same host will only cstablish authentication service

ports; the network servers will ignore the second generation of encryption keys.

2.2 Authorization System

2.2.1 Overview

A user gains rights to objects and services of Sesame by being a member of one or more Access Groups as
defined in section 2.2.2. It is the responsibility of the Authorization System to maintain all the access group
lists. As in the case of the Authorization System, the software implementing this system must be secure and
always available, but is not too heavily used. Thus the Authorization System is implemented by servers
running on at least two of the central machines, all using the same replicated data base. There is no local

Authorization Server, so a user on a detached Spice is unable to call any of the authorization primitives.

2.2.2 Access Groups

An access group defines a subset of users to whom privileges may be collectively awarded or from whom
these privileges may be collectively revoked. Access groups are partitioned into two classes: primary access
groups and secondary access groups. Each user of Sesame is the sole member of exactly one primary access
group. Since there is a one-to-one relationship between primary access groups and users, the terms “user”
and “user’s primary access group” will be used interchangeably in this document. Secondary access groups
are created by users and differ from primary access groups in two ways:

1. Secondary access groups may not login, and

2. A secondary access group may contain more than one user.

A user may belong to any number of secondary access groups, and at any instant of time, the protection
environment of a user is defined by the union of the rights of all the access groups of which he is an
authenticated member at that instant. The user may establish a restricted authentication to deliberately
deprive himself of certain rights; for example, while debugging a file manipulation program, a user may not

wish to have Delete privileges on a sensitive file.

Associated with every aécess group is a data structure called the group attribute list or GAL (see appendix
C). The GAL contains all relevant information about that access group, and is uniquely identified by an
integer called the access group ID.

Every access group also has a name that identifies it uniquely. In the case of a primary access graup, this is
the name by which the corresponding user logs in to the Authentication Server, and in the case of a secondary

access group, this is the name by which that access group is referenced. ~ Access groups may be renamed;

SESAME: THE SPICE IFILE SYSTEM 6

however, their IDs cannot be altered. Every user is automatically a member of the group called ALL, which
consists of all Sesame users. When a user logs in to the Authentication Server, the authentication service port

returned to him has associated with it a list containing all the access groups of which the user is a member.

While primary access groups are restricted to having exactly one member, there is no restriction on either
the number or type of members of secondary access groups. One implication of this generality is that it is
possible to construct a hierarchy of secondary access groups. This is done by defining a sccondary access
group to consist of a set of other secondary access groups (or a mixture of primary and secondary access
groups). Thus, if A and B are two access groups, one can define C to consist of these two access groups.
Every membe; of cither A or B is automatically a member of C. Adding or deleting a member from A or B
thus implicitly adds him to C or deletes him from C. The relationship “is a member of” is thus a transitive one.
Consequently, the reflexive transitive closurel of this relationship applied to any access group yields a list
containing every member, direct or indirect, of that group. Thus, the set of rights that a user has on any entity

is the union of the rights that his access groups have on that entity.

This construction of the transitive closure (referred to as “flattening™) of a user’s access list is done at login
time. The flattened access list is associated with the port to the Authentication Server and is returned to any
server who asks for verification of a user’s registered port. The Name Server gets the access group list for a

user by a Verify request when a connection is first established.

Primary access groups can only be created and deleted by the System Administrator whereas secondary
access groups can be created and deleted by users. An access group’s attributes are protected against
unauthorized modification by an access control list mechanism. Each access group has an access control list
associated with it. This list consists of a set of access group IDs and the rights that each of them has on that
access group. The set of access rights are:

AddMembers members may be added to the group

RemoveMembers members may be removed from the group
DeleteGroup the group may be deleted

ChangePassword the password of the primary group may be changed (?)
ChangeFullName the (name and) full name of the group may be changed

GetAuxAccess the access control list for the group may be read

1I-’or brevity, the phrase “transitive closure” will mean “reflexive transitive closure” in the rest of this document.

SESAME: TIIE SPICE FILE SYSTEM 7
SctAuxAccess the access control list for the group may be modified

2.3 File System

2.3.1 Overview

The basic function of the File System is to allow the storing and retrieving of files on one’s local disk and/or
the central file systems disks. A file is simply a collection of constant data that can be named by a single
unique identifier. Thus a unique file identifier, (FID), refers to a unique collection of data. Possession of a
FID logically implies the possession of the data. Writing a file causes a new FID to be generated. If
necessary, pages of data may be shared between files in order to implement minor modifications of large files

efficiently. The maximum size of a file is 4 gigabytes.

The constraints on the File System services are the opposite of those on the Authentication and
Authorization Servers. It is expected that the service load on the File System will be quite heavy and the
security requirements not so severe. In fact, File System security need only be insured to a level equivalent to
the reliability the storage media on which the data is kept. In order to store a very large number of files and to
be able to retrieve them quickly, the global file space is spread among all the machines on the network. In

fact, copies may be kept on many different machines for files that are used frequently.

A File Server is running on each machine that has secondary storage and that server has primary
responsibility for all the files on its storage medium. The servers running on local Spice machines are referred
to as Spice File Servers, those on the central machines controlling the main large capacity secondary storage
media are called the Central File Servers, and those on the central machines controlling the tertiary storage

are called Archival File Servers. All of these servers are running the same basic software.

2.3.2 Implementation and use of files

A File Server keeps a table of the FIDs of all the files on its disk, and can return data for only those files.
The FID consists of a random, unique part and a hint part that specifies on what machine/server the file
might be found. If a File Server fails to find the file locally it forwards the request to the Migration Server
who uses the hint portion of the FID and perhaps a local database to begin searching for the file on other
machines. The Migration Server maintains a policy cn how far to search for a file. For example, whether or
not to go to other insecure Spice machines, whether or not to go to the Central File Servers and whether or
not to go to the Archival File Servers.

In order to efficiently implement large, sparse files, the File Server can recognize areas of a file or virtual
memory that have never been referenced or have been explicitly cleared. These areas of a file take no space

on disk or in physical memory, but logically contain all zeroes.

SESAME: THE SPICE FILE SYSTEM 8

The File System interface assumes that both it and its users have available a large amount of virtual memory
and demand paging such as the Accent Kernel [2] provides. Unlike a more conventional file system, the only

way to modify file data is:

e To read the entire file into virtual memory, (this is a mapping operation and no data transfer takes
place).

» Make the desired data modifications in virtual memory, (this creates new pages containing the
modified data).

o Write out the entire piece of virtual memory (this writes out only the modified pages and creates a .
new file consisting of those pages plus the non-modified pages of the original file).

2.3.3 File System functions

The basic function of the File System is to take a FID and return the data that it references, and to put new
data from virtual memory into a file and to return the new FID. The file system must be able to retrieve and
store data both on its local disk, and/or forward the data to another file server which controls the storage on
another disk. Files on the local disk are stored as permanént Spice segments. Thus all direct disk 1/0 is done
by the Accent Kernel and not by the File System.

The File Server functions are:

o To locate and return files stored on the local disk.
 To request the Migration Server to find files that are not currently on the local disk.

¢ To keep track of the total disk space that is used and to request the migration server to remove
files from the local disk when it is getting full.

¢ To maintain some additional information about files on the local disk, such as file size, creation,
access dates, author ID, local reference count, etc.

2.4 Name System

2.4.1 Overview

The Name System provides a global name space for all objects or services intended to be available to users
of the Spice environment. As in the case of the File System, the Name System must maintain a large data
base and respond quickly to requests for service. As a result of these requirements there is a Name Server
running on each machine, and the local Name Server should be able to satisfy the majority of requests that
come from local processes. The global name space is partitioned into disjoint sections, with only one Name

Server at a time having responsibility for each partition.

SESAME: THE SPICE FILE SYSTEM 9

The Name System provides four primary functions:
1. It maps names chosen by users to unique identifiers.2
2. It provides a directory structure that aids users in organizing their files in a logical manner.

3. It aids sharing of files by supporting shared directories and provides control over the extent of this
sharing,.

4. Tt maintains type information on all named objects.

5. It provides access control on all named objects.

These services are provided independently of the services provided by the File System. Consequently, it is
possible to use the name space as a repository for names that have nothing to do with files. One such use,
described in section 2.4.2, is to provide a network-wide naming scheme for IPC ports. Other uses of the name

space are left to the imagination of the reader and the ingenuity of users.

The global name space provided by Sesame appears to the user as a hierarchy of directories, similar to that
in the UNIX file system [4]. This directory hierarchy can be viewed as a rooted graph with non-terminal
nodes corresponding to directories and terminal nodes corresponding to names of entries in directories. An
arbitrary path from the root to a leaf specifies the entry name at the leaf unambiguously (but not necessarily
uniquely). Similarly, an arbitrary path'from the root to an internal node unambiguously specifies a directory.

Such a specification of a file or directory name is called an absolute pathname.

The global name space is maintained by several secure Central Name Servers on central machines, and by
the less secure Spice Name Servers on the Spice machines. In order to share the work among many server
processes the name space is partitioned along subtree boundaries. This partitioning is done dynamically.
That is, a Name Server may check out a subtree from the current maintainer if allowed, and can return the
subtree when it can no longer maintain it. This grants to that Name Server the exclusive right to make
modifications in that portion of the name space. There is an index of Name Servers and the (absolute)
pathnames of the directory subtrees that they are currently maintaining. When a given Name Server is unable
to find a pathname in its domain, it can check the index and forward the request to the Name Server for the
subtree, if any, on which the pathname should be found. Names in those domains that are being maintained
by Central Name Servers are findable by all users of the system. Finding a name in a domain that is checked
out to Spice Name Server is more probabilistic, since software running on personal machines can never be
fully trusted. Thus the objects that are intended to be shared between users should be kept in directories that

2In most cases this can be interpreted as “translates the name of a file to its FID.”

SESAML: THE SPICE IILE SYSTEM 10

are always maintaincd by one of the Central Name Servers. Files that arc primarily used by one user may in

kept in dircctories that can be checked out to the Spice Name Server on that user’s Spice machine.

2.4.2 Structure of a directory

Conceptually, a directory is a list of entries, each entry being a mapping from a entry name to a typed entry
value. In the great majority of cases the entry value will be of type File. This represents the simplest situation,
where a name in a directory is directly mapped to the FID of a file. Since entries are merely mappings, it is
perfectly possible and meaningful for a given file to have many names associated with it, in the same or
different directories.

Subdirectories have entries of type Directory in their parent directories. When parsing a pathname which
contains a subdirectory name, the Name Server must first check to see that the pathname resides in its
domain. If the name is not in the local domain the Name Server index is checked and the request is
forwarded to the appropriate Name Server. If the name is in the local domain the Name Server recursively
searches down the directory hierarchy until an entry which is not of type Directory is encountered. At this
point, with the one exception described below, the corresponding entry value is returned as the result of the
name lookup.

A second kind of entry is of type File. Here, the entry in the directory is simply a File ID, thus the name is
simply a mapping to that particular File ID. Normally file accesses are done by name rather than by ID, since
access control and migration policy is done on the basis of names. If the user has the right to do a

LookupName and obtain the File ID from the name however, he can then read the file by ID.

A third kind of entry is of type Symbolic Link. A symbolic link is the absolute pathname of an entry in
some directory and is used like a macro in a programming language. When the Name Server encounters a
symbolic link while trying to resolve a name reference, it continues the search using the pathname
corresponding to the symbolic link, thereby effectively performing a macro expansion. This may be applied

recursively. See section 2.4.6 for more dctails.

Another type of entry value is JPC port. This feature is used to provide a simple name, IPC port mapping
service so that users who wish to share IPC ports can remember names rather than IPC ports. Looking up an
agreed-upon name in the global name space will yield an IPC port which can then be used for whatever

purposes are necessary.

To assist users who wish to use the Name Server for non-standard purposes, a special range of user-defined

entry types is recognized by the Name Server. Entries of these types are 256 byte records whose values are

SESAME: THE SPICL FILE SYSTEM _ ‘ 11

neither checked nor interpreted by the Name Server. Entries of this type may be entered or looked up in
directories just as entries of type FID. It is expected that higher-level mechanisms will check and interpret

these entries suitably.

2.4.3 Versions

The naming mechanism supported by the Name Server reflects the expectation that most users will view
individual files and possibly other objects as being members of families rather than as isolated entities. For
instance, modifying existing files will typically lead to the creation of a sequence of files, closely related yet
distinct from each other. These files are certainly distinct, yet they only represent snapshots in the life history

of what would be called a file in conventional file systems.

The Name Server captures this view by composing a full entry name from two parts: a family name and a
version number. The family name is a text string that identifies a family of entry names. Version numbers are
integers used to distinguish between members of a family. The version numbers of the members of a family

reflect the chronological order in which the members were entered into the directory.

It is often the case that a user wishes to refer to a particular distinguished version of a name without
bothering to remember or find out what its version number is. Moreover, the particular version number
desired is influenced by the nature of the call. The Name Server therefore adopts the convention that a name
without a version number refers to a distinguished version appropriate to the specific call. The set of
distinguished versions recognized are as follows:

Low the least non-deleted version number of a name currently in the directory

High the greatest non-deleted version number of a name currently in the directory

New a new version one greater than the greatest (deleted or non-deleted) version in the
directory is to be created

All for calls that allow wildcarding, this distinguished set of versions is meaningful

For most calls a versionless name refers to the highest version. For those calls which enter a new name such
as EnterName and WriteFile, an unspecified version results in a new version number one greater than the
highest. Finally, in the DeleteName call, the default version number is the lowest. Bear in mind that the user
may always override the default version number by either providing a specific positive integral version

number, or by explicitly requesting one of the above distinguished “versions”.

Directories and symbolic links are both exceptions to the normal naming scheme in that they may have only

family names, and no version numbers. Keeping multiple versions of directories would vastly complicate the

SESAME: THE SPICE FILE SYSTEM 12

global name space and the name syntax without adding much reliability. A name archive is kept instead for
each directory. In the case of links, the complexity of the name syntax required to determine if a version
number should be applied to the link name or to the expanded object name was too complicated to be worth
the small increase in recoverability of keeping old versions of links around. (See sections 2.4.4 and 2.4.6 for

more details.)

A final caveat on versions: the proper use of version numbers is up to the user. A malicious (or merely
foolish) user may enter totally unrelated files as versions of a family. Version numbers will then be of dubious

value.

2.4.4 Name syntax

An absolute pathname is written as a “/” followed by the entry names, in order of traversal, of nodes
encountered while traversing that path, with the “/” character serving as a name separator. Entry names
accepted by the Name Server. may be of arbitrary length and may contain any of the ASCII characters in the
set { letters, digits, “”, “-”, “$”, “.” }. The version number (if specified) follows the terminal entry name, and
is delimited by a “#” character. The version number may be either a positive decimal integer, or one of the

keywords: Low, High, New, or A11. The character “*” is an abbreviation for the keyword A11.

Name matching not case distinctive. The original case is however, preserved. Successive enters of names
which are equivalent (other than case) cause additional versions to be created, with the case being taken from
the original version.

Any reserved 7-bit ASCII character (including letters, for matching purposcs) may be included in a name

i€ 3 3y

by quoting it with a single quotation mark (). For instance, I may enter a name with a question mark in it
by preceding the question mark with a quote character. Likewise, if I want to enter a name which differs from
an existing name only by the case of letters, I can do this by quoting the differing letters. Once two names
differing only by case have been entered, they can only be matched by quoting all of the ambiguous letters, or

by entering the case of each letter exactly.

Two primitives, ScanNames and ScanArchivedNames permit wildcarding in the terminal component of the
absolute pathnames that they accept as input. Two forms of wildcarding are recognized within entry names,
A “*” character in a name will match zero or more arbitrary ASCII characters. A “%” character will match
exactly one arbitrary ASCII character. Both forms of wildcarding may be used within one name.

Additionally, the #A11 option performs version number wildcarding.

€ 9

Two special names are recognized in every directory. They are “.” and “..”. Rather than being entered into

SESAME: TIIE SPICE FILE SYSTEM) 13
the name space, these names are actually macros which expand in pathnames. The name “.”” merely refers to
the directory itself. The name “..” refers to the directory’s parent dircctory. Usage of “..” in the root directory

is illegal.

Some examples of legal pathnames are:

/Root/Spice/Source/Oregano/Oregano.Pas
/User/Jones/XYZ/abc...xyz#8930
/User/Jones/Finger.Plan#Low
/Spice_System/Mail_System/EtherNet/Mailer.Run
/Root/Spice/Source/Nutmeg/%%%Nut* . Pas#All
/'Unix/'Names/'A'R'E/case/'Di'St’'In"'Ct'Iv'E.
/User/Jones/Source/../Binary/

Note: While the Name Server itself requires full paths from the root directory to the terminal nodes to be
specified for all operations, the user will in most cases not be burdened with this chore. User-interface code
will provide such abstractions as a current directory which specifies initial path elements of a name, as well as
search lists, logical names, and other name-related functions. Thus, the user will usually be able to specify
abbreviated pathnames relative to the current directory or an explicit logical name. Certain programs, it is

presumed, will also choose to use an implicit search list when looking up names.

2.4.5 Canonical form of names

When absolute pathnames are returned from the name server to the user, they are always returned in a

canonical form. This form is as follows:

e Symbolic links are expanded (unless being returned as the terminal component of a pathname).

e Version numbers are returned as decimal integers with no leading zeros following the terminal
pathname component and version delimiter. Directories have a trailing directory delimiter.
Symbolic links have no punctuation following following their terminal component.

¢ Any extraneous quote characters are removed. Letters are never returned quoted, although
quoting them may be necessary to achieve an unambiguous match.

o All characters are returned as 7-bit codes (no “meta-bits” set).

2.4.6 Symbolic Links

As already outlined in section 2.4.2, symbolic links may be entered into directories, and serve as macros
which expand into other names when they are used. The value of a symbolic link must be a versionless
absolute pathname. The actual semantics of symbolic links differ slightly depending upon their use. The
usual rule is that whenever a link is encountered in a pathname, either as an imbedded or terminal

component, that the link is expanded. This means, for instance, that ordinarily an EnterName (and

SESAME: THE SPICE FILE SYSTEM 14

consequently WriteFile) which references a symbolic link’s name will enter a new version of the name which
the link points to, and not make an new entry under the link’s name. Similarly, a DeleteName will ordinarily
delete the name pointed to by the link, and not the link itself. This behavior is consistent with both Multics
[1] and UNIX [5] symbolic links.

There are however, cases where one needs to talk about a link itself, and not the object pointed to by a link.
Forms of TestName, LookupName, EnterName, the friends of EnterName such as DeleteName, Rename and
CopyName are provided to override the default behavior, and actually reference links themselves rather than
referencing through links. Finally, since ScanNames is an operation on an entire directory and not on

individual names, any symbolic links in a directory are returned as such, and are not expanded.

As already stated in section 2.4.3, symbolic links may not be entered with version numbers. Thus, a version
number following a name which is a symbolic link is applied to the macro-expanded name, and not to the
link’s name. Whenever a link itself is being referenced without being expanded, a version number should not

be specified.

2.4.7 Links and Copies

Although an argument can be made that one might want to have links where the default behavior was to
“write on” rather than “write through” links, Sesame chooses the “write through” behavior for several
reasons. The most effective use for “write on” links is to “shadow” a subsystem in another directory, allowing
a user to keep copies only of the components which he has changed. While this is a valid use, Sesame

provides equivalent semantics to “write on” links through the use of the CopyName primitive.

CopyName makes a copy of the entry for an existing name under a new name. In the case of files, for
instance, the file id would be copied and entered under the new name as well as the old. Note that this does
not make a copy of the file data, it only makes two names for the same file. Then any subsequent WriteFile
requests would enter a new version of the written name, but leaving the copy under the other name
untouched. Compare this to the behavior of making a link to the file instead of using CopyName to copy the
name’s file id; when a WriteFile is performed to the link’s name, the link is expanded to be the original family
name, and a new version of the original name is entered. Thus unlike the CopyName case, links cause both
names to refer to the changed version. Thus Sesame effectively provides the semantics of both “write
through” and “write on” links.

SESAME: THL SPICE FILE SYSTEM 15

2.4.8 Access control

Corresponding to each name is an associated access control list, which is a mapping from access groups to
access rights on the object. When a user requests an operation on an object, the Name Server examines the
entries corresponding to each of the user’s access groups in the access control list on that name. If any of these
access groups possesses sufficient rights to perform the requested operation on the object, the access check

succeeds and further processing of the request occurs. Otherwise access is denied.

The access rights for a particular access group are defined by a collection of bits describing the operations
which may lcgally be performed on the object by members of that access group. The set of access b.its for a
file is divided into system access bits and auxiliary access bits. Logically, one can view a file as having two
access control lists: system and auxiliary. System access bits are interpreted by the Name Server. Auxiliary
access bits are stored with the name but normally have no meaning to the Name Server; they are interpreted
only by the programs or subsystems using them. The Name Server and the Authentication Server use

auxiliary access bits on directories and GALs to implement their own access checks.
The system access bits are:
Supersede a new version of this name may be added

Delete the entry name and object may be physically deallocated. This right is also implied by
DeleteNames permission in the name’s directory.

Visible the name will match a wildcarded pathname. If this bit is not set the name may still be
used, but will not be returned by the ScanNames call unless the user has ReadNames
permission on the name’s directory.

Lookup the value, e.g. FID or port, of the name may be returned.

Copy the value, e.g. FID or port, of the name may be copied to another name. (In most cases,
the Lookup right provides at least the equivalent capabilities.)

Read the object entered under the name may be “read”. For a file this right allows the user to
read a file by name, even though he may not have the Lookup right necessary to retrieve
the file’s File ID from the name. For a link, this right allows the user to use the link’s
pathname value to continue the name resolution.,

GetSysAccess the system access control list may be examined
GetAuxAccess the auxiliary access control list may be examined
SetSysAccess the system access contro! list may be modified

SetAuxAccess the auxiliary access control list may be modified

SESAME: THE SPICE: FILE SYSTEM 16

2.4.9 Dircctory access rights

The current implementation of the Name System controls access to directories as well as to the individually
named objeccts. The Name Server uses the auxiliary access bits of a directory to define a set of directory access

rights. These dircctory access rights are:

CreateNames new names may be added to the directory
DeleteNames names may deleted from the directory (see section 2.4.10)

ReadNames the directory names and name types may be examined

-

GetDefAccess the default directory access control list may be examined
SetDefAccess the default directory access control list may be modified.

CheckoutDir the directory may be placed in the exclusive domain of this user, so that all update and
search requests must be routed through his Name Server.

Access checks on directories are performed by the Name Server before carrying out a user’s request.

Unlike conventional file systems, there is no notion of “ownership” of a directory. All access control is
done via the access control list of the directory, and this list may be used to give a set of users equal rights on
the directory. In some sense one can say that the “owners” of a directory are the access groups which have all

rights on the directory. Thﬁs, a set of users may collectively “own” a directory and share its use.

To assist in the sharing of files, every directory contains system and auxiliary default access control lists. The
purpose of the default access control lists is to automatically provide an access control lists for names entered
in that directory. When a name is entered in a directory the access control list is set in one of the following

ways.

¢ If no previous version of the name exists, the default access control list is used.

o If a previous version exists, the access control list from the highest existing (non-deleted) version is
used.

o The user may subsequently call SetAccess to change the access control list.

A set of users having access to a common directory may set up the default access lists so that the mere entering

of a name in that directory causes the corresponding file to be accessible to everyone in that set.

SESAME: THE SPICE FFILE SYSTEM 17

2.4.10 Deleting Names

In order to allow easy recovery' from the not uncommon user mistake of deleting the wrong names, a delete
name request is implemented as a delayed action. When the delete request is made, the name is flagged in the
directory as deleted and a request is sent to the Migration Server to queuc the name and object for future
removal. If the name remains deleted until the removal request comes due, then the name is removed from

the directory and the object is removed from the local disk if there is no other name referring to it.

If a subsequent undelete of the name occurs before the removal time arrives, the delete flag is reset and it
appears as if the name was never deleted at all. To force immediate removal of deleted names an
ExpungeName operation on the directory is provided. Once removed, the corresponding entry name and
entry value associations can only be recovercd from the Name Archive (see section 2.4.11). Users will, in

general, never directly use the ExpungeName operation except for in unusual circumstances.

2.4.11 Recovering expunged names

Corresponding to every directory is a Name Archive. This is a data base to which only the Name System
has direct access. It is partitioned in a manner parallel to the subtrees of the global name space so that each
Name Server maintains matching domains of the name space and name archive space. Each time a name is
entered in a directory, it is also entered in the corresponding Name Archive, along with its entry value and the
date and time of entry. The Name Archive is never deleted or truncated, even if the corresponding directory
is. The Name Server supports a name retrieval service which can be used to recover the entry value that
corresponded to a given pathname on a certain date and time. Since directories themselves have entries in
their parent dircctories, this recovery mechanism will work even if some of the directories present in a
pathname no longer exist. To use this retrieval service, a user must possess ReadNames rights on the directory

from which the pathname is to be retrieved.

2.5 Migration System

2.5.1 Overview

The primary resposibility of the Migration System is to smoothly move files between the various File
Servers on the Spice, Central and Archival machines. This should be accomplished with a minimum of
explicit user control, but must be controilable by generai policies set by the administrators of the specific
machines. A Migration Server will run on every machine connected to the Sesame network. These servers

must have knowledge of all the File Servers and their related media on the network.

A Migration Server’s policy data base is local to it and its machine. The local Migration and File Servers
must be able to share the information about all the files on the local disk, how recently they have been

accessed, and how many local names reference each file.

SESAME: TIIE SPICE FILE SYSTEM 18

2.5.2 Migration policy
The migration policy on a machine should be setable by the administrator of that machine. In the case of a
personal Spice machine that is the owner. In the case of public Spice machines or the central service

machines it is the system administrator. The parameters of the policy include the following:

¢ The minimum amount of storage to be kept free.
¢ The suggested storage quotas for subtrees of the name space.

¢ Dircctories or subtrees in which no files are to be migrated to other machines. This creates a class
of files that are kept only locally.

¢ Directories or subtrees in which no files are to be automatically removed from the local machine.
This creates a class of files that are always available from the local disk.

¢ Directories or subtrees into which no files are to be automatically migrated. This creates a class of
files that are never kept on the local disk, but are paged in across the network whenever they are
referenced. : :

e Archival time delays for directories or subtrees. (i.e. the delay between when a file is created
locally and when it is copied to the next more secure File Server.)

e Removal time delays for directories or subtrees. (i.e. the delay between a delete name request and
the removal of the name and possibly the file)

o Default values for all the parameters for files that are not named or are in directories that do not
have policy parameters set.

2.5.3 Functions of the Migration Server

The Migration Server must provide a mechanism for the administrator to set and display the migration
policy. It provides primitives to retrieve a file from another File Server to the local one, to store a copy of a
local file to another File Server, and to move the local copy of a file to another File Server. It must also keep
track of all files that are queued for automatic archiving or removal, and to perform the necessary action when
the appropriate time comes. The Migration Server also has the responsibility of keeping track of total free

disk space and selecting less used files for automatic removal when the disk is getting full.

SESAME: THE SPICE IILE SYSTEM 19

3. Primitive Operations

The text which follows is an outline of the primitive operations provided by Sesame. Migration primitives
and primitives to be used for communication between the various Sesame servers are not speicifed. Call

which have not been implemented in the first release are marked with an asterisk (*).

3.1 Common Characteristics

All requests of Sesame are made through IPC messages sent to ports of the File, Name, Migration,
Authorization or Authentication Servers. See[3] for a description of IPC message formats. All request
messages have a standard format. Each message consists of a message ID, a reply port, and one or more
request parameters. The message ID is some value agreed upon betWeen a server process and its clients. The
Sesame servers have defined these IDs to identify the request when responding to messages. The reply port
specifies the destination for responses from the server. When a server responds to a request, the response
message is sent to the specified reply port.

All requests have a request code which specifies the type of request being made. This is followed by a

sequence of typed input parameters, which are interpreted according to the request code.

Response messages from the Sesame Servers also have a common form. Each contains the source port from -
which the message was sent, the message ID of the request invoking the response, the completion code of the
request, and one or more typed result values. The completion code specifies either that the request was
successfully completed or that the request could not be completed successfully due to some error. When a
completion code of Success is returned, the result values (if any) are the results of the completed operation. If

an error occured, the completion code indicates the reason for the failure.

This request/reply message protocol is entirely asynchronous. Client processes need not wait for a
completion response from server before proceeding. However, it is the responsibility of these processes to

insure that no dependent actions are attempted before a completion response is received from the server.

In addition to the asynchronous message interface documented here, synchronous remote procedure calls
are provided by Pascal modules (and eventually Lisp modules) generated by the Matchmaker program [6].
These calls correspond to the documentation here with the result being returned as the function value, and

the result parameters being returns as var parameters following the in parameters.

Several of the calls are provided with two or more forms, with one being a subset of the other. Where this is
the case, the subsct form will have a name prefix of Sub, whereas the full form of the call will have a name

prefix of Ses.

SESAME: THE SPICE FILE SYSTEM 20

3.2 Authentication Primitives

The Authentication Server primitives provide the verification mechanisms used in cstablishing an

authenticated connection with Sesame.

3.2.1 Primitives for establishing and breaking a connection

Logging in to the Authentication Server

RequestCode: SendLogin *
Port: public authentication port

Parameters: user name - a name which uniquely identifies each user. This is the same as the name of
. the primary access group to which the user belongs.

login code - the password of the primary access group corresponding to the user, applied to
the tuple <0, Rkey, user name>, where Rkey is going to be sent to the network server,
associated with the message’s reply port.

Result: ANPort - an IPC port for all further communication with the Authentication Server.
Completion Code: success - Login successful

Jailure - User name not recognized or password incorrect

The SendLogin request is used to establish a connection with Authentication Server. It verifies the
authenticity of the user and creates and returns the user’s authenticated service port for further
communication to the Authentication Server. It associates the access group information from the GAL for

the user with this port and registers the reply port so that it is available for verification when necessary.

User calls packages have a LoginOwnen(user name, password) => (ANPort) call to generate the SendLogin
primitive. LoginOwner chooses the Rkey and sends it to the network server.

Logging off
RequestCode: Logout *

Port: ANPort

Completion Code: success - Logout successful

The Logout request is used to break the connection previously established with the Login request. It is sent

SESAME: TI1E SPICE FILE SYSTEM 21

to the Authentication Server port created at login time and causes that connection and all subordinate

connections creatied with Restrict to be closed down.

Registering a port

RequestCode: Register *
Port: ANPort

Parameters: user port - a port to which the user typically has ownership and receiverights which is to be
registered with the Authentication Server as having the user’s identity.

Completion Code: success - the port is now registered

Ports that are registered with the Authentication Server may be passed to other servers as a token of a user’s
authenticated identity. (See Verify.)

Deregistering a port

RequestCode: Deregister*
Port: ANPort
Parameters: user port - a registered port.

Completion Code: success - the port is no longer registered

Deregister is used to break the association of user port with the ANPort user identity. It only breaks off the

user's own registration of user port.

Create a new restricted authentication port

RequestCode: Restrict *

Port: ANPort
Parameters: can restrict - a boolean that determines if the ncw conncction can exccute this Restriet call
again,

knows name - a boolean that determines if the new connection has a user name associated
with it

remove list - a boolean indicating whether the list that is supplied is a list of the only onesin
the restrictcd identity or the only ones not in the restricted identity.

SESAME: THE SPICE FILE SYSTEM 22

Result:

list option flag - when set to 1D, only access group IDs will be supplied; when sct to names,
only access group names will be supplied; when set to both, a list of name, 1D pairs will be
supplied

count - number of group ids and names that follow
IDS-a pointer to the array of group IDs that the new connection is to have

Authentication Port - an authenticated port to send messages to the Authentication Server

Completion Code: success - A new connection to the Authentication Server has been established

This allows a user to create a new authenticated identity with a subset of his maximum rights. Now ports

can be registered through calls to this new Authentication port and they become tokens of the diminished

identity.

Verify a user’s identity

RequestCode: Verify *

Port: ANPort

Parameters: user port - a registered port that has been sent as a token of a user’s identity
list option flag - when set to ID, only access group IDs will be returned; when set to names,
only access group names will be returned; when set to both, a list of name, ID pairs will be
returned

Resuit: user name - the login name of the user whose port it is

count - the number of access groups that are being returned

IDs - a pointer to an array of the access group IDs that the user has

Cempletion Code: success - the port is registerd to this user

invalid port - the port is not a registered port

The Verify primitive returns the identity that is registered with user port. The user name will be null if the

knows name flag in Restrict was false.

Verify is checked against the local Authentication server database first, and if that does not have user port

then the request is passed through to the central Authentication server.

SESAME: TIHE SPICE FILE SYSTEM 23

3.3 Authorization Primitives

Connecting to the authorization server

chuestCoﬂe: AuthorConnect *

Port: public authorization port
Parameters: valid port - a registered port from the authentication server.
Result: AR Port - the registered user’s own port for authorization service.

The AuthorConnect primitive is used for establishing contact with the authorization server.

(The authentication server also uses this to get its connection to the authorization database. In that case,

valid port signifies the system in some way.)

Implementation of Login-style password checking
RequestCode: UserValidation *

Port: ARPort
Parameters: user name - the name of the user attempting to log in.
Result: antipassword - the stored encrypted form of the password, for recognition purposes.

group ID - the user’s primary group ID

The authentication server uses this call to look up the user’s stored encrypted password. This information is

public since anyone may check a password by encrypting it and comparing it with the stored antipassword.

Creating a new access group

RequestCode: CreateGroup *

Port: ARPort

Parameters: access group name - the name to be given to this group for unique identification.
access group type - primary or secondary

Sfull name (optional) -the full, descriptive name of the access group, used only for
informational purposes '

SESAME: THE SPICE FILE SYSTEM 24

Result: access group ID - the group 1D of the GAL for the newly created access group.
Completion Code: success - new access group created
duplicate name - an access group whose name is access group name alrcady exists.

access violation - only the System Administrator may create primary access groups

The CreateGroup request is used to create a new access group. The same primitive is used to create both
primary and secondary access groups. However, only the System Administrator may create primary access
groups. The access control list of the newly-created access group gives the creator all Authentication Server
rights and gives no rights to anyone eclse. If the access group created is a primary access group, its password is
set to null.

Changing a primary access group password

RequestCode: ChangePassword *

Port: ARPort

Parameters:. user name - the name of the primary access group whose password is to be altered.
old password - the old password for the access group.
new password - the new password for the access group.

Completion Code: success - password changed
invalid password - old password incorrectly specified

invalid access group - specified access group does not exist

The ChangePassword request is used to to change the password for a primary access group. The old
password must’be supplied as a parameter before the new password may be changed. The System

Administrator, however, need not supply the old password.

Changing an access group full name
RequestCode: ChangeFullName *

Port: ARPort

Paramcters: user name - the name of the primary access group whose password is to be altered.

SESAME: THE SPICE IILE SYSTEM 25

full name - the new full name of the access group.
Completion Code: success - full name changed

invalid access group - specified access group does not exist

The ChangeFullName request is used to to change the full name for an access group.

Deleting an access group

RequestCode: DeleteGroup *
Port: ARPort
Parameters: access group name - the name of the access group to be deleted
Completion Code: success - access group deleted
access violation - the user does not have DeleteGroup rights on this access group

nonexistent group - the specified access group does not exist.

The DeleteGroup request is used to delete an access group. Anyone possessing DeleteGroup rights on this

access group is allowed to delete the group. Only the System Administrator may delete primary access

groups.

Renaming an access group

RequestCode: RenameGroup *

Port: ARPort

Parameters: old name - the current name of the access group
new name - the new name of the access group

Completion Code: success - access group renamed
access violation - the user does not have DeleteGroup rights on this access group
duplicate name - the new name specified alrcady exists

nonexistent group - the specified access group does not exist.

SESAME: THE SPICE FILE SYSTEM 26

The user must possess DeleteGroup rights on an access group in order to rename it. The System

Administrator may rename any access group.

Adding members to an access group

RequestCode: AddToGroup *
Port: ARPort
Parameters: Mod group - the name of the secondary access group to be modified.
Add group - the name of the access group to be added.
Completion Code: success - add group made a member of mod group
. access violation - the user does not possess AddMember rights on mod group
redundant addition - add group is already a member of mod group

invalid access group - one of the specified access groups does not exist

The AddToGroup request is used to add a member to a secondary access group. A user must possess
AddM ember rights on an access group in order to add members to it.

Removing members from an access group

RequestCode: RemoveFromGroup *

Port: ARPort

Parameters: Mod group - the name of the secondary access group to be modified.
Rem group - the name of the access group to be removed

Completion Code: success - removal successful
access violation - the user does not possess RemoveMember rights on Rem group
not a member - Rem group is not currently a member of Mod group

invalid access group - one of the specified access groups does not exist

The RemoveFromGroup request is used to remove members from a secondary access group. Removal of
currently logged in members takes effect only when they log out or when they perform an action that causes

their flattencd access list to be recomputed.

SESAME: THE SPICE FILE SYSTEM 27

Mapping Access Group Names to IDs
RequestCode: TrGroupName *

Port: ARPort
Parameters: access group name - the name of the access group whose ID is desired
Resuit: access group ID - the ID of access group name

full name - the full name of the access group
Completion Code: success - the given name was successfully translated

invalid name - the given name does not belong to any access group

Mapping group IDs to names
RequestCode: TrGrouplD *

Port: ARPort
Parameters: access group ID - the ID of the access group whose name is desired

Result: access group name - the name of the access group whose ID was supplied
Jfull name - the full name of the access group
Completion Code: success - the translation was successful

invalid ID - the given ID does not refer to an existing access group

Listing the members of a secondary access group

RequestCode: ListMembers *
Port: ARPort
Parameters: access group name - name of the secondary access group whose members are to be listed

transitive closure flag - when this flag is set, both direct and indirect members of the access
group are listed. Otherwise only direct members are listed.

list option flag - when set to ID, only access group IDs will be returned in member list;
when set to names, only access group names will be returned; when set to both, a list of
name, ID pairs will be returned

SEESAME: THE SPICE FILE SYSTEM ' 28

Result: member list - a list of of access groups which are members of this secondary access group.
This may contain both primary and sccondary access groups. The format of this result
depends on list option flag

Completion Code: success - the members have been listed

nonexistent group - the secondary access group specified does not exist.

Listing the membership of an access group
RequestCode: ListMembership *

Port: ARPort

Parameters: access group name (optional) -name of the primary or secondary access group whose
membership in secondary access groups is to be listed. If none is specified, this parameter
defaults to the current primary access group.

transitive closure flag - when this flag is set, both direct and direct membership of the access
group is returned. Otherwise only direct membership is returned.

list option flag - when set to D, only access group IDs will be returned in membership list;
when set to names, only access group names will be returned; when set to both, a list of
name, ID pairs will be returned

Result: membership list - the list of access groups of which access group name is a member. This list
will contain only secondary access groups. The format of this result is determined by list
option flag.

Completion Code: success - the membership list has been generated.

nonexistent group - the access group specified does not exist.

3.4 Data transmision primitives

In the usual case all data transmision primitives refer to files by name and go through the Name Server.
However, there are limited facilities for a client to refer to files by their File ID’s and thus to deal with

unamed files.

3.4.1 File 170 primitives

Reading data from a file to memory
RequestCode: SubReadFile

SESAME: TIE SPICE FILE SYSTEM 29

Port: NSPort
Parameters: apathname - the absolute pathname to read the data from
Result: data pointer - a pointer to the data read in memory

file size - the total number of bytes read
Completion Code: success - the data was successfully mapped into memory
no such name - no entry was found under apathname
access violation - the requesting client tried to read a file for which he did not possess rights
not a file - the entry found under apathname was not a file

no such file ID - the file associated with the entered ID could not be found

The SubReadFile request is used to map the data associated with the given filename into memory. Note
that we map the entire file in, thus there are no arguments specifying the size or position of the data to be
read. We can get away with mapping the whole file since we actually will only bring in the pages which are
touched, the rest being backed to secondary storage. Holes in the file will be mapped in as valid zero pages
which will actually be created if written to.

Reading data from a file to memory
RequestCode: SesReadFile

Port: NSPort
Parameters: apathname - the absolute pathname to read the data from
Result: data pointer - a pointer to the data read in memory

file size - the total number of bytes read

data format - one of {unspecified, text, bit8, bitl6, bit32, bit36, press, ...}
creation date - the date and time the file was written

actual name - the absolute pathname actually read from

name status flags - low version, high version

Completion Code: success - the data was successfully mapped into memory |

SESAME: THE SPICE FILE SYSTEM 30

no such name - no entry was found under apathname
access violation - the requesting client tried to read a file for which he did not possess rights
not a file - the entry found under apathname was not a file

no such file 1D - the file associated with the entered ID could not be found

The SesReadFile request is a long form of the SubReadFile call. It returns several parameter values which

the short form does not.

Reading data from a file to memory

RequestCode:
Port:

Parameters:

Result:

Completion Code:

SesIDReadFile *
FSPort
FID - the File ID of the file to be read

file search flags (optional) - subsets of {inhibit/allow local file system access,
inhibit/allow CFS access, inhibit/allow archive access, inhibit/allow foriegn Spice machine
access}. Defaults will be applied for each flag if unspecified.

data pointer - a pointer to the data read in memory
file size - the total number of bytes read

file status flags - flags indicating properties (stable/normal, location (local, CFS, archive,
foriegn)) of the file

success - the data was successfully mapped into memory

no such file ID - the file associated with the given ID could not be found

The SesIDReadFile request is used to map the data associated with the given file ID into memory. Note

that we map the entire file in, thus there are no arguments specifying the size or position of the data to be

read. We can get

away with mapping the whole file since we actually will only bring in the pages which are

touched, the rest being backed to secondary storage. Holes in the file will be mapped in as valid zero pages

which will actually be created if written to.

Writing data from memory to a file

RequestCode:

SubWriteFile

SIESAME: THE SPICE FILE SYSTEM 31

Port:

Parameters:

Result:

Completion Code:

NSPort

apathname - the absoltfte pathname to write the data to

data pointer - a pointer to the data in memory

file size - the number of bytes to be written

data format (optional) - one of {unspecified, text, bit8, bitl6, bit32, bit36, press, ...}
actual name - the absolute pathname actually written to ‘
creation date - the date and time the file was written

success - the data was written under the name retﬁmed

access violation - the requesting client tried to write a file for which he did not possess

rights

conflicting version - the explicit version number was less than or equal to that of an existing
version

allignment error - the data was not on a page boundry

The SubWriteFile request is used to enter a new name into the directory structure and write a file under

that name. This short form of the call picks up defaults for unspecified parameters from previous versions or

directory defaults. The user must have CreateNames rights in the directory or Supercelie rights on the

previous version. Empty pages need no disk pages assigned to them.

Writing a file allowing control over defaults

RequestCode:
Port:

Parameters:

SesWriteFile *

NSPort

apathname - the absolute pathname to write the data to
data pointer - a pointer to the data in memory

Jfile size - the number of bytes to be written

file properties (optional) - flags indicating desired properties (stable/normal) of file.
Defaults will be applied if unspecified.

data format (optional) - one of {unspecified, text, bit8, bitl6, bit32, bit36, press, ...}

SESAME: THE SPICE FILE SYSTEM 32

sys’aux flag (optional) - if set to sys the system access control for the entry is modified; if
set to aux the auxiliary access control list is modified; botk causcs both lists to be modified

access control list (optional) - pointer to a structure of access control lists values for each
type of access

Resulit: actual name - the absolute pathname actually written to
creation date - the date and time the file was written
Completion Code: success - the data was written under the name returned

access violation - the requesting client tried to write a file for which he did not possess

rights

conflicting version - the explicit version number was less than or equal to that of an existing
version

allignment error - the data was not on a page boundry

The SesWriteFile request is a long form of the SubWriteFile call. It may be used to specify parameter
values which simply default in the SubWriteFile form when required. Note that defaults may still be taken
for any of the optional parameters. The user must have CreateNames rights in the directory or Supercede

rights on the previous version.

3.4.2 File header manipulation primitives

Returning file header information

RequestCode: SesGetFileHeader

Port: NSPort
Parameters: apathname - the absolute pathname with which to find the file
Result: file header block - a data structure containing the fields of the file header. See appendix

A for details on file header fields.
Completion Code: success - the header data was successfully returned
no such name - no entry was found under apathname

access violation - the requesting client tried to read a file header for which he did not
possess rights

SESAME: THE SPICE FILE SYSTEM 33

not a file - the entry found under apathname was not a file

no such file ID - the file associated with the entered ID could not be found

The SesGetFileHeader request is used to return fields from the file header.

Returning file header information
RequestCode: SesIDGetFileHeader *

Port: FSPort
Parameters: FID - the File ID of the file whose header is to be read

file search flags (optional) - subsets of {inhibit/allow local file system access,
inhibit/allow CFS access, inhibit/allow archive access, inhibit/allow foriegn Spice machine
access}. Defaults will be applied for each flag if unspecified.

Result: file header block - a data structure containing the fields of the file header. See appendix
A for details on file header fields.

Completion Code: success - the header data was successfully returned

no such file ID - the file associated with the entered ID could not be found

The SesIDGetFileHeader request is used to return fields from the file header.

Returning file data and header information
RequestCode: SesReadBoth

Port: NSPort
Parameters: apathname - the absolute pathname with which to find the file
Result: data pointer - a pointer to the data read in memory

file size - the total number of bytes read

file header block - a data structure containing the fields of the file header. See appendix
A for details on file header fields.

actual name - the absolute pathname actually read from

name status flags - deleted/undcleted, low version, high version

SESAME: THE SPICE FILE SYSTEM 34

Completion Code: success - the header data was successfully returned
no such name - no entry was found under apathname

access violation - the requesting client tried to read a file header for which he did not
possess rights

not a file - the entry found under apathname was not a file

no such file ID - the file associated with the entered ID could not be found

The SesReadBoth request is used to return both the data from a file and ficlds from its header.

3.5 Name Manipulation Primitives

The Name Server provides primitives to map names to their entry values, to create and delete directories,

and to control access to directories.

Looking up names
RequestCode: SubLookupName

Port: NSPort
Parameters: apathname - the name to be looked up (may not contain wildcard characters)
Result: actual name - the absolute pathname actually found

entry type - the type value of the entry found. Some example values are File, Directory,
and Port. See appendix B for a more complete description.

entry data - a variant field dependent upon the entry type. A File ID will be returned here
for a File entry, whereas there will be no data returned for a Directory -- all that this call
will tell you about a directory is that it exists. Again, see appendix B for a more complete
description.

name status flags - deleted/undeleted, low version, high version
Completion Code: success - the name was successfully looked up.
name not found - the specified name was not found

access violation - the client does not have sufficient rights to look up the given name

This function provides a simple way to look up a name. If any entry encountered during the parsing of

SESAME: THE SPICE FILE SYSTEM 35

apathname is of type Symbolic Link, a macro expansion is performed using the value of that entry in place of

the corresponding name. in apathname. 1f the final result is of type FID or IPC Port, the corresponding FID

or IPC port is returned. If it is of type Directory no entry data is returncd, but entry type specifics the fact that

a lookup on a directory name was done. If apathname does not contain a version number, the most recent

version is assumed.

Looking up names allowing special name treatment

RequestCode:
Port:

Parameters:

Result:

Completion Code:

SesLookUpName *
NSPort
apathname - the name to be looked up (may not contain wildcard characters)

name flags - subsets of {expand/return symbolic links, inhibit/allow deleted/undecleted
names}

actual name - the absolute pathname actually found

entry type - the type value of the entry found. Some example values are File, Directory,
and Port. See appendix B for a more complete description.

entry data - a variant field dependent upon the entry type. A File ID will be returned here
for a File entry, whereas there will be no data returned for a Directory - all that this call
will tell you about a directory is that it exists. Again, see appendix B for a more complete
description.

name status flags - deleted/undeleted, low version, high version
success - the name was successfully looked up.
name not found - the specified name was not found

access violation - the client does not have sufficient rights to look up the given name

The SesLookupName call is a superset of SubLookupName, allowing the additional name flags parameter in

addition to those provided by SubLookupName.

Determining the type of a name

RequestCode:

Port:

SubTestName

NSPort

SESAME: THE SPICE FILE SYSTEM 36

Parameters:

Result:

Completion Code:

apathname - the name to be looked up (may not contain wildcard characters)
actual name - the absolute pathname actually found

entry type - the type value of the entry found. Some example values are File, Directory,
and Port. See appendix B for a more complete description.

name status flags - deleted/undcleted, low version, high version
success - the name was successfully found
name not found - the specified name was not found

access violation - the client does not have UseNames rights on the name’s directory

SubTestName is like SubLookupName except that it never returns the entry data associated with a name,

but only the entry type. Note that this only requires UseNames rights on the parent directory, whereas

SubLookupName requires Lookup rights on the name itself -- a much stronger requirement. It is anticipated

that this call will be used when all that is desired is to test for the existance of a name, and to determine its

type.

Determining the type of a name allowing special name treatment

RequestCode:
Port:

Parameters:

Resuait:

7 Completion Code:

SesTestName *
NSPort
apathname - the name to be looked up (may not contain wildcard characters)

name flags - subsets of {expand/return symbolic links, inhibit/allow deleted/undeleted
names}

actual name - the absolute pathname actually found

entry type- the type value of the entry found. Some example values are File, Directory,
and Port. See appendix B for a more complete description.

name status flags - deleted/undeleted, low version, high version
success - the name was successfully found
name not found - the specified name was not found

access violation - the client does not have UseNames rights on the name’s directory

SESAME: THI SPICE FILE SYSTEM 37

The SesTestName call is a superset of SubTestName, allowing the additional name flags parameter in
addition to those provided by SubTestName.

Entering an object into a directory

RequestCode: SubEnterName
Port: NSPort
Parameters: .apathname - the name to be entered into the directory structure

entry type - the type value of the object to be entered. Some example values are File,
Directory, and Port. Sce appendix B for a more complete description.

entry data- a variant field dependent upon the entry fype. For instance, this field must
contain a File ID for type File, and an IPC port for type Port. For type Directory, this field
is left empty, seeing as how the user can’t write any directory data directly. Use of this call
with entry type Directory enters a new directory, thus no special call is nceded for that
purpose. See appendix B for a more complete description.

Result: actual name - the absolute pathname, including version number, actually entered
Completion Code: success - apathname was successfully entered

conflicting version - the version number specified in apathname was less than or equal to
that of an already existing version

access violation - the client does not possess CreateNames rights in the specified directory

invalid directory version - only one version number of a directory is allowed

The SubEnterName request is used to place a name and entry value pair in the directory structure, It
requires CreateNames permission in the directory within which the name is being entered if no version of the
name already exists else if a version of the name already exists, then Supersede privileges on the name are
needed. If a previous version of the name already exists in the directory and no version number is specified in
apathname, the name is entered with the next higher version number. If a previous version of the name
already exists and a version number is specificd in the name, then it must be greater than the highest version
number so far. If no previous version of the name has ever existed, then version one is assigned if none is

specified in apathname, otherwise the specified version is used.

Entering an object allowing special name treatment

RequestCode: SesEnterName *

SESAME: TIIE SPICE FILE SYSTEM ' 38

Port:

Parameters:

NSPort
apathname - the name to be entered into the directory structure
name flags (optional) - expand/supersede symbolic links

entry type- the type value of the object to be entered. Some example values are File,
Directory, and Port. See appendix B for a more complete description.

entry data - a variant ficld dependent upon the entry type. For instance, this field must
contain a File ID for type File, and an IPC port for type Port. For type Directory, this field
is left empty, seeing as how the user can’t write any directory data directly. Use of this call
with entry type Directory enters a ncw directory, thus no special call is needed for that

purpose. See appendix B for a more complete description.

Result:

Completion Code:

sys/aux flag (optional) - if set to neither then the default access control list is used; if set to
sys the system access control for the entry is specified; if set to aux the auxiliary access
control list is specified; botk causes both lists to be taken from access control list

access control list (optional) - pointer to a structure of access control lists values for each
type of access

actual name - the absolute pathname, including version number, actually entered
success - apathname was successfully entered

conflicting version - the version number specified in apathname was less than or equal to
that of an already existing version

access violation - the client does not possess CreateNames rights in the specified directory

invalid directory version - only one version number of a directory is allowed

The SesEnterName request is a superset of SubEnterName, allowing both the additional name flags

parameter and the specification of a non-default access control list for the name. An explicit access control list

is necessary if the

default access control list would deny the user rights to the entry which he may want, and

would not have the right to grant himself otherwise. Note that defaults may still be taken for any of the

optional parameters.

Deleting a name in a directory

RequestCode:

Port:

SubDeleteName

NSPort

SESAME: THE SPICE FILE SYSTEM 39

Parametcrs: apathname - the name to be deleted

Co‘mplction Code: success - the name was successfully deleted
nonexistent name - the name specified does not exist
access violation - the user does not possess DeleteNames rights on the name specified
name already deleted - the given name was alrcady deleted

directory not empty - illegal to delete a non-empty directory

The SubDeleteName request is used to delete a name from a directory. It requires DeleteNames permission
in the directory or Delete permission on the name. The name is marked as deleted, but remains in the
directory and is queued for expunging by the Migration Server. If no version number is specified then the

lowest version in the directory will be deleted.

Deleting a name in a directory allowing special name treatment

RequestCode: SesDeleteName *
Port: NSPort
Parameters: apathname - the name to bfa deleted
name flags (optional) - expand/ d.elete symbolic links

expunge flag (optional) - set to true if an expunge is also desired. If false or ommitted, no
expunge will be done.

Completion Code: success - the name was successfully deleted
nonexistent name - the name specified does not exist
access violation - the user does not possess DeleteNames rights on the name specified
name already deleted - the given name was already deleted

directory not empty - illegal to delete a non-empty directory

The SesDeleteName call is a superset of SubDeleteName; allowing the additional name flags parameter in
addition to those provided by SubDeleteName. Unless the expunge option is specified, the name is marked as
deleted, but remains in the directory and is queued for expunging by the Migration Server. However, if an

expunge is also requested, then it is removed from theé directory.

SESAME: TIIE SPICE FILE SYSTEM 40

Restoring a deleted name

RequestCode: SesUndeleteName *
Port: NSPort
Parameters: apathname - the name to be undeleted
name flags (optional) - expand/undelete symbolic links
Completion Code: success - the name was successfully undeleted
nonexistent name - the name specificd does not exist
access violation - the client does not possess the prbper rights to undelete the name

name not deleted - the given name was not deleted

The SesUndeleteName request is used to restore a deleted name. It requires either CreateNames permission
on the directory in which the entry resides or permission to have deleted the entry. The Migration Server is

informed that the entry is no longer to be expunged.

Expunging deleted names from a directory
RequestCode: SesExpungeDirectory*

Port: NSPort
Parameters: apathname - name of the directory from which files are to be expunged.
Completion Code: success - the expunge was successful

access violation - the requesting client tried to expunge a directory for which he did not
have the necessary rights

All deleted names in the directory are expunged. The client must possess DeleteNames permission in the
directory for this operation to succeed. Note that with the SesExpungeName call a client may be able to

expunge individual names in directories for which he doesn’t possess DeleteNames access.

Changing tie name of an entry

RequestCode: SubRename

Port: NSPort

SESAME: TIE SPICE FILE SYSTEM 41

Parameters: old apathname - absolute pathname of the object to be renamed

new apathname - new name to enter the object under
Result: actual name - the new absolute pathname the object was entered under
Completion Code: success - the name was succeséfully char;ged

access violation - the client either does not have the proper rights to delete old apathname
or to enter new apathname

SubRename enters the object specified by old apathname into into the global name space as new apathname

and then removes the old apathname. The access control list of the object is moved with it.

Changing the name of an entry allowing special name treatment

RequestCode: SesRename *
Port: NSPort
Parameters: old apathname - absolute pathname of the object to be renamed
name flags - expand/rename symbolic links
new apathname - new name to enter the object under
Result: actual name - the niew absolute pathname the object was entered under
Completion Code: success - the name was successfully changed

access violation - the client either does not have the proper rights to delete old apathname
or to enter new apathname

The SesRename request is a superset of SubRename, allowing the additional name flags parameter.

Copying an entry to a new name

RequesiCode: SubCopyName*
Port: NSPort
Parameters: old apathname - absolute pathname of the entry to be copied

new apathname - name to make a copied entry under

SESAME: TIIE SPICE IFILE SYSTEM 42

Result: actual name - the new absolute pathname the object was entered under
Completion Code: success - a new entry was successfully made

access violation - the client either does not possess Copy rights on old pathname or the
proper rights to enter new pathname

SubCopyName enters the object specified by old apathname into into the global name space as new
apathname and without removing the old apathname. This is equivalent to performing a lookup and then an
enter on an entry except that in certain cases an access control violation would occur if the actual lookup were
attempted where a copyname is allowed. One example of this is a file entry for which the user does not
possess lookup rights, but for which he does possess the Copy right. The access control list of the old object is

copied to the new name.

Copying an entry to a new name allowing special name treatment

RequestCode: SesCopyName *
Port: NS Port
Parameters: old apathname - absolute pathname of the entry to be copied
name flags - expand/copy symbolic links
new apathname - name to make a i:opied entry under
Result: actual name - the new absolute pathname the object was entered under
Completion Code: success - a new entry was successfully made

access violation - the client either does not possess Copy rights on old pathname or the
proper rights to enter new pathname

The SesCopyName request is a superset of SubCopyName, allowing the additional name flags parameter.

Scanning directories for names

RequestCode: SesScanNames
Port: NSPort

Parameters: wild apathname - the absolute pathname to be scanned (may contain wildcard characters in
the terminal component)

SESAME: THE SPICE FFILE SYSTEM 43

name flags (optional) - inhibit/allow deleted/undeleted names

entry type - the entry type being scanned for. The special type designator A/l may be given,
in which case names of all entry types are returned.

Result: directory nameentry list - the absolute pathname of the directory in which matches occured

actual name count - the actual number of list elements returned. Will be zero if no match
occured.

Completion Code: success - the given wild absolute pathname was successfully scanned

access violation - the client does not possess ReadNames rights on the directory to be
scanned

illegal pathname - wildcards were found in wild apathname at other than the terminal
component ’

The SesScanNames call is used to search for a given pattern in a specified directory. It will sort and return
all the matches to the given pattern in the directory. Optionally, names only of a specific entry type can be
scanned for. Symbolic links are not expanded, and are returned by this call. Depending on the value of name
flags, only active names, deleted names or both are considered. If no version number is specified, then the
highest existing version of the name is returned. If the version number is wildcarded, then all existing
versions of the name are returned. The version field for directory and symbolic link entries will be returned
as zero. Note that wildcarding is permitted only in the terminal component of wild apathname. This call
requires cither ReadNames access on the directory being scanned, in which case all matches will be returned,

or else Visible access on each match which is to be returned.

Retrieving archived names

RequestCode: SesScanArchivedNames *
Port: NSPort
Parameters: wild apathname - the name to be scanned for; may be wildcarded

entry type - the entry type being scanned for. The special type designator Al may be given,
in which case names of all entry types are returned.

start time - a date and time which determines the maximum age of the names scanned;
here “age” is determined by the date of entry in the directory whose name archive is being
scanned

end time - a date and time which determines the minimum age of the names scanned; here

SESAME: THE SPICE FILE SYSTEM 44

Result:

“age” is determined by the date of entry in the directory whose name archive is being
scanned

entry list-a list of the names, entry types and creation dates corresponding to wild
apathname between start time and end time

actual name count - the actual number of list elements returned

Completion Code: success - the entries were successfully retrieved

access violation - the client does not possess ReadNames rights-the directory whose name
archive is being scanned

Retrieves the entry types corresponding to the given name(s) between the specified dates and times. The

client must possess ReadNames rights on the directory whose name archive is begin scanned.

3.6 Name Policy Primitives

Returning the retention count of a name

RequestCode:
Port:
Parameters:

Result:

SesGetRetentionCount *
NSPort
apathname - the absolute pathname whose retention count is to be returned

retention count - The number of versions of name being retained in the directory before the
oldest version is automatically deleted. A zero result specifies an infinite retention count.

Completion Code: success - the retention count for the name was returned

name not found - the specified name was not found
access violation - client did not have the proper rights
version number specified - no pathname version number is allowed in this call

name is a directory - this call is not allowed for directories

The retention count on a name specifies the number of versions of a name which are to be retained when a

new version is created. When a new version is entered enough versions will be deleted to bring the number of

undcleted versions down to retention count. Deletion is done in ascending version number order.

SESAME: THE SPICE FILE SYSTEM 45

Setting the retention count for a name

RequestCode: SesSetRetentionCount *
Port: NSPort
Parameters: apathname - the absolute pathname whose retention count is to be set

retention count - The number of versions of name to retain in the directory before the
oldest version is automatically deleted. A zero argument specifies an infinite retention
count.

Completion Code: success - the retention count for the name is now set
name not found - the specified name was not found
access violation - client did not have rights to delete the name
version nmﬁbe.r speciﬁed - no pathname version number is allowed in this call

illegal retention count - a negative retention count was specified

name is a directory - this call is not allowed for directories

The retention count on a name specifies the number of versions of a name which are to be retained when a
new version is created. When a new version is entered enough versions will be deleted to bring the number of

undeleted versions down to retention count. Deletion is done in ascending version number order.

Returning the default retention count in a directory

RequestCode: SesGetDefRetentionCount *

Port: NSPort

Parameters: apathname - the directory absolute pathname whose default is to be returned

Result: retention count - The number of versions of a name to retain in the directory before the
oldest version is automatically deleted. A zero argument specifies an infinite retention
count.

Completion Code: success - the default retention count for the directory was returned
name not found - the specified name was not found

access violation - client did not have the proper rights

SESAME: THE SPICE FILE SYSTEM 46

version number specified - no pathname version number is allowed in this call

not a directory - apathname did not specify a directory

The retention count on a name specifies the number of versions of a name which are to be retained when a

new version is created. When a new version is entered enough versions will be deleted to bring the number of

undeleted versions down to retention count. Deletion is done in ascending version number order.

Setting the default retention count in a directory

RequestCode:
Port:

Parameters:

SesSetDefRetentionCount *
NSPort
apathname - the directory absolute pathname whose default is to be set

retention count - The number of versions of a name to retain in the directory before the
oldest version is automatically deleted. A zero argument specifics an infinite retention
count.

Completion Code: success - the default retention count for the directory was set

name not found - the specified name was not found

access violation - client did not have rights to delete the name

version number specified - no pathname version number is allowed in this call
illegal retention count - a negative retention count was specified

not a directory - apathname did not specify a directory

The retention count on a name specifics the number of versions of a name which are to be retained when a

new version is created. When a new version is entered enough versions will be deleted to bring the number of

undeleted versions down to retention count. Deletion is done in ascending version number order.

3.7 Access Control primitives

Reading the access control list

RequestCode:

Port:

SesGetAccess *

NSPort

SESAME: THE SPICE FILE SYSTEM © 47

Parameters:

Result:

Compietion Code:

apathname - the name of the entry to return the access control list for
name flag (optional) - expand link/set link access.

sys/aux flag - if set to sys the system access control for the entry is returned; if set to aux
the auxiliary access control list is retrieved; both causes both lists to be retrieved

access control list - the access control list of the entry, If sys/aux flag is set to sys or aux a
list of two-tuples consisting of access group ID, access rights pairs is returned. If the
sys/aux flag specified both lists, a list of three-tuples consisting of access group ID, system
rights and auxiliary rights is returned.

access control list count - the number of elements in the acess control list.
success - the access control list was successfully read

access violation - The client does not have the rights to read the specified access control list.
GetSysAcess rights are needed to read the system access control list and GerAuxAccess
rights are needed to read the auxiliary access list.

Writing the access control list

RequestCode: SesSetAccess *

Port: NSPort

Parameters: apathname - the name of the entry to set the access control list for

name flag (optional) - expand link/set link access.

sys/aux flag - if set to sys the system access control for the entry is modified; if set to aux
the auxiliary access control list is modified; both causes both lists to be modified

access control list - the access control list of the entry. If sys/aux flag is set to sys or qux this
consists of a list of two-tuples corresponding to access group ID, access rights pairs. If the
sys/aux flag specified both lists, this list consists of three-tuples corresponding to access
group ID, system rights and auxiliary rights.

access control list count - the number of elements in the access control list

Completion Code: success - the access control list was successfully modified

access violation - The client does not have the rights to modify the specified access control
list. SetSysAcess rights are neceded to modify the system access control list and
SetAuxAccess rights are necded to modify the auxiliary access list.

SESAME: THE SPICE FILE SYSTEM 48

The SesSetAccess request is used to update the access rights for one or more access groups in the access
control list of an entry. If the access rights are null, the access group is completely removed from the access
control list. If the access rights are non-null and the access group is alrcady on the access control list, the new
rights are substituted for the old rights. If the access rights are non-null and the access group is not currently

on the access control list, the access group is added to the access control list with the specified access rights.

Checking access on a file

RequestCode: SesCheckAccess *

Port: NSPort

Parameters: apathname - the name of the entry whose access is to be checked.
name flag (optional) - expand link/check link access

access group list (optional) - the list of IDs of the access groups whose rights are to merged
for the purposes of this check. If absent, the set of currently enabled access groups is used.

access group list count - the number of elements in the access group list

Result: rights mask - a bit mask corresponding to system and auxiliary rights.

Completion Code: success - the rights list for the specified access groups on the file have been returned
name not found - the specified apéthnamc cannot be found.

access violation - the client does not have GetAccess privileges on this entry

The SesCheck Access primitive is used to check the access that any arbitrary collection of access groups have
on a file. The GetAccess privilege is needed to perform this check unless the access groups being checked are

the ones belonging to the client.

Reading the directory default access control list

RequestCode: ~ SesGetDefAccess*
Port: NSPort
Parameters: directory name - the name of the directory whose default access control list is to be read.

sys/aux flag - if set to sys the default system access control list is retrieved; if set to aux the
default auxiliary access control list is retrieved; both causes both lists to be retrieved.

SESAME: TIIE SPICE FILE SYSTEM 49

Result:

Completion Code:

access control list count - the number of elements in the access control list

access control list - the default access control list of the directory. If the sys/aux flag is set
to sys or aux, this consists of a list of access group, access rights pairs. If the flag is set to
both, this list consists of a set of three-tuples corresponding to access group IDs, system
rights and auxiliary rights. '

sticcess - the access control list was successfully returned
invalid name - directory name either docs not exist or does not refer to a directory

access violation - the enabled access groups do not possess Lookup on the directory

The SesGetDefAccess request is used to retrieve the default access contro! list associated with a directory. It

requires GetDefAccess permission in the directory whose default access control list is being read.

Changing the directory default access control list

RequestCode:
Port:

Parameters:

Completion Code:

SesSetDefAccess *
NSPort

directory name - the name of the directory whose default access control list is to be
updated.

sys/aux flag - if set to sys the default system access control list is modified; if set to aux the
default auxiliary access control list is modified; both causes both lists to be modified.

access control list - the new access control list for the corresponding access group(s). If the
sys/aux flag is set to sys or aux, this consists of a list of access group, access rights pairs. If
the flag is set to both, this list consists of a set of three-tuples corresponding to access group
IDs, system rights and auxiliary rights.

access control list count - the number of elements in the access control list
success - the access control list was successfully modified
invalid name - directory name either does not exist or does not refer to a directory

access violation - the enabled access groups do not possess SetDefAccess rights on the
directory

The SesSetDefAccess request is used to update the access rights for one or more access groups in the default

access control list of a directory. It requires SetDefAccess permission in the directory whose default access

control list is being changed. If the access rights are zero, the access group is completcly removed from the

SESAME: THE SPICE FILE SYSTEM 50

default access control list of the directory. If the access rights are non-zero and the access group is already on

the access control list, the new rights are substituted for the old rights. If the access rights are non-zero and

the access group is not currently on the access control list, the access group is added to the access control list

with the specified access rights.

Checking default access on a directory

RequestCode:
Port:

Parameters:

Result:

Completion Code:

SesCheckDefAccess *
NSPort

directory name - the name of the directory whose default access control list is to be
updated.

sys/aux flag - if set to sys the default system access control list is modified; if set to aux the
default auxiliary access control list is modified; both causes both lists to be modified.

access group list (optional) - the list of IDs of the access groups whose rights are to merged
for the purposes of this check. If absent, the set of currently enabled access groups is used.

access group list count - the number of elements in the access group list

rights mask - a bit mask corresponding to system and auxiliary rights.

success - the access control list was successfully modified

invalid name - directory name cither does not exist or does not refer to a directory

access violation - the enabled access groups do not possess SetDefAccess rights on the
directory

The SesCheckDefAccess primitive is used to check the default access that any arbitrary collection of access

groups has on a directory. The GetDefAccess privilege is needed to perform this check.

SESAME: THE SPICE FILE SYSTEM 51

Acknowledgements

The authors wish to acknowledge the contributions of George Robertson, M. Satyanarayanan and Mike
Accetta who are co-authors of the Central File éystem design from which Scsame has evolved, and to Gene
Ball and Peter Hibbard who took part in a number of the design meetings and initial critiques. Credit is also
due to members of the Three Rivers Computer Corporation Accent group, who have been involved in the
review process and initial implementation effort. There special credit is due to David Golub, who has actively
worked with us on file system issues. The authors also wish to express their appreciation to the members of
the CMU Department of Computer Science, in general, and the members of the Spice group, in particular,

for their comments on the design and on this document.

SESAME: THE SPICE FILE SYSTEM 52

A. File header fields

The following table summarizes the information that the File Server keeps about cach of the files on its
local disk.

o Global information

o File ID

o File Size

o Advisory Data Format
o Author ID

o Creation Date

o File Print Name

o Local information

o Last Access Date

o Has Been Archived
o Do Not Remove

o Reference Count

o Segment ID

o Storage Map

The next table specifies the fields that are returned by the SesGetFile Header primitive.

o File size

e Data format

e Print name

¢ Author ID

o Creation Date

o Access Date

SESAME: THE SPICE FILE SYSTEM

B. Directory fields

The following table sumarizes the information in the name data base (directory structure).

o Directory information

o Default access control list

o Number of versions of names to retain

o Directory status (primary or advisory)

o File ID of corresponding name archive

Entry Information

. o Name of Entry -- just this component of the pathname for the entry

o Status of Entry -- undeleted/deleted and maybe other flags

o Retention Count -- number of versions to retain

o Access Control List -- list of access control groups and rights

o Entry Type -- one of {File, Directory, Symbolic Link, IPC Port, User Defined, Empty}

o Entry Data -- variant dependent upon entry type. Contents are listed for each entry type:

File

Directory

Symbolic Link
IPC Port

User Defined

the File ID

no contents. A directory entry has no user readable or writable
components in the normal sense. He can only manipulate them through
name name server calls. Thus the user’s calls will view the data for a
directory as an empty variant field. The hidden representation is what is
actually being described in this appendix.

the substitute pathname

the actual IPC port

A Dblock of storage at least as big as a 255 byte string.

53

SESAME: THE SPICE FILE SYSTEM 54

C. Format of the Group Attribute List

For every access group in the system there is one GAL containing the following information:

Access Group Name
Full Name

Access Group ID
Group Type
Password

Direct Members Lz'sé

Direct Membership List

a unique name that identifies this access group. For primary access groups this is
the login name of the corresponding user.

the full descriptive name of the access group. For primary access groups this will
be the full name of the corresponding user; consequently it may not be unique.

* a unique integer that identifics this access group. Used instead of Access Group

Name wherever a fixed length identification is needed for the access group, such
as in the access control list of files.

- (Primary/Secondary)

For primary access groups this is the login password, transformed by an
encryption function. Not present for secondary access groups.

the list of direct (i.e., without applying transitive closure) members of this access
group

the list of access groups of which this access group is a direct member.

SESAME: TIIE SPICE FILE SYSTEM 55

D. Using Sesamoid, the first version of Sesame

Sesamoid is the current Spice filesystem. It consists of a subset of the data transmission and name
manipulation primitives that are described in this document, plus some temporary primitives necded to retain
disk structure compatibility with the POS filesystem. No authorization, authentication or migratiori
primitives have been implemented. No automatic archiving, delayed deletion, or access control is done.
There are no links, or other types of name entries except for files, directories and ports. There is an existing

message interface and a matchmaker call interface to the primitives that are not flagged by an "*".

The Sesamoid file server provides a naming convention that allows a local filesystem to reference files on a

remote Spice machine.

Each machine should have a file by the name <Boot>SysName (usually this is Sys:Spice>SysName) which
contains the name of that machine. The first line of this file is an ascii name by which his filesystem will be
known. To reference a file on a remote machine a user must know the name of that machine (as defined in
the remote SysName file) and then reference the remote file by its absolute pathname, starting with the
remote machine name. For expample, if a machine has the name mrt, remote users can refer to a file on that
machine with the name >sysd>User>Guest>foo.pas by the name >mrt>User>Guest>foo.pas from their

machines.

It is also possible to control remote access to your filesystem. There are three possible levels of access: no
access, read access, and full access, on a per-machine basis. When a system is booted read access is
automatically granted. The shell command Access returns the current access. Access takes the arguments

None, Read, or Full and sets the access accordingly.

The exported Pascal procedures for Sesamoid are found in SesameUser.pas, the interface routines are in
PathName.pas, with the Evnironment Manager procedures (to set search lists) being in EnvMgrUser.pas. The
type definitions files are SesameDefs.pas and EnvMgrDefs.pas. All of these files are retrieved from the
update set /usr/spice/libpascal/src/ on CMU-CS-CFS.

SESAME: THE SPICE FILE SYSTEM 56

E. Summary of Primitives

The following is a summary of the primitives provided by Sesame. The page on which the primitive is fully
described appears within square brackets. Calls which will not be implemented with the first release are

marked with an asterisk (*),

Authentication Primitives

[20} * SendLogin (public authentication port, user name, login code)= (ANPort)
[20] * Logout(ANPort)= ()

[21} * Register(ANPort, userport)= ()

[21] * Deregister (ANPort, userport)=>()

[21) * Restrict (ANPort, can restrict, knows name, remove list, list option flag, count, IDS)=>
(Authentication Port)

[22] * Verify (ANPort, user port, list option flag) = (user name, count, IDs)
Authorization Primitives

[23] * AuthorConnect (public authorization port, valid port) = (ARPort)

[23] * UserValidation(ARPort, user name) = (antipassword, group ID)

[23] * CreateGroup (ARPort, access group name, ;1ccess group type, full name) = (access éroup ID)
[24) * ChangePassword (ARPort, user name, old password, new password)=>()
[24] * ChangeFullName (ARPort, user name, full name)=> ()

[25] * DeleteGroup (ARPort, access group name)=>()

[25] * RenameGroup (ARPort, old name, new name)=>()

[26] * AddToGroup (ARPort, Mod group, Add group)=s()

[26] * RemoveFromGroup (ARPort, Mod group, Rem group)=>()

[27] * TrGroupName (ARPort, access group name)= (access group ID, full name)
[27] * TrGroupID (ARPort, access grou?; ID) = (access group name, full name)

[27] * ListMembers (AR Port, access group name, transitive closure flag, list option flag) => (member list)

SESAME: THE SPICE FILE SYSTEM

28]

57

* ListMembership (AR Port, access group name, transitive closure flag, list option flag) =
(membership list)

Data Transmission Primitives

(28]

[29]

(30]

[30]

[31]

32]
(33]

[33]

SubReadFile (NSPort, apathname)=> (data pointer, file size)

SesReadFile(NSPort, apathname) = (data pointer, file size, data format, creation date,
actual name, name status flags)

* SesIDReadFile (FSPort, FID, file search flags)=> (data pointer, file size, file status flags)

SubWriteFile (NSPort, apathname, data pointer, file size, data format)= (actual name,
creation date)

* SesWriteFile (NSPort, apathname, data pointer, file size, file properties, data format, sys/aux flag,
access control list) = (actual name, creation date)

SesGetFileHeader (NS Port, apathname) = (file header block)
* SesIDGetFileHeader (FSPort, FID, file search flags)=> (file header block)

SesReadBoth (NSPort, apathname)= (data pointer, file size, file header block, actual name,
name status flags)

Name Manipulation Primitives

[34]

[35]

35]
[36]
[37]

[37]

(38]
[39]
[40]

[40]

SubLookupName (NSPort, apathname)= (actual name, entry type, entry data, name status flags)

* SesLookUpName (NSPort, apathname, name flags) = (actual name, entry type, entry dala,
name status flags)

SubTestName (NSPort, apathname)=> (actual name, entry type, name status flags)
* SesTestName (NSPort, apathname, name flags) = (actual name, entry type, name status flags)
SubEnterName (NSPort, apathname, entry type, entry data)=> (actual name)

* SesEnterName (NSPort, apathname, name flags, entry type, entry data, _sys/aux flag,
access control list) = (actual name)

SubDeleteName (NSPort, apathname)= ()
* SesDeleteName (NS Port, apathname, name flags, expunge flag)=> ()
* SesUndeleteName (NSPort, apathname, name flags)= ()

* SesExpungeDirectory (NS Port, apathname)=> ()

SESAME: TIIE SPICE FILE SYSTEM 58

[40] SubRename(NSPort, old apathname, new apathname)= (actual name)

[41] * SesRename(NSPort, old apathname, name flags, new apathname) = (actual name)
[41] * SubCopyName(NSPort, old apathname, new apathname) => (actual name)

[42] * SesCopyName (NSPort, old apathname, name fiags, new ;zpathname) = (actual name)

[42] SesScanNames(NSPort, wild apathname, name flags, entry type) = (directory name, entry list,
actual name count)

[43] * SesScanArchivedNames (NSPort, wild apathname, entry lype, start time, end time) = (entry list,
actual name count)

Name Policy Primitives
[44] * éesGetRetentionCount (NSPort, apathname)=> (retention count)
[45] * SesSetRetentionCount (NSPort, apathname, retention count)= ()

[45] * SesGetDefRetentionCount(NSPort, apathname)= (retention count)

[46] * SesSetDefRetentionCount(NSPort, apathname, retention count)= ()

Access Control primitives

[46] * SesGetAccess(NSPort, apathname, name flag, sys/aux flag)= (access control list,
access control list count)

[47] * SesSetAccess(NSPort, apathname, name flag sys/aux flag, access control list,
access control list count) = (')

[48] * SesCheckAccess(NSPort, apathname, name flag access group list, access group list count) =
(rights mask)

[48] * SesGetDefAccess(NSPort, directory name, sys/aux flag, access control list count) =
(access control list)

[49] * SesSetDefAccess (NSPort, directory name, sys/aux flag, access control list,
access control list count) = ()

[50] * SesCheckDefAccess(NSPort, directory name, sys’aux flag, access group list,
access group list count) = (rights mask)

SESAME: THE SPICE FILE SYSTEM

References

(1]

2]

3]

4]

3]

[6]

Organick, E.I
The Multics System: an Examination of its Structure.
MIT Press, Cambridge, Mass., 1972.

Rashid, R. F. & G. G. Robertson.

Accent: A comunication oriented network operating system kernel.

Technical Report CMU-CS-81-123, Department of Computer Science, Carnegie-Mellon University,
April, 1981,

Rashid, R.F.
Accent Kernel Reference Manual.
Technical Report , Department of Computer Science, Carnegie-Mellon University, July, 1982.

Ritchie, D. M. and Thompson, K.
The UNIX Time-Sharing System.
Bell System Technical Journal , July-August, 1978.-

McKusick, Joy, Leffler, Fabry.

A Fast File System for UNIX.

Technical Report Draft of September 6, 1982, Computer Systems Research Group, University of
California, Berkeley, 1982.

Wright Keith,
Matchmaker: A Remote Procedure Call Generator.
Technical Report , Department of Computer Science, Carnegie-Mellon University, April, 1982.

	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59

