i ;iamel
(SN
liauales e

PERG.

Systems
Corporation

PERQ. FILE sYsTEM

March 1984

This manual is for use with POS Release G.5 and subsequent
releases until further notice.

Copyright(C) 1983, 1984
PERQ Systems Corporation
2600 Liberty Avenue

P. 0. Box 2600
Pittsburgh, PA 15230
(412) 355-0900

This document is not to be reproduced in any form or transmitted in
whole or in part, without the prior written authorization of PERQ
Systems Corporation.

The information in this document is subject to change without
notice and should not be construed as a commitment by PERQ Systems
Corporation. The company assumes no responsibility for any errors
that may appear in this document.

PERQ Systems Corporation will make every effort to keep customers
apprised of all documentation changes as quickly as possible. The
Reader ‘s Comments card is distributed with this document to request
users’ critical evaluation to assist us in preparing future
documentation.

PERQ and PERQ2 are trademarks of PERQ Systems Corporation.

- ii -

PREFACE

This document describes the file system for the PERQ Operating
System.

The POS file system provides a directory oriented structure that
allows you to store and manipulate files on hard disks and floppy
disks. The system supports both hard disks (Shugart 12- and 24-k
byte, Micropolis 35-k byte, and 5.25") and floppy disks (single or
double sided).

The hardware addressing of devices occurs through microcode, using
a distinct address. Software addresses the devices through the
microcode using a standard address. Chapter 1 describes the
distinct (phzsical) and standard (logical) addresses. The Chapter
also describes the logical structures that provide the file system
interface between physical and logical structures.

Chapter 2 details the data structures of the logical structures.
This Chapter describes the significance of each word in the file
system logical structures.

Chapter 3 defines the format of two important types of files:
segment (.Seg) files produced by a compiler; and directory (.DR)
files that form the keystone of the file system. This Chapter also
describes the method in which files are entered or listed in the
directories. The Chapter does not attempt to define the format of
executable (.Run) files nor system bootstrap (.Boot) files. (The
module Code.Pas defines .Run file format and the MakeBoot utility
writes .Boot files.)

Chapter 4 provides a step-wise refinement through the fundamental
file system operations that allow you to create, read, write,
delete, and close files. Other functions require one or more of
these fundamental operations.

Chapter & describes the file system utilities Partition, Scavenger,
MakeBoot, and Fixpart. The Partition utility initializes a disk
for use with the file system; it creates the logical structures.
The Scavenger utility provides disk maintenance. The MakeBoot
utility permits you to create new, bootable software systems.
Finally, the Fixpart utility provides last resort maintenance of
disks; its use is seldom required and, unless you have a firm grasp
on the file system concepts, always discouraged.

Note that on a PERQ system, the low-order word precedes the
high-order word in memory. All values represented in this manual
are in memory order. Bits are numbered as follows:

High-byte Low-byte
1514 1312111098 1766543210

- 1ii -

The disk addresses represented in this manual are octal values.

-]V -

PERQ DISK STRUCTURE January 15, 1984

CHAPTER 1: INTRODUCTION

1.1 PHYSICAL FORMAT OF DEVICES

1.2 LOGICAL FORMAT OF DEVICES

1.3 DEVICE COMPOSITION

CHAPTER 2: FILE SYSTEM DATA STRUCTURES
.1 OVERVIEW

DEVICE INFORMATION BLOCK

1 Freelead

2 FreeTail

3 NumberFree

4 RootDirectorylD

5 BadSegmentID

6 BootTable

7 InterpreterTable

8 PartitionName

9 PartitionStart

10 PartitionEnd

11 SubPartitions

12 PartitionRoot

13 PartitionType/Devicelype

14 Disk Information Block Layout
PARTITION INFORMATION BLOCK

1 Freelead

2 FreeTail

3 NumberFree

4 RootDirectorylD
S BadSegmentID

6 BootTable

7 InterpreterTable
8 PartitionName

9 PartitionStart

VOOV OOV VORI NNNNN D DD DD WWWUWr = \OU)r——

2
2.
2.
2.
2.
2.
2.
2.
2.
2.
o2
2.
2.
2.
2.
.3
3.
.3.
3.
3.
.3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
4
4.
4.
4.
4.
4.
4.
4.
4.
4.

10 PartitionEnd
10 11 SubPartitions
10 12 PartitionRoot
10 13 PartitionType/DeviceType
11 14 Partition Information Block Layout
12 FILE INFORMATION BLOCK
12 1 FileSystemData
14 2 Random Index
15 3 SegmentKind
16 4 NumberofBlocksInUse
16 § LastBlock
16 6 LastAddress
16 7 LastNegativeBlock
16 8 LastNegativeAddress
17 9 File Information Block Layout
| HAPTE 3: FILE FORMATS
SEGMENT FILES

.1 Header Block

.2 Code Blocks

.3 Import List

.4 Routine Name List

PERQ DISK STRUCTURE

8[\)-— —
O = = OV —O~JONI

.5 Diagnostic Information
.6 Routine Descriptors

.7 Pre-segment Files

.8 Field Definitions
DIRECTORY FILES

TER 4: FILE OPERATIONS

.1 CREATING A FILE

.2 WRITING A BLOCK IN A FILE
.3 READING A FILE ‘
4.4 DELETING A FILE

4.5 CLOSING A FILE

CHAPTER 5: FILE SYSTEM UTILITIES
5.1 PARTITION PROGRAM

5.2 THE SCAVENGER PROGRAM
MAKEBOOT

5.4 FixPart

.
.
]

[\ S I

-Vvi -

January iS5, [984

INTRODUCTION January 15, 1984

CHAPTER |
INTRODUCTION

The syntax of POS file names reflects the hierarchical organization
of the POS file system as follows:

device:partition>directory>filename

The mass storage devices (hard or floppy disk) form the base of the
hierarchy. The file system divides each device into a number of
sections, known as partitions. Each partition can contain any
number of directories. Directories are special format files that
can contain names and addresses of files as well as other
directories; you can nest directories and thus form a multi-level
directory structure. In the POS file system, all files can be
noncontiguous. However, files, including directories, cannot cross
partition boundaries; portions of files can only be scattered
throughout the partition in which they reside.

The sections that follow discuss the format and composition of the
POS file system structure.

1.1 PHYSICAL FORMAT OF DEVICES

There are two types of mass storage devices: hard disks and floppy
disks. Each device consists of discrete positions known as
cylinders. The device’s read/write heads divide the cylinders into
tracks. Each track is divided into sectors. Table 1-1 lists the
number of tracks per cylinder and the number of sectors per track
for Micropolis and Shugart hard disks and floppy disks.

Throughout this chapter statistics are not given for 5.25" disks,
as the numbers vary depending on the manufacturer. If you
purchased the disk from PERQ Systems, the file Disk.Params on your
‘machine will contain information about the disk.

INTRODUCTION

Table 1-1
Cylinders, Tracks, and Sectors for Volumes

January

15, 1984

Drive/ Cylinders | Tracks/ Sectors/
capacity - cylinder | track
Micropolis35 580) 24
35-MB (0 - §79) (0 - 4) (0 - 23)
Shugart 4000 202 4 30
12-MB (0 - 201) (0 - 3) (0 - 29)
Shugart 4002 202 8 30
- (0 - 201) 0-7) (0 - 29)
Single-sided floppy 77 1 26
(0 - 76) (1 - 26)
Double-sided floppy 77 2 26
(0 - 183) (1 - 26)

e
4

+

The Shugart disks consist of 202 cylinders numbered from 0 through
201. A 12-MB Shugart disk uses four read/write heads and thus
contains four tracks per cylinder, numbered O through 3. A 24-MB
Shugart disk simply doubles the number of read/write heads and thus
contains eight tracks per cylinder (tracks O through 7). The tracks
83 a Shugart disk are divided into 30 sectors, numbered 0 through

Figure 1-1 illustrates the cylinder, track, and sector divisions of
a 12-MB Shugart disk.

The Micropolis disk consists of 580 cylinders numbered from 0
through 579 and uses five read/write heads. Thus, a Micropolis
disk contains five tracks per cylinder (tracks O through four).
The tracks on a Micropolis disk are divided into 24 sectors,
numbered 0 through 23.

Figure 1-2 illustrates the cylinder, track, and sector divisions of
a 35-MB Micropolis disk.

The floppy disk consists of 77 cylinders numbered from O through
76. A single-sided floppy disk uses one read/write head and thus
contains one track per cylinder. A double-sided floppy disk uses
two read/write heads (one on each side) and thus contains two
tracks per cylinder (tracks O and 1). The tracks on a floppy disk
are divided into 26 sectors, numbered 1 through 26.

Figure 1-3 illustrates the cylinder,’track, and sector divisions of

1 -2

INTRODUCTION January 15, 1984

a double-sided floppy disk.

Figure 1-1
12-MB Shugart Disk Organization

~

cylinder 0 cylinder | cylinder 201

< oo

track 0 Esec 0!...lsec 29iisec 0!...}sec 29E

.
T

<

sec 0}...lsec 29?

-+

-+

$mmt et ==t +
[7]
@
(¢
(=4

- -

boude

sec 0}...]sec 29iisec 0l...lsec 29

Ll
T

L
-

-

...lsec 29

0
(]
0
(=

track |

-

F 4 ——

ol

sec 0}...]sec 2 E}sec 0!...}sec 29

deede
™t

track 2 ... sec 29

|
)
f
-
3
+
1
[
<=
T

4 b

+ 4=+

track 3 !sec 0}...!sec 29]isec 0}...)sec 29} Isec 0}...}sec 29|

I
T

+ =4 4 =

+
+

Figure 1-2
35-MB Micropolis Disk Organization

cylinder 0 cylinder | ~ cylinder §79

-

e

T
|
|

track 0 !sec 0)...!sec 23}!sec 0}...!sec 23} }sec 0}...}sec 23}

track 1 }sec 0}...}sec 23}}isec 0}...}sec 23} |sec O}...|sec 23|
track 2 !sec 0!...)sec 23!!sec 0}...}sec 23} }sec 0}...}sec 23|

e
T

<
R T ok T o S s

<+

bl o e

track 3 lsec 0}...)sec 23!!sec O!...}sec 23} }sec Of...|sec 23}

s
T

-+

+ +

i

track 4 !sec 0!...]sec 23}isec 0}...}sec 23|

sec 0}...)sec 23}

+

Figure 1-3
Double-sided Floppy Disk Organization

cylinder 0 cylinder 1 ~ cylinder 76

b

track 0 Esec 1}...}sec 26iisec 1}...)sec 26? Esec 1}...1sec 26?

doede
T

o

L i
s T T

-4+ 4

track | Esec 1}...}sec 26iisec 1l...]lsec 26i Esec 1}...lsec 26}

- d b <
- T T 7T

+

1 -3

INTRODUCTION January 15, 1984

Each sector on a device nminimally contains a data block and a
three-word (6-byte) physical header.

As its name implies, a data block is the data area of a sector. On
a hard disk, the data block is an array of 256 16-bit words that
contain data. On a floppy disk, the data block is an array of 64
16-bit words that contain data.

The physical header permits the disk controller to verify head
positioning and uniquely identifies each sector on the device; it
contains the cylinder number, the track number within the cylinder,
and the sector number within the track.

Physical Disk Addresses (PDAs) specify the exact physical location
of a sector; the PDA defines sector location by cylinder number,
track number within that cylinder, and sector number within that
track. To communicate with a device, microcode passes the PDA to
the specific hard disk or the floppy disk controller.

A PDA is a 32-bit (2-word) value. The Shugart disk controllers
expect the cylinder, track, and sector specification in a single
word while the Micropolis, §.25" disks, and floppy disk controllers
expect the specification in two words.

In a Shugart disk PDA, the low order word specifies the cylinder,
track, and sector number as an octal value. The high byte (bits 8
- 15) of the low order word contains the cylinder number. Bits §
through 7 of this word contain the track number. Bits O through 4
contain the sector number. Thus, the first Physical Disk Address
(expressed in octal) of a Shugart disk is:

Low High
000000 000800 (specifies cylinder 0, track 0, sector 0)

The highest Physical Disk Address for a 12-MB Shugart disk is:

Low High
144575 000000 (specifies cylinder 201, track 3, sector 29)

The highest Physical Disk Address for a 24-MB Shugart disk is:

Low High
144775 000000 (specifies cylinder 201, track 7, sector 29)

The high order word of a Shugart disk PDA is not significant, but
must be all zeroes.

In a Micropolis disk PDA, both the low and high order words are

significant. The low byte (bits 0 - 7) of the low order word
specifies the sector and the high byte (bits 8 - 1§) of the low

1-4

INTRODUCTION January 15, 1984

order word specifies the track. The high order word specifies the
cylinder number. Thus, the first Physical Disk Address (expressed
in octal) of a Micropolis disk is:

Low High
000000 000000 (specifies cylinder O, track 0, sector 0)

The highest Physical Disk Address for a 35-MB Micropolis disk is:

Low High
001103 002427 (specifies cylinder 5§79, track 5, sector 23)

In a floppy disk PDA, the low-order word specifies the sector and
the high-order word specifies the cylinder. Note that the floppy
disk controller can infer, directly, the track number from the
cylinder number and thus does not require a track number
specification. The first Physical Disk Address (expressed in
octal) of a floppy disk is:

Low High
000001 000000 (specifies cylinder 0, track O, sector 1)

The highest Physical Disk Address for a single-sided floppy disk
is:

Low High
000032 000114 (specifies cylinder 76, track 0, sector 26)

The highest Physical Disk Address for a double-sided floppy disk
is:

Low High
000032 000231 (specifies cylinder 76, track 1, sector 26)

On a hard disk, each sector also contains a separate 8-word data
area, known as a logical header. This area is used by the POS file
system to verify to which file the data belongs and to permit a
recovery operation in the event of a failure. The file system maps
the logical header structure onto a floppy disk. Section 1.2
describes the logical header.

1.2 LOGICAL FORMAT OF DEVICES

The microcode views a disk as a cluster of uniquely addressable
sectors. Since the disks are different, the microcode provides
different cylinder, track, and sector abstractions of the devices.
Conversely, the file system views a disk simply as an array of data
area pairs addressed by sequential integers in the range 0 through
n. (Note that this view of a disk is implicit and does not
directly correspond to any module or procedure in the file system.)

I -6

INTRODUCTION January 1§, 1984

The view of a disk as a sequential array of data area pairs permits
the file system to treat hard and floppy disks uniformly.

The file system refers to the data area pairs as a logical block.
A logical block consists of an eight-word logical header and a
256-word data block.

The hard disk hardware supports the data area pair concept
directly. Thus, implementation of logical blocks (logical
header/data block) is straightforward on hard disks; each physical
sector on a hard disk that is accessible to the file system can be
viewed as a logical block.

The implementation of the data area pair concept on a floppy disk
is more difficult; floppy disk hardware only supports a 64-word
data block. To map the logical block concept onto a floppy disk,
the file system uses the first sector of each track as the logical
header portion of the data area pair and combines four 64-word
floppy sectors to form the 256-word data area of the pair. Thus,
each track on a floppy disk contains six logical blocks. The first
sector of each track contains the logical headers for the track’s
six logical blocks. Note that the logical blocks begin with the
third sector since the file system never uses the second sector on
a floppy disk.

The file system assigns a sequential number to each logical block
on a disk, known as the Logical Block Number or LBN. The logical
blocks on a disk are numbered consecutively from 0 to n-1, where
the disk contains n logical blocks. A Logical Block Number
identifies each data area pair on a disk that is accessible to the
file system.

A file system volume contains a microprogram that runs diagnostics
and reads the .Boot and .MBoot files (the .Boot file contains the
operating system and the .MBoot file contains the QCode interpreter
and 10 microcode). This microprogram resides on disk in physical
space reserved for it, known as the boot area. The boot microcode
in ROM accesses the reserved area to initiate the boot sequence.
Once the system boots, only the MakeBoot utility (Section 5.3
describes the MakeBoot utility), which writes the microprogram,
should access this area. The code is maintained outside the
logical disk structures and is not accessible to the file system.

On a Shugart disk, the first track (cylinder 0, track O, sectors O
through 29) is reserved for the bootstrap code. Therefore, the
first logical block on a Shugart disk, LBN O, is the first physical
sector following the boot code (cylinder 0, track 1, sector 0).
Thus, Shugart disk LBNs range from O through n-1 where n is the
maximum number of sectors on the disk minus 30.

On a Micropolis disk, the first two tracks (cylinder 0, tracks 0
and 1) are reserved for the bootstrap code. Therefore, the first

1 -6

INTRODUCTION January i5, 1984

logical block on a Micropolis disk, LBN 0, is at physical location
cylinder 0, track 2, sector 0. Thus, Micropolis disk LBNs range
from O through n-1 where n is the file system’s maximum number of
sectors on a disk minus 48.

On a floppy disk, five cylinders (cylinders O through 4) are
reserved for the bootstrap code. Therefore, the first logical
block on a floppy disk, LBN 0, starts at cylinder 5, track O,
sector 3. The LBNs range from O through 432 on a single-sided
floppy and from O through 888 on a double-sided floppy.

The file system supports a single address space for the logical
blocks on both hard and floppy disks, known as a Logical Disk
Address or LDA.

Like a Physical Disk Address, Logical Disk Addresses are 32-bit
(2-word) values, but the values are distinctly different. A PDA
uniquely identifies a sector on a given device by cylinder number,
track number within the cylinder, and sector number within the
track. An LDA encodes a disk specifier (hard or floppy) and an
posgtive number representing the disk specific Logical Block
Number.

Both words of an LDA are significant for both hard and floppy
disks. The following describes the significance of each bit that
forms an LDA.

Low word:

Bits O through 7 are reserved for future use. The present
design reserves the bits to specify the desired word within
the logical block’s data area. Future PERQ operating systems
will use the bits, but not for word references. Under the
current system, these bits must be zero so that they can be
made non-zero for future use. Since they are reserved for
future use, programs reading these bits should not assume that
the bits are in fact zero.

Bits 8 through 15 form the low eight bits of the LBN.
High word:
Bits O through 10 form the high eleven bits of the LBN.

Bits 11 through 13 specify the volume (000 indicates hard, 100
indicates floppy).

Bits 14 and 15 indicate whether the address is on disk, and
therefore in permanent storage, or in virtual memory. Under
the current system, these bits are always set to indicate
permanent storage.

INTRODUCTION January 15, 1984

The module DiskUtility.Pas contains functions which convert an LDA
to a PDA or an LBN, a PDA to an LDA, and an LBN to an LDA (perform
conversions through DiskIO.pas, which calls DiskUtility.Pas). The
10 system provides the means for microcode and Pascal to
communicate at the cylinder, track, sector abstraction level.

Most 1/0 operations must know the contents of the block’s logical
header. The logical header contains the following information:

File serial number (2 words)

Logical block number (! word)

Filler word (1 word)

Next Logical Disk Address (2 words)
Previous Logical Disk Address (2 words)

The serial number is the Logical Disk Address of the File
Information Block (FIB). Section 2.4 describes the FIB in detail.
Note that the serial number is written as a Physical Disk Address
and converted to an LDA when the header is read.

The Logical block number in the logical header represents the block
number within a series of blocks, not the sequential LBN of the
block. This manual refers to the logical block number of a block
within a series of blocks as the relative logical block number.

The filler word is used by the file system in its free block
allocation scheme. When a block is part of the free list, the
filler word in its logical header contains the LBN of the first
block of the list. When the block is allocated, the filler word is
unchanged.

The Next Logical Disk Address and the Previous Logical Disk Address
form doubly linked lists of blocks. The values are the LDAs of the
next block and the previous block of a series of blocks. For both
pointers, a =zero value terminates the link. The values for these
pointers are actually written as Physical Disk Addresses and
converted to LDAs when the header is read for processing purposes.

To access a logical block, the block’s LBN is first extracted from
the LDA and then converted into a cylinder, track, sector
specification. For example, assume the file system must access a
lggical block on a 24-MB Shugart disk at the following Logical Disk
Address:

151000 140000

First, it extracts the Logical Block Number. The high byte of the
low order word forms the low eight bits of the LBN.

Low-order word
151000
high-byte|low-byte

INTRODUCTION | January 15, 1984

11010010}00000000

Bits O through 10 of the high order word form the high eleven bits
of the LBN.

High-order word
140000
high-byte|low-byte
11000000 } 00000000

Thus, the binary representation of the LBN is:

000000000011010010

which converts to 322(8) or LBN 210. Since the numbering scheme
for logical blocks on a Shugart disk omits the first 30 sectors,
Shugart disk LBN 210 is actually physical sector 240. The
cylinder, track, sector specification for physical sector number
240 is cylinder 1, track 0, sector O (derived from 30 sectors per
track and 8 tracks per cylinder).

1.3 DEVICE COMPOSITION

The device that carries the file system structure is referred to as
a volume. A volume is simply an ordered set of logical blocks.

A Device Information Block (DIB) identifies a volume as a POS file
structured volume. The DIB is the first logical block and has a
defined physical location on the volume. It contains all the fixed
information about the volume; the DIB describes the number of
logical blocks on the volume, specifies the physical addresses for
the Qcode and microcode boots, and identifies the volume with a
label (an ASCII string of one to eight characters). Thus, the DIB
serves as the foundation of the volume structure. Section 2.2
describes the DIB in detail.

The file system divides the set of logical blocks on a volume into
physically contiguous sections known as partitions. You create and
modify partitions on a volume using the Partition program. (The
Partition program accepts input for partition name, size, and
permits you to specify the number of partitions. Section 5.1
provides complete details on the Partition program.) The DIB
gon;ains pointers to the first block of each physically contiguous
isk area.

The first block of each partition is the Partition Information
Block (PIB), which details partition specific information. Section
2.3 describes the PIB in detail.

Any data of interest in a partition (that is all blocks not
available for allocation) are contained in segments. A segment is

1-9

INTRODUCTION January i5, 1984

a cluster of logical blocks linked together by pointers in each
block’s logical header. Each segment in a partition has a block
that describes the segment, known as the information block.
Section 2.4 describes the information block in detail. This block
specifies the t of segment and, most importantly, contains
pointers to the blocks that form the segment. All blocks that form
the segment contain the Logical Disk Address of the information
block in the serial number of their logical header. Thus, the LDA
of the information block identifies all blocks that belong to a
given segment. The file system refers to the LDA of a segment’s
information block as the SeglD. The SeglD is used in all
references to a segment.

Named segments form files. A file name consists of four portions
and takes the form:

device:partition>directory!>...directory3>filename

A complete file specification is referred to as a full filename; it
specifies the complete path for a file. Since the file system
applies defaults for device, partition, and directories, users need
not specify a full filename. A file specification that omits the
device and partition portions (includes only directories and
filename) is referred to as a partial file specification. A file
specification that omits all portions except the file’s name is
referred to as a simple file specification.

Each file in a partition has an entry in a directory and the
information block from the segment. The directory entry contains a
pointer to the information block of the file. Section 3.5
describes directory entries in detail. The file’s information
block contains the same type and pointer data as the information
block from a segment with additional file system specific
information. Thus, all files are segments, but since a file has a
directory entry and additional information in its information
block, not all segments are files.

The information block of a segment and the information block of a
file share the same data structure, known as the File Information
Block or FIB. Section 2.4 describes the FIB in detail.

Since a segment is the origin of a file, the serial number in the
logical header of all blocks that form the file contains the LDA of
thT IgIB (the SegID). However, the file system refers to files by
FilelD.

For hard disks, a FileID is the low-order 16 bits of the LBN of the
FIB (the LBN extracted from the SegID). For floppy disks, a FileID
is the LBN of the FIB plus 160000(8) (the LBN extracted from the
SegID logically anded with 160000(8)). Thus, FilelDs are unsigned
16-bit integers (cardinal numbers) ranging from O through 64K.
(The cardinal numbers from 0 through 56K represent hard disk LBNs,

1-10

INTRODUCTION January 15, (984

from 56K+! through 64K-1 represent floppy disk LBNs.)

The POS file system provides directories to allow the organization
of files in a meaningful and recognizable way. Each partition on
the volume can contain any number of directories. While the
address of the File Information Block is sufficient to locate a
file uniquely in a partition, the address is hardly mnemonic. A
directory is a file that contains the names and pointers to the
FIBs of each file within the directory; directories associate
symbolic names with the address of the FIB.

Since directories are simply files that contain pointers to other
files, the files contained in a directory can be other directories.
Thus, directories <can be nested to form a hierarchical,
multi-directory structure. You can construct directory hierarchies
of arbitrary depth and complexity to structure files in whatever
manner is convenient.

The main directory in a partition (the base of the multi-directory
structure) is the root directory for that partition. Therefore,
each partition on the volume contains at least one directory,
Root.DR. Subsequent levels are referred to as subdirectories. Note
that since a directory is a file, an FIB exists for each directory.

1 - 11

INTRODUCTION January 15, 1984

1 -12

FILE SYSTEM DATA STRUCTURES January 15, 1984

CHAPTER 2
FILE SYSTEM DATA STRUCTURES

This chapter describes the format of the logical structures on a
file system volume.

2.1 OVERVIEW

The Device Information Block (DIB) identifies a file structured
volum? and contains pointers to Partition Information Blocks
(PIBs).

Each PIB defines the limits of thsically contiguous areas on the
volume and contains a pointer to the File Information Block (FIB)
of each partition’s root directory.

The FIB of the root directory, as well as the FIB of all other
directories, contains pointers to each of the blocks that form the

directory.

Each block of a directory contains pointers to the FIBs of the
files that comprise the directory.

The FIB of a file contains pointers to the blocks that form the
file.

Figure 2-1 depicts the data area links of the logical structure.
Note that directory entries are hash coded by file name. The hash
function specifies the block number of the directory to contain the
entry. Therefore, directory entries are not necessarily accurately
represented in Figure 2-1, However, Figure 2-1 accurately depicts
placement if you assume that the file names hash to the same
values. Chapter 3 provides more specifics on directory entries and
the hash function.

January 15, 1984

Figure 2-1
Logical links for on-disk structure

FILE SYSTEM DATA STRUCTURES

Toel S 1EE
] G | G]
1888 1882, 14582
1 O i | 1 O Dl | (o] el
o=t fxe | |- [y 0 - fxe |
#nb h 1 M 1 m %
llllll 4 m————— +mm———
~] Pd
// .m.\\
' IIIIIAI + .n. llllm .n. X IIIIM%I .n.
| MQts © 1M © | D e]
=021 1E°Zi IE°Z|
1 i
RN S SO N S 2
S~ .“*\\ -+ + + : +
o &1 - &7 15 &1
) Mt o 1 A | Ad ey o |
1 OO0 _mOt.~ [S e 2|
1 O w 1 m 1 o] w 1
| —t | =t 1 - i
.“.B [=5 1: | m " |
llllll + + - —— - + o e ————— +
.//. \\ :
N iz + o+ o+
F e b e b b ————
= = =
B551 1894 (8%,
(29 m “F. m “F‘ m
1
SR S - S A -
1 | I
i [1
+ rmm——— + + ————— + t ——————
+ 0 “dB “hB
e
it m%H ~mmH
'''''' .AT - o —— —— w— —— —— — -
- ~ + ; .:.\ +
SeH 7
4 llllll +
1 m
] —
“ [a=]
f —————— -

The sections that follow provide complete details on the logical

structures.

FILE SYSTEM DATA STRUCTURES January 15, 1984

2.2 DEVICE INFORMATION BLOCK

The Device Information Block (DIB) identifies a device for use with
the POS file system and serves as the ground zero entry point into
the device’s file structure. The DIB also contains a table which
defines a mapping of 26 characters to 26 pairs of interpreter and
system boot files. This table is read by the microprogram in the
boot area. Module Diskl0.Pas defines the format of the DIB.

The DIB is the first logical block on a volume (LBN 0).

On a Shugart disk, the boot code occupies the first track. Thus,
on a Shugart disk, LBN 0 is at cylinder O, track 1, sector O (LDA
000000 140000, PDA 000400 000000). On a Micropolis disk, the boot
code occupies the first two tracks. Thus, on a Micropolis disk,
LBN O is at cylinder O, track 2, sector 0 (LDA 000000 140000, PDA
001000 000000). On a 5.25" disk, LBN O is at cylinder 1, track 2,
sector 0 (LDA 00000 190000, PDA 01000 00000). On a floppy disk,
LBN O is at cylinder 5, track 0, sector 3 (LDA 000000 160000, PDA
000003 000005).

}he DIB contains pointers to each Partition Information Block
PIB).

The following sections provide a detailed description of the DIB.
Note that the DIB and all Partition Information Blocks (PIBs) use
the same format; some words in the structure are relevant only in a
DIB structure and some only in a PIB structure.

Section 2.2.14 provides a graphic representation of the DIB.

2.2.1 FreeHead

This double word contains the LDA for the start of a partition’s
free block list and is therefore not relevant to the DIB. The word
values are 0 to indicate a nil pointer. Section 2.3 describes the
significance of this double word.

2.2.2 FreeTail

This double word contains the LDA for the end of a partition’s free
block list and is therefore not relevant to the DIB. The word
values are O to indicate a nil pointer. Section 2.3 describes the
significance of this double word.

2.2.3 NumberFree

This double word contains an integer value that specifies the
number of free blocks in a partition and is therefore not relevant

2-3

FILE SYSTEM DATA STRUCTURES January 5, 1984

to the DIB. The word values are 0. Section 2.3 describes the
significance of this double word.

2.2.4 RootDirectorylID

This double word contains the LDA for a partition’s root directory
and is therefore not relevant to the DIB. The word values are 0 to
indicate a nil pointer. Section 2.3 describes the significance of
this double word.

2.2.5 BadSegmentID

This double word contains the LDA for a partition’s bad segment and
is therefore not relevant to the DIB. The word values are 0 to
indicate a nil pointer. Section 2.3 describes the significance of
this double word. '

2.2.6 BootTable

This 52-word array contains physical addresses for Qcode boots.
Each double word of the 52-word array corresponds, successively, to
the lowercase letters a through z for each .Boot file on a hard
disk and to the uppercase letters A through Z for each .Boot file
on a floppy disk. For example, if a system contains an a, C, and d
boot, the first two words (words O and 1) of this array contain the
physical address of the operating system to boot when lowercase a
(the hard disk) is booted, the fourth and fifth words (words 3 and
4) contain the physical address of the operating system to boot
when uppercase C (the floppy disk) is booted, and the sixth and
seventh words (words 5 and 6) contain the physical address of the
operating system to boot when lowercase d is booted.

2.2.7 InterpreterTable

This 52-word array contains physical addresses for microcode boots.
Each double word of the 52-word array corresponds, successively, to
the letters for each .MBoot file (MBoot files contain the Qcode
interpreter microcode).’

2.2.8 PartitionName

This quad word contains the name (one to eight characters) of the
partition. In the DIB, the partition name is interpreted as the
name of the device (for example, SYS). The name from this quad
word is the default for the device portion of a file specification.

FILE SYSTEM DATA STRUCTURES January 15, 1984

2.2.9 PartitionStart

This double word contains the LDA of the start of the partition.
In the DIB, the partition start is interpreted as the first logical
block (LBN 0) on the device. This double word always points to LBN
0 (hard disk LDA 000000 140000, floppy disk LDA 000000 160000).

2.2.10 PartitionEnd

This double word contains the LDA of the end of the partition. In
the DIB, the partition end is interpreted as the last logical block
on the device. This double word always points to the highest block
number of the device.

2.2.11 SubPartitions

This 128-word array contains the LDA of the Partition Information
Block (PIB) for each partition (thus, an array of 64 LDAs, one for
each possible partition). As you create each partition, the
Partition program (see Section 5.1) writes the address of its first
block successively in this arrray.

2.2.12 PartitionRoot

This double word contains the LDA of the root partition (that is,
the DIB) and always points to LBN O.

2.2.13 PartitionType/DeviceType

This word specifies partition type (root, unused, or leaf) and
device type (Winchester 12-MB, Winchester 24-MB, floppy single
density, floppy double density, unused!, unused2). In a DIB
structure, the partition type is always root. The Partition
program (see Section 5.1) writes the device type in this word when
you partition the volume.

FILE SYSTEM DATA STRUCTURES January 15, 1984

2.2.14 Disk Information Block Layout

+

b
+

word 0 Partition specific

word 10 Physical address for a .Boot
word 60 Physical address for z .Boot
word 62 Physical address for a .MBoot
word 112 Physical address for z .MBoot
word 114 Device Name

word 118 Device Start

word 120 Device End

word 122 LDA of Ist PIB

word 248 LDA of 64th PIB

word 250 LDA of DIB

word 252 | bits 2-4 device type bits 0-1 partition type

4 1
BLE -

words 253, 254, and 255 are unused

2-6

FILE SYSTEM DATA STRUCTURES January 15, 1984

-

2.3 PARTITION INFORMATION BLOCK

A partition is a physically contiguous area of logical blocks. The
fundamental operations on a partition are allocation and
deallocation of blocks from and to a pool of blocks in the
partition. The pool of blocks is known as the partition’s free
block list. You allocate blocks to form segments, which can in turn
form files, and deallocate blocks to destroy segments. Since
segments can form files which are organized by a directory
structured name space, a partition also provides a root directory
for all files allocated in the partition.

Module AllocDisk.Pas manages a partition’s free block list as a
doubly linked list of blocks. The PIB contains two pointers
(Logical Disk Addresses) to the head (first) and tail (last) blocks
on the free list. When a partition is mounted (module
AllocDisk.Pas also provides these functions), its PIB is read into
a table, PartTable, in memory. As blocks are allocated or
deallocated, AllocDisk.Pas updates information in the PartTable.
The only dynamically updated information in the PIB is that which
describes the partition’s free block list. This information is
updated in PartTable after every block allocation or deallocation,
but is only updated intermittently in the copy of the PIB on disk.
Consequently, if the system terminates abnormally, the disk copy
may be incorrect. If the pointer to the head of the free list is
incorrect, the system finds the actual start by following the
filler word in the logical header.

The first block of a partition contains the name and limits of the
partition, information describing the free block pool of the
partition, and the Logical Disk Address of the partition’s root
directory (Root.DR). This block is known as the Partition
Information Block or PIB. The PIB replicates the DIB structure, as
described in Section 2.2. However, the structure for the DIB
defines the file system entry point for the device while the PIB
structure defines the physically contiguous area of disk addresses
for each partition. Thus, one PIB exists for each partition on the
volume while exactly one DIB exists for the volume. Module
Diskl0.Pas defines the format of the DIB/PIB structure.

Partitions always start on cylinder boundaries. The Partition
program, see Section 5.1, writes the PIB in the first block of a
partition. Therefore, a PIB always starts on a cylinder boundary.
The LBN of the first PIB depends on the volume.

On a hard disk, the first PIB is at physical address cylinder |,
track 0, sector 0. For a 24-MB Shugart disk, the first PIB is LBN
210 (LDA 151000 140000). For a 12-MB Shugart disk, the first PIB
is LBN 90 (LDA 055000 140000). For a 35-MB Micropolis disk the
first PIB is LBN 72 (LDA 044000 140000). On a floppy disk, the
ggrst PIB is at physical address cylinder 6, track 0, sector 1 (LBN

2-7

FILE SYSTEM DATA STRUCTURES January 16, 1984

The location of the PIBs for subsequent partitions depsnds on the
number of blocks you allocate to each partition. A typical
allocation for hard disks is 10080 blocks per partition. This
permits the Scavenger (see Section 5.2) to handle the partition in
a single pass.

Each PIB contains a pointer to the partition’s root directory File
Information Block (FIB). The file Root.DR contains Logical Disk
Addresses of the FIBs for files, including directories. Since
directories are hierarchically structured, the root directory
effectively points to all files within a partition.

The following sections provide a detailed description of the PIB.
Note that the DIB and all PIBs use the same format; some words in
the PIB structure are not relevant in a DIB structure.

Section 2.3.14 provides a graphic representation of the PIB.
2.3.1 Freelead

This double word contains the LDA for the start of the partition’s
free block list. The Freellead entry points to a block within the
partition. This block is the actual start of the free list when
the serial number and the previous pointer in its header are zero.

If the serial number and the previous pointer are not zero, the
actual start of the free list is found by following the filler word
until both are zero.

2.3.2 FreeTail

This double word contains the LDA for the end of the partition’s
free block list. Like the FreeHead entry, see Section 2.3.1, the
FreeTail pointer in the PIB may not be accurate.

The FreeTail entry points to a block within the partition. This
block is the actual end of the free list when the next pointer in
its header is zero (zero indicates a nil pointer). If not, the
actual end of the free list is found by following the next address
pointers to zero.

2.3.3 NumberFree

This double word contains an integer value that suggests the number
of free blocks in a partition. This value may not be accurate for
the same reason that the accuracy of the FreeHead and FreeTail
pointers is not guaranteed.

FILE SYSTEM DATA STRUCTURES January 15, 1984

2.3.4 RootDirectoryID

This double word contains the LDA for the partition’s root
directory (Root.DR) File Information Block (FIB). Section 2.4
describes the FIB. The root directory is a file that contains other
directories and/or files, refer to Chapter 1.

2.3.5 BadSegmentID

Each partition has a linked list of bad blocks. The bad blocks are
withheld from the free list and are thus not used by the file
system. This double word contains the LDA for a partition’s bad

segment.

2.3.6 BootTable

This 52-word array contains physical addresses for Qcode boots and
is therefore not relevant to the PIB. The word values are zero to
indicate nil pointers. Section 2.2 describes the significance of
these words.

2.3.7 InterpreterTable

This 52-word array contains physical addresses for microcode boots
and is therefore not relevant to the PIB. The word values are zero
to indicate nil pointers. Section 2.2 describes the significance
of these words.

2.3.8 PartitionName

This quad word array contains the name (up to eight characters) of
the partition. You specify this name as input to the Partition
program. The partition name can be the same as the device name,
but each partition must have a distinct name.

2.3.9 PartitionStart

This double word contains the LDA of the first block of the
partition. Since the PIB is the first block of a partition, the
entry points to the partition’s PIB.

2.3.10 PartitionEnd

This double word contains the LDA of the last block of the
partition.

2-9

FILE SYSTEM DATA STRUCTURES January 15, 1984

The entries for PartStart (see section 2.3.9) and PartEnd specify
the size of each E:rtition as physically contiguous disk addresses.
‘You enter the number of blocks, and thus size, for each partition
as input to the Partition program. The maximum size of a partition
is 32768 blocks.

2.3.11 SubPartitions

This 128-word array contains the LDA of the PIBs for each partition

and is therefore not relevant to any PIB itself. Section 2.2

describes the significance of these words.

2.3.12 PartitionRoot

ghis double word contains the LDA of the root partition or DIB (LBN
).

2.3.13 PartitionType/Device Type

This word specifies partition type (root, unused, or leaf) and

device type (Winchester 12-MB, Winchester 24-MB, floppy single

density, floppy double density, unusedl, unused2). In a PIB
structure, the partition type is always leaf.

2-10

FILE SYSTEM DATA STRUCTURES January 15, 1984

2.3.14 Partition Information Block Layout

<

word 0 LDA for start of free list (hint)
word 2 LDA for end of free list (hint)
word 4 Number of free blocks (hint)
word 6 LDA for FIB of root directory
word 8 LDA for bad segment

word 10 DIB specific

word 114 Partition name

word 118 LDA of this PIB

word 120 LDA for end of this partition
word 122 DIB specific

word 250 LDA of DIB

word 252 | bits 2-4 device type bits 0-1 partition type

o+ <
Bl T

words 253, 254, and 255 are unused

2-1

FILE SYSTEM DATA STRUCTURES January 15, 1984

2.4 FILE INFORMATION BLOCK

A single block of a segment or a file (including directories)
describes each segment or file on a POS file structured volume and
is referred to as a File Information Block (FIB). The FIB is
relative logical block number -1. The blocks that form the usable
part of a segment or file have relative logical block numbers
ranging from O through 32767. The FIB identifies to which
particular segment or file a specific block belongs; the LDA of the
FIB is the serial number for all the blocks of a segment or file.

The FIB contains all the information necessary to access an
individual segment or file as well as pointers to the blocks that
form the segment or file. (Actually, the FIB only allows access to
a segment’s blocks; file access requires the DIB, PIB, and
directory structures.)

Some entries in the FIB are not relevant when the structure
describes only a segment. Specifically, the FIB of a segment has
zero values for the first 52 words, while the FIB of a file has
relevant values for these words.

Module DiskIO.Pas defines the format of the FIB structure.

The following sections provide a detailed description of the FIB.
Section 2.4.9 supplies a graphic representation of the FIB.

2.4.1 FileSystemData

This 652-word packed record contains basic file system information,
including the file name. The file system wuses this record to
access and maintain a file. The record is not used by the segment
system. Module FileDefs.Pas provides the Pascal type definition
for this packed record.

Tge ff}rst word (word Q) contains the number of blocks allocated to
the file.

The second word (word 1) specifies the number of bits in the last
block of the file, whether or not the file can be sparse, and
whether the file is open for read, write, execute, or not open. The
low order 12 bits (bits O through 11) specify the number of bits in
the last block of the file. For example, when you allocate a block
from the free list for use as the last block of a file and do not
fill the entire block with data, the remainder of the block may
contain random data or garbage. These 12 bits signal the end of
significant data. Bit 12 specifies whether or not the file can be
sparse. Bits 13 through 15 indicate the following: file not open;
file open for read; file open for write; and file open for execute.

The third and fourth word (words 2 and 3) contain the date and time

2-12

FILE SYSTEM DATA STRUCTURES January 15, 1984

at which the file was created. The time is expressed in the
standard internal time stamp format, which has numeric fields for
year, month, day, hour, minute, and second.

Words four and five contain the date and time, also expressed in
the standard time stamp format, at which the file was last
deaccessed after being accessed for a write operation.

The seventh and eighth words (words 6 and 7) contain the date and
time of the last file access.

Word eight contains the file type. Any 16-bit value can be read.
POS uses the following file types:

UnknownF'i le
SegFile
PasFile
DirFile
ExDirFile
FontFile
RunFile
TextFile
CursorFile
BinaryFile
BinFile
MicroFile
ConmFile
RelFile
IncludeFile
SBootFile
MBootFile
SwapFile
BadFile

Module FileTypes.Pas defines the above file types.

The tenth and eleventh words (words 9 and 10) are not used, but are
reserved for file protection.

Words 11 through 5! contain the partial file name (includes all
directories, omits the partition and device specification).
Partition and device specifications are not required since files
cannot cross partition boundaries; the file must be in the same
partition as its FIB, the FIB in the same partition as the PIB, and
the PIB in the device’s DIB. Note that the file name is a string;
the low byte of the first word of a string always specifies the
length of the string. Therefore, a file name with its associated
directory specifications cannot exceed 80 characters.

The following is a graphical representation of the file system data
portion of the FIB.

2-13

FILE SYSTEM DATA STRUCTURES January 15, 1984

word O Size of file in blocks

word | bits 13 - 15 how open bit 12 sparse or not
bits 0 - 11 number of bits in last block of file

word 2 File creation date

word 4 Date of last write operation

word 6 Date of last file access

word 8 File type

word 9 Reserved

word 11 File name and directory specification

word 51 Character 80 of filename

-+

+

2.4.2 Random Index

The random index provides a list of the disk addresses of the
blocks that form the segment or file. It consists of three parts:
the direct index; the indirect index; and the double indirect
index.

The direct index is contained within the FIB itself (FIB words 52
through 179) and references logical disk addresses of the first 64
blocks of a segment or file (relative logical blocks 0 through 63).

The indirect index is also contained within the FIB (FIB words 180

2-14

FILE SYSTEM DATA STRUCTURES January 15, 1984

through 243), but the entries do not point to blocks within the
segment or file. Rather, the indirect index entries int to 32
blocks that each contain 128 disk addresses of blocks in the
segment or file. Thus, these entries form a one-level addressing
scheme. The indirect index can address 4096 blocks of a segment or
file (relative logical blocks 64 through 4160, since the direct
index addresses 0 through 63).

Like the indirect index, the double indirect index is contained
within the FIB (FIB words 244 through 247). The indirect index
points to blocks which point to blocks in the segment or file. The
double indirect index entries contain disk addresses of two blocks.
Each of these blocks point to 128 other blocks that each contain
128 disk addresses of blocks in the segment or file. Thus, these
entries form a two-level addressing scheme. In theory, the double
indirect index can address 32768 blocks of a segment or file
(relative logical blocks 4161 through 36929). However, 32767 is
the maximum size of a partition. Furthermore, an overhead of 291
blocks is required to address the theoretical maximum. Therefore,
the maximum size of a single segment or file in a partition is
governed by the size limits of the partition and the number of
?verhead blocks required to address the blocks of the segment or
ile.

The blocks in the random index have negative file logical block
numbers as follows:

Direct index: block -1 (within the FIB)
Points to relative logical blocks 0 through 63.

Indirect index: blocks -4 through -35
Points to relative logical blocks 64 through 4160

Double indirect index: blocks -2 and -3
block -2 points to blocks -36 through -163 (blocks -36 through
-163 point to
relative logical blocks 4161 through 20545)
block -3 point to blocks -164 through -257 (blocks -164
through -257 point to
relative logical blocks 20546 through 32767, the theoretical
max i mum)

2.4.3 SegmentKind

This word specifies whether a segment is permanent, temporary, or

bad. A permanent segment persists until explicitly destroyed.
Temporary segments (for example, segments used for swapping) exist

2-156

FILE SYSTEM DATA STRUCTURES , January 5, 1984

only while the process that creates the temporary segment exists.
Bad segments are malformed segments and are not readable.

2.4.4 Number of Blocks In Use
Since a file can be sparse (biock n may exist when block n-1 has

never been allocated), this word specifies the number of blocks
that are actually in use by the file.

2.4.5 LastBlock

This word specifies the file relative logical block number of the
largest block allocated to the file. Remember that since files can
be sparse, this word does not specify the total number of blocks in
use by the file, refer to Section 2.4.4.

2.4.6 LastAddress

This double word specifies the Logical Block Number of the last
block allocated to the file.

2.4.7 LastNegativeBlock

This word specifies the file relative logical block number of the
file’s pointer block with the largest absolute value (the smallest
or most negative number).

2.4.8 Last Negative Address

This double word specifies the logical disk address of the last
pointer block for the file.

2-16

FILE SYSTEM DATA STRUCTURES January 15, 1984I

2.4.9 File Information Block Layout

+

word 0 File system data

word 52 Direct random index entry

word 180 Indirect random index pointer

word 244 Double indirect random index pointer
word 248 . Type of segment

word 249 Number of blocks in use

word 250 File relative LBN of largest block

word 251 LDA of last block of file

word 253 File relative LBN of last pointer block
word 254 LDA of last negative block

+

2-17

FILE SYSTEM DATA STRUCTURES January 15, 1984

2-18

FILE FORMATS January 15, 1984

CHAPTER 3
FILE FORMATS

This chapter details the format of Segment (.Seg) and Directory
(.DR) files. ‘

3.1 SEG FILES

A segment file is produced when a program is compiled by the Pascal
or FORTRAN compiler. The segment file is used primarily to hold
the actual QCodes which the PERQ executes. In addition to the
QCodes, the segment file includes information used by the
consolidator, linker, loader and debugger. By default, segment
files use .Seg as the extension. A collection of segment files
with a run file contains all the information necessary for
execution of a program. Pre-segment files are incomplete segment
files produced by compilers that cannot resolve all routine
references at compile time; they have the extension .Psg.

Segment files must conform to certain formatting conventions. A
segment file consists of §12 byte blocks organized in seven groups:
a header block; one or more code blocks; a routine dictionary; an
import list; a routine name list; diagnostic information; and
routine descriptor information.

The header block contains information about the size and contents
of the module. The routine dictionary contains information
necessary to the execution of routines. The import list contains
module names and file names of imported modules. The routine name
list contains names for the routines defined in the module.
Diagnostic information is used for debugging, and routine
descriptors are used to perform parameter checking.

FILE FORMATS January 15, (984

3.1.1 Header Block

The first portion of the segment file contains 16 fields, as shown
in Figure 3-1 (refer to Section 3.1.8 for precise sizes of the
fields). The first field is a byte containing flags set by the
compiler. Bit 0, the least significant bit, indicates whether the
segment is a program or module. (A program is a special instance of
a module, which includes a main body.) If ON, the segment is a
program. Bit 1, if ON, indicates that the routine names (only)
contained in the segment file are 14 characters long. If bit 1 is
OFF, the names are 8 characters long. Bits 2 and 3 are defined for
internal use, and the remaining 4 bits are reserved for future use.
The high-order byte of this word contains the version number of the
QCodes (the compiler generates the version number).

The next field (starting on the next word) contains the name of the
module (as it appears in the source file). Module names are
currently unique to 8 characters. The name of the source file from
wvhich the segment file was generated follows the module name. The
filename string contains the full pathname of the source file from
which the segment file was generated.

The fifth field gives the number of imported segments. This is
followed by the import block number which is the number of the
block containing the import list (described below) and the size of
the global data block (referred to as the GDB in the QCode
Reference Manual). (With no imported segments, the import block
number is undefined.) The "version” and "copyright™ fields follow.
These strings may be specified using compiler switches or comments
in the source file. The next field indicates the language of the
source file. The next 3 fields are block numbers of the unresolved
reference information (described in "Pre-segment Files" below), the
routine descriptor information and the diagnostic information,
respectively. If these blocks do not exist, these block numbers
have the value zero. The last 3 fields are defined for internal
use, and the remainder of the header block is reserved for future
use.

The first two words of the second block (block 1) complete the
header information. Word O points to the routine dictionary which
follows the code. The value in word O is offset (in words) from
the beginning of block 1 to the first word of the routine
dictionary. Word | contains the number of routines within the
segment.

FILE FORMATS January 15, 1984

Figure 3-1
Header Block 0

+

flags

QCode version no.

module name

file name

number of imported segments

import block number

version string

copyright string

language of source file

block no. of unresolved reference

routine descriptor information

diagnostic information

internally used fields

reserved

+

+

toward high memory

FILE FORMATS January (5, 1984

3.1.2 Code Blocks

The second entity is the code portion of the segment file (QCodes).
The QCodes start with the third word (word 2) of the first block.
The QCodes for each routine follow those of the previous routine on
the next word boundary. The code section of the segment file may
occupy several consecutive blocks.

Figure 3-2
Block |
1 Offset to Routine Dictionary 1 Word O
Number of Routines in this Segment Word 1|
QCode Word 2
Block 1

The routine dictionary is aligned on the next quad-word boundary
following the end of the QCodes. The dictionary contains an entry
for each routine in the module and is padded to the end of the
current block. A more complete description of the routine
dictionary, as well as the format of an entry in the routine
dictionary, may be found in the QCode Reference Manual.

FILE FORMATS January 15, 1984

3.1.3 Import List

Imports refer to segments which are external to the current module.
The import list begins in the block following the routine
dictionary (procedures, functions and exceptions in Pascal). The
number of this block is given in the header block. The import list
can take any number of blocks (including zero for no imports). The
import list is ordered by segment number (the compiler-generated
ISN [internal segment numberl). Each entry in the import list
consists of the 8 character module name followed by the name of the
source file (for example, foo {from} foo.pas). Entries are word
aligned and have constant length. Enough room is reserved for a 100
character file name (51 words). If a module entry needs less than
the allotted space, it’s padded with blanks.

3.1.4 Routine Name List

After the list of imported segments, the compiler provides the
names of the routines defined in the module. The first routine name
begins immediately after the last import entry. The entries in the
routine name list are 8 or 14 characters long, are word-aligned,
and are ordered by routine number (the order of their appearance in
the source). Routine names may or may not fit entirely in the same
block as the end of the import list.

3.1.5 Diagnostic Information

Diagnostic information begins in the block following the routine
name list. This block number is found in the header block. It is
used for program debugging. Currently, only segment files
generated from FORTRAN sources contain diagnostic information.

3.1.6 Routine Descriptors

Routine descriptors begin in the block following diagnostic
information. This block number is given in the header block.
Currently, only segment files generated from FORTRAN sources
contain routine descriptors. There is one descriptor for each
routine defined in the module. They are word-aligned and are in
the same order as the routine names. Each descriptor indicates
whether the routine is a procedure (subroutine) or a function and
describes each parameter. Routine descriptors allow type checking
between the routines themselves and an external reference to the
routine. A routine descriptor has the following format:

n | routine type } pd(1) | pd(2) ! | pd(n-1)

4 -+
+ -+

where

FILE FORMATS January 15, 1984

each box above is a byte;

n is one more than the number of parameters
(the number of bytes that follow). The range
for n is 1..255;

routine type is 0 for procedures, st for
functions where s (4 bits) is the size of the
result and t (4 bits) is the result type;
pd(i) is the parameter descriptor for
parameter i.

Routine descriptors, if present, may occupy more than one block.
3.1.7 Pre-segment Files

Pre-segment files are produced by compilers that cannot
resolve all routine references at compile time. They are
incomplete versions of segment files and have the extension ".PSG".
Currently, only the FORTRAN compiler produces pre-segment files
and only in cases where it is not given enough information to
resolve the references. The format and «contents of a
pre-segment file are identical to that of a segment file with the
following exceptions:

- at least one call instruction in the QCodes
section needs patched.

- additional information describing the
unresolved routine references exists at
the end of the file.

The unresolved reference information begins in the
block following routine descriptors. This block number is given
in the header block. The information is a sequence of
reference descriptors of the following form:

call block number | offset | name | routine descriptor

+ -
+ -+

where

- the call block number is the pre-segment file
block number containing the call that needs
resolved (! word).

- the offset is the position of the call
instruction within the block. It lS 1 word
and has a range of 0..511.

- the name of the routine is given to 8 or 14
characters, left-justified, padded with blanks
if necessary.

- the routine descriptor gives information about
the reference to the routine. See the section

3-6

FILE FORMATS January iS5, 1984

on "Routine Descriptors” above. The one
exception is that a routine descriptor inside
of a reference descriptor can consist of one
byte with the value 0 to signify a routine
that is a parameter.

One reference descriptor exists for each unresolvable
routine reference. If a routine is referenced multiple times,
multiple reference descriptors for that routine will exist.
The routine descriptor of the reference can be compared with the
descriptor (in the routine: descriptor section) of the file
containing the routine. Reference descriptors are word
aligned. The first reference descriptor begins on the first
word of the first unresolved reference information block. The
zeroth word contains the number of reference descriptors that
follow. Unresolved reference information in pre-segment files may
occupy more than one block.

3.1.8 Field Definitions

Users who need to manipulate segment files are encouraged
to import the declarations found in the file "Code.Pas™. The
necessary definitions to access portions of segment and run files
may be found in this file. Pertinent sections are included here
which give the actual definitions and lengths for fields
described above,

const

QCodeVersion = 4; { Current QCode Version Number }
FileLength = 100; { Max chars in a file name }
Seglength = 8; { Max chars in a segment file name }
Commentlen = 80; { Length of comment and version
strings in segment files }
type

SNArray = packed arrayll..Seglength] of Char; { Names in
segment files }

pFNString = “FNString;

FNString = StringlFileLengthl; { File name }

QVerRange = 0..255; { Range of QCode version numbers }
{ Segment file: }

Language = (Pascal, Fortran, Imp);

pSegBlock = “SegBlock;

SegBlock = packed record case integer of

3-17

FILE FORMATS January 5, 1984

{ zeroth (header) block: }
0: (ProgramSegment: boolean; { 1| if program)}
Longlds : boolean; { 1 if 14 character

ids }
DbgInfoExists : boolean;
OptimizedCode : boolean;
SegBlkFiller : 0..15; { reserved)}

QVersion : QVerRange; { QCode version no.
(high byte)}

ModuleName : SNArray;

FileName - : FNString;

NumSeg : integer; { no. of imports }

ImportBlock : integer;

GDBSize : integer;

Version : StringlCommentLen) ;

Copyright : StringlCommentLen];

Source : Language;

PreLinkBlock : integer; { Unresolved
references }

RoutDescBlock : integer; { Routine
descriptors }

DiagBlock : integer); { Diagnostics }

QMapFileName : FNString;

SymFileName : FNString;

Compld : TimeStamp);
{ first block: }
1: (OffsetRD : integer;

RoutsThisSeg : integer);
2é (Block: arrayl0..255] of integer)
end;

ClmpInfo = record case boolean of { Import List Info -
as generated
by the compiler }
true: (ModuleName: SNArray; { Module
identifier }
FileName: FNString { File name }

);
false:(Ary: array [0..0] of integer)
end;

SegFileType = file of SegBlock;

FILE FORMATS January 15, 1984

3.2 DIRECTORY FILES

Since directories are simply files that can contain names and
addresses of files, the files contained in a directory can be other
directories. Thus, directories can be nested to form a
hierarchical, multi-directory structure. You can construct
directory hierarchies of arbitrary depth and complexity to
structure files in whatever manner is convenient.

A directory entry is a 16-word packed record that points to the FIB
of a file within the directory. Module DiskI0.Pas defines the
format of a directory entry.

The first word of each directory entry specifies whether or not the
entry is in use; bit 0 is set if the directory entry is valid. Bit
1 is reserved; in future systems, if the bit is set, the file
associated with the entry has been deleted, but the disk blocks not
yet returned to the free list. Bits 2 through 15 are reserved for
future use. Note that reserved bits must be zero, but programs
reading reserved bits should not assume that the bits are in fact
zero.

The second and third words of a directory entry contain the logical
disk address of the FIB of this entry.

The remaining 13 words contain the file name portion of a file
specification. Since a directory can only contain entries for files
within the partition, and thus device, where the directory itself
is located, these words do not include the device, partition, and
directory portions of a file specification. A file name that omits
the device, partition, and directory portions is known as a
SimpleName. Note that the file name is a string; the low byte of
the first word of a string always specifies the length (in octal)
of the string. Therefore, a simple file name cannot exceed 25
characters.

The following is a graphical representation of a directory entry.

4 b
s LR

word O bits 1 - 15 reserved bit O entry in use or not
word 1 LDA of FIB for this entry

word 2

word 4 First character of simple name for entry
word 15 Last character of simple name for entry

+

FILE FORMATS January 15, 1984

Directory entries are hash coded by file name to decrease the
lookup time. The hash function specifies the block of the
directory in which the file name and the address of the file‘s FIB
are written. When a block of the directory is full (it contains 16
directory entries), successive or overflow directroy entries
destined for that block are written in block n + 3l.

Since the hash function specifies the block' of the directory to
contain the entry, directories often contain unallocated blocks
between allocated blocks.

Files that contain unallocated blocks between allocated blocks are
known as sparse files.

3-10

FILE OPERATIONS January 15, 1984

CHAPTER 4
FILE OPERATIONS

This chapter describes basic file system operations.

A file is a hierarchical structure consisting of logical blocks
allocated from a partition’s free block list, a segment with an
information block (FIB), and an entry in a directory. The file
system consists of several cooperating modules that manage the
various elements of a file.

Some of the modules that comprise the file system simply supply
constants or type definitions and are not directly involved in file
operations. Examples of these modules are: FileDefs.Pas;
FileTypes.Pas; and I0_Private.Pas. Other modules use the constants
and type definitions to perform a file operation. Examples of
these modules are: AllocDisk.Pas; FileAccess.Pas; FileSystem.Pas;
and I0_Unit.Pas.

The file system modules also use some of the operating system
modules (for example GetTimeStamp.Pas) to perform related
functions.

The modules with a specific jurisdiction over file system operation
(modules that allocate blocks from the free block list, implement
10 to logical blocks, read, write, and create segments, and perform
file operations) are:

AllocDisk.Pas FileUtils.Pas
DiskDef . Pas 10Disk.Pas
DiskIO.Pas I0Floppy.Pas
DiskUtility.Pas I0_Unit.Pas
FileAccess.Pas ReadDisk.Pas
FileDir.Pas VolumeSystem. Pas
FileSystem.Pas

AllocDisk.Pas presides over each partition’s free block list; it
contains procedures to allocate and deallocate blocks within a
partition. AllocDisk.Pas also contains procedures to mount and

4-1

FILE OPERATIONS January 15, 1984

dismount devices and partitions and thus maintains DiskTable and
PartTable.

DiskDef.Pas supplies variables, constants, and types to the other
file system modules, defines the control structure for CIO and EIO
disks, and describes the EIO disk microcode to Pascal interface.

DiskI0.Pas defines the format of the logical structures (DIB/PIB,
FIB, directory entries, and directory blocks).

DiskUtility.Pas supplies procedures to the volume system.

FileAccess.Pas supports the concept of segments, distinct from the
directory structure. The module allows you to create, read, write,
shorten (truncate), and delete segments. Since a segment is the
foundation of a file, most file operations make calls to the
procedures and functions in FileAccess.Pas.

FileDir.Pas supports the directory structure for the file system;
it provides procedures to write and delete directory entries and to
lookup files by name. The module also implements the file hash
function (the hash function specifies the block of the directory to
which the directory entry is written).

FileSystem.Pas provides the high-level interface to file
operations; it creates, reads, writes, and closes files.

FileUtils.Pas extends the basic services of the file system (as
provided by module FileSystem.Pas); it allows you to delete and
rename files, specify a searchlist, add items to or subtract items
from the searchlist, and obtain file names from a directory.
FileUtils.Pas also provides a function to create new directories.

IODisk.Pas implements low level operations to hard disk and
includes routines to convert between physical and logical disk
addresses and logical block numbers.

IOFloppy.Pas implements low level operations to floppy disks.

10_Unit.Pas provides procedures to perform 1/0 on various devices.
The procedure Unitl0 provides the interface to hard and floppy
disks (among other devices) and supports read or write access to
any physical block on either disk. Its syntax is:

UnitIO(Unit : UnitRng;
DataBuf ¢ IOBufPtr;
Command + 10Commands;

ByteCount : integer;
DiskAddress : double;
HeaderBuf : IOHeadPtr;
StatusBuf : IOStatPtr);

4-2

FILE OPERATIONS January 15, 1984

UnitRng specifies the disk to access. The constant |
specifies the hard disk and 3 specifies the floppy disk.

DataBuf is a pointer to the caller’s buffer for data.

I0Commands is an enumerated type that specifies commands for
devices; the relevant values are IORead, IOWrite, and
IOWriteFirst. IORead and IOWrite specify a read or a write of
the data block on the disk to or from the buffer at
DiskAddress. IOWriteFirst specifies a write of both the data
block and the logical header block from the buffers. The hard
disk enforces a degree of checking of the contents of logical
headers. It requires that the first 6 bytes of the logical
header on the disk match a data structure supplied by the
caller in the 10 control block. UnitlO reflects this checking
by passing the data in the buffer at HeaderBuf to the Startl0
level for checking when Command is IORead or IOWrite.

The integer for ByteCount must be a multiple of 128 if Unit =
Floppy (3) and a multiple of 5§12 if Unit = HardDisk (1). :

DiskAddress is an encoding of the three components of a
physical disk address (cylinder, track, and sector). The
actual encoding is a function of the device; for floppy
DiskAddress[0] holds the sector number and DiskAddressl(l]
holds track #% FlpCyls + cylinder. For the hard disk
DiskAddress[1] is ignored and DiskAddress(0] is partitioned
bitwise into three fields: cylinder (8 bits), head (3 bits),
and sector (5 bits).

HeaderBuf is a pointer to the caller’s buffer for header data;
this only applies to the hard disk.

StatusBuf is a pointer to a structure of the caller that
reports errors.

ReadDisk.Pas provides a buffer system for read and write operations
to the hard and floppy disks.

VolumeSystem.Pas provides uniform abstractions of the disks. This
module makes a disk appear as an array of pairs of data blocks and
logical headers. VolumeSystem.Pas defines a general address Type
with two components, one to specify a disk and another to specify
an index into the array on that disk. The module also assists in
mount and dismount operations (mounting a disk means reading a
symbolic name from a known address on that disk and recording a
mapping of that symolic name to an identifier for the disk) and
provides operations to determine the number of pages (pairs of data
blocks and logical headers) and the last valid address on a given
disk.

FILE OPERATIONS January 15, 1984

-

The sections that follow present a step-wise refinement through
each of the following file operations:

Create
Read
Write
Delete
Close

4.1 CREATING A FILE

Use the function FSEnter in module FileSystem.Pas to create a file.
The function takes a file specification as a parameter and returns
the FilelD of the created file:

FSEnter(pathname): FilelD;

If the device, partition, or directory portions of the file
specification do not exist or if the directory or file name
portions are longer than 25 characters, FSEnter raises an
exception, FSBadName, and returns a FileID of zero. Note that you
must specify at least a file name from | to 25 characters as a
parameter; null file names raise the FSBadName exception.

To create a file, FSEnter first ensures a complete file
specification parameter and then determines whether or not the file
already exists. For an existing file, FSEnter simply changes the
file’s write and access dates in the FIB and returns the FilelD of
the existing file. For a new file, FSEnter allocates a block from
the partition’s free block list to construct an FIB for the file,
makes an appropriate directory entry, and then returns the FilelD
of the new file.

The procedure FixFileName (in module FileSystem.Pas) ensures a
complete file specification. A complete file specification
consists of four portions and takes the form:

device:partition>directoryl>...directory9>filename

A complete file specification is referred to as a full filename; it
specifies the complete path for a file. Since the file system
applies defaults for device, partition, and directories, users need
not specify a full filename. A file specification that omits the
device and partition portions (includes only directories and
filename) is referred to as a partial file specification. A file
specification that omits all portions except the file’s name is
referred to as a simple file specification.

Procedure FixFileName adds defaults, as necessary, to a partial or
simple file specification. For example,

4-4

FILE OPERATIONS | January 15, 1984

mydir>myfile.txt

is valid as the pathname parameter in the call to FSEnter, but the
parameter omits the device and partition portions of a file
specification.

Thus, FixFileName would insert the device name (for example, SYS)
and the partition name (for example, BOOT) in the partial file
specification above to yield SYS:BOOT>MYDIR>MYFILE.TXT.

The function GetFileID (in module FileDir.Pas) determines whether
or not a file exists; it returns the Logical Disk Address of the
information block of a file (the SegID). If the file does not
exist, both words are zero.

For an existing file, procedure ReadSpiceSegment (in module
FileAccess.Pas) reads the information block into a buffer.
Procedure WriteSpiceSegment (also in module FileAccess.Pas) writes
new values for the file write and access dates in the buffer
representing the information block and then writes the buffer back
to disk. Words 4-5 (FileWriteDate) and 6-7 (FileAccessDate) of the
file’s FIB now reflect the operation. _

For a new file, function CreateSpiceSegment (in module
FileAccess.Pas) allocates a block from the free block list and
writes the information block of a segment to represent the new
file. CreateSpiceSegment calls the function AllocDisk (in module
AllocDisk.Pas) to obtain a block.

Function AllocDisk allocates a free block from a partition’s free
gloct list and returns the Logical Disk Address of the newly freed
lock.

The free block pool must always contain at least one block.
Therefore, if the block to allocate is the last free block in the
partition (that is, both word values for the next address pointer
in the block’s logical header are zero), function AllocDisk raises
an exception, PartFull. If the free list is inconsistent (that is,
when the previous address pointer in the logical header of the
second free block doesn’t point to the first block of the free
list) function AllocDisk raises an exception, BadPart. In this
fase, you must run the Scavenger to reconstruct the free block
ist.

Vhenever you allocate a logical block from the free list, AllocDisk
updates the values in the memory structure PartTable (for the head
of the free list and the number of free blocks) and writes the
logical header of the new head of the free list (zeroes next and
previous pointers and sets filler to next free block).

CreateSpiceSegment uses the Logical Disk’ Address from function

4-5

FILE OPERATIONS January 15, 1984

AllocDisk to write the information block. The logical header of
the information block is written first (serial number is LDA from
AllocDisk, logical block is -1 to indicate the FIB, next and
previous pointers zero, and filler pointing to next free block)
followed by FIB words §2 through 255. The values in the logical
header area of the FIB are:

Serial Number is LDA from AllocDisk
Logical Block Number is -1 to indicate FIB
Filler is next free block

Next Address is 000000 000000

Previous Address is 000000 000000

The values in the data area of the FIB reflect a segment as
follows:

File System Data (words 0 - 5§1) is 0 (not written)
Random Index (words 52 - 247) is 000000 000000

Type of Segment (word 248) is permanent

Number of blocks in use (word 249) is |

LBN of largest block (word 250) is -I

LDA of last block (words 251 - 252) is LDA from AllocDisk

LBN of last pointer block (word 253) is -1

LDA of last negative block (words 254 - 255) is LDA from
AllocDisk

At this point, the file lacks a directory entry and its FIB omits
file system data (FIB words O through §! have zero values).

Function PutFileID (in module FileDir.Pas) writes the directory
entry for the new file. To write the directory entry, PutFilelD
first finds the partition’s root directory. It then follows the
list of sub-directories to the target directory. When PutFilelD
locates the target, it executes the hash function to determine the
relative logical block number of the target directory in which to
write the file name and then writes the directory entry. Note that
a directory entry is a "simple name”™ that includes only the file
name portion of a file specification.

Procedures ReadSpiceSegment and WriteSpiceSegment update the file
system data portion of the FIB. The values for FIB words 0 through
51 are as follows:

File size (word 0) is O

Bits in last block (word 1) is O

File create date (words 2 - 3) is timestamp of current time
Last write date (words 4 - §) is timestamp of current time
Last access date (words 6 - 7) is timestamp of current time
File type (word 8) is O (unknown file)

Words 9 - 10 are unused

File name (words 11 - §&1) is partial name (includes all
directories, but omits device and partition portions of file

4-6

FILE OPERATIONS January 15, 1984

specification).

Note that since only the FIB exists for the file, it is a zero
length file (file size is 0).

Function SegIDToFileID in module FileSystem.Pas converts the SeglD
of the newly created file into a FileID. FSEnter returns this
value. You can use procedure FSBlkWrite (in module FileSystem.Pas)
to add blocks to the file as described in Section 4.2.

4.2 WRITING A BLOCK IN A FILE

Use the function FSBlkWrite in module FileSystem.Pas to add a block
to a file or to update an existing block of a file. The function
takes three parameters: the FileID of the file to write; the
relative logical block number (starting at zero) of the block to
write; and a buffer to hold the data to write in the block of the
file.

FSBlkWrite(UserFile:FileID; Block:BlkNumbers;
Buff:PDirBlk);

Note that the parameter for the file to write is a FilelD.

Typically, unless you are adding a block to a newly created file
(function FSEnter returns a FilelD), you refer to files by file
name and not by FileID. To write to a file by file name, first
convert the file name to a FilelD.

Module FileSystem.Pas includes two functions, FSLocalLookUp and
FSLookUp, that convert a file name to a FilelD.

Both functions take the same parameters.

FSLocalLookUp
or (pathname; Var BlkInFile,BitsInBlk):FilelD;
FSLookUp

The pathname parameter is the file specification to search for. If
the device, partition, directory, or file name portions of the file
specification do not exist or if the file name portion is longer
than 25 characters, the functions raise an exception, FSNotFnd, and
return a FileID of zero. If the file is found, the functions write
an integer value for the variable parameters "blocks in file” and
"bits in last block” (from FIB words O and 1), update the file
access date (FIB word 6), and return the FilelD.

The difference between the two functions is that FSLocalLookUp
ignores the searchlist and performs the lookup operation only in
the current path. FSLookUp performs the lookup operation using the
paths on the searchlist.

4-7

FILE OPERATIONS January 15, 1984

With a valid FilelD, you can write blocks of a file. To write (or
update) a block of a file, FSBlkWrite converts the FilelD to a
SeglD and then either updates an existing block or writes a new
block.

The function FileIDToSegID in module FileSystem.Pas converts the
one-word FileID of the file to write into a two-word SeglD.

Procedure WriteSpiceSegment in module FileAccess.Pas writes the new
block or updates an existing block. To write a block,
WriteSpiceSegment first ensures that the SegID is a valid File
Information Block. (Functions SegAddr and CheckHeader, both in
module FileAccess.Pas, perform this test.) The FIB is valid when
its logical header’s serial number matches the specified SeglD and
itsAFL?N is negative one (-1). An invalid FIB raises an exception,
NotAFile.

If the FIB is valid, WriteSpiceSegment determines whether or not
the specified relative logical block is allocated to the file.
Function ReadHeader (in module ReadDisk.Pas) reads the header of
the relative logical block to write.

If the Logical Block Number in the header matches the specified
relative logical block to write (the block is allocated to the
file), WriteSpiceSegment copies the data from the user buffer into
a memory buffer representing the disk block. Following a flush
operation, the new data is written from the memory buffer to the
disk block. Note that you are free to re-use your buffer
containing data to write.

If the Logical Block Number in the header is not allocated to the
file, WriteSpiceSegment first allocates a block from the free block
list. Function AllocDisk (in module AllocDisk.Pas) allocates free
blocks; refer to Section 4.1. WriteSpiceSegment then writes the
new block’s logical header and updates the random index in the
file’s FIB to reflect the new block. Finally, the function copies
the data from the user buffer into a memory buffer and then writes
the memory buffer to the new disk block.

4.3 READING A FILE
Use the function FSBlkRead in module FileSystem.Pas to read a block
of an existing file. The function takes three parameters: the
FilelD of the file to read; the relative logical block number
(starting at zero) of the block to read; and a buffer to hold the
data read from the block of the file.

FSBlkRead(UserFile:FilelD; Block:BlkNumber; Buff:PDirBlk);

Note that the parameter for the file to read is a FilelD and not a

4-8

FILE OPERATIONS January 15, 1984

file name. To refer to files by file name and not by FilelD, first
convert the file name to a FileID as described in section 4.2.

With a valid FilelD, you can read a block of a file. FSBlkRead
first converts the FileID to a SegID and then reads the block from
the segment.

The function FilelDToSegID in module FileSystem.Pas converts the
one-word FileID of the file to read into a two-word SegID.

Procedure ReadSpiceSegment in module FileAccess.Pas reads the
block. To read a block, ReadSpiceSegment first ensures that the
SegID is a valid File Information Block and that the specified
block to read is actually allocated to the file. The FIB is valid
when its logical header’s serial number matches the specified SegID
and its LBN is negative one (-1). An invalid FIB raises an
exception, NotAFile. If the block to read is not part of the file,
FSBlkRead zeroes the buffer you specified to hold the data.

If the FIB is valid and the block is allocated to the file,
FSBlkRead copies the data from the block into the buffer.

4.4 DELETING A FILE

Use the procedure FSDelete in module FileUtils.Pas to delete a
file. Since a file is a segment with a directory entry, FSDelete
removes the directory entry that names the file and then destroys
the segment that represents the file. The procedure takes the name
of the file to delete as the only parameter.

FSDelete(filename : Pathname);

FSDelete ignores the searchlist and only deletes a file from the
current path. Thus, to delete a file from other than the current
path, you must enter a complete file specification. If the device,
partition, or directory portions of the file specification do not
exist or if the directory or file name portions are longer than 25
characters, FSDelete raises an exception, DelError, and exits. If
you omit the file name altogether, FSDelete simply exits; null file
names do not raise an exception.

To delete a file, FSDelete first ensures a complete file
specification as described in Section 4.1. Note that FixFileName
adds only the current device, partition, and directory portions to
a partial or simple file specification. '

The function DeleteFileID (in module FileDir.Pas) removes the
directory entry for the file.

The procedure DestroySpiceSegment invalidates the File Information
Block and returns the file’s allocated blocks to the free list. To

4-9

FILE OPERATIONS January 15, 1984

invalidate the FIB, DestroySpiceSegment simply zeroes the serial
number in the FIB‘s logical header. Procedure DeallocChain (in
module AllocDisk.Pas) returns the blocks to the free list. To
return the blocks, DeallocChain adds the file’s most negative block
(the last block of the random index) and the file's last logical
block to the end of the free list. The procedure updates the most
negative block’s logical header as follows:

Serial number is 000000 000000 to indicate a free block
Logical Block Number is unchanged (updated when block is
allocated)

Filler is LBN of free list head

Next LDA is unchanged (still points to next block of file)
Previous LDA is address of prior end of free list

The file’s last logical block becomes the end of the free list;
DeallocChain updates its header as follows:

Serial number is 000000 000000 to indicate a fre block

Logical Block Number is unchanged (updated when block is
allocated)

Filler is LBN of free list head

Next LDA is 000000 000000 to indicate free list tail

PrTv;ous LDA is unchanged (still points to previcus block of
file

DeallocChain then updates the PIB entries for FreeTail (PIB words 2
and 3) and NumberFree (PIB words 4 and §) to include the additional
free blocks. The number of blocks previously allocated to the file
are added to the value for NumberFree.

Note that the deleted file’s doubly linked list of blocks (next and
previous LDAs) remains intact; the logical headers of these blocks
are updated as the blocks are allocated.

4.5 CLOSING A FILE
Use the procedure FSClose in module FileSystem.Pas to close a file
and assert file length. The procedure takes three parameters: the
FileID of the file to close; the number of blocks in the file; and
the number of bits in the last block.

FSClose(UserFile:FileID; Blcks,Bits:Integer);
Note that the parameter for the file to close is a FilelD and not a
file name. To refer to files by file name and not by FilelD, first
convert the file name to a FilelD as described in section 4.2.

With a valid FilelD, you can close a file. FSClose first converts
the FilelD to a SegID and then reads the FIB.

4 - 10

FILE OPERATIONS January 15, 1984

If FileType is a DirFile (the value in FIB word eight is 3),
FSClose raises an exception, FSDirClose. You can continue from
this exception and close a Directory file, but this is not
recommended; you could render the directory unusable.

If the file to close is not a DirFile or if you continue from an
FSDirClose exception, FSClose writes the values you specified in
FIB word 0 (the number of blocks allocated to the file) and in bits
0 through 11 of FIB word | (the number of bits in the last block).

Finally, FSClose truncates the file so that the file contains the
number of blocks you specify. The final truncate operation
quarantees that the file contains only allocated blocks. This is
why it is not recommended that you continue following a FSDirClose
exception; directory files can be sparse and truncating a DirFile
could remove inuse blocks of the directory.

4 - 11

FILE OPERATIONS January 15, 1984

4 - 12

FILE SYSTEM UTILITIES January 15, (984

CHAPTER §
'FILE SYSTEM UTILITIES

This chapter describes the PERQ file system utilities Partition,
Scavenger, MakeBoot, and FixPart.

5.1 PARTITION PROGRAM

The Partition program creates and modifies partitions. Creating a
partition usually destroys all old data in the physically
contiguous disk area where the partition is made.

The file system restricts partitions on a device to fewer than
32768 logical blocks. However, to permit the Scavenger, described
in Section 5.2, to handle the partition in one pass, each partition
should have 10080 or fewer blocks. All partitions start and end on
cylinder boundaries; the Partition program enforces this
constraint.

To run the Partition program, simply type:
Partition

in response to the default PERQ prompt. The program then asks a
series of questions. Your responses to the questions specify
parameters such as device and partition names and partition size.
The following lists all of the possible questions. Explanatory
text follows each question. Note that your responses control the
logical flow of the questions; depending on your responses, not all
the questions appear.

1. Do you want to debug? (does not do any writes) [Nol

The response to this question specifies whether or not the
Partition program actually initializes or modifies a device.

If you respond Yes, the program simply continues with the
question sequence, but the device is not modified. Respond
Yes to familiarize yourself with the logical flow of Partition
questions and to prepare your responses.

If you respond No, the program modifies the device based on
your responses to succeeding queries.

The default response is No (the program modifies the device).
2. Partition HardDisk (H) or Floppy (F)?

5-1

FILE SYSIEM UTILITIES January 15, 1984

Your response to this question specifies the device to modify.
The choices are the Hard disk or the Floppy disk.

If you respond H (to indicate the hard disk), Partition checks
to see what type of disk drive you are using and asks whether
your disk is a MICROPOLIS 8-inch drive, a Shugart 14-inch
drive, or a 5.25-inch drive. See question 3 if you are
running on a PERQ2, question 4 if running on a PERQ, and
question § if using a 5.25-inch disk.

If you respond F (to indicate the floppy disk), Partition asks
whether the floppy is single or double sided. See question 9.

3. This seems to be a MICROPOLIS 8-inch disk.
Is this right? [Yes]

This question confirms the disk choice.
The next question is number 10.

4. This seems to be a SHUGART 14-inch disk.
Is this right? [Yes]

This question confirms the disk choice. Partition then checks
to see whether the disk is a 12- or 24-megabyte disk. It then
asks for confirmation of the size chosen. See question 8.

5. This seems to be a 5.25" disk.
Is this right? [Yes]

This question confirms that a §.25-inch disk is being used.
The next question is 6.

6. Enter name of disk, <HELP> for help, [UNKNOWN].

For the 5.25-inch disk, you must supply a recognized disk name
or disk parameters. If you supply the name of a disk, the
next question is 10. If you specify Unknown (the default), the
next question is 7. To obtain a listing of known names, press
the HELP key.

The disk.params file contains the name and parameters of
various disks. If you wish, you may edit the file to add other
disks (enter the information in exactly the same format as the
existing entries). Thereafter when you run Partition, you can
give the name in response to this question.

7. Would you like to enter the parameters yourself? [YES]
If you specify YES, questions 7a through 7e are presented. A
NO response returns you to Question 6.

5§-2

FILE SYSTEM UTILITIES January 15, 1984

7a.

7b.

7Tc.

7d.

Te.

No. of heads:

There is no default response to this question.
No. of cylinders:

There is no default response to this question.
Write precompensation cylinder:

The inner cylinders are more densely packed in terms of
bits per linear inch, and whenever two bits are written
in close proximity to each other, bit shift may occur.
It may also occur, but to a lesser degree, because of
phenomena such as random noise, speed variations, etc.
The technique called write precompensation reduces bit
shift by detecting which bits will occur early and which
will occur late and writing these bits in the opposite
dirgction of the expected shift. Supply a cylinder
number.

Boot size:

The size of the boot area is typically 32.

Sectors per Track:

PERQ Systems typically supplies disks with 16 sectors per
track, but the number may be different on the disk you
are using.

The next question is 10.

8. Is this a nn-MByte disk? [Yes]

This question confirms the size of the Shugart disk. The
default is the size of disk. In the actual question, the size
(12 or 24) replaces nn above.

The next question is number 10.

9. 1Is this a Single (S) or Double (D) sided floppy?

If you specified the floppy in question 2, you must specify
wvhether the floppy is single- or double-sided. You can
partition a floppy that is formatted on both sides as either
single or double sided. There is no default response to this
question.

FILE SYSTEM UTILITIES | January 15, 1984

10.

11.

The next question is number 10.
Do you want to initialize the whole device? [Nol

Respond Yes if you are starting from scratch (for example, on
a newly formatted floppy or when installing the file system on
a new machine). If you want to modify a device with existing
file system structures, respond No.

If you respond Yes to this question, Partition asks for
information about each partition in turn. See questions 21
through 27.

If you respond No to this question, Partition reads the Device
Information Block to find the existing partitions and displays
them in the order that the partitions appear on the disk. The
program then asks for the modifications you wish to make. See
questions 11 through 20.

The default response to this question is No (the program
modifies, rather than initializes, the device).

Do you want to rename the device? [Nol

This question appears if you responded No to question 10 and
begins the device modification (rather than initialization)
sequence. The first question in this sequence allows you to
change the name of the device.

Before renaming a device, note that the linker incorporates
the name of the device where a program was linked into the
Runfile. Therefore, if you rename the device, you cannot run
existing programs on that device. This includes the Shell,
Login, and the Partition program itself.

If you respond Yes, Partition requests confirmation and then
prompts for the new device name. See question 12.

If you respond No, the program asks which partition you want
to modify. See question 13.

The default response to this question .is No (to modify a
partition, rather than rename the device).

FILE SYSTEM UTILITIES January 15, 1984

12.

13.

14.

1S.

New device name [current name)

If you responded Yes to question Il and to the subsequent
request for confirmation, this question allows you to enter a
new device name. Enter a device name from | to 8 characters.
The Partition program writes the name you enter in the Device
Information Block (DIB words 114 through 117).

Note that the default response to this question is the current
name of the device.

After you enter the device name, the program asks whether or
not you want the device remounted. See question 27.

Vhich partition do you want to modify?

Enter the name of the partition you wish to modify. The
program displays a summary of that partition’s Partition
Information Block and then prompts for the modification. See
questions 14 through 16.

There is no default response to this question.
Do you want to split this partition? [Nol

Since files cannot cross partition boundaries, it is never a
good idea to split a partition that contains files. The
system destroys any file that has blocks in both partitions.
However, it is safe to split an empty partition or to split a
partition that you plan to erase.

If you respond Yes to this question, Partition requests
confirmation and then prompts for the number of pages in each
partizion and the name of the new partition. See questions 15
and 16.

If you respond No to this question, Partition continues with
the modification queries. See question 17.

How many pages would you like in the first half?

The response to this question specifies how much of the
partition to leave with the old partition (the partition being
split). The remainder of its blocks are put in the new
partition. The Partition program then asks if you want to
initialize the partition pages and thus create a new free
list. See questions 24 through 26. After initializing the
pages (or immediately, if you respond no to initializing
pages), the program requests a name for the new partition.
See question 16.

FILE SYSTEM UTILITIES January 15, 1984

16.

17.

18.

Name of new partition? Partition name (up'to 8 chars):

Enter the name of the new partition. The Partition program
then asks if you want to initialize the pages for the new
partition. See question 24.

Do you want to merge this partition with the next? [Nol

If you responded No to question 14, this question allows you
to combine two partitions. It is safer to combine two
partitions together than to split one apart.

If you respond Yes to this question, the program joins the
partition you specified in question 13 with the partition
which is next on the disk. This is the only time the order of
the partitions on the disk matters. Partition then asks if
you want to initialize the new partition. See question 24. If
you want to erase the new, bigger partition, respond Yes to
question 24 to initialize the pages. To save all the files
from both partitions, respond no to question 24. Then, after
Partition exits, run the Scavenger program (described in
Section 5.2) on the new partition. When running the Scavenger
in this case, be sure to tell it to rebuild the directories so
that the directories of the two partitions can be joined
together.

If you respond No to this question, Partition continues with
the modification queries. See question 18.

Do you want to initialize this partition? [Nol

If you responded No to question 17, this question allows you
to initialize the partition specified in question 13.

A Yes response is a fast way to delete all the files in the
partition.

If you respond Yes to this question, Partition asks if you
want to initialize the partition pages. See question 24.
There are few reasons to initialize the partition without
initializing the pages. However, if you respond No to
question 24, you must use the Scavenger program to recreate
the directory immediately after running Partition.

If you respond No to this question, Partition continues with
the modification queries. See question 19.

FILE SYSTEM UTILITIES January 15, 1984

19.

20.

21.

Do you want to change the partition name? [Nol
This question allows you to change the name of the partition.

Before renaming a partition, note that the linker incorporates
the name of the device and the partition where a program was
linked into the Runfile. Therefore, if you rename the
partition, no program in that partition can be run. Do not
change the name of the partition that is used in the current
path since this invalidates the default path name. Also, all
entries in the search list that refer to the renamed partition
will no longer work. After a rename, the system may not be
able to find the Shell or any other programs.

If you respond Yes, Partition requests confirmation and then
prompts for the new partition name. See question 20.

If you respond No, the program asks if you want the device
remounted. See question 27.

The default response to this question is No (to exit the
program, rather than rename the partition).

New partition name [current name)

If you responded Yes to question 19 and to the subsequent
request for confirmation, this question allows you to enter a
new partition name. Enter a partition name from | to 8
characters. The Partition program writes the name you enter
in7§he Partition Information Block (PIB words 114 through
117).

Note that the default response to this question is the current
name of the partition.

After you enter the partition name, the program asks whether
or not you want the device remounted. See question 27.

Name for root partition (up to 8 chars):

This question begins the device initialization sequence if you
responded Yes to question 10 (to initialize the entire
device). The device must first be given a name (from one to
eight characters).

The Partition program writes the name you specify in the
Device Information Block (DIB words 114 through 117).

There is no default response to this question; you must enter
a device name.

Partition then displays the number of logical blocks (pages)

5-17

FILE SYSTEM UTILITIES ' January 15, 1984

available for the first partition (partition 0) and asks for
the number of blocks to include in the partition. See
question 22,

22. How many pages would you like in it? (0 => all)

24.

The file system restricts device partitions to fewer than
32768 logical blocks (pages).

To permit the Scavenger (see Section 65.2) to handle a
partition in one pass, each partition should have 10080 or
fewer blocks.

The number of blocks per cylinder governs the size of a
partition on a device. All partitions must be multiples of
the number of blocks per cylinder for a given device. The
minimum size for partitions is the number of blocks per
cylinder, as follows: 12-megabyte Shugart and 35-megabyte
Micropolis disk, 120; 24-megabyte Shugart disk, 240; and a
floppy disk, 6. On 5.25" disks the number of blocks per
cylinder will vary.

After you enter the number of blocks for a partition, the
program requests the partition name. See question 23.

Partition name (up to 8 chars):

You must name each of the partitions (from one to eight
characters). Examples of partition names used for the hard
disk include "boot", "user”, and "exp". A partition can have
the same name as a device, but all the partitions must have
unique partition names.

After you enter the name, Partition displays a summary of the
PIB and asks if you want to initialize the partition. See
question 24,

Do you want to initialize partition pages? [Yes]

This question begins the partition initialization sequence.
Your response specifies whether or not the program initializes
the partition’s logical blocks (pages). If you are
initializing the entire device (you responded Yes to question
10), Partition repeats this question for each partition on the
device. If you are modifying a partition (you responded No to
question 10) and you want to initialize it (you responded Yes
to question 18), Partition asks this question once.

A Yes response to this question places all the logical blocks
in the partition on the free list. If you are initializing
the entire device (you responded Yes to question 10), you
should respond Yes to this question. If you are modifying a

5-8

FILE SYSTEM UTILITIES January 15, 1984

'26.

27.

partition and initializing it (you responded YES to questions
11 and 18), it is recommended tha you respond yes to this
question also. There are few reasons to initialize the
partition itself without initializing the pages.

If you respond Yes to this question, Partition asks whether or
not to test after initializing the pages. See question 25.

If you respond No to this question, you must use the Scavenger
program (refer to Section 5.2) to recreate the directory
immediately after running Partition.

The default response is Yes (to initialize the partition
pages).

Do you want to test after initializing? [Yesl]

Although testing after initializing slows the process
somewhat, it is good practice to do this testing. If any
logical blocks are found to be bad during testing, they are
removed from the free list and thus never accessed again.

If you respond Yes, Partition asks if you want to write every
page twice. See question 26.

If you respond No, Partition simply initializes the logical
blocks and asks if you want the device remounted. See
question 27.

The default response is Yes (to test after initializing).
Do you want to write each block twice? [Yes]

Writing every logical block twice provides some additional
protection from bad pages; random data is written into the
header and body of each block. In practice, some bad blocks on
the disk pass the first test and fail this one.

Do you want the device remounted? [Yes]

After all the blocks on the device have been included in a
partition or after the partition has been modified, the
program displays some data about the device or partition and
asks whether or not to remount the device. Only mounted
devices can be accessed, so if you plan to use the device

respond Yes.

The Partition program accepts a switch, /BUILD, on the command
line, which partitions the entire device. Note that the arguments
must be specified on the command line. This is a dangerous thing
to do and it is only recommended for command files which bring up
an entire disk. The format for this switch is

5§-9

FILE SYSTEM UTILITIES January 15, 1984

Partition/<DiskType>/Build <Dev> <DeviceName> <PartNameList>

where <dev> is either "H" for the hard disk or "F" for the floppy.
Specify the device name next, followed by enough partition names
for the entire device. The partition names are used in the order
specified so the first name will be used for the first partition on
the disk. All partitions except the last will be the standard size
(10080dblocks). If extra partition names are specified, they are
ignored.

If the device is already formatted, the program requires

confirmation before erasing the device. If you respond No to the
confirmation request Partition runs, asking all the questions.

5-10

FILE SYSTEM UTILITIES January 5, 1984

5.2 THE SCAVENGER PROGRAM

The Scavenger program fixes a partition on a device that contains
useful files. Run the Scavenger whenever an inconsistency is found
in the file system or when some program aborts and instructs you to
run it. The Scavenger checks all files for consistency, rebuilds
the free list, and creates a new directory structure for the
partition. The Scavenger also removes bad boots.

The Scavenger should be run only on devices initialized by the
Partition program.

Do not type CIRL/C after the Scavenger begins writing on the
device. (You can type CIRL/C during the read pass.) If you type
CTRL/C after the Scavenger begins rebuilding the directory, you may
not be able to access anything in the directory. If this happens,
rerun Scavenger from another partition.

The Scavenger cannot recreate the directory if there are no free
blocks in the partition. Therefore, if your partition is full, you
must delete some files before running the Scavenger. If you cannot
delete any files due to a bad directory and there are no free
blocks, then you cannot rebuild the directory. In this case, you
must initialize the partition, thus losing all files there.
Fortunately, this is a rare occurrence.

The Scavenger program fixes one partition at a time. You can
scavenge the current partition or scavenge partitions other than
the one you are currently running in.

The Scavenger program has three separate phases. In phase one, it
checks and updates some of the system information and deletes bad
boots. If you define a boot with MakeBoot (see Section 5.3), but
either the microcode or system code files have been deleted, the
boot is known bad and the Scavenger deletes it. However, if a boot
file is deleted and another created in the same place before the
Scavenger is run, the boot appears valid but will not work.

In the second phase, the Scavenger checks the partition you specify
for consistency. The program reads all blocks and generates a new
free list in ascending disk order (the Scavenger discards the old
free list). Also during this phase, the Scavenger marks as . "bad”
those blocks that are not readable. If the blocks marked as bad
cannot be rewritten, they are marked as "incorrigible” and removed
from the file system. All blocks that were allocated to files
containing bad or incorrigible blocks are put in a bad file.
Additionally, malformed chains are added to the bad file. You
specify a name for this bad file in phase three.

During phase three, the Scavenger rebuilds the directories for the
partition. You can direct the Scavenger to delete the old

S - 11

FILE SYSTEM UTILITIES January i5, 1984

directories, if desired. Otherwise, the old directories are marked
as such and the program adds a "$" to the end of the directory
name. The Scavenger aborts if there is not encugh room in the
partition to create copies of all the directories, leaving the
directories only partially rebuilt. In this case, delete some of
the files in the directory and then rerun the Scavenger.

Prior to entering a name in a directory or creating a new
directory, the Scavenger validates the filename. If a bad name is
found (the name includes a control character, "<", "/", ":", or is
null) or two files have the same name, Scavenger requests a new
filename. In addition, the name cannot end with a ">" or contain
">..>" or ">.>", After Scavenger is finished, you can examine the
files with bad names to see whether they contain useful
information. If so, rename or edit the files to recover the data.

Otherwise, simply delete the files.

Also during the third phase the Scavenger checks the length of all
files and allows you to specify a new length. Note that the length
refers to the stored length (in the FIB) rather than the number of
blocks in a file. Certain files, like directories and swap files,
do not set the length field. File lengths usually become wrong
when the file is opened and written, but not properly closed (for
example, when a transfer is aborted).

To run the Scavenger program, simply type

Scavenger [partitionl]
in response to the default PERQ prompt.
If you omit the partition name, the Scavenger asks a number of
questions before it begins processing the partition. Note that
some of the questions have a default response.
If you include a partition name, the Scavenger uses all defaults
and runs until completion unless there are any serious errors. If
errors are discovered, the Scavenger requests confirmation before
exiting. Note that the partition you specify must be on the hard
disk.

Following is a list of the questions Scavenger will ask, with an
explanation of each.

1. Which device to scavenge? (F = Floppy, H = Harddisk): [H]
Your response to this question specifies the device that
contains the partition to modify. The choices are the Hard
disk or the Floppy disk.
If you respond H (to indicate the hard disk), Scavenger checks
to see what type of disk drive you are using and asks whether

5-12

FILE SYSTEM UTILITIES January {5, 1984

your disk is a MICROPOLIS 8-inch drive, a Shugart 14-inch
drive, or a 5.25-inch drive. See question 2 if you are
running on a PERQ2, question 3 if running on a PERQ, and
question 4 if using a 5.25-inch drive.

If you respond F (to indicate the floppy disk), Scavenger asks
whether the floppy is single or double sided. See question 8.

2. This seems to be a MICROPOLIS 8-inch disk.
Is this right? [Yes]

This question confirms the disk choice.
The next question is number 9.

3. This seems to be a SHUGART 14-inch disk.
Is this right? [Yes]

This question confirms the disk choice. Scavenger then checks
to see whether the disk is a 12- or 24-megabyte disk and asks
for confirmation of the size chosen. See question 7.

4. This seems to be a 5.25" disk.
Is this right? [Yes]

This question confirms that a §.25-inch disk is being used.
The next question is S.

5. Enter name of disk, <HELP> for help, [UNKNOWN].

For the 5.25-inch disk, you must supply a recognized disk name
or disk parameters. If you supply the name of a disk, the
next question is 9. If you specify Unknown (the default), the
next question is 6. To obtain a listing of known names, press
the HELP key.

The disk.params file contains the name and parameters of
various disks. If you wish, you may edit the file to add other
disks (enter the information in exactly the same format as the
existing entries). Thereafter when you run Scavenger, you can
give the name in response to this question.

6. Would you like to enter the parameters yourself? [YES]

If you specify YES, questions 6a through 6e are presented. A
NO response returns you to Question S.

6a. No. of heads:

There is no default response to this question.

§-13

FILE SYSTEM UTILITIES January 15, 1984

6b. No. of cylinders:
There is no default response to this question.
6c. Write precompensation cylinder:

The inner cylinders are more densely packed in terms of
bits per linear inch, and whenever two bits are written
in close proximity to each other, bit shift may occur.
It may also occur, but to a lesser degree, because of
phenomena such as random noise, speed variations, etc.
The technique called write precompensation reduces bit
shift by detecting which bits will occur early and which
will occur late and writing these bits in the opposite
dirgction of the expected shift. Supply a cylinder
number.

6d. Boot size:
The size of the boot area is typically 32.
6e. Sectors per Track:
PERQ Systems typically supplies disks with 16 sectors per
track, but the number may be different on the disk you
are using.
The next question is 9.
7. Is this a nn-MByte disk? [Yes]
This question confirms the size of the Shugart disk. The
default is the size of disk. In the actual question, the size
(12 or 24) replaces nn above.
The next question is number 9.
8. Is this a Single (S) or Double (D) sided floppy?
If you specified the floppy in question 1, you must specify
whether the floppy is single- or double-sided. There is no
default response to this question.
The next question is number 9.
9. Can I make changes to your disk [Yes]?
The response to this question specifies whether or not the
Scavenger program can make changes to the device in the first
two phases of the program (the Scavenger fixes directories

later). This is similar to the debug option in the Partition
program (refer to question 1 in Section 5.1).

5-14

FILE SYSTEM UTILITIES January 15, 1984

If you respond No, the Scavenger checks the partition for
errors and reports them, but does not fix anything. If you
are running the Scavenger only to fix the directory, it is
about twice as fast to respond No to this question; otherwise,
Yes is a good idea.

The default is Yes.

The logical header of every block contains information about the
state of that block. The information includes the count of the
block in the file (the file relative LBN) and a two-word identifier
for the file the block belongs to (the serial number). The next
two questions allow you to check the correctness of these values.

10. Do you want logical block consistency checking [Yes]?

This question asks whether or not the Scavenger should check
the Logical Block Number field in the block’s logical header.
Remember that this field specifies the file relative logical
bl?c§ number (the first, second, third, and so on block of the
file).

If you respond Yes, the Scavenger compares the LBN field in
the logical header with the random index for each file.

If you respond No, the Scavenger omits this test.

The default is Yes (to check the file relative logical block
number).

11. Do you want serial number consistency checking [Yes]?

This question asks whether or not the Scavenger should check
the Serial Number field in the block’s logical header. The
serial number of all blocks in a given file is the Logical
Disk Address of the file’s File Information Block.

If you respond Yes, the Scavenger compares the Serial Number
field in the logical header with the LDA of the FIB.

If you respond No, the Scavenger omits this test.

The default is Yes on machines with more than 256k bytes of
main memory and No on 256k byte machines.

If the Scavenger continually aborts due to FullMemory, respond No
to either question 10 or question 11. The default response of No
for serial number checking on machines with 256k bytes of main
memory avoids the FullMemory condition; simply press return to get
the default answer.

5-15

FILE SYSTEM UTILITIES January 15, 1984

12,

13.

Is there enough room to do it in one pass [Yesl

This question asks if there is enough memory to do the
scavenge in one pass. If your partition has 10080 or fewer
blocks in it and if the screen has been shrunk (the Shell
shrinks the screen when it knows you are running the
Scavenger), then respond Yes. If your partition is larger
than 10080 blocks, respond No.

If you respond No, the Scavenger uses three passes, which
correspondingly slows the program.

How many tries for a suspect read? (1]

This question asks for the number of retries for a suspect
read. The default is |.

If you responded Yes to question 9 (whether or not the Scavenger
could change your disk), the Scavenger asks questions 14 through

18.

If you responded No to question 9, the Scavenger asks question 19.

14.

15.

16.

Do you want temporary segments deleted [Yes]?

This question asks whether or not the Scavenger should delete
temporary files. Temporary files exist for swapping; all user
files are permanent.

The recommended response is Yes, which is the default.
Do you want old bad segments deleted [Yes]?

This question asks whether or not the Scavenger should delete
old bad segments. Bad segments contain files with
incorrigible blocks from a previous Scavenger run.

If you respond Yes to this question, then Scavenger adds the
bad file created by the previous Scavenge of this partition to
the free list.

If you respond No to this question, Scavenger retains the old
bad segment.

Can I rewrite bad blocks [Nol?

This question asks whether or not Scavenger can rewrite bad
blocks. If a block cannot be successfully read in the
specified number of retries (see question 13), writing new
data onto the block could fix the problem. However, because
writing new data has only a small likelihood of fixing the
problem, the default response is No.

5-16

FILE SYSTEM UTILITIES 4 January 15, 1984

-

If you respond Yes, the Scavenger writes new data in the bad
blocks. If the write or a subsequent read fails, then the
block is "incorrigible,” otherwise it is "bad.”

If you respond No, the block is marked "incorrigible” as soon
as the read fails. If there are only transient read errors,
the block is left alone.

17. Type pairs to ignore (cyl head cyl head ...): []

This question permits you to enter cylinder/head pairs that
you assume are bad.

If you suspect a bad cylinder or track, enter the cylinder
number followed by a space followed by the head number.
Continue this sequence for the suspect cylinder/head pairs.
Note that a carriage return signifies end of input. Therefore,
if the bad pairs require more than a single line for input,
simply wrap the pairs to the next line; do not press carriage
return until you enter all the bad pairs.

The default ignores no cylinder/head pairs.
18. Type other blocks to ignore: []

This question permits you to enter block numbers that you
assume are bad.

If you suspect a bad block, enter the Lcgical Block Number of
the bad block. You can enter up to 15 bad blocks, separated by
spaces. Again, carriage return signifies end of input. If
you suspect that more than half the logical blocks are bad on
a track, writeoff the entire track. Disks have the following
number of blocks per track: Shugart (either a 12M or 24M), 30;
Micropolis, 24; 6§.25" disk, 16; and floppy, 6.

The default ignores no logical blocks.

Scavghger then asks whether or not you want complete error
listing; see question 19.

19. Do you want complete error listing [Yes]?

This question permits you to specify whether or not you want
notification of individual errors.

Respond Yes for complete error listing or No for a summary of
errors. Yes is the default.

After you answer the above questions, the Scavenger begins fixing
the partition.

5-17

FILE SYSTEM UTILITIES January 15, 1984

The Scavenger updates the title line of the window to show what it
is working on and uses various cursors to show progress of the
different passes.

First, the Scavenger fixes discrepancies if you allowed changes
(responded Yes to question 9). If the Scavenger finds a problem
with the partition or device information blocks it cannot fix, it
asks for help. The problem could be that you specified the wrong
device type in question | or that the device is not a file system
device (for example, an RT-11 format floppy or a hard disk that has
not been initialized by the Partition program). These are easily
remedied. However, the problem could be that the device
discrepancies are beyond repair. Unfortunately, the only fix in
this case is to re-partition the device from scratch.

After the device and partition information checks out, Scavenger
displays a summary of the Device Information Block (including
partition names) and asks which partition it should work on.

20. Which partition do you want to scavenge?

Enter the name of the partition to scavenge. There is no
default response to this question.

WVhen you enter the partition name, the Scavenger displays a summary
of the specified partition’s Partition Information Block. Note
that the values are those stored in the PIB prior to the scavenge.

The Scavenger now makes a read pass through the partition, building
tables of each block’s next and previous link (this is the data
usually visible in the lower portion of the screen). The pass is
done in eight parts for efficiency; the cursor goes down the screen
eight times before the next step.

The Scavenger then checks the tables built during the read pass for
consistency. The cursor changes to show that consistency checking
is in progress. If any loops are found, the Scavenger breaks the
loops and blinks the screen to show that a loop has been fixed.

Following the consistency check, the Scavenger rebuilds the free
list. Note that the Scavenger rebuilds the free list only if you
responded Yes to 9 (you permitted changes to the disk). Rebuilding
the free list requires a write pass for all blocks on the free
list. The Scavenger displays a write cursor. If any bad blocks
were found, some more reads and writes are necessary to make the
bad blocks into a well-formed chain.

At this point, the Scavenger writes the new Partition Information

Block and then begins the directory building pass. The Scavenger
asks whether it should rebuild the directory.

S-18

FILE SYSTEM UTILITIES January 15, 1984

21. Do you want to rebuild the directories?

This question permits you to rebuild the partition’s directory.
structure.

Sometimes the Scavenger recommends that you do this, in which
case the default is Yes. Otherwise there is no default.

If the Scavenger recommends that you rebuild the directories
or if you suspect there is a problem with the directories and
there are enough free blocks, respond Yes.

If you respond Yes, the Scavenger asks if you want to delete
the old directories (see question 22).

22. Delete old directories [Yes]?

If you responded Yes to question 21, this question permits you
to delete the old directories.

If you respond Yes, the Scavenger deletes the old directories.

If you respond No, the Scavenger saves the old directories for
later inspection; the Scavenger appends a dollar sign (8) to
the end of the old directory names and changes their file type
to ExDirFile (directories all have the type DirFile). The old
directories are just files that you can delete after the
scavenge.

The Scavenger then creates new directories as needed. Note that
empty directories are not recreated.

Since the directory reappears after a scavenge, the directory
rebuilding process makes it easy to recover from overwriting or
deleting a directory.

The Scavenger checks and allows fixing file lengths if desired.
For each file, it checks the stored length with the actual number
of blocks in the file. If they do not match, it allows you to
specify a new stored length. This can be any value, but making it
bigger than the number of blocks inh the file is not recommended.
The default for the stored length is the number of blocks in the
file. The Scaverger does not check the lengths for directory files
or files with their type field set to "SWAPFILE."

Each file’s random index allows the file system to find a random
logical block without searching down the chain from the file start.
The Scavenger, as part of the directory building phase, can rebuild
the random indices for all files. There is a separate question for
this with a default answer of No. There is usually no reason to
rebuild the indices unless Scavenger asks you to. Building the
random indices for large files takes a long time.

5§-19

FILE SYSTEM UTILITIES January 15, 1984

If a bad file was created, the Scavenger asks for a name for the
file at the end of the directory building phase. If you allow
Scavenger to enter and fix the indices for the bad file, you can
then type and edit it as a normal file. In this way, you can
reclaim some useful information.

5.3 MAKEBOOT

The MakeBoot program creates new systems. Any program can be made
to work "stand-alone" (so it can be booted) by initializing various
modules as the System program does. It is generallg not necessary
or desirable to have programs other than the System be stand-alone.

If you follow the instructions of this section and barring errors
and bugs in your modifications, you should be successful in making
a new system.

To help you avoid errors that will make your system non-bootable,
observe the following precautions:

Back up important files on floppy disks before you begin
changing the PERQ Operating System.

Maintain at least one partition on the disk that runs the old
system. This enables you to boot the PERQ in the event that
your new system contains bugs. When you receive your PERQ, the
hard disk is divided into several partitions. At least one
partition contains a pair of boot files: System,<n>.<x>.Boot
and System.<n>.<x>.MBoot. The <n> in the file name is the
current system version number, and the <x> in the file name
represents the character that you hold down to use the
corresponding boot files and partitions. The .Boot file
contains the Operating System, and the .MBoot file contains
the QCode interpreter microcode.

Do not change the default boot files System.<n>.a.Boot and
System.<n>.a.MBoot until your new system is completely
debugged.

Create a new directory or select an unused partition for your
new experimental files when you begin making your changes to
the system. Copy the sources of the files you want to change
into this area before you begin editing. Compile all new .Seg
files into this area. Do not use the root directory in the
default partition--the one that is entered by the default boot
letter ("a" is default--the same as not holding down a key).
The default boot files are System.<n>.a.Boot and
System.<n>.a.MBoot.

FILE SYSTEM UTILITIES January 15, 1984

If you do not change the default boot files or the files in the
root directory of the default partition, you will still have source
and binary files that you can fall back on.

Creating a new system usually consists of the following steps:

Evaluate the change you intend to make;
Create a directory to work in;

Edit and compile system modules;

Edit and compile system programs;

Link the system and system programs;
Prepare the system configuration file;
Write a boot file;

Test the new system;

Iterate at step 3.

Before you begin, determine how extensive the changes are. If you
are changing the definition of data structures known by the
microcode (for example, memory manager tables) or data structures
that live across boots (for example, structures on disk), changing
the existing exports of modules that the compiler knows about
(Code, Dynamic, and Stream), or changing the format of .Seg files,
ou need to do a complicated bootstrapping operation which is
eyond the scope of this manual. The following criteria tell you
how much you need to change.

Are you changing the existing exports of any system modules?
If not, you need only re-compile those modules that you
change. If so, you may need to re-compile those modules and
programs that import the ones you are changing.

Are you adding exports but not changing any that already
exist? If you don’t change existing exports, you need
re-compile only those modules that you change. However, you
must add your new exports at the end of the export list. By
adding at the end of the export list, you do not change the
storage allocation of existing variables or the routine
numbers of existing procedures and functions. If you change
either of these, you must re-compile all modules and programs
that import the ones you are changing.

Use the MakeDir utility to create a new directory for your
experimental files. This new directory should be in the partition
which contains the old system (usually, the Boot partition). Copy
sources of the system modules and programs into this directory. You
may choose instead to work in a partition which, up until now, has
not been used. Using a new partition is somewhat safer than merely
creating a new directory in some old partition.

Edit the modules and programs that you need to change. Re-compile

those modules and programs that you have changed and any others
indicated by your evaluation of the changes.

5-21

FILE SYSTEM UTILITIES January 15, 1984

Once all necessary changes and compilations have been done, link
the new system and system programs. Choose a new system version
number. PERQ Systems Corporation intends to use the version
numbers between 1 and for releases of the official PERQ
Operating System. Avoid these numbers to prevent conflicts with
future PERQ System’s releases. For example, choose version number
100 for your new system.

The new run files for System, Login, Shell, and Link should be in

the root directory of the partition which contains your new system.

You should use the following link commands to link your new system

}afsu?ing that the path is set to the partition that contains your
iles):

Link System™System.100/System
Link Login™Login. 100

Link Shell™Shell. 100

Link Link“Link.100

After creating the new system, MakeBoot checks the partition’s root
directory for Login.Run, Shell.Run, and Link.Run and prints a
warning message if one or more of these files is not found.

Before you write the boot file, create a system configuration file
which describes the swappability of modules in the system. You can
probably copy the configuration file for the current version of the
operating system. The default configuration file is named
System.<n>.Config. If you must chan%e the swappability of modules
in the system, you can copy the old file and edit it.

You are now ready to write a boot file. Before you run MakeBoot,
choose a boot-letter that is not already in use for this new
system. You can use Details/Boots to find out which letters are in
use. After choosing a boot letter, run MakeBoot. The MakeBoot
program asks a series of questions. Following are the questions
MakeBoot will ask, with an explanation for each.

Root file name:

The run file name given to MakeBoot determines on which device
and partition the boot will be. MakeBoot takes the directory
part of the file name and uses that to determine on which
device and partition to put the boot. Therefore, to make a
boot somewhere, first copy the run file to that partition.
After specifying the run file, Makeboot asks for the
configuration file.

Configuration file name [System.<n>.Configl:

The default configuration file is named System.<n>.Config.

S -2

FILE SYSTEM UTILITIES January 15, 1984

The configuration file tells MakeBoot which System modules are
swappable. Each line in the file describes the swappability
of a single module in the form:

<module name> <swappability>
The <swappability> is chosen from the following:

SW - module is swappable :
US - module is not swappable, but may be moved in memory
UM - segment is neither swappable nor movable

The default for code segments (modules) is US. Thus, you only
need list the modules in your system that you want swappable
or unmovable.

Names with asterisks are recognized as special module names.
They are chosen from the following list:

XSAT¥ - Segment address table (default UM)
¥SIT®¥ - Segment information table (default US)
xCursor¥ - Display cursor (default UM)

¥Screen¥ - Display screen (default UM)

xFont¥ - Character set (default US)

%¥Stack¥ - Run-time stack (default US)

¥Names¥ - System segment names (default SW)
%10% - Input/output tables (default UM)

Do not change the swappability of the special segments and,
unless you are sure you know what you are doing, do not change
the swappability of existing system modules.

System data segments that the hardware or microcode uses
cannot be moved, most data used by the operating system (XSITx
and XFONT%) cannot be swapped, and the code that makes up the
swapping system itself cannot be swapped. Since the default
for code segments is US, you should add entries to the
configuration file if you add modules to the system.

The next question asks for the boot character.
Which character to boot from?

MakeBoot creates a boot file by associating a stand-alone run
file (such as a system) with a letter. The lower case letters
are assigned to the hard disk and the upper case letters are
assigned to the floppy disk. The default when no keys are
held down is lower case "a". You can free boot letters of the
asiociated boot by deleting the system and/or interpreter boot
files.

The next question asks whether or not to write the boot area.

5§-23

FILE SYSTEM UTILITIES January {5, 1984

Do you want to write the boot area [Nol:

The boot area of the disk contains a microprogram which runs
diagnostics and reads the .Boot and .MBoot files. Regardless
of how many boot letters are defined for a device, there is
only one set of boot microcode (Vfy.Micro and SysB.Micro).
Therefore, unless you are putting the first boot on the device
or you are modifying Vfy.Micro or SysB.Micro, you need not
write the boot area.

There are two files associated with each boot letter. The
system boot file is Pascal and the interpreter boot file is
microcode. The next questions ask if you want to write a
system boot file and an interpreter boot file.

MakeBoot puts the output boot files wherever you specify, but
it is important that the interpreter and system boot files be
in the same partition. The device and partition in which the
boot file is created will be the default path after the boot.
This means that there must be at least a "Login.nn.run” and a
"Shell.nn.run” (where "nn" is the version number of the system
run file), in the root directory of the partition. It doesn’t
matter if the boot files are in a subdirectory in the
partition; the run files mentioned above must be in the Root
directory.

Write a system boot file [Yes):

MakeBoot creates the system boot file by reading the supplied
run file.

If you respond Yes, MakeBoot asks for the name of the system
boot file.

If you respond No, MakeBoot asks for the boot file to copy.

The system code includes the default character set font,
Fix13.Kst. MakeBoot looks for the default font in all the
search paths. If not found, MakeBoot asks for the name of the
character set.

Enter name of character set [Fix13.Kst]:

You can specify a character set which is different than the
standard (Fix13.Kst). If you use a non-standard character
set, some programs (like the Editor) may not work properly.
For the Editor and certain other programs to work, the default
fggt must be fixed width and thirteen bits high and nine bits
vide.

Make the screen be (screentype) [Yes]:

§-24

FILE SYSTEM UTILITIES January 15, 1984

The landscape screen uses a larger screen segment than the
rtrait screen. This question specifies the type of screen to
used with the new system and thus the size of the new
system’s screen se%ment. In the actual question, Portrait or
Landscage replaces (screentype), depending on the screen of
the machine.

The default is Yes (to make the screen segment the size
required for the machine you are running on).

Write an interpreter boot file (Yes]:

Usually, all boot files use the standard microcode. MakeBoot
uses the standard microcode to create the interpreter boot
file if you so specify.

If you respond Yes, MakeBoot writes the boot file containing
the microcode which is the Q-machine interpreter. Unless you
are changing the interpreter microcode, you need only write
this part once for a given boot letter. Note that you may add
other microcode files to the boot file (as long as they do not
overlap the standard microcode). '

If you have already created a boot for the current letter and

you have not changed microcode, it is not necessary to make a

new interpreter boot file, but it never hurts to do so. If

you want to load the standard microcode and it is found by

¥§¥eBoot. type CR when it asks for an interpreter microcode
ile.

Write a Z80 load boot file [Yes/Nol:

On a PERQ2 machine, a special file (.ZBoot) provides GPIB,
pointing device, RS232, and clock support. This question asks
whether or not you wish to write this file.

The default is Yes if MakeBoot fails to find an existing
.ZBoot file and No if MakeBoot finds an existing .ZBoot file.

If you respond Yes, MakeBoot asks for the name of the new Z80
boot file and the file name from which the .ZBoot file is to
be created.

Note that MakeBoot never writes a .ZBoot file on a floppy.

You are now ready to boot the new system and test it. Hold down
the boot key you selected and press the Boot button. If all goes
well, your new system will announce itself.

§-2

FILE SYSTEM UTILITIES January 15, 1984

Note that when you try to run most programs, the loader informs you
that they were linked under the old system. This means you must
re-link them for the new system. It is a good idea to create
another new directory to hold these run files. This avoids
conflicts when you run the old system. You can make a Login
profile to add this directory to your search list when you log in
under the new system.

Once the new system is running, link the system utility programs.
Set your path to the new directory that you created to contain the
run files. Push the directory containing the old .Seg files onto
your search list, and then push the directory containing the new
.Seg files. Now, type:

Link ProgramName
for each utility program you wish to link.

Re-compile any programs that import modules whose exports have
changed.

If the system doesn’t come up, you can look at the diagnostic
display to determine where in system initialization the new system
hangs.

Once the new system is debugged and working, you can use MakeBoot
to rewrite the boot files associated with other boot letters.
Before you rewrite the old boot files, be sure that some partition
contains all files that make up the new system. This includes
files that you have not changed. If you fail to make a partition
containing all source, binary, and run files, you run the risk of
deleting portions of your new system when you delete the old
system.

The MakeBoot program accepts a switch, /BUILD, on the command line.
If it is invoked with the /BUILD switch, you must specify all
arguments on the command line. MakeBoot does not ask questions
when you specify /BUILD. The format for this switch is:

MakeBoot [<dir>]System.<nn>/Build <bootKey>[/<disktype>]

where «<dir> is an optional directory, <nn> is the system version
number and <bootKey> is the character to boot from. The optional
switch allows you to specify which SysB file to write: /CIO writes
CIOSysB, /EIO writes EIOSysB, and /EIOS writes EIOSysB for any kind
of a 6.25" disk. The switch selects the correct 10 microcode,
allowing you to write the SysB file for a different type of
machine. For example, if you are running on a PERQ but creating a
system to run on a PERQ2, you would specify the /EIO switch.
Makeboot then uses the default answers for all questions.

The following is an example that creates a new system. In the

S-26

FILE SYSTEM UTILITIES January 15, 1984

example:

Underlined text is MakeBoot output

Commentary is given inside { }

The symbol <CR> indicates the RETURN key with no text
Assume you have chosen the boot letter 2"

>MakeBoot
Root file name: System.100

Configuration file name [System.100.Configl: <CR>

Which character to boot from? z

Do you want to write the boot area [Nol: <CR>

{ The boot area of the disk contains a microprogram which runs

diagnostics and reads the .Boot and .MBoot files. You need to
rewrite this only if you are making modifications to Vfy.Micro
or SysB.Micro. }

Write a system boot file [Yes]: <CR>

Ent
Ex

ter_name of new system boot file [System.100.z.Bootl: <CR>
sting boot file to copy (returg builds a new one): <CR>

Enter name of character set [FixI3
Make the screen be portrait [Yesl: <CR>

.Kstl: <CR>

{ This writes the boot file containing the Pascal part of the

system and special system segments such as the segment tables,
the cursor, and the character set. Note that you may specify
a character set which is different than the standard
(Fix13.Kst). If you use a non-standard character set, some
programs (like the Editor) may not work well. }

Write an_interpreter boot file [Yes]l: <CR>

Ent
Ex

ter name of new micro boot file [Sy
sting boot file to copy (return builds a new one): <CR>

7]

tem.100.z.MBootl: <CR>

Use standard _interpreter microcode files? [Yes]: <CR>

Interpreter microcode file: <CR>

{ This writes the boot file containing the microcode which is

the Q-machine interpreter. Unless you are changing the
interpreter microcode, you need only write this part once for
a given hoct letter. Note that you may add other microcode
files to the wuot file (as long as they do not overlap the
standard microcode). }

Write a Z80 Load Boot file [Yes/Nol: <CR>

{ On a PERQ2 machine, a special file (.ZBoot) provides GPIB,

5§ - 27

FILE SYSTEM UTILITIES January 1S, 1984

pointing device, RS232, and clock support. This question asks
whether or not you wish to write this file.

The default is Yes if MakeBoot fails to find an existing
.ZBoot file and No if MakeBoot finds an existing .ZBoot file.

If you respond Yes, MakeBoot asks for the name of the new Z80
boot féle and the filename from which the .ZBoot file is to be
created.

Note that MakeBoot never writes a .ZBoot file on a floppy. }

Enter name of new Z80 boot file
Sys:Server>system.22.x.ZBootl: <CR>
Enter file from which ZBoot file is to be created

[System.ZBoot]l: <CR>

5.4 FIXPART

FixPart is an experimental program for fixing the Device and
Partition information blocks.

It is NOT recommended that you try to use FixPart without
assistance.

Unlike the other file system utilities described in this chapter,
FixPart is only partially automatic and can cause extensive damage
to your system.

FixPart is currently the only way to fix bad partition and device
information blocks. Fortunately, it is very rare that the device
and partition information blocks require repairs that necessitate
use of FixPart.

Always run the Scavenger (see Section 5.2) before you run FixPart;
an apparent DIB or PIB problem may in fact be elsewhere and can be
fixed by other means.

Once you are certain that you must run FixPart and you have
qualified assistance, type

FixPart

The program first asks if you are sure you want to run FixPart.
FixPart then asks for the device type. If you are using a
5.25-inch disk, the program will ask a series of questions about
the disk. It then goes through and checks each partition for
consistency with the other partitions and with the Device
Information Block. If a name is dubious, FixPart asks if the name
is valid. After all partitions are checked, FixPart displays a

5$-28

FILE SYSTEN UTILITIES January 1§, 1984

summary of the errors.
If no errors were found, FixPart exits.

If errors were found, FixPart allows you to specify new start and
end addresses for the partition and fix the names.

If the Device Information Block is not writeable, you must reformat
the entire device and, unfortunately, lose all the data on the
device.

If one of the Partition Information Blocks is not writeable, you
may be able to save some information. First, run the Partition
program and merge the partition with the bad information block to
the partition before (see Section S5.1). You can then run the
Scavenger to salvage the data (see Section 5.2). Note that if the
first Partition Information Block is not writeable, this process
does not work; you must reformat the device.

5-29

FILE SYSTEM UTILITIES January 15, 1984

	0001
	0002
	0003
	0004
	0005
	0006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30

