

PERQ Systems Corporation Accent Lisp Manual

Se

om
..
.

Accent Operating System n Preface

ACCENT LISP MANUAL

PREFACE

ape +
=

This manual contains documentation on Accent Lisp,
an implementation of the Common Lisp language for
the PERQ Model LN-3500 workstation. Accent Lisp

runs under the Accent operating system, which was
developed jointly by PERQ Systems Corporation and
the Spice Project in the Computer Science

Department at Carnegie-Mellon University. Spice” is
an acronym for Scientific Personal Integrated
Computing Environment.

Lisp is a programming language widely used for _
Artificial Intelligence research. It was invented by |
John McCarthy in 1958. Because of its built-in
facilities for symbol-processing and its interactive
programming environment, the language is
increasingly being used for such applications as
compilers, CAD systems, and editors. Common Lisp i is
a new dialect of Lisp, closely related to Maclisp, Lisp
Machine Lisp (Zetalisp), and (somewhat less closely)
Franz Lisp. It was developed jointly by several Lisp

groups to meet the need for a modern Lisp dialect that
is stable, well-documented, and suitable for
implementation on a variety of machines.

| ee PERQ Systems Corporation 2 ee oo "Accent Lisp Manual ne

Accent Operating System a oe _ Preface - , - S

mee : Hemlock i is an editor written in Common Lisp. ‘Iti isa e
descendant of EMACS, an editor written by Richard |

M. Stallman of the Massachusetts Institute of |

Technology. If in your use of Accent Lisp you — o ee

implement any additional editing commands, we

would appreciate your forwarding them tous.

Before you use this manual you should be farniliar
with the material in the Accent U ser’s M anual.

: Other manuals for Accent are: | | ee -

© - Accent Programming Manual Accent.

_ Microprogramming Manual Accent

- Languages Manual Accent Qnix Manual _
(forthcoming i in a later release) Accent
‘System Administration Manual - -

| Throughout the Accent hanes the term *PERQ? =

refers to all models of the PERQ workstation unless"
stated otherwise. When a distinction is made between ©

_ the PERQ workstation and the PERQ2 workstation, ee

the term ”PERQ2” refers to both Model LN-3000 and

LN-3500. = | SPR ay onion

The following symbols b have been used A throughout the
oS c Accent manuals:

~2> © Material that is to be replaced by symbole or - text as

explained in the accompanying. text. Do not type the | |

angle brackets. Example: <filename> indicates

that you should type the name of your file.

[] ‘Optional feature. Do not type the : square brackets. ae

ao LP Oton repetitions of an optional item. Do not type ne

- “PERQ Systems Corporation _ Accent Lisp Manual

* Accent Operating System — | Preface

the braces.

_ CAPITALS Literal, to be reproduced exactly as shown (although
it may be reproduced in upper-case or lower-case).

Example: <filename.CMD> indicates that the

filename must contain the extension .cmd.

ney A ”"Or”--choice between the items shown on either side
: of the symbol. | a

CTRL Control key

ESC, INS_ Escape key (labeled as ACC ESC or INS on various —

models) |

DEL Delete key (labeled as REJ DEL on some models) |

_ HELP Help key

ULF Linefeed Key

«RETURN Carriage return
© Choe he |

stalscs input to be typed by the user

| PERQ Sy stems Corporation . -

Accent Operating System
| ‘Accent Lisp Manual ce _

ACCENT LISP USER’S GUIDE

August 1, 1984

Copyright (C) 1984 PERQ Systems Corporation

2600 Liberty Avenue

P. O. Box 2600

Pittsburgh, PA 15230

(412) 355-0900

S Accent isa trademark of Carnegie-Mellon University.

Accent Lisp and many of its subsystems and support sw

programs were originally developed by the CMU _
Computer Science Department as part of its Spice

: Project.

This document is not to be repreduced | in any form or
transmitted in whole or in part without the prior
written authorization of PERQ Systeme Corporation.

The information i in this document i is sub ject to change —

without notice and should not be construed as a

commitment by PERQ Systems Corporation. The

company assumes no responsibility for any errors that —

may appear in this document.

PERQ Systems Corporation will make every effort to
keep customers apprised of all documentation changes
as quickly as possible. The Reader’s Comments card is
distributed with this document to request users’
critical evaluation to assist us in preparing future

documentation. — |

NS ne. S
a .
ed,

PERQ, PERQ2, LINQ, and d Qnix are trademarks of >
PERQ Systems Corporation.

PERQ Systems Corporation Lisp User’s Guide

Accent Operating System Index

Table of Contenta Page

7 1. Introduction 1

1.1. Loading Accent Lisp 1

1.2. Startup Switches 2
1.3. Accent Lisp Initialization a

1.3.1. Command line variables 4
and functions

1.3.2. Port initializations 6
1.3.3. Stream initializations 8

2. Accent Lisp Specific Information _ li

S me , 2.1. Numbers dt

| 2.2. Characters 11
2.3. Vector Initialization 12

 - 2.4. Packages . 12
nan, 25. The Editor 12
_. : 2.6. Garbage Collection : 12

.. &7. Timing 13

2.8. Saving a Core Image 13

3. Debugging Tools | 15

_;. §.1. Function Tracing 15

lil

PERQ Systems Corporation | oe ; _ Accent Operating System

«3.2, The Single Stepper _

3.3. The Debugger |

3.3.1. Movement commands .
3.3.2. Inspection commands —

3.3.3. Other commands —

3.4. Break Loop

3.5. Cleaning Up

ogy " Open and Closed Coding |
4.2. Compiler Switches _

4.3. Declare Switches .

5. 1. Compile the Code
- §.2. Avoid Unnecessary Storage

Vv

Allocation

5.3. Mapping
5.4. Using Lists Dus

5.4.1. Vectors |
5.4.2. Structures a

§.4.3. Hashtables
-§.4.4. Bit-vectors | |

5.5. Simple Vs Complex Arrays

5.6. Function Calls
5.7. Keyword and Rest Arguments

5.8. Numbers

5.9. Timing

Lisp User’s Guide

| Index

Le 18 ae

20 ©
21
22

26

32

36

37

37 38

39
39

39

40
‘42

PERQ Systems Corporation Lisp User’s Guide |

Accent Operating System Index

6. Creating and Using Menus 45
6.1. The Menu Choose Functions — 45
6.2. The Item 49
6.3. User Selectable Attributes of the 51

| Choice Window

6.4. The Arrangement of Items in the 52

Window

7.1. Interface Parameters and Return 54

Values

7.2. Matchmaker-Generated Interface 56

Functions

7.2.1. Lisp remote procedures 56
7.2.2. Lisp messages 67
7.2.3. Lisp server messages __ 57
7.2.4. Lisp alternate replies «668

7.3. Accessing Lisp Alien Data 59
Structures |

7.3.1. Alien enumerations | 60

7.3.2. Alien records 61

7.3.3. Alien arrays 64
| 7.3.4. Alien pointers 665
7.4. Alien Values | 66
7.5. Alien Types 66

7.6. Alien Primitives 67

7.7. Alien Variable Primitives 70

oe | PERQ Systems Corporation : | Lisp User’s Guide —

ae oe Accent Operating System Table of Contents —

le of Matchmaker- oe a

n Data __ 73
aS Appendix A. Examp

vi

PERQ Systems Corporation Accent Lisp User’s Guide
Accent Lisp Manual : Introduction

L._Introduction

Common Lisp is a new dialect of Lisp that is closely _

related to Maclisp and Lisp Machine Lisp. Common
Lisp was developed in response to the need for a

modern, stable, well-documented Lisp dialect that can
be implemented efficiently on a variety of machine _
architectures. Accent Lisp is PERQ Systems’
implementation of Common Lisp for microcodable
personal machines running PERQ’s Accent operating

system. |

The primary document for users of any Common Lisp |
implementation is Common Lisp by Guy L. Steele Jr.

(Digital Press, 1984). All implementations of Common
Lisp conform to this standard. However, different |
implementations are free to make a number of design |

choices and to add to the basic Common Lisp
facilities. This document covers the choices and
features that are specific to the Accent Lisp
implementation. This document and Common Lisp,

taken together, provide all information needed by the
user.

1.1. Loading Accent Lisp

Accent Lisp will run on a PERQ1a or PERQ2
workstation with 16k control store and the Accent
operating system. A partition with at least 5500 free
pages is needed to contain the Accent Lisp files. A
paging partition with at least 10,000 pages of free
space is also recommended.

OL 2. - Startup Switches

a e | PERQ Systems Corporation Accent Lisp User's Guide x
Accent Lisp Manual oe Introduction =

aS Accent Lisp is supplied on floppy disks labelled

oe * Accent Lisp.” To install Accent Lisp: |

1. Insert the floppy disk labelled * Accent Lisp
1” into the floppy drive.

2. Path to the partition that will contain the”
Accent Lisp files, and type: |

Floppy eAddL1—

3. Path to the paging visita: and type:

Floppy eAddLisp

eAppSLi sp

4, Answer any questions as they appear on
the workstation screen. Default Tesponses :

_ ate provided. Ce me ne a

Accent Lisp is loaded to your system and ready to use. 2

When Accent Lisp is on your workstation, put the - = | . ess ape

directory that it resides in on your search list. Type i

Lisp to the Accent shell to run | Accent Lisp. | ae | .

ae The Liap call recognizes a “switch that tells it which

 *core” file to load. A suspended Lisp system is saved
in a core file (see section 2.8) that can be restarted
using: the -Core switch to Lisp: ,

liap score==<filename> oe

PERQ Systems Corporation | Accent Lisp User’s Guide

Accent Lisp Manual Introduction

If this switch is omitted, the file *lisp.core” is used. S

When Lisp is starting up, it also looks for the following

switches and takes the specified actions in the order
that the switches appear.

-Eval==string :

One Lisp object will be read from String and

evaluated.

Edit Starts the editor. If there are any input words, the

_ first is taken as a filename, and that file is visited.

-Load=filename

The named file will be loaded into Lisp.

The syntax of the -Edit switch allows the user to

define a Hemlock command with a shell alias:

alias hemlock 'run lisp -edit’

This causes the command

hemlock < filename>

to edit the specified file.

1.3. Accent Lisp Initialization

When Accent Lisp is started up, the following global
variables, ports, and streams are initialized. This
initialization takes place whether the default Lisp.core
or another core file is started.

= PERQ Systems Corporation “Accent Lisp User's Guide

__ Accent Lisp Manual | ee Introduction |

oe 3. 1. Command line variables and functions

| *command-line-words* es | [Wasabi

ee A list of simple strings vataed from the _
command line by the shell. The first word i is
the name used to invoke Lisp (usually
"Lisp”), and the following words are either _
switches, switch values, inputs, outputs, or
the special word consisting of the tilda (”~”) _
character. :

A word with a minus sign as its first
character is a switch name. If the last
character of a switch name is an equals sign, |
then the word immediately following the _
switch name is the switch value.

Words that are not the utility name, switch
names, or switch values must be either |

inputs or outputs. If no tilda is present, then _

all such words are inputs. Otherwise, the
words preceding the tilda are inputs, and the

words following the tilda are outputs.

command-line-utility-name Te re

: [Variable]

This variable is initially set to:
(oar *command-line-words*)

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Introduction

- *command-line-inputs* - [Variable]

A list of simple strings consisting of the |

input words from *Command-line-words*, in

the same order. ,

command-line-outputs [Variable]

A list of simple strings consisting of the |
- output words from *Command-line-words*,

in the same order.

command-line-switches [Variable] ee

A list of command-line-switch objects

created from the switch names and switch
values in *Command-line-words*. |

Command-line-switch ob jects may be examined with 3

the following functions: ae

cmd-switch-name eG

command-line-switch [Function] —

Returns the string name of a command-line-
switch object. The leading minus sign and
ending equals sign are stripped off.

_emd-switch-arg

command-line-switch [Function]

Returns the string argument of a command

a _ PERQ Systems Corporation

_ Accent Lisp Manual

line switch, or Nil if the switch has no
- argument. o |

cmd-corresponding-arg a | 2

command-line-switch [Function]

Returns the input word or output word that
appeared most recently before the switch on
the command line, or Nil if no inputs or
outputs preceded the switch. If the result is
not Nil, then it is an element of either ,
Command-line-inputs or *Command-line-

outputs*. : -

1.3.2. Port initializations |

TimePort es [Variable] |

Port for time server requests.

SesPort ee [Variable]

Port for file system requests. |

EMPort = | [Variable]

Port for environment manager requests.

*PMPort® — [Variable]

Port for process manager requests.

NameServerPort [Variable]

Accent Lisp User’s Guide wae
Introduction

PERQ Systems Corporation Accent Lisp User’s Guide “

Accent Lisp Manual _ Introduction.

Port for name server requests. |

“User'Typeseript® [Variable]
Port to use for operations on the process’
given typescript. The standard stream
Terminal-io does its input and output

through *UserTypescript*. Changing the
value of *UserTypescript* to an object that
is not a working typescript usually causes an a |

unrecoverable error. oe

_ *UserWindow* [Variable]

Port to use for operations on the process’
given window.

User WindowShared
(Variable! — ae

Boolean. If true, then *UserWindow* is
owned by another process that probably will
use the same window after Lisp 1s
terminated. If Nil, then *UserWindow* is
owned by this process and will be destroyed _
when Lisp terminates.

TypescriptPort [Variable] — .

Port to use for creating new typescripts.

- This port is not a typescript.

SapphPort [Variable]

Port to use for operations on the full screen. S

_PERQ Systems Corporation _ Accent Lisp User’s Guide |
Accent Lisp Manual | Oo Introduction —

This should only be used for creating new
top level windows. |

1.3.3. Stream initializations

These variables are all defined in Common Lisp. |

Sterminal-io® == oe [Variable]

Initially set to a two-way stream that does
its input and output through

UserT ypescript. *Terminal-io* never —
reaches end of file, and it may not be closed.

standard-input : a [Variable]

Holds the default stream for all input
functions. It is usually a synonym stream for
Terminal-io. |

standard-output | [Variable]

Holds the default stream for all output

functions. It is usually a synonym stream for
Terminal-io. oe

error-output __ 7 [Variable]
trace-output a [Variable] _

Initially synonym streams to *Standard-
output*. | oe

query-io _ ; [Variable]

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual | Introduction _

debug-io [Variable]

Initially two-way streams made from
Standard-output and *Standard-input*.

standard-input-filename [Variable]

If input was redirected at startup, this
variable holds the string filename of the

input file. Otherwise, it holds Nil

*standard-output-filename® [Variable] | | |

If output was redirected at startup, this
variable holds the string filename of the

output file. Otherwise, it holds Nil

| oo | - PERQ Systems Corporation

Accent Lisp Manual |

10

Accent Lisp User's | Guide |

_ Specific Information —

2.1. Numbers _

2.2. Characters

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Specific Information

This chapter describes Accent Lisp. Specifically, it |
discusses differences and additions to Common Lisp _
that are implemented in Accent Lisp.

Currently, short-floats and single-floats are the same, |

floats use an immediate representation with 8 bits of

exponent and a 21-bit mantissa. Long floats are 64-bit —

and long-floats and double-floats are the same. Short _

allocated objects, with 12 bits of exponent and 53 bits
of mantissa. All of these figures include the sign bit —

and, for the mantissa, the "hidden bit.” Thelong- =~
float representation conforms to the 64-bit IEEE | |
standard, except that all the exceptions, negative ,
and infinities are not supported. |

Fixnums are stored as 28-bit two’s complement
integers, including the sign bit. The most positive
fixnum is 2°27 - 1, and the most negative fixnum is

-2°27. An integer outside of this range is a bignum.

Accent Lisp characters have eight bits of code, eight
font bits, and eight control bits. Of the font and

meta, super, and hyper.

The control bit functions Control, Meta, Super, and
Hyper are defined as in Common Lisp, The PERQ

control bits, only four control bits are used: control, :

eee PERQ Systems Corporation oe Accent Lisp User’s Guide
eS Accent Lisp Manual a Specific Information —

workstation keyboard does not produce these and the
Accent operating system does not pass them to Accent.
Lisp, but programs can use them internally.

2.3. Vector Initialization |

Tf no :Initial-value is specified, vectors of Lisp ob jects
are initialized to Nil, and vectors of integers are |

| initialized to zero. |

2.4. Packages | |

Common Lisp requires four built-in packages: Lisp,
User, Keyword, and System. In addition to these,
Accent Lisp has separate packages for Hemlock and _
the compiler, and a Hemlock-internals package.

2.5. The Editor

The Ed function invokes the Hemlock Editor.
Hemlock is described in The Hemlock User’s Guide

and The Hemlock Command Implementor’s
Reference in this manual; like Accent Lisp, it contains

easily accessible internal documentation.

2.6. Garbage Collection

Accent Lisp automatically does a garbage collection

(GC) whenever a specified ratio of memory space in
dynamic space to available virtual memory is
exceeded. This ratio defaults to 2, meaning that a Gc
will be done when the unused virtual memory is about
half the size of Lisp’s dynamic space. To change the
ratio, set lisp::gc-flip-ratio to a smaller value like 1 or
3/2. To turn off the GC entirely, Setq lisp: :*already-

maybe-gcing* to T.

12

-PERQ Systems Corporation Accent Lisp User’s Guide |

Accent Lisp Manual» | Specific Information —

2.7. Timing

There is one timing function in Accent Lisp.

time < form> [Macro] _ Le

Evaluates Form and prints the total elapsed WE es

time for the evaluation to *Trace-output*. =«s_—>

Time returns the result of the evaluation of —

. Form.

ao / 2.8. Saving a Core Image

Accent Lisp provides a way to save a core image that _

has code loaded into it. |

save <file> &key

<checksum> [Function]

Saves an image of the current process on file ==
File. If Checksum is T, the corefile will have | ee
a checksum entry; if Nil, nochecksumentry = ~~

is generated. Checksum defaults to T. Save is Ges
- returns the number of bytes written to the

file. After Save is called, the current Lisp is
restarted and continues in the function from

which Save was called. It is an error to use
this function when there are open files.

When Save is called, Lisp is frozen tn the call to save. : : aos
The saved Lisp will start up by returning from the __ 2 a

Save function and continuing in the function from ts

13

PERQ Systems Corporation Accent Lisp User’s Guide
Accent Lisp Manual a Specific Information

- which Save was called. Ports lose their validity when
Save is called, but the standard port variables (see _
1.3.2) are reinitialized when Lisp is restarted. Any

user-defined ports will have to be redefined in order to

be used.

The core image can be restored to Lisp by typing:

lisp -core== <corefilename>

This will start Lisp with the suspended process that |

was stored by the Save command (see 1.2).

14

PERQ Systems Corporation | Accent Lisp User’s Guide /

Accent Lisp Manual Debugging Tools —

3 Debn gging Tools

‘3.1. Function Tracing

The tracer causes selected functions to print their
arguments and results whenever they are called. _

_ Options allow conditional printing of the trace
information and conditional breakpoints on function

entry.

trace &rest specs | [Macro] |

Invokes tracing on the specified functions, a

and pushes the names onto the global list in =
Traced-function-list. Each spec is either
the name of a function, or the form

(function-nase

trace-option-nasze value |

trace-option-nasze value

oe)

If no specs are given, then trace will return
the list of all currently traced functions,

Traced-function-list.

If a function is traced with no options, then
each time it is called, a single line containing =—s_—ts
the name of the function, the arguments to |

| PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual | — _ Debugging Tools

the call, and the depth of the call will be
printed on the stream *Trace-output*.

_ After the function returns, another line is.
printed containing the depth of the call and ©
all of the return values. Call depth is

16

highlighted by indenting the lines.

Trace options change the normal output _
from the trace. Each traced function has its
own set of options independent from any
other function. Each time a function is

specified in a call to Trace, any options have —

to be specified also; no options are kept from
previous specifications. The available options
and their values are: |

‘Condition :Condition’s value is a form that is

evaluated before each call to the function.

_ Printout is suppressed when the form
returns Nil.

‘Break Its argument is a form that is evaluated

before each call to the function; if the

form returns non-Nil, a breakpoint loop is

entered immediately before the function —

call. |

‘Break-after

Like :Break, but the form is evaluated

and the break loop invoked after the
function call.

‘Break-all Combines :Break and :Break-after.

‘Wherein Its value is a function name or list of

- function names. Printout for the traced

PERQ Systems Corporation _ Accent Lisp User's Guide RE

Accent Lisp Manual Debugging Tools tw

function only occurs when it is called

from within 2 call to one of the functions

listed in :Wherein’s value.

Print Its value is a list of forms to be evaluated _
and printed whenever the function is
called. The values are printed one per _
line, and indented to match the other Las

trace output. This printout is suppressed _ oe

whenever the normal trace printout is =>
suppressed.

:Print-after

Like :Print except that the values of the |
forms are printed whenever the function __
exits. |

‘Print-all The combination of :Print and :Print- ae he S

untrace &rest function-names [Macro] - i

Turns off tracing for the specified functions,
and removes their names from *Traced- |

function-list*. If no function-names are

given, then all functions named in * Traced-
function-list* will be untraced.

traced-function-list [Variable]

A list of function names that is maintained
and used by Trace and Untrace. This list
should contain the names of all functions

which are currently being traced.

- PERQ Systems Corporation Accent Lisp User’s Guide

| Accent Lisp Manual | | | Debugging Tools

trace-print-level — [Variable]
trace-print-length | [Variable]

3.2. The Single Stepper

Print-level and *Print-length* are bound
to *Trace-print-level* and *Trace-print-
length* when printing trace output. The
forms printed by the :Print options are also —

affected. *Trace-print-level* and *Trace-
print-length* are initially set to Nil

max-trace-indentation [Variable]

‘The maximum number of spaces that should
be used to indent trace printout. This
variable is initially set to some reasonable

value.

The single stepper is a mechanism that allows the user
to control calls to Eval. When single stepping, each

call to Eval first prompts for a command.

18

step <form> _ as a [Function]

Evaluates Form with single stepping enabled

_ or, if Form is T, enables stepping on until —
explicitly disabled. Stepping can be disabled
by quitting to the Lisp top level, or by
evaluating the Form (step ()). _

While stepping is enabled, every call to Eval |

will prompt the user for a single character

PERQ Systems Corporation

Accent Lisp Manual ° Debugging Tools

command. The prompt is the form which is
about to be evaluated. It is printed with
Print-level and *Print-length* bound to
Step-print-level and *Step-print-length*.

All interaction is done through the stream
Query-io.

The commands are:

n (next)

s (skip)

q (quit)

p (print)

b (break)

e (eval)

? (help)

r (return)

Evaluates the expression with stepping

still enabled. —

Evaluates the expression with stepping

disabled.

Evaluates the expression, but disable all

further stepping inside the current call to

step.

Prints current form. This does not use
Step-print-level or *Step-print-length*. —=—

Enters break loop, and then prompts for _

-@ command again when the break loop

returns.

Prompts for and evaluate an arbitrary

expression. The expression is evaluated

with stepping disabled.

Prints a brief list of the commands.

Prompts for an arbitrary value to return

as result of the current call to evaluate.

Throws to top level.

_ Accent Lisp User’s Guide _

3.3. The Debugger

PERQ Systems Corporation.

Accent Lisp Manual | | Debugging: Tools _

step-print-level | ae [Variable] :
 “step-print-length® _ [Variable]

Print-level and *Print-length* are bound
_ to these values when the current formis

printed. *Step-print-level* and *Step-print-
length* are initially bound to some small
value. |

_ “max-step-indentation® es [Variable]

‘Step indents the prompts to highlight the
nesting of the evaluation. This variable
contains the maximum number of spaces to

use for indenting. It is initially set to some

reasonable number. |

The debugger is an interactive command loop that
allows examination of the active call frames on the |
Lisp function call stack. If invoked from an error
‘breakpoint, it can show the function calls that led up

to the error.

Inside the debugger, most commands refer to the

Accent Lisp User's Guide os

current stack frame. The debugger assigns numbers to _
the frames on the stack, starting with zero as the most

recent and increasing deeper into the stack. The |
debug prompt includes the number of the current
frame as its main feature.

Most expressions typed to debug are simply evaluated
as they would have been had you not entered debug.

20

-PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual | Debugging Tools

This includes the special debugger functions to be
described, which are meaningful only inside the
debugger. The biggest exceptions are the debugger _
commands, which are either one or two letters. These

may display information about the current frame or
change the current frame, but they generally do not —
affect the evaluation history. All debugger commands —

are case insensitive.

ae 3.3.1. Movement commands

These commands move to a new stack frame, and
_ print out the name of the function and the values of

its arguments in the style of a Lisp function call — |
Frames that are not active are marked with a ” *” and ©

the reconstructed call consists of what arguments are
present on the stack. *Debug-print-level* and *Debug- |
print-length* affect the style of the printing.

Visible frames are those that have not been hidden by __
the Debug-hide function described below. The special —
variable *Debug-ignored-functions* contains a list of __
function names that are hidden by default. |

U Moves up to the next higher visible frame. More

recent function calls are considered to be higher on

the stack.

d Moves down to the next lower visible frame.

t Moves to the highest visible frame.

b Moves to the lowest visible frame.

f Moves to a given frame, visible or not. Prompts for

| the number. 4

PERQ Systems Corporation ea Accent Lisp User’s Guide |

_ Accent Lisp Manual | a Debugging Tools

3.3.2. Inspection commands

These commands print information about the current
frame and the current function.

?

PP

22

Describes the current function.

Lists the arguments to the current function. The
values of the arguments are printed along with the

argument names. |

Lists the local variables in the current function. The -

values of the locals are printed, but their names are

no longer available.

Redisplays the current function call as it would be

displayed by moving to this frame.

Redisplays the current function call using *Print-

level* and *Print-length* instead of *Debug-print-

level* and *Debug-print-length*.

debug-value symbol |

optional [frame] — Beene [Function]

Returns the value of Symbol, considered as a
special variable, in the binding context of

' either the current frame, or the numbered
frame, if specified. —

debug-local n-

& optional [frame] oe a 7 [Function] —

PERQ Systems Corporation —

Accent Lisp Manual ©

3.3.3. Other commands

h

Accent Lisp User’s Guide |

Debugging Tools

Returns the value of the Nth local variable

in the current or specified frame.

[Function] debug-arg n optional [frame]

Returns the Nth argument of the frame.

debug-pc Zoptional [frame] [Function]

Returns the next instruction to be executed

in the specified (active) frame. Can be used

with Disassemble.

Prints a brief but comprehensive list of commands on

the terminal. — |

Causes debug to return Nil.

debug-return expression

&optional [frame] [Function] S

Forces the current function to return zero OF

more values. If the function was not called =e

for multiple values, only the first value will

be returned.

backtrace [Function] __

Prints a history of function calls. The
printing is controlled by *Debug-print-level*
and *Debug-print-length*. Only those

- - PERQ Systems Corporation _ Accent Lisp User’s Guide

_ Accent Lisp Manual ae / Debugging Tools

frames that are considered visible by the
frame movement commands will be shown.

debug-hide option

&optional {arg(s)} | | [Function]

Makes the described stack frames invisible |
to the frame movement commands. The
second argument is evaluated and may be a
symbol or a list; the function returns the __

hidden members of the category. With no —
arguments, returns the current filter (hidden
frames). Option subcommands may be one
of these:

Package(s) Calls to hidden packages are visible, but

| calls within them are not.

- Function(s) Calls to the named functions will not be
visible.

Type(s) | Hides miscellaneous frame and function
types, any of: |

« Compiled - Calls to compiled

functions will not be visible.
© Interpreted - Calls to interpreted

functions will not be visible.

e Lambdas - Calls to lambda |

expressions will not be visible.

open Open frames will not be visible.

active | Active frames will not be visible.

24

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual | Debugging Tools — - /

catch = Catch frames will not be visible.

debug-show options

&optional (arg(s)| [Function]

Cancels the effect of the corresponding
Debug-hide. Note that a frame may be
hidden in a variety of other ways, though.

debug [Function]

Invokes the debugger. Debug always returns
Nil.

debug-print-level [Variable]
debug-print-length [Variable]

Print-level and *Print-length* are bound
to these values during the execution of some
debug commands. When evaluating
arbitrary expressions in the debugger, the -

normal *Print-level* and *Print-length* are
in effect. These variables are initially set to
some small number.

debug-ignored-functions [Variable]

A list of functions that are hidden by
default. These functions can be made visible

with the debug command Show.

25

oe , -PERQ Systems Corporation __ Accent t Lisp User’ s Guide |

3.4. Break Loop

Accent Lisp Manual — - Debugging Tools — |

The break loop is a read-eval-print. loop similar to the. lee

normal Lisp top level. It can be called from any Lisp —
; e function to allow interaction with the Lisp system.

When giving the command to exit the break oP
= choose an arbitrary value for the loop to return.

| When a Lisp expression 18 5 typed | in at the break i loops 8

_ prompt, it is usually evaluated and printed. However,

there are three special expressions that are recognized —

as break loop commands, and that are not evaluated. =
ne These commands are case insensitive. : we

o $G causes 2 throw to the Lisp top level: The current

computation is aborted, and all bindings are

unwound.

| $P causes the break loop to return Nil.

RETURN form
causes the break loop to evaluate f orm and return the

~ result(s). | | |

. The dollar sign character in the ‘pmbols $P and $G i is
ae intended to be the <escape> character (ascii 27). |

oe However, typing the dollar sign | is also understood.

ey When the break loop i is called, it tries to ‘make's sure
that terminal interaction will be possible. All of the

- standard input output streams, *Standard-input*,

| *Standard-output*, *Error-output*, *Query-io*, and

ve -*Trace-output* are bound to *Terminal-io* for the —

duration of the break loop; and the state of the single

‘stepper is bound to ”* off”. |

3.5. Cleaning Up

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Debugging Tools

break format-string

&rest args | [Function] —

The Break function passes Format-string
and Args to Format, and then invokes the
break loop.

The break loop 1s called by the system error handlers. |

Since errors can happen unexpectedly, the break loop
provides a mechanism for cleaning up any unusual
state that a program may have caused.

error-cleanup-forms { Variable]

A list of Lisp forms will be evaluated for side
effects when a break loop is invoked.
Whenever a break loop is entered, * Error-

cleanup-forms* will be bound to Nil, and
then the forms that were its previous value
will be evaluated for side effects. There is

no way to have the side effects undone when
the break loop returns, and if any of the
cleanup forms causes an error, the result
cannot be guaranteed.

As an example, a program that puts the
terminal in an unusual mode might want to

do something like this:

QT

: - PERQ Systems Corporation Accent Lisp User’s Guide oe

Accent Lisp Manual - Debugging Tools ts

(let ((*error-cleanup-forms® = oe.

| (cons *(proga <code to restore tersinal>) 7

Serror-cleanup-forms*))) 7 ee

<code to nese up tersinsl>] |

) |

PERQ Systems Corporation | Accent Lisp User’s Guide

Accent Lisp Manual The Compiler

4. The Compiler

Functions may be compiled using Compile, Compile-
file, or Compile-from-stream. Compile and Compile-
file operate as documented in Common Lisp.

The Compile-file function takes the following keyword
arguments: :Output-file, :Lap-file, and :Error-file. |
These keywords accept either the name of a file as a
string, or the symbol T, which causes an appropriate

filename to be created by replacing the type field of
the input filename. If the argument to any of these

keywords is Nil, no file of that type is created. If no
keywords are specified, the output file and error file
are created by default. |

© os Compile-from-stream is like Compile-file, but it takes
| | _ | a stream as its only argument and compiles the code

read from that stream into the current environment. —

4.1. Open and Closed Coding

When a function call is "open coded,” inline code
whose effect is equivalent to the function call is
substituted for that function call When a function
call is "closed coded,” it is usually left as is, although

it might be turned into a call to a different function
with different arguments. As an example, if Nthcdr
were to be "open coded,” then

(athedr 4 foobar)

29

_ PERQ Systems Corporation
Accent Lisp Manual Bn The Compiler oe

Accent Lisp User's Guide.

might turn into —

(ede (ode (ede (edr foober))))

OF even

‘(do (4 0 ie 4))
(list foobar (cdr foobar)))

((w i 4) list)). |

if Nth is *closed coded,”

(ath x 1)

| might stay the same, or turn into something like:

| (car (athedr x 1)) ;

4, 2. Compiler Switches

- Several compiler switches are available that are not

documented in Common Lisp, Eachisa global
special These symbols, described below, are all i in the
compiler package. |

peep-enable |

If this switch is non-Nil, the compiler runs the

peephole optimizer. The optimizer makes the _

compiled code faster, but the compilation itself i is
slower. *Peep-enable* def aults to T.

peep-statistics |

If this switch is non-Nil, the effectiveness of the

peephole optimizer (number of bytes before and after

optimization) will be reported as each function is

compiled. *Peep-statistics* defaults to Nil.

30

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual The Compiler

inline-enable

If this switch is non-Nil, then functions which are

declared to be inline are expanded inline. It is ©

sometimes useful to turn this switch off when

debugging. *Inline-enable* defaults to T.

open-code-sequence-functions
If this switch is non-Nil, the compiler tries to

translate calls to sequence functions into do loops,

which are more efficient. It defaults to T.

optimize-let-bindings
If this is T, the compiler optimizes some let bindings,

such as those generated by lambda expansions and

setf based operations. If it is :All, the compiler

optimizes all lets. If it is Nil, it does not optimize

any. The optimization involves replacing instances of |

variables that are bound to other variables with the —
other variables. It defaults to T.

examine-environment-function-information

If this is non-Nil, look in the compiler environment

for function argument counts and types (macro, |

function, or special form) if you don’t get the

information from declarations. It defaults to T.

nthcdr-open-code-limit

This is the maximum size an Nthcdr can be to be

open coded. In other words, if Nthcdr is called with

N equal to some constant less than or equal to the

Nthedr-open-code-limit, it will be open coded as a
series of nested Cdr’s. *Nthcdr-open-code-limit*

defaults to 10.

*complain-about-inefficiency *

If this switch is non-Nil, the compiler will print a

message when certain things must be done in an

31

| | Q PERQ Systems Corporation | Accent Lisp User's Guide

_ Accent Lisp Manual | | The Compiler _

inefficient manner because of lack of declarations or | |

other problems that the user may not be aware of. It.

defaults to Nil.

- *eliminate-tail-recursion* A,

If this switch is non-Nil, the compiler attempts to

turn tail recursive calls (from a function to itself) into

iteration. It defaults to T. | |

“*alLrest- args-are-lists*

If non-Nil, this has the effect of declaring every ‘urest -

arg to be of type list. It def aults to Nil.

verbose If this switch is Nil, only true error messages and

warnings go to the error stream. If non-Nil, the -

compiler prints a message as each function is |

compiled. It defaults to T. |

*check-keywords-at-runtime®

If non-Nil, compiled code with &key arguments will |

check at runtime for unknown keywords. It defaults.

to T.

2 : 4. 3. Declare Switches

The Optimize declaration controls : some of the above

switches: |

- *Peep-enable® is on unless Cspeed is oe

greater than Speed and Space.

- *Inline-enable* 18 on unless Space i is greater”
than Speed. fe

- *Open-code-sequence-functions* json
unless Space is greater shan Speed.

- 39

PERQ Systems Corporation Accent Lisp User's Guide
Accent Lisp Manual | The Compiler _

- *Eliminate-tail-recursion* is on if Speed is
greater than Space.

33.

- PERQ Systems Corporation -

~ Accent Lisp Manual

34

Accent. Lisp User’s Guide
Eft iciency 7

PERQ Systems Corporation Accent Lisp User's Guide

Accent Lisp Manual Efficiency

§. Efficiency

This chapter summarizes ways to improve efficiency of
Accent Lisp code. |

5.1. Compile the Code

In Accent Lisp, compiled code typically runs at least —
one hundred times faster than interpreted code.
Another benefit of compiling is that it catches many
typos and other minor programming errors. Many
Lisp programmers find that the best way to debug a
program is to compile the program to catch simple
errors and then debug the interpreted code. Many
programmers use the compiled code only after the
program 1s debugged.

Another benefit of compilation is that compiled (.Sfasl) —

files load significantly faster, so it is worthwhile to

compile files that are loaded many times even if the
- speed of the functions in the file is unimportant.

Do not be concerned about the performance of a
program until it has been compiled -- some techniques
that make compiled code run faster make interpreted
code run slower.

300

- PERQ Systems Corporation | _ Accent Lisp User's Guide
Accent Lisp Manual a Effi iciency |

5. 2. Avoid Unnecessary Storage Allocation

5.3. Mapping

~ The Cons function allocates storage. However, Cons i 1S

not the only function that allocates storage Be
-- Make-array and many other functions also do this.

“ Storage allocation can hinder parioreanis because it it

7 Teduces program memory access locality, which
_ increases paging activity, and because it bakes time. -

Also, any space allocated eventually needs to be ,
| reclaimed, either by _ collection or by killing

It is necessary to allocate storage sometimes, and the

Lisp implementors have tried to make storage a

allocation and the subsequent garbage collection as ee

efficient as possible. In some cases strategic allocation:
can improve speed. It would certainly save time to

allocate a vector to store intermediate results that are |

used numerous times. aoe

‘One of the programming styles encouraged by Lisp is .

a highly applicative one, involving the use of mapping

functions and many lists to store intermediate results.
To compute the sum of the square-roots of a list of
numbers, one might say:

B (apply #°* (mapcar # sqrt list-of-nuabers))

This programming style is clear and elegant, but. x
unfortunately results } in slow code. There are two oe

- reasons why:

> 36

| |

PERQ Systems Corporation Accent Lisp User’s Guide
Accent Lisp Manual | Efficiency ©

1. The creation of lists of intermediate results
causes much storage allocation (see 5.2).

2. Each level of application requires another |
scan down the list. Thus, disregarding
other effects, the above code would
probably take twice as long as a
straightforward ‘iterative version.

An example of an iterative version of the same code:

(do ((sum list-of-numbers (cdr num))

(sum 0 (+ (sqrt (car num)) sus)))

 CCawll aus) sup))

5.4. Using Lists

Whereas lists were used extensively in early versions of

Lisp, there are now other data structures that may be
better suited to tasks where lists might have been used
before. Think before using a list. |

5.4.1. Vectors

Use vectors and use them often. Lists are often used
to represent sequences, but for this purpose vectors
have the following advantages:

- A vector takes up less space than a list
holding the same number of elements. The

advantage may vary from a factor of two
for a general vector to a factor of sixty-
four for a bit-vector. Less space means less
storage allocation (see 5.2).

37

PERQ Systems Corporation ~ Accent Lisp U User’s Guide _

_ Accent Lisp Manual | ; _ Eiticianey oe 2 a

= Vectors allow constant time eandom-access. ee

_ It is possible to get any element out of a —
vector as fast as getting the first out of a
list if the right declarations are made.

The only advantage that t liste have over vectors for
PG _ Fepresenting sequences is that it is easy to change the |

me length of a list, add to it and remove items from it.
7 _ Signs of slow Lisp code are Nth and Nthcdr - if you

Os 5.4.2. Structures a

are using these function you should probably be using

—_@ vector. |

Lists have also been used for the representation of
- pecord structures. Often the structure of the list i is

never explicitly stated and accessing macros are not

used, resulting in impenetrable code such as: Oe

os - (rpleca (cadar (cadddr x)) (caddr y))

The use of defstruct structures can result i in much

clearer code. One might write instead:

(sett (beverage-flavor (astronaut-beverage x)) Cuveragetlavor 39 abe.

Since structures are based on vectors, the Defstruct

version would likewise take up less space and be faster : Boe

to access. Do not try to gain speed by using vectors
directly, since the compiler knows how to compile _

faster accesses to structures. Note. that the structure |

definition should be compiled before any uses of

accessors.

-PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Efficiency

| 5.4.3. Hashtables |

In many applications where association lists (alists)
have been used in the past, hashtables work much |
better. An alist may be preferable in cases where the
user wishes to rebind the alist and add new values to _
the front, shadowing older associations. In most other
cases, if an alist contains more than a few elements, a
hashtable will probably work faster. If the keys in the
hashtable are objects that can be compared with Eql _

or Eq, then hashtable access will be speeded up by
specifying the correct function as the test argument to
Make-hashtable.

5.4.4. Bit-vectors

Lists are also used for set manipulation. In some
applications where there is a known, reasonably small
universe of items bit-vectors should be used instead.
This is much less convenient than using lists, because
instead of symbols, each element in the universe must

be assigned a numeric index into the bit vector. If the
universe is very small -- twenty-eight items or less _
-- represent the set as bits in a fixnum and use Logior
and so on to get large speed improvements.

5.5. Simple Vs Complex Arrays

Accent Lisp has two different representations for
arrays, one that is accessed rapidly in microcode and

one which is accessed much more slowly in Lisp code.
The class of arrays that can be represented in the fast

_ form corresponds exactly to the one-dimensional
simple-arrays, as defined in the Common Lisp manual. |
Included in this group are the types simple-string,
simple-vector and simple-bit-vector.

39

 PERQ Systems Corporation _ | Accent Lisp User’s Guide _
- Accent Lisp Manual Eeftictency :

Me Declare vector variables ~ otherwise the compiler will ne

assume you are using the inefficient form of vector. |

Example:

(defun iote (a)

(let ((res (make-vector 2)))

(declare (simple-vector res))

(dotines (i a)

(sett (aref res i) 1))

res))

S _ Warning: if you declare things to be simple when they
are not, incorrect code will be generated and hard-to-

find bugs will result. It is worthwhile to note, |

however, that system functions that create vectors. will oe

| . always create simple-arrays unless forced to do

otherwise.

__‘ §.6, Function Calls
The usual Lisp style involves small functions and — ;

many function calls; for this reason Lisp Os

implementations strive to make function calling as

inexpensive as possible. Accent Lisp is successful in _

- this respect. Function calling is not vastly more
expensive than other instructions.

: _ For this reason do not be overly concerned about

- function-call overhead in programs. However,

a - function calling does take time, so remove it whenever |
possible. Some techniques that can be used are:

PERQ Systems Corporation | Accent Lisp User’s Guide

Accent Lisp Manual | | Efficiency

- Use inline functions. This often is the

best way to remove function call overhead

in Common Lisp. A function may be

written, and then declared inline if it is
found that function call overhead is |
excessive. Writing functions is easier that
writing macros, and it is easier to declare a
function inline than to convert it to a
macro. Note that the compiler must
process first the inline declaration, then the

definition, and finally any calls that are to
be open coded for the inline expansion to
take place.

- Use macros. A macro can achieve the

effect of a function call without the
function-call overhead, but the extreme

generality of the macro mechanism makes
them tricky to use. If macros are used in
this fashion without some care, obscure
bugs can result.

- Wrtte the code tn-ltne. This is not a very

good idea, since it results in obscure code,

and spreads the code for a single logical

function out everywhere, making changes
difficult.

Note that any of the above techniques can result in
~™bloated” code, since they duplicate the same
instructions many places. If code becomes very large,
paging may increase, resulting in a significant
slowdown. Use inline expansion sparingly. Note that
the same function may be called normally in some

41

a PERQ Systems Corporation Accent Lisp User’s Guide
Accent Lisp Manual | | Efficiency

"places and expanded inline i in others.

ee «8.7. Keyword 2 and Rest Arguments

| - Two Common Lisp argument passing mechanisms,
_ keyword and rest arguments, have a potentially

serious performance penalty in Accent Lisp. In Accent _
Lisp, rest arguments require consing a list to hold the

arguments. If a function is called many times or with
many arguments, large amounts of data allocation can —

occur. Keyword arguments are built on top of the rest
argument mechanism, causing the same data — |

allocation problem, in addition to requiring a

significant amount of time for parsing the list of
ee keywords and values on each function call

Neither of these problems is significant unlessalarge ss
number of calls are made to the same function, sothe —__
use of keyword and rest arguments in user interface
functions is not necessarily discouraged. Use of —

- macros instead of functions can also avoid this |

situation, because rest and keyword argument Bs

overhead occurs at compile time and not. necessarily at oes

runtime. If the macro-expanded form containsno
_ keyword or rest arguments, then keywords and rest
arguments can be used i in macros that are in inner
loops. | |

Note: the compiler open-cades t most heavily-used | |
system functions that have keyword or rest arguments, (eee

so no runtime overhead is involved i in their use. |

Optional arguments have no sighiticant overhad Ce

42

5.8. Numbers

 +§.9. Timing

PERQ Systems Corporation ‘Accent Lisp User’s Guide

Accent Lisp Manual _ __ Efficiency

Accent Lisp provides five types of numbers:

- fixnums bignums ratios short-floats long-

floats

Only short-floats and fixnums have an immediate

representation; the rest must be allocated and |
garbage-collected later. In code where speed is
important, try to use only fixnums and short-floats.
Since most-positive-fixnum is more than one hundred
million, bignums will need to be used rarely. The
floating point precision that can be obtained with
twenty-eight bits is limited, so there will be
applications that will require the use of long-floats.

The Time function measures total elapsed time (see
2.7). For fairly short things it is often wise to write a
compiled driver function which calls the function to be
tested several times, and average the times. This helps
reduce inaccuracy inherent in the time function due to

the size of its timing units and due to paging.

430

 PERQ Systems Corporation = Accent Lisp User's Guide _ |

_ Accent Lisp Manual | | Creating and Using Menus

44

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Creating and Using Menus

8. Creating and Using M

This chapter describes the routines that Accent Lisp
provides for creating and using menus.

6.1. The Menu Choose Functions

The basic menu choice macros and functions are:

Menu-prepare &key items position-x

position-y in-window stay-in-place
title title-font default-item

ncolumns items-justified
side-margin top&bottom-margin
spacing font label-font
abort-value [Macro]

menu-choose-from-structure menu |
&optional pasteup [Function]

menu-choose &key items position-x
position-y in-window stay-in-place
title title-font default-item
ncolumns items-justified

side-margin top&bottom-margin
spacing font label-font
abort-value paste-up [Macro]

Menu-prepare takes a list of items and other
arguments and returns a structure

containing the given information in the
format of a pop-up menu. This structure is
intended to be passed to Menu-choose-from-

45

PERQ Systems Corporation | | _ Accent Lisp User’s Guide

Accent Lisp Manual Creating and Using Menus

structure, which puts the menu onto the

screen. Menu-choose combines Menu-

prepare and Menu-choose-from-structure _ |

46

into one function call. Araispents for these ce |
functions are:

Items: the list of items to go into the menu. _

The items list is not evaluated, but font
information, item names, and return values

are evaluated at the time of menu selection.

- Ahelp string may be provided with each |

item; this is not evaluated.

Posttton-z, Position-y, I n- -window: these

specify the location of the pop-up menu. In- —

window specifies the window the menu is ees

displayed in; it defaults to the window
encompassing the whole screen. Position-x
and Position-y give the x and y coordinates
of the upper left-hand corner of the menu
within that window; these default to the
pixel x and y coordinates of. the mouse _

pointer.

Stay-in-place: if non-Nil, specifies that the _
menu must appear exactly at the coordinates |
specified. If this is not possible, an error is
signaled. If Stay-in-place is Nil, the menu

‘position can be moved to fit onto the screen.

Title, Tttle- font: Title i is a. string to be Les

displayed at the top of the menu in inverse -

video in font Title-font. If no Title is given,

_ the inverse video title bar will not bappear ey.

PERQ Systems Corporation | Accent Lisp User’s Guide

Accent Lisp Manual Creating and Using Menus

Def ault-ttem: the name of the item on

which the mouse initially appears. The
default Default-item is the item in the |
middle of the middle column. If Default-item |
is a non-existent item, it is ignored. Ifa |

menu structure has been chosen from before, _
the default item becomes the last item |
chosen from it.

Neolumns: specifies the number of columns
in the menu. This defaults to one (see 6.4).

Items-just: fred, Spacing: Items-justified

tells whether to center items in the column
or justify them to the left or right (:Center,
:Left, :Right); it defaults to :Center. Spacing _
specifies the amount of white space inserted
after each column (except the last one) in
pixels; this defaults to twice the width of the
letter x in Font.

Stde-margin, Top&bottom-margin: the
number of pixels of margin to be left at the
sides and top and bottom of the menu,
respectively; both default to ten.

Font, Label-font: Font is the default font
for items that are not labels; it defaults to

the standard default font. Label-font is the -

font used for labels, and defaults to the italic

font corresponding to the default font.

Abort-value: the value that is returned if

Ctrl-g is typed while choosing from the

47

PERQ Systems Corporation Accent Lisp User's Guide

. Aecent Lisp Manual Creating and Using Menus

. menu; it defaults to Nil

 Paste-up: possible vanes are °T, Nil and ; Se a

48

: And-choose (anything else is considered T, -
if not specified, defaults to Nil). T causes tha: ek
menu to be permanently displayed inthe
window, but does not allow selections tobe =—«s_—>
made from it. :And-choose allows selections _
to be made, but the menu is permanently
displayed. Nil displays the menu and allows
a choice to be made, then deletes the menu. aN

Menus pasted on the screen(by Tor:And- |

choose) are stored in *Pasted-menus* and _
may be accessed by Pasted-menu-choose _
(below).

pasted-menu-choose menu [Function])

Takes either a menu structure already |

pasted on the screen or the title ofa menu
already on the screen, and allows a selection

to be made from it. It returns Nil if the |

menu or title specified is not displayed or
does not exist, and signals an error for any
other argument. , -

unpaste-menu menu | , , [Punction| 2 ole

Takes a menu structure already on the
screen or the title of a menu already on the |
screen, removes it, and returns Nil |

pasted-menu-p menu —-——[Function]

6.2. The Item

PERQ Systems Corporation Accent Lisp User’s Guide >

Accent Lisp Manual Creating and Using Menus

Returns T if its argument is a menu that is
currently pasted on the screen, or the title of
one; otherwise it returns Nil

Each item that the user may choose consists of a
string (or character or symbol) and some other
information. The additional information may tell how |
the string should be printed, what to return if the user

selects the item, or possibly a note saying that the
item is just for show and may not be chosen.

The item may be just a name X, in which case X is
displayed and (string X) is returned if the item is
chosen. An item may be the keyword :New-column,
which is not really displayed at all but signals that a
column break is desired, for easy use of multiple _
columns. Finally, an item may be a list, whose Car is
@ name, and whose Cdr is a bunch of keyword

arguments telling about the item. In fact each of these
keyword arguments is just zero or more forms, giving
the item the following format:

item ::# name | :new-column | (name {keyword arg® }*)

name ::2 symbol | string | character.

Each keyword knows how many arguments it wants. If
it wants a particular number it simply takes that
many; if it wants a variable number then it may scan
for the next keyword as a cue that it has seen all of its
arguments. If at any time not enough arguments are

49

PERQ Systems Corporation | "Accent Lisp User’s Guide :

~ Accent Lisp Manual | _ Creating and Using Menus

left for a keyword, or it is time to start parsing a new _
keyword argument and a keyword does not follow, an

op eign is signalled.

 ‘Funcall fn ({arg}*)

oS The following sorts of keyword arguments may be
provided: ©

‘Help string The string name Help i is given as a help i in the Lisp |

window title line as long as the entry name with help :

Help is being selected with the mouse.

-Value value | Soe :

The value is returned if the « user r selects this item with ke

the mouse. | . ,

‘Values ({value }*) a
The values are returned as multiple values if the user .

selects this item with the mouse.

Eval form The form is evaluated and returned when the user -
selects this item with the mouse.

The result of the fn f uncall i is returned when the user _ 2 :

selects this item with the mouse. |

‘No-select The item may not be selected. Trying to select this |

item with the mouse causes the Lisp window to flash. _

‘Buttons {button-specifier }*
This takes some button specifiers, each of which i is 2

list. The specifier’s Car indicates a particular button, |

‘Left, :Middle, or :Right. ‘The rest of the specifi ier list
is a keyword argument of the -Values, ‘Eval, -Funcall, .

or :No-select form; if there is anything after the first _
keyword argument it is ignored. Thus each specifier os

indicates what to return if that button is pressed, , OF

50

- PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual _ Creating and Using Menus

that the button is inactive while selecting this item.

with the mouse. If a button is left unspecified it

returns Nil. A button may not be specified more

than once.

‘Font font This specifies the font in which the item name is to

be printed.

‘Label This is an abbreviation for :Font label-font :No-select.

Help, font, and inverse are the only options which may
be meaningfully combined with other options. If
conflicting things are specified, the most recent |

specification takes precedence, so that (” Hosts” :label —
:font bold) causes ” Hosts” to be displayed as a label,

boldface and not selectable, and (” X” :eval (if t 3)
:values ’Accent) returns Accent if selected.

6.3. User Selectable Attributes of the Choice Window

- © | Some of the parameters to Menu-choose and Menv-
eae - prepare default to global variables whose values are

initialized to the values stated in the first section. —

These parameters are controlled this way because they
are relatively independent of the other parameters. If
the function caller specifies a value for the parameter,
that value is used.

Position-x, Position-y, and In-window are controlled
by *Default-menu-choose-position-x*, *Default-menu-
choose-position-y*, and *Default-menu-choose-in-
window*. Necolumns is controlled by * Default-menu-
choose-ncolumns”*. Items-justified is controlled by

Default-menu-choose-items-justified. Side-margin
and Top&bottom-margin are controlled by *Default-

51

; | PERQ Systems Corporation — ed Accent Lisp User’s Guide | , |

_ Accent Lisp Manual Creating and Using Menus

| menu-choose-side-margin" and *Default-menu-choose- oS oe S - : a

| top&bottom-margin™. | | | we

6.4. The Arrangement of Items in the Window

The shape of the window may be specified by putting oe
:New-column markers in the items list. In thiscase
the function simply does as told and its only __ ca
intervention is when there are too many columns to fit
in the allowed width, in which case it signals an error. __

If no :New-column markers are present the window ——t™s
_ shape is controlled by specifying the parameter 7
neolumns. This parameter must be a positive integer
number of columns (less than the number of items) to
use, and it defaults to one. . |

If the menu is too wide to fit on the screen, or some
columns are too tall, an error is signalled.

«52

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual _ Matchmaker Interfaces

Matchmaker generates Pascal, C, and Lisp source code —
that implements procedural interfaces to message- |
based communications facilities in a language- | | —
independent manner. This facility is useful for
implementing servers and message-based client
interfaces. Matchmaker specifications are oriented _
toward algorithmic languages; IPC messages sent by
remote procedure calls contain data structured in a
Pascal-like manner. Because of this, Lisp must deal
with data passing through messages as "alien” data
rather than as Lisp tagged data. Alien data is defined
by Pascal-like type definitions that appear in. obese
Matchmaker specifications. Lisp aliens provide a |
mechanism that allows Lisp programs to manipulate —
this type of data. oon

To produce a procedural interface to message
communication for Lisp, Matchmaker analyzes the
language-independent specification and produces Lisp
code made up of functions, macros and special forms

provided gy the Lisp ”alien” facility. Client programs
usually require only Matchmaker-generated Lisp forms
and do not need to use alien primitives heavily.

Some data structures passed in messages are too
complex for Matchmaker specifications (ie.,
Matchmaker cannot generate forms for manipulating
it). Examples of this are the variant record definitions
of command blocks and data used in the IO interfaces

53

PERQ Systems Corporation. Accent Lisp User’s Guide

Accent Lisp Manual | Matchmaker Interfaces

- for RS232, Floppy, GBIP, and Speech (see IO. MM and Q

JOAuxDefs.Pas). To write Lisp interfaces to these
devices, Lisp forms must be written that work with Aes
the alien data and simply put the correct data bits i in os

~ the correct places. | es : -

oa Detailed information on Matchmaker i is in the fe

Matchmaker: The Accent Remote Call Procedure —
| Language document in the. Accent Languages Manual a : ae

: : The use of Matchmaker-generated code for Lisp is -

- _ described : in the following sections.

7.1. Interfa ace e Parameters and Return Values —

Matchmaker generates Lisp remote procedure calls a
__ from language-independent specifications. Given a _ Matchmaker remote procedure specification such as:

—- Remote Procedure AllocatePort(

3 Port; .

out MesPort §: Port All;

BackLog — 3 Integer) & -

° GR Value; ee

Matchmaker will generate a Lisp | function: co

GRR (defun AllocatePort (Remote Port BackLog) /

BA

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Matchmaker Interfaces

that returns as multiple values the GeneralReturn
code of the call (e.g., the Success value) and the new
port that was allocated, in that order. In general,
Matchmaker generates a function that takes all In and
Inout parameters in the order specified and produces
multiple values. The multiple values returned are

defined to be the returned value of the call, if any,
followed by all the Inout and Out parameters in the
order specified. For example, given this Matchmaker
specification:

Remote procedure CreateWindow(: Window;

~ fizedPosition: Boolean;

inOut leftz: Integer;

inOut topy: Integer;

fixedSize: boolean;

inOut width: Integer;

inOut height: Integer;

hasTitle: boolean;

hasborder: boolean;

title: TitStr;

inOut progNase: progStr;

hasiIcon: boolean;

out wp: Viewport

): Window;

a Lisp function of this form will be produced:

(defun CreateWindow (Remote Port

fixedPosition

leftz

topy

55

PERQ Systems Corporation | Accent Lisp User's Guide a |

Accent Lisp Manual | Matchmaker Interfaces _

fixedSize —

width |

height |

hasTitle

hasborder

title

progNane
hasIcon)

& that returns as multiple values Window, Leftx, Topy,
. Width, Height, ProgName, and Vp in that order.

7, 2. Matchmaker-Generated Interface Functions ,

7. 2. 1. Lisp remote procedures

_ When a procedural interface is specified by

_ Matchmaker to be of type Remote Procedure, a Lisp
client interface function (with the specified remote

procedure name) is generated that takes In
parameters, packs them into a message, and sends the

message to the specified server. The server will (if the
message succeeds) receive the message, take some

action, and return a reply message with Out

parameters packed into it. The client interface
function will receive the reply message, unpack the

- Out parameters, and return them as multiple values.

 Aclient process only needs to obtain an appropriate
port to use a remote procedure interface. |

7.2.2. Lisp messages

PERQ Systems Corporation | Accent Lisp User’s Guide

Accent Lisp Manual | : Matchmaker Interfaces

When a procedural interface is specified to be of type
Message, a Lisp client interface function (with the

specified message name) is generated that takes In
parameters, packs them into a message, sends the

message to the specified server, and then immediately
returns either an Accent general return value or no
useful value. The client interface function does not
wait for a reply from the server and returns no Out
parameters. The server will receive the message and
take some action, but will not return a reply message
with Out parameters packed in it. A client process |
only needs to obtain an appropriate port to use a
message interface.

7.2.3. Lisp server messages

When a procedural interface is specified to be of type
Server Message, a Lisp client function (with the
specified server message name) is assumed to already
exist that will take as arguments the In parameters
and return no particular value. This type of interface
is used to allow a server process to make an
asynchronous request of a client process. To allow this
to happen, the client process must manually call the

Lisp Receive primitive and receive a message from the
server. The client process then calls a Matchmaker-
generated dispatching function that decodes the
message and calls the Lisp client function that is |

assumed to exist as described above. The server os
process, meanwhile, after sending its message, | |
continues to execute without waiting for any action

from the client process. The assumed client function

receives the message, takes some action, and returns a

o7

. PERQ Systems Corporation ; Accent Lisp User’s Guide | |

Accent Lisp Manual | _ Matchmaker Interfaces

: reply message with Out parameters packed in it. The.

- originally-called client Lisp function receives the reply

_ message, unpacks the Out parameters, and returns
them as multiple values. To use this type of interface,
a client process must obtain appropriate ports and
provide a function to be called by the server message.
The client process is also responsible for manually
receiving the server message and calling the dispatch —
function provided by Matchmaker. This dispatching —
function, by convention, is named |
Inter faceNameAsynch, where Inter faceName is the |

ae name of the interface for which this server message is .

| 7.2.4. Lisp alternate

specified.

replies

When a procedural interface is specified to be of type
Alternate Reply, a Lisp client function (with the ae specified alternate reply name) is assumed to already
exist that takes as arguments the In parameters as

specified and returns whatever value the client process on

wants. This type of interface allows a server process to. :

report exceptional conditions to a client process by |
_ returning as the reply to a remote procedure call a
different sort of message than was expected. To oe
this to happen, the client process must provide a

_ function with the specified name that will take the

specified arguments. The client process then makes oe

remote procedure calls as usual. When the nhs

_ Matchmaker-provided client interface function for any
remote procedure interface receives an unexpected _
reply message (that is, one with a message ID other
than that it was expecting), an alternate reply

_ dispatching function is called that calls the user-

08

PERQ Systems Corporation | Accent Lisp User’s Guide

Accent Lisp Manual Matchmaker Interfaces

supplied alternate reply function appropriate to the —
alternate reply message received. The message is

- unpacked and the In parameters supplied to the
alternate reply function. Whatever the alternate reply
function returns is returned as the value of the original
remote procedure call - 1

While alternate replies can be thought of as being a
sort of alternative ”second half” of a remote procedure
call, it is not the case that an alternate reply is

oe necessarily associated with a particular remote
procedure. Instead, it is associated with a particular
inter face, and any remote procedure call on that

interface may give rise to any of the specified |
alternate replies for that interface.

7.3. Accessing Lisp Alien Data Structures

Matchmaker can generate translations of data going
7 | into and out of messages when the data is fairly

| © . simple. More complex, structured” data must be

So manipulated in such a way that the underlying alien
mechanisms become more apparent to the Lisp user.

Matchmaker attempts to hide Lisp alien mechanisms
as much as possible, with varying degrees of success
depending upon the complexty of the data involved in
the interface.

When passing simple parameters into a Matchmaker- ©
generated remote procedure call, one can simply use
the obvious Lisp counterparts to the specified types.
These are:

signed, unsigned integers : fixnums

59

- PERQ Systems Corporation Accent Lisp User's Guide |

Accent Lisp Manual — _ Matchmaker Interfaces _

ports : fixnums |

enumerations : fixnums, usually given keyword names

booleans : T or NIL

strings : Lisp strings

pointer : system-area-pointer

subranges : fixnums

floating point : either short or long f loats |

Similarly, when receiving values out of a remote |
procedure call, one can expect the above specified type oo

of Lisp object. . os

7%, 3. 1. Alien enumerations

An alien enumeration type causes Matchmaker to
generate Lisp keywords corresponding to the |

- enumeration values. These enumeration values are
then passed into and out of Matchmaker-generated
interfaces using the defined keywords. For example,
given an enumeration type like: |

type era ® (stone-age aedieval nos spacenage) |

Lisp alien data of this type would be referred to using os
the keywords ‘Stone-age, ‘Medieval, ‘Now, and pSpace- a

age. |

60

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Matchmaker Interfaces

7.3.2. Alien records

When remote procedure data is an array or record
type, Matchmaker generates accessing macros for
obtaining subparts of the data object. Given data and
a remote procedure call specified as:

type

ProcState = (Supervisor, ! 00 - supervisor with privileges

Privileged, ! 01 - user with privileges

BadSupervisor, ! 10 - supervisor without privileges

User); i 11 - user without privileges

ProcID 3 integer;

PriorID = 0. .NUMPRIORITIES-1;

QID 8 0..NUMQUEUES;

PStatus 2 record

State : ProcState;

Priority : PriorID;

MsgPending =: boolean;

EMsgPending : boolean;

WegEnable : boolean;

EMsgEnable =: boolean: a

LiaitSet : boolean;

SVStkInCore : boolean;

QueueID > QID;

SleepID a long;

RunTise : long;

LinitTise : long

end record;

61

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual | _ Matchmaker Interfaces

Remote Procedure Status (

7 : Port;

«out MStats : PStatus)

 ? GR Value; — |

the Lisp function Status generated by Matchmaker
would take one parameter, the kernel portof the =
process for which status is being requested. It would
return two values: the GeneralReturn code of the call —
followed by the PStatus record NStats. The PStatus —
record would be returned as an alien value; thatis, it = 8 ~ a
would be in such a form that Matchmaker-generated _ a -

accessing macros would need to be used to access it. oe |

~The alien value would be of the form:

- #CAlion value, Address = }x600184C, Size = 240, Type = PStatus?

| Macros to access such an alien value would be

generated with names:

Access-PStatus-State

Access-PStatus-Priority

Access-PStatus-MsgPending : —

Access-PStatus-EMsgPending

Access-PStatus- MsgEnable

Access-PStatus-LimitSet

Access-PStatus-SVStkInCore

Access-PStatus-QueuelID © | fos oe

PERQ Systems Corporation Accent Lisp User’s Guide |

Accent Lisp Manual Matchmaker Interfaces —

Access-PStatus-SleepID

Access-PStatus-RunTime

Access-PStatus-LimitTime

Thus, if variable PS was given the alien value
returned by Status, the Priority record field could be
accessed using the form (Access-PStatus-Priority PS),
which would return a fixnum, since Matchmaker
subranges are translated into Lisp fixnums.

Due to the way alien mechanisms are implemented in
Lisp, only accessing macros that return Lisp data (as
opposed to other alien values) are named in the form
” Access-X” as in the above example. Macros that
access alien values and return other alien values are
named in the form ”X-Op”. For example, given these
record definitions:

type

InnerRec #® record

fieldi : integer;

field2 : long

end record;

OuterRec 2 record

fieldA : InnerRec;

fieldB : long;

fieldC : short

end record;

the macro for accessing FieldB of OuterRec would be
named ” Access-OuterRec-FieldB”, while the macro for _

accessing FieldA would be named ”OuterRec-FieldA-

63

—7.3.3.. Alien arrays

PERQ Systems Corporation Accent Lisp User’s Guide

- Accent Lisp Manual — Matchmaker Interfaces _ ee

Op’. To access the Lisp data in an OuterRec alien ; .

value bound to some variable Foo, the following forms —

would be used:

(Access-InnerRec-Field1 (OuterRec-FieldA-Op Foo)) |

(Access-InnerRec-Field2 (OuterRec-FieldA-Op Foo))

'(Access-OuterRec-FieldB Foo)

(Access-OuterRec-FieldC Foo)

To access alien array values, macros named exactly as_—

above are used, but an additional argument is given _
them along with the form that evaluates to the alien
value. This argument is the array index. Arrays that |

have alien-valued elements are accessed using macros

named as ”X-Op” while alien arrays that have
elements automatically translated into Lisp data are

accessed using macros named as ”Access-X” Given

type specifications of the form: Oo

type

AlienValuedArray = array [10] of PStatus;

LispDataArray = array [£7] of integer; |

Array X of type Alien Valued Array would be accessed

using a form like (Alien Valued Array-Op X n) and
Array Y of type LispDataArray would be accessed

using a form like (Access-LispDataArray Y n). ,

Alien accessing macros may be composed as needed: oo

but only the outermost macro (at most) should have __

64

PERQ Systems Corporation Accent Lisp User’s Guide |

Accent Lisp Manual | Matchmaker Interfaces

names of the form ” Access-X” while all inner macros
of the composition should have names of the form ” X-
Op.”

7.3.4. Alien pointers

Data passed as pointers in a Matchmaker-generated
interface is returned from and passed into these

interfaces as Lisp system-area-pointers. When a
Matchmaker interface specification uses a pointer
type, Lisp currently must use system-area-pointers

that give the internal address of the data returned or
passed. Alien data structures may be created from
these pointers using the primitives defined later in this
document (see section 7.6).

Pointers to pre-existing alien data structures may be
passed into an interface by using the Alien-Address

primitive to obtain a system-area-pointer.
Matchmaker generates the same sort of accessing
macros as those described above for records and arrays

for data structures specified in an interface
specification even if those records and arrays are
passed only through pointers (or not used as interface
parameters at all). Thus one may take system-area-
pointers, create an alien, and access it using the
Matchmaker-generated macros for such data.

65

7.4. Alien Values

7.5. Alien Types -

Accent Lisp Maaual — Matchmaker Interfaces |

Alien types are tags attached to alien values that may
be checked to assure that they are not used

inappropriately. When types are compared the

PERQ Systems Corporation - Accent Lisp User’s Guide

Ob jects in messages are manipulated via typed
pointers to the data involved. These typed pointers are
called Alien values. An alien value is a Lisp ob Ject

consisting of three components:

- Address The address of the object pointed to. This is sword. |

address, which may be 2 ratio, since objects need not -

- be word aligned. mS

Size The size in bits of the object pointed to. This
information is used to make sure that accesses. to the

object fall within it.

Type The alien type of the object pointed to. Since alien

values have a type, functions that use them can |

check that their arguments are of the correct type.

comparison is done with the Lisp Equal function.
Types are typically represented by symbols or lists of

symbols such as the following:

string

(directory-entry type-file)

(signed-byte 7)

string-char

A convention that is encouraged, but not enforced, is ne

66

PERQ Systems Corporation = —— ‘Accent Lisp User’s Guide

Accent Lisp Manual | Matchmaker Interfaces |

that an ordinary type is represented by a symbol, and

a type with some subtype information, such as a
discriminated union, is represented as a list of the

main type and the subtype information.

7.6. Alien Primitives

This section describes the primitives defined by alien.
Some of these primitives are intended to be used only

| in code generated by Matchmaker, while others are
ps available to users.

make-alien type size
&optional address [Function]

Make an alien object of type Type that is
Size bits long. Address may be either a
number, :Static or :Dynamic. If Address is a —
number, then that becomes the returned

alien’s address. If Address is :Static or
:Dynamic then storage is allocated to hold
the data. Aliens that are allocated statically
are packed as many as will fit on a page,

resulting in increased storage efficiency, but
disallowing the deallocation of the storage.
Since static aliens are allocated contiguously,
the Save function can arrange to save their
contents. Dynamic Aliens are allocated on
page boundaries, and may be deallocated

using Dispose-Alien.

alien-type alien [Function]

alien-size alien . [Function]

67

PERQ Systems Corporation Accent Lisp User’s Guide |

Accent Lisp Manual | _ Matchmaker Interfaces —

alien-address alien | [Function] 8

These functions return the type, size and
address of Alien, respectively.

copy-alien alien | : [Function]

Copies the storage pointed to by Alien and

returns a new alien value that describes it. —

dispose-alien alien __ ; [Function] — oe

Releases any storage associated with Alien. — Re |

Any reference to Alien afterward may fail _

alien-access alien lisp-type _ [Function]

Returns the object described by Alien as a
Lisp object of type Lisp-type. An error is
signaled if the type of Alien cannot be

converted to the given Lisp-type. For most —
Lisp-types the corresponding alien ‘ype } is

identical.

_ Lisp-type, which is not evaluated, must be

one of the following:

(Unsigned-byte n)
An unsigned integer N bits wide, as in

Common Lisp. |

(Signed-byte n)
A signed integer N bits wide. -

Boolean’ A one-bit value, represented in Lisp as T |

PERQ Systems Corporation _ Accent Lisp User’s Guide

Accent Lisp Manual | Matchmaker Interf aces

or Nil.

(Enumeration name)
Accesses a value of the enumeration

Name. Enumerations are defined by the

macro Defenumeration.

| String-char An eight-bit ASCII character.

Simple-string

A perq-string, which is a PERQ Pascal

string.

Sort An Accent IPC port.

Short-float, Long-float

There is only one alien type accepted by

these, ieee-single, which is a floating point

number in pseudo-IEEE single format, as

used by PERQ Pascal. Both Lisp-types

are allowed so that one may choose

whether to Cons long-floats or lose

precision. |

System-area-pointer

Returns as a system-area-pointer the

long-word described by Alien. It is an

error for the address not to be in the

system area.

alien-store alien lisp-type

new-value [Function]

Alien-Store is the inverse of Alien-Access. It
stores the Lisp object New-value in the place
specified by Alien. Lisp-type may have the

69

PERQ Systems Corporation Accent Lisp User’s Guide we oe

Accent Lisp Manual | Matchmaker Interfaces

same values as for Alien-Access, with one

additional value:

(Pointer type) |
Type may be any unboxed Lisp type such

as Simple-string, Simple-bit-vector and |

(Simple-array (Unsigned-byte 8)). When
an object of such a type is stored the

address of the first data word is stored in

the corresponding location.

alien-assign dest dest-offset
source source-offset a LS |

size | [Function] —

Copies part or all of an existing alien into
another alien. Alien-Assign takes five
arguments: the destination alien (Dest), a
bit offset into the destination alien (Dest-
offset), the source alien (Source), a bit offset —
into the source alien (Source-offset), and a
bit size to be copied into the destination

alien (Size).

7.76 Alien Variable Primitives

An alien variable is a symbol that has had an alien
value associated with it. An alien variable is not a

_ Lisp variable -- in order to obtain the value of an alien -
- variable, the special form Alien-Value must be used.
The reason for using alien variables as opposed to Lisp
variables is that various additional information can be
associated with the alien variable that may permit
code referring to it to be compiled more efficiently.

70

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Matchmaker Interfaces

alien-value name [Function]

Returns the value of the alien variable
Name.

alien-bind
((name value type)*)

{form }*[Function]

Defines a local alien variable Name having
the specified alien Value. Bindings are done
serially, as by Let*.

defalien name type

size [address] [Macro]

Defines Name as an alien variable, creating
a value from Type, Size and Address as for
Make-Alien. Name and Type are not
evaluated.

77

PERQ Systems Corporation — Accent Lisp User’s Guide

Accent Lisp Manual oo | Appendix _

72

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual | Appendix

Appendix A. Example of Matchmaker-
generated Alien Data

An example of the use of Matchmaker-generated alien
data is provided by the piece of Matchmaker-
generated code for the Message/NameServer client

interface below. The alien variables denoted To-X
and From-X are the actual message records used by

interface routine X for message communication. Also
shown is the use of Send and Receive using alien data
structures.

s333 © = 9~Lisp-*~

333, Matchmaker generated user interface file for Msgi

oD TEIS FILE SEOULD NOT BE FAND EDITED

sess 20 change this interface, edit the interface Matchmaker

s333 file and run it through Matchmaker to generate this file.

(in-package *NSGNUSER®)

(use-package "MSGNDEFS®)

(use~package "BUILTINDEFS®)

(use-package °MMINTERNALDEFS®)

(use-package *ACCINTUSER)

(defvar *receiveport* NIL)

(defconstant interface-backlog 0)

73

PERQ Systems Corporation | | | Accent Lisp User's Guide

Accent Lisp Manual | Appendix —

(use-package "ACCINTDEFS®)

333 Megl-Send -- internel

333 Send macro for Meg

(defmacro Meg¥-Send (asg argblock wait-tise send-option)

“User send macro for interface Msgi®
|

: (cond ((fixnuap *receiveport*) |

(aliena-store (asg-localport-op , msg) port *receiveports)

(send , argblock , wait-tine , send-option)) |

(&

notaport)))

oot

866

33 User side interface initialisetion function.

@ 0 ©
6:8 8

(defun Megl-Init (user-port)

"The user side intialization function®

(cond ((eql user-port aullport)

(nultiple-value~bind (gr port)

(allocateport kernelport interface-backlog)

(if (eql gr success) (setq *receiveport? port)

(setq *treceiveport? dataport)) |

gr))

(t |

(setq *receiveport® user-port)

success)))

74

PERQ Systems Corporation -. Accent Lisp User’s Guide

Accent Lisp Manual | Appendix

333 CheckIa -- public

333 User-side remote procedure call interface.

(defun CheckIn (Remote Port PorteBane Signature PortsID)

"The user side of renote procedure CheckIn®

(prog ((send-waittine 0)

(send-option 0)

(receive-waittine 0)

gr) |
(alien-bind ((to te-CheckIn to-CheckIn))

(alien-store

(msg-renoteport-op (Msgize-to-CheckIn-op

Calien-value to))) port Remote Port)

(alien-store ~

(to-CheckIn-PortsName-op (alien-value to))

Oe | | sisple-string PortsNane)

; a Be - (aliea-store |

- | (to-CheckIn-Signature-op (alien-value to)) port

Signature)

(alien-store

(to-CheckIn-PortsID-op (alien-value to)) port

Ports ID)

(setq gr

(Msgli-send

(Msgize-to-CheckIn-op (alien-value to))

to-CheckIn send-waittime send-option)))

(alien-bind ((from from-CheckIn from-CheckIn))
(cond ((eql gr success)

Calien-store

(usg-usgsize-op

(Nsgize-from-CheckIn-op

(alien-value fros)))

75

PERQ Systems Corporation -—Accent Lisp User's Guide _
Accent Lisp Manual _ | | Appendix : .

(signed=byte £2) 28)

(alien-store

(usg-localport-op |

| legize-trow-Checkla-op

 (alien-value froa)))

port *ReceivePort*)

(setq gr

(receive from-CheckIn recedve-uaittine oe

localpt receiveit))

(cond ((not (eql gr success))

IL |
(return gr))

((z

(access~sg-id

(Nsgize~from-CheckIn-op

(alien-value from))) —

1100)

(cond (C= |
(access-typetypei-typenane

(meg-retcode-typetypei-op gS -

(Wsgize-from-CheckIn-op

(alien-valuc from)))) |

1)

(setq gr

(necess-asg-retcode ee

(lsgize-from-CheckIn-op —

(elien-value fron)))))

(t

NIL |

(return badreply)))

NIL ae
(retura (values gr)))

MIL

16

PERQ Systems Corporation Accent Lisp User’s Guide |

Accent Lisp Manual Appendix

(retura

(user-alternate-retura

(Msgize-fror-CheckIa-op

(alien-value fros)))))))

(t

SIL

(return gr))))))

333 Lookup - public

333 User-side renote procedure call interface.

(defun Lookup (Remote Port PortsNane)

*The user side of renote procedure Lookup®

(prog (PortsID

(send-waittine 0)

(send-option 0)

(receive-waittise 0)

gr)

(alien-bind ((to to-Lookup to-Lookup))

(alien-store

(asg-remoteport-op (Msgize-to-Lookup-op

(alien-value to)))

port Remote Port)

(alien-store (to-Lookup-PortsName-op

(alien-value to))

simple-string PortsNane)

(setq gr

| (MsgN-send (Msgize-to-Lookup-op

(alien-value to)) to-Lookup

send-vaittine send-option)))

Calien-bind ((from from-Lookup fror-Lookup))

U7

 PERQ Systems Corporation -—_Acccent Lisp User’s Guide
Accent Lisp Manual sy | . Appendix

(cond ((eql gr success)

(aliea-store |

(msg-megsize-op

(sgize-froR-Lookup-op (alien-value from))) ee

(signed-byte $2) $6)

(alien-store |

(usg-localport-op | - |

(isgize~froe-Lockup-op (alien-value tron)))

port *ReceivePorts) | :

(setq gr oo

(receive from-Lookup receive-waittine

localpt receiveit))

(cond ((not (eql gr success))

8IL |

(returs gr))

((s /

(access~asg-id

(Msgize-fros-Lookup-op

(alien-value from)))

1101)

(cond ((s ,

(accons-typetypei-typenane :

Gasgeretcodertypetypei-op

(isgize-from-Lookup-op

(alien-value troad)))_

1) |

 (eetq SF

(access-nsg-retcode oF

(isgize-from-Lookup-op

— (alien-value from)))))
te | ee :

NIL |

(return bedrepiy)))

(cond (Ceql

- 78

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual Appendix

(access-typetypei-typenane

(from-Lookup-PortsID=

typetypel-op

(alien-value from)))

6)

(setq PortsID

(access-froa-Lookup-PortsID |

Calien-value from))))

(t

#IL

(return BADREPLY)))

NIL

(return (values gr PortsID)))

(t

IL

(return

(user-alternate-return

(Msgize-from-Lookup-op

_ (alien-value fros)))))))

(t

NIL

(return gr))))))

333 CheckOut -— public

;33 User-side remote procedure call interface.

(defun CheckOut (Remote Port PortsName Signature)

"The user side of remote procedure CheckOut®

(prog ((send-waittine 0)

(send-option 0)

(receive-waittine 0)

19 |

PERQ Systems Corporation ‘Accent Lisp User’s Guide / oe
Accent Lisp Manual — Appendix

gr) ,

(alien-bind ((to to-CheckOut to-CheckOut))
(elien-store |

(psg~remoteport-op ese -

(isgize-to-CheckOut-op (alien-value to))) eae

port Remote Port) — _ ies

(alien-store (to-CheckOut-PortsNase-op.

(alien-value to))

simple-string PortsNaze)

(alien-store (to-CheckOut-Signature-op

(alien-value to))

port

Signature)

(setq gr.

(Nsgii-send (Msgize-to-Check0ut-op

| (alien-value to))

a to-CheckOut send-waittine send-option))) — -

(aliea-bind ((from from-CheckOut froa-CheckOut)) .

(cond (Ceql gr success)

(alien-store (asg-asgsize-op

(Msgize-from-CheckOut-op |

(alien-value from)))

(signed-byte £2) 28)
(alien-store

(msg-localport-op_

(Msgize-from-CheckOut-op _

(alien-value from)))

port *ReceivePort+)

(setq gr S | Jee

(receive fron-CheckOut receive-waittine a

| | localpt receiveit)) — ay Oe!

(cond ((not (eql gr success))

NIL ae

80

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual / Appendix —

(return gr))

(@ |

(access-asg-id

(Msgize-from-CheckOut-op

(alien-value fros)))

1102)

(cond ((z

(access-typetypei-typenane

(asg-retcode-typetypei-op

(Msgize-from-CheckOut-op

(alien-value from))))

1)

(setq gr

(access-asg-retcode

(Msgize-froa-CheckOut-op

(alien-value from)))))

(t

NIL

(return badreply)))

NIL

(return (values gr)))

(t

NIL

(return

(user-alternate-returno

(Msgize-fror-CheckOut-op

(alien-value from)))))))

(t

WIL

(return gr))))))

355 MsgPortStatus -- public

81

PERQ Systems Corporation Accent Lisp User's Guide | ee :

| | "Appendix
Accent Lisp Manual

cos User-side remote procedure call interface.

(defun MegPortStatue (Renote Port PortsID)

-—6«8fhe user side of resote procedure sgPortStatus®

(prog (GlobalPort | | wee ee

Owner

Receiver

SreID

Seqhun

NetWaiting

NumQueued

Blocked

Locked

RecrQueue

Datalffset

YaSreID

TaSeqNun

(send-waittine 0)

(send-optios 0)

(receive-waittine 0)

er) | :
. (alien-bind ((to to-MsgPortStatus to-MsgPortStatus))

(alien-store

(nsg-renoteport-op

(Msgize-to-MsgPortStatus-op (alien-value to))) =

port Remote Port) | 7

(alien-store

(to-MsgPortStatus-PortsID-op

(alien-value to)) port |

| Ports ID)

— (setq gr
| — (MsgN-send

. (Msgize-to-MsgPortStatus-op (alien-value to)) oes

82

PERQ Systems Corporation Accent Lisp User’s Guide
Accent Lisp Manual | : Appendix —

towMsgPortStatus send-saittine send-option)))

(alien-bind ((from from-MsgPortStatus from-MsgPortStatus))

(cond ((eql gr success)

(alien-store

(asg-asgsize-op

(Msgize-froa-MsgPortStatus-op

(alien-value fros)))

(signed-byte £2) 122)

(alien-store

(ssg-localport-op

(Msgize-fron-MsgPortStatus-op

(alien-value froa)))

port *ReceivePort?)

(setq gr

(receive from-MsgPortStatus

receive-waittinze localpt

receiveit)) .

(cond ((not (eql gr success))

| NIL
(return gr))

(@

(access~asg-id

(Nsgize-fronm-MsgPortStatus-op

(alien-value fros)))

1103)

(cond ((2

(access-typetypei-typenane

(usg-retcode-typetypei-op

(Msgize-froz-

MsgPortStatus-op

(alien-value from))))

1)

(setq gr

(access-asg-retcode

83

| PERQ Systems Corporation Accent Lisp User’s Guide : as

Accent Lisp Manual | Appendix

(isgize-froe- | -

MegPortStatus-op

- (alien-value froa))))) ao

Ge | |
TL

(retura » beareply)?)

(cond ((eql |

| (access-typetypei-typenane

(from-MsgPortStatus-

GobalPort-typetype-op |

(elien-value troa))) |

a)
(setq GlobalPort

(access-from-

| sgPortstatus-GlobslPort: |

(alien-value from))))

(| |
WIL |

| ‘(return BADREPLY)))

(cond ((eql

(access-typetypei-typenane

(from-MsgPortStatas-

Owner-typetypel-op —

(aliea-value from)))

2) |
(setq Owner

(access-from — |

MsgPortStatus-Ouner

(alien-value from)))) - ae

— |
| WIL

(retara BADREPLY))).

Goond (Ceql |

, (aconse-typetypei-typenane ey

84

PERQ Systems Corporation Accent Lisp User’s Guide
Appendix Accent Lisp Manual

(from-MsgPortStatus-

Receiver-typetypelI-op

(alien-value fros)))

2)

(setq Receiver

(access~froa-

MegPortStatus-Receiver

(alien-value fros))))

(t

NIL

(return BADREPLY)))

(cond (Ceql

(access-typetypei-typenane

(Lroa-MsgPortStatus-

_ SreID-typetypel-op

(alien-value from)))

2)

(setq SrcID

(access-fros-

MegPortStatus-SreID

Calien-value from))))

(t .

NIL

(return BADREPLY)))

(cond ((eql

(access-typetypei-typenane

(from-MsgPortStatus- |

SeqNuna-typetype!l-op

Calien-value fron))) |

2)

(setq Seqhun

(access-froa-

MegPortStatus-Seqlun

(alien-value from))))

85.

| PERQ Systems Corporation - Accent Lisp User's Guide.

Accent Lisp Manual a - Appendix

Ct

«MIL

(return BADREPLY)))
(cond ((eql - 7

os (nccess-typetypei-typensee

| (from-MsgPortStatus- 2

- NetWaiting-typetypel-op

(alien-valae from))) a

(setq NetWaiting

. (accese-froa- ws

NegPortStatus-NetWaiting

(alien-value from))))

ce |

WIL
(return BADREPLY)))

(cond ((eql | |

(access-typetypei-typenane -

(from-MsgPortStatus- |

NusQueued-typetypel-op

(alien-value from)))

0
(setq NumQueued —

Caccess-from-

“MegPortStatus-MuaQueued gp

(alien-value fros))))

(% wo
WIL : oe
(return BADREPLY)))

(cond (Coq) | o

(access-typetypei-typenase

(from-MsgPortStatus- - |

Blocked-typetypeI-op

(alien-value from)))

86

PERQ Systems Corporation Accent Lisp User’s Guide

Accent Lisp Manual | Appendix

0)

(setq Blocked

(access-fror-

MsgPortStatus-Blocked

Calien-value from))))

(t

NIL

(return BADREPLY)))

(cond ((eql

(access-typetypei-typenane

(from-MsgPortStatus-

Locked-typetypelI-op |

(alien-value from)))

0)

(setq Locked

(access-froa-

MsgPortStatus-Locked

(alien-value froa))))

(t _

NIL - en

(return BADREPLY))) | |

(cond ((eql

(access~typetypei-typenaze

(from-MsgPortStatus-

RecvQueue-typetypel-op

(alien-value from)))

i)

(setq RecyQueue

(access-froa-

NsgPortStatus—RecyQueue

(alien-value from))))

(t

NIL

(return BADREPLY)))

87

| PERQ Systems Corporation Accent Lisp User's Guide | : =

Accent Lisp Manual a | “ - Appendix | es

(cond (Ceql | |

| - (access-typetypei-typenane Be

Sy (from-MegPortStatus-. es

. DataOffset-typetypel-op :

(alien-value from)))
2)
(setq Datalfiset

(access-fron=. | ee

MsgPortStatus-Data0ffcet

(alien-velue from)))) _ :

a e | |
NIL |
(return BADREPLY))) |

 Ccond CCeql :

| (access-typetypei-typename

(from-MsgPortStatus- | wee

| InSrcID-typetypel-op 7

(alien-value from))) ss

2
(setq InSreID

(access-fros- 2

‘MsgPortStatus-InSrcID

(alien-value from)))) -

(t ,

WIL | |

(return BADREPLY)))

(cond ((eql | Be
- (access-typetypei-typenaze oe |

‘(from-MsgPortStatus- oe - - ee 2 oe oe oe . -

“InSeqNua-typetypel-op

(alien-value fro))) |

2 oe
(setq InSeqhus

(access-from-

a:

PERQ Systems Corporation Accent Lisp User's Guide

Accent Lisp Manual Appendix

NegPortStatus~-laSeqhus

(alien-value fronm))))

(t

NIL |
(returs BADREPLY)))

IL

(retura

(values gr GlobalPort Owner Receiver

SrcID SeqNun NetWaiting

NusQueued Blocked Locked
RecvQueuc Data0ffset InSreID

TnSeqNum)))

(t

IL

(return

(userwalternate-return

(Msgize-fros-MsgPortStatus-op

(alien-value from))))))) |

(t

NIL

(retura gr))))))

o28 NegAsynch -- internal

333 User-side asynchronous message dispatching function.

(defun MsgNAsynch (msg)

"User-side asynchronous message dispatching function.*

(alien-bind ((alien-msg asg asg))

(case (access-asg-id (alien-value alien-asg))

(t badmsgid))))

89

| PERQ Systems Corporation | . Accent Lisp User’s Guide

Accent Lisp Manual ee Appendix _

333; User-Alternate-Return ~~ internal —

333 User-side alternate retura dispatching function.

(defun user-alternate-return (asg) | |

SUser-side alternate return dispatching function. ®

Caliena-bind ((alien-msg asg asg)) |

(case (access-nasg-id (alien-value alien-asg))

(t badreply))))

(export ° (Megl-Init MegWAsynch ChecklIn

Lookup CheckOut MsgPortStatus))

90

PERQ Systems Corporation Lisp User’s Guide
Accent Operating System Index.

INDEX

*Command¢d-line-inputs® 4

*“Command-line-outputs® 5

Command-line-switches® 5

Command-line-utility-name 4

Command-line-words 4

Debug-ignored-functions® 25

Debug-io 8 |

*Debug-print-length® 25

*Debug-print-level® 25

*EMPort® 6

*Error-cleanup-forms® 27

*Error-output® 8

*Max-step-indentation® 20

*Max-trace-indentation® 18

*NameServerPort® 6

PMPort® 6

Query-io 8

SapphPort 7

*SesPort® 6

*Standard-input® 8

“Standard-input-filename* @

Standard-output 8

Standard-output-filename® 0

Step-print-length® 19

Step-print-level 19

Terminal-io 8

TimePort 6

*Trace-output® 8

Trace-print-length® 17

91

PERQ Systems Corporation . | Lisp User’s Guide

Accent Operating System a Index

°Trace-print-level® 17

®Traced-function-list® 17

®TypescriptPort® 7 |

°UserTypescript® 7

UserWindow® 7

*UserWindowShared® 7

Backtrace 23

Break 27

Break loop commands 26

Cmd-corresponding-arg §&

Cmd-switch-arg 5

Cmd-switch-name 5

Compiler switches 30

Debug 25

Debug-arg 23

Debug-hide 24

Debug-local 22

Debug-pe 23

Debug-return 23

Debug-show 25.

Debug-value 22

Debugger inspection commands 22

Debugger movement commands 21

Lisp startup switches 2 |

Menu-choose 45 | | |

Menu-choose-from-structure 45

Menu-prepare 45

Pasted-menu-choose 48

— 92

PERQ Systems Corporation

Accent Operating System

Pasted-menu-p 48

Save 13

Step 18

Time 13

Trace 15

Unpaste-menu 48

Untrace 17

Lisp User’s Guide

Index

93

- PERQ Systems Corporation — a Lisp User’s Guide S.

Accent Operating System a Index

94

