[ARBEEEr
EERE

PERQ
Systems
Corporation

PERQ. oPERATING sYSTEM

March 1984

This manual is for use with POS Release G.5 and subsegquent
releases until further notice.

Copyright(C) 1983, 1984
PERQ Systems Corporation
2600 Liberty Avenue

P. 0. Box 2600
Pittsburgh, PA 15230
(412) 355-0500

This document is not to be reproduced in any form or transmitted in
whole or in part without the prior written authorization of PERQ
Systems Corporation.

The information in this document is subject to change without
notice and should not be construed as a commitment by PERQ Systems
Corporation. The company assumes no responsibility for any errors
that may appear in this document.

PERQ Systems Corporation will make every effort to keep customers
apprised of all documentation changes as quickly as possible. The
Reader’s Comments card is distributed with this document to request
users’ critical evaluation to assist us in preparing future
documentation.

PERQ and PERQ2 are trademarks of PERQ Systems Corporation.

- ii -

TABLE OF CONIENTS

Module AlignMemory
Module AllocDisk
Module Arith

Module BigArea
Module Clock

Module CmdParse
Module Code

Module ComplexFunctions
Module Configuration
Module ControlStore
Module Convert
Module DiskDef
Module DiskIO
Module DiskParams
Module DiskUtility
Module DoSwap
Module Dynamic
Module Ether10I0
Module EtherInterrupt
Module EtherTime
Module Except
Module FileAccess
Module FileDefs
Module FileDir
Module FileSystem
Module FileTypes
Module FileUtils
Module GPIB

Module FTPUtils
Module GetTimeStamp
Module Helper
Module IOClock
Module IODisk
Module IOErrMessages
Module IOErrors
Module IOFloppy
Module IOGPIB
Module IOKeyboard
Module I0PointDev
Module IORS

Module I0Video
Module 10Z80

Module I0_Init
Module I0_Others
Module I0_Private
Module I0_Unit
Module Lights
Module Loader
Module LoadZ80
Module Memory
Module MultiRead
Module Paslong

- il -

January 15, 1984

Module PasReal
Module PERQ_String
Module PMatch
Module PopCmdParse
Module PopUp

Module PopUpCurs
Module Profile
Module QuickSort
Module RandomNumbers
Module Raster
Module ReadDisk
Module Reader
Module RealFunctions
Module RS232Baud
Module RunRead
Module RunWrite
Module Screen
Module Scrounge
Module Sid

Module Stream
Program System
Module SystemDefs
Module UserPass
Module UtilProgress
Module Virtual
Module VolumeSystem
Module Writer

- jV -

January 15, 1984

POS Operating System - Module AlignMemory January 5,
module AlignMemory;

AlignMemory - Allocated aligned buffers.

J. P. Strait 29 Sep 8I.

Copyright (C) PERQ Systems Corporation.
Abstract:

This module allocates buffers which need to be aligned on
boundaries that are multiples of 256 words.

Version Number V1.2

exports

type AlignedBuffer = arrayl0..0] of arrayl0..255] of Integer;
AlignedPointer = “AlignedBuffer;

procedure NewBuffer(var P: AlignedPointer; S, A: Integer);

exception BadAlignment(A: Integer);

procedure NewBuffer(var P: AlignedPointer; S, A: Integer
Abstract:

This procedure allocates buffers which must be aligned on
boundaries that are multiples of 256 words. A new segment is

1984

allocated which is somewhat larger than the desired buffer size.
The segment is set to be unmovable so that the alignment can be

guaranteed.
Parameters:

P - Set to point to a new buffer which is aligned as de51red
S - Desired size of the buffer in 256 word blocks.

A - Alignment in 256 word blocks. That is, | means aligned on a
256 word boundary, 2 means a 5§12 word boundary, and so on.

Errors:

BadAlignment if A is less than one or greater than 256. BadSize
(memory manager) if S is less than one or S+A-l is greater than

256. Other memory manager exceptions raised by CreateSegment.

POS Operating System - Module AllocDisk January 15, 1984

module AllocDisk;

Written by CMU-people
Copyright (C) 1980 PERQ Systems Corporation

Abstract:

Allocdisk allocates and deallocates disk pages. The partition has
some number of contiguous pages on it. The number of pages in a
partition is specified when the partition is created (using the
Partition program). Segments can be created within a partition,
e.g. segments may not span partitions. The entire disk can be
thought of as a partition (the Root Partition)

A DiskInformationBlock (DiskInfoBlock or DIB) contains all the
fixed information about a disk, including its partition names,
locations and sizes. It also contains a table used to locate boot
segments A disk can be ‘mounted’ which means that its root
partition is known to the system as an entry in the DiskTable.

A Partition Information Block (PartInfoBlock or PIB) contains all
of the fixed information about a partition, A partition can also
be ‘mounted’, and this is usually done as part of mountin the
disk itself. Partitions mounted are entries in the PartTable.
W}thin a partition, segments are allocated as doubly linked lists
of pages

The Free List of a segment is a doubly linked list of free pages.
This module maintains this list, as well as the DeviceTable and
PartTable It contains procedures for mounting and dismounting
disks and partitions, as well as allocating and deallocating space
within a partition.

When allocating pages, the module updates the PartInfoBlock every
MaxAllocs calls on AllocDisk. Since the system may crash some time
between updates, the pointers and free list size may not be
accurate.

When a partition is mounted, the pointers are checked to see if
they point to free pages. If not, the head of the pointer is
found by looking at the "filler” word of the block the free head
does point to (which presumably was allocated after the last
update of PartInfoBlock). The filler word has a short pointer to
the next "free" page, and forms a linked list to the real free
list header. Likewise, if the Free tail does not have a next
pointer of 0, a deallocate is presumed to have been done since a
PartInfoBlock update, and NextAdr pointers are chased to find the
real end of the Free List.

Version Number V2.9
{ RN SRR RNHRNAAAN } exports { IENRENR KRR RK R RRNRRRRAAAR }

imports Arith from Arith;
imports ReadDisk from ReadDisk;

const

POS Operating System - Module AllocDisk January 15, 1984

2; ({Floppy and HardDisk}

MAXDISKS =
MAXPARTITIONS = 10; {Maximum number of mounted partitions}
MAXPARTCHARS = 8; {how many characters in a partition name)
type
PartString = string[MAXPARTCHARS];
DeviceRecord = record {entry in the DeviceTable}
InfoBlk: DiskAddr; {where the DiskInfoBlock is}
InUse : boolean; {this DeviceTable entry is valid)}
dRootPartition: PartString {name of this disk}
end;
PartRecord = record {entry in the PartTable}
PartHeadFree : DiskAddr; {pointer to Head of Free List}
PartTailFree : DiskAddr; {pointer to tail of Free List}
PartInfoBlk : DiskAddr; {pointer to PartInfoBlock}
PartRootDir : DiskAddr; {pointer to Root Directory)
PartNumOps : integer; {how many operations done since
last update of PartInfoBlock}
PartNumFree : FSBit32; ({HINT of how many free pages}
PartInUse : boolean; (this ?ntry in PartTable is
valid o
PartMounted : boolean; {this partition is mounted}
PartDevice : integer; {yh%ch disk this partition is
. in
PartStart : DiskAddr; {Disk Address of Ist page}
PartEnd : DiskAddr; {Disk Address of last page}
PartKind : PartitionType; {Root or Leaf}
gartName : PartString {name of this partition}
end;
var

DiskTable : array [0..MAXDISKS-1] of DeviceRecord;
PartTable : array [1..MAXPARTITIONS] of PartRecord;

procedure InitAlloc; {initialize the AllocDisk module, called during boot}
procedure DeviceMount(disk: integer); {mount a disk)
procedure DeviceDismount(disk : integer); {dismount a disk}
function MountPartition(name : string) : integer; {mount a partion,
return PartTable index)
procedure DismountPartitjon(name : string); {dismount a partition}
function FindPartition(name : string) : integer; {given a partion name,
look for it in PartTable, return
index)
function AllocDisk(partition : integer) : DiskAddr; ({allocate a free page
from a partition}
procedure DeallocDisk(addr : DiskAddr); {return a page to the free list}
procedure DeallocChain(firstaddr,lastaddr : DiskAddr; numblks : integer);
{return a bunch of pages to free list}
function WhichPartition(addr : DiskAddr) : integer; {given a Disk Address,
figure out which partition it is in}
procedure DisplayPartitions; {print the PartTable}

Exception NoFreePartitions;

POS Operating System - Module AllocDisk January {5, 1984

Abstract:

Raised when too many partitions are accessed at one time. The
limit is MAXPARTITIONS.

POS Operating System - Module AllocDisk January 15, 1984

Exception BadPart(msg, partName: String);

Abstract:

Raised when there is something wrong with a partition. This means
that the Scavenger should be run.

Parameters:

msg is the problem and partName is the partition name. Print
error message as: WriteLn(%% °,msg,’ for °,partName);

Exception PartFull(partName: String);
Abstract:
Raised when there are no free blocks in a partition to be
allocated. This means that some files should be deleted and then
the Scavenger should be run.
Parameters:
partName is the full partition
Procedure InitAlloc; Abstract Initialize the AllocDisk module

Side Effects: Sets Initialized to a magic number; sets all InUse and
PartInUse to false

Procedure DeviceMount(disk : integer);
Abstract:
Mount the device specified by disk if not already mounted
Parameters:
Disk is a device; it should be zero for HardDisk and 1 for Floppy
Environment: Expects DiskTable to be initialized
Side Effects: Sets the DiskTable for device; loads PartTable with Part
names on dev
Errors: Error if no free partition slots in PartTable;

NOTE: No mention is made if device has partitions with names same
as those already loaded

POS Operating System - Module AllocDisk January i5, 1984

Procedure DisplayPartitions;
Abstract:

Displays information about the current partitions
Environment: Assumes PartTable and DiskTable set up;
Calls: AddrToField; IntDouble, Writeln;

Procedure DeviceDismount(disk : integer);
Abstract:

Removes device disk (0 or 1) from DiskTable and removes all its
partitions

Parameters:
Disk is a device (0= HardDisk; 1=Floppy)

Side Effects: Sets DiskTableldisk]l.InUse to false and removes all of
disk’s partitions

Calls: DismountPartition
Function FindPartition(name : string) : integer;
Abstract:

Searches through partition table looking for a partition named
name; if found; returns its index in the table;

Parameters:

L

name is partition name of form "dev:part>" or ":part>" or "part>"
where the final ">" is optional in all forms. If dev isn’t
specified then searches through all partition names. If dev is
specified; then only checks those partitions on that device; name
may be in any case

Returns: index in PartTable of FIRST partition with name name (there
may be more than one partition with the same name in which case it
uses the oldest one) or zero if not found or name malformed;

Calls: UpperEqual

Design: No device name specified is signaled by disk=MAXDISKS;
otherwise disk is set to be the device which the device part of
name specifies

Function MountPartition(name : string) : integer;

POS Operating System - Module AllocDisk ' January 15, 1984

Abstract:

Searches for partition name in part table and mounts it if not
mounted already; tries to read the head and tail of free list to

see if valid
Parameters:

name is partition name of form "dev:part>" where "dev” and ">" are
optional

Returns: index in part Table of partition for name or zero if not found

Side Effects: if not mounted already, then reads in PartInfoBlk and
sets partTable fields; tries to read the head and tail of free
list to see if valid

Errors: if no free slots for partition then Raises NoFreePartitions if
can’t find free list head or tail then Raises BadPart

Calls: FindPartition
Procedure DismountPartition(name : string);
Abstract:
Removes partition name from PartTable
Parameters:

name is partition name of form "dev:part>" where “"dev" and ">" are
optional

Side Effects: Writes out part information in table if partition InUse
and mounted

Calls: UpdatePartInfo, ForgetAll
Function AllocDisk(partition: integer) : DiskAddr;

Abstract:
Allocate a free block from partition

Parameters:
Partition is the partition index to allocate the block from

Returns: Disk Address of newly freed block;

Side Effects: Updates the partition info to note block freed; changes
header.in buffer of block; writes new head of free list with its

next and prev fields set to zero and its filler set to next free
block; decrements PartNumFree

POS Operating System - Module AllocDisk January 15, 1984
Errors: Raises PartFull if no free blocks in partition Raises BadPart
if free list inconsistent
Calls: ReadHeader, ChangeHeader, FlushDisk, UpdatePartInfo
Function WhichPartition(addr : DiskAddr) : integer;
Abstract:
Given a disk address; find the partition it is in
Parameters:
addr is a disk address
Returns: index of partition addr falls inside of or zero if none
Calls: DoubleBetween |
NOTE: DOESN‘T CHECK IF ENTRY IN TABLE IS MOUNTED OR INUSE (x%Bugx?)
Procedure DeallocDisk(addr : DiskAddr);
Abstract:
Returns block addr to whatever partition it belongs to
Parameters:
addr is block to deallocate
Side Effects: adds addr to free list; increments PartNumFree

Calls: AddToTail, WhichPartition, UpdatePartInfo

POS Operating System - Module AllocDisk January 15, 1984

Procedure DeallocChain(firstaddr,lastaddr : DiskAddr; numblks : integer);
Abstract:
Deallocates a chain of blocks
Parameters: |

firstAddr and lastAddr are addresses of blocks to deallocate
(inclusive) and numBlks is number of blocks to free

Side Effects: Frees first and last addr using AddToTail; middle blocks
not changed

Calls: AddToTail, ChangeHeader, WhichPartition, DoubleAdd, FlushDisk,
UpdatePartInfo, DoubleInt

NOTE: No checking is done to see if numBlks is correct

POS Operating System - Module Arith

module Arith;

Needed until Pascal compiler supports type long.

Copyright (C) 1980 Carnegie-Mellon University

Version Number V2.2

exports

imports FileDefs from FileDefs;

type

MyDouble = packed record
case integer of

l:
(

{ to get FSBitnn }

Lsw : integer;
) Msw : integer
2:(’
) Ptr : FSBit32
3:(’
ByteO : FSBit8;
Bytel : FSBit8;
Byte2 : FSBit8;
) Byte3 : FSBit8
end;
function DoubleAdd(a,b : FSBit32) : FSBit32;
function DoubleSub(a,b : FSBit32) : FSBit32;
function DoubleNeg(a : FSBit32) : FSBit32;
function DoubleMul(a,b : FSBit32) : FSBit32;
function DoubleDiv(a,b : FSBit32) : FSBit32;
function DoubleInt(a : integer) : FSBit32;
function IntDouble(a : FSBit32) : 1nteger.

function DoubleBetween(a,start, stop FSBit32) :
function DoubleMod(a,b :

function DoubleAbs(a

function DblEql(a,b :
function DblNeq(a,b :
function Dblleq(a,b :
function Dblles(a,b :
function DblGeq(a,b :
function DblGtr(a,b :

FSBlt32)

: FSBit32) :
FSBlt32)
FSBit32) :
FSBit32)
FSBit32) :
FSBit32)
FSBit32) :

boolean;
FSBlt32
FSBit32;

boolean;

boolean;

: boolean;

boolean;

: boolean;

boolean;

- 10 -

January i5, 1984

POS Operating System - Module Arith

Function DoubleAdd(a,b : FSBit32) : FSBit32;
Abstract:
Adds two doubles together
Parameters:
a and b are doubles to add
Returns: a+b
Function DoubleSub(a,b : FSBit32) : FSBit32;
Abstract:
Subtracts b from a
Parameters:
a and b are doubles
Returns: a-b
Design: a+(-b)
Function DoubleNeg(a : FSBit32) : FSBit32;
Abstract:
Does a two-s complement negation of argument
Parameters:
a is number to negate
Returns: -a
Function DoubleAbs(a : FSBit32) : FSBit32;
Abstract:
Does an ébsoluie value of argument
Parameters:
a is number to abs

Returns: }a)

- 11 -

January 15,

{984

POS Operating System - Module Arith January i5,

Function DoubleMul(a,b : FSBit32) : FSBit32;
Abstract:
Multiplies a and b
Parameters:
a and b are doubles
Returns: a¥b
Function DoubleDiv(a,b : FSBit32) : FSBit32;
Abstract:
Divides a by b
Parameters:
a and b are doubles
Returns: a/b ‘
Function DoubleMod(a,b : FSBit32) : FSBit32;
Abstract:
Mods a by b
Parameters:
a and b are doubles
Returns: a mod b
Function DoubleInt(a : integer) : FSBit32;
Abstract:
converts a intp a double
Parameters:
a is integer

Returns: double of a; if a is negative then does a sign extend

-12 -

1984

POS Operating System - Module Arith January 15, 1984

Function IntDouble(a : FSBit32) : integer;
Abstract:
returns the low word of a
Parameters:
a is a double
Returns: low word
Errors: Micro-code raises OvflLI (in Except) if a won’t fit in one word
Function DoubleBetween(a,start,stop : FSBit32) : boolean;
Abstract:
determines whether a is between start and stop (inclusive)
Parameters:
a is double to test; start is low double; stop is high
Returns: true if a >= start and a <= stop else false
function DblEql(a,b : FSBit32): boolean;
Abstract:
determines whether a = b
Parameters:
a and b are doubles
Returns: true if a = b; else false
function DblNeq(a,b : FSBit32): boolean;
Abstract:
determines whether a < b
Parameters:
a and b are doubles

Returns: true if a © b; else false

- 13-

POS Operating System - Module Arith January 15, 1984

fgnction DblLeq(a,b : FSBit32) : boolean;
Abstract:
determines whether a < b
Parameters:
a and b are doubles
Returns: true if a < b; else false
function DblLes(a,b : FSBit32) : boolean;
Abstract:
determines whether a < b
Parameters:
a and b are doubles
Returns: true if a < b; else false
function DblGeq(a,b : FSBit32) : boolean;
Abstract:
determines whether a >= b
Parameters:
a and b are doubles
Returns: true if a >= b; else false
function DblGtr(a,b : FSBit32) : boolean;
Abstract:
determines whether a > b
Parameters:
a and b are doubles

Returns: true if a > b; else false

- 14 -

POS Operating System - Module BigArea January 15, 1984

module BigArea;
Copyright C, 1982, 1983 - PERQ Systems Corporation
Abstract:

Provides procedures to allocate and release large segments and
groups of segments. For contiguous areas, the mobility can also
be set.

Version Number V0.5

exports
imports Memory from Memory;

procedure CreateBigArea (var S: ?egmentNumber; TotSize, PieceSize:
integer);
procedure CreateContiguousArea (var S: SegmentNumber;

TotSize: integer; Mob: SegmentMobility);
procedure DecBigAreaRef (S: SegmentNumber; TotSize, PieceSize: integer);
procedure DecContiguousAreaRef (S: SegmentNumber; TotSize: integer);
procedure SortSeglist;
function ConsecutiveSegments(N: integer): SegmentNumber;

exception BadMobility(M: SegmentMobility);
Abstract:
Raised when CreateContiguousArea is given a disallowed Mob value.
function ConsecutiveSegments(N: integer): SegmentNumber;
Abstract:

Finds a block of N consecutive unallocated segment number,
allocates them, and return the segment number of the first.

Parameters:
N - number of segment numbers to allocate.

Returns: The segment number of the first of N previously unallocated
segment numbers.

Exceptxons-
NoFre?Seggents - If no sequence of N free segment numbers can be
oun:
BadSize - If N«l.

Environment: Interrupts are assumed to be ON 1n1t1ally They are
turned off and then back ON.

- 15 -

POS Operating System - Module BigArea January 15, 1984

'Design: First calls SortSeglist and then searches free list of segment
numbers for a long enough group of segment numbers.

procedure CreateBigArea (var S: SegmentNumber; TotSize,
PieceSize: integer);

Abstract:

Creates a big area, possibly composed of multiple segments. It
will be swappable.

Parameters:) .
S - segment number assigned to area. If the area is more than one

piece, consecutive segment numbers are given to the pieces.

TotSize - total number of blocks to allocate to area. (Each block
is 256 words.) The maximum value for TotSize is 32767, which
corresponds to almost 16 megabytes (more than will fit in all
but the largest swapping partition).

PieceSize - Size (in blocks) of each segment to allocate for area.
1 < PieceSize < 256. If PieceSize is less than 256, then
swapping will be better, but addresses will not be
contiguous. Moreover, with a small PieceSize, NoFreeSegments
is more likely (because longer sequences of free segment
numbers are needed).

Recommended PieceSize: 15 blocks.

Exceptions:
FullMemory - There is not enough room in physical memory to
satisfy the request.
NoFreeSegments - Memory manager was unable to find a suitable
sequence of consecutive segment numbers.
BadSize - TotSize is negative or I>PieceSize or 256<PieceSize.

Calls:
ConsecutiveSegments, CreateSegment, MakeEdge, ReleaseSegmentNumber

Environment :

Interrupts are assumed to be ON initially. They are turned off
and then back ON.

Design: First finds consecutive segment numbers for the various pieces.
Then allocates that many segments and uses those segment numbers.
The address of the i°th word is makeptr (S+i div (PieceSize¥%256),
i mod (PieceSize¥256), word), but the multiplies and divides can
be done with shifting if PieceSize is chosen appropriately. With
PieceSize=16 we have the address as makeptr (S+Shift(i,-12),
LAnd(i,#7777), word) If i is long and its pieces are i.hi and i.lo
then we have makeptr (S+Shift(i.lo,-12)+Shift(i.hi,4),
LAnd(i.lo,#7777), word). Note: CreateBigArea should eventually be
revised to create segments in the swapped out state. Physical
core should only be allocated when the segment is referenced.
(Even now, disk space is only assigned when a data segment is to

- 16 -

POS Operating System - Module BigArea January 15, 1984

be swapped out.)

procedure CreateContiguousArea (var S: SegmentNumber;
TotSize: integer; Mob: SegmentMobility);

Abstract:

Creates a contiguous area of physical memory. It is forced to
remain resident because of the mobility. Use of this module

avoids the swap-out-swap-in of using CreateSegment and
SetMobility.

Parameters:

S - segment number assigned to area. If the area is more than one
piece, consecutive segment numbers are given to the pieces.

TotSize - total number of blocks to allocate to area. (Each block
is 256 words.) Max is 8%256, this is one megabyte.

Mob - Mobility for the segment. Must be UnSwappable or UnMovable.

Exceptions:

FullMemory - There is not enough room in physical memory to
satisfy the request.

NoFreeSegments - Memory manager was unable to find a suitable
sequence of consecutive segment numbers.

BadMobility - Mob must be UnSwappable or UnMovable.

Environment: Interrupts are assumed to be ON initially. They are
turned off and then back ON.

Calls: ContiguousSegments, Compact, FindHole, NewSegmentNumber.

procedure DecBigAreaRef (S: SegmentNumber; TotSize, PieceSize: integer);
Abstract:

Releases a big area allocated with CreateBigArea.
Parameters:

S - segment number assigned to area. If the area is more than one
piece, consecutive segment numbers are given to the pieces.

TotSize - total number of blocks to allocate to area. (Each block
is 256 words.)

PieceSize - Size of each segment to allocate for area. If

PieceSize is less than 256, then swapping will be better, but
addresses will not be contiguous.

Exceptions:

BadSize - if the size of a segment in the group specified by the
above parameters is inconsistent with the size that would
have been given by CreateBigArea. others from DecRefCount.

Design: Simply calls DecRefCount for each segment in the group.

-17 -

POS Operating System - Module BigArea January 15, 1984

procedure DecContiguousAreaRef (S: SegmentNumber; TotSize: integer);

Abstract:

Releases contiguous area allocated by CreateContiguousArea.

Parameters:

S - segment number assigned to area. If the area is more than one
piece, consecutive segment numbers are given to the pieces.

TotSize - total number of blocks to allocate to area. (Each block
is 256 words.)

Environment: Interrupts are assumed to be ON initially. They are
turned off and then back ON.

Calls: DecBigRefArea (with PieceSize=256).
Exceptions: see DecBigAreaRef.
procedure SortSegList;

Abstract:

Sorts the list of segment numbers so it is more likely that
consecutive segment numbers can be found.

Design: Sorts the segment number list and reconstructs it, putting
longest consective secuence of numbers at the end. Thus shorter
consecutive sequecenes are used up first and longer sequences are
saved for CreateXxxArea.

Rather than do a sort, the groups of consecutive segment numbers
are added to lists categorized by length. The front and rear of
each list is in array Group Thus, for 1<=i<NumGroups-1 all chains
of length i are put in the list starting at Grouplil.Front and
extending along its NextSeg pointers to Grouplil.rear; All groups
of length >= NumGroups are in the list under Group[NumGroups].

After filing all sequences into Group, a new free list of segment
numbers is built with the longest groups at the end.

Environment: Interrupts are assumed to be ON initially. They are
turned off and then back ON.

- 18 -

POS Operating System - Module Clock January 1§, 1984

module Clock;

Clock - Perq clock routines.

J. P. Strait 1 Feb 81.

Copyright (C) PERQ Systems Corporation, 1981.

Abstract:

Clock implements the Perq human-time clock. Times are represented
internally by a TimeStamp record which has numeric fields for
Year, Month, Day, Hour, Minute, and Second. Times may also be
expressed by a string of the form YY MMM DD HH:MM:SS where MMM is
a three (or more) letter month name and HH:MM:SS is time of day on
a 24 hour clock.
The clock module exports routines for setting and reading the

current time as either a TimeStamp or a character string, and
exports routines for converting between TimeStamps and strings.

Version Number V1.7
exports
imports GetTimeStamp from GetTimeStamp;
const ClockVersion = “1.7°;
type TimeString =vString;
procedure SetTStamp(Stamp: TimeStamp);
procedure SetTString(String: TimeString);
procedure GetTString(var String: TimeString);
procedure StampToString(Stamp: TimeStamp; var String: TimeString);
procedure StringToStamp(String: TimeString; var Stamp: TimeStamp);
Exception BadTime;
Abstract:
Raised when a string passed does not represent a valid time
procedure GetPERQ2GMT(var Stamp: TimeStamp);
procedure GetPERQ2Local(var Stamp: TimeStamp);
procedure PutPERQ20ffset;
exception GTSNotPERQ2;
Abstract:

This exception is raised if any of the ¥PERQ2% procedures are
called and the current machine is not a PERQ-2.

- 19 -

POS Operating System - Module Clock . January iS5, 1984

exception GTSNoZ80;
Abstract:

This exception is raised if GetPERQ2GMT is called and the Z80 does
not respond;

const OffsetFile = ‘>HoldOffset.TimeStamp’;
procedure SetTStamp(Stamp: TimeStamp);
Abstract:
Sets time to be time specified by Stamp
Parameters:
stamp is new time
SideEffects: Changes current time
procedure SetTString(String: TimeString);
" Abstract: |
Sets time to be time specified by String
Parameters:
string is the string of the new time
SideEffects: Changes current time
Errors: Raises BadTime is string is invalid (malformed or illegal time)
procedure GetTString(var String: TimeString);
Abstract:
Returns the current time as a string
Parameters:
string is the string to be set with the current time
procedure StampToString(Stamp: TimeStamp; var String: TimeString);
Abstract:
Returns a string for the time specified by stamp
Parameters:

stamp is time to get string for; string is set with time
represented by stamp

-20 -

POS Operating System - Module Clock January 1§, 1984

procedure StringToStamp(String: TimeString; var Stamp: TimeStamp);
Abstract:
Converts string into a time stamp
Parameters:

string is the string containing time; stamp is stamp set with time
according to string

Errors: Raises BadTime is string is invalid (malformed or illegal time)
procedure GetPERQ2GMT(var Stamp: TimeStamp);
Abstract:

This procedure is used to get the GMT time from the clock chip on
the PERQ-2 1/0 board.

Parameters:

Stémp is a TimeStamp that will be set to contain the current GMT
from the PERQ-2 clock.

Exceptions: if the current 10 board is not an EIO then raise
GTSNot PERQ2.

procedure GetPERQ2Local(var Stamp: TimeStamp);
Abstract:
Obtain the local time from the PERQ-2 clock. The local time is
generated using the GMI provided by the hardware clock and adding
in the time in the offset stored on disk.
Parameters:

Stamp will be set to be the current time stamp. If no local
offset was found on the disk then all fileds of Stamp will be -I.

Exceptions: if the current IO board is not an EIO.then raise
GTSNot PERQ2.

procedure PutPERQ20ffset;
Abstract:
This procedure is used to write an offset from GMI on the disk. It
will read the current System time and create an offset file that

gives the offset of the current system time from the GMT returned
by hardware clock.

-21 -

POS. Operating System - Module Clock January 15, 1984

Exceptions: if the current 10 board is not an EIO then raise
GTSNot PERQ2.

POS Operating System - Module CmdParse January 15, 1984

module CmdParse;

This module provides a number of routines to help with command parsing.
Written by Don Scelza April 30, 1980

Copyright (C) 1980 - PERQ Systems Corporation

Version Number V3.7

{ EXRRRERRERREHRRERNRR) EXPOrts { RRREEREERRXERRXR(RXX }

Const CmdPVersion = ‘3.5°;
MaxCmds = 30;
MaxCString = 255;
CCR = Chr(13); {same as standard CR)
CmdChar = Chr(24);
CmdFileChar = Chr(26);

Type CString = String[MaxCStringl;
CmdArray = Arrayll..MaxCmds] Of String;

Procedure CnvUpper(Var Str:CString); {¥¥% USE ConvUpper IN PERQ_Stringxxx)
Function UniqueCmdIndex(Cmd:CString; Var CmdTable: CmdArray;
NumCmds : Integer): Integer;
Procedure RemDelimiters(Var Src:CString; Delimiters:CString;
Var BrkChar:CString);
procedure GetSymbol(Var Src,Symbol:CString; Delimiters:CString;
Var BrkChar:CString);

Function NextID(var id: CString; var isSwitch: Boolean): Char;
Function NextIDString(var s, id: CString;var isSwitch: Boolean): Char;

Type pArgRec = “ArgRec;
ArgRec = RECORD
name: CString;
next: pArgRec;

pSwitchRec = “SwitchRec;
SwitchRec = RECORD
switch: CString;
arg: CString;
correspondingArg: pArgRec;
ENBext: pSwitchRec;

Function ParseCmdArgs(var inputs, outputs: pArgRec; var switches:
pSwitchRec; var err: String): boolean;
Function ParseStringArgs(s: CString; var inputs, outputs: pArgRec;
var switches: pSwitchRec; var err: String): boolean;
Procedure DstryArgRec(var a: pArgRec);
Procedure DstrySwitchRec(var a: pSwitchRec);

Type pCmdList = “CmdListRec;
CmdListRec = RECORD

POS Operating System - Module CmdParse January i5, 1984

cmdFile: Text;
isCharDevice: Boolean;
.next: pCmdList;
seg: Integer;

Procedure InitCmdFile(var inF: pCmdList; seg: Integer);

Func;ion DoCmdFile(line: CString; var inF: pCmdList; var err: String):
oolean;

Procedure ExitCmdFile(var inF: pCmdList);

Procedure ExitAllCmdFiles(var inF: pCmdList);

Procedure DstryCmdFiles(var inF: pCmdList);

Function RemoveQuotes(var s: CString): boolean;

Type ErrorType=
(ErBadSwitch, ErBadCmd, ErNoSwParam, ErNoCmdParam, ErSwParam,
ErCmdParam, ErSwNotUnique, ErCmdNotUnique, ErNoOutFile,
ErOnelnput, ErOneOutput, ErFileNotFound, ErDirNotFound,
ErlllCharAfter, ErCannotCreate, ErAnyError, ErBadQuote);

Procedure StdError(err: ErrorType; param: CString; leaveProg: Boolean);
Function NextString(var s, id: CString; var isSwitch: Boolean): Char;

Procedure InitCmdFile(var inF: pCmdList; seg: Integer);
Abstract:

Initializes inF to a valid Text File corresponding to the
keyboard. This must be called before any other command file
routines. The application should then read from inF*.cmdFile.
For example:

ReadLn(inFile*.cmdFile, s);
or
while not eof(inFile*.cmdFile) do ...

Use popup only if inF*.next = NIL (means no cmd File). Is a
fileSystem file if not inF*.isCharDevice. InF will never be NIL.
The user should not modify the pCmdList pointers; use the
procedures provided.

Parameters:

InF - is set to the new command list.

seg - the segment number to allocate the command file list out of.
If the application doesn’t care, use 0. This is useful for
programs like the Shell that require the list of command
files to exist even after the program terminates. For other
applications, use 0.

- 24 -

POS Operating System - Module CmdParse January 15, 1984

Function DoCmdFile(line: CString; var inF: pCmdList;
var err: String): boolean;

Abstract:

This procedure handles an input line that specifies that a
command file should be invoked. The application finds a line that
begins with an @ and calls this procedure passing that line. This
procedure maintains a stack of command files so that command files
can contain other command files. Call InitCmdFile before this
procedure.

Parameters:

line - the command line found by the application. It is OK if it
starts with an @ but it is also OK if it doesn’t.

inF - the list of command files. This was originally created by
InitCmdFile and maintained by these procedures. If the name
is a valid file, a new entry is put on the front of inF
describing it. If there is an error, then inF is not
changed. In any case, inF will always be valid.

err - if there is an error, then set to a string describing the
error, complete with preceding ‘%% °. If no error, then set
to “°. The application can simply do: if not DoCmdFile(s,
inF, err) then WriteLn(err);
Returns: True if OK, or false if error.
Procedure ExitCmdFile(var inF: pCmdList);
Abstract:

Remove top command file from list. Call this whenever come to end
of a command file.

Parameters:

InF - the list of command files. It must never be NIL. The top
entry is removed from inF unless attempting to remove last command
file, when it is simply re-initialized to the console. It is
OK to call this routine even when at the last entry of the list.
Suggested use: While EOF(inF*.cmdFile) do ExitCmdFile(inF);

Procedure ExitAllCmdFiles(var inF: pCmdList);

Abstract:

Remove all command file from list. Use when get an error or a
“SHIFT-C to reset all command files.

POS Operating System - Module CmdParse January 15, 1984

Parameters:

InF - the list of command files. It must never be NIL. All
entries but the last are removed.

Procedure DstryCmdFiles(var inF: pCmdList);
Abstract:
Removes all command files from list.
Parameters:

InF - the list of command files. All entries are removed and InF
set to NIL.

Function NextID(var id: CString; var isSwitch: Boolean): Char;

Abstract:

Gets the next word off UsrCmdLine and returns it. It is OK to
call this routine when UsrCmdLine is empty (id will be empty and
return will be CCR) This procedure also removes comments from s
(from to end of line is ignored). This is exactly like
NextIDString except it uses the UsrCmdLine by default.

WARNING: Do not mix calls to NextID and RemDelimiters/GetSymbol
since the latter 2 may change UsrCmdLine in a way that causes
NextID to incorrectly report that an id is not a switch. This
procedure also appends a CCR to the end of UsrCmdLine so it should
not be printed after this procedure is called.

Parameters:
id - set to the next word on UsrCmdLine. If there are none, then
id will be the empty string.

isSwitch - tells whether the word STARTED with a slash "/". The
slash is not returned as part of the name.

Results: The character returned is the next "significant” character
after the id. The possible choices are "=" "," " " "*" CCR. CCR is
used to mean the end of the line was hit before a significant
character. If there are spaces after the id and then one of the
other break characters defined above, then the break character is
returned. If there is a simply another id and no break
characters, then SPACE is returned.

SideEffects: Puts a CCR at the end of UsrCmdLine so it is a bad idea to
print UsrCmdLine after NextID is called the first time. Removes
id and separators from front of UsrCmdene The final character
is also removed.

- 26 -

POS Operating System - Module CmdParse January 15, 1984

Function NextIDString(var s, id: CString; var isSwitch: Boolean): Char;
Abstract:

Gets the next word off s and returns it. It is OK to call this
routine when s is empty (id will be empty and return will be CCR)
This procedure also removes comments from s (from to end of line
is ignored). This is exactly like NextID except it allows the
user to specify the string to parse.

WARNING: It is a bad idea to mix calls to NextIDString and

RemDel imiters/GetSymbol since the latter 2 may change s in a way
that causes NextIDString to incorrectly report that an id is not a
switch.

Parameters:
s - String to parse. Changed to remove id and separators from
front. The final character is also removed.

id - set to the next word in string. If there are none, then id
will be the empty string.

isSwitch - tells whether the word STARTED with a slash "/". The
slash is not returned as part of the name.

Results: The character returned is the next "significant” character
after the id. The possible choices are "=" "," " " "*" CCR. CCR is
used to mean the end of the line was hit before a significant
character. If there are spaces after the id and then one of the
other break characters defined above, then the break character is
returned. If there is a simply another id and no break
characters, then SPACE is returned.

Function NextString(var s, id: CString; var isSwitch: Boolean): char;
Abstract:

Gets the next word off s and returns it. It is OK to call this
routine when s is empty (id will be empty and return will be CCR)
This procedure also removes comments from s (from to end of line
is ignored). The character after id is NOT removed from s. This
is like NextIDString except the character is removed in
NextIDString.

Parameters:
s - String to parse. Changed to remove id and separators from
front. Final character is NOT removed.

id - set to the next word in string. If there are none, then id
will be the empty string.

isSwitch - tells whether the word STARTED with a slash "/". The
slash is not returned as part of the name.

- 927 -

POS Operating System - Module CmdParse January iS5, 1984

Results: The character returned is the next "significant” character
after the id. This character remains at the front of s. The
possible choices are "=" "," " " "™ CCR. CCR is used to mean the
end of the line was hit before a significant character. If there
are spaces after the id and then one of the other break characters
defined above, then the break character is returned. If there is
a simply another id and no break characters, then SPACE is
returned.

Function RemoveQuotes(var s: CString): boolean;
Abstract:
Changes all quoted quotes (°°) into single quotes (°).
Parameters:
s - string to remove quotes from. It is changed.

Returns: true if all ok. False if a single quote ended the string. In
this case s still contains that quote.

Function ParseCmdArgs(var inputs, outputs: pArgRec; var switches:
pSwitchRec; var err: String): boolean;

Abstract:

Parses the command line assuming standard form. The command
should be removed from the front using NextId before ParseCmdArgs
is called.

Parameters:
inputs - set to list describing the inputs. There will always be
at least one input, although the name may be empty.

outputs - set to list describing the outputs. There will always be
at least one output, although the name may be empty.

switches - set to the list of switches, if any. Each switch
points to the input or output it is attached to. This may be
NIL if the switch appears before any inputs. If a global
switch, the application can ignore this pointer. If a switch
is supposed to be local, the application can search for each
input and output through the switches looking for the
switches that correspond to this arg. Switches may be NIL if
there are none.

err - set to a string describing the error if there is one. This
string can simply be printed. If no error, then set to °°

Returns: false if there was a reported error so the cmdLine should be
rejected. In this case, the pArgRecs should be Destroyed anyway.

POS Operating System - Module CmdParse . January 15, 1984
Function ParseStringArgs(s: CString; var inputs, outputs: pArgRec;
var switches: pSwitchRec; var err: String): boolean;
Abstract:

Parses the string assuming standard form. The command should be
removed from the front using NextId before ParseCmdArgs is called.

Parameters:
s - the string to parse.

inputs - set to list describing the inputs. There will always be
at least one input, although the name may be empty.

outputs - set to list describing the outputs. There will always be
at least one output, although the name may be empty.

switches - set to the list of switches, if any. Each switch
points to the input or output it is attached to. This may be
NIL if the switch appears before any inputs. If a global
switch, the application can ignore this pointer. If a switch
is supposed to be local, the application can search for each
input and output through the switches looking for the
switches that correspond to this arg. Switches may be NIL if
there are none.

err - set to a string describing the error if there is one. This
string can simply be printed. If no error, then set to *’

Returns: false if there was a reported error so the string should be
rejected. In this case, the pArgRecs should be Destroyed anyway.

Procedure DstryArgRec(var a: pArgRec);
Abstract:
Deallocates the storage used by a ArgRec list.
Parameters:

a - the head of the list of ArgRecs to deallocate. It is set to
NIL. OK if NIL before call.

Procedure DstrySwitchRec(var a: pSwitchRec);
Abstract:
Deallocates the storage used by a SwitchRec list.

Parameters:

a - the head of a list of pSwitchRecs to deallocate. It is set to
NIL. OK if NIL before call.

- 29 -

POS Operating System - Module CmdParse January 15, 1984

Procedure StdError(err: ErrorType; param: CString; leaveProg: Boolean);

Abstract:

Prints out an error message with a parameter and then optionally
exits the user program.

Parameters:

err - the error type found

leaveProg - if true then after reporting error, raises ExitProg to
return to the shell. If false then simply returns

param - parameter for the error. The message printed is:

ErBadSwitch - "%% <PARAM> is an invalid switch.”

ErBadCmd - "%% <PARAM> is an invalid command.”

ErNoSwParam - "¥% Switch <PARAM> does not take any arguments.”
ErNoCmdParam - "#% Command <PARAM> doesn’t take any arguments.”
ErSwParam - "%% Illegal parameter for switch <PARAM>."
ErCmdParam - "%% Illegal parameter for command <PARAM>."
ErSwNotUnique - "¥% Switch <PARAM> is not unique.”
ErCmdNotUnique - "%% Command <PARAM> is not unique.”

ErNoOutFile - "¥% <PARAM> ‘does not have any outputs.”
ErOnelnput - "%% Only one input allowed for <PARAM>."
ErOneOutput - "¥% Only one output allowed for <PARAM>."
ErFileNotFound - "%% File <PARAM> not found."

ErDirNotFound - "%% Directory <PARAM> does not exist.”
ErlllCharAfter - "%% Illegal character after <PARAM>."
ErCannotCreate - "¥% Cannot create file <PARAM>."

ErBadQuote - "%% Cannot end a line with Quote.”

ErAnyError - "<PARAM>"

Procedure CnvUpper(Var Str:CString);

Abstract:

This procedure is used to convert a string to uppercase.

Parameters:
Str is the string that is to be converted.

Side Effects: This procedure will change Str. ¥¥%¥WARNING%%x% THIS
ggggEggg%NglLL SOON BE REMOVED. USED THE PROCEDURE ConvUpper IN

Function UniqueCmdIndex(Cmd:CString; Var CmdTable: CmdArray;
NumCmds : Integer): Integer;

Abstract:

Does a unique lookup in a command table.

POS Operating System - Module CmdParse January 15, 1984

Parameters:
Cmd - the command that we are looking for.
CmdTable - a table of the valid commands. The first valid command

in this table must start at index 1.
NumCmds - the number of valid command in the table.

Results: This procedure will return the index of Cmd in CmdTable. If
Cmd was not found then return NumCmds + 1. If Cmd was not unique

then return NumCmds+2.

Procedure RemDelimiters(Var Src:CString; Delimiters:CString;
Var BrkChar:CString);

Abstract:

Removes delimiters from the front of a string.

Parameters:
Src - the string from which we are to remove the delimiters.

Delimiters - a string that contains the characters that are to be
considered delimiters.
BrkChar - will hold the character that we broke on.

Side Effects: This procedure will change both Src and BrkChar.

Procedure GetSymbol(Var Src,Symbol:CString; Delimiters:CString;
Var BrkChar:CString);

Abstract:

Removes the first symbol from the beginning of a string.

Parameters:
Src - the string from which we are to remove the symbol.

Symbol - a string that is used to return the next symbol.

Delimiters - a string that defines what characters are to be
considered delimiters. Any character in this string will be
used to terminate the next symbol.

BrkChar - used. to return the character that stopped the scan.

Side Effects: Removes the first symbol from Src and places it into
Symbol. Places the character that terminated the scan into

BrkChar.

- 3] -

POS Operating System - Module Code . ' January 15, 1984

module Code;

Code.Pas - Common definitions for the Linker and Loader.

J. P. Strait 10

Feb 81.

Rewritten as a module.

Copyright (C) PERQ Systems Corporation, 1981, 1983.

Abstract:

Code.Pas defines constants and types shared by the Linker and the
Loader. These include definitions of the run file and of offsets
in the stack segment.

Design:

When the format of run files is changed, the constant RFileFormat
must also be changed.
which read run files from failing.

exports

This is necessary to prevent the procedures

imports GetTimeStamp from GetTimeStamp;

const CodeVersion = °‘1.14°;
RFileFormat = 2;
QCodeVersion = 4;
FileLength = 100;
Seglength = 8;
StackLeader = 2;
DefStackSize = #20;
DefHeapSize = #4;
DefIncStack = #4;
DefIncHeap = #4;
FudgeStack = #2000;

CommentLen = 80;

type

pFNString = “FNString;
FNString = StringlFileLengthl; { file name }
QVerRange = 0..2655; :

Current QCode Version Number }

max chars in a file name }

max chars in a segment name }

number of leader words in stack before }
XSTs (must be even) }
Currently contains initial TP and GP)
default stack segment size (in blocks) }
default heap segment size (in blocks) }
default stack size increment (in blocks) }
default heap size increment (in blocks) }
fudge space between system and user GDB's}
this must hold all loader variables at)}
maximum configuration in LoadStack }
the}length of comment and version str in
seg

SNArray = packed arrayl!..Seglength]l of Char; { segment name }

{ range of QCode version numbers }

Seghint = record case Integer of

1: (Fid : Integer; { file id }
Update: TimeStamp); { update time }
2: (Wordl : Integer;
Vord2 : Integer;
Word3 : Integer)
end;

POS Operating System - Module Code

pSegNode = “SegNode;
plmpNode = “ImpNode;

{ Segment information record:}

SegNode = record

Segld : SNArray;
RootNam : pFNString;
Hint : SegHint;
GDBSize : integer;
XSTSize : integer;
GDBOff : integer;
ISN : integer;
CodeSize : integer;
SSN : integer;
UsageCnt : integer;
ImpList : plmpNode;
Next : pSegNode
end;

{ Import information record }

ImpNode = record
SId : SNArray;

FilN : pFNString;
XGP : integer;
XSN : integer;
Seg ¢ pSegNode;
Next : pImpNode
end;

{ Run>file: }

oy, g, g g

January 15, 1984

segment name)

file name without .Pas or .Seg)
hint to the segment file)

size of this segment’s GDB)
size of this segment’s XST }
StackBase offset to GDB }
segment number inside Linker }
number of blocks in .Seg file }

name of imported segment }

file name of imported segment }
global pointer of import }
internal number of import }

RunElement = (RunHeader,SysSegme?t,UserSegment,Import,SegFi1eNames);

RunInfo = record { run header

RFileFormat:integer;
Version: integer;
System: boolean;
InitialGP: integer;
CurOffset: integer;
StackSize: integer;
StackIncr: integer;
HeapSize: integer;
HeapIncr: integer;
ProgramSN: integer;
SegCount: integer
end;

RunFileType = file of Integer;
{ Segment file: }

Language = (Pascal, Fortran, Imp);

pSegBlock = “SegBlock;

SegBlock = packed record case integer of { .SEG file definition }
{ zeroth (header) block:

-3 -

} .

POS Operating System - Module Code Januvary 15, 1984

0: (ProgramSegment: boolean;
Longlds : boolean;
DbgInfoExists : boolean;
OptimizedCode : boolean;
SegBlkFiller : 0..15;

QVersion : QVerRange;
ModuleName : SNArray;

FileName : FNString;

NumSeg : integer;
ImportBlock : integer;

GDBSize : integer;

Version : StringlCommentLen] ;
Comment : StringlCommentLen] ;
Source : Language;

PrelinkBlock : integer;
RoutDescBlock : integer;
DiagBlock ¢ integer;
QMapFileName : FNString;
SymFileName : FNString;

Compld : TimeStamp);
{ first block: }
I: (OffsetRD : integer;

RoutsThisSeg : integer);
2:d (Block: arrayl0..255]) of integer)
end;

ClmpInfo = record case boolean of { Import List Info - as)
{ generated by the compiler }
true: (ModuleName: SNArray; { module identifier)

) FileName: FNString (file name }

dfalse:(’Ary: array [0..0] of integer)
end;

SegFileType = file of SegBlock;

POS Operating System - Module CompiexFunctions January 5, 1984

module ComplexFunctions;

J. B. Brodie | Mar 82
Copyright (C) PERQ Systems Corporation 1982.

Abstract:

ComplexFunctions implements many of the standard functions whose
domain and/or range is within the Complex number system. The
implementation of these functions utilize mathematical identies
for the relationships between the real number system and the
complex number system.

DISCLAIMER: Since Math identities are utilized to evaluate these
functions, accuracy and execution speed may be very poor. Only
the most cursory testing of these functions has been performed.
No guarantees are made as to the accuracy or correctness of the
functions. Validation of the functions must be done, but at some
later date.

Version Number Vi.1

exports
type

Complex = record

Re

Im :

end;

function CMult (Z

function CExp (Z:

function CCos g % :Complex
(Z:

¢ Real;

Real;

1,22 Complex) ¢ Complex;
Complex) Complex;

) Complex;
function CSin :Complex) : Complex;
function CLn Complex) : Complex;
function CSqrt (Z:Complex) : Complex;
function CPowerC (Z1,Z2: Complex) Complex;

function CPowerR (Z: Complex, X:Real) : Complex;

exception CExpRelLarge (Z:Complex);

Abstract:

CExpRelarge is raised when CExp is called with a complex number
whose real number component (e.g. Z.Re) would cause a result which
is too large to be represented on the Perq.

Pai-ameters:

Z -- Argument of CExp

POS Operating System - Module ComplexFunctions January 15, 1984

exception CExpReSmall (Z:Complex);
Abstract:
CExpReSmall is raised when CExp is called with a complex number
whose real number component (e.g. Z.Re) would cause a result which
is too small to be represented on the Perq.
Parameters:
Z -- Argument of CExp
exception CExplmLarge (Z:Complex);
Abstract:
CExplmLarge is raised when CExp is called with a complex number
whose imaginary number component (e.g. Z.Im) would cause a result
which is too large to be represented on the Perq.
Parameters:
Z -- Argument of CExp
exception CExpImSmall (Z:Complex);
Abstract:
CExpImSmall is raised when CExp is called with a complex number
whose imaginary number component (e.g. Z.Im) would cause a result
which is too small to be represented on the Perg.
Parameters:
Z -- Argument of CExp
exception CCosRelarge (Z:Complex);
Abstract: .
CCosRelLarge is raised when CCos is called with a complex number
whose real number component (e.g. Z.Re) would cause a result which
is too large to be represented on the Perq.

Parameters:

Z —- Argument of CCos

POS Operating System - Module ComplexFunctions January (&, 1984

exception CCosImLarge (Z:Complex);
Abstract:
CCosImLarge is raised when CCos is called with a complex number
whose imaginary number component (e.g. Z.Im) would cause a result
which is too large to be represented on the Perqg.
Parameters:
Z -- Argument of CCos
exception CSinReLarge (Z:Complex);
Abstract:
CSinRelLarge is raised when CSin is called with a complex number
whose real number component (e.g. Z.Re) would cause a result which
is too large to be represented on the Perg.
Parameters:
Z -- Argument of CSin
exception CSinlmLarge (Z:Complex);
Abstract:
CSinlmLarge is raised when CSin is called with a complex number
whose imaginary number component (e.g. Z.Im) would cause a result
which is too large to be represented on the Perq.
Parameters:
Z -- Argument of CSin
exception CLnSmall (Z:Complex);
Abstract: '

CLnSmall is raised when CLn is called with a complex number which
would cause a result which is too small to be represented on the

Perq.
Parameters:

Z -- Argument of CLn

POS Operating System - Module ComplexFunctions January 15, 1984

exception CPowerZero (Z1,Z2:Complex);
Abstract:
CPowerZero is raised when either CPowerC or CPowerR is called with
a zero exponent.
Parameters:
Z1, Z2 -- Arguments to CPowerC or CPowerR
function CMult (Z1,Z2:Complex) : Complex;
Abstract: |
Evaluates the vector cross product of two complex numbers
Parameters:
Z1, Z2 -- Complex numb?rs to be multiplied
Returns: Complex cross prodﬁct
function CExp (Z:Complex) : Complex;
Abstract:
Compute exponential function of a complex number

Note: the use of standard type-real functions in order to evaluate
this function may artificially constrain this functions Domain.

Domain: Real=[-85.0,87.01 Imaginary=[-1ES, lES]
Range: Real=Imaginary=[RealMLargest,RealPLargest]

Parameters:
Z -- Input argument
Returns: Exponential of Z
function CCos (Z:Complex) : Complex;
Abstract:
Compute the complex Cosine function.

Note: the use of standard type-real functions in order to evaluate
this function may artificially constrain this functions Domain.

Domain: Real=[-1ES,1ES] Imaginary=[-85.0,87.0]
Range: Real=Imaginary=[RealMLargest,RealPLargest]

POS Operating System - Module ComplexFunctions January 5, {984

Parameteggz
Z -- Input argument
Returns: Cosine of Z
function CSin (Z:Complex) : Complex;
Abstract:
Compute the complex Sine function.

Note: the use of standard type-real functions in order to evaluate
this function may artificially constrain this functions Domain.

Domain: Real=[-1ES,1ES] Imaginary=[-85.0,87.0] break Range:
Real=Imaginary=[RealMLargest,RealPLargest]

Parameters:
Z -- Input argument
Returns: Sine of Z '
function CLn (Z:Complex) : Complex;
Abstract:
Compute natural logarithm of a complex number

Note: the use of standard type-real functions in order to evaluate
this function may artificially constrain this functions Domain.

Domain: Real=Imaginary=[-1E19,1E19]
Range: Real=[RealMLargest,RealPLargest] Imaginary=[-Pi,Pil

Parameters:
Z -- Input argument
Returns: Natural log of Z
function CSqrt (Z:Complex) : Complex;
Abstract:
Compute square root of a complex number

Note: the use of standard type-real functions in order to evaluate
this function may artificially constrain this functions Domain.

Domain: Real=Imaginary=[-1E19,1E19]
Range: Real=Imaginary=[-1E19,1E19]

POS Operating System - Module ComplexFunctions January 15, 1984

Parameters:
Z —- Input argument
Returns: Square root of Z
function CPowerC (Z1,Z2:Complex) : Complex; -
Abstract:
Raise an arbitrary complex number to an arbitrary complex power.

Note: the use of standard type-real functions in order to evaluate
this function may artificially constrain this functions Domain.

Domain: Real=Imaginary={-1E19,1E19]
Range: Real=IRealMLargest,RealPLargest] Imaginary=[-Pi,Pil

Parameters:
Zl -- Input complex base, Z2 -- Input complex exponent
Returns: Z1 raised to the Z2 power
function CPowerR (Z:Complex; X:Real) : Complex;
Abstract:
Raise an arbitrary complex number to an arbitrary real power.

Note: the use of standard type-real functions in order to evaluate
this function may artificially constrain this functions Domain.

Domain: Real=Imaginary=[-1E19,1E19]
Range: Real=[RealMLargest,RealPLargest] Imaginary=[-Pi,Pi]

Parameters:
Z -- Input complex base, X -- Input real exponent

Returns: Z! raised to the X power

40 -

POS Operating System - Module Configuration January (5, 1984

module Configuration;
Abstract:

Configuration exports a series of functions and variables which
provide configuration information to POS system and application
software.

AUTHOR: C. Beckett
Version Number V0.6

{>5>>>>5>>>>>>5>>>>>5>>>} EXPORTS

Type

Cf_MonitorType = (Cf_Landscape, Cf_Portrait);
Cf_IOBoardType = (Cf_CIO, Cf_EIO);

var

Cf_KeyPad: boolean;
{ If true, the keyboard attached to the Perq has an auxiliary }

{ keypad. }

Cf_KeyboardStyle: integer;
{ A number which indicates the style of keyboard attached to }
{ the Perq.
{ This number is:
{ 0: If the keyboard is the original one manufactured by PERQ.
{ 1: If the keyboard is the VT100-compatable keyboard
{ Sntrodgggd}with the Perq KI ("Kristmas”) model in
an. 1983.

Cf_RS232Ports: integer;
{ Holds the number of usable RS232 ports attached to the Perq. }

Cf_RS232MaxSpeed: integer;
{ Holds an integer which corresponds to the maximum baud rate
{ supported by the the Perq. This number is coded to conform to
{ the format defined in the system module I10_Unit. }

Cf_Monitor: Cf_MonitorType;
{ If Cf_Monitor, the Perq has a landscape monitor with 1024 X 1280
{ resolution. If Cf_Portrait, the Perq has a monitor with
{ 1024 X 768 resolution. }

Cf_WCSSize: integer;
{ Code for the number of K words of the writeable control store.
{ 0 = 4Kwes, | = 16Kwes.)} :

Cf_FloatingHardware: boolean;
{ If true, the Perq has an Intel 8087 floating point chip. }

Cf BootUnit: integer;
{ A number which indicates the logical unit number of the disk }

- 4] -

POS Operating System - Module Configuration January 15, 1984

{ drive attached to the Perq from which the system was booted. }
{ 0 = Harddisk, 1 = floppy. }

Cf_BootChar: char;
{ A letter which indicates the identification of the particular }

{ system (WCS and main memory contents) loaded as part of boot. }

Cf_IOBoard: Cf_IOBoardType;
{ Indicates the type of I0 board attached to the Perg. }

This is:

{

{

{ Cf _CIO: If the IO board is the ‘Current’ board for the original
g Perq.(°CIO board”)
{
{
{

Cf_EIO: If the 10 board is the Ethernet 10 board introduced
with the Perq K! ("Kristmas”) model in Jan. 1983.
(‘EIO board’ }

function Cf_Init: boolean;
{ Called by I0_Init. Performs initialization
logic. }
{ Should not be called by applications. }
{ Returns true unless fatal errors were }
{ detected.)

function Cf_Init: boolean;

Abstract:

Called by system before 10_Init is called. Performs initialization
logic. Should not be called by applications. Returns true unless
fatal errors were detected.

- 42 -

POS Operating System - Module ControlStore January 15, 1984

module ControlStore;

ControlStore - Load and call routines in the PERQ control-store.
J. P. Strait ca. July 80.
Copyright (C) PERQ Systems Corporation, 1981, 1983.

Abstract:

The ControlStore module exports types defining the format of PERQ
micro-instructions and procedures to load and call routines in the

control-store.
Version Number V!.3
exports

type Microlnstruction = { The format of a micro-instruction as produced by
the micro-assembler. }
packed record case integer of
0: (Wordl: integer;
Word2: integer;
Word3: integer);

1: (Jmp: 0..15;
Cnd: 0..15;
Z: 0..285;
SF: 0..15;
F: 0..3;
ALU: 0..15;
H: 0..1;
W:. O0..1;
B: O0..1;
A: 0..7;
Y: 0..255;
X: 0..259);
2: (JmpCnd: 0..255;
Filll: 0..255;
SFF: 0..63;
ALUO: O0..1;
ALULl: O0..1;
ALU23: 0..3)

MicroBinary = { The format of a micro-instruction and its address as
produced by the micro-assembler. }
record
Adrs: integer;
MI: Microlnstruction
end;

TransMicro = { The format of a micro-instruction as needed by the WCS
QCode. }
packed record case integer of
0: (Wordl: integer;
Word2: integer;

-43 -

POS Operating System - Module ControlStore January 15, 1984

Word3: integer);
1: (ALU23: 0..3;
ALUO: O..1;
V: 0
ALUI: O
A: 0
Z: 0.
SFF: O..
0.
0
0..

[] L] L]
L] - L]
) e e
- - -

T BRNEE

H:
B: .
JmpCnd:

e @
o pumn
-
-

end;
MicroFile = file of MicroBinary; { A file of micro-instructions. }
procedure LoadControlStore(var F: MicroFile);
procedure LoadMicrolnstruction(Adrs: integer; MI: Microlnstruction);
procedure JumpControlStore(Adrs: integer);
exception WCSSizeError;
Abstract:
A WCS operation with address greater than 4K was attempted on a
system running with only 4K writable control store.
¥XXXAWARNING :x333%%

This exception is raised by PASCAL so users using InLineByte do
not enjoy this protection.

Resume:
Allowed. The address gets truncated to 12 bits.
procedure LoadControlStore(var F: MicroFile);
Abstract:
Loads the contents of a MicroFile into the PERQ control-store. The
file whould be opened (with Reset) before calling

LoadControlStore. It is read to EOF but not closed; thus it should
be closed after calling LoadControlStore.

Parameters:
F - The MicroFile that contains the micro-instructions to be
loaded.

- 44 -

POS Operating System - Module ControlStore . January 5§, 1984

procedure LoadMicrolnstruction(Adrs: integer; MI: Microlnstruction); |
Abstract:
Loads a single micro-instruction into the PERQ control-store.
Parameters:
Adrs - The control store address to be loaded.
MI - The micro-instruction to be loaded.
procedure JumpControlStore(Adrs: integer);
Abstract:
Transfers control of the PERQ micro engine to a particular address
in the control-store.
Note 1: Values may not be loaded onto the expression stack before
calling JumpControlStore. If you wish to pass values through the
expression stack, the following code whould be used rather than
calling LoadControlStore.

LoadExpr(LOr(Shift(Adrs,8), Shift(Adrs,-8))); InLineByte(#277
); the JCS QCode %)

Note 2: Microcode called by JumpControlStore should terminate with
a "NextInst(0)" microcode jump instruction.

Parameters:
Adrs - The address to jump to.

- 45 -

POS Operating System - Module Convert January 15, 1984

module Convert;

Convert - Conversion functions for reals and longs.
Michael R. Kristofic 25 Feb 82.
Copyright (C) PERQ Systems Corporation, 1981.

Abstract:

Functions for converting between floating point and double
precision integers are provided.

Version Number V1.0
exports

function FloatLong(Arg : Long) : Real;
function TruncLong(Arg : Real) : Long;
function RoundLong(Arg : Real) : Long;

exception R2LOvrFlow(Arg : Real);

Abstract:

R2LOvrFlow is raised when RoundLong or Trunclong is called with
Arg exceeding the range for Longs (-2147483648 .. +2147483647).
You may resume from this exception in which case RoundLong or
Trunclong returns -2147483648 or +2147483647.

Parameters:
Arg - Argument of RoundLong or Trunclong.

function FldatLong(Arg : Long) : Real;
Abstract:
Convert a double precision integer to floating point.

Domain = [-2147483648, +2147483647].
Range = [-2147483648.0, +2147483648.01.

Parameters:
Arg - Input value.

Returns: Floating point equivalent of Arg.

Design: Zero and -2147483648 are special cased. Other numbers are
handled by an algorithm that shifts Arg until it falls into the
floating point mantissa pattern then sets the exponent based on
the number and direction of shifts. Floating point negative
numbers are not 2°s complement, so if Arg is negative its 2°s
complement is converted and the result is negated. NOTE: Floating
point representation can only handle 24 of the possible 31 bits of
mantissa information, i.e. accuracy is lost for large numbers.
Rounding occurs in these cases.

- 46 -

POS Operating System - Module Convert January 15, 1984

function TruncLong(Arg : Real) : Long;
Abstract:

Compute the double precision integer equivalent of a floating
point number. The fraction part is truncated.

Domain = [-2147483648.0, +2147483520.0].
Range = [-2147483648, +2147483520].

Parameters:
Arg - Input value.

Returns: Double precision integer equivalent of Arg, fraction
truncated.

function RoundLong(Arg : Real) : Long;
Abstract:

Compute the double precision integer equivalent of a floating
point number. The fraction part is rounded.

Domain = [-2147483648.0, +2147483520.01.
Range = [-2147483648, +2147483520].

Parameters:
Arg - Input value.

Returns: Double precision'integer equivalent of Arg, fraction rounded.

- 47 -

POS Operating System - Module DiskDef January 1§, 1984

module DiskDef;

DiskDef - TV. (Tony Vezza)
Copyright (C) 1982, 1983 PERQ Systems Corporation

Abstract:
DiskDef exports variables, constants and Types to the
rest of the Pascal Disk SubSystem. Defines the control
structures for CIO and EIO disks. Contains a description
of the EIO disk uCode to Pascal interface.

Py iy, gy, gy, g g, g, g, gl e, b, g g

{$Version V1.6 for POS}

{ ¥XXXRRERRRRIRRRRRRRARXAEE) Exports {B00E0EXRXIRRERRIIEEERRRRXR)

Imports I10_Unit From I0_Unit;
Imports VolumeSystem From VolumeSystem;
Imports DiskIO From DiskIO;

Const
DIBAddress = 0; { Address Of Disk Information Block. }
WpDB = 256; { Words Per Disk Block. }
WpFS = 64; { Words Per Floppy Sector. }
FSpDB = WpDB Div WpFS; { Floppy Sectors Per Disk Block. }
FSpT = 24; { Floppy Sectors Per Track. }
FFS = 3; { Floppy First Sector. }
F1dS = 1;
FHpS = WpFS Div 8; { Word Size (DiskHeader))}
{ Floppy Headers Per Sector. }
DBpFT = FSpT Div FSpDB; { Disk Blocks Per Floppy Track. }
FirstFC = 5; { First Floppy Cylinder }
FirstDB = 30; { Shuggart - First Disk Block, Length
{ of Boot Rounded to Track Boundary. }
Const
DskBlockSize = 512;

DskSPC = 30; { Shuggart - Sectors per cylinder }
Dsklids = 8; { Shuggart - Max number of disk heads }
DskExHds = 0; { Shuggart - Extra heads not in use }
DskCyls = 202; { Shuggart - Number of cylinders }

- 48 -

POS Operating System - Module DiskDef January 15, 1984

Type

{17777707077707077700070777077777777777700707777777777777777¢177
Disk Types and Disk Unit Number

Four Bits are used to designate the Disk Drive type to the
uCode and the DiskIO Pascal code. The bits are interpreted

in the following manner. Note SMD is not yet defined. Also
note the number of spare encodings.

DiskType Code Designated Drive Type
ANSANANRNNNNNY BANSRNEE RN NANRNNNNNNNNY
0 Reserved
| 5.25 Inch Drive
2 14 Inch Drive
3 8 Inch Drive
4..15 Reserved

Legal Unit Numbers to the uCode are 4 bit quantities. This
allows selection of sixteen drives (Units 0 thru 15).

{177777777777070077777777777777777777777707777777777777777777})

{ Define The HardDisk Types }
DiskType = (D5Inch, DUnused, D14Inch, D8Inch,

DSMD, DFloppy, DCIOShugart, DCIOMicropolis,
Rsvd07, Rsvd06, Rsvd0S, Rsvd04,
Rsvd03, Rsvd02, Rsvd01, Rsvd00);

{ Define Unit Number)}
UnitNumber = 0..15;

(777777772777777777777777777777077772777717777777777777777777
Disk Address Formats

There are sevgral Disk Address Formats which are used to access
data on the Disks. These are:

VolBlockNumber
PhyVolAddress
LogAddress
OnVolAddress

Each of these is a Long which can be used to Identify a unique
block of data on the Disk. Mechanisms (routines) are provided
for converting one format address to another format address.

- 49 -

POS Operating System - Module DiskDef January 15, 1984

This following table lists relevant Physical Disk Data:

PlatterSize Drivelype Capacity #Cylinders #Heads #Sectors
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+
SMD { CDC 9766 | 300MB | 823 19 | 32
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+
SMD { CDC 9767 | 150MB | 4111 19 | 32
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+

| 8 Inch IMicropolis2t|{ 2IMB | 580 3 24
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+
! 8 Inch IMicropolis35! 35MB 580 5 24
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+
! 8 Inch IMicropolis70; 70MB | 1160 | § 24
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+
! 14Inch | SA4000 | 2B | 202 | 4 30
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+
! 14 Inch | SA4002 | 24MB | 202 | 8 30
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+
| 5.25 Inch | Ampex i 20MB | 320 | 8 16
+\\\\\\\\\\\\+\\\\\\\\\\\\+\\\\\\\\\+\\\\\\\\\\+\\\\\\+\\\\\\\\+

Here: »
#Sectors = Number of Sectors Per Head (or Track)
#Heads = Number of Heads Per Cylinder
#Cylinders = Number of Cylinders Per Drive

Note that Head(s) is synonomous with Track(s).

VolBlockNumber
ASSNNERRRRNNANY
Description

In this form a Disk appears to the File System as a
linear one dimensional array of Blocks enumerated from
0 to the maximim number of blocks on the Disk.
The VolBlockNumber is actually a 19 bit quantity which
can be calculated from the PhyVolAddress using
the information in the table above:

VolBlockNumber = Cylinder % (#Heads ¥ #Sectors)
+ Head % #Sectors
+ Sector
- BootSize

Here Cylinder, Head and Sector are components
of the PhysicalDiskAddress. #Heads and #Sectors are
Disk parameters taken from the above table.

Use
All File System transactions to and from a disk use
a VolBlockNumber to identify to/from which disk block
the transaction will be made.

POS Operating System - Module DiskDef January 15, 1984

PhyVolAddress
ANNARRRSARNNNY
Description
This is a Double with a Word Cylinder Address,
a Byte Head (or Track) Address and a Byte Sector Address.
A Physical Volume Address can be calculated from a
Volume Block Number using the Data in the above table:

Cyl = (VolBlockNumber+BootSize) Div (#Heads*#Sectors)

Hd = ((VolBlockNumber+BootSize) Mod (#Heads¥*#Sectors))
Div #Sectors
Sct = (VolBlockNumber+BootSize) Mod #Sectors

Here again, Cylinder, Head and Sector are components
of the PhysicalVolAddress. #Heads and #Sectors are
Disk parameters taken from the above table.

The operation (A Div B) means the Truncated Integer
Quotient of A divided by B. The ogeration (AMod B)
means the Remainder of A divided by B.

For DFloppy:
PhyDskAdr[0] = Sct
PhyDskAdr(1] = Cyl

For DCIOShugart:
PhyDskAdr(0] = Cyl%(2*8) + Hd¥(2*5) + Sct
PhyDskAdr(1] = 0

For D8Inch, DSInch and Di4Inch:
PhyDskAdr(0) = Hdx(2"8) + Sct
PhyDskAdr(1] = Cyl

Use
The Physical Volume Address is the format used to tell
the uCode which disk address the read, write or seek
transaction will involve.

LogAddress
ANNNRRRNNNY
Description)
The LogAddress is a repackaged form of the
VolAddress. Packaged in the following way:

LogAddress = (VolID ¥ 2°27) + (VolBlockNumber ¥ 2°8)

OnVolAddress
ANNNNNNRRNNNY
Description
The OnVolAddress is a repackage form of the
VolAddress. Packaged in the following way:

OnVolAddress = 2°31 + 230 + (VolID ¥ 227)
+ (BlockNumber ¥ 2°8)

- 51 -

POS Operating System - Module DiskDef January 15, 1984

Use
The OnVolAddress is used as Hints.

(177777777777770777777777077777770770007777707777777777777777}
LogAddress = Long;
PhyVolAddress = Double;

{£177777777070777070707007000700000000007000007777¢27777777777

State Machine Status Bits

Definition of the Status Bits (taken from Hardware

Specification):
<2:0> SMSt Status:
0 Dldle State Machine Is Idle.
1 DBusy State Machine Is Busy.
2 DataCRC CRC Error in Data.
3 PHMismatch Physical Header Mismatch.
4 LHMismatch Logical Header Mismatch.
S HeadCRC CRC Error in Logical or
Physical Header.
For Others - Not Used.
<3> SMInt When Set Bits<2:0> Have Meaning.

<4> NotTrkOorNotSker For Shugart or §.25 inch,
Used to Find
Track 0 For Calibration
Of Seeking Algorithm,
For Others Indicates an
Error While Trying to do
a Seek Operation.

<S> NotFault When Clear This Bit Indicates
a Drive Problem. Causes are
Specific to each Drive Type.

<6> NotOnCyl Indicates That a Seek is still
, in Progress or That the
Mechanism has not yet come
To Rest.

<7> NotUnitReady When O This Bit indicates that
The Selected Drive is
Present and Ready to be used.

<8> Index This Bit Will Toggle (from 1 to 0
or from 0 to 1) For Every
Revolution of the Disk. Can
Be Useful During Formatting.

- 52 -

POS Operating System - Module DiskDef ' January 15, 1984

<10:9> DiskTypeCode Drive Type Identification
| Undefined
0 5.25 Inch Drive
2 14 Inch Drive
3 8 Inch Drive

«<15:11> Unused

{ //}
SMStatus = Packed Record

SMSt : (Didle, { 000007 Bits<2:0> }

DBusy,

DataCRC,

PHMismatch,

LHMismatch,

HeadCRC,

AbnormalError,

SMError);
SMInt : Boolean; { 000010 Bit<3®> }
NotTrkOorNotSker : Boolean; { 000020 Bit<4> }
NotFault : Boolean; { 000040 Bit<5> }
NotOnCyl : Boolean; { 000100 Bit<6>)
NotUnitReady : Boolean; { 000200 Bit<7> }
IndexMark : Boolean; { 000400 Bit<® }
DkType ¢ (DkSInch, { 003000 Bits<10:9>)

DkUnused,

Dk14Inch,

Dk8Inch);

End Unused : 0..31 { 174000 Bits<I5:11> }
nd;

{7777777777777777770777777077777777777777777772777277777777777
Disk Control Block

This Data Structure is the Primary Mechanism for communication
between the DiskIO. Pascal System and the Disk Perq uCode.

The Structure is created for a particular Drive when that
Drive is mounted.

The Size of a DCB is 24 Bytes, or 12 Words, or 6 Long Words,
or 3 Quad Words. A DCB will be Quad aligned in memory to
facilitate access to it by uCode. :

Components of the DCB are:
LastHead <l6> Bits
ANARRNNNY

Description
Indicates the current Selection of the Heads.

- 53 -

POS Operating System - Module DiskDef January 15, 1984

Written By
UCode which Executes the Seek Command and the uCode
which executes any implicit seeks needed by any of the
other Commands.

Read By
UCode which Executes the Seek Command and the uCode
which executes any implicit seeks needed by any of the
other Commands.

LastCylinder <16> Bits
ASNNRNRRRNNNY
Description
Indicates the current position of the Heads.
Written By
UCode which Executes the Seek Command and the uCode
which executes any implicit seeks needed by any of the
other Commands.
Read By
UCode which Executes the Seek Command and the uCode
which executes any implicit seeks needed by any of the
other Commands. '

DummyDCBStatus <8> Bits
ASARNRRNRNRNNNY
Description
UnUsed Dummy Field.
TypeDrive <4> Bits
ASSANNNNNY
Description
Indicates physical drive type.
Written By
DiskIO Pascal Code at Mount time.
Read By

UCode uses this data in selecting the correct drive
and in formatting the disk address.

UnitNumber <4> Bits
ANANRRRNANY
Description
Selected Drive for this command. 0..15 are legal.
Written By

By microcode only to Mount Boot Disk.
By DiskIO Pascal Code whenever a command is issued
to the uCode.

Read By
uCode to select Drive.
Command <8> Bits, Upper <5> Bits Are 0
ANSNNNNY
Description
Command to the uCode. (See Command Descriptions above) -
Written By

Pascal DiskIO Routine every time a transaction is
performed with the Disk uCode.
Read By

- 54 -

POS Operating System - Module DiskDef January 15, 1984

UCode uses this field to determine what to do.

SectorCount <8> Bits
ANANNNNNNNNY
Description
On WriteChecks this is the number of sectors to write.
On Reads this is the number of sectors to read. For
WriteFormat this is the number of Sectors to Format,
should be the number of Sectors on a whole Track!!
Written By ‘
DiskIO Pascal Code.

Read By
UCode which executes the Read and WriteFormat Commands.

PhysicalAddress <32> Bits
ANANSRRRRNNNNNNY
Description
Disk address used by the uCode for any read write or
seek operation.
Written By
DiskIO Pascal Code.
Read By
uCode to perform the Disk Seek and Access.

HeaderBufferPointer <32> Bits
ASSNNERRERAENNNNNNNY
Description
Pointer to the memory buffer containing the Logical
Header for all compare and write Logical Header
operations. For reads this points to the buffer for
storing the Logical Header of the Sector being
read. Used to perform the DMA.
Written By
Pointer is set up by DiskIO Pascal Code.
Read By
uCode which performs the compare, write Logical
Header or read Logical Header operation.

DataBufferPointer <32> Bits
ANARRRRRRRRNNNNNNY
Description
Pointer to the Memory Buffer for the Disk Data Transfer.
Used to perform the DMA.
Written By
Pointer is set up by Diskl0 Pascal Code.
Read By
uCode which initiates the Disk Data transfer.

DskStatus <8 Bits
ANSNRRNNY
Description
Indicates the status of the DiskControllerStateMachine.
Written By
Disk uCode.
Read By
DiskIO Pascal code after all transactions with uCode.

- 55 -

POS Operating System - Module DiskDef January 15, 1984

PhysParameters <48> Bits
ANSNRRNENNNNNNY

Description
Indicates the maximum legal Cylinder, Head and Sector

addresses (plus 1) for this drive.
BootSize indicates what number of sectors to skip
over at Cyl=0, Head=0 and Sector=0 before allocating
Logical Blocks. This space is reserved for the Boot
code.

Written By
Pascal Mount Procedure.

Read By
Pascal and uCode, to format and translate addresses.

Volume Name <72> Bits
ASSRRRNRANNY
Description
Name of the Disk Volume as it appears in the DIB,
of the Disk. Note the DIB is written by the
Partition Program when the disk is initialized.
Written By
The Mount procedure which will read the DIB and enter
the DIB.VolName into the DCB.

Read By
The procedures: VollDLookUp and VolNameLookUp.

They are used by the file system to access

the Disks.
Dummy <8> Bits
A\
Description
UnUsed Dummy Field.
DCBStatus <8> Bits
ASANNNNNNY
Description
Status of this entry in DiskControlArray.
Written By

DiskIO Initialization code, and Mount and Dismount
Pascal Procedures.

Read By .
Mount and Dismount Pascal Procedures.

PrecompCyl <16> Bits
Description :
Cylinder inside of which writes must be precompensated
for greater bit densities (5.25 inch disk).
Written By
Disk Mount code when determining disk type.

Read By
Disk 10 Microcode

{2717700227000000077077700070007770077077777777777777777777777)

DStatus = Packed Record

POS Operating System - Module DiskDef January i5, 1984

Ready : Boolean; { Currently UnUsed }
Free : Boolean;
"~ Mounted : Boolean;
BootDevice : Boolean; { Currently UnUsed)}
InProgress : Boolean; { Currently UnUsed)
End Rsvdl : 0..7 { To Fill Out Byte }
nd; _

EIODskCtrilBlock = Packed Record

LastHead : Integer;
LastCylinder : Integer; { Cylinder of last Seek, Rd, }
{ RdCheck, WrFormat, Wr }
{ or WrCheck operation. }

DummyDCBStatus : 0..255;
DskType : DiskType; { 0..15)
DskUnit : UnitNumber; { 0..15 }
Command + 0..255; { Legal DiskuCodeCommand = 0..7 }
SectorCount : 0..255; { Only used during Reads. }
PhysicalAddress : PhyVolAddress; { Double }
HeaderBufferPointer : I0HeadPtr; { Long }
DataBufferPointer : IOBufPtr; { Long }
DskStatus : SMStatus; { Word }
PhysParameters : Packed Record { 5§ Vords }

Sector : 0..255;

Head : 0..255;

Cylinder : Integer;

BootSize : Integer;

DiskPages : Long

End;

VolumeName : VolName; { Stringl[8], or 9 Bytes }

DummyByte -:/0..255;
DCBStatus : DStatus;
PrecompCyl : Integer;
End; { Case }
{7/77177777770777777777777777777077777777777777777777¢777777777
Disk Control Array |
The Disk Control Array is an array of DCB’s. For every disk

which has been Mounted there is an active DCB. When a Disk is

- 57 -

POS Operating System - Module DiskDef January 15, 1984

Dismounted the active DCB for that Disk is made inactive.

When a StartlO is issued to the uCode, it is given (on the

E Stack) a VolumeID. This VolumelD is actually an Index to
this array. The uCode then Procedes to determine what command
to execute by examining the indexed (selected) DCB. All the
information necessary for executing this command and returning
results is contained in this DCB. In fact some information is
also returned in the DCB by the uCode.

{777707777177777777777770777777777777777777777777777777777717)
DskCtrlArray = Packed Array [VolRangeTypel Of EIODskCtrlBlock ;
PtrDskCtrlArray = “DskCtrlArray;

{77717771777777

Commands to the EIO uCode

The uCode will be capable of performing the following
operations:

Idle (ReadStatus) Command
ANERRRRRNNNNNNNNNRRNNNNNNY
Description
Selects the given Drive, then returns the current
State Machine Status and puts the State Machine in
an Idle Loop.
Use
Can be used to get the Status of a Drive and
Status of the State Machine.
Inputs
Items of the DiskControlBlock Which are used:
Command = Idle
DiskType : To Select Drive
Unit Number : To Select Drive
Outputs
SMState Returned in DiskControlBlock after Unit
is selected.

WrCheck Command
ANSRRRRNRRNANNNY
Description
This Command is used to check a Logical Header
and write a Data Buffer to a Disk block. An
implicit Seek is performed to the desired disk
address. Single and Multi Sector WriteChecks are
currently supported.
Use
This ‘command can be used to write block(s)
of an existing file without modifying the overall
blocks utilized by the file. Used by the System
System for Swapping.

- 58 -

POS Operating System - Module DiskDef January 15, 1984

Inputs .
Items of the DiskControlBlock Which are used:

Command = WriteChec

SectorCount : Number of Sectors to Write.
DiskType ¢ To Select Drive.

DiskType ¢ To Select Drive.

Unit Number : To Select Drive.
LastCylinder ¢ To Perform Seek.
PhysicalAddress : Disk Address to WriteCheck.
HeaderPointer : Address of Logical Header.

For DMA and Compare.
DataBufferPointer : Address of Data Buffer. For
' DMA. Data written onto

the Disk.
Outputs
Status : SMStatus Reg after
WriteCheck is complete.
LastCylinder : Current Cylinder designated

by the PhysicalAddress.
WrFirst Command
ASSSNRRNRRRNNNNY
Description _
This Command is used to write a Logical Header
and write a Data Buffer to a Disk block. An
implicit Seek is performed to the desired disk
address. No Checking of the old (on disk) Logical
Header is performed. This function is used by
the file system as FirstWrite. Only single Sector
U Writes are currently supported.
se
This command is used to create new files and modify
existing files. This command is used to perform
File System Disk Writes.
Inputs
Items of the DiskControlBlock Which are used:
Command = Write

DiskType ¢ To Select Drive.

Unit Number : To Select Drive.
LastCylinder : To Perform Seek.
PhysicalAddress : Disk Address to Write.
HeaderPointer : Address of Logical Header.

For DMA. Logical Header

is Written onto the Disk
DataBufferPointer : Address of Data Buffer. For

DMA. Data is written onto

the Disk.
Outputs
Status : SMStatus Reg after
Write is complete.
LastCylinder : Current Cylinder designated

by the PhysicalAddress.

- 59 -

POS Operating System - Module DiskDef January 1§, 1984

Format Command
ASARRRRSRRNANNY

Description
This command writes Physical Header, Logical
Header and Data Block to the selected Disk Sectors.
This command is used to format an entire track.
The uCode must first seek the correct Cylinder.
Select the appropriate track. Then wait for the
Index pulse from the drive. When the Index is seen
then the uCode must WriteFormat the number of Sectors
given by SectorCount. Note that the Sector number
of the PhysicalHeader must be initially cleared
and incremented after each sector is transferred.
The old data in the Disk Track is Lost.
No provision is provided for formatting a single
Sector in the middle of a track. It is hard to
imagine how or why this would be done.

Use
The Command is used only in the Disk Formatting
and Disk Initialization Procedures.

Inputs
Items of the DiskControlBlock Which are used:

Command = FormatWrite

DiskType : To Select Drive.
Unit Number : To Select Drive.
LastCylinder : To Perform Seek.

PhysicalAddress : Disk Address to Format.
Initially the Physical
Header to Write. Sector
Number will be cleared
then incremented by uCode.
SectorCount : Number of Sectors to Format.
HeaderPointer : Address of Logical Header.
For DMA. Logical Header
wvhich is written. The
same Logical Header is
written to all Sectors
to be Formatted by one
command.
DataBufferPointer : Address of Data Buffer. For
DMA. Data written onto
the Disk. The same Data
Block is written to all
Sectors which are
Formatted by one command.

Outputs
Status : SMStatus Reg after
Write is complete.
LastCylinder : Current Cylinder designated

by the PhysicalAddress.

POS Operating System - Module DiskDef January 15, 1984

RdCheck Command
ASANRRSNNNNNNNNY

Description
This command compares Logical Header Data given
as an argument with the Logical Header of the
selected sector. The Logical Header and Data
Block are read off the Disk. An implicit Seek
is performed to the desired Cylinder. Multiple
Sector Reads are supported by the uCode. When
doing a Multiple Sector Read the first Sector is
address by the PhysicalAddress. Subsequent Sectors
are addressed by the Logicalleaders of their
Predecessor. The DataBuffer is assumed to be
large enough to hold the Multiple Sector transfer.
The HeaderBuffer is overwritten with the Logical
Header of each Sector which is transferred. Thus
it is only the size of one LogicalHeader. When
the transfer is complete the HeaderBuffer will be
the LogicalHeader of the last Sector Transferred.

Use
Not used to perform reads of files by the
File System. Note that the contents of the Disk
Sector’s Logical Header must be known for this
operation to succeed. Used by the System
for Swapping.

Inputs
Items of the DiskControlBlock Which are used:

Command = ReadCheck

SectorCount : Number of Sectors to Read.
DiskType : To Select Drive.
Unit Number : To Select Drive.
LastCylinder ¢ To Perform Seek.
PhysicalAddress : Disk Address to ReadCheck.
HeaderPointer : Address of Logical Header.

For DMA and Compare.
Logical Header of the
Sector will go here.

DataBufferPointer : Address of Data Buffer. For
DMA. Data will be Read
from the disk into this
buffer.

Outputs .

HeaderPointer : HeaderBuffer will be loaded
with the Logical Header
of the Last Sector
which is Read.

DataBufferPointer : DataBuffer will be loaded
with the Data Block
of the Sector(s) being Read.

Status : SMStatus Reg after
ReadCheck is complete.
LastCylinder : Current Cylinder designated

by the PhysicalAddress.

-6l -

POS Operating System - Module DiskDef January 15, 1984

DiagRead Command
ANARRNRRRRRRNNNNY

Description
Read the Logical Header and Data Block of the
specified Disk Sector. No checking of the Logical
Header is performed. An Implicit Seek is performed
to the selected Disk Cylinder. Note that Multiple
Sector Reads are supported by the uCode. When
doing a Multiple Sector Read the first Sector is
address by the PhysicalAddress. Subsequent Sectors
are addressed by the LogicalHeaders of their
Predecessor. The DataBuffer is assumed to be
large enough to hold the Multiple Sector transfer.
The HeaderBuffer is overwritten with the Logical
Header of each Sector which is transferred. Thus
it is only the size of one LogicalHeader. When
the transfer is complete the HeaderBuffer will be
the LogicalHeader of the last Sector Transferred.

Use
Used when the Logical header of a Disk Sector is
not known, but the Sector needs to be read, for
example, in Scavenge.

Inputs
Items of the DiskControlBlock Which are used:

Command = Read

DiskType : To Select Drive.
Unit Number : To Select Drive.
LastCyl inder : To Perform Seek.

PhysicalAddress : Disk Address to Read.
When Reading more than
one Sector this is only
the address of the first.
SectorCount : Number of Sectors to Read.
HeaderPointer ¢ Address of Logical Header.
Logical Header of the
Sector will go here.
DataBufferPointer : Address of Data Buffer. For
DMA. Data will be Read
from the disk into this

buffer.
Outputs

HeaderPointer : HeaderBuffer will be loaded
with the Logical Header
of the last Sector Read.

DataBufferPointer : DataBuffer will be loaded
vith the Data Block
of all the Sectors Read.

Status : SMStatus Reg after
Read is complete.

LastCylinder : Cylinder of the last block
. vhich is read.

- 62 -

POS Operating System - Module DiskDef

Seek Command
ANSANRRNNNNNY
Description

Move the Heads of the specified Drive to the
specified Cylinder and Head Addresses.

Use

Used in Initialization, Mounting and Dismounting,
and in Error Recovery. Used to determine size of
some Disk types available in different sizes.

Not used by the File System. The commands Write,
WriteCheck, Read and ReadCheck all perform implicit

seeks in the Disk uCode.

Items of the DiskControlBlock Which are used:

Inputs ,
Command = Seek
DiskType
Unit Number
LastCylinder
PhysicalAddress
Outputs
Status
LastCylinder
Reset Command
ASURRRNRRNNANY
Description

To Select Drive.

To Select Drive.

To Perform Seek.

Disk Address to Seek. Only
the Cylinder and Head
Addresses are used.
used.

SMStatus Reg after
Read is complete.
Cylinder to which Seek

has been done.

Clears all error conditions in the controller and
in the selected drive. Also performs an implied
Seek to Cylinder 0. The uCode will Issue a Drive

Restore Command.
Use

Used at initialization, Mounting, Dismounting and

Error Recovery.
Inputs

Items of the DiskControlBlock Which are used:

Command = Reset

DiskType .

Unit Number
Outputs

Status

LastCylinder

To Select Drive.
To Select Drive.

SMStatus Reg after

Seek to 0 is complete.
Set to O.

(1771777077777770777777777777777777777777777771777777771777777})

Type .
DskCmds = (Dskldle, DskRdCheck, DskDiagRead, DskWrCheck,
DskWrFirst, DskFormat, DskSeek, DskClear);

January (5, 1984

POS Operating System - Module DiskDef January 5, 1984

PDiskCtrlBlock = “DiskCtriBlock;
DiskCtrlBlock = Packed Record { This must be quad word aligned }

Buffer

DskCommand
DskNumSect
DskAddr
DskHeader
Dsk
DskpNext
DskDevCyl

End;

Type

: I0BufPtr; { Pointer to data buffer for
transaction }

: 0..255;

: 0..255;

: Integer; {for icl cio microp holds hd/sec}

: IOHeader;

: DskResult;

: PDiskCtrlBlock;

: Integer; {Added for icl cio microp,

dev (3 bits) and cyl (13) }

DIBlock = Packed Record

BootSize :
NumSector :
NumHeads :
NumCylinders :

Integer; { blocks in boot }
Integer;
Integer;

Integer;

PreCompCylinder : Integer;

DIBIFiller :

arrayl!..109] of integer; { Word }

{ String to use as name for this volume after mount. }

VolumeName

: packed arrayll..8] of char;

{ Hints of the addresses of the first and last logical }
{ blocks of this volume. }

VolumeStart: Long;

VolumeEnd : Long;

{ Hints of the Partition Information Blocks for the }
{ partitions of this volume. }

SubParts

: arrayl0..63] of Long;
DIB2Filler :

arrayl!..2] of integer; { Word }

case DeviceClass. : DiskKinds of

FlpDisk : ();
IntDisk : (IntDiskClass : IntDiskKinds);
ExtDisk : ()

End; { DIBlock }
PDIBlock = “DIBlock;

{1777777207777077777777077707077707770777777007777777777777777/

When Mapping this File System stuff onto the Floppy, FSpDB
Floppy Sectors are used for each Disk Page. One Sector of each
Track of the Floppy is used to hold all the Headers for the

- 64 -

POS Operating System - Module DiskDef January 15, 1984

Pages that fit in the remaining Sectors of that Track. One
Floppy Sectors per Track are not used.

{7/77777777777077777777777777777777770777777777777777777777777})
Type

FlopHdArray = Array [O..FHpS-1] of IOHeader; { Holds the Headers)
FlopHeadPtr = “FlopHdArray;

Var
PtrDCA : PtrDskCtrlArray;
NumDCBUsed : VolRangeType;
IntDiskType : IntDiskKinds;
PtrVBuf s PtrVolBuffer;
PtrvHBuf : PtrVolHeaderBuffer;
StatPtr : 10StatPtr;
BufPtr : I0BufPtr; { note that a full disk buffer is not
allocated for this variable,
Use only with 10Seek, 10Idle, IOReset }
HdrPtr : IOHeadPtr;
FHeadPtr : FlopHeadPtr;
Var
EIOFlag : Boolean;

PDskCtrl : PDiskCtrlBlock;
Initialized : Integer;
CIODiskType : (CIOShugart, CIOMicropolis, CIOUnknown);

POS Operating System - Module DiskDef January {5, 1984

POS Operating System - Module DiskIO January (5, 1984

module DiskIO;

S, A e, e, g, i, P e, S, o, P, g, g, P, o, g, o, g, g, pun

Abstract

This is an implementation of the DiskI0O interface which uses the

new VolumeSystem module. It is provided as a compatibility module

in order to support the kl hardware with little modification of system
software above the level of Diskl0. Eventually diskio will be removed
from the system and higher level software will need to be modified to
use VolumeSystem directly; in particular, this will be required to
support more than a single hard disk and single floppy.

0ld Abstract:

This module implements the basic low level operations to disk devices.
It services the Hard Disk and the Floppy. When dealing with the floppy
here, the structures on the hard disk are mapped to the structures

on the floppy.

{gVersion 4.8 for POS}
{ ERRRARRRRARARARERN) ©XPOrtS { REXERXRRRERRERARXRERERRARAS)

imports FileDefs from FileDefs;
imports 1OErrors from IOErrors;

const
HARDNUMBER = 0; {device code of Shugart Disk}
FLOPPYNUMBER =13 {device code of FloppyDisk}

{a Disk Address can be distinguished from a Segment Address by the
upper two bits (in 32 bits). These bits have a nonzero code to
which disk the address is part of}

RECORDIOBITS = #140000; {Virtual%ddress upper 16 bits of
disk

DISKBITS = RECORDIOBITS + (HARDNUMBER¥(#20000))

FLOPBITS = RECORDIOBITS + (FLOPPYNUMBERX(#20000));

{The following definitions tell how many entries there are in the
three pieces of the random index. The first piece (Direct)

are blocks whose DiskAddresses are actually contained in the
Random Index (which is part of the FileInformationBlock).

The second section has a list of blocks each of which contain
128 Disk Addresses of blocks in the file, forming a one level
indirect addressing scheme.

For very large files, the third section (DblInd) has DiskAddresses of

blocks which point to other blocks which contain 128 DiskAddresses
of blocks in the file, forming a two level indirect scheme.}

- 67 -

POS Operating System - Module DiskIO January 15, 1984

DIRECTSIZE = 64; { Entries in FIB of blocks directly accessible }

INDSIZE = 32; { Entries in FIB of | level indirect blocks }

DBLINDSIZE = 2; { Entries in FIB of 2 level indirect blocks }

FILESPERDIRBLK = 16; { 256 / SizeOf (DirEntry))}

NUMIRIES = 15; { number of tries at transfer before aborting }
type

{Temporary segments go away when processes are destroyed,
Permanent segments persist until explicitly destroyed
Bad Segments are not well formed segments which are not
readable by the Segment system}

SpiceSegKind = (Temporary, Permanent, Bad);

PartitionType = (Root, UnUsed, Leaf); {A Root Partition is a device}

DeviceType = (Winchl2, Winch24, FloppySingle, FloppyDouble,
CIOMicrop, GenericSInch);

MyDble = Array [0..1] of integer;

DiskCheatType = record
case integer of

1: (
) Addr : DiskAddr

2: (
Dbl : MyDble { should be 10.Double but
don’t import IO in export
) section }
3 (
) Seg ¢ SeglD
4: (
) Lng : FSBit32
end;

{ A directory is an ordinary file which contains SegIDs of files
along with their names. Directories are hash coded by file name
to make lookup fast. They are often sparse files (ie contain
unallocated blocks. between allocated blocks). The file name is a
SimpleName, since a directory can only contain entries for
files within the partition (and thus device) where the directory
itself is located }

DirEntry = packed record
InUse : boolean; {true if this DirEntry is valid}
Deleted : boolean; {true if entry deleted but not
expunged }
Archived : boolean; {true if entry is on backup tape}
UnUsed : 0..#17777; ({reserved for later use)

ID : SeglD;
Filename : SimpleName
end;

POS Operating System - Module DiskIO January 15, 1984

{ The fillers in headers which are used as hints to the new head of
the free list when a block is allocated in a partition (by
AllocDisk) have been represented as unsigned 16 bit numbers
denoting disk relative logical block numbers. For disks larger
than 64K blocks this is not possible and a partition relative
denotation is used instead on all future disks. FillerSemantics
is the type of a field in the DIB of a disk which tells which
interpretation applies for that disk. }

FillerSemantics = (DiskRelative, PartRelative);

DiskBuffer = packed record
case integer of

I: ('
Addr : array [0..(DISKBUFSIZE div 2)-1] of
DiskAddr

);
(

IntData : array [0..DISKBUFSIZE-1] of FSBitl6

3 0

" ByteData : packed array [0..DISKBUFSIZEX2-11 of
| FSBit8

{4 is format of the4Fi%elnformationBlock; the FIB has Logical Block -1 }

FSData : FSDataEntry;

2:

{The Random Index is a hint of the DiskAddresses
of the blocks that form the file.

It has three parts as noted above. Notice
that all three parts are always there, so
that even in a very large file, the first
DIRECTSIZE blocks can be located quickly

The blocks in the Random index have logical
block numbers that are negative. The logical
block number of Indirect[0] is -2 (the FIB is
-1) the last possible block’s number is

-(INDSIZE+DBLINBDSIZE+1) }

. Direct : array [0..DIRECTSIZE-1] of DiskAddr;
Indirect : array [0..INDSIZE-1] of DiskAddr;
DblInd : array [0..DBLINDSIZE-1] of DiskAddr;

SegKind ¢ SpiceSegKind;

NumBlksInUse : integer; {segments can have gaps,
block n may exist when
block n-1 has never been
allocated. NumBlksInUse
says how many data blocks
are actually used by the
segment }

LastBlk : FSBitl6; {Logical Block Number of
largest block allocated}

- 69 -

POS Operating System - Module DiskIO

LastAddr

LastNegAddr

January 15, 1984

: DiskAddr; {DiskAddr of LastBlk }
LastNegBlk :

FSBit16; {Logical Block Number of
: largest pointer block
allocated}
DiskAddr {Block number of
LastNegBlk}

);
{5 is the format of a DiskInformationBlock or a PartitioninformationBlock}

5: (

{The Free List is a chain of free blocks linked
by their headers }

Freelead

FreeTail

NumFree
RootDirID
BadSegID

: FSBit32;

: DiskAddr; {Hint of Block Number of

the head of the free
list)

: DiskAddr; {Hint of Block Number of

the tail of the free
list}

{Hint of how many blocks
are on the free list}

: SeglID; {where to find the Root
Directory}
: SeglD; {where the bad segment is}

{when booting, the boot character is.indexed into
the following tables to find where code to be
boot loaded is found }

BootTable

InterpTable:

PartName
PartStart
PartEnd
SubParts
PartRoot
PartKind

).

: packed array [1.
: DiskAddr;

: DiskAddr;

: array [0..63] of DiskAddr;
: DiskAddr;

: PartitionType;

PartDevice :

: array [0..25] of DiskAddr; {qcode}

array [0..25] of DiskAddr; {micro-
code }
.8]) of char;

DeviceType

{6 is the format of a block of a Directory}

- Entry

: array [0..FILESPERDIRBLK-1] of

DirEntry

{7 is a format for DiskInformationBlocks which contains a flag denoting
the meaning of filler words in the header of blocks on the disk;
it takes advantage of the fact that the definitions of PIBs and DIB are
intertwined in variant § above so that the initial words in a DIB can
be assumed to contain 0°s since initial words are only used in blocks

which are actually PIBs.

Hence all shugart disk volumes should have

the value DiskRelative for the FillerKind field by default.}

7: (FillerKind :
end;

ptrDiskBuffer = “DiskBuffer;

FillerSemantics)

-70 -

POS Operating System - Module DiskIO January 15, 1984

Header = packed record {format of a block header}
SerialNum : DiskAddr; (?g}u?lly has the SegID of the
ile

LogBlock : integer; {logical block number}

Filler : integer; {holds a hint to a candidate
for the FreeHead)

PrevAdr : DiskAddr; {Disk Address of the next block
in this segment)

NextAdr : DiskAddr; {Disk Address of the previous

; block in this segment}

end;

ptrHeader = “Header;

DiskCommand= (DskRead, DskWrite, DskFirstWrite, DskReset, DskHdrRead,
DskHdrWrite); {last ones for error reporting}

var
DiskSegment : integer; {a memory segment for DiskIO}

procedure InitDiskIO; {initialize DiskIO, called at boot time}

procedure ZeroBuffer(ptr : ptrDiskBuffer); {write zeroes in all words of
the buffer. When reading an
unallocated block, Zeros are
returned in the buffer}

function WhichDisk(addr : DiskAddr) : integer; ({Tells you which disk
number a DiskAddr is on}

function AddrToField(addr : DiskAddr) : integer; {gives you a one word
short address by taking the
lower byte of the upper word
and the upper byte of the
lower word. The upper byte
of the upper word can’t have
any significant bits for the
12 or 24 megabyte disks. The
lower byte of the lower word
is always zero (since a disk
address is a page address,
Yhich is 256 words

function FieldToAddr(disk: integer; fld : integer) : DiskAddr;
{ Makes a DiskAddr out of
a short address and a
disk number

}

- 71 -

POS Operating System - Module DiskIO January 15, 1984

procedure DiskIO(addr : DiskAddr; ptr : ptrDiskBuffer;
hptr : ptrHeader; dskcommand : DiskCommand); {Do a disk
operation, if
errors occur,
exits via
DiskError)}

function LogAddrToPhysAddr(addr : DiskAddr) : DiskAddr;
{translate a Logical Disk Address (used
throughout the system) to and from a
physical Disk Address (the kind the disk
contoller sees) Logical Disk Addresses
use a sequential numbering system
Physical Disk Addresses have a
Cylinder-Head-Sector system This routine
calls MapAddr (a private routine which
does the translation) Map Addr
implements interlace algorithm)

function PhysAddrToLogAddr(disk : integer; addr : DiskAddr) : DiskAddr;

function LastDiskAddr(DevIype : DeviceType) : DiskAddr; {Gets the Disk
Address of the last
possible page on the device}

function NumberPages(DevIype : DeviceType) : FSBit32; {Return the number
of pages on a device)

procedure DiskReset; {Reset the disk controller and recalibrate the
actuater}

function TryDiskIO(addr : DiskAddr; ptr : ptrDiskBuffer;
hptr : ptrHeader; dskcommand : DiskCommand;
numTries: integer) : boolean;
{Try a disk operation, but, return
false if error occurred

Exception DiskFailure(msg: String; operation: DiskCommand; addr: DiskAddr;
softStat: integer);

Exception DiskError(msg: String);

Exception BadDevice;

Var ErrorCnt : ArrayllOEFirstError..IOELastError] of integer;

- 72 -

POS Operating System - Module DiskParams January 15, 1984

module DiskParams;

Abstract:
This program maintains a data base of mappings from disks
to their parameters. The format of the data base is:

{. ! starts a comment terminated by the end of line character.
2. Each entry occupies 1 Line.
<Disk> <SecPerTrack> <Heads> <NumCylinder> <PreCompCyl> <BootSize>

Micropolis 16 8 256 128 32

This line says that the Micropolis 5.25" drive has 16 sectors per
track, 8 heads per cylinder, cylinders, write pre-comp starts
at cylinder 128 and the boot size is 32 sectors.

e S o, e, o, o, o, o, o, b, o, g, o, g, P, g,

exports

Function GetParms(DiskName: string;
Var Head, Cyls, sectors, precompcyl, bootsize: Integer
): Boolean;

procedure ParamHelp;

Procedure SetUpDiskParams(Automatic: Boolean;
DiskName: String;
Var NumHeads,
NumCyl inders,
SecPerTrk,
BootSize, writecompcyl: Integer);

-73 -

POS Operating System - Module DiskUtility January 15, 1984

module DiskUtility;

DiskUtility - TV (Tony Vezza).

Copyright (C) 1983, PERQ Systems Corporation
Abstract:

DiskUtility exports procedures to the Vol SubSystem. Contains
procedures and functions to perform many disk operations.

S o, e, gy o o ot g, g g, g,

{gVersion V1.0 for POS}

{ ERRRERRHRRRERERRRRRRHRRRRHRXK }

{ AAXRRERRROOEARRRRRXRXRAARXXX) Exports

Imports VolumeSystem From VolumeSystem;
Imports DiskDef From DiskDef’;
Imports System From System;

Procedure Vlnitialize ;

Function Mount(PID
Labelled

: PhyDiskID;
: Boolean) : VollID;

: PhyDiskID);
: VolID) ;

: VoiID;
: DiskKinds) : DiskIype;

: VolID) : VolName;

Procedure DisMount(PID
Procedure InitDCB(VID

Function CheckVolume(VID
DKind

Function GetVolName(VID
Function GetDiskSize(VID : VolID) : Long;
Function FreeDCB(VID : VolID) : Boolean;
Procedure VolSize(VID : VolID);

Function VolToPhyAddr(VA : VolAddress) : Double;

VID : VollID;
PA : PhyVolAddress) : VolAddress;

: VollD;

Function PhyToVolAddr(

Procedure ToLogHeader(VID

PVolHead:
PLogHead:

Procedure FromLogHeader(VID

PtrVolHeaderBuffer;
IOHeadPtr) ;

: VollID;

PLogHead : IOHeadPtr;
PVolHead : PtrVolHeaderBuffer) ;

- 74 -

POS Operating System - Module DiskUtility - January (5§, 1984

Function
Function
Function
Function
Function

Function

PhyToLogAddr(VID : VolID; PA : PhyVolAddress) : LogAddress;
LogToPhyAddr(LA : LogAddress) : Double;

VolToLogAddr(VA : VolAddress) : LogAddress;

LogToVolAddr(LA : LogAddress) : VolAddress;

FlpyMap(VA : VolAddress) : Double;

FlpyUnMap(VID : VolID;
PA : PhyVolAddress) : VolAddress;

Procedure GetDiskParameters(Var Heads : Integer;

Var SectorsPerTrack : Integer;
Var NumCylinders: Integer);

- 75 -

POS Operating System - Module DiskUtility January 15, 1984

- 76 -

POS Operating System - Module DoSwap January 15, 1984
module DoSwap;

Abstract:
Turns swapping on or off for the shell.
Copyright (C) PERQ Systems Corporation, 1982

Version Number V1.1
(7777777777777777777777777/77/7777} EXPORTS { ANNANNALNALNLLLLLLLNNL NN

Imports CmdParse from CmdParse;
Procedure DoSwap(args: CString);

Procedure DoSwap(args: CString);
Abstract:

Handles the Swap command

POS Operating System - Module Dynamic January 15, 1984
module Dynamic;

Dynamic - Perq dynamic memory allocation and de-allocation.
J. P. Strait 1 Jan 80.
Copyright (C) PERQ Systems Corporation, 1980, 1981, 1982.

Abstract:

Dynamic implements Pascal dynamic allocation - New and Dispose.
Memory of a given size with a given alignment may be allocated
from any data segment with the standard procedure New which calls
the NewP procedure of Dynamic.

Data segments are created with CreateSegment from Memory or
CreateHeap from Dynamic. Segments created with CreateSegment are
automatically enlarged when they become full. They are enlarged
by multiples of the segment’s increment size until there is enough
free memory for the allocation. When an attempt is made to
incregse the segment past its maximum size, an exception is
raised.

Segments created with CreateHeap do not have increment sizes or
maximum sizes. Whenever a segment becomes full, another segment
of the same size is created and linked to the full segment. This
new segment is given the same reference count as the parent.
Allocation is potentially done from any of the segments. Thus
There are a heap of segments from which to allocate. This heap is
identified by the segment number of the first segment allocated.
If an allocation is attempted which is larger than the size of the
segments, one larger segment is created.

Both heaps and segments may be destroyed by DecRefCount.
IncRefCount and DecRefCount applied to a single segment in a heap
increment or decrement all segments in the heap. DeclOCount and
IncIOCount increment and decrement only a single segment.

Dispose may be used for both segments and heaps. Memory that is
deallocated by Dispose becomes a candidate for allocation with
New.

The default segment (the one obtained by New(P) without an
explicit segment number) is made by CreateSegment(4,4,256) for 1/4
MByte systems and is made by CreateHeap(20) for larger systems.
This segment may be destroyed by DecRefCount(0).

Design: Free memory within each segment is linked into a circular
freelist in order of address. Each free node is at least two
words long and is of the form

record Next: Integer;
Length: Integer; S
Rest: 2%¥Length - 2 words
end;

Vhere Next%¥2 is the address of the next free node and Length¥2 is

-79 -

POS Operating System - Module Dynamic January 15, 1984

the number of free words.
Version Number V2.5
exports
imports Memory from Memory;
procedure NewP(S: SegmentNumber; A: integer; var P: MMPointer;
L: integer);
procedure DisposeP(var P: MMPointer; L: integer);
procedure CreateHeap(var S: SegmentNumber; Size: MMExtSize);
procedure DestroyHeap(S: SegmentNumber);
exception NotAHeap(S: SegmentNumber);

exception SegTooBigForNew(S: SegmentNumber);
Abstract:

"Raised when allocate out of a segment that has >256 blocks or when
try to create a heap of >256 blocks.

Parameters:
The segment allocating from.
procedure DisposeP(var P: MMPointer; L: integer);
Abstract:
Deallocate memory.

Parameters:
P - Pointer to the memory.
L - Length in words, O represents a length of 2%%16. If L is odd,
L+1 words are de-allocated.

Errors: NilPointer if P is nil.
BadPointer 1) if the Offset part is odd.
2) if Offset+length > size of segment.
3) if the node to be Dispose overlaps some node that is already
free.)
4) if the segment is not InUse or not a DataSegment.

procedure NewP(S: SegmentNumber; A: integer; var P: MMPointer;
L: integer);

Abstract:
Allocate memory.
Parameters:
S - Number of the segment from which to allocate (if created by
CreateSegment) or root segment of the heap (if created by

CreateHeap). 0 means the default data segment.
A - Alignment of node in words relative to beginning of segment, 0

- 80 -

POS Operating System - Module Dynamic January 15, 1984

represents an alignment of 2¥%16. if A is odd, A+l is used
as the alignment.

P - Set to point to the memory that was allocated. If the data
segment is full and cannot be increased, P is set to nil.

L - Length in words, O represents a length of 2¥¥16. If L is odd,
L+1 words are allocated.

Errors: FullSegment if the segment has reached its maximum size and
there isn’t enough room for the node.
FullMemory if NewP tries to expand the segment, but there enough
physical memory to do so.
UnusedSegment if S is not InUse.
NotDataSegment if S is not a DataSegment.
procedure CreateHeap(var S: SegmentNumber; Size: MMExtSize);
Abstract:
Create the root data segment for a Heap.
Parameters:
S - Set to the number of the new segment.
Size - The size of the initial segment and all subsequent
segments. Must be < 256.
Errors: SegTooBigForNew is size is >256.
procedure DestroyHeap(S: SegmentNumber);
Abstract:
Destroy a Heap or a Segment.
Parameters:
S - The segment number of the root of the Heap.

Errors: UnusedSegment if S is not InUse.
NotDataSegment if S is not a DataSegment.

-8l -

POS Operating System - Module Etherl10I0 January 15, [984
module Ether1010;

Abstract:

This module provides the client interface to the 10 Mbaud Ethernet
microcode.

Written by: Don Scelza
Copyright (C) PERQ Systems Corporation, 1981, 1983

Version Number V2.5
{ 00N NMMMMANHRINNRR) Exports { AR RRHNRHARRRBNNHR)

This module provides the raw 1/0 interface to the PERQ Systems Ethernet
system. The procedures in this module allow the client to send and receive

packets on the net.

For details of the Physical and Data Link layers of the network see the
document:

The Ethernet

A Local Area Network
Data Link Layer and Physical Layer Specifications

DEC - Intel - XEROX

For details on the PERQ Systems hardware interface to the network see:
Ethernet Interface Programmers Guide

Pradeep Reddy

For details on the interface presented, to this module, by the Ethernet
microcode see the file:

Ether10.Micro
Donald A. Scelza

Following is some general information about the client interface presented
by the Ethernet microcode and this module:

It is possible to always have a receive pending. If a send command is
executed while a receive is pending the internal state of the interface is
saved in a register save area in memory. This is done by saving the VA of
the DCB for the receive. After the send has completed the receive state is
reloaded and the receive is restarted.

In addition to the ability to do a Receive followed by a Send, it is also
possible to do multiple Receives. The Receives are linked using the NextDCB

field of the Ethernet DCB. When a Receive completes the next Receive in the
chain is started.

Command information for the Ethernet driver is provided in an Ethernet

- 82 -

POS Operating System - Module Ether10I0 January 15, 1984

Device Control Block, DCB. All data areas referenced by pointers in the DCB
as well as the DCB itself must be LOCKED in memory until the request has
completed. They can NOT be moved. The best way to do this is to mark the
segment that the buffers are allocated from as UnMovable. This will allow
the memory manager to place the buffers in a convient place in memory before
they are locked down.

The Ethernet driver needs to have a four (4) word area of memory in which it
can save registers. A pointer to this area of memory is provided by the
Buf fPtr when a Reset command is executed. Once the Reset command has been
processed this register save area can NOT be moved. To change the register
save area another Reset command must be executed.

The Ethernet DCB must be unmovable while the command is pending.

To wait for the completion of a command it is possible to spin on the
Command-In-Progress bit in the status block. This bit will be cleared when
the requested command has been completed.

After a receive the Bits field of the status block has the number of bits
that were received. To translate this into the number of data bytes you
must perform a number of operations. First divide it by 8. This will give
the number of bytes that were received. If the number is not evenly
divisable by 8 then there was a transmition error. After the division you
must subtract off the number of bytes in the header and the CRC. There is a
total of 18 bytes in these two portions of the packet.

The Ethernet controler can receive packets that are addressed in the
following ways:

a) Packets addressed to this machine.

b) Packets addressed to any machine.

c) Packets addressed to five of 256 groups.
d) Packets addressed to any group.

The Reset command is used to set up the addressing for a given machine.

POS Operating System - Module Etherl10IO January 15, 1984

imports SystemDefs from SystemDefs;
imports System from System;

{
{ Define the types and variables used by the Network stuff.
{}

type

{
{ These are the valid commands for the Ethernet interface.

{}
EtherCommand = (EReset, EReceive, EPromiscuousReceive, ESend);

An Ethernet address is 48 bits long. It is made up of 6
octets or in our case 3 words.
}

i, g, gt g

EtherAddress = packed record { An address on the net is 48 bits }
High: integer;)
Mid: integer;
Low: integer;
end;

This record defines an Ethernet status block. The first

15 bits of the block are defined by the hardware interface.

The 16th bit of the first word and the second word are defined by the
Ethernet microcode.

Alignment: Double word.
Locked: Yes.
}

EtherStatus = packed record

The status record. }

{
CRCError: boolean; { There was a CRC error.)}
Collision: boolean; { There was a collision }
RecvTrans: boolean; { O - receive has finished. | for

trans. }

Busy: - boolean; { The interface is bust. }
UnUsed4: boolean;
ClockOver: boolean; { The microsecond clock overflowed. }
PIP: boolean; { There is a Packet In Progress. }
Carrier: boolean; { There is traffic on the net. }
RetryTime: 0..15;
UnUsed12: boolean;
UnUsed!3: boolean;
SendError: boolean; { Could not send packet after 16 tries.}
CmdInProgress: boolean; { There is a command pending. }
BitsRecv: integer; { Number of bits that were received. }
end; :

{
{ This record defines the header for an Ethernet transfer.

-84 -

POS Operating System - Module Ether!10I0 January 15, 1984

Alignment: 8 word.

oy gutvny gy gui—

%ocked: Yes.
EtherHeader = packed record
UnUsed: Integer; { A filler word. This must be here.}
Dest: EtherAddress;
Src: EtherAddress;
ETgpe: Integer; { Type field defined by XEROX }
end;

This record provides the definition of an EtherBuffer.
A

lignment: 1k word.
%ocked Yes.

S o, e, g, g, g

EtherBuffer = array [0..749] of integer;

{ .
{ ?efine all of the pointers that we need.
{

pEtherStatus = “EtherStatus;
pEtherBuffer = “EtherBuffer;
pEtherHeader = “EtherHeader;
pEtherDCB = “EtherDCB;

is is the definition of an Ethernet Device Control Block.

ignment: Quad word.

{
{ Th
{
{ Al

% % ocked: Yes.

EtherDCB = packed record
HeadPtr: pEtherHeader;
BuffPtr: pEtherBuffer;
StatPtr: pEtherStatus;

Cmd: EtherCommand;

BitCnt: Integer; { Total bits in buffer and header }
NextDCB: pEtherDCB;

end;

This is the definition that is used to create the register save
area. Must exist across transfers.

Alignment: Double word.
Locked: Yes.
}

EtherRegSave = record

P, ety g g i g g

POS Operating System - Module Ether10I0 January 15, 1984

RecvDCB: pEtherDCB;
SendDcb: pEtherDCB;
end; '

pEtherRegSave = “EtherRegSave;

This is the definition of the structure that is used to set
the physical address of this machine and the groups that we are
to look for.

Alignment: 1 word.
Locked: Yes, during Reset.

}
EtherAdRec = packed record

Py o, g, e, g g o p—

LowAddress: Integer; { Low word of Physical address }
MCB: 0..255; { Mulitcast command byte.)
MultCstl: 0..255; { Five group addresses. }
MultCst2: 0..255;

MultCst3: 0..255;

MultCst4: 0..255;

MultCst5: 0..255;

end;

pEtherAdRec = “EtherAdRec;

Following are the definitions that are used to deal with the
micro-second clock.

The microsecond clock takes a two word combined control and
status block. The first word of the block gives the number
of microseconds to be loaded into the clock.

The second word provides the status information from the
clock. Once a clock command has been started it is
possible to spin on the CmdInProgress bit in the control
block. When the bit is cleared the specified number of
micro-seconds has elapsed.

Alignment: Double word.
%ocked: Yes.

S, A, g, g P, g A S i . gt g G, g S g

type

uSC1kDCB = packed record
uSeconds: integer;
UnUsed0: boolean;
UnUsedl: boolean;
UnUsed2: boolean;
UnUsed3: boolean;
UnUsed4: . boolean;
UnUsed5: boolean;
UnUsed6: boolean;

- 86 -

POS Operating System - Module Ether!0I0 January 15, 1984

UnUsed7:
UnUsedS8:
UnUsed9:

UnUsed!0:
UnUsedl1:
UnUsed!2:
UnUsed!3:
UnUsed14:

CmdInProg:

end;

boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

puSC1kDCB = “uSCIkDCB;

Xerox.

}

const

are PERQ Systems defined.

TRCCAdrMid = 31744;
TRCCAdrHigh = 540;
EBoardOption = 0;

EBoardlO = 1;
{
{ These are some
{ })
const
MinDataBytes

MaxDataBytes
NumDCBs = 16;

Define the constants for the address block supplied to PERQ Systems by

High 16 bits (2 octets) are 02 IC (Hex).
Next 8 bits (! octet) is 7C (Hex).

The low order byte of the second PERQ word as well as the third PERQ word
Currently the low order byte of the second word
is used to define the type of interface. The valid values are:

0 - Interface is on an IO option board.
1 - Interface is on the I0 board

{ 7C hex in the high order 8 bits. }

{ 02 IC hex. }

{ The interface is on an I1/0 Option board. }
{ The interface is on the 1/0 board. }

other useful constants.

46;
1500;

{ Smallest number of data bytes in a
packet. }

{ Largest number of data bytes in a packet.}

{ The number of DCBs, commands, possible at}

{ a single time }

{
{ Define the constants for the multicast command byte.

{}

const

MltCstAll = O;
MltCstNone = #377;
M1tCstAddr = #376;

M1tCstGrp = |

.
?

Receive all multicasts. }

Don’t receive any multicast packets.)}
Return the Physical addr of this device. }
Only receive specified groups. }

P g, i, g

- 87 -

POS Operating System - Module Ether!10I0 January 15, 1984

{
{ These are the procedures exported by this module.
{}

procedure E10Init;
procedure E10I10(Cmd: EtherCommand; Header: pEtherHeader; Buff:

pEtherBuffer;
Stat: pEtherStatus; Bytes: Integer);
procedure E1QWait(Stat: pEtherStatus);
procedure ElIQReset(Ptr: pEtherAdRec);
function ElODataBytes(RecvBits: Integer): Integer;
function E10GetAdr: EtherAddress;
procedure E10State(var NumSend, NumReceive: Integer);
procedure EIOWIO(Cmd: EtherCommand; Header: pEtherleader;
Buff: pEtherBuffer; Stat: pEtherStatus; Bytes: Integer);

{
{ These are the exceptions that may be raised by this module.
{} ‘
exception EIONInited;

Abstract:

This exception will be raised if any procedures in this package
are called before E10Init.

exception EIONReset;

Abstract:

This exception will be raised if any transfer commands are
executed before a E1QOReset is done.

exception E10ByteCount;
Abstract:
This exception is raised if a byte count passed to this interface
is not in the valid range. The number of data bytes in an

Ethernet packet must be in the range 46 <-> 1500, (MinDataBytes
<-> MaxDataBytes).

exception E10DByteError;

Abstract:

This exception is raised if the number of Bits passed to
ElODataBytes does not form a valid packet.

POS Operating System - Module Ether10I0 January iS5, 1984

exception E10BadCommand;
Abstract:

This exception is raised if a bad command is given to any of the
routines in this package.

exception E10TooMany;
Abstract:

This exception is raised if more than NumDCBs commands are
executed at any time.

exception E10STooMany;
Abstract:

This exception is raised if more the client tries to execute more
than one send. '

exception E1OReceiveDone(Stat: pEtherStatus);
Abstract:
This exception is raised when a receive command has finished. It
is raised by the Pascal level interrupt routine for the net. The
exception is only raised when the ethernet exception for data
interrupts has been turned on. The following does the trick:

Import 10 _Unit From IO _Unit; Setting := True;
10SetExceptions(Ether10, IODatalnterrupt, Setting);

Note that process clean up resets the bit on exit of a program.
Parameters:

Stat will be set to the status pointer of the command that
finished.

exception ElONoHardware;.
Abstract:

This exception is raised by E10GetAdr if there is no ethernet
board in the machine.

POS Operating System - Module Ether!0IO January i5, 1984

procedure E10Init;
Abstract:

This procedure is used to intialize the Ethernet module. It must
be called before any other procedure in this package are used.

This procedure is called ONCE at boot time by the 0.S. It MUST
NOT be called by user programs.

Side Effects: This procedure will allocate any memory used by this
module.

procedure E10I0(Cmd: EtherCommand; Header: pEtherHeader; Buff: pEtherBuffer;
Stat: pEtherStatus; Bytes Integer);

Abstract:

This procedure is used to start an Ethernet 1/0 operation and
return.

Parameters:
Cmd is the command that is to be executed.

Header is a pointer to an Ethernet header block. The client must
fill in all fields of this header.

Buff is a pointer to the buffer that is to be sent or filled.
Stat is a pointer to a status block for use during this command.

Bytes is the number of data bytes that are to be transfered. This
value must be between 46 and 1500

Exceptions:
EIONInited: Raised if this procedure is called before Etherlnit.

EIONReset: Raised if this procedure is called before EReset.
E10ByteCount: Raised if Bytes is not in the valid range.

E10BadCommand: This is raised if the command passed is not Send,
Receive or PromisciousReceive.

El0TooMany: is raised if too many commands are executed at a given
time.

E10STooMany: is raised if more than one send command is executed.

POS Operating System - Module Ether10I0 January i5, 1984

procedure E10Wait(Stat: pEtherStatus);
Abstract:
Waits for the completion of some Ethernet request.
Parameters:

Stat is the pointer to the EtherStatus that was provided when the
command was initiated.

Exceptigns: EIONInited: Raised if this procedure is called before
El10Init.

E1ONReset: Raised if this procedure is called before EReset.
procedure E10Reset(Ptr: pEtherAdRec);
Abstract:
This procedure is used to reset the Ethernet interface.
Parameters:

Ptr is a pointer to the address record that is to be used for the
reset.

Exceptions: EIONInited: Raised if this procedure is called before
Etherlnit.

function ElODataBytes(RecvBits: Integer): Integer;
Abstract:

This procedure is used to obtain the number of data bytes that are
in a packet that was received over the network.

Parameters:

RecvBits is the number of bits that were in the packet. This
value will come from the BitsRecv field of the status block.

Results: This function will return the number of data bytes that were
in the packet.

Exceptions:
EIONInited: Raised if this procedure is called before Etherlnit.

EIONReset: Raised if this procedure is called before EReset.
E10DByteError: Raised if the numebr of bits in the packet was not

a multiple of 8 or if the number of data bytes was less than
MinDataBytes.

-9 -

POS Operating System - Module Etherl0I0 January iS5, 1984

function EI10GetAdr: EtherAddress;
Abstract:

This function will return the address of this machine.

Exceptions:
EIONInited: Raised if this procedure is called before E1QInit.

ElONoHardware: Raised if there is no ethernet board in the
machine.

procedure E10State(var NumSend, NumReceive: integer);
Abstract:

This procedure is used to return the internal state of the
Ethernet interface. :

Parameters:
NumSend will be set to the number of Sends that are pending.
NumReceive will be set to the number of receives that are pending.

Exceptions:
EIONInited: Raised if this procedure is called before E10Init.

EIONReset: Raised if this procedure is called before EReset.

procedure EIOWIO(Cmd: EtherCommand; Header: pEtherHeader;
Buff: pEtherBuffer; Stat: pEtherStatus; Bytes: Integer);

Abstract:

Starts an Ethernet 1/0 operation and waits for it to complete.
Parameters:

Cmd is the command that is to be executed.

Header is a pointer to an Ethernet header block. The client must
fill in all fields of this header.

Buff is a pointer to the buffer that is to be sent or filled.
Stat is a pointer to a status block for use during this command.

Bytes is the number of data bytes that are to be transfered. This
value must be between 46 and 1500

Excepéig?s: EIONInited: Raised if this procedure is called before
10Init.

EIONReset: Raised if this procedure is called before EReset.

-92 -

POS Operating System - Module Ether10I0 January 15, 1984

E10ByteCount: Raised if Bytes is not in the valid range.
E10BadCommand: This is raised if the command passed is not’
Send, Receive or PromisciousReceive.

El0TooMany: is raised if too many commands are executed at a given
time.

E10STooMany: is raised if more than one send command is executed.

-93 -

POS Operating System -~ Module EtherInterrupt January 15, 1984

module EtherInterrupt;
Abstract:

This module provides the interrupt service for the 10 MBaud
ethernet.

Written by: Don Scelza.
Copyright (C) PERQ Systems Corporation, 198l
{ BHERMABRRRARXRRRRANE) EXPOrtS { HMRRRBRREHRXHRNRRNX)
imports Ether10I0 from Etheri0IO0;
var
StackPointer: Integer;
DCBStack: arrayll..NumDCBs] of pEtherDCB;
RListHead, RListTail, SListHead: pEtherDCB;
SendsPosted, RecvsPosted: Integer;
function PopDCB: pEtherDCB;
procedure PushDCB(Ptr: pEtherDCB);
procedure E10Srv;
function PopDCB: pEtherDCB;
Abstract:
Get the next free DCB from the stack.
Results: Return a pointer to the next free DCB.
Side Effects: Move the stack pointer.
procedure PushDCB(Ptr: pEtherDCB);
Abstract:
Push a free DCB onto the DCB stack.
Parameters:
Ptr is a pointer to the DCB that is to be pushed onto the stack.

Side Effects: Move the stack pointer.

- 94 -

POS Operating System - Module EtherInterrupt January 15, 1984

procedure E10Srv;
Abstract:
This is the 10 megabuad Ethernet interrupt routine.

Exceptions: This procedure raises El0ReceiveDone if a receive
completes.

POS Operating System - Module EtherTime January 15, 1984

module EtherTime;
Copyright (C), 1982, 1983 PERQ Systems Corporation.
Written by: Mark G. Faust

Version Number V1.2
{ RN HRRHARRNXX } exports { RRERNHRBHININNNNR }

function GetEtherTime(TimeOut :integer) :string;
function GetEtherTime(TimeOut :integer) :string;
Abstract:
Get the current time from an EtherNet time server. Return a Perq

time string in standard format. Time out after specified number
of jiffies. If we time out then we return the null string.

POS Operating System - Module Except January 15, 1984

module Except;

Except - Perq Pascal Exception Routines.
J. P. Strait 10 Dec 80.
Copyright (C) PERQ Systems Corporation, 1980, 1981, 1982, 1983.

Abstract:

Module Except provides the following things:
1) Definitions of the microcode generated exceptions.

2) A procedure to tell the microcode which segment number these
exceptions are defined in.

3) The default handler of all exceptions. The compiler enables
this handler in every main program.

4) A Pascal routine to search the stack in when an exception is
raised.

Design: The file Except.Dfs is included into Perq.Micro as well as
into this module. It defines routine numbers for the exceptions
generated by the microcode. Note that there must be agreement
between these constants and the routine numbers of the exception
definitions. No program checks these--if you add or remove
exception definitions you must be sure to update Except.Dfs in the
appropriate way.

The routine number of RaiseP is also defined in Except.Dfs as 0.
Since the microcode must know this, it is strongly suggested that
it not be modified.

The routine number of InitExceptions is not needed by the compiler
or Perq.Micro, but it has been assigned routine number 1 so that
its number will not change when new exceptions are defined. This
means that new exceptions may be defined without requiring that
the operating system be re-linked.

Version Number V3.1

exports

const ExceptVersion = “3.1°;

procedure RaiseP(ES, ER, PStart, PEnd: Integer);
procedure InitExceptions;

- 97 -

POS Operating System - Module Except . January 15, 1984
exception Abort(Message: String);

exception Dump(Message: String);

exception XSegmentFault(S1,S2,S3,54: Integer); { segment fault)}
exception XStackOverflow; { stack overflow }
exception DivZero; { division by zero }

exception MulOvfl; { overflow in multiplication }

exception Strindx; { string index out of range }

exception Strlong; { string to be assigned is too long }

exception InxCase; { array index or case expression out of range }
exception STLATETooDeep; { parameter in SILATE instruction is too large }
exception UndfQcd; { execution of an undefined Q-code }

exception UndfInt; { undefined device interrupt detected }

exception IOSFlt; { segment fault detected during 1/0 }

exception MParity; { memory parity error }

exception EStack; { E-stack wasn’t empty at INCDDS)}

exception OVfILI; { Overflow in conversion to integer from Long Integer }
exception OverReal; { floating point overflow)}

exception UndeReal; { floating point underflow }

exception RealDiv0; { floating peint division by zero }

exception Real2Int; { floating point real to integer overflow }

exception UnlmplQCode; { QCode is defined, but not implemented in this
interpreter }

var ExcSeg: Integer;
procedure InitExceptions;
Abstract:
InitExceptions tells the microcode what segment number to use when
raising its own exceptions. The segment number is the one that
the system assigns to this module.

Side affects: ExcSeg is set to the current segment number. The
current segment is kept resident.

POS Operating System - Module Except January iS5, 1984

procedure RaiseP(ES, ER, PStart, PEnd: Integer);
Abstract:

RaiseP is called to raise an exception. The compiler generates a
call to RaiseP in response to

raise SomeException(original parameters)
in the following way

Push original parameters onto the MStack.
RAISE SegmentNumber(SomeException) RoutineNumber(SomeException)
ParameterSize

The microcode calls RaiseP in the following way:
Push parameters onto the MStack if appropriate.
ParameterSize := WordsOfParameters.

Error := ErrorNumber, Goto(CallRaise).

where CallRaise does the following:

SaveTP := TP.

Push ExcSeg onto the MStack.

Push Error onto the MStack.

Push SaveTP-ParameterSize+! onto the MStack.
Push SaveTP+! onto the MStack.

call RaiseP.

Parameters:
ER - Routine number of the exception to be raised.
ES - Segment number of the exception to be raised.

PStart- Pointer to the original parameters (as an offset from the
base of the stack). ,

PEnd - Pointer to the first word after the original parameters
(as an offset from the base of the stack).

Calls: Appropriate exception handler or HandleAll.

Design: See the "PERQ QCode Reference Manual, Q-Machine Architecture”
for a description of the format of exception enable blocks and the
format of variable routine descriptors.

RaiseP searches the exception enable list of each routine in the
dynamic chain. When it finds one that matches ER and ES it
searches the dynamic chain again to see if the specified handler
is already active. If it is active, RaiseP continues searching
the exception lists and dynamic chain where it left off. This is
done in order to allow a handler to re-raise the same exception,
and to prevent unlimited recursion in an exception handler that
has a bug.

If an exception handler is found, the original parameters are
pushed onto the MStack and the handler is called with CALLV.

If no excéption handler is found, HandleAll is called.

- 99 -

POS Operating System - Module Except January 15, 1984

¥%% RaiseP may not contain any exception handlers.

%%% RaiseP must be guaranteed to be resident.

- 100 -

POS Operating System - Module FileAccess January 15, 1984

7

module FileAccess;
Abstract:

Module to handle reading, writing, entering and deleting files
independant from the directory structure.

Written by the CMU Spice Group

Version Number V1.8
{ RRRERRERRRIRRRXNXK } exports { JERERMERRIRERINRINRIERRHRINERIN }

imports Arith from Arith;
imports DiskIO from DisklO;
imports AllocDisk from AllocDisk;
functionIDCreateSpiceSegment(partition : integer; kind : SpiceSegKind) :
SeglID; '
procedu&e DestroySpiceSegment(id : SegID);
procedure TruncateSpiceSegment(id : SegID; len : integer);
procedure ReadSpiceSegment(id : SeglD; firstblk,numblks : integer;
ptr : ptrDiskBuffer);
procedure WriteSpiceSegment(id : SegID; firstblk,numblks : integer;
ptr : ptrDiskBuffer);
procedure Index(logblk : integer; var indblk,indoff : integer);

Exception BadLength(len: integer);
Abstract:
Raised if try to truncate file to a length < 0
Parameters:
len is bad length
Exception NotAFile(id: SeglD);
Abstract:

Raised when an operation is attempted and the SegID passed does
not seem to be the id for a valid file

Parameters:

id is the bad id

- 101 -

POS Operating System - Module FileAccess January 15, 1984

Procedure Index(logblk : integer; var indblk,indoff : integer);

Abstract:

Find the index block and the offset from the top of the block for
a logical block of a file

Parameters:
logBlk - the logical block of the file to look up; may be negative

indBlk - the logical block number of the index block which holds

the address for logblk
indoff - the offsetin indBlk to use in reading the address (the
array index to use in DiskBuffer®.Addr). It is correctly set

even if the indBlk is the FIBlk

function CreateSpiceSegment(partition : integer;
kind : SpiceSegKind) : SegID;

Abstract:
Create a new empty file on partition specified

Parameters:

partition is the partition in which to allocate file; kind is the
type of segment

Returns: ID of file created

Errors: Raises NotAFile if block at id is not a valid FIBlk
Procedure DestroySpiceSegment(id : SeglID);
Abstract:
Delete a file

Parameters:
id is the Segld of file to delete

SideEffects: removes id from filesystem

Error;iBTEises NotAFile if block at id does not seem to be a valid

Procedure TruncateSpiceSegment(id : SegID; len : integer);

Abstract:

Removes blocks from file to make the new length len

Parameters:

id is the Segld of file; len is the new length (one greater than
the last logical block number since files start at 0)

- 102 -

POS Operating System - Module FileAccess January 15, 1984

SideEffects: Shortens the file

Errors: Raises Badlength is length to truncate file to is < O Raises
NotAFile if block at id does not seem to be a valid FIBlk

Procedure ReadSpiceSegment(id : SegID; firstblk,numblks : integer;
ptr : ptrDiskBuffer);

Abstract:

Reads one or more blocks from file

Parameters:
id - the Segld of file;
firstBlk - the logical blk # of first to read
numBlks - the number of blocks to read
ptr - where the data should be put NOIE: If the blocks
specified to read don‘t exist; ptr* is filled with zeros

Errors: Raises NotAFile if block at id is not a valid FIBlk

Procedure WriteSpiceSegment(id : SegID; firstblk,numblks : integer;
ptr : ptrDiskBuffer);

Abstract:
Writes one or more blocks onto file
Parameters:
id - the Segld of file;
firstBlk - the logical blk # of first to write
numBlks - the number of blocks to write
ptr - where the data should come from

SideEffects: Changes the data in the file and may cause new blocks to
be allocated and file length changed

Errors: Raises NotAFile if block at id is not a valid FIBlk

- 103 -

POS Operating System - Module FileDefs January 15, 1984

module FileDefs;
Abstract:

Defines some constants and types needed by various people so
FileSystem doesn’t need to import DiskIO in its export section
Written by: Brad A. Myers 3-Mar-81
Copyright (C) 1981 PERQ Systems Corporation

Version Number V1.2

exports

Imports GetTimeStamp from GetTimeStamp; {Using TimeStamp}

const
DBLZERO = nil; {a two word 0}
type
FSBit8 = (0..255;
FSBit16 = integer;
FSBit32 = “integer; {will be a long when compiler knows about
them)
Const DISKBUFSIZE = 256; {defined by hardware, 256 words per sec}
type SeglD = FSBit32; ({In SpiceSeg, the virtual address of the
-1 block of a file}
DiskAddr = FSBit32; {The virtual address of a DiskBlock)
SimpleName = string(25]; {only the filename in the directory)
PathName = stringl(1001; (ful% name of file with partition and
dev
PartialPathName = stringl80]; {file name including all directories}
FSOpenType = (FSNotOpen, FSOpenRead, FSOpenWrite, FSOpenExecute);
FSDataEntry = packed record
FileBlocks : integer; {Size of file in blocks}
FileBits : 0..4096; (g?geer of bits in last
FileSparse : Boolean; {true if can be sparse}
FileOpenHow : FSOpenType; {howOpen}
FileCreateDate : TimeStamp;

FileWriteDate
FileAccessDate
FileType
FileRights
FileOwner
FileGroup
Filename
end;
ptrFSDataEntry = “FSDataEntry;

: TimeStamp;
: TimeStamp;

: integer;
: integer;
: FSBitS8;
: FSBit8;

{see FileType.pas}
{protection code}
{Userld of file owner}
{Groupld}

: PartialPathName;

- 104 -

POS Operating System - Module FileDir January 15, 1984

module FileDir;
Abstract:
The directory structure for PERQ FileSystem
Written by: CMU Spice Group

Version Number V2.6
{ BN HHINAIMMAMENRRRARX }Exports { RIS INRERRIIIINR R HRNANX)

imports FileDefs from FileDefs;
function GetFileID(name : PathName) : SeglD;
function PutFileID(var name : PathName; id : SegID) : boolean;
function DeleteFileID(name : PathName) : SeglD;
function GetDisk(var name : PathName; var partition : integer) : boolean;
var

DefaultPartitionName : SimpleName; (includ?s device name and ends in

a 0'>0'

DefaultDeviceName : SimpleName; {ends in a colon)

Function GetDisk(var name : PathName; var partition : integer) : boolean;
Abstract:

Given a name, remove the device and partition specification and
find the partition number

Parameters:
name - the full file name to parse; the device and partition are
optional. The device and partition if there are removed from
the name string;
partition - set to the partition specified or the default
Returns: False if specified device or partition malformed or not there
SideEffects: Mounts the partition if not already
Calls: FindPartition, MountPartition
Function GetFileID(name : PathName) : SegID;
Abstract:
Find the SegID for name (does a lookUp)
Parameters:

name - the full name (including all directories and optional
device and partition) of the file to look up

- 105 -

POS Operating System - Module FileDir January 15, 1984

Returns: The SegID of the file or DBLZERO if not there or mal-formed
Calls: ParseFilename, GetRootDirlID, GetIDFromDir
Function PutFileID(var name : PathName; id : SegID) : boolean;
Abstract:
enters name with SegID id into a directory
Parameters:
name - the full name (including all directories and optional
device and partition) of the file to enter; it is changed to
remove all ">..>" and ">.>"s and remove the device (the name
returned can be entered in the FilelID block’s
FSData.Filename).

id - SeglD of file;

Returns: True if file successfully entered; false if device, partition
or a sub-directory is mal-formed NOTE: %%%IT IS ILLEGAL TO CALL
PutFileID FOR A NAME THAT IS ALREADY IN THEX%% %¥XDIRECTORY BUT
THIS IS ONLY SOMETIMES CAUGHT IF ATTEMPTED%%%

Calls: ParseFilename, GetRootDirlD, GetIDFromDir, PutIDInDir

Function DeleteFilelD(name : PathName) : SeglD;

Abstract:

Removes the directory entry for name

Parameters:

name - the full name (including all directories and optional
device and partition) of the file to remove from directory

Returns: SeglD of file removed from Directory or DBLZERO if not there
or part of name is mal-formed

Calls: ParseFilename, GetRootDirID, GetIDFromDir

- 106 -

POS Operating System - Module FileSystem January 15, 1984

module FileSystem;

Abstract:

Spice Interim File System.

Written by: Richard F. Rashid

February 24, 1981

Copyright (C) 1981 - Carnegie-Mellon University
Version Number V7.4

{ RRRRRRRXXRARRRRRXXXRKR) EXPOrts { RRERRERXRIHREERINRER)}
imports FileDefs from FileDefs;

const
FSversion - = ‘7.3"; File system version number }
BlksPerFile =#077777; Max blocks in each file }
FirstBlk =0; Block number of the first data block }
in a file)}
LastBlk =#077776; Blockfp?mbeg of the last data block }
in a file.
FIBlk =-1; Block number of the File Information Block }

Size of the bootstrap area on disk--the }
first n blocks on the disk. the microcode }
boot area is 60 blocks, the Pascal boot)
area is 128 blocks (3Z).)}

BootLength =60 + 128;

StartBlk =BootLength;{ The b}ka n?mber of the FIBlk of the first}
user file.
SysFile = -1; File ID of the system area on disk. }

SEARCHSIZELIST = §; Max number of directories on search list. }

type
DirBlk= Record { Record for reading disk blocks }
Case Integer Of

Buffer:Array(0..255] Of Integer

)3
3: (

) ByteBuffer: Packed Array [0..511] of FSBit8
End;

PDirBlk= “DirBlk;

FilelD = integer;
BlkNumbers = integer;
SearchList = arrayl!..SEARCHSIZELIST] of PathName;
ptrSearchList = “SearchList;
var
FSDirPrefix:PathName; (curr?nt default directory including device and
part

FSSysSearchList: SearchList;

- 107 -

POS Operating System - Module FileSystem January 15, 1984

function FSLookUp(FileName:PathName;Var BlkInFile,BitsInLBlk: Integer):
FilelD; {uses current system search list}

function FSLocalLookUp(FileName:PathName; Var BlkInFile,BitsInLBlk:
Integer): FilelD; {doesn’t use any search lists})

function FSSearch(var slist : SearchList; var FileName : PathName;
var BlkInFile, BitsInLBlk: integer) : FilelD;

{uses specified search list instead of system one; is
var so no copying; changes FileName to be full
filename actually used}

function FSEnter(FileName:PathName): FilelD;

procedure FSClose(UserFile:FilelD; Blks,Bits:Integer);

procedure FSBlkRead(UserFile:FileID; Block:BlkNumbers; Buff:PDirBlk);

procedure FSBlkWrite(UserFile:FilelID; Block:BlkNumbers; Buff:PDirBlk);

procedure FSInit;

procedure FSMount(disk : integer);

procedure FSDismount(disk : integer);

procedure FSSetPrefix(prefixname : PathName); (FSSetPrefix just assigns
the vble; use
FileUtils.FSSetPath to do
processing on new path}

procedure FSGetPrefix(var prefixname : PathName);

function FilelDtoSegID(id : FileID) : SegID;

function SeglIDtoFilelID(id : SegID) : FilelD;

procedure FSSetupSystem(bootchar: integer);

procedure FixFilename(var filename : PathName; nulliserror : boolean);

Function FSIsFSDev(name: PathName; var devName: String): integer;

Exception FSNotFnd(name: PathName);

Abstract:

Raised if file looked up is not found. If this exception is not
handled by client, the lookup or search will return zero

Parameters:
name is the name not found
Exception FSBadName(name: PathName);
Abstract:
Raised if file entered is illegal because: 1) the device or
partition specified is not valid 2) a directory name specified
does not exist 3) the length of the simpleName is > 25 characters

If this exception is not handled by the client, the Enter will
return zero

Parame;ers:
name is the name that is illegal

Function FSInternalLookUp(FileName:PathName; Var

- 108 -

POS Operating System - Module FileSystem January 1§, 1984
BlkInFile,BitsInLBlk:Integer):
FilelD;
Exception FSDirClose;
Abstract:
Raised if attempt to FSClose a directory file. This is usually a
bad idea since directories are spare files with an invalid length
field.
RESUME: Allowed. Will close the file as if nothing had happened.

const
FSDebug = false;

Function SegIDtoFileID(id : SegID) : FilelD;
Abstract:
Convert a two word Segld into a one word filelD
Parameters:
id is a two word seglD
Returns: A one word FileID; it may be pos or neg or zero
Function FileIDtoSegID(id : FilelD) : SeglD;
Abstract: ‘
Convert a one word FileID into a two word SeglD
Parameters:
id is a one word FilelD
Returns: a two word SegID
Procedure FSInit;
Abstract:

Initializes the FileSystem; call BEFORE FSSetUpSystem; Also
initialize SegSystem and DirSystem

SideEffects: Initializes; sets global Initialized to true; sets Prefix
and Search list to null

- 109 -

POS Operating System - Module FileSystem January 15, 1984

Procedure FixFilename(var filename : PathName; nulliserror : boolean);
Abstract:

Makes fileName a full path name by adding as many defaults as
necessary

Parameters:

filename is name to fix; it is modified to have the full path name
as follows:

(dev):(rest) - no change

:(rest) - adds DefaultDevice from AllocDisk to front

>(rest) - adds DefaultPartition from AllocDisk to front

(rest) - adds FSDirPrefix to front; if nulllsError-then no
change to name if fileName = °’ else changes °° to
FSDirPrefix

Errors: allows STRLong to pass through from PERQ_String; This means
that fileName is invalid

Procedure FSMount(disk: integer);
Abstract:
Mounts the disk specified and prints all partitions
Parameters:
Disk is device to mount (O=HardDisk, I=Floppy)
Calls: DeviceMount and DisplayPartitions
Procedure FSDismount(disk: integer);
Abstract:
Dismounts the disk specified and prints all partitions
Parameters:
Disk is device to dismount (O=HardDisk, 1=Floppy)
Calls: DeviceDismount and DisplayPartitions
Procedure FSSetPrefix(prefixname : PathName);
Abstract:
Sets the default pathName

- 110 -

POS Operating System - Module FileSystem January 5, 1984

Parameters:
prefixname is new name; no checking is done
SideEffects: changes FSDirPrefix
Procedure FSGetPrefix(var prefixname : PathName);
Abstract:
Returns the default pathName

Parameters:

prefixname is current name; it is set with current value

Function FSInternalLookUp(FileName:PathName;Var
BlkInFile,BitsInLBlk:Integer):FilelD;

Abstract:

Does a lookup of FileName in the current path only.

Parameters:

FileName is a filename. BlkInFile and BitsInLBlk are set with the
number of blocks in the file and the number of bits in the last
block respectively.

Returns: O if file doesn’t exist; else the FilelD of the file
Errors: This procedure does not raise any errors

SideEffects: Sets the FileAccessDate of the file

Calls: FixFileName, GetFilelID, GetTStamp, SegIDToFilelD

Function FSLocalLookUp(FileName:PathName; Var BlkInFile,
BitsInLBlk:Integer): FilelD;

Abstract:

Does a lookup of FileName in the current path only.

Parameters:

FileName is a filename. BlkInFile and BitsInLBlk are set with the
number of blocks in the file and the number of bits in the last
block respectively.

Returns: O if file doesn’t exist; else the FilelID of the file

- 111 -

POS Operating System - Module FileSystem January 15, 1984

SideEffects: Sets the FileAccessDate of the file

Errors: Raises FSNotFnd if file not there (if not caught, then lookup
returns 0)

Calls: InternalLookUp

Function FSSearch(var slist : SearchList; var filename : PathName; var
blkinfile,bitsinlblk: integer) : FilelD;

Abstract:

Does a lookup of FileName straight first and then with each of the
names in slist on the front.

Parameters:

slist - a searchList; any non-"’ entries are assumed to be paths
and are put on the front of the filename. The first one to be
tried is slistll1l. The first match is the one used; No checking
is done on the validity of the entries in slist

filename - the file to be looked up; it is changed to be the full
namedof the file if found. If fileName is empty then file not
found.

BlkInFile and BitsInLBlk - set with the number of blocks in the
file and the number of bits in the last block respectively.

Retur¥§i 0 if file doesn’t exist in any path; else the FileID of the
ile

SideEffects: Sets the FileAccessDate of the file

Errors: Raises FSNotFnd if file not there (if not caught, then lookup
returns 0)

Calls: FSLocallookUp, Concat

Function FSLookUp(FileName: PathName; Var BlkInFile,
BitsInLBlk: Integer): FilelD;

Abstract:

Does a lookup of fileName first in the current path and then in
each of the entries of the system search list.

Parameters:

filename is the file to be looked up; BlkInFile and BitsInLBlk are
set with the number of blocks in the file and the number of bits
in the last block respectively.

- 112 -

POS Operating System - Module FileSystem January 5, 1984
Returnsi 0 if file doesn’t exist in any path; else the FileID of the
file
SideEffects: Sets the FileAccessDate of the file

Errors: Raises FSNotFnd if file not there (if not caught, then lookup
returns 0)

Calls: FSSearch with FSSysSearchList as the sList
Function FSEnter(FileName:PathName): FileID;»
Abstract:
Enters the file in the current path.
Parameters:

filename is the file to be entered. It may or may not exist; if
not exists then is created;

Returns: 0 if file can’t be created because part of its name is invalid
(e.g. the device, partition or directory specified doesn’t exist)
else the FileID of the file ‘

SideEffects: Creates a file if necessary and enters it into the
directory; if creating, then sets size to zero and create date;
Sets type to O (UnknownFile); whether or not creating; sets
WriteDate and AccessDate

Errors: Raises FSBadName if name passed is illegal due to a device,
partition, or directory name in path not existing or target name
is longer than 25 characters or illegal in some other way. If
this exception is not caught, Enter returns zero.

Procedure FSClose(UserFile:FileID; Blks,Bits:Integer);

Abstract:

Closes a file (setting size).
Parameters:

UserFile is ID of file to close; Blks is the size of the file in
blks and bits is the number of bits in the last block;

SideEffects: Truncates file to size specified; does a FlushAll

Errors: Raises FSDirClose if attempt to close a directory file. If
resume from this exception, then closes normally.

- 113 -

POS Operating System - Module FileSystem January 15, 1984

Procedure FSBlkWrite(UserFile:FileID; Block:BlkNumbers; Buff:PDirBlk);
Abstract:
Writes one block onto a file.
Parameters:
UserFile is ID of file to write on Block is number of block to
g;igetﬁgt??};ngtaglggﬁo); Buff is buffer holding data to write
SideEffects: Changes the data of block Block
Calls: WriteSpiceSegment
Procedure FSBlkRead(UserFile:FilelD; Block:BlkNumbers; Buff:PDirBlk);
Abstract:

Reads one block of a file. If block specified is not part of the
file then simply zeros the buffer

Parameters:

UserFile is ID of file to read from Block is number of block to
read (starting at zero); Buff is buffer to copy data into

Calls: ReadSpiceSegment
Procedure FSSetupSystem(bootchar: integer);
Abstract:

Call this after FSInit to set up the system and print a lot of
messages

Parameters:
boot char is ord of key held down to boot

SideEffects: Mounts device from which booted; Mounts all of its
partitions Sets AllocDisk’s DefaultDeviceName and
DefaultPartitionName. Sets FSDirPrefix to be root of current
Partition and adds that path to the bottom of the search list

Function FSIsFSDev(name: PathName; var devName: String): integer;
Abstract:

deteTmine vhether name is a file that the filesystem knows how to
handle

- 114 -

POS Operating System - Module FileSystem | January 15, 1984

Parameters:

name is a name of a file; devName will be assigned the device name
IE NOTIFSDevice DevName will be in upper case and does NOT contain
the colon.

Returns: O if name doesn’t contain a : or if dev is one the filesystem
knows about; the index of the colon otherwise

- 118 -

POS Operating System - Module FileTypes January 15, 1984

module FileTypes;

This module exports the types put in the FileType field of File FIBs. The
types are stored as integers. PERQ Systems reserves the first 512 types for
their use. Customers are encouraged to choose numbers > 5§12 if they invent
new file types

Written by Brad A. Myers Feb. 2, 198!

Copyright (C) 1980, 1981, 1982 PERQ Systems Corporation
Version Number V.6
ONMNNNNNNNNNNNNNNNNNNNNNNNN Y EXPORTS (/77/77777777777777777777777)

Const
UnknownFile = 0;
SegFile = [;
PasFile = 2;
DirFile = 3;

ExDirFile = 4;

FontFile = §5;

RunFile = 6;

TextFile = 7; {for non-Pas text files}

CursorFile = 8; {cursor bin files}

BinaryFile = 9;

BinFile = 10; {microcode output}

MicroFile = 11;

ComFile = 12;

RelFile = 13;

IncludeFile = 14; {included in a pas file}

SBootFile = 15; {system part of boot file}

MBootFile = 16; {microcode part}

SwapFile = 17; {a file us?d for swapping by compiler or editor; length
not set

BadFile = 18; {created by the scavenger}

ForFile = 19; { Fortran source file

DatFile = 20; { Fortran unformatted data file }
PsgFile = 21; { Fortran pre-seg file }

ExtFile = 22; { Fortran external definition file }
LibFile = 23; { Fortran library file }

TempFile = 24; { Created by Temper }

- 116 -

POS Operating System - Module FileUtils January 15, 1984

module FileUtils;
Filesystem utilities not needed by the system
Written by Brad Myers. March 5, 1981.

Version Number V1.12
{ RRXXRXRERAARAHANNRKR] EXpOrts { ¥XMHERERRRRRRRRRRRRR)}

imports FileSystem from FileSystem;

type

ptrScanRecord = “ScanRecord;

ScanRecord = record
InitialCall : boolean;
Blk ¢ DiskAddr;
Entry : Integer;
DirName : PathName;

end;

Procedure FSDelete(filename: PathName);
Function FSScan(scanptr : ptrScanRecord; var name : SimpleName;
var id : FileID) : boolean;
Procedure FSRename(SrcName, DestName: PathName);
Function FSMakeDirectory(var DirName: PathName): FilelD;
Procedure FSSetSearchList(sList: SearchlList);
Procedure FSPopSearchltem(var sList: SearchList);
Procedure FSPushSearchItem(name: PathName; var sList: SearchList);
Procedure FSAddToTitleLine(msg: String); {adds as much of msg as possible to
title line after the current path}
Exception DelError(FileName: PathName);

Abstract:
Raised when can’t delete file (because not there)
Parameters:
FileName is file that can’t delete
Exception RenError(msg: String; FileName: PathName);
Abstract:
Raised when can’t rename file
Parameters:

msg is reason can’t rename and fileName is file with the problem.
To print message, use

"WriteLn(’%x °,msg,filename);"

- 117 -

POS Operating System - Module FileUtils January 15, 1984

Exception MKDirErr(msg: String; dirName: PathName);

Abstract:
Raised when can’t make a directory because 1) a file named dirName
already exists
2) dirName cannot be entered (bad subdir part)
3) dirName is empty
4) dirName is ROOT.DR (reserved directory name)

Parameters:

msg explains problem with makedir attempt; dirName is name
attempted to use. Use

"WriteLn(‘%% °,msg,dirName);"
Exception SrchWarn(fileName: PathName);
Abstract:

Raised if try to Pop last item or push into last hole of the
Search List

Parameters:
** if Pop; name of item trying to push if Push
Resume: ALLOWED; if resume {hen does the operation anyway

Exception SrchErr(fileName: PathName);

Abstract:

Raised if try to Pop empty list or push onto full list for the
Search List

Parameters:

x4

if Pop; name of item trying to push if Push
Resume: NOT allowed

Function FSExtSearch(var SList : SearchList; Extensions: String;
var FileName : PathName;

var BlksInFile, BitsInLBlk: Integer) :
FilelD;

- 118 -

POS Operating System - Module FileUtils January {5, 1984

Exception RenToExist(fileName: PathName);

Abstract:

Raised at attempt to rename an existing file. Not raised if
renaming a file to its own name (no-op).

Parameters:
fileName - new name that already exists

Resume: ALLOWED; If you wish to rename anyway; just continue and
FSRename will delete the DestName; In this case; you should be
prepared to accept DelError;

Exception RenDir(fileName: PathName);

Abstract:

Raised when try to rename a directory.

Parameters:
fileName - name of the source directory.

Resume: ALLOWED; If you wish to rename anyway; just continue and
FSRename will do the operation. RenToExist etc. may still be
raised.

Procedure FSGetFSData(id: FilelD; pData: ptrFSDataEntry);
procedure FSSetFSData(id: FilelID; pData: ptrFSDataEntry);
procedure FSRemoveDots(var fname: PathName);

Procedure FSDelete(filename : PathName);

Abstract:

Deletes filename from directory and filesystem; fileName is
deleted from the current path only (not search lists) if it
doesn‘t contain device or partition info

Parameters:
filename is the name of the file to be deleted

SideEffects: filename is deleted from the current directory if it
exists; if not then nothing is done (and the user is not notified)

Calls: DeleteFilelID; DestroySpiceSegment

Errors: Raises DelError(fileName) if can’t delete file

- 119 -

POS Operating System - Module FileUtils January 15, 1984

Procedure FSRename(SrcName, DestName: PathName):

Abstract:

Changes the name of SrcName to DestName; both are in the current
path (not search lists) if not fully specified

Parameters:

SrcName is the name of the file to change and DestName is the name
it should be given

Returns:)) ,
True if rename is successful; false if can’t be done because:

1) - destName already exists

2) - SrcName and destName are in different partitions
3) - SrcName doesn’t exist

4) - SrcName or DestName is malformed

SideEffects: The name of the file corresponding to SrcName is changed
Calls: DeleteFileID; DestroySpiceSegment

Errors: Raises RenError(msg, fileName) - if can’t rename file where
message explains why (do "Write(’ %% °,msg,fileName)” in handler)
Raises RenToExist(DestName) - if filename already exists; If you
wish to rename anyway; just continue and FSRename will delete the
DestName; In this case; you should be prepared to accept DelError;

Function FSScan(scanptr : ptrScanRecord; var name: SimpleName;
var id : FileID): boolean;

Abstract:

At each call returns the next entry in a directory. The names
returned are in random order.

Parameters:

scanPtr is a pointer to a ScanRecord which controls the scan. At
the first call, scanPtr*.InitialCall should be set to true and
scanPtr®.dirName should be set to the directory to scan through.
No fields should be modified by the caller after the initial
setting. The dirName field of the scanPtr record is modified to
contain the Full path name of the directory. name is set to the
name of the file found on this call and id is its filelD; scanPtr
is modified after each call so the next call will return the next
name in the directory

Returns: True if a valid name and id returned; false if the directory
has been exhausted in which case name and id are NOT valid

- 120 -

POS Operating System - Module FileUtils January i5, 1984

Function FSMakeDirectory(var dirName: PathName): FilelD;
Abstract:
Create a new directory named dirName.

Parameters:

DirName is the name of the directory to create; the name is
changed to be the full path name of the directory created

Returns: The fileID of the directory

SideEffects: Creates a file named dirName (appending a ".DR" to end if
not there. Sets the FileType field to DirFile; and sets the
FileBits to 4096

Errors: Raises MKDirErr(msg, dirName) if 1) a file named dirName
already exists 2) dirName cannot be entered (bad subdir part) 3)

dirName is empty 4) dirName is ROOT.DR (reserved directory name)
where msg describes error. Do not continue from this signal

Procedure FSSetSearchList(sList: SearchList);
Abstract:
Assign the system search list.

Parameters:

sList is new search list. It is a bad idea to not include a
partition which contains a full set of system files

SideEffects: Changes system search list
Procedure FSPopSearchltem(var sList: Searchlist);
Abstract:
Removes the most recent item from the search list
Parameters:
sList is search list to pop from (it is modified)
Errors: Raises SrchWarn(’°) if try to pop last item; if continue from

it then pops it anyway; Raises SrchErr(°") if list empty and try
to pop; don’t continue from this one

- 121 -

POS Operating System - Module FileUtils January iS5, 1984

Procedure FSPushSearchltem(name: PathName; var sList: SearchList);

Abstract:
adds name to the front of the search list

Parameters:

name is new name to add to the front of the search list searchList
is modified to have name at front

Errors: Raises SrchWarn(name) if try to push into last item; if
continue from it then pushes it anyway; Raises SrchErr(name) if
list full and try to push; don’t continue from this one

Environment: Assumes oldest item in list is at high position (e.g. 5)

Procedure FSAddToTitleLine(msg: String);

Abstract:

adds as much of msg as possible to title line after the current
path which is truncated to 35 characters

Parameters:
msg is string to be displayed. The first 43 characters of it are
displayed

Side Effects: Changes current window's title line

Procedure FSGetFSData(id: FilelD; pData: ptrFSDataEntry);

Abstract:
Returns the FSDataEntry description of a file

Parameters:

id is the FileID for the file that data wanted for pData is a
pointer to a data block to which the FSData is copied. Memory for

this pointer must be allocated before the call
Procedure FSSetFSData(id: FileID; pData: ptrFSDataEntry);

Abstract:
Changes the FSDataEntry of a file

Parameters:

id is the filelD of the file to be modified pData is the
FSDataEntry to set id to. The entire FSDataEntry description of
id is changed, so the user should use FSGetFSData to read the

FSDataEntry and then change the desired fields only

- 122 -

POS Operating System - Module FileUtils January iS5, 1984

Side Effects: Changes the FSDataEntry for id

Function FSExtSearch(var SList: SearchList; Extensions: String;
var FileName: PathName; var BlksInFile, BitsInLBlk: Integer): FilelD;

Abstract:

FSExtSearch performs a breadth-first lookup of a file using a
specified searchlist and a list of extensions. The search order
is as follows: 1) Try the name with each extension in the current
directory. 2) Repeat steps | in each path specified in the
searchlist. If the file is found, the FileName is changed to be
the full file name actually found.

Parameters:
SList - Searchlist to use,
Extensions - List of extensions to try with a single space after

each extension. For example, °.Pas .Micro .Cmd .Dfs °. The
string must have a single trailing space. A single leading
space or a pair of adjacent spaces causes the function to
look for the file exactly as typed (no extension appended).
Extra spaces are not allowed. If Extensions does not end in
a space, then one is added.

FileName - Name of file to find, set to be the full name of
the file that was actually found.

BlksInFile - Length of file in blocks.

BitsInLBlk - Bits in last block of file.

Returns: 0 if file not found or id of file
Errors: Raises FSNotFnd if file not found
Procedure FSRemoveDots(var fname: PathName);
Abstract:

Removes "."s and ".."s from file name leaving full name
Parameters:

fname is file name. It is changed to not have dots.

- 123 -

POS Operating System - Module FTPUtils January 15, 1984

module FTPUtils;
File Transfer Program - Code.

Copyright (C) 1980, 1981, 1982
PERQ Systems Corporation

Abstract:

This file contains the code portions for the File Transfer
Program.

Version Number V6.4
{ JEOEREEIIEINIEIDE M IENNNN } Exports { JEERNNRNNMNERININNNRK)

imports Ether1010 from Ether1010;

Type
FTPPacket = Record
Cmd: Char;
ByteCount: Integer;
CheckSum: Integer;
Case Integer Of
1: (Buffer: Packed Array [0..255] of Char);
2: (ErrMsg: String); { Eyte ? is length
yte
3: (SrcFile: String;
DestFile: String);
4: (Name: String);
5: (Add: EtherAddress);
End;
ErrStatus = (OK, TimeOut, ChkSumErr, RawlOErr);
TransMode = (PERQPERQ, PERQI!, PERQVAX); { Tells what machines }
{ are involved in the
transfer }
ByteIntRecord = Packed Record
Case Integer of { Used to get low order }
: (Vhole: Integer); { byte for checksums }
: (Lower: 0..255;
Upper: O.. 255).
End;
DevIypes = (RS232, FastEther, EtherNet); { Valid transfer
defives }

Function FTPGetFile(SrcFile,DestFile: String; IsItText:Boolean;
Dev: DevIypes; Mode: TransMode): Boolean;

Function FTPPutFile(SrcFile,DestFile: String; IsItText:Boolean;
Dev: Devapes Mode: TransMode): Boolean;

Procedure FTPChkDev(Dev: DevTypes);

Procedure SendStopVax;

Procedure FTPInit;

- 124 -

POS Operating System - Module FTPUtils

Function FTPAddRequest(Name: String; Dev
procedure FTPSetMyAddr(Dev: DevTypes);
procedure FTPQuitNet;

var MyAddr, HisAddr: EtherAddress;

CONST
MAXALIAS = 10;

VAR NumAlias : O..MAXALIAS;

Var MyName: Arrayl!..MAXALIAS] Of String;
HisName : String;

const FastEType = |;
ByteType = 0;

const MaxRecv = 4;
procedure FTPQuitNet;
Abstract:
Shut down the net, if needed.
Procedure SendStopVax;
Abstract:
This procedure is used to send a
Function FTPAddRequest(Name: String; Dev:

Abstract:

January 15, 1984

: DevTypes): Boolean;

StopVax packet.
DevTypes): Boolean;

Send a request for an address out on the net.

Parameters:

Name is the name that we are to get the address for.

Dev is the device to use for the

Parameters:

transfer.

Return true if we could get the address. Return false otherwise.

- 125 -

POS Operating System - Module FTPUtils January 15, 1984

Procedure FIPInit;
Abstract:
This procedure is called to initialize the FTP code.

Side Effects: This procedure will initialize the 1/0 devices for the
machine that it is running on.

Errors: None

Function FTPPutFile(SrcFile,DestFile: String; IsItText:Boolean; Dev:
DevIypes; Mode: TransMode): Boolean;

Abstract:

This is the interface routine that will write a file to another
machine.

Parameters:

SrcFile is the name of the file, on this machine, that we are to
write.

DestFile is the name that is to be used when writing the file on
the other machine.

IsItText is a boolean that indicates if the file is a text file.
If true then the file is a text file.

Dev is the name of the device that we are to use to transfer the

file.
Mode indicates the type of machine that is on the other end of
Dev.

Results: Return True if the file was transfered without error. False
otherwise.

Side Effects: This procedure will change: CurDevice and CurTMode.
Errors: All errors are indicated by error messages.

Function FTPGetFile(SrcFile,DestFile: String; IsItText:Boolean;
Dev: DevIypes; Mode: TransMode): lean;

Abstract:

This is the interface routine that will read a file from another
machine.

Parameters:

SrcFile is the name of the file that we are to read from the other
machine.

- 126 -

POS Operating System - Module FTPUtils January {5, 1984

DestFile is the name that is to‘be created on this machine.

IsItText is a boolean that indicates if the file is a text file.
If true then the file ic a text file.

Dev is the name of the device that we are to use to transfer the
file.

Mode indicates the type of machine that is on the other end of
Dev.

Results: Return True if the file was transfered without error. False
otherwise.

Side Effects: This procedure will change: CurDevice and CurTMode.
Errors: All errors are indicated by error messages.
procedure FTPSetMyAddr(Dev: DevTypes);
Abstract:
Set the address of this machine and allocate ethernet buffers.
Parameters:
Dev is the current device. It must be Ethernet or FastEther.
Procedure FTPChkDev
Abstract:
This procedure is used to see if the device specivied by Dev need
to be serviced. If so then enter the service request routine.

Side Effects: This procedure may change CurChar and CurCharValid.

Errors: None

- 127 -

S Operating System - Module GetTimeStamp January 5, 1984
module GetTimeStamp;

GetTimeStamp - Perq get time routine.
J. P. Strait 1 Feb 81.
Copyright (C) PERQ Systems Corporation, 198l.

Abstract:

GetTimeStamp impléments the read-time-as-TimeStamp function for
the Clock module. See the Clock module for more details.

Design: GetTimeStamp is a separate module so that it may be
imported into the resident system without importing all the other
Clock routines. Once virtual memory is implemented, GetTimeStamp
and Clock should be merged into a single module.

Version Number V1.4
(7/77777777/77777777/7777/77} Exports { AN\)

const GetTSVersion = °1.4°;

type TimeStamp = packed record
{ the fields in this record are ordered this way to optimize bits }

Hour: 0..23;

Day: 1..31;

Second: 0..59;

Minute: 0..59;

Month: [..12;

Year: 0..63; { year since 1980 }
end;

TimeReference = record
Lower: Integer;
Upper: Integer
end;
procedure GetTStamp(var Stamp: TimeStamp);

var PastStamp: TimeStamp;
Past: TimeReference;

procedure GetTStamp(var Stamp: TimeStamp);

Abstract:

returns a timeStamp for the current time

Parameters:

Stamp is set to be the stamp for the current time

- 128 -

POS Operating System - Module gpib January 15, 1984

module gpib;
Abstract:

Support routines for PERQ GPIB devices. The package maintains a
buffer (gpCommandBuffer) which holds either data bytes (sent with
procedure gpPutByte) or Auxiliary commands (sent with
gpAuxCommand). The buffer is sent to the 9914 when full, or when
gpFlushBuffer is called. If the buffdr has data bytes when
gpAuxCommand is called, it will do a gpFlushBuffer. Similarly,
when gpPutByte is called, it will flush the buffer, if auxiliary
commands are in gpCommandBuffer.

written by Brian Rosen
Copyright(C) 1980, PERQ Systems Corporation

Version Number V1.5

exports

const
GpibVersion = “1.5";
gpBufSize = 12;
gpBufMax = 11; {gpBufSize - 1}

{ the following codes are the IEE488-1975 Controller Command Codes
they are issued by the Controller-In-Charge while asserting AIN)}
gpacg = #000; {addressed group command}
gpdcl = #024; {device clear}
gpget = #010; {group execute trigger}
gpgtl = #001; {go to local}
gplag = #040; {listen address group}
gpllo = :836; {local lockout}

gpmla = ; {my listen address)

gpmta = #100; {my talk address}

gpmsa = #140; {my secondary address}
gpppc = #005; {parallel poll.configure}
gpppe = #140; {parallel poll enable}
gpppd = #160; {parallel poll disable}

gpppu = #025; {parallel poll unconfigure}
gpscg = #140; {secondary copmmand group}
gpsdc = #004; {selected device clear}
gpspd = #061; {serial poll disable}

gpspe = #060; {serial poll enable}

gptct = #011; {take control}

gptag = #100; {tahk address group)

gpuag 20; {universal address group)
gpunl = #077; {unlisten}

gpunt = #137; {untalk}

type { these commands are the major state change control commands
of the TMS9914 chip which forms the interface to the GPIB
Consult the TI documentation on the TMS9914 for more information}

{These definitions are order dependent}

- 129 -

POS Operating System - Module gpib January 5, 1984

gpAuxiliaryCommands = (gpswrst, {Chip Reset}
gpdacr, {Release DAC holdoff}
gprhdf, {Release RFD holdoff}
gphdfa, {Holdoff all data}
gphdfe, {Holdoff on End}
gpnbaf, {Set NewByteAVailable false}
gpfget, {Force Group Execute Trigger}
gprtl, {Return to Local}
gpfeoi, {force End or Identify)
gplon, {Listen Only)
gpton, {Talk Only}
gpgts, {GoTo Standby)
gptca, {Take Control Asynchronously}
gptcs, {Take Control Synchronously}
gPrpp, {Request Parallel Poll}
gpsic, {Set Interface Clear}
gpsre, {Set Remote Enable}
gprqc, {Request Control}
gpric, {Release Control}
gpdai, {Disable All Interrupts}
gppts, {Pass Through next Secondary)
gpstdl, {Set T! Delay)
gpshdw); {Shadow Handshake)
gpParmType = (gpOff, gpOn, gpDontCare); {parameters for Aux
Commands }
gpByte = 0..255; {Data byte for gpib transactions}
gpRange = 0..gpBufMax;
gpDeviceAddress = 0..31; {ég%g% addresses for devices on
gpBuffer = packed array [gpRangel of gpByte;
gppBuffer = “gpBuffer;

var gpCommandBuffer: gppBuffer; {place to put commands}
gpBufPtr: 0..gpBufMax; {pointer to gpCommandBuffer}
gpHaveDataBytes, gpHaveAuxiliaryCommands: boolean;{true i{ buffer
in use

{ The package maintains a buffer (gpCommandBuffer) which holds
either Data bytes (sent with proceedure gpPutByte)
or Auxialiary Commands (sent with gpAuxCommand
The buffer is sent to the 9914 when full, or when ghForceBuffer
is called. If the buffer has data bytes when gpAuxilairyCommand is
called, it will do a gpForceBuffer. Similarly, when gpPutByte
is called, it will force the buffer if auxiliary commands are in
gpCommandBuf fer }

{ Initialze GPIB package, called once only, turns off tablet }
procedure gplnit;

{ Send an auxiliary command to TMS9914
some commands require a parameter (gpOff/gpOn) }

procedure gpAuxCommand(gpCmd: gpAuxiliaryCommands; gpParm:gpParmType);
{ Put a data byte or a Control byte out on the data bus

TMS9914 must be in Controller Actives State if the byte is a
controller command byte. Must be in Talk Only if a data byte }

- 130 -

POS Operating System - Module gpib January 1§, 1984

procedure gpPutByte(gpData: integer);
{ Sends all bytes in buffer }

procedure gpFlushBuffer;

{ Set TMS9914 to be a Talker, set a device to be a listener
This procedure takes control of the bus, unlistens and untalks
all devices (including itself), and sets a listener with
MyListenAddress then sets TMS9914 to be the talker with
TalkONly }

procedure gplTalkHeListens(gpAddr: gpDeviceAddress);
{ Set TMS9914 to be a Listener, set a device to be a talker
This procedure takes control of the bus, unlistens and untalks
all devices (including itself), and sets a talker with

MyTalkAddress then sets TMS9914 to be the listener with
ListenONly)

{ turn the BitPad back on again }
procedure gpTbltOn;
{ turn the BitPad (device addres #10) off)}
procedure gpTbltOff;
{ Send a buffer of user data to the 9914 }
procedure gpSend(var gpBuf: gppBuffer; gpCount: gpRange);
{Get a buffer of data from the 9914 (Not implemented yet) }
procedure gpReceive(var gpBuf: gppBuffer; gpCount: gpRange);
{ Get a byte of data from the GPIB }
function gpGetByte: gpByte;
procedure gpCleanup;
{ cleans up after the GPIB package, turns the tablet backon)}
exception GPIBerror(SoftStatus: integer);
Abstract:
Raised when GPIB encounters an error indication in softstatus from
UnitIO or I0CRead. The condition should be corrected and the

operation retried. The most likely error is a timeout: IOETIM (See
10Errors).

- 131 -

POS Operating System - Module gpib . January 15, 1984

procedure gpFlushBuffer;

var
address: double;

begin

if gpHaveAuxiliaryCommands

then GPB_Unitl0(Recast(gpCommandBuffer,IOBufPtr), IOWriteRegs
, gpBufPtr, gpStatPtr)

else if gpHaveDataBytes

then GPB_UnitIO(Recast(gpCommandBuffer,IOBufPtr), IOWrite
, gpBufPtr, gpStatPtr)

else gpStatPtr~.SoftStatus := IOEIOC;
gpHaveAuxiliaryCommands := false;

gpHaveDataBytes := false;

gpBufPtr := 0;

if gpStatPtr”,SoftStatus < IOEIOC
then raise GPIBerror(gpStatPtr”.SoftStatus);

end;

procedure gplTalkHeListens(gpAddr: gpDeviceAddress);
begin
gpAuxCommand (gptca, gpDontCare); ake over bus}

{t
gpAuxCommand (gpton, gpOff); {I am not a talker}
gpAuxCommand (gplon, gpOff); {I am not a listener)

gpPutByte(gpunl); : {unlisten all devices)
gpPutByte(gpunt); {untalk all devices}
gpPutByte(gpmla+gpAddr); {set MyListenAddress}
gpAuxCommand(gpton, gpOn) ; {I will become a Talker}
gpAuxCommand (gpgts,gpon); {Go to it}
gpFlushBuffer;

end;

procedure gpCleanup;
begin
if (TypePointDev = TheGPIBBitPad)

and (gplabMode < OffTablet)
then I0SetModeTablet(gpTabMode)

- 133 -

POS Operating System - Module Helper January 5, 1984

module Helper;

WJHansen Jan 82.
Copyright (C) PERQ Systems Corporation, 1982.

Abstract:

Reads an index file and presents options for assistance to the
user,

Version Number V1.4

exports

imports FileDefs from FileDefs; {for PathName)
procedure Givellelp(FName:PathName);

procedure GiveHelp(FName:PathName);

Abstract:

Reads a help index and displays it. Lets user ask for information
on topics in the index and displays the files containing those
topics.

Parameters:

FName - Name of the file containing the index. The path to this
file is used as the path to the individual help files.

- 134 -

POS Operating System - Module ICClock January 15, 1984

module I0Clock;

I0Clock - ‘Private’ Clock type and variable declarations - available
to the 10 subsystem. Clock routines.

Copyright (C) 1982, PERQ Systems Corporation
Abstract:

I0Clock exports variables, constants, and procedures the 10
subsystem uses to do Clock I0.

Version Number V0.2
{ BRXERREABRAXARARRRRRRERERNNRN) Exports { REMUERRREREREERRRRNERRRRRNRNK }

imports I0_Unit from I0_Unit;

procedure Clk_Initialize;

procedure Clk_UnitIO(Bufr : 10BufPtr;
Command : I0Commands;
ByteCnt : integer;
StsPtr : I0StatPtr);

procedure Clk_Interrupt;

procedure Clk_Interrupt;
procedure Clk_Initialize;

procedure Clk_UnitIO(Bufr : IOBufPtr; Command : I0Commands; ByteCnt :
integer; StsPtr : IOStatPtr);

- 135 -

POS Operating System - Module IODisk January 15, 1984

module IODisk;

I0Disk - Contains Disk IOUnit Function for EIO and CIO Disks. TV.
‘Private’ HardDisk type and variable declarations - available
to the I0 subsystem. Disk routines. AGR.

Copyright (C) 1982, 1983 PERQ Systems Corporation
Abstract:

10Disk exports variables, constants, and procedures the I0
subsystem uses to do disk IO.

Sy i, g, g g p g, o g i g g o~

§Version V0.6 for POS}

—— g

{ RXXRAARRRERRRRERRERRLARRRANRR) Exports { RxREXEARXXXRRRXXRRXXXXXRRXXKX }

Imports I0_Unit From IO_Unit;

Procedure Dsk_Interrupt;

Procedure Dsk_Initialize;

Procedure Dsk_UnitIO(Unit : UnitRng;
Bufr : I0BufPtr;
Command : I0Commands;
ByteCnt : Integer;
DskAdr : Double;
HdPtr : IOHeadPtr;
StsPtr : IOStatPtr);

- 136 -

POS Operating System - Module IODisk January 15, 1984

- 137 -

POS Operating System - Module IOErrMessages January 15, 1984

module IOErrMessages;
Abstract:
This module exports a procedure to return an error string for a
disk error
Written by : Brad A. Myers May 12, 198!

Copyright (C) 1981 - PERQ Systems Corporation
Version Number V1.5

{7/7/7777777777777777777777} EXPORTS {\\NNNNNAANNNNNNNNNL)
Function IOErrString(err: integer): String;
Function IOErrString(err: integer): String;
Abstract:
Returns a string describing the error number
Parameters:
err is the error number returned by Unitl0

Returns: A string describing the error

- 138 -

POS Operating System - Module IOErrors January 15, 1984

module IOErrors;

Abstract:

170 System Error Code Definitions

Copyright (C) 1981,1982,1983 - The PERQ Systems Corporation
Version Number V1.8

exports |
Imports SystemDefs from SystemDefs; {using Ether3MBaud}

Const
IOEIOC = |; 10 Complete }
IOEIOB = 0; 10 Busy }
IOEBUN = -1; Bad Unit Number }
IOENBD = -2; Raw Block I0 to this device is not implemented }
IOEWRF = -3; Write Failure }
IOEBSE = -4; BlockSize Error }
IOEILC = -5; Illegal Command for this device }
IOENHP = -6; Nil Header Pointer }
IOEADR = -7; Address Error }
IOEPHC = -8; Physical Header CRC Error }
IOELHC = -9; Logical Header CRC Error)
IOEDAC = -10; Data CRC Error }
IOEDNI = -11; Device Not Idle }
IOEUDE = -12; Undefined Error! }
IOENCD = -13; Device is not a character device }

Circular Buffer Full }

IOECBF = -14;
Logical Header SerialNum Mismatch)}

IOELHS = -15;

S, i, iy gy g i gy gy g g g, e g i G g P g g g — g g~ o g~ G i g p— g g g i g, g g, g g g

IOELHB = -16; Logical Header Logical Block Number Mismatch }
IOECOR = -17; Cylinder Out of Range }

IOEDNR = -18; Device not ready)

IOEMDA = -19; Missing data address mark }

IOEMHA = -20; Missing header address mark)}

IOEDNW = -21; Device not writable }

I0ECMM = -22; Cylinder mis-match }

10ESNF = -23; Sector not found }

IOEOVR = -24; Overrun }

IOEUEF = -25; Undetermined equipment fault)

IOESOR = -26; Sector out of range)}

IOETIM = -27; Time out error)}

IOEFRS = -28; Floppy recalibrate done }

IOEDRS = -29; Disk recalibrate done }

IOET0 = -30; Can’t find track zero }

I0ECDI = -3I; Data supplied to configuration command is bad }
IOERDI = -32; Register data for WriteRegs command is bad)
IOEBAE = -33; Buffer alignment error }

IOENOC = -34; Not on Cylinder }

IOEABN = -35; Abnormal Error)}

IOELHE = -36; Logical Header Mismatch }

IOESME = -37; State Machine Error)}

IOESKE = -38; Drive Seek Error }

- 139 -

N

POS Operating System - Module IOErrors January 15, 1984

IOEFLT = -39; { Drive Fault }
IOEDNS = -40; { Device not supported }
IOEPHM = -41; { Physical Header Mismatch)

{$ifc Ether3MBaud then}
IOEPTL = -42; { Ether3 - received packet too large }
{$endc)
IOEEND = -43; { End of data }
I0EFRA = -44; { Framing error }
IOEPAR = -45; { Parity error }
IOEFirstError = -45;

IOELastError = 0;

- 140 -

POS Operating System - Module IOFloppy January 15, 1984

module IOFloppy;

IOFloppy - Floppy 10 routines.
Copyright (C) 1982, 1983 PERQ Systems Corporation

Abstract:
10_Floppy exports procedures to perform I0 on the floppy.

Design: 1) UnitIO must increment and decrement the 10Count of the
segments which are involved in 10. 2) Segment faults must ¥never¥
happen while interrupts are off.

Version Number V0.6

{ RREHHRRENENRIRERRRRRLNRANX XX} Exports
{ XX HHRHREERRRRRIBRNARRRRRRRNK }

Imports 10_Private from IO_Private;

Procedure FLP_Initialize; { Floppy Initialization }
Procedure FLP_Interrupt; { Floppy interrupt handler }
Procedure FLP_UnitlO({ Floppy UnitIO routine

Bufr: IOBufPtr;
Command: I0Commands;
ByteCnt: Integer;
LogAdr: Double;
StsPtr: I0StatPtr);

Procedure FLP_PutStatus({ Set status on device Unit }
var StatBlk: DevStatusBlock);
Procedure FLP_GetStatus({ Read status on device Unit }

var StatBlk: DevStatusBlock);
Procedure FLP_Initialize; { Floppy Initialization }
Procedure FLP_Interrupt;

Abstract:
FloppyIntr handles a floppy interrupt. If the handler is waiting
for an interrupt The interrupt cause is read and cleared. The
Interrupt and Attention causes are held for the low level handler

If the interrupt is an attention then the current cylinder is set
to -1 to force a seek on the next operation.

- 141 -

POS Operating System - Module IOGPIB January 5, 1984

module IOGPIB;

IOGPIB - ‘Private’ GPIB type and variable declarations - available
to the I0 subsystem. GPIB routines.

Copyright (C) 1982, 1983, PERQ Systems Corporation
Abstract:

IOGPIB exports variables, constants, and procedures the 10
subsystem uses to do GPIB 10.

Version Number V0.7
{ RXXRXRRRXRERE R RN RRRRNRERNRE } Exports 3333332333333 533333533331353:3)

imports 10_Unit from IO_Unit;

const { Fudge factors for BitPad }
GPIBxFudge 38; { actual range in X and Y for BitPad: 0..2200 }
GPIByFudge = 1061; - { of TabABsX : 0..1100 }
; of TabAbsY : 0..1100 }
{

of TabRelX : -38..1062 limited to 0..767 }
of TabRelY : 1061..-39 limited to 1023..0 }

{ Update tells us if the puck was lifted off the pad. Our interrupt routine
clears it everytime it gets data from the gpib. The tablet update routine
adds one to it everytime it updates the tablet values. If the tablet
update routine finds that we haven’t set it to zero after a couple of
times, it assumes the puck is off the bad. Tablet update is in IOVideo. }

var

GPIBTabBuf : packed record
X : integer;
Y : integer;
Buttons : integer;
Update : integer
end;

GPIBTabletState : integer;

GPIBIntMask : integer; { the interrupt mask for the gpib }

procedure GPB_Interrupt;
procedure GPB_Initialize;
function GPB_ReadChar(var Ch : char): integer;
function GPB_WriteChar(var Ch : char): integer;
procedure GPB_UnitIO(Bufr + IOBufPtr;

Command : I0Commands;

ByteCnt : integer;

LogAdr : Double;

StsPtr : I0StatPtr);
procedure GPB_GetStatus(var StatBlk : DevStatusBlock)

-

- 142 -

POS Operating System - Module IOGPIB January 5, 1984

procedure GPB_Interrupt;
Abstract:
GPB_Interrupt handles an interrupt from the GPIB.
procedure GPB_Initialize;
Abstract:
Initialize the GPIB.
function GPB_ReadChar(var Ch : char): integer;
Abstract:
Do character reads from the GPIB
function GPB_WriteChar(var Ch : char): integer;
Abstract:
Do one character writes to the GPIB. (Use GPB_UnitIO)

procedure GPB_UnitIO(Bufr ¢+ IOBufPtr; Command : I0Commands; ByteCnt :
integer; LogAdr : Double; StsPtr : IOStatPtr);

Abstract:
Do 10 to the GPIB

Notes The LogAdr is a count of the number of jiffies to wait
before timing out an operation and resetting the GPIB. It is
recast into a long.

procedure GPB_GetStatus(var StatBlk : DevStatusBlock);
Abstract:
Provide status information about the GPIB. This is here only to

provide compatibility with the old system. The recommended way to
get status information is to use Unitl0 and the 10Sense command.

- 143 -

POS Operating System - Module I0Keyboard January 15, 1984

module IOKeyboard;
IOKeyboard - Keyboard 10 routines.
Copyright (C) 1982, 1983 PERQ Systems Corporation
Abstract:
I0Keyboard exports procedures to perform I0 on the keyboard.
Version Number V0.4
: Wﬁ**xﬁmmﬁa}m Exports

Imports 10_Private from I0_Private;

Const
CtrlC = chr(#3);
CtrlS = chr(#23);
CtrlQ = chr(#21);
BlamCh = Chr(#303); { untranslated shift-control-C }
DumpCh = Chr(#304); { untranslated shift-control-D }
var

KTBuf : CirBufPtr; { Keyboard translated buffer }
procedure Key_Initialize;
Function Key_ReadChar(Unit : UnitRng; var Ch: char): integer;
{ disable/enable keyboard interrupts }

Procedure Key Disable(var OldKeyEnable: Boolean);
Procedure Key_Enable(OldKeyEnable: Boolean);

Procedure Key_Clear; { clear the 10 type-ahead buffer }

Procedure Key_Interrupt;

Function Key_TLate(Ch : Char): Char;

- 144 -

POS Operating System - Module I0Keyboard January 15, 1984

procedure Key_Initialize;

Abstract:
Keyboard initialization logic.
Function Key_TLate(Ch : Char): Char;

Abstract:

Translate a raw key board character.

Parameters:
Ch- The character to be translated.

Returns: A valid ascii (less than #200) character.

Function Key_ReadChar(Unit : UnitRng; var Ch: char): integer;
Abstract:

Reads a character from keyboard and returns a completion or error
code.

Parameters:
Ch - character to read.
Returns:

A condition code as defined in the module IOErrors.
Procedure Key_Interrupt;

Abstract:

Key_Interrupt processes KeyBoard interrupts by copying characters
from the KeyBoard buffer into the (misnamed) translated keyboard
buffer (KTBuf). Control-C, Control-Shift-C, Control-Shift-D,
Control-S, HELP and Control-Q are processed also.

- 145 -

POS Operating System - Module I0Keyboard January 15, 1984
procedure Key Disable(var OldKeyEnable: Boolean);

Abstract:

Key Disable is used to disable keyboard interrupts. This is used
to delay processing of control-c, control-shift-c and
control-shift-d at critical times. The old value of the keyboard
interrupt enable is returned and must be passed back to
Key_Enable when re-enabling keyboard interrupts. Characters typed
while keyboard interrupts are disabled are remembered. When
keyboard interrupts are re-enabled, the characters are processed.

Parameters:
OldKeyEnable - set to the old value of the enable.

procedure Key Enable(OldKeyEnable: Boolean);

Abstract:

Key Enable is used to enable keyboard interrupts. The old value
of the keyboard interrupt enable (as returned from Key Disable).
must be passed to Key_Enable when re-enabling keyboard interrupts.
If characters were typed while keyboard interrupts were enabled,
Key_Enable calls Key_Interrupt to process those characters. The
master interrupt control (INTON and INTOFF QCodes) must be on when
this procedure is called.

Parameters:
OldKeyEnable - the old value of the enable.

procedure Key Clear;

Abstract:

Key Clear clears the keyboard type-ahead buffer.

- 146 -

POS Operating System - Module I0PointDev January 15, 1984

module IOPointDev;

IOPointDev - ‘Private’ PointDev type and variable declarations;
available to the I0 subsystem. PointDev routines.

Copyright (C) 1982, 1983 PERQ Systems Corporation
Abstract:

I0PointDev exports variables, constants, and procedures the 10
subsystem uses to do PointDev I0.

Version Number V0.4
{ SRR RN NN RS R R R RRINNRARNK) Exports { REXRERNRERRRRRRRRERRERRRRERLER)

imports 10_Unit from IO_Unit;

const { Fudge factors for Kriz Tablet }
KrizXFudge = 64; actual range of X is 0..895, of Y is 0..1151 }
KrizYfudge = 1087; of TabAbsX : 0..895, of TabAbsY : 0..1151 }
of TabRelX : -64..831 limited to 0..767 }
of TabRelY : 1087..-64 limited to 1023..0 }

o g, gt o~

type
pPointBuf = “PointBuf;
PointBuf = packed record

XPos: integer; { X position of the pointer }

YPos: integer; { Y position of the pointer }

Buttons: integer; { indicates which buttons are pressed }

Filler: integer; { so micro code’s area is quad word
aligned)

UCodeArea : packed arrayl(0..3] of integer

end;

{ On the buttons, the least significant bit indicates that the rightmost
button is pressed. The next bit indicates that the middle button is
pressed. The third bit indicates that the leftmost button is pressed.
Bit seven indicates that the puck is off the pad. }

var
KrizInfo : pPointBuf;

procedure Ptr_Initialize;
procedure Ptr_PutStatus(var StatBlk : DevStatusBlock);
procedure Ptr_GetStatus(var StatBlk : DevStatusBlock);
procedure Ptr_UnitIO(Bufr : IOBufPtr;

Command : I0Commands;

ByteCnt : integer;

StsPtr : I0StatPtr);
procedure Ptr_Interrupt;
procedure Ptr_Interrupt;

Abstract:

Handles PointDev interrupts, these will be the only responses for
commands issued to the tablet. :

- 147 -

POS Operating System - Module IOPointDev January 15, 1984

procedure Ptr_Initialize;

Abstract:
Prepare for 10 to the PointDev. Determine if tablet is connected

by enabling it for a short while for it to send current
coordinates. If no data is received within a short time, flag the

tablet as not being connected.
procedure Ptr_PutStatus(var StatBlk : DevStatusBlock);

Abstract:

Put a staztus to the PointDev, otherwise known as the KrizTablet.
The tablet can only be enabled or disabled.

Parameters:
StatBlk - address of status block
procedure Ptr_GetStatus(var StatBlk : DevStatusBlock);
Abstract:
Get status from the PointDev.
Parameters:
StatBlk - address of status block
procedure Ptr_UnitIO(Bufr : IOBufPtr;
Command : I0Commands; ByteCnt : integer;
StsPtr : IOStatPtr);
Abstract:
Execute I0Sense and 10Config commands for IOPointDev.
Parameters:
Bufr - buffer for data transfers, if requested
Command - operation to be performed on the device

ByteCnt - number of bytes to be transferred
StsPtr - resultant status from the operation

- 148 -

POS Operating System - Module IORS January 15, 1984

module IORS;
IORS - RS 10 rqutines.
Abstract:
IORS exports procedures to perform 10 on RS232 ports. These

routines are RS232 specific interrupt, initialization, and general
10 routines, and are exported to the I0 subsystem modules. (

10_Unit, I0_Init)

Notes: Speech is on an RS232 line, so all speech 10 goes through
this module.

Copyright (C) 1982, 1983 PERQ Systems Corporation
Version Number V0.9

{ RXRRRREARRERXRRRRRRRRRRRRRRRR%) Exports
{ RERRRRRRXKEEERRREERRERERERRR }

Imports I0_Private from IO_Private;

var
RSIntMask : integer; { mask of interrupts to enable for RS232 }

procedure Rs_Initialize;

Function Rs_ReadChar (Unit : UnitRng ; var Ch: char): integer;
Function Rs_WriteChar(Unit : UnitRng ; Ch: char): integer;

Procedure Rs_PutStatus(Unit : UnitRng ; var UserStatus : DevStatusBlock);

Procedure RsA_Interrupt; { Interrupt handler for RS232 port ‘A’ }
Procedure RsB_Interrupt; { Interrupt handler for RS232 port ‘B’ }
Procedure Spc_Interrupt; { Interrupt handler for Speech }

procedure RS_UnitIO (Unit: UnitRng;
Bufr: IOBufPtr;
Command: I0Commands;
ByteCnt: integer;
StsPtr: I0StatPtr);

procedure RS_Initialize;
Abstract:
RS232 initialization logic.

- 149 -

POS Operating System - Module IORS January 15, 1984

Function RS_ReadChar(Unit : UnitRng ; var Ch: char): integer;
Abstract:
Reads a character from RS232 port A and returns a completion or
error code.
Parameters:
Ch - character read.
Returns: A condition code as defined in module IOErrors.
Function RS_WriteChar(Unit : UnitRng; Ch: char): integer;
Abstract:
Writes a character to RS232 port A or B and returns a completion
or error code.

Parameters:
Unit - Port (A or B) to read from.

Ch - character to write.
Returns: A condition code as defined in module IOErrors.

Procedure RS_PutStatus (Unit: UnitRng; var UserStatus:DevStatusBlock);

Abstract:

Sets port’s characteristics. Translates old put status command
into a configure command and a writeregs command, mapping the old
status block into a set of Serial 10 controller registers and the
baud rate for the configure command.

Parameters:
Unit - device whose characteristics are to be set.
UserStatus - device status block containing characteristics to be

set.
SideAffects:

- Sets SIO register settings not mapped from the old device
status block to their defaults.

- 150 -

POS Operating System - Module IORS January 15, 1984
Procedure RS _UnitIO (Unit: UnitRng; Bufr: I10BufPtr; Command: IOCommands;
ByteCnt: integer; StsPtr: I10StatPtr);
Abstract:
Unit 10 operations to RS232 ports.

Parameters:
Unit - the device.

Bufr - buffer for data transfers, if requested.
Command - operation to be performed on the port.
ByteCnt - number of bytes to be transferred.
StsPtr - resultant status from the operation.
Procedure RSA_Interrupt;
Abstract:
This is the interrupt routine for the RS232 port “A°.
Procedure Spc_Interrupt;
Abstract:
This is the interrupt routine for the Speech port.
Procedure RSB_Interrupt;
Abstract:

This is the interrupt routine for the RS232 port ‘B°.

- 181 -

POS Operating System - Module IOVideo January (5, 1984

module IOVideo;
Abstract:
Private Video type and variable declarations.

I0Video exports variables, constants, and procedures that the IO
subsystem uses to do video manipulation
Copyright (c) 1982, 1983, PERQ Systems Corporation

Version Number V0.4

exports

imports I0_others from IO_others;
imports IO_Private from IO_Private;

const
Tablgnore = 2; { number of points to ignore after when ignoring }

var
Cursor: CurPatPtr; Cursor Pattern)

new cursor coordinates }

previous Cursor Y position }

previous Cursor X position MOD 8 }

CursorX, CursorY: integer;
0ldCurY,
0ldCurX: integer;

PointX, PointY: integer; the point of the cursor }

TabCount : integer; number of points left to ignore }

function currently in use}

function for area below used area}

whether bot is complemented or not}

Current mode of the tablet)

Current mode of cursor }

Tells when have a new function to
insure that cursor redisplayed }

CursF: integer;

BotCursF: integer;
BotComplemented: boolean;
TabMode: TabletMode;
CCursMode: CursMode;
newFunct: Boolean;

Procedure Vid_Initialize; { Initialization for the video }

Procedure Vid_Interrupt; { Interrupt Routine for the video device }

Function Vid_SetUpUDevTab: pointer; { Set up the pointers in the micro- }
{ code device table that the micro needs)}

procedure Vid_Initialize;
Abstract:

Initialize all the variables in 10_Others that we set, set up the
default cursor, enable Video interrupts.

WARNING: This must be called AFTER Screenlnit.

- 182 -~

POS Operating System - Module I0Video January 5, 1984

Procedure Vid_Interrupt;
Abstract:
Vid_Interrupt (formerly Tablntr) handles the screen retrace
interrupt. It smoothes the tablet data and updates the displayed
cursor position (if it is visible and has moved).
function Vid_SetUpUDevTab: pointer;
Abstract:

Set up the screen control block for the microcode. Does not use
Screen package.

Returns: Pointer to the screen buffer.

- 183 -

POS Operating System - Module 10Z80 January 15, 1984

module 10Z80;

10Z80 - ‘Private’ Z80 type and variable declarations - available
to the I0 subsystem. Z80 routines.

Copyright (C) 1982, PERQ Systems Corporation
Abstract:

10Z80 exports variables, constants, and procedures the 10
subsystem uses to do Z80 IO.

Version Number V0.4
{ *********************%*****X* } Exports { BREREHRWINMERRWIIMIE WS HNIARNNX }

imports I0_Unit from I0_Unit;

procedure Z80_Initialize;

procedure Z80_Unit10(Bufr : I0BufPtr;
Command : I10Commands;
ByteCnt : integer;
LogAdr : double;
StsPtr : I0StatPtr);

procedure Z80_Interrupt;

procedure Z80_Interrupt;
Abstract:

Handle interrupts from the clock. Interrupts from the clock are
responses to commands sent to the clock.

procedure Z80_Initialize;

Abstract:

Initialize the clock by enabling interrupts. This routin can be
called any number of times. (Thus the check for nill pointers in
the device table.) An initial sense is done to determine if the
clock is supported by the hardware.

procedure Z80_UnitIO(Bufr : IOBufPtr;
Command : IOCommands;
ByteCnt : integer;
LogAdr : double;
StsPtr : IOStatPtr);

Abstract:

Do 10 to the Z80 device. High volume read and write allow loading
and reading Z80 memory. Sense to determine Z80 version number,
Writeregs to call a location in Z80 memory.

- 154 -

POS Operating System - Module 10Z80 January 15, 1984

Parameters: :
Bufr - buffer for data transfers, if requested.

Command - operation to be performed on the device.
ByteCnt - number of bytes to be transferred.
LogAdr - address used for WriteRegs.

StsPtr - resultant status from the operation.

- 155 -

POS Operating System - Module I0_Init ‘ January 15, 1984

module I0_Init; ‘
I0_Init -~ Initialize the 10 system.
Copyright (C) 1982, 1983, PERQ Systems Corporation

Abstract:

I0_Init initializes the Interrupt Vector Table, the Device Table
and associated buffers, the Screen Package, the tablet and cursor,
and the Z80. 10_Init imports various device dependent modules,
which contain device dependent initialization code.

This module is based on Version V5.9 of old 1/0 board’s I0_Init
support module, written by Miles Barel and modified by numerous
times by just about every engineer at PERQ Systems Corporation.

Version Number V7.12 .
{ 3 I N N MR } Exports
{ 0330303030000 00 S M MR NS M N }

Procedure InitlO;
Procedure RelnitDevices;

Procedure Initl0;

Abstract:

Initl0 initializes the Interrupt Vector Table, the Device Table
and associated buffers, the Screen Package, the tablet and cursor,

and the Z80.
procedure RelnitDevices;

Abstract

Initialize Z80 devices which were not initialized before due to
lack of Z80 support. (The Z80 proms aren‘’t large enough to
support all the devices. Thus, the system must load the Z80
program into the Z80 ram sometime during initialization. After it
does this, it calls us so that all the devices work.)

- 156 -

POS Operating System - Module I0_Others January 15, 1984

module 10_Others;

IO_Other§ - Miscellaneous 10 routines.
Miles A. Barel ca. | Jan 80.
Copyright (C) 1980, 1982, 1983 PERQ Systems Corporation

Abstract:

10_Others exports routines for the Cursor, Table, Screen, Time,
and Keyboard.

Version Number V6.8

{ RERRXRRRXRRRRAXRRRRRRRRRRRRXXXX) Exports
{ REXRRERXARREARRRRRRERRRALRRK }

Imports SystemDefs from SystemDefs;
{ tablet/cursor procedures }

Type

CursFunction = (CTWhite, CTCursorOnly, CIBlackHole, CTInvBlackHole,
CTNormal, CTInvert, CTCursCompl, CTInvCursCompl);

TabletMode = (relTablet, scrAbsTablet, tabAbsTablet, offTablet);

CursMode = (OffCursor, TrackCursor, IndepCursor);

CursorPattern = arrayl[0..63,0..3] of integer;

CurPatPtr = “CursorPattern;

TabletType = (NoPointDev, KrizTablet, GPIBBitPad);

Var
TabRelX, TabRelY : integer; { tablet relative coordinates)}
TabAbsX, TabAbsY : integer; { tablet absolute coordinates)
TabFinger : boolean; finger on tablet)}
TabSwitch : boolean; switch pushed down }
TabWhite : boolean; True if white or left button down }
TabGreen : boolean; True if green or right button down)}
TabBlue : boolean; True if blue button down }
TabYellow : boolean; True if yellow or middle button down }
TabMouse : integer; Actual output from mouse }
DefaultCursor: CurPatPtr; default cursor pattern }
RealRelTablet : boolean; indicate if table in true relative mode }
TypePointDev : TabletType; tells which tablet is the pointer }
BitPadTimeOut : integer; how long before puck off bit pad }
KrizTabConnected : boolean; { true if KrizTablet connected }
GPIBpadConnected : boolean; { ture iff the BitPad is connected)
TabLeft : boolean; true if left or white button down }
TabMiddle : boolean; true if middle or yellow button down }
TabRight : boolean; true if right or green button down }

Py, g, oy g, g g, g iy G pi g g g e g g~

Procedure 10LoadCursor(Pat: CurPatPtr; pX, pY: integer);
{ load user cursor pattern }
Procedure IOReadTablet(var tabX, tabY: integer); { read tablet coordin
Procedure 10SetFunction(f: CursFunction);
Procedure 10SetModeTablet(m: TabletMode); { set the mode to tell what kind
of tablet is currently in use }
Procedure I10CursorMode (m: CursMode); { if track is true, then Tablet

- 157 -

POS Operating System - Module 10_Others

Procedure

Procedure

Procedure

Procedure

Procedure

January (5, 1984

coordinates are copied every 1/60th
second into the cursor position. if
indep, then coordinates are changed
only by user. If off, then no
cursor displayed }
10SetCursorPos(x,y: Integer); { if trackCursor is false, then sets
cursor x and y pos. If tracking,
then sets both tablet and cursor.)
{ if trackCursor is false, then sets
tablet x and y pos. If tracking,
then sets both tablet and cursor }
IOReadCursPicture(pat: CurPatPtr; var px, py: integer);

{ copies current cursor picture into
pat and sets px and py with the
offsets for the current cursor }

{ Get the double word 60 Hertz time)

10SetTabPos (x,y: Integer);

10GetTime(var t: double);
{Procedure to change screen size)

10ScreenSize(newSize: integer; Complement: Boolean);
{ newSize is number of scan lines in
new screen; must be a multiple of
128. Complement tells whether the
rest of the screen should be the
opposite color from the displayed

part)
{ disable/enable keyboard interrupts }

Procedure I0KeyDisable(var OldKeyEnable: Boolean);

Procedure 10KeyEnable(OldKeyEnable: Boolean); { enable keyboard i
nterrupts)

Procedure IOKeyClear; { clear the IO type-ahead buffer }

Procedure I0SetRealRelTablet(state: boolean); { if state is true, then
tablet will be a true
relative tablet)

Procedure 10ChooseTablet(model : TabletType); { choose which tablet will
be operating }

Procedure 10SetBitPadUpdateTimeOut(cnt: integer); { set time-out constant

for BitPad updates)
procedure I10CursorMode(M: CursMode);

Abstract:
Sets the mode for the cursor. If the mode m is set to
TrackCursor, Tablet coordinates are copied every 1/60th second
into the cursor position. If it’s set to IndepCursor, coordinates
are changed only by the user. If it is set to OffCursor, no
cursor is displayed.

Parameters:

m - the new mode for the -cursor.

- |58 -

POS Operating System - Module 10_Others January 15, 1984

procedure I10SetModeTablet(M: TabletMode);

Abstract:

Sets the mode to tell what kind of tablet is currently in use.

Parameters:
m - the mode for the tablet.

procedure IOLoadCursor(Pat: CurPatPtr; pX, pY: integer);

Abstract:

Loads a user cursor pattern into the screen cursor.

Parameters:
Pat - a pointer to a cursor. It should be quad-word aligned.

pX and pY - offsets in the cursor where the origin is thought to
be. For example, if the cursor is a bull’s eye, 31 bits

diameter flushed to the upper left corner of the cursor box,
using (pX, pY) = (15, 15) will have the cursor surround the

things pointed at.

NOTE: This procedure supports a cursor which is 56 x 64; with
a scan line length of 4

procedure IOReadCursPicture(Pat: CurPatPtr; var pX, pY: integer);

Abstract:

Copies the current cursor picture into Pat and sets pX and pY with
the offsets for the current cursor.

Parameters:

Pat, pX, and pY are filled with data on the current cursor. Note
that Pat must be quad-word aligned.

Procedure 10SetFunction(f: CursFunction);

Abstract:

Sets the cursor function.

Parameters:

f - the function to set the cursor to.

- 189 -

POS Operating System - Module I0_Others January 5, 1984

procedure I0SetCursorPos(x, y: integer);

Abstract:

If the cursor’s mode is not TrackCursor, this procedure sets the
cursor’s x and y positions. If tracking, it sets both tablet and
cursor.
Parameters:
x and y - the new cursor coordinates.
procedure 10SetTabPos(x, y: integer);

Abstract:
If the cursor’s mode is not set to TrackCursor, 10SetTabPos sets
the tablet’s x and y positions. If the mode is TrackCursor, both
tablet and cursor are set.

Parameters:
x and y - the new tablet coordinates.

procedure I0ReadTablet(var tabX, tabY: integer);
Abstract:

Reads tablet coordinates.
Parameters:
tabX and tabY - set to x and y values of the tablet.
Procedure 10ScreenSize(newSize: Integer; Complement: Boolean);

Abstract:

Changes the amount of screen visible to the user (the rest is
turned off, hence not displayed). The cursor is prevented from
going into the undisplayed part of the screen.

Parameters:

newSize - number of scan lines in new screen; it must be a
multiple of 128.

Complement - tells whether the rest of the screen should be the
opposite color of the displayed part.

- 160 -

POS Operating System - Module I0_Others

January 1§, 1984

Procedure 10GetTime(var t : double);

Abstract:

Reads the 60 Hertz clock.

Parameters:

t - set to the new time.

procedure IO0KeyDisable(var OldKeyEnable: Boolean);

Abstract:

I0KeyDisable is used to disable keyboard interrupts. This is used
to delay processing of control-c, control-shift-c and
control-shift-d at critical times. The old value of the keyboard
interrupt enable is returned and must be passed back to
I0KeyEnable when re-enabling keyboard interrupts. Characters
typed while Kkeyboard interrupts are disabled are remembered.
When keyboard interrupts are re-enabled, the characters are

processed.

Parameters:

OldKeyEnable - set to the old value of the enable.

procedure 10KeyEnable(OldKeyEnable: Boolean);

Abstract:

I0KeyEnable is used to enable keyboard interrupts. The old value
of the keyboard interrupt enable (as returned from I0KeyDisable)
must be passed to IOKeyEnable when re-enabling keyboard
interrupts. If characters were typed while keyboard interrupts
were enabled, I0KeyEnable calls Keylntr to process those
characters. The master interrupt control (INTON and INTOFF
QCodes) must be on when this procedure is called.

Parameters:

OldKeyEnable - the old value of the enable.

procedure IO0KeyClear;

Abstract:

I0KeyClear clears the keyboard type-ahead buffer.

- 161 -

POS Operating System - Module 10_Others January 15, 1984

Procedure 10SetRealRelTablet(state : boolean);

Abstract:

Allows the Kriz Tablet or GPIBBItPad to be handled in a true
relative mode.

Parameters:)
state - if true then a true relative mode is obtained whenever the

TabMode = relTablet; lifting the mouse/puck/pen from the
tablet surface and then returning it does not alter cursor
position on the screen - only the movement of the
mouse/puck/pen on the tablet surface will cause corresponding
delta-x and delta-y changes in cursor position.

- if false, then x and y co-ords are simple linear
transformation of the actual values to provide a 1-1 mapping
of the 768 by 1024 screeninto the tabler surface whenever
TabMode = relTablet.
Procedure I0ChooseTablet(model: TabletType);
Abstract:

Allows selection of tablet that will provide co-ordinate positions
and switch values,

Parameters:
model - choices are KrizTablet, GPIBBitPad, or NoPointDev

Side Effects: Depending upon the state of TabMode, we may have to call
10SetModeTablet to turn one tablet off and the other one on.

procedure I0SetBitPadUpdateTimeOut(Cnt: integer);
Abstract:

Set the time-out used to determine if the puck/pen is off the
BitPad.

Parameters:
cnt - Cnt%!1/60sec is the actual time-out.

- 162 -

POS Operating System - Module 10_Private January 15, 1984

module I0_Private;
Abstract:
10 type, and data definitions common to the I0 system but not
available to other Perg modules.
Copyright (C) PERQ Systems Corporation, 1982, 1983

Version Number V6.2
{ SEDDDDDIDIDIDDI>>O>>D> } exports { <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<}

imports SystemDefs from SystemDefs;
imports 10_Unit from I0_Unit;
imports 10_Others from 10_Others;
imports Raster from Raster;

const

Micro-code 1/0 Entry Points }

——

These entry points are parameters to the Pascal supported Q-code)
"STARTIO". Additional parameters, where required, are documented)}
in the explainations. Note that ETOS refers to the top of the }
expression stack as seen by the Pascal programmer. After a Startl0)
instruction is executed, the I/0 Entry Point has been pushed to the }
ETOS, and thus, what looks like ETOS to Pascal, is ETOS-1 to the }
micro-code. Note also that all addresses are virtual addresses, and}

that }

EP_IOStart = 0; { 170 Micro-Code Initialization Entry Point }
{ Expects a pointer to the micro-code device)
{ table at top of stack. Expects entry O of)
{ the device table to have its data control }
{ pointer set to the address of the }
{ interrupt vector. To be executed once }
{ at system boot time as part of startup. }

Also sets stack base and limit.

Hard Disk 1/0 request }

EP_HardDisk { .
2 Expects the hard disk uCode Device Table }
{

[}
-
-

entry’s data control pointer to point to }
a Disk Control Block. }

3/10MB Ethernet 1/0 request }

EP_Ethernet {
2 Expects the ethernet uCode Device Table
{

n
N
-e
v

entry’s data control pointer to point to
an Ethernet Control Block. }

EP_SetEnableMask = 3; { Update device’s interrupt enable mask }
Expects a Z80 device ID at ETOS and a mask }
to be applied to interrupts for that }
device at ETOS-1. }

e Y Y]

EP_ReadTimer = 4;{ Returns a count of ‘jiffies’ since last }

- 163 -

POS Operating System - Module 10 _Private January 15, 1984

{ 'ReadTimer’ request. Returns jiffies)}
{ on ETOS, ETOS-1. ETOS-2 = return code. }

EP_ReadCause = §;{ Determine the cause of an interrupt and }

{ attention from a device. Expects a device ID
{ at ETOS. Returns interrupt cause on ETOS, }
{ attention cause on ETOS-{. }

EP_Z80Msg = 6; { Enqueue a message for delivery to Z80 }
{ Expects a pointer to a message at }
{ ETOS,ETOS-1 and a destination queue }
{ at ETOS-2. Returns a results indicator)
{ (integer) at ETOS }

{ StartlO entry points 7 and 8 no longer exists and can be
redefined.)

{ Get a Z80 message from the Ucode sent message)}
{ queue. The Ucode returns a pointer to a Z80 }
{ message at ETOS, ETOS-1. }

EP_UcodeMsg = 9;

EP_GetChar = 10; { Return next char from the circular buffer of }

{ the specified device, if any has been received, }
{ with completion status. Expects a device ID at }
} ETOS. Returns a results indicator (integer) at)}

ETOS and a byte at ETOS-1. }

11; { Place a byte onto a circular buffer }

EP_PutCircBuffer =
} Expects a character on ETOS, a pointer to a }
{

circular buffer control block at ETOS-1,ETOS-2, }
and returns a results indicator (integer) at ETOS. }

EP_GetCircBuffer = 12; { Return next byte from Specified Circular }
{ buffer(lf not empty) with completion status. }
{ Expects a pointer to a circular buffer control)}
{ block at ETOS,ETOS-1. }
{ Returns a results indicator (integer) at ETOS }
{ and a byte at ETOS-1. }

{ Device table definitions)}

{ Device type: }
Dev_Unused = 0; { indicates that the device field is not used }
{ Hard Disk device types }
Dev_Shugart = 1; { Shugart disk drive }
Dev_Micropolis = 2; { Micropolis disk drive }
Dev_SMD = 3; { Store Module Technology }

{ Intr cause - all numbers are indexex into the IntrCause field }

{ Interrupt causes common to all devices }

Dev_Attention = 0; { We received an attention msg. from Z80 }

- 164 -

POS Operating System - Module I0O_Private ' January 15, 1984

Dev_AckReceived = 1; { Z80 °Acked’ our request msg. }
Dev_NakReceived = 2; { Z80 °Naked’ our request msg. }
Dev_StatReceived = 3; { Z80 sent us a status msg.
{ Intr cause - Device Specific }
{ the following is Valid for RSB, RSA, GPIB, and the KeyBoard }
Dev_DataAvailable = §; { Data has arrived in the circular buffer }
{ the following is valid for screen out }
Dev_ScreenUpdate = 6; { time for a screen update }
const
CirBufSize = #100-3;
type
{ The definition of a circular buffer)}

CirBufltem = packed record { one element of a circular buffer }

ch: char; { the character }
stgtus: 0..255 { and a byte of status information }
end;

CircularBuffer = packed record { the circular buffer for characters }
Length: integer; { number of characters in the buffer }
RdPtr: integer; { where to get characters from }

WrPtr: integer; { where to put characters to }
Buffer: packed arrayl0..CirBufSize-1]1 of CirBufltem

end; { lastly, the buffer of items)}
CirBufPtr = “CircularBuffer; { points to a circular buffer }

Z_CmdRegister = packed record

case integer of
1: (Bits : packed array [0..15] of boolean);

2: (Number : integer);
end;

type

DevIblEntry = packed record { Each entry must be }
{ quad-word aligned.)}
IntrCause : Z_CmdRegister;
{ This is a bit map of the cause(s) of the interrupt(s))}
{ which the Pascal has not as yet received. }

IntrPriority : Z_CmdRegister;
{ This array determines the interrupt vector entry and }
{ thus the priority to be used when an interrupt for }
{ this device occurs. O=highest, 15=lowest.)

EnableMask : Z_CmdRegister;

- 165 -

POS Operating System - Module 10_Private

the mask bit is again set to ‘1°}

ATNCause : Z_CmdRegister;

January 15, 1984

This is a mask determining which types of interrupts, }
as defined in the IntrCause array, will produce Pascal }
level interrupts. ‘1’ enables intr. at correponding }
bit position in IntrCause, °0° masks the intr. until }

{ This is a device-specific bit map of the reason(s) for)}

{ an attention message from the device.

}

pCirBuf ¢ CirBufPtr; { KEEP THIS QUAD WORD ALIGNED }

{ Points to a Circular Buffer }

pStatus . pointer;

{ Points to device-specific device status information. }

pDataCtrl : pointer; { KEEP THIS QUAD WORD ALIGNED)}
{ Points to device-specific 1/0 control structure to be }
{ used in all operations not using the circular buffer }

Devicelype : integer;

Differentiates units as to their type. This code will }
vary among different hard disk drives where the uCode }
must process requests for the drives differently.)

Reserved : packed array [0..0] of integer; { Filler to insure a }
{ quad word alignment}

end;

pUDeviceTable = “UDeviceTable;
UDeviceTable = array [0..MaxUnit] of DevIblEntry;

{ The definition of a high volume data control buffer }

HiVolBlock = packed record { MUST BE QUAD WORD ALIGNED }

DataByteCnt: integer; { number of bytes in the buffer }
pDataBuffer: IOBufPtr { pointer to buffer supplied by the user }

end;
pHiVolBlock = “HiVolBlock;
Type
I0PtrKludge = record case integer of
1: (Buffer: IOBufPtr);
2: (Offset: Integer;
Segment: Integer)
end;
type

Z Commands = ({ The order of declaration of these commands }
{ should not be changed as the uCode and Z80 }
E depend on their generated values remaining }

constant. }
Z_Illegal, Z_RequestData,
Z_BlockData, Z_SendData,

- 166 -

POS Operating System - Module I0_Private

const

Z_ACK,

Z_ATN,

Z_Seek,

Z_Boot,

Z_Sense,
Z_InHiVolumeStart,
Z_ReadData,
Z_ReadID,
WrtDeletedData,

Z Format,

Z NAK,

Z_Status,

Z Config,

Z _Reset,

Z WriteRegisters,

Z OutHiVolumeStart, .
Z WriteData,
Z_ReadDeletedData,
Z_Specify,

Z Recal,

Z_SenseDriveStatus, Z_EOIdata);

Z_SOM = 170 ;

January 1§,

{ Start of Z80 message character for Z80 messages }

{ Binary 10101010 to make it unlikely to match a }

{ device, command, or byte count. }

{ Length constants for data portion of Z80 messages)

Z_NoData = 2;

Z_FirstData = Z_NoData + 1;

Z_MaxData = 14;

Z_DataSize = Z_MaxData - Z_NoData;

type

Z_Queve = (2_Q0, ZQ1, Z Q2, Z_Q3);

Z_Data = packed arraylZ _FirstData..Z MaxDatal of 0..255;

pZ_Msg = “Z_Msg;
Z_Msg = packed record

pNext

UCodeArea

: pZ_Msg;
: long;

SOMDel imiter : 0..255;

ByteCount

Device
Command
Data
end;

: 0

: 0
: 0
: Z_Data

-

.0%5
..255
..255;

Z_MsgPtrKludge = record case boolean of
true: (pMsg: pZ_Msg);
false:(Offset: integer;

end;

const
SLeftX = 0;

SRightX = 767;

STopY = 0;

Segment: integer);

{ left most X coordinate }
{ right most X coordinate }

{ top

most coordinate }

- 167 -

1984

{ micro code uses these two words, don’t touch }

POS Operating System - Module IO_Private January i5, 1984

Var
SBottomY : integer; { current bottom most Y coordinate }

plDevTab : pUDeviceTable; { points to the device table }

Z_MsgNotAvailable : integer; { count of number of times Ucode did not
{ have an empty Z80 message when asked
for one }
I0SegNum : integer; { For debugging, holds the actual segment number)}
{ from which I0Segment data structures are }
{ allocated. Holds actual segment number of the)
{ 10Seg when not testing. }

Z_IntDisabled : boolean;
KeyEnabled : boolean;

TimeBuf : “long; { points to timer information, here because }
{ there is no I0Timer }

RaiseException : packed arrayl0..MaxUnit] of packed record
Attention : boolean;
DataAvailable : boolean
end;

Procedure Z_SendMsg(pMsgToSend : pZ_Msg; SendQueue : Z_Queue);
function Z_DqSysMsg : pZ_Msg;
procedure Z_QSysMsg (pMessage : pZ Msg);
procedure Z_CriticalSection (Beginlt : boolean;
Unit : integer;
var Save : integer);
Procedure Z_SendMsg(pMsgToSend : pZ_Msg; SendQueue : Z_Queue);
Abstract:
This procedure is called by 1/0 system logic to send a message to
the Z80 1/0 controller. The message will be queued by the Perq
micro-code to be sent when the Z80 port becomes available. Return

to the caller is immediate; the completion of transmission will be
detected from Z80 return messages.

Parameters:

pMsgToSend: The single parameter is a pointer to a record which
contains the message as well as the queue to place the message on.

- 168 -

POS Operating System - Module I0_Private January 5, 1984

function Z_DqSysMsg : pZ_Msg;
Abstract:
This routine removes a Z80 message from system owned queue of

messages which have been sent to the Z80. Each call to this
routine will return with ether a pointer to a Z80 message.

This procedure is meant to be called by routines needing an empty
Z80 message.

Returns:

The value returned is a pointer to a Z80 message. If no messages
remain on the system owned queue this returned value is NIL.

procedure Z_QSysMsg (pMessage : pZ_Msg);

Abstract:

This routine places a Z80 message onto the system owned queue of
messages which have been sent to the Z80. Its purpose is to
provide 10 routines with system owned messages and to provide
initialization logic with a way of first adding messages to the
queue,

Parameters:
pMessage - Message to be sent to the Z80.

procedure Z_CriticalSection (Beginlt : boolean; Unit : integer; var Save
: integer);

Abstract:

This routine implements a critical section by disabling all
interrupts for a device and restoring the interrupt state on
completion of the critical section.

Parameters:
Beginlt - When true, a critical section should begin, else the

critical section is ended.
Unit - Unit whose interrupts will be enabled/disabled.

Save - When a critical section should begin, this value will be
returned to the caller containing the interrupt mask before
all interrupt types were disabled.

When the critical section is being ended, this value is an

input parameter and holds(the previously saved) interrupt
mask which should be retored.

- 169 -

POS Operating System - Module I0O_Unit January 15, 1984

module I0_Unit;

I0_Unit - Unit I0 routines.

Copyright (C) 1982, 1983, PERQ Systems Corporation
Abstract:

10_Unit exports constants, types, variables, and procedures needed
to perform IO on the various IO Units, (devices).

Design: All procedures call device dependent routines to do the
actual I0

Version Number V7.11
{ JEMEHNNAMAXRRRRRARRRRARRRRXXAXX) Exports
{ B ERRRINHARRHRERRRHRRKRARERNKNK }
imports SystemDefs from SystemDefs;
const
{ Device Code Assignments for device table }

{ NOTE: The order of device declaration is important; all Z80-controlled }

{ devices have been assigned a sub-range of contiguous values. Be }
{ sure to Check I0_Defs_Private before modifying these values!)
10Start = 0; { System Initialization }

HardDisk = 1; { Has a device table entry }

{$ifc Ether3MBaud then}

Ether3 = 2; { Has a device table entry }
{$elsec} {$ifc Ether1OMBaud then}

Ether10 = 2; { Has a device table entry }

{$endc} {$endc)

Floppy = 3

RSA = 4; RS2320ut = RSA; RS232In = RSA;

RSB = 8§; { valid for EIO boards only }
Speech = 6;

GPIB = 7; GPIBIn = GPIB; GPIBOUT = GPIB;
Keyboard = 8;

Timer = 9;

Clock = 10;

PointDev = 11; Tablet = PointDev;

TransKey = 12;

ScreenOut = 13;

EIODisk = 14;

Z80 = 15;

LastUnit = Z80; { for unit validity checking }
MaxUnit = LastUnit; { highest legal device code }
RSExt = 0; { RS-232 Speeds }

RSI110 = 1;

- 170 -

POS Operating System - Module I0_Unit January 15, 1984

RS150 = 2;
RS300 = 3;
RS600 = 4;
RS1200 = 5;
RS2400 = 6;
RS4800 = 7;
RS9600 = 8;
RS19200 = 9;

RS_MaxWords = 6;
RS_MaxBytes = RS_MaxWords ¥ 2;

type

UnitRng = 0. .MaxUnit;

10BufPtr = “I0Buffer;

10Buffer = arrayl0..0] of integer;

CBufPtr = “CBufr;

CBufr = packed arrayl0..0) of char; { same as Memory, except }

: { for character buffers }

BigStr = Stringl255]; { A big String }

JOStatPtr = ~I0Status;

I10Status = record
HardStatus: integer; { hardware status return }
SoftStatus: integer; { device independent

status }

BytesTransferred: integer
end;

10Commands = (IOReset, I0Read, I0Write, 10Seek,

I0Format, I0DiagRead, 10WriteFirst, I0ldle,
J1OWriteEOI, I0Configure,lOWriteRegs, I0Sense,
I0WriteHiVol, I0ReadHiVol,IOReadID, I0Flush);

I0HeadPtr = “IOHeader;

I0Header = record { Hard disk header record }
SerialNum : double; { Serial number of the file }
LogBlock : integer; { The logical block number }
Filler : integer;

NextAdr : double; { ?q?reis of next block in the
ile

PrgvAdr : double { Address of previous block }

end;

I0IntrTypes = (10ATNInterrupt, IODatalnterrupt);
{ the following is useful for an IOWriteReg command to the RS232 }

RS_WrtReg = gggked record { Write to Chip registers }
ID : 0..255;
case integer of
0 : { Write to command register }
(NextRegisterPointer : 0..7;
Command : (R_NullCommand, R_SendAbort,

- 171 -

POS Operating System - Module 10_Unit January 15, 1984

pClockStat = “ClockStat;
ClockStat = packed record { 10Sense to the Clock provides this }

Cycles : 0..255;
Year : 0..265;
Month 0..255;
Day : 0..255;
Hour : 0..255;
Minute 0..255;
Second : 0..255;
Jiffies : 0..255
end;

pZ80Stat = “Z80Stat;

Z80Stat = packed record { 10Sense to the Z80 provides the }
MajorVersionNum : 0..255; { version number of the code running }
MinorVersionNum : 0..255; { on the Z80, interpret as }
end; { Version Major.Minor }

pPointDevStat = “PointDevStat;
PointDevStat = packed record { zero means PointDev configured off }
onOff : 0..255; - { non?ero means PointDev configured
on
end;

pKeyStat = ~10_KeyStat;
10_KeyStat = packed record

OnOff : 0..255; { Zg;o}means keyboard is configured

o
ngrFlow : 0..255; { nonzero means overrun on in buffers }
end; .

RS_StatusType = (RS_Config, RS_PStat, RS_GStat,
RS_MapBytes, RS_MapWords);

pRS232Stat = “RS232Stat;
RS232Stat = packed record
case RS_StatusType of
RS MapBytes: (Byte : packed array [1..RS_MaxBytes] of 0..255);
RS MapWords: (Word : packed array [1..RS_MaxWords] of integer);
RS Config : (XmitRate : 0..255;
) RcvRate : 0..255
(

RS_PStat : (Reg : packed array [1..6] of RS WrtReg);
RS_GStat : { Read General Status - SIO Chip’s Read Register #0 }
(RxCharAvailable : boolean;

IntPending : boolean;
TxBufferEmpty : boolean;
DCD : boolean;
SyncHunt : boolean;
CTs : boolean;
TransmitUnderRun : boolean;
BreakAbort : boolean;
{ Read Special Condition - SIO Chip’s Read Register #1)}
AllSent : boolean;

- 173 -

POS Operating System - Module I0_Unit January 15; 1984

end;

Residue : 0..7;
ParityError : boolean;
RxOverRun : boolean;
CrcFramingError : boolean;
EndOfFrame : boolean);

{ Use of this status block is discouraged, Use the 10Sense, I0Configure,
and IOWriteRegs command with Unitl0 instead of I0PutStatus and

10GetStatus }

DevStatusBlock = packed record
ByteCnt: integer; { # of status bytes)}
case UnitRng of

KeyBoard,

{$ifc Ether3MBaud then}

Ether3,
{$endc)

Clock: (DevEnable: boolean);

Tablet: (OldStanleyEnable : boolean; { should always be false }

RS232In,

KrizEnable : boolean;
case boolean of

true : { GET STATUS)}
(TAbFill : O..#77;
TabOverRun : 0..255);
false : { PUT STATUS)}
({ nothing }));

RS2320ut: (RSRcvEnable : boolean;

RSFill : 0..127;

RSSpeed : 0..255;

RSParity : (NoParity, OddParity, IllegParity,
EvenParity);

RSStopBits : (Syncr,Stopl,Stopix5,Stop2);

RSXmitBits : (Send5,Send7,Send6,Send8);

RSRevBits @ (Rev5,Rev7,Revb,Rev8));

Floppy: (case integer of { Get or Put }

I: { GET STATUS }
(FlpUnit : 0..3;
FlpHead : 0..1;
FlpNotReady : boolean;
FlpEquipChk : boolean;
FlpSeekEnd : boolean;
FlpIntrCode : 0..3;
case integer of
1 {IORead, IOWrite, IOFormat}:
(FlpMissAddr : boolean; { in data or header }
FlpNotWritable : boolean;

FlpNoData : boolean;

FIpFilll : 0..1;

FlpOverrun : boolean;

FlpDataError : boolean; { in data or header)
FlpFill2 : 0..1;

- 174 -

POS Operating System - Module I0_Unit January 15, 1984

FlpEndCylinder : boolean;
FlpDataMissAddr: boolean; { in data }
FlpBadCylinder : boolean;

FlpFill : 0..3;

FlpWrongCylinder : boolean;
FlpDataDataError : boolean; { in data }

FlpFill4 : 0..3;

FilpCylinderByte : 0..255;

FlpHeadByte : 0. 255

FlpSectorByte : 0..

FlpSlzeSectorByte. 0. 255)s
2 {10Seek}:

(FlpPresentCylinder: 0..255));
2: { PUT STATUS }
(FlpDensity : 0..255; { single = 0, double = #100 }
FlpHeads : 0..286; {lor2 heads }
FlpEnable : boolean);
3: { BYTE ACCESS)

(FlpBytel :

FlpByte2 :
FlpByte3 :
FlpByted :
FlpByteS :
FlpByte6 :
FlpByte7 :

copooos

GPIBIn,
GPIBOut: { GET STATUS ONL
(Int1Status
AddrSwitch
AddrStatus
CmdPassThru :
IntQStatus
BusStatus

4

Y)
255;
.255;
. .255;
255;
255;
..255

cooooof

1

e

end;
{ hard status type information }

DskResult = packed record
case integer of
0 : (Result : integer);
{ : (CntlError : (DskOK,
AddrsErr, { address error }
PHCRC, { Physical Header CRC }
LHSer, { Logical Serial Wrong }
LHLB, { Logical Block Wrong } -
LHCRC, { Logical Header CRC }
DaCRC, { Data CRC }
Busy);
Fill2 : boolean;
TrackZero : boolean;
WriteFault : boolean;
SeekComplete : boolean;
DriveReady : boolean);
2 : {for cio mxcropolls disks}

- 175 -

POS Operating System - Module 10_Unit January iS5, 1984

(CioMCntlError: (CioMDskOK,

CioMAddrsErr, { address error }
CioMPHCRC, { Physical Header CRC }
CioMLHSer, { Logical Serial Wrong }
CioMLHLB, { Logical Block Wrong }
CioMLHCRC, { Logical Header CRC }
CioMDaCRC, { Data CRC }
CioMBusy);

CioMIndex : boolean;

CioMIllegalAddr : boolean;
CioMFault : boolean;
CioMSeekComplete : boolean;
CioMDriveReady : boolean)
end;
{ Floppy special data descriptions }
{ This information is returned from I0ReadID for the floppy }

FlpPhyHdr = Packed record { used for IOFormat and IOReadID)
Cylinder : 0..255; { cylinder number)
Head : 0..255; { Head number }
Sector : 0..255; { Sector number }
Sriée : 0..255; { Size (0=128 bytes, 1=256 bytes)
end;

pFlpPhyHdr = “FlpPhyHdr; { Recast to IOBufPtr for IOReadID }
{ This information is passed to IOFormat and specifies how to format }

FlpFmtHdrs = Array [1..26]) of FlpPhyHdr; { input to I0Format command)}

pFlpFmtHdrs = “FlpFmtHdrs; { RECAST to IOBufPtr for IOFormat }
Var
CtrlSPending : boolean; { True: Control S has halted screen
output }
I0InProgress: boolean; { false when speech is active }
1024MByte : boolean; { true if the disk is 24 MBytes)}

Excep;.ion De\)'Interrupt(Unit: UnitRng; IntType: IOIntrTypes; AINCause:
nteger);
Function I0CRead(Unit: UnitRng; var Ch: char): integer;
Function I0CWrite(Unit: UnitRng; Ch: char): integer;
Procedure UnitIO(Unit: UnitRng;

Bufr: I0BufPtr;

Command: I0Commands;

ByteCnt: integer;

LogAdr: double;

HdPtr: IOHeadPtr:

StsPtr: I0StatPtr);
Procedure IOWait(var Stats: I0Status);
Function IOBusy(var Stats: I0Status): boolean;
Procedure IOPutStatus(Unit: UnitRng; var StatBlk: DevStatusBlock);
Procedure I0GetStatus(Unit: UnitRng; var StatBlk: DevStatusBlock);
Procedure 10Beep;
Function IOCRNext(Unit: UnitRng; Var Ch: char): integer;
Function 10CPresent(Unit: UnitRng): boolean;
Procedure I0ClearExceptions;

- 176 -

POS Operating System - Module 10_Unit January (5, 1984

Procedure 10SetExceptions(Unit : UnitRng;
IntType : 10IntrTypes;
var Setting:boolean);

{$ifc Ether3MBaud then}
Function Ether3Transmit(Buff: IOBufPtr; WdCnt: integer) : integer;

Function Ether3Receive(Buff: IOBufPtr; var WdCnt: integer; timeout: integer)
: integer;

Function Ether3Start(Promiscuous, Restart: boolean) : integer;
{$endc)

Function I0CRead(Unit: UnitRng; var Ch: char): integer;

Abstract:

Reads a character from a character device and returns a completion
or error code.

Parameters:
Unit - device from which to read the character.

Ch - character to read.

Returns:

A condition code as defined in the module IOErrors.
Function I10CWrite(Unit: UnitRng; Ch: char):integer;

Abstract:

Writes a character to a character device and returns a completion
or error code. Delays if the buffer is full. Returns an error if
the condition doesn‘t clear up.

Parameters:
Unit - device onto which the character will be written.

Ch - character to write.

Returns:
Condition code as defined by the module IOErrors.

- 177 -

POS Operating System - Module I0 Unit January 5, {984

Procedure I0Wait(var Stats: IOStatus);

Abstract:

Hangs until an IO operation inititated by UnitI0 is complete.
Parameters:
Stats - Status block that was given to UnitI0 when the operation
was initiated.
Function I0Busy(var Stats: I0Status): boolean:

Abstract:

Determines whether or not 1/0 is complete.
Parameters:
Stats - Status block that was given to UnitIO when the
operation was initiated.
Returns:
True if 10 is not complete, false if it is.
Procedure IOPutStatus(Unit: UnitRng; var StatBlk:DevStatusBlock);
Abstract:
Sets device’s characteristics. Has no effect if the device has no

settable status.

Parameters: _
Unit - device whose characteristics are to be set.

StatBlk - block containing characteristics to be set.
Procedure I10GetStatus(Unit: UnitRng; var StatBlk:DevStatusBlock);
Abstract:
Reads device status. Has no effect if the device has no readable
status.

Parameters:
Unit - device whose characteristics are to be read.

StatBlk - block to which device status is to be returned.

- 178 -

POS Operating System - Module I0_Unit JanuaryAls, 1984

Procedure UnitIO(Unit: UnitRng; Bufr: IOBufPtr; Command: 10Commands ;
ByteCnt: integer; LogAdr: double; HdPtr: IOHeadPtr; StsPtr: IOStatPtr

);
Abstract:

10 to non-character devices.

Parameters:
Unit - the device.

Bufr - buffer for data transfers, if requested.
Command - operation to be performed on the device.
ByteCnt - number of bytes to be transferred.

LogAdr - logical address for block structured devices.

HdPtrdf Eointer to the logical header for operations with the hard
isk.

StsPtr - resultant status from the operation.
procedure 10Beep;

Abstract:

Causes the PERQ to beep.
Function IOCRNext(Unit: UnitRng; Var Ch: char): integer;

Abstract:
Reads a character from a character device and returns a completion
or error code. We will always return with an error or a
character.

Parameters:
Unit - device from which the character will be read
Ch - character read from device

Returns: condition code as defined by module IOErrors.

- 179 -

POS Operating System - Module I0 Unit January {5, 1984

Function IOCPresent(Unit: UnitRng): boolean;
Abstract:
Returns true if the Unit is a character device and has a character
available for reading. Otherwise it returns false. It does not
read the character.
Parameters:
Unit is the device to check for parameters
Returns: true if a character is available.
Procedure 10ClearExceptions;
Abstract:
Disable the raising of exceptions for device interrupts. All
devices are affected. Exception raising disabled is the normal
case. This procedure also resets the enable mask of certain
devices.
procedure 10SetExceptions(Unit : UnitRng;
IntType : I0IntrTypes;
var Setting:boolean);
Abstract:
Disables or enables the raising of an exception when the specified
device raises the specified interrupt. Setting = true enables,
Setting = false disables. Upon return, Setting will be set to to
true if the raising of the specified exception was previously
enabled, false if not.
Parameters:
Unit - device to enable/disable exceptions on
IntType - type of interrupts to enable/disable
Setting - true to enable, false to disable

Returns: setting returns previous state of exceptions.

- 180 -

POS Operating System - Module Lights January 15, 1984

module Lights;

Lights - Perq Lights.
J. P. Strait 26 May 8I.
Copyright (C) PERQ Systems Corporation, 1981

Abstract:

This module defines the screen coordinates and size of the Perq
"lights". These are portions of the screen that are inverted
during tedious operations such as recalibrating the disk and
scavenging files (in FileAccess).

Design: The lights must ¥not¥ extend below the 128th line of the
screen. The Y + Size must be less than or equal to 256. It is a
good idea for the lights to be totally inside of the title line.
The current lights start at the left leave lots of room for new
lights to the right of the current one. There is room for 10
lights all together

Version Number V1.4

exports
const
LightUsed = TRUE; {whether should use the lights at all}
LightY =3; ’
LightHeight = 14;
LightWidth = 18;
LightSpacing = 3x%LightWidth;
LightRecalibrate = LightSpacing;
LightScavenge = LightRecalibrate + LightWidth + LightSpacing;
LightSwap = LightScavenge + LightWidth + LightSpacing;

LightHardCopy = LightSwap + LightWidth + LightSpacing;

- 181 -

POS Operating System - Module Loader January 15, 1984

module Loader;

Loader - Perq system loader.

J. P. Strait 10 Feb 81. rewritten as a module.
Copyright (C) PERQ Systems Corporation, 1981, 1982.

Abstract:
This module implements the Perq POS system loader. Given a ,
run-file name as input, it loads and executes that program. When

the program terminates (normally or abnormally) it returns to the
loader which returns to its caller.

Version Number V3.!

exports
const LoaderVersion = ‘3.0°;
procedure Load(RunFileName: String);
procedure Load(RunFileName: Strirg);
Abstract:
Given a run-file name as input, this procedure loads and executes

that program. When the program terminates (normally or
abnormally) it returns to the loader which returns to its caller.

Parameters:
RunFileName - Name of the .RUN file to load. ".RUN" is appended
if it is not already present.

- 182 -

POS Operating System - Module LoadZ80 January 5, 1984

module LoadZ80;

Abstract:

Mggule to read Tektronix format load files and load them into the
Z80.

Version Number V0.3
{ RRHEMENRN R R R RN HNHRRRRRNNX } Exports { J3EERR IR R R RN R RA XXX)

ype
TekResult = (TekOk, TekFNF, TekFMT, TeklIO);

Function TekLoad(FileName : String; Var StartAddress : Integer) : TekResult;

Function TekLoad(FileName : String; Var StartAddress : Integer) : TekResult;

Var

Addr : Integer; { Address of current block }

TekFile : Packed File of 0..255; { Input Tekhex format file }
Binary : pByteArray; { Binary data to be sent to Z80 }
‘Data : tByteArray; { data read from input file }
i,j,k : integer; { index } .
LogAdr : double; { double word address for UnitlO }
StsPtr : I0StatPtr; { status for UnitlO call }

- 183 -

POS Operating System - Module Memory January {5, 1984

module Memory;

Memory - Perq memory manager.

J. P. Strait 1 Jan 80.

Copyright (C) PERQ Systems Corporation, 1980, 1982.

Abstract:

Memory is the Perq memory manager. It supervises the segment
tables and exports procedures for manipulating memory segments.
Perq physical memory is segmented into separately addressable
items (called segments) which may contain either code or data.
Design: See the Q-Code reference manual.

Version Number V2.20

exports

const MemoryVersion = °2.18°;

imports SystemDefs from SystemDefs;
imports Code from Code;

const SATSeg = |; { SAT segment)
SITSeg = 2; { SIT segement }
FontSeg = 3; { font segment }
ScreenSeg = 4; { screen segment)}
CursorSeg = 5; { cursor segment)}
10Seg = 6; { 10 segment }
SysNameSeg = 7; { system segment names }
BlocksInQuarterMeg = #1000; { 512 blocks in 1/4 meg memory)
BlocksInHalfMeg = #2000; { 1024 blocks in 1/2 meg memory)
BlocksInMeg = #4000; { 2048 blocks in | meg memory}
BlocksForPortraitScreen = 192; { number of blocks needed for its
segment }
BlocksForLandscapeScreen = 320;
MaxSegment = #137; { should be 2%x16 - 1 }
SetStkBase = #60;
SetStkLimit = #120;
{$ifc Ether3MBaud then}
10SegSize = 10; { number of blocks in the I0Seg }
{$elsec}
{$ifc Ether!0MBaud then}
10SegSize = 8; { number of blocks in the I0Seg }
{$elsec}
10SegSize = 8; { number of blocks in the 10Seg }
{$endc)
{$endc}
SysSeglLength = 8; { length of name of a boot-loaded segment }

- 184 -

POS Operating System - Module Memory

MMMaxBlocks =
MMMaxCount =

January i5, 1984

#10000; { maximum number of blocks in a segment }

#377; { maximum reference count }

MMMaxIntSize = MMMaxBlocks-1;
MMMaxExtSize = MMMaxBlocks;

type MMBit4 = 0..#17;
MMBit8 = 0..#377;
MMBit12 = 0..#7T777;

MMIntSize = 0..MMMaxIntSize;
MMExtSize = 1..MMMaxExtSize;
MMAddress = integer;

MMPosition = (MMLowPos, MMHighPos);

SegmentNumber = integer;

SegmentKind = (CodeSegment, DataSegment);

SegmentMobility = (UnMovable, UnSwappable, LessSwappable, Swappable);

MMFreeNode = record

N: MMAddress;
L: integer
end;

MMBlockArray = arrayl0..0] of arrayl0..127] of integer;

pMMBlockArray = “MMBlockArray;

MMArray = record case Integer of

1: (m: arrayl0..0] of MMFreeNode);
2: (w: arrayl0..0] of Integer)

end;

pMMArray = “MMArray;

MMPointer = record case integer of
1: (P: “integer);

2: (B: pMMBlockArray);

3: (M: pMMArray);

4: (Offset: MMAddress;

end;

SATentry = packed record { Segment Address Table }
{ xx%%x ENTRIES MUST BE TWO WORDS LONG %¥%%x% }

Segmen: SegmentNumber)

NotResident : boolean; {
Moving : boolean; {
RecentlyUsed: boolean; {
Heap : boolean; {
Kind : SegmentKind; {
Full : boolean; {
InUse : boolean; {
Lost : boolean; { #x% } {
BaseLower : MMBitS8;

BaseUpper : MMBit4;

- 185 -

001
002
004
010
020
040
100
200

e

POS Operating System - Module Memory January 15, 1984

Size : MBit12
end;

{$IFC WordSize(SATentry) < 2 then}
{SMESSAGE ¥%%%%%% ERROR ¥xxx¥% SAT WRONG SIZE ¥¥%%%%)

{$ENDC}

SITentry = packed record case integer of { Segment Information Table }
{ ¥%x% ENTRIES MUST BE EIGHT WORDS LONG %xx% }
1: { real SIT entry }
(NextSeg : SegmentNumber;
RefCount : O..MMMaxCount;
I0Count : 0..MMaxCount ;
Mobility : SegmentMobility;
BootLoaded : Boolean;
Increment : MMIntSize; {gsTd ?nly if DataSegment and Heap is
alse
SwapInfo : record case {BootLoaded:} Boolean of
True: (BootLowerAddress: Integer;
BootUpperAddress: Integer;
BootLogBlock: Integer);
False: (DiskLowerAddress: Integer;
DiskUpperAddress: Integer;
DiskId: Integer)
end;
case SegmentKind of
DataSegment: (case {(Heap:} Boolean of
False: (Maximum : MMIntSize;
Freelist : MMAddress);
True: (HeapNext : SegmentNumber;
) Freelst : MAddress)

) CodeSegment: (Update : TimeStamp)
2: { boot time information }

(BootBlock: record
CS: SegmentNumber;
SS: SegmentNumber;
XX: Integer;

VN: Integer;

FF: SegmentNumber;
FC: SegmentNumber;
DK: integer;

CH: integer

end)

initial code segment }

initial stack segment }

used as interface between SysB and Config}
system version number }

first free segment number }

first system code segment }

disk system was booted from }

char used in booting }

P, i, e, gty e, g, o, gt

end;
{$1IFC WordSize(SITentry) < 8 then}
{SMESSAGE ¥xxxxx¥% ERROR %¥%%%% SIT WRONG SIZE ¥%%%%%)}
{$ENDC}

SATarray = array(0..0] of SATentry;

SITarray = arrayl0..0] of SlTentry;

pSAT = “SATarray;

- 186 -

POS Operating System - Module Memory January 15, 1984

pSIT = “SITarray;

MMEdge = record
H: SegmentNumber; { Head }
T:dSegmentNumber { Tail }
end; .

SysSegName = packed arrayl1..SysSeglengthl of Char;
pSysNames = “SysNameArray;
SysNameArray = array[0..0] of SysSegName;

procedure InitMemory;
procedure DataSeg(var S: SegmentNumber);
procedure CodeOrDataSeg(var S: SegmentNumber);
procedure ChangeSize(S: SegmentNumber; Fsize: MMExtSize);
procedure CreateSegment(var S: SegmentNumber;
Fsize, Fincrement, Fmaximum: MMExtSize);
procedure IncRefCount(S: SegmentNumber);
procedure SetMobility(S: SegmentNumber; M: SegmentMobility);
procedure DecRefCount(S: SegmentNumber);
procedure SetIncrement(S: SegmentNumber; V: MMExtSize);
procedure SetMaximum(S: SegmentNumber; V: MMExtSize);
procedure SetHeap(S: SegmentNumber; V: boolean);
procedure SetKind(S: SegmentNumber; V: SegmentKind);
procedure MarkMemory;
procedure CleanUpMemory;
procedure FindCodeSegment(var S: SegmentNumber; Hint: SegHint);
procedure EnableSwapping(Where: Integer)
procedure DisableSwapping;
function CurrentSegment: SegmentNumber;

exception UnusedSegment(S: SegmentNumber);
Abstract:
UnusedSegment is raised when the memory manager encounters a
segment number which references a segment which is not in use.
This may mean that a bad segment number was passed to some memory
manager routine or that a bad address was de-referenced.
Parameters:

S - Segment number of the unused segment.

- 187 -

POS Operating System - Module Memory January 15, (984

exception NotDataSegment(S: SegmentNumber);
Abstract:

NotDataSegment is raised when the number of a code segment is

passed to some memory manager routine that requires the number of
a data segment.

Parameters:

S - Segment number of the code segment.

exception BadSize(S: SegmentNumber; Fsize: Integer);
Abstract:

BadSize is raised when a bad Size value is passed to some memory
manager routine. This usually means that the size passed to

CreateSegment or ChangeSize is greater than the maximum size or
less than one.

Parameters:
Fsize - The bad Size value.

exception BadIncrement(S: SegmentNumber; Fincrement: Integer);
Abstract:

BadIncrement is raised when a bad Increment value is passed to
some memory manager routine. This usually means that the
increment passed to CreateSegment is greater than 256 or less than
one.

Parameters:

Fincrement - The bad Increment value..

exception BadMaximum(S: SegmentNumber; Fmaximum: Integer);
Abstract:

BadMaximum is raised when a bad Maximum value is passed to some
memory manager routine. This usually means that the maximum
passed to CreateSegment is greater than 256 or less than one.

Parameters:

Fmaximum - The bad Maximum value.

- 188 -

POS Operating System - Module Memory January 15, 1984

exception FullMemory;
Abstract:
FullMemory is raised when there is not enough physical memory to
satisfy some memory manager request. This is raised only after
swapping segments out and compacting memory.
exception CantMoveSegment(S: SegmentNumber);
Abstract:
CantMoveSegment is raised when the memory manager attempts to move
a segment which is UnMovable or has a non-zero 10 count.
Parameters:
S - The number of the segment which cannot be moved.
exception PartNotMounted;
Abstract:
PartNotMounted is raised when 1) the memory manager attempts to
swap a data segment out for the first time; and 2) the partition
which is to be used for swapping is no longer mounted.
exception SwapInFailure(S: SegmentNumber);

Abstract:

SwapInFailure is raised when the swap file cannot be found for a
segment which is marked as swapped out. This is an error which

should never happen in a debugged system. It usually means that
there is a bug in the memory manager or that the segment tables

have been clobbered.

Parameters:
S - The number of the segment which could not be swapped in.
exception EdgeFailure;
Abstract:
EdgeFailure is raised by MakeEdge when it discovers that the SIT
entries are not linked together into a circular list. This is an
error which should never happen in a debugged system. It usually

means that there is a bug in the memory manager or that the
segment tables have been clobbered.

- 189 -

POS Operating System - Module Memory January 15, 1984

exception NilPointer;
Abstract:
NilPointer is raised when a Nil pointer is used or passed to
Dispose.
exception BadPointer;

Abstract:

BadPointer is raised when a bad pointer is passed to Dispose.

Parameters:

exception FullSegment;
Abstract:

FullSegment is raised by New when it discovers that there is not
enough room to allocate and the segment cannot be enlarged (its
size has reached its maximum).

exception NoFreeSegments;

Abstract:

NoFreeSegments is raised when the memory manager discovers that
all of the segment numbers are in use and it needs another one.
This is equivalent to "Segment table full”.

exception SwapError;

Abstract:

SwapError is raised if the one of the memory managers swapping
routines is called when swapping is disabled. This is an error
which should never happen in a debugged system. It usually means
that there is a bug in the memory manager.

var SAT: pSAT;

SIT: pSIT;

MMFirst, MMFree, MMLast, MMHeap: SegmentNumber:

MMHole: MMEdge;

MMState: (MMScanl, MMScan2, MMScan3, MMScan4, MMScanS,
MMScan6, MMScan7, MMScan8, MMScan9, MMScanlO,
MMScanl 1,
MMNotFound, MMFound);

StackSegment: SegmentNumber;

FirstSystemSeg: SegmentNumber;

- 190 -

POS Operating System - Module Memory January 5, 1984

BootFileld: Integer;

SwappingAllowed: Boolean;

Swapld: Integer;

MemoryInBlocks: Integer; { amount of memory on this machine }

procedure InitMemory;

Abstract:

InitMemory initializes the memory manager. It is called once at
system initialization and may not be called again. If the system
was booted from a floppy, the system segments are all marked as
UnSwappable.

procedure DataSeg(var S: SegmentNumber);

Abstract:

DataSeg is used to

1) - Determine if a given segment number represents a data

segment .
2) - Find the default heap segment (in the case of an input

parameter
of zero).

Parameters:

S - Data segment number--zero means the default heap segment.

Errors:

UnusedSegment - if S is not in use.
NotDataSegment - if S is not a data segment.

procedure CodeOrDataSeg(var S: SegmentNumber);

Abstract:

CodeOrDataSeg is used to

1) - Determine if a given segment number represents a defined

segment

2) - Find the-default heap segment (in the case of an input
parameter

of zero).

Parameters: ,

S - Data segment number--zero means the default heap segment.

- 191 -

POS Operating System - Module Memory January 15, 1984

Errors: UnusedSegment if S is not in use.
procedure ChangeSize(S: SegmentNumber; Fsize: MMExtSize);
Abstract:

ChangeSize is used to change the size of an existing data segment.

Parameters:

S - Number of the segment whose size is to be changed.
Fsize - New size of the segment.

Errors:

UnusedSegment - if S is not in use.

BadSize - if Fsize is greater than the maximum size of S or less
than one.

FullMemory - if there is not enough physical memory to increase
the size of S.

CantMoveSegment - if the segment must be moved, but it is not
movable or its I0Count is not zero.

procedure CreateSegment(var S: SegmentNumber; Fsize, Fincrement, Fmaximum:
MMExtSize);

Abstract:

CreateSegment is used to create a new data segment. The size,
increment and maximum may be up to 4096 blocks but clearly the
size will be limited by the available memory. In addition, IT IS
NOT POSSIBLE TO USE SEGMENTS BIGGER THAN 256 BLOCKS FOR NEW,
DISPOSE, OR MAKEPIR. Therefore, the only way to address segments
bigger than 256 blocks is using RasterOp.

Parameters:
S - Set to the number of the new segment.
Fsize - Desired size of the new segment in blocks.
Fincrement - Increment size of the new segment in blocks.
Fmaximum - Maximum size of the new segment.

Errors:

BadSize - if Fsize is greater than Fmaximum or less than one.

BadIncrement - if Fincrement is greater than MMMaxExtSize or less
than one.

BadMax i mum
than one.

Ful IMemory
segment.

if Fmaximum is greater than MMMaxExtSize or less

if there is not enough physical memory to create the

- 192 -

POS Operating System - Module Memory January {5, 1984

procedure IncRefCount(S: SegmentNumber);

Abstract:

IncRefCount increments the number of references to a segment. A
non-zero reference count prevents a segment from being destroyed.
A reference count greater than one indicates a system segment. If
S is a heap, all segments in the heap are incremented.

Parameters:
S - Number of the segment.
Errors: UnusedSegment if S is not in use.
procedure SetMobility(S: SegmentNumber; M: SegmentMobility);

Abstract:

SetMobility sets the Mobility of a segment. The mobility may be
set to one of the following values:

Swappable - segment is a candidate for swapping or moving.

LessSwappable - segment is a candidate for swapping or moving,
but the memory manager will be more reluctant to swap.

UnSwappable - segment may not be swapped, but may be moved.

UnMovable - segment may not be swapped or moved. The
RecentlyUsed bit of the segment is cleared also. Thus to
make a segment a candidate for swapping, set its mobility to
Swappable (even if it already swappable).

Parameters:
S - Segment number.
M - Mobility.

Errors:

UnusedSegment - if S is not in use.

CantMoveSegment - if the segment is changing from Swappable to
UnMovabl an attempt is made to move the segment to the high
end og memory. If it has a non-zero 10 count this error is
issued.

FullMemory - if the segment is changing from Swappable to
UnSwappable, it is swapped out, and there isn’t enough memory
to swap it in.

procedure DecRefCount(S: SegmentNumber);

Abstract:

DecRefCount decrements the reference count of a segment by one.

If reference and 10 counts both become zero:

- if the segment is a data segment, it is destroyed.

- if the segment is a code segment, it is destroyed only if it is
in the screen or is non-resident. If S is a heap, all
segments in the heap are decremented.

- 193 -

POS Operating System - Module Memory January 15, 1984

Parameters:
S - Number of the segment.
Errors: UnusedSegment if S is not in use.
procedure Setlncrement(S: SegmentNumber; V: MMExtSize);
Abstract:
SetIncrement changes the increment size of a data segment.
Parameters:
S - Number of the segment.
V - New increment size.
Errors:
UnusedSegment - if S is not in use.
NotDataSegment - if S is not a data segment.
BadIncrement - if V is greater than MMMaxExtSize or less than
one.
procedure SetMaximum(S: SegmentNumber; V: MMExtSize);
Abstract:
SetMaximum changes the maximum size of a data segment.
Parameters:
S - Number of the segment.
V - New maximum size.
Errors:
UnusedSegment - if S is not in use.
NotDataSegment - if S is not a data segment.
BadMaximum - if V is greater than MMMaxExtSize or less than one.
procedure SetHeap(S: SegmentNumber; V: boolean);
Abstract:

SetHeap changes the ”Heag" attribute of a segment. This should
not normally be changed by anyone other than Dynamic.

Parameters:

S - Number of the segment.

V - New value of the "Heap” attribute.
Errors:

UnusedSegment - if S is not in use.

- 194 -

POS Operating System - Module Memory January 15, 1984

procedure SetKind(S: SegmentNumber; V: SegmentKind);
Abstract:
SetKind changes the kind (code or data) of a segment.

Parameters:

S - Number of the segment.
V - New kind of the segment.

Errors: UnusedSegment - if S is not in use.
procedure MarkMemory;
Abstract:
MarkMemory marks all currently in use segments as system segments
usually before loading a user program) by incrementing their
reference counts. ,
procedure CleanUpMemory;
Abstract:
CleanUpMemory destroys all user segments (usually at the end of a
program execution) by deecrementing the reference count of all
segments.
procedure EnableSwapping(Where: Integer);
Abstract:

EnableSwépping turns the swapping system on, determines where swap
files should be created, and locates the boot file.

Parameters:
WherefleileId of some file in the partition to be used for swap
iles.

procedure DisableSwapping;
Abstract:
DisableSwapping attempts to swap in all segments which are swapped
out and then turns the swapping system off. If there is not

enough physical memory to swap all segments in, swapping is not
disabled.

Errors:
FullMemory - if there isn’t enough memory to swap all segments
in.

- 195 -

POS Operating System - Module Memory January {5, 1984

procedure FindCodeSegment(var S: SegmentNumber; Hint: SegHint);
Abstract:

FindCodeSegment searches for a code segment in the segment table
which has a certain SegHint. If such a segment is found, its
RefCount is incremented and the segment number is returned.
Otherwise, a zero segment number is returned.

Segments which

1) Have a DiskId equal to Hint.FId,
2) Have an Update date/time not equal to Hint.Update, and
3) Have a RefCount of zero

are deleted. This is done because such a segments reference code
files which have been overwritten and are no longer valid. Such
segments will not get the memory manager into trouble, but they
will never be used again, and it is just as well to get rid of
them.

¥¥%% Hint must be a valid hint., That is, the file specified
x%%% by Hint.FId must have a FileWriteDate equal to Hint.Update.

Parameters:
S - Return parameter set to zero or the number of the code
segment .
Hint - Desired SegHint.
function CurrentSegment: SegmentNumber;
Abstract:
CurrentSegment finds the segment number of its caller.

Result: CurrentSegment = Segment number of the caller of
CurrentSegment .

- 196 -

POS Operating System - Module MultiRead January I5, 1984

module MultiRead;
Written by Brad Myers 24 Jul 8I.
Copyfight (C) PERQ Systems Corporation, 198!, 1983.

Abstract:

This Module exports a procedure to read a file verg quickly into

memory. The memory for the blocks of the file to be read must be
allocated contiguously before the call is made. Typically, this

will be done by using CreateSegment.

Version Number VI.1
(20777777777777777777777777) EXPORTS { \\ANNANNNNNNANNNNNNNNL

Imports FileSystem from FileSystem;

Procedure MultiRead(fid: FileID; addr: pDirBlk; firstBlock,numBlocks:
integer);

Procedure MultiRead(fid: FileID; addr: pDirBlk; firstBlock,numBlocks:
integer);.option 0

Abstract:

Does a multi-sector read on the file specified into the memory
pointed to by addr

NOTE: This only works for contiguous files.

Parameters:
fid - the filelD of the file to read from.
addr - the address of the start of the memory to read the file
into. This must be pre-allocated.
firstBlock - the logical block number of the first to read (the
first legal value is 0; -1 will not work).
numBlocks - the count of the number of blocks to transfer.

- 197 -

POS Operating System - Module PasLong January 5, 1984

module PasLong;

Paslong - Extra stream package input conversion routines.
J. P. Strait & Michael R. Kristofic ca. 15 Sep 8l.
Copyright (C) PERQ Systems Corporation, 1981.

Abstract:

Paslong is the extra character input module of the Stream package.

Its routines are called by code generated by the Pascal compiler

in response to variations on Read, Readln, Write and Writeln

statements. It is one level above Module Stream and uses Stream’s
" lower-level input routines.

Version Number V2.2

exports

imports Stream from Stream;

procedure ReadD(var F: FileType; var X: long; B: integer);

Abstract:

Reads a double integer in free format with base B. B can be any
integer between 2 and 36, inclusive.

Parameters:

X - the double to be read.

F - the file from which X is to be read.

B - the base of X. It may be any integer between 2 and 36,
inclusive. If B is less than zero and the user does not type
an gxplicit plus or minus sign, X is read as an unsigned
number.

Errors:
PastEof -if an attempt is made to read F past the Eof.

NotNumber - if non-numeric input is encountered in the file.
LargeNumber - if the number is not in the range -2°31..2°32-1.
BadBase - if the base is not in 2..36.

Design: Number is read into the low order word of two double precision
integers to avoid overflow.

procedure WriteD(var F: FileType; X: long; Field, B: integer);
Abstract:

Writes an double integer in fixed format with base B.

Parameters:
X - the double to be written.
F - the file into which X is to be written.
Field - the size of the field into which X is to be written.
B - the base of X. It is an integer whose absolute value must be
between 2 and 36, inclusive. If B is less than zero, X is

- 198 -

POS Operating System - Module PasLong January 15, 1984

written as an unsigned number.

Errors:

BadBase -if the base is not in 2..36.
Design:

Value written from two double precision words avoids overflow.

- 199 -

POS Operating System - Module PasReal January 1§, 1984

module PasReal;

PasReal - Scott L. Brown Created: 25-Nov-81
Copyright (C) 1981 - PERQ Systems Corporation

Abstract:
PasReal is an extra character input module of the Stream package.
Its routines are called by code generated by the Pascal compiler
in response to variations on Read, Readln, Write and Writeln
statements. It is one level above Module Stream and uses Stream’s
lower-level input routines.

Version Number V0.2

exports
imports Stream from Stream;

procedure ReadR(var F: FileType;
var value: real);

procedure WriteR(var F: FileType;
e: real;
TotalWidth: integer;
FracDigits: integer;
format: integer);
procedure ReadR(var F: FileType; var value: real);
Abstract:
This procedure reads a real number from the file F, and returns
its value.

Parameters:
F - identifies the file from which to read.

value - is a return parameter returning the value of the real
number read from the file F.

Results:

This procedure modifies the file buffer for F, and stores the
value of the real number in value.

Side Effects:
This procedure reads characters from the external file F, until it
receives a character which cannot be Eart of the real number, and
it leaves this character in the file buffer.

There has been only minimal care taken with the file buffer, so if

- 200 -

POS Operating System - Module PasReal January {5, 1984

an exception is raised during the read, there is no guarantee
about its contents.

Exceptions:
PastEof - raised if an attempt is made to read beyond the end of
file. '

NotReal - raised if the stream of characters in file F does not
correspond to a real number.

SmallReal - raised if the number read is too small to be
represented by a 32-bit IEEE-Standard real number.

LargeReal - raised if the number read is too large to be
represented by a 32-bit IEEE-Standard real number.

Calls:
StreamName - in module Stream for the stream name of file F.

GetC ; in module Stream for reading the next character from file

RealMul

TenPower - returns a real number representing 10.0 raised to an
integer (range -37..38) power.

Design:

The regular expression for real numbers is described by a DFA and
implemented by a case statement, where each element of the case
statement corresponds to a state in the DFA. This case statement
stores information about the number read into (primarily) three
variables: 1) mant - a string buffer containing the mantissa, 2)
scale_factor - any adjustment to the mantissa (as a power of ten),
and 3) exp - the exponent of the number read.

After the DFA has substringed out the mantissa characters, they
are converted to a real number by successive divisions by 10.0.

To combine this information into a real number, the scale_factor
is added to the exponent and this sum is the power of ten exponent
of the mantissa. To combine sum with the mantissa, it has to be
converted to a real number, which is done by the function
TenPower. Then the result of TenPower is multiplied with the
mantissa to produce the real number returned as value.

Much care has been taken to avoid calls to TenPower with actual
parameters which are out of range, and also to minimize the number
of real multiplications necessary (this to avoid error
propogation).

- 201 -

POS Operating System - Module PasReal January 15, 1984
procedure WriteR(var F: FileType; e: real; TotalWidth: integer; FracDigits:
integer; format: integer);
Abstract: |
This procedure writes a real number to a file F, under the given
format specifications.

Parameters:
F - the file to which to write.

e - the value to write.
TotalWidth - the minimum number of characters to write.

FracDigits - the number of characters in the fractional part (used
for fixed format only).

format - indicates either fixed or floating format.

Results:

The file buffer for F is modified by procedures nested in this
one.

Calls:
StreamName - in module Stream for the stream name of file F.
base2_to_basel0
normalize

Design:
There is some initialization, then if the real number to be
written is zero, eWritten and ExpValue are obviously zero, else
the real number needs to be converted to base 10 giving eWritten
and ExpValue. Then a call is made to a procedure for the desired
format.
The désign here follows as much as possible the I1SO Standard

description for writing Pascal real numbers, in particular, the
choice of many variable names.

- 202 -

POS Operating System - Module PERQ_String January 15, 1984

module PERQ_String;

PERQ String hacking routines.
Written by: Donald Scelza
Copyright (C) 1980, 1981, 1982 PERQ Systems Corporation

Abstract:

This module implements the string hacking routines for the PERQ
Systems PERQ Pascal.

Version Number V2.10
{ RXARXRXRRRRARAAARRN) Exports { ¥EEEERREARXAARRANXNR }

Const MaxPStringSize=255; { Length of strings}
Type PString = String[MaxPStringSizel;

Procedure Adjust(Var STR: PString; LEN:Integer);

Function Concat(Strl, Str2: PString): PString;

Function Substr(Source: PString; Index, Size: Integer): PString;
Procedure Delete(Var Str: PString; Index, Size: Integer);
Procedure Insert(Var Source, Dest: PString; Index: Integer);
Function Pos(Source, Mask: PString): Integer;

Function PosC(s: PString; c: Char): Integer;
Procedure AppendString(var sl: PString; s2: PString);
Procedure AppendChar(var s: PString; c: Char);
Function UpperCase(c: Char): Char;
Procedure ConvUpper(Var s: PString);
Exception StrBadParm;
Abstract:
Raised when bad index or length parameters passed to procedures or
sometimes when string will be too long (other times, Strlong is
raised in this case
Function RevPosC(s: PString; c: char): integer;
Procedure PrependChar (c: char; var s: PString);
Function IntToStr (N: integer): PString;
Function Pad (PadCh: char; str: PString; len: integer): PString;
Function Upper (s: string): PString;
Procedure Adjust(var Str:PString; Len:Integer);
Abstract:
This procedure is used to change the dynamic length of a string.
Parameters:
Str is the string that is to have the length changed.

Len is the new length of the string. This parameter must be This
value must be no greater than MaxPStringSize.

- 203 -

POS Operating System - Module PERQ_String January 1§, 1984

Environment: None
Results: This procedure does not return a value,
Side Effects: This procedure will change the dynamic length of Str.

Errors: If Len > MaxPStringSize then raise Strlong exception.

Design: Simple.

Function Concat(Strl,Str2:PString):PString;

Abstract:

This procedure is used to concatenate two string together.

Parameters:
Strl and Str2 are the two strings that are to be concatenated.
Environment: None

Results: This function will return a single string as described by the
parameters.

Errors: If Length(Strl) + Length(Str2) is greater then MaxPStringSize
then raise Strlong exception.

Function SubStr(Source:PString; Index, Size:Integer):PString;

Abstract:

This procedure is used to return a sub portion of the string
passed as a parameter.

Parameters:
Source is the string that we are to take a portion of.
Index is the starting position in Source of the substring.
Size is the size of the substring that we are to take.
Environment: None

Results: This function returns a substring as described by the
parameter list.

Errors: If Index or Size are greater than MaxPStringSize then raise
StrBadParm exception.

- 204 -

POS Operating System - Module PERQ_String January 15, 1984

Procedure Delete(var Str:PString; Index, Size:Integer);
Abstract:
This procedure is used to remove characters from a string.

Parameters:

Str is the string that is to be changed. Characters will be
removed from this string.

Index is the starting position for the delete.

Size is the number of character that are to be removed. Size
characters will be removed from Str starting at Index.

Environment: None
Results: This procedure does not return a value.
Side Effects: This procedure will change Str.
Errors: None
Procedure Insert(var Source, Dest:PString; Index:Integer);

Abstract:

This procedure is used to insert a string into the middle of
another string.

Parameters:
Source is the string that is to be inserted.
Dest is the string into which the inseration is to be made.
Index is the starting position, in Dest, for the inseration.
Environment: None
Results: This procedure does not return a value.

Side Effects: This procedure will insert Source in Dest starting at
location Index.

Errors: If the resulting string is too long then generate a runtime
error.

Procedure AppendString(var sl: PString; s2: PString);
Abstract:
puts s2 on the end of sl

Parameters : sl is the left String and s2 goes on the end.

- 205 -

POS Operating System - Module PERQ_String January {5, 1984

Calls: PerqString.Concat.
SideEffects : modifies sl.
Procedure AppendChar(var s: PString; c: Char);
Abstract:
puts c on the end of s
Parameters : s is the left String and c goes on the end.
SideEffects : modifies s.
Function UpperCase(c: Char): Char;
Abstract:
Changes ¢ to uppercase if letter.
Parameters:
¢ is any char.
Returns: char is uppercase if letter otherwise unchanged.
Procedure ConvUpper(Var s: PString);
Abstract:
Converts s to all upper case
Parameters:
s, passed by reference, to be converted
Function PosC(s: PString; c: char): integer;
Abstract:
Tests if ¢ is a member of s.
Parameters:
c is any char; s is string to test f§r c member of.

Returns: index of first c in s (from beginning of string) or zero if
not there.

- 206 -

POS Operating System - Module PERQ_String January 5, 1984

Function RevPosC(s: PString; c: char): integer;
Abstract:
Tests if ¢ is a member of s.
Parameters:
¢ is any char; s is string to test for c member of.

Returns: index of first ¢ in s (from end of string) or zero if not
there.

Function Pos(Source, Mask:PString):Integer;

Abstract:

This procedure is used to find the position of a pattern in a
given string.

Parameters:
Source is the string that is to be searched.

Mask is the pattern that we are looking for.

Environment: None

Results: If Mask occured in Source then the index into Source of the
first character of Mask will be returned. If Mask was not found
then return 0.

Side Effects: None

Errors: None

Procedure PrependChar (c: char; var s: PString);

Abstract:
puts c at the beginning of s

Parameters:
s is the original String and c goes on the front.

Side-Effects: modifies s if ¢ is not Nul.
Calls: Adjust (from PERQ_String).

- 207 -

POS Operating System - Module PERQ_String January {5, 1984

function IntToStr (N: integer): PString;
Abstract:
Converts the integer N to a string.
Calls: PrependChar.
function Pad (PadCh: char; str: PString; len: integer): PString;
Abstract:
Forces a string to a certain length using PadCh to left justify.
Returns: The longer string (preceeded by PadCh’s).
Calls: PrependChar.
function Upper (s: string): PString;
Abstract:

Makes the ConvUpper procedure (of CmdParse) into a function.
Makes s into all capital letters.

Returns: the upper case equivalent of string s

Calls: ConvUpper from PERQ_String

- 208 -

POS Operating System - Module PMatch January 15, 1984

module PMatch;
Abstract:

Does pattern matching on strings
Patterns accepted are as follows:
"%" matches 0 or more characters.
"&" matches | or more characters.
"#" matches exactly | character.
"‘0" matches any digit.
"’A" matches any alphabetic (capitals only unless casefold).
"‘a" matches any alphabetic(lower case only unless ‘casefold’).
"‘a@" matches any non-alphanumeric.
" ‘%" matches ‘%°, other patterns chars can be quoted also.
Written by: Gene Ball at CMU

Version Number V2.6
{77770727777777777777777777777} Exports {ANNNNAINNLLLLLLVLLRLLLLLLNNNNLL

Type pms255 = Stringl255];
Function PattMatch(var str,pattern: pms255; fold: boolean): boolean;
FunctéoanattMap(var str, inpatt,outpatt,outstr:pms255; fold:boolean):
oolean;
Procedure PattDebug(v: boolean);
Function IsPattern(var str: pms255): boolean;
Exception BadPatterns;
Abstract:

Raised if outPatt and inPatt do not have the same patterns in the
same order for PattMap

Procedure PattDebug(v: boolean);
Abstract:
Sets the global debug flag
Parameters:

v is value to set debug to

- 209 -

POS Operating System - Module PMatch v January 5, 1984

SideEffects: Changes debug value
Function IsPattern(var str: pms255): boolean;

Abstract:

Tests to see whether str contains any pattern matching characters

Parameters:

str - string to test. If not pattern then removes all quotes.

Returns: true if str contains any pattern matching characters; else
false

Function PattMatch(var str, pattern: pms255; fold: boolean): boolean;

Abstract:

Compares str against pattern

Parameters:
str - full string to compare against pattern;
pattern - pattern to compare against. It can have special
characters in it
" fold - determines whether upper and lower case are distinct. If
true then not. :

Returns: true string matches pattern; false otherwise

Function PattMap(var str,inpatt,outpatt,outstr:pms255;
fold:boolean):boolean;

Abstract:

Compares str against inPatt, putting the parts of str that match
inpatt into the corresponding places in outpatt and returning the
result

EXAMPLES:

PattMap(“test9.pas’, ‘test’O.pas’, ‘xtest’O.pas’) => TRUE,
‘xtest9.pas’

PattMap(‘test9.pas’, ‘¥.pas’, ‘¥.ada’) => TRUE, ‘test9.ada’

Parameters:

str - full string to compare against pattern;

inpatt - pattern to compare against. It can have special
characters in it

outpatt - pattern to put the parts of str into; it must have the
same special characters in the same order as in inpatt

outStr - the resulting string if PattMap returns true;

fold-determines whether upper and lower case are distinct. It
true then not.

- 210 -

POS Operating System - Module PMatch January {5, 1984
Returns: true string matches pattern; false otherwise

Errors: Raises BadPatterns if outPatt and inPatt do not have the same
patterns in the same order

- 211 -

POS Operating System - Module PopCmdParse January iS5, 1984

module PopCmdParse;

Abstract:

This module provides procedures to help with PopUp menus. See the
module PopUp for the definition of pNameDesc and for some useful
procedures for creating and destroying pNameDescs.

Written by Brad Myers Nov 18, 1981
Copyright (C) 1981 PERQ Systems Corperation

Version Number V1.9
{ FRHENRANALRAERAARKR) EXpOrts ({ ¥XXXRXXXRMUNNRINXXRX }

Imports CmdParse from CmdParse;
Imports PopUp from PopUp;

Function PopUniqueCmdIndex(Cmd: CString; Var names: pNameDesc): Integer;

Function GetCmdLine(Procedure IdleProc; prompt: String;
var line, cnd: CString; var inF: pCmdList;
var names: pNameDesc; var firstPress: boolean;
popOK: boolean): integer;

Function GetShellCmdLine(var cmd: CString; var inF: pCmdList;
var names: pNameDesc): integer;

Function GetConfirm(Procedure IdleProc; popOK: boolean;
prompt: String; def: integer;
var switches: pSwitchRec): integer;

Procedure NullldleProc;
Procedure NullldleProc;

Abstract:

This procedure does nothing. It is useful as an IdleProc
parameter to other procedures when no IdleProc is needed.

Function PopUniqueCmdIndex(Cmd: CString; Var names: pNameDesc): Integer;

Abstract:

This procedure is used to do a unique lookup in a popUp command
table. It is the same as UniqueCmdIndex except the table of names
is the kind used by popUp menus. If cmd is the full name of one
of the names in names, even if is also a sub-part of other names,
it is returned as the one found.

Parameters:
Cmd - the command that we are looking for.
CmdTable - a table of the valid commands. The first valid command
in this table must start at index 1.
NumCmds - the number of valid command in the table.

- 212 -

POS Operating System - Module PopCmdParse January 5, 1984

Returns: The index of Cmd in CmdTable. If Cmd was not found then
return NumCmds + {. If Cmd was not unique then return NumCmds+2.

Function GetShellCmdLine(var cmd: CString; var inF: pCmdList; var names:
pNameDesc): integer;

Abstract:

This routine is similar to GetCmdLine except that it works on the
command line specified to the Shell. It is should be used by
programs that use GetCmdLine to parse the Shell command line.
Command files are handled by GetShellCmdLine. The user can call
ParsngdArgs after GetShellCmdLine to get the arguments to the
command.

Parameters:
cmd - the first command taken off the line. This will be valid

even if the return value is greater than numCommands. It
will be °° if no command found before the first significant
break character.

inF - a command file list created by InitCmdFile. Just call
InitCmdFile and pass in the inF returned. This procedure
manages the list and handles all command files.

names - a variable length array of names used for popUp menus and
for matching the input cmd against.

Returns:

Identical to GetCmdLine. Viz: index in the array or

numCommands + | ==> Name not found in array

numCommands + 2 ==> Name not unique

numCommands + 3 = Name was empty

numCommands + 4 ==> First command was a switch (it is in Cmd).
numCommands + 5 ==> Illegal character found after command.

Function GetCmdLine(% Procedure IdleProc; prompt: String;
var line, cmd: CString; var inF: pCmdList;
var names: pNameDesc; var firstPress: boolean;
popOK: boolean): integer ¥);

Abstract:

Reads a line from the input file. While waiting for a CR or a
press do IdleProc. If press, then create a popUp window. Put
name selected into line and return index. If type a line, put it
into line. If first ID in line is not a switch then check to see
if in names. If so, returns index. If not unique then returns
numCommands+2. If not found then returns numCommands+l. If line
was empty (naked CR or comment), then returns numCommands+3.
numComgands+4 => switch. numCommands+5 => illegal character after
command.

- 213 -

POS Operating System - Module PopCmdParse January 15, 1984

Parameters:

IdleProc - This procedure is called repeatedly until a full line
is typed. It should execute quickly and not futz with the
keyboard or stream. An application is a procedure that
displays the time in the title line.

prompt - the prompt string to print for the user. Do not put the
prompt separator (>) on the end of the prompt; GetCmdLine
will do that for you. If reading from a command file,
GetCmdLine change the prompt appropriately.

line - set to the line read including starting with the first
significant character after the first command. It will not
contain any comments.

cmd - the first command taken off the line. (It is not in line).
This will be valid even if the return value is greater than
numCommands. It will be °* if no command found before the
first significant break character.

inF - a command file list created by InitCmdFile. Just call
InitCmdFile and pass in the inF returned. This procedure
manages the list and handles all command files. The
application calling GetCmdLine will never see an ‘a°’.

names - a variable length array of names used for popUp menus and
for matching the input cmd against.

firstPress - USER MUST SET firstPress to true before first call to
this procedure and then not modify it.

popOk - if true, then GetCmdLine will allow a PopUp menu when
pTTss gn button to chose an item. If false, then no popUp
al lowed.

Returns:
index into the names array or:

numCommands + | => Name not found in array

numCommands + 2 => Name not unique

numCommands + 3 => Name was empty

numCommands + 4 == First command was a switch (it is in Cmd).
numCommands + § => Illegal character found after command.

Calls: NextldString, PopUniqueCmdIndex, Menu (from PopUp), Poplnit,
10SetModeTablet, 10CursorMode, FullLn, ReadlLn, DestroyRes,
DoCmdFile, ExitCmdFile, RemDelimiters

Function GetConfirm(% Procedure IdleProc; popOK: boolean;
prompt: String; def: integer;
var switches: pSwitchRec): integer ¥%);

Abstract:

Handles a question that is answered Yes or No where the answer
should come from the keyboard. Prompt followed by default (if
any) is printed. Prompt may be null. If illegal input is typed,
GetConfirm re-asks but doesn’t use prompt.

- 214 -

POS Operating System - Module PopCmdParse January &, 984

Parameters:

IdleProc - This procedure is called repeatedly until a full line
is typed. It should execute quickly and not futz with the
keyboard or stream. An application is a procedure that
displays the time in the title line.

prompt - the prompt to display for question.

default - index of the default answer: | = true or yes; 2 = false
or no; other numbers mean no default.

popOK - tells whether a popUp window is allowed.

switches - set to NIL or a list of switches specified. Be sure to
handle the switches first since one might be HELP.

Returns: 1 if true or yes.
2 if false or no.
3 if naked return when no default and switches © NIL. This means

that there was no argument but a switch was hit. If an answer is
still needed, the application should re-call GetConfirm.

- 215 -

POS Operating System - Module PopUp January 5, 1984

module PopUp;
Written by Brad A. Myers 16-Nov-80
Abstract:

This program produces pop up windows that replace the screen area
at a specified cursor location. The cursor is then changed and
PopUp waits for a press. Whenever the cursor is inside the -
window, the command at that point is highlighted. If a press is
done inside the window, the highlighted command is selected. The
user can control whether one or more than one command should be
selected before window is removed. If a press outside, no command
is executed. In any case, the window is erased and the original
contents of that area is returned

Copyright (C) 1981, 1982, 1983 - The PERQ Systems Corporation
Version Number V3.1
{ —%-X-%-%-X-X-X-%X-%-%-%-%-%-%-) EXPORTS {-%-—%-%-%—K-%X—-X-%-X-%—%X-X-%-%-)
Exception BadMenu;
Abstract:
Raised when parameters are illegal.
Resume: NOT ALLOWED.
Exception Outside;
Abstract:
raised when press outside of menu.

Resume: NOT ALLOWED.
Exception PopKeyHit;

Abstract:

raised when a key is hit and aborting on keys is enabled by
calling AbortOnKey(true). The key is left in the input buffer.

Resume: NOT ALLOWED.

Type s25 = Stringl25];

NameAr = Arrayll..1] of s25;

pNameAr = “NameAr;

NameDesc = Record
header: s25;
numCommands: integer;
commands: NameAr;

End;
pNameDesc = “NameDesc;

- 216 -

POS Operating System - Module PopUp January i5, 1984

ResRes = “ResArray;
ResArray = Record
numlndices: integer;
pressVal: Integer; {TabMouse value when pressed)
indices: Arrayll..1] of integer;
End;
Procedure Menu(names: pNameDesc; isList: boolean;
first, last, curX, curY, maxYsize: integer; VAR
res: ResRes); :
Procedure InitPopUp;
Procedure DestroyRes(var res: ResRes);
Procedure AbortOnKey(abort: boolean);
Procedure AllocNameDesc(numNames, seg: Integer; Var names:

pNameDesc) ;
Procedure DestroyNameDesc(Var names: pNameDesc);

Procedure DestroyNameDesc(Var names: pNameDesc);

Abstract:

Delete names. It should have been created by AllocateNameDesc.
The numCommands field better be the same as set when allocated.

Parameters:

names - The storage for names is deallocated and names is set to
NIL.

Procedure InitPopUp;
Abstract:

creates cursors needed to make PopUp windows work. This should be
called once before calling menu.

Environment: sets cursors. Sets the global abort on keyboard typing to
false.

Procedure AbortOnKey(abort: boolean);
Abstract:
Sets the global flag that determines whether to abort on keyboard
typing. If this is not called, then PopUp does not abort when
there are keys. If this is called with TRUE, then the exception

PopKeyHit is raised when a key is typed. The key is left in the
input buffer.

- 217 -

POS Operating System - Module PoplUp January 15, 1984

Procedure DestroyRes(var res: ResRes);
Abstract:
Deallocates storage for res and sets it to NIL
Parameters:
res is ResRes to destroy
Procedure Menu(names: pNameDesc; isList: boolean;
first, last, curX, curY, maxYsize: integer; VAR res: ResRes);

Abstract:

puts up a window with commands stacked vertically with the center
at curX, curY. Allocates off the heap enough storage for old
pictuge at that place so can restore it. Deallocates all storage
when done.

Parameters:

names - a pointer to an array of names to put in the menu.

header - is put at the top of the menu. It may be empty in which
case there is no header.

numcommands - the number of names in the array.

commands - an array of names to display. These can be generated
by having pNameDesc with an array of the correct (or larger
than the correct) size and recasting it into a pNameDesc, or
by creating a segment to hold all the names that will be
needed.

isList - if true says that a number of commands can be selected.
if false, Menu returns as soon as the first command is
selected.

first - the index of the first command in names”.commands to
display. To display all items, use 1.

last - the index of the last command in names”.commands to
display. To display all items, use names”.numCommands. Last
must be greater than first.

curX - the x position at which to display the menu. If -1 then
uses current pen position. ‘

curY - the y position at which to display the menu. If -1 then
uses current pen position.

maxYsize - the maximum size in bits of the menu. If -1, then menu
will be big enough to hold all items (up to the size of the
screen). maxYsize must be greater than 4¥(fontHeight+4)
which is 68 for the default font.

res - is set with an answer array. This array is allocated off
the heap by Menu. Use DestroyRes to deallocate it. If Menu
is exited via “C or a press outside, then res is not
allocated. The fields of res are set as follows:

numIndices - the number of items selected. If not isList then
will . be 1. If isList, will not be zero

indices - a variable length array of the indices of the names |
chosen. They are in increasing order irrespective of the
order the names were picked.

- 218 -

POS Operating System - Module PopUp January 15, 1984

Errors: Catches CtlC and raises CtiCAbort after removing the menu.
Catches Ct1ShiftC and erases menu then re-raises CtlShiftC.
Catches HelpKey and erases menu and then re-raises. If continued,
then raises OutSide. Raises OutSide if press outside of the menu
window. Raises BadMenu if parameters are illegal.

Environment: Requires enough memory be on the heap for picture.
Requires that InitPopup has been called.

Procedure AllocNameDesc(numNames, seg: Integer; Var names: pNameDesc);

Abstract:

There are two ways to allocate the storage for a NameDesc. One is
to declare in your program a type with an array of the correct
size and the other fields exactly the same way. You then RECAST a
pointer to that array into a pNameDesc. The other way is to use
this procedure. It allocates the storage for numNames out of a
segment. Turn off range checking when assigning or accessing the
array.

NOTE: To deallocate the nameDesc returned, use DestroyNameDesc

Parameters:

numNames - the number of names in the array.

seg - the segment to allocate the nameDesc out of. If zero, then
uses the default segment. This procedure uses NewP so the
segment can have other things in it also.

names - set with the newly allocated pNameDesc. Its numCommands
field is set with numNames. Do not change this size or the
deallocation will not work.

- 219 -

POS Operating System - Moduie PopUpCurs January 15, 1984

module PopUpCurs;

Written by Brad A. Myers
Copyright (C) 1981 - PERQ Systems Corporation

Version Number V2.2
%

R R
R R

Type CursType = (Default, Select, Scroll, Dolt, Bar);
FootAr = ARRAY [0..8] of ARRAY [0..3] of Integer;
pFootAr = “FootAr;
Procedure InitCurs;
Procedure DestroyCurs,;
Procedure SetCurs(t: CursType);
Procedure InitFooter(VAR scrollP: pFootAr; VAR spotP: pFootAr;
VAR footW: integer);
Procedure DestroyCurs;
Abstract:
Deallocates storage used for cursors
SideEffects: Deallocates storage for cursors
Environment: Must not be called before InitCursor is called
Procedure SetCurs(t: CursType);
Abstract:
Sets the cursor to the picture specified
Parameters:
t is the cursor picture to set to
Procedure InitCurs;
Abstract:

allocates storage used for cursors, and sets the cursors with the
data for the pictures

SideEffects: allocates storage for cursors

- 220 -

POS Operating System - Module PopUpCurs January 1§, 1984

Procedure InitFooter(VAR scrollP: pFootAr; VAR spotP: pFootAr;
VAR footW: integer);

Abstract:

Allocates storage for pointers and fills in with right pictures.

Parameters:

all parameters are set by InitFooter. scrollp is the pointer to
rasterOp from for the scroll bar and spotp is the pointer to the
raster for the spot. footW is the width of the array.

- 221 -

POS Operating System - Module Profile January 5, 1984

module Profile;
Abstract:
This module is used to get information from the user profile file.
Written by: Don Scelza
Copyright (C) PERQ Systems Corperation, 198!
Version Number VI.!
{ ERXRRXARRNARRNRAKRRR) EXpOrts { REEEEXRXRRRRRRRRRRRK)

This module provides facilities that will allow a program to get information
from the user profile.

The profile file is a text file that has the form:

#<Subsystem name> <Line of text for that sub system>
<More text for that subsystem>

#<Next subsystem>---
The base unit of the file is a text line. The function that provides values
from the profile file will return a line of text each time that it is
called. All text line between the #<Subsystem name> and the next

#<Subsystem name> are assumed to be assoicated with the first subsystem.
Successive calles to PFileEntry will return the next line of text for the

current subsystem.
Exception PNotFound(FileName: String);
Abstract:
Raised when profile file cannot be found
Parameters:
fileName is profile not found
Exception PNotInited;

Abstract:

%aised wvhen a profile procedure is used but PFilelnit not called
irst

Type ProfStr = Stringl255];
' procedure PFilelnit(PFileName, SubSystem: ProfStr);
function PFileEntry: ProfStr;

POS Operating System - Module Profilie January IS5, 1984

procedure PFileInit(PFileName, SubSystem: ProfStr);
Abstract:
This procedure is called each time a subsystem wishes to start to
read information from the profile file. It is only called once
per subsystem invocation. It will lookup the profile file and
search for the required subsystem.
Parameters:
PFileName is the name of the profile file that is to be used.
SubSystem is the name of the subsystem that is to be searched for.
Side Effects: This procedure will change Inited, InLine and PFile.
Errors: If PFileName was not found then raise PNotFound.
function PFileEntry: ProfStr;
Abstract:

This procedure is used to get the next profile entry for a
subsystem.

Results: This procedure will return the next line from the profile file
for the current subsystem. If there are no more lines for the
current subsystem return null.

Environment: PFilelnit must have been called before this procedure is
used. Uses the global InLine. Sets InLine to be empty.

Errors: If PFilelnit was not called then raise PNotlnited.

POS Operating System - Module QuickSort January i5, 1984

module QuickSort;
Copyright (C) 1981 PERQ Systems Corporation

Written by: Mark G. Faust

Abstract:

exports

type

Hoare s Quicksort algorithm with some simple optimizations. This
module provides two procedures, IntegerSort and StringSort, which
sort arrays of integers and strings respectively.

For a detailed description of the algorithm and references to
papers on its analysis see [Robert Sedgewick, "Implementing
Quicksort Programs,” in CACMN 21(10), 1978.]

Because of rigid type checking of arrays in Pascal, pointers to
the arrays to be sorted are passed along with an integer
specifying the length of the array. The procedures require that
the array be declared [0..N+1] where the Oth through Nth elements
are to be sorted. The additional array element is used to speed
up the sorting routine. Before passing the array pointer to the
sort procedure it is RECAST as either a IntegerArrayPtr or a
StringArrayPtr. An example for the integer sort is given below.
The string sort is analogous.

program ShowSort(input,output);

imports QuickSort from QuickSort;

const Size = 99;

type MyArray = arrayl0..Size+l] of integer;

var MyArrayPtr :*MyArray; i :integer;

begin new(MyArrayPtr);

for i := 0 to Size do readln(MyArrayPtr*[il);
IntegerSort(Size,recast (MyArrayPtr,PIntArray));

for i := 0 to Size do writeln(MyArrayPtr*[il); end.

ss25 = Stringl25];
IntArray = arrayl0..0] of integer;
StrArray = arrayl0..0] of ss25;

PIntArray = “IntArray;
PStrArray = “StrArray;

- 224 -

POS Operating System - Module QuickSort January 15, 1984

procedure IntegerSort(N :integer; A :PIntArray);
procedure StringSort(N :integer; A: PStrArray; Fold :boolean);

procedure IntegerSort(N :integer; A :PlntArray);
Abstract:

Given an integer N and a pointer to an array [0..N+1] of integers,
sort [0..N] into ascending order using QuickSort.

Parameters:

N :integer One less than the upper bound of the array. It is
the largest index of a valid key.

A :PlntArray A pointer to an array [0..N+1] of integers.
Results: The array from [0..N] is in ascending order
Side Effects: The array is sorted and the N+Ist element contains MaxInt
procedure StringSort(N :integer; A :PStrArray; Fold :boolean);
Abstract:
Given an integer N and a pointer to an array [0..N+1] of strings,
sort [0..N] into ascending lexigocraphic order using QuickSort.

StringSort is case sensitive (e.g. A < a) unless Fold is True.

Parameters:

N :integer One less than the upper bound of the array. It is
the largest index of a valid key.

A :PStrArray A pointer to an array [0..N+1] of strings.
Fold :boolean If True then we fold to UpCase for comparisons.
Results:
The array from [0..N] is in ascending order
Side Effects:

The array is sorted and the N+lst element contains the DEL
character ' '

POS Operating System - Module RandomNumbers January {5, 1984

module RandomNumbers;

J. P. Strait 15 Sep 80.
Copyright (C) PERQ Systems Corporation, 1980

Module RandomNumbers contains two routines:
InitRandom - initializes the random number generator.

Random - a function which returns a new random number each time
it is referenced.

There is currently no way to seed the generator.

Random is a feedback shift-register pseudo-random number generator.
The algorithm used is one described in the article:

‘Generalized Feedback Shift Register Pseudorandom Number

Generator’
T. G. Lewis and W. H. Payne
JACM Vol. 20, No. 3, July 1973, pp. 456-468.

Random produces multidimensional pseudo-random numbers equally
glgérlbuted in the interval -32768..32767 and has a period of
Version Number V1.2

{77770077777777777777/77777/7} exports { \NNNAANNNNNLNNNNNNNL G

procedure InitRandom;
function Random: integer;

Procedure InitRandom;
Abstract:

Initialize the random number generator. Every time this is
called, the random numbers start over at the same place.

Function Random: integer;
Abstract:

returns a random 16-bit number

- 226 -

POS Operating System - Module Raster January 15, {984

module Raster;
Copywrite (C) 1980 - The PERQ Systems Corporation

exports
Const RRpl = 0; { Raster Op function codes)}
RNot = 13
RAnd = 2;
RAndNot = 3;
ROr = 4;
ROrNot = 5;
RXor = 6;
RXNor = 17;

Type RasterPtr = “RasterArray; {a pointer that can be used as RasterOp
or Line source and destination }

RasterArray = Array(0..0] of integer;

- 227 -

POS Operating System - Module ReadDisk January 5, 1984

module ReadDisk;
Abstract:

Module to Read and write to the disk using a buffer system
Written by the CMU Spice Group

Version Number V1.5
{ 3635530343000 30 0 0066 %) exports { Y0 N RN HIENNX }

imports DiskIO from DiskIO;
function ReadDisk(addr : DiskAddr) : ptrDiskBuffer;

function ChangeDisk(addr : DiskAddr) : ptrDiskBuffer;
function ReadHeader(addr : DiskAddr) : ptrHeader;
function ChangeHeader(addr : DiskAddr) : ptrHeader;

procedure FlushDisk(addr : DiskAddr);

procedure WriteDisk(addr : DiskAddr; ptr : ptrDiskBuffer; hdptr :
ptrHeader);

procedure WriteHeader(addr : DiskAddr; ptr : ptrDiskBuffer; hdptr :
ptrHeader);

procedure InitBuffers;

function FindDiskBuffer(dskaddr : DiskAddr; alwaysfind : boolean) :
integer;

procedure ReleaseBuffer(indx : integer);

procedure FlushBuffer(indx : integer);

procedure FlushAll;

procedure ChangeBuffer(indx : integer);

procedure ChgHdr(indx : integer);

procedure UseBuffer(indx,numtimes : integer);

function BufferPointer(indx : integer) : ptrDiskBuffer;

function HeaderPointer(indx : integer) : ptrHeader;

function ReadAhead(addr : DiskAddr) : ptrDiskBuffer;

procedure ForgetAll;

Exception FlushFail(msg: String; operation: DiskCommand; addr: DiskAddr;
softStat: integer);

Abstract:
Raised when the system is unable to flush out a buffer. The

buffer is marked as flushed out, however, so the error will not
repeat the next time a buffer needs to be flushed

Parameters:
Same as DiskFailure (in DiskIO)

Resume: ALLOWED, but has no effect (procedure returns normally as if
flush had been successful)

POS Operating System - Module ReadDisk January 15, 1984

Function ReadDisk(addr : DiskAddr) : ptrDiskBuffer;

Abstract:

Read the block specified and return the ptr of the buffer read
into

Parameters:
addr is the address of the bloék to read
_ Returns: ptr to buffer read into
Function ReadAhead(addr : DiskAddr) : ptrDiskBuffer;
Abstract:
Identical to ReadDisk
Parameters:
addr is the address of the block to read
Returns: ptr to buffer read into
Function ReadHeader(addr : DiskAddr) : ptrHeader;
Abstract:

Reads block specified and returns a ptr to a buffer describing its
header _

Parameters:
addr is the address of the block to read
Returns: ptr to header read into
Function ChangeDisk(addr : DiskAddr) : ptrDiskBuffer;
Abstract:

Reads block specified and returns a ptr to its data; in addition,
mark file as changed so flush will write it out

Parameters:
addr is the address of the block to read

Returns: ptr to buffer holding the block read into

- 229 -

POS Operating System - Module ReadDisk January 15, 1984

Function ChangeHeader(addr : DiskAddr) : ptrlieader;
Abstract:
Reads block specified and returns a ptr to its data; in addition,
mark file as header changed so flush will write it out using
IOWriteFirst
Parameters:
addr is the address of the block to read
Returns: ptr to header read into
Procedure FlushDisk(addr : DiskAddr);
Abstract:

Removes block specified from buffer system and writes it out if
changed. If addr not in buffer then NO-OP

Parameters:
addr is block to flush
Procedure WriteDisk(addr: DiskAddr; ptr: ptrDiskBuffer; hdptr: ptrHeader);
Abstract:

Writes out a block using DskWrite. If block for addr is in a
buffer then Release it first.

Parameters:
addr - the address of the block to write
ptr - points to a buffer of data
hdptr - points to a buffer of header

Procedure WriteHeader(addr : DiskAddr; ptr : ptrDiskBuffer;
hdptr : ptrHeader);

Abstract:

Writes out a block using DskFirstWrite. If block for addr is in a
buffer then Release it first.

Parameters:

addr is the address of the block to write ptr points to a buffer
of data hdptr points to a buffer of header

- 230 -

POS Operating System - Module ReadDisk January 15, {984

Procedure InitBuffers;
Abstract:
Initializes the buffer system
function FindDiskBuffer(dskaddr: DiskAddr; alwaysfind: boolean): integer;
Abstract:
Finds the buffer that contains the data for block dskAddr.
Parameters:

dskAddr - is address to find buffer for alwaysFind tells whether
to read in if not found

Returns: Index of buffer found or zero if not there
Procedure ReleaseBuffer(indx : integer);
Abstract:
Mark the table entry as unused.
Parameters:
indx - is entry to mark
Procedure FlushBuffer(indx : integer);
Abstract:

Write out the data for the buffer indx if changed and then mark
the buffer as not changed.

Parameters:
indx - is buffer to flush
Errors: FlushFail raised if can’t Flush buffer ‘due to a write error

Procedure FlushAll;

Abstract:
Writes out the data for all the buffers and then mark them all as
unchanged.

Errors: FlushFail - is raised if cannot Flush a buffer due to a write

error. Does not stop at first error, but goes and tries all
buffers before raising the exception

- 231 -

POS Operating System - Module ReadDisk January 15, 1984

Procedure Chghdr(indx : integer);
Abstract: |
Mark a buffer as having its header changed.
Parameters:
indx - is buffer to mark
Procedure UseBuffer(indx,numtimes : integer);
Abstract:
Mark a buffer as used.
Parameters:
indx - is buffer to mark
numTimes - the number to incrememt use count by
Function BufferPointer(indx : integer) : ptrDiskBuffer;
Abstract:
return the bufferPtr for a buffer.
Parameters:
indx - is buffer
Returns: Ptr to buffer
Function HeaderPointer(indx : integer) : ptrHeader;
Abstract:
return the header Ptr for a buffer.
Parameters:
indx -~ is buffer

Returns: ptr to header

POS Operating System - Module Reader January 5§, 1984

module Reader;

Reader - Stream package input conversion routines.
J. P. Strait ca. | Jan 8l.
Copyright (C) PERQ Systems Corporation, 198l.

Abstract:
Reader is the character input module of the Stream package. It is
called by code generated by the Pascal compiler in response to
Read or Readln. It is one level above Module Stream and uses
Stream’s lower-level input routines.
Version Number V2.1
exports
imports Stream from Stream;
procedure ReadBoolean(var F: FileType; var X: boolean);
procedure ReadCh(var F: FileType; var X: char; Field: integer);
procedure ReadChArray(var F: FileType; var X: ChArray; Max, Len: integer);
procedure Readldentifier(var F: FileType; var X: integer;
var IT: IdentTable; L: integer);
procedure Readlnteger(var F: FileType; var X: integer);
procedure ReadString(var F: FileType; var X: String; Max, Len: integer);
procedure ReadX(var F: FileType; var X: integer; B: integer);
procedure ReadBoolean(var F: FileType; var X: boolean);
Abstract:
Reads a boolean in free format.
Parameters:
X - the boolean to be read.
F - the file from which X is read.

Errors: PastEof if an attempt is made to read F past the Eof.
NotBoolean if a non-boolean is encountered in the file.

procedure ReadCh(var F: FileType; var X: char; Field: integer);
Abstract:
Reads a character in fixed or free format.
Parameters:
X - the character to be read.

F - the file from which X is to be read.
Field - the size of the field X is in."

- 233 -

POS Operating System - Module Reader , January 15, 1984

Errors: PastEof if an attempt is made to read F past the Eof.

procedure ReadChArray(var F: FileType; var X: ChArray; Max,
Len: integer);

Abstract:

Reads a packed character array in free or fixed format. If free
format reading is selected, spaces are skipped and characters are
read until another space is encountered.

Parameters:
X - the character array to be read.
F - the file from which X is to be read.
Max - the declared length of X.

Len - the size of the field. Len <= 0 selects free format
reading.

Errors: PastEof if an attempt is made to read F past the Eof.

procedure Readldentifier(var F: FileType; var X: integer;
var IT: IdentTable; L: integer);

Abstract:

Reads an identifier and returns its position in a table. A table
lookup is performed requiring only that the identifier typed
uniquely matches the beginning of a single table entry.

Parameters:
X - set to the ordinal of the identifier read.
F - the file from which X is read.
IT - the table of identifiers indexed from O to L.
L - the largest identifier ordinal defined by the table.

Errors:
BadldTable if length of the identifier table is less than I.
PastEof if an attempt is made to read F past the Eof.
Notldentifier if a non-identifier is encountered in the file.
IdNotDefined if the identifier is not in the table.
IdNotUnique if the identifier is not unique.

procedure ReadInteger(var F: FileType; var X: integer);
Abstract:
‘ Reads a decimal integer in free format.

Parameters:
X - the integer to be read.
F - the file from which X is to be read.

POS Operating System - Module Reader Januvary 15, 1984

Errors:
PastEof if an attempt is made to read F past the Eof.
NotNumber if non-numeric input is encountered in the file.
LargeNumber if the number is not in the range -32768..32767.

procedure ReadString(var F: FileType; var X: String; Max, Len: integer);
Abstract:

Reads a string in free or fixed format. If free format is
selected, spaces are skipped and characters are read until another
space is encountered.

Parameters:
X - the string to be read.
F - the file from which X is to be read.
Max - the declared maximum length of the string.
Len - the size of the field. Len <= 0 selects free format.

Errors: PastEof if an attempt is made to read F past the Eof.
procedure ReadX(var F: FileType; var X: integer; B: integer);
Abstract:

Reads an integer in free format with base B. B may be any
integer between 2 and 36, inclusive.

Parameters:
X - the integer to be read.
F - the file from which X is to be read.
Field - the size of the field X is in.
B - the base of X. It may be any integer between 2 and 36,
inclusive. '

Errors:
PastEof if an attempt is made to read F past the Eof.
NotNumber if non-numeric input is encountered in the file.
LargeNumber if the number is not in the range -32768..32767.
BadBase if the base is not in 2..36.

POS Operating System - Module RealFunctions January 15, 1984

module RealFunctions;

RealFunctions - Standard functions for reals.
J. Strait 27 Nov 8I.
Copyright (C) PERQ Systems Corporation, 1981.

Abstract:

RealFunctions implements many of the standard functions whose
domain and/or range is the set of real numbers. The
implementation of these functions was guided by the book

Software Manual for the Elementary functions, William J. Cody, Jr.
and William Waite, (C) 1980 by Prentice-Hall, Inc.

The domain (inputs) and range (outputs) of the functions are given
in their abstract. The following notation is used. Parentheses ()
are used for open intervals (those that do not include the
endpoints), and brackets [] are used for closed intervals (those
that do include their endpoints). The closed interval
[RealMLargest, RealPLargest] is used to mean all real numbers, and
thebclosed interval [-32768, 327671 is used to mean all integer
numbers.

DISCLAIMER:

Only the most cursory testing of these functions has been done. No
guarantees are made as to the accuracy or correctness of the
functions. Validation of the functions must be done, but at some
later date.

Design: AdX, IntXp, SetXp, and Reduce are implemented as Pascal
functions. It is clear that replacing the calls with in-line code
(perhaps through a macro expansion) would improve the efficiency.

Many temporary variables are used. Elimination of unnecessary
temporaries would also improve the efficiency.

Many limit constants have been chosen conservatively, thus trading
a small loss in range for a guarantee of correctness. The choice
of these limits should be re-evaluated by someone with a better
understanding of the issues.

Some constants are expressed in decimal (thus losing the guarantee
of precision). Others are expressed as Sign, Exponent, and
Significand and are formed at execution time. Converting these two
32-bit constants which are Recast into real numbers would improve
the correctness and efficiency.

More thought needs to be given to the values which are returned
after resuming from an exception. The values that are returned
now are the ones recommended by Cody and Waite. It seems that
Indefinite values (NaNs in the IEEE terminology) might make more
sense in some cases.

Version Number Vi.5

POS Operating System - Module RealFunctions January 5, 1984

exports

const RealPInfinity = Recast(#17740000000,Real);
RealMInfinity = Recast(#37740000000,Real);
RealPIndefinite = Recast(#00000000001,Real);
RealMIndefinite = Recast(#20000000001,Real);
RealPLargest = Recast(#17737777771,Real);

Ou!-'-
OO0
NN\
SO0
OOOO

}
}
}
)

largest positive }

s oy o, g s o, g,
)
(=]
~

RealMLargest = Recast(#37737777777,Real); largest negative }
RealPSmallest = Recast(#00040000000,Real); smallest positive }
RealMSmallest = Recast(#20040000000,Real); smallest negative }

function Sqrt(X: Real): Real;
function Exp(X: Real): Real;
function Ln(X: Real): Real;
function LoglO(X: Real): Real;
function Power(X, Y: Real): Real;
function PowerI(X: Real; Y: Integer): Real;
function Sin(X: Real): Real;
function Cos(X: Real): Real;
function Tan(X: Real): Real;
function CoTan(X: Real): Real;
function ArcSin(X: Real): Real;
function ArcCos(X: Real): Real;
function ArcTan(X: Real): Real;
function ArcTan2(Y, X: Real): Real;
function SinH(x:real) : real;
function CosH(x:real) : real;
function TanH(x:real) : real;

exception SqrtNeg(X: Real);
Abstract:
SqrtNeg is raised when Sqrt is passed a negative argument. You may
resume from this exception, in which case Sqrt returns
Sqrt(Abs(X)).
Parameters:
X - Argument of Sqrt.
exception ExpLarge(X: Real);
Abstract:
ExpLarge is raised when Exp is passed an argument which is too
large. You may resume from this exception, in which case Exp
returns RealPInfinity.

Parameters:

X - Argument of Exp.

POS Operating System - Module RealFunctions January 5, 1984

exception ExpSmall(X: Real);
Abstract:

Explarge is raised when Exp is passed an argument which is too
small. You may resume from this exception, in which case Exp

returns 0.0.

Parameters:
X - Argument of Exp.
exception LogSmall(X: Real);
Abstract:
LogSmall is raise when Ln or Logl0 is passed an argument which is
too small. You may resume from this exception in which case Ln or

Logl0 returns RealMInfinity if X is zero or the log of Abs(X) if X
is non-zero.

Parameters:
X - Argument of Ln or LoglO.
exception PowerZero(X, Y: Real);
Abstract:

PowerZero is raised when Power or Powerl is called with X = 0.0
and Y = 0.0. You may resume from this exception in which case

Power or Powerl returns RealPInfinity.

Parameters:
X - Argument of Power or Powerl.

Y - Argument of Power or Powerl.
exception PowerNeg(X, Y: Real);

Abstract:

PowerNeg is raised when Power is called with X < 0.0 or with X =
0.0 and Y < 0.0, or Powerl is called with X = 0.0 and Y < 0. You
may resume from this exception in which case Power or Powerl
returns Power(Abs(X),Y) in the case of X < 0.0 or returns
RealPInfinity in the case of X = 0.0 and Y < 0.0.

POS Operating System - Module RealFunctions January 1§, 1984

Parameters:
X - Argument of Power or Powerl.
Y - Argument of Power or Powerl.
exception PowerBig(X, Y: Real);
Abstract:
PowerBig is raised when Power or Powerl is éalled with X and Y for
which X raised to the Y power is too large to be represented. You

may resume from this exception in which case Power or Powerl
returns RealPInfinity.

Parameters:
X - Argument of Power or Powerl.
Y - Argument of Power or Powerl.
exception PowerSmall(X, Y: Real);
Abstract:
PowerSmall is raised when Power or Powerl is called with X and Y
for which X raised to the Y is too close to zero to be
represented. You may resume from this exception in which case
Power or Powerl returns 0.0.
Parameters:
X - Argument of Power or Powerl.
Y - Argument of Power or Powerl.
exception SinLarge(X: Real);
Abstract:
SinLarge is raised when Sin is called with an argument which is
too large. You may resume from this exception in which case Sin
returns 0.0.
Parameters:
X - Argument of Sin.
exception CosLarge(X: Real);
Abstract:
CosLarge is raised when Cos is called with an argument which is

too large. You may resume from this exception in which case Cos
returns 0.0.

POS Operating System - Module RealFunctions January 15, 1984

Parameters:
X - Argument of Cos.
exception TanLarge(X: Real);

Abstract:

CosLarge is raised when Tan or CoTan is called with an argument
which is too large. You may resume from this exception in which
case Tan or CoTan returns 0.0.
Parameters:
X - Argument of Tan or CoTan.
exception ArcSinLarge(X: Real);
Abstract:
ArcSinLarge is raised when ArcSin is called with an argument which
is too large. You may resume from this exception in which case
ArcSin returns RealPInfinity.
Parameters:
X - Argument of ArcSin.
exception ArcCosLarge(X: Real);
Abstract:
ArcCosLarge is raised when ArcCos is called with an argument which
is too large. You may resume from this exception in which case
ArcCos returns RealPInfinity.
Parameters:
X - Argument of ArcCos.
exception ArcTan2Zero(Y, X: Real);
Abstract:
ArcTan2Zero is raised when ArcTan2 is called with both X and Y

equal to zero. You may resume from this exception in which case
ArcTan2 returns RealPInfinity.

- 240 -

POS Operating System - Module RealFunctions January 15, 1984

Parameters:
Y - Argument of ArcTan2.
X - Argument of ArcTan2. .
exception SinHLarge(X: Real);
Abstract:
SinHLarge is raised when the arqument to SinH would cause a result
whose magnitude is too large to be represented on the Perqg. Note
that SinH is implemented (for now at least) is terms of the Exp
function and that function is the bound on SinH domain.
Parameters:
X - Argument of SinH
exception CosHLarge(X: Real);
Abstract:
CosHLarge is raised when the arqument to CosH would cause a result
whose magnitude is too large to be represented on the Perq. Note
that CosH is implemented (for now at least) is terms of the Exp
function and that function is the bound on CosH domain.
Parameters:
X - Argument of CosH
function Sgrt(X: Real): Real;

Abstract:

Compute the square-root of a number.

Domain = [0.0, RealPLargest]l. Range = [0.0, Sgrt(RealPLargest)].
Parameters:

X - Input value.

Returns: Square-root of X.

- 241 -

POS Operating System - Module RealFunctions January 15, 1984

function Ln(X: Real): Real;

Abstract:

Compute the natural log of a number.

Domain = [0.0, RealPLargestl.
Range = [RealMLargest, Ln(RealPLargest)].

Parameters:
X - Input value.
Returns: Natural log of X.
function LoglO(X: Real): Real;

Abstract:

Compute the log to the base 10 of a number.

Domain = [0.0, RealPLargestl].
Range = [RealMLargest, LoglO(RealPLargest)].
Parameters:

X - Input value.
Returns: Log to the base 10 of X.
Calls: Ln |
function Exp(X: Real): Real;

Abstract:

Compute the exponential function.

Domain = [-87.336, 88.722].
Range = (0.0, RealPLargestl.
Parameters:

X - Input value.

Returns: e raised to the X power.

- 242 -

POS Operating System - Module ReaiFunctions January 15, 1984

function Power(X, Y: Real): Real;

Abstract:
Compute the result of an arbitrary number raised to an arbitrary
power.
DomainX = [0.0, RealPLargestl].
DomainY = [RealMLargest,RealPLargest].
Range = [0.0, RealPLargestl.

With the restrictions that
1) if X is zero, Y must be greater than zero.
2) X raised to the Y is a representable real number.
Parameters:
" X - Input value.
Y - Input value.
Returns: X raised to the Y power.
function PowerI(X: Real; Y: Integer): Real;
Abstract:
Compute the result of an arbitrary number raised to an arbitrary
integer power. The difference between Power and Powerl is that

negative values of X may be passed to Powerl.

DomainX = [RealMLargest, RealPLargest]. DomainY = [-32768, 32767).
Range [RealMLargest, RealPLargestl].

With the restrictions that
1) if X is zero, Y must be non-zero.
2) X raised to the Y is a representable real number.

Parameters: .
X - Input value.
Y - Input value.

Returns: X raised to the Y power.

- 243 -

POS Operating System - Module RealFunctions

function Sin(X: Real): Real;

Abstract:

Compute the sin of a number.

Domain = [-12867, 128671.
Range = [-1.0, 1.0].

Parameters:
X - Input value.
Returns: Sin of X.
function Cos(X: Real): Real;

Abstract:

Compute the cosin of a number.

Domain = [-12867, 128671.
Range = [-1.0, 1.0].

Parameters:
X - Input value.
Returns: Cos of X.
function Tan(X: Real): Real;

Abstract:

Compute the tangent of a number.

Domain = [-6433.0, 6433.0].
Range = [RealMInfinity, RealPInfinityl.
Parameters:

X - Input value.

Returns: Tangent of X.

- 244 -

January (5, 1984

POS Operating System - Module RealFunctions | January 15, 1984

function CoTan(X: Real): Real;
Abstract:

Compute the cotangent of a number.

Domain = [-6433.0, 6433.0].
Range = [RealMInfinity, RealPInfinityl.
Parameters:

X - Input value.
Returns: Cotangent of X.
function ArcSin(X: Real): Real;
Abstract:

Compute the arcsin of a number.

Domain = [-1.0, 1.0).
Range = [-Pi/2, Pi/2).
Parameters:

X - Input value.

Returns: Arcsin of X.

Design: It seems that the Domain and Range ought to be closed
intervals, however this implementation apparently returns a number
very close to zero when X is 1.0, rather than returning Pi/2 as it
should.

function ArcCos(X: Real): Real;

Abstract:

Compute the arccosin of a number.

Domain = (-1.0, 1.0].
Range = (-Pi/’2, Pi/2]).
Parameters:

X - Input value.

- 245 -

POS Operating System - Module RealFunctions January 1§, 1984

Returns: Arccosin of X.

Design: It seems that the Domain and Range ought to be closed
intervals, however this implementation apparently returns a number
very close to zero when X is -1.0, rather than returning -Pi/2 as
it should.

function ArcTan(X: Real): Real;

Abstract:

Compute the arctangent of a number.

Domain = [RealMLargest, RealPlLargest].
Range = (-Pi/2, Pi/2).

Parameters:
X - Input value.
Returns: Arctangent of X.
Design: Seems fine except for very large numbers.
function ArcTan2(Y, X: Real): Real;
Abstract:
Compute the arctangent of the quotient of two numbers. One
interpretation is that the parameters represent the cartesian
coordinate (X,Y) and ArcTan2(Y,X) is the angle formed by (X,Y),
(0,0), and (1,0).
DomainY = [RealMLargest, RealPLargestl].
DomainX = [RealMLargest, RealPLargest].
Range = [-Pi, Pil.
Parameters:
Y - Input value.
X - Input value.
Returns: Arctangent of Y / X.
Design: Seems fine except for very large Y/X.
function SinH(x:real) : real;

Abstract:
Compute the Hyperbolic Sine of a number.
Domain = [-87.33,87.33].
Range = [RealMLargest, RealPLargestl].

- 246 -

POS Operating System - Module RealFunctions

Parameters:
X - Input value.
Returns: Hyperbolic Sine of X.
function CosH(x:real) : real;

Abstract:

Compute the Hyperbolic Cosine of a number.

Domain = [-87.33,87.331.
Range = [1.0, RealPLargestl].

Parameters:
X - Input value.
Returns: Hyperbolic Cosine of X.
function TanH(x:real) : real;

Abstract:

Compute the Hyperbolic Tangent of a number.

Domain = [-8.66433975625,8.66433975625] .
Range = [-1.0, 1.0].

Parameters:
X - Input value.

Returns: Hyperbolic Tangent of X.

- 247 -

January {5, 984

POS Operating System - Module RS232Baud January 15, [984

module RS232Baud;
Abstract:

RS232Baud - set RS232 baud rate with optional input enable.
J. P. Strait 21 Aug 80.
Copyright (c) PERQ Systems Corporation 1980, 1981, 1982, 1983.
Version Number V1.2
exports
procedure SetBaud(Baud: String; Enable: Boolean);
Exception BadBaudRate;
Abstract:
Raised if Baud is not a valid baud rate.
procedure SetRS232Port(Baud: string; Device: Integer);
Exception BadRSDevice;
Abstract:
Raised if Device is not an RS232 port.
procedure SetBaud(Baud: String; Enable: Boolean);
Abstract:
Sets the baud rate to baud specified by string arg
Arguments:
Baud - string of new baud rate (e.g. "2400")
Enable - is ignored
SideEffects: Changes status of RS232
Errors: Raises BadBaudRate if string is illegal
procedure SetRS232Port(Baud: string; Device: Integer);
Abstract:
Sets the baud rate to baud specified by string arg
Arguments:

Baud - string of new baud rate (e.g. "2400")
Device - chooses RSA or RSB

- 248 -

POS Operating System - Module RS232Baud January (5§, 1984

SideEffects: Changes status of RS232

Errors: Raises BadBaudRate if string is illegal

- 249 -

POS Operating System - Module RunRead January 15, 1984

module RunRead;

RunRead - Module to read run files.
John P Strait 9 Apr 8I.
CopyRight (C) PERQ Systems Corporation, 1981.

Abstract:

RunRead exports procedures to read and write run files.
Design:

If and when the format of run files is changed, the constant
RFileFormat in module Code must be changed. This is necessary so
that the procedures to read run files will not crap out.

Version Number VI.2

exports

const RunReadVersion = °1.2°;
imports Code from Code;

procedure ReadRunFile(var RunFile: RunFileType; Seg: Integer;
var Header: RunInfo;
var FirstSeg, FirstUserSeg, LastSeg: pSegNode;
ImportsWanted: Boolean);

procedure ReadSegNames(var RunFile: RunFileType; Seg: Integer;
FirstUserSeg: pSegNode);

procedure ReadRunFile(var RunFile: RunFileType; Seg: Integer;
var Header: Runlnfo; var FirstSeg, FirstUserSeg, LastSeg: pSegNode;
ImportsWanted: Boolean);

Abstract:

ReadRunFile reads a run file and builds a structure that
represents that run file. The run file is read up to, but not
including, the names of the .Seg files.

Parameters:

RunFile - A file variable which has been Reset to the desired
file. ReadRunFile does ¥not¥ close the file.

Seg - Segment number for dynamic allocation.

Header - The RunInfo record.

FirstSeg - Set to point to the first segment in the run file.

First¥§fr8eg - Set to point to the first user segment in the run

ile.

LastSeg - Set to point to the last segment in the run file.

ImportsWa?yfd - True iff Import entries are to be read from the
run file.

POS Operating System - Module RunRead January 15, 1984

procedure ReadSegNames(var RunFile: RunFileType; Seg: Integer;
FirstUserSeg: pSegNode);

Abstract:

ReadSegNames reads .Seg file names from a run file and adds them
to a structure that represents that run file.

Parameters:

RunFile - A file variable which has been Reset to the desired
file and already read with ReadRunFile. ReadSegNames does
¥not¥ close the file.

Seg - Segment number for dynamic allocation.

FirstUserSeg - A pointer to the first user segment in the run
file.

- 251 -

POS Operating System - Module RunWrite January 15, 1984

module RunWrite;

RunWrite - Module to write run files.

John P Strait 9 Apr 8I.

CopyRight (C) PERQ Systems Corporation, 1981.

Abstract:

RunWrite exports procedures to write run files.
Design: If and when the format of run files is changed, the
constant RFileFormat in module Code must be changed. This is

necessary so that the procedures to read run files will not crap
out. '

Version Number V1.2

exports

const RunWriteVersion = °1.2°;
imports Code from Code;

procedure WriteRunFile(var RunFile: RunFileType; Header: Runlnfo;
FirstSeg, FirstUserSeg: pSegNode);

procedure WriteRunFile(var RunFile: RunFileType; Header: Runlnfo;
FirstSeg, FirstUserSeg: pSegNode);

Abstract:

ReadRunFile writes a run file from a structure that represents
that run file.

Parameters:
RunFile - A file variable which has been Rewritten to the desired
file. WriteRunFile does ¥not% close the file.
Header - The RunInfo record.
FirstSeg - A pointer to the first segment in the run file.
Firstg§TrSeg - A pointer to the first user segment in the run
ile.

- 252 -

POS Operating System - Module Screen January 15, 1984

module Screen;

Written By: Miles A. Barel July 1, 1980
PERQ Systems Corporation
Pittsburgh, PA 15213

Abstract:

Provides the interface to the PERQ screen including rudimentary
support for multiple windows

exports
Imports Raster from Raster;
Version Number V4.4

Const ScreenVersion = ‘V4.3°;

VarWin = false; (if true then can have an arbitrary number of
windows and storage for them has to be
allocated off a heap. If false then there
are 17 windows max, and storage is in
screens global data.

NOTE: There are still bugs in VarWin true}

Type
FontPtr = “Font;
Font = Packed Record { Contains character sets }
Height:integer; { Height of the KSet }
Base: integer; { ?@sta?ce from top of characters to base-
ine
Index: Array [0..#177] of { Index into character patterns }
Packed Record case boolean of
true: (Offset: 0..767; { position of character in
patterns
Line: 0..63; { Line of patterns containing char }
Width: integer); { Width of the character }
dfalse:(Loc:integer; Widd: integer)
end;
Filler: arrayl0..1) of integer;
Pat: Array [0..0] of integer; { patterns go iere }
{ We turn off range checking to }
{ access patterns, hence allowing }
{ KSets of different sizes }
end;
{$ifc VarWin then}
VindowP = “WindowType;
{$endc)
WindowType = Packed Record
{$ifc Var¥Win then)

{$endc)

vinNumber: Integer; {this window number}

vinBY, winTY, winlLX, winRX, { Limits of window
area }

- 253 -

POS Operating System - Module Screen January 1§, (984

winHX, winHY, winMX, winMY, { Limit§ of useable
area
winCurX, winCurY, winFunc: integer;
vinkSet: FontPtr;
vinCrsChr: char;
winlHasTitle, winCursorOn, defined: boolean;
{$ifc VarWin then}

{$endc}

{gifc VarWin then}

Const MaxWIndx = 32767;
{$elsec) Y
Const MaxWIndx = 32;
{$endc)

Type WinRange = 0..MaxWIndx;
LineStyle = (DrawLine,EraseLine,XorLine);

winNext: WindowP;

end;

LS = Stringl255];

Const PortraitWordWidth = 48;
PortraitBitWidth = 768;
PortraitBitHeight = 1024;

Const LandscapeWordWidth = 80;
LandscapeBitWidth = 1280;
LandscapeBitHeight = 1024;

TitStrLength = 255; {big so can fit lots of characters across a
landscape screen. The actual number allowed now
is in the variable SNumTitleChars}

KSetSLen = 48; { Scan Line Length used by Fonts }
Type STitStrType = StringlTitStrLengthl;

Var SScreenW: Integer; {word width of screen; use when want Screen
in RasterOp or Line}

SScreenP: RasterPtr; {for use when want Screen in RasterOp or Line}

SBitWidth: Integer; ({bit width of current screen}

SBitHeight: Integer; {bit height of current screen}

SMaxBitHeight: Integer; { maximum possible bit height for this screen
type; < SBitHeight if screen shrunk at
start up }

SlsLandScape: boolean; {true if landscape, else false}

SNumTitleChars: Integer; {number of characters that will fit in a

full width title line USING THE STANDARD
) FONT}
SCursorOn: boolean;
SFunc: integer; { Raster-op function for SPutChr }

SCurBitHeight: Integer; { current BitHeight. Will always be

<= SBitHeight; will be < if current screen
shrunk }

.. 254 -

POS Operating System - Module Screen January i5, 1984

{($ifc Var¥Win then}

FirstWindp, { first window’s pointer; better not be NIL }
($el C?rWindp: VindowP; { current window’s pointer }
sec

CurWind: WinRange;
WinTable: ArraylWinRange]l of WindowType;

{$endc)
Procedure Screenlnit; { CALL THIS ONCE AT BOOT }
Procedure ScreenReset; { This procedure de-allocates storage for
all windows and sets up the default
window. } _
Procedure SPutChr(CH:char); { put character CH out to current position }
{ on the screen. Chars FF, CR, and LF }
} { have special meanings unless #200 bit
set:
{ FF - clear screen
{ CR - move left to margine
{ LF - move vertically down one
{ BS - erase previous character)
Procedure SSetCursor(X,Y: integer); { Set Cursor Position to X,Y)

Procedure SReadCursor(var X,Y: integer);{ Read Cursor Position }
Procedure SCurOn; { Enable display of Cursor }
Procedure SCurOff; { Disable display of Cursor }
Procedure SCurChr(C: char); { Set cursor character }
Procedure SChrFunc(F: integer); { Set raster-op function for
SPutChr}

Procedure SSetSize(Lines: integer; complemented, screenOff: Boolean);

{ Set Screen Size; lines must be a
multiple of 128; screenOff if true
turns off display in part below
lines in which case, complemented
describes off part of screen }

Procedure CreateWindow(WIndx: WinRange;
OrgX, OrgY, Width, Height: integer; Title: STitStrType);

Procedure ChangeWindow(WIndx: WinRange);
Procedure GetWindowParms(var WIndx: WinRange;

var OrgX, OrgY, Width, Height: integer; var hasTitle: Boolean);
Procedure ChangeTitle(Title: STitStrType);
Procedure SetFont(NewFont: FontPtr);
Function GetFont: FontPtr;

Procedure SClearChar(c: Char; funct: Integer); {delete prev char}

{ c BETTER NOT be CR or LF}
Procedure Line(Style: LineStyle; X!, Y1, X2, Y2: integer; Origin:

RasterPtr);
Procedure SVarLine(Style: LineStyle; X1, Y1, X2, Y2, Width: integer; .
Origin: RasterPtr);

Procedure SBackSpace(c: Char); {move back over last char of curline})

{ c BETTER NOT be CR or LF)
Procedure RefreshWindow(WIndx: WinRange); {redraws window outline and title

area. DOES NOT REDRAW TITLE)

Procedure StartLine;
Procedure ToggleCursor;
~ Procedure NewLine;

POS Operating System - Module Screen January 15, 1984
Procedure SavelineEnd(x: Integer);
Procedure SFullWindow;
Exception WBadSize; {parameter to SSetSize bad)
Abstract:
Raised if the lines parameter to SSetSize is not a multiple of 128
or is <=0. Also raised if a window is totally below area to
release so will disappear then if window # O or is the current
window, then Raises WBadSize.
Exception BadWNum; {indx is invalid}
Abstract:

Raised if a window number parameter is illegal (not defined or out
of range.

Exception WIooBig;
Abstract:

Raised if parameters for new window specify an area that would
extend off screen.

Exception CursOutSide;
Abstract:
Raised if try to set the cursor outside of the current window.

Resume: Allowed. If resume, then cursor is NOT moved (same effect as
if signal is caught but not resumed).

Procedure Startline;
Abstract:
Resets Curline and variables describing the current line start.
Procedure ToggleCursor;
Abstract:
Inverts Cursor picture.

SideEffects: Changes the picture on the screen;

POS Operating System - Module Screen . January 15, 1984

Procedure SSetCursor(x,y: integer);
Abstract:
Moves the cursor to the specified screen position.
Parameters:
X and y are Screen position where the next char will go. Note
that y specified the BOTIOM of the character.

SideEffects: Changes the cur char positions AND sets line to be empty
(so BS won’t work);

Errors: Raises CursQutside if try to set the cursor outside the current
window

Procedure SReadCursor(var x,y:integer);
Abstract:
Returns the current screen coords for chars.
Parameters:
x and y are set to the Screen position where the next char will go
Procedure SCurOn;
Abstract:
Turns the char cursor on.
SideEffects: Changes SCursorOn global vble
Procedure SCurOff;
Abstract:
Turns the char cursor off.
SideEffects: Changes SCursorOn global vble
Procedure SCurChr(C: char);
Abstract:
Set the character to be used as the cursor.

SideEffects: Changes the cursor character

- 257 -

POS Operating System - Module Screen January 15, 1984

Procedure SChrFunc(F: integer);
Abstract:
Set the function to be used for drawing chars to the screen.
SideEffects: Changes the char function
Procedure SSetSize(Lines: integer; complemented, screenOff: Boolean);
Abstract:

Change the size of the screen so rest of memory can be used for
other things (if smaller)

Parameters:

Lines is the number of lines in the displayed part of the screen.
It must be a multiple of 128 and > 0. Complemented describes the
off part of the screen and screenOff determines whether it is
displayed (false) or not; if displayed then complemented
determines whether it is erased white or black.

Errors: if lines a bad value then Raises WBadSize. If a window is
totally below area to release and will disappear then if window #
0 or is the current window, then Raises WBadSize.

SideEffects: Changes the values describing windows. If a window is
totally below area to release and will disappear then if not
window # O or is the current window, then makes the window
undefined.

Procedure NewLine;

Abstract:

Movescﬁhe cursor to the next line scrolling if necessary; DOES NOT
do a

SideEffects: Changes the cursor position and may scroll
Procedure SavelineEnd(x: Integer);
Abstract:
Saves x as the end of a line
Parameters:
x is the xPos of the end of a line

SideEffects: puts x at the end of LineEnds table; increments
lastLineEnd; if table is full then scrolls table

POS Operating System - Module Screen January 5, 1984

Procedure SBackSpace(c: Char);
Abstract:
Move the cursor back over c; c BETTER NOT be CR or LF
Parameters:
¢ is the character to backspace over.

SideEf§X§§S: Moves the cursor back the width of char c¢; (DOES NOT ERASE
C

Procedure SClearChar(c: char; funct: Integer);
Abstract:
Deletes the ¢ from screen; ¢ BETIER NOT be CR or LF
Parameters:
c is char to be erased; funct is RasterOp function to use in
deleting char. It should be RXor if chars are black on white and
RXNor if chars are white on black.
SideEffects: erases the last char of line;
Procedure SPutChr(CH: Char);
Abstract:
Write a char into the current window

Parameters:

Ch is char to write. If #200 bit is not set, checks to see if
char is one of Bell, BS, FF, LF, CR and does something special.

SideEffects: Writes char to screen, moves cursor; may do a NewLine (and
scroll) if at end of Line

Procedure ChangeTitle(Title: STitStrType);
Abstract:
Changes the title of the current window (and displays new one).
Parameters:

Title is new string. Characters in it are quoted so special
characters will be displayed.

- 259 -

POS Operating System - Module Screen January 15, 1984

SideEffects: Changes title on screen

Procedure CreateWindow(WIndx: WinRange; OrgX,OrgY,Width,Height: integer;
Title:STitStrType);

Abstract:
Creates new window for Windx (or overwrites old values for that
window) and makes it the current window. Writes title (IN CURRENT
FONT) if title © °°;

Parameters:
Windx is index to use for the window created; OrgX and OrgY are
the upper left corner of the outside of the new window (chars will
be at least 5 bits in from that). Width and Height are total
outside values for window (NOT the width and height of the
character area). Title is title for window. If not °’ then
hairlines and a black area are put around window.

SideEffects: Writes current values into current window; creates a new
window and erases its area on screen

Errors: Raises BadWNum if WIndx invalid Raises WTooBig if window would
extend off the screen

Procedure SFullWindow;
Abstract:
Changes the parameters of the current window to be the full screen

SideEffects: Changes the size of the current window. Does NOT refresh
or change the title line or erase anything or move the cursor

Procedure RefreshWindow(WIndx: WinRange);
Abstract:
Redraws window outline and title area (but not title text)
Parameters:
Vindow to refresh (better be already created)

Errors: Raises BadWNum if WIndx undefined

- 260 -

POS Operating System - Module Screen January 15, 1984
Procedure GetWindowParms(var WIndx: WinRange; var OrgX, OrgY, Width, Height:
integer; var hasTitle: Boolean);
Abstract:
Returns parameters for current window
Parameters:
All set to current window's values
Procedure ChangeWindow(WIndx: WinRange);
Abstract:
Writes out current window’s parameters and changes to new one
Parameters:
VindX is new window’s number
Errors: Raises BadWNum if WIndx undefined
Procedure SetFont(NewFont: FontPtr);
Abstract:
Changes font to be NewFont
Parameters:
NewFont is font to use

SideEffects: Changes font in current window so all further writes
(including titles) will be in this font

Function GetFont: FontPtr;
Abstract:
Returns current font
Returns: font currently in use
Procedure ScreenReset;

Abstract:

Erases screen; Removes all window; sets Window O to have full
screen boundary and a blank title

SideEffects: Erases or sets all parameters; font set to system font

- 261 -

POS Operating System - Module Screen January 15, 1984

Procedure Screenlnit;
Abstract:

Sets FirstWindP to NIL and sets up default window; NOTE: CALL THIS
PROCEDURE ONCE AT SYSTEM INITIALIZE

Calls: ScreenReset;

Procedure Line(Style: LineStyle; X1, YI, X2, Y2: integer; Origin:
RasterPtr);

Abstract:
Draws a line.
Parameters:

Style - function for the line; X!, X2, Yl, Y2 - end points of
line.

Origin - pointer to the memory to draw lines in. Use SScreenP for
Origin to draw lines on the screen.

Procedure SVarLine(Style: LineStyle; X1, Yl, X2, Y2, Width: integer; Origin:
RasterPtr);

Abstract:

Draws a line. Same as Line except it takes the buffer width as a
par?meter. This is only useful when drawing lines in off-screen
buffers.

Parameters:
Style - function for the line; X1, X2, YI, Y2 - end points of
line.
Width - the word width of the "origin" buffer.
Origin - pointer to the memory to draw lines in. Use SScreenP for
Origin to draw lines on the screen.

- 262 -

POS Operating System - Module Scrounge January 1§, 1984

module Scrounge;
Abstract:

This module contains the procedure Scrounge which allows a small
amount of debugging. Since there are no symbol tables or micro--
code support for breakpoints, you can look at the stack trace and
examine variables by offsets. The types of the variables have to
be specified by the user.

Written by: Brad A. Myers 1-May-1981
Copyright (C) 1981,1982 PERQ Systems Corporation.

Version Number V0.27
(7727772772777777777777777} EXPORTS { \NNANNVANTRVRVLRRV VNN

Procedure Scrounge(ES, ER, PStart, PEnd, ExcSeg, RaiseAP: Integer);
Procedure Scrounge(ES, ER, PStart, PEnd, ExcSeg, RaiseAP: Integer);
Abstract:

Scrounge is called when uncaught signals are noticed or when the
user types “SHIFT-D. It allows looking around at local and global
vbles and the stack trace. If “SHIFT-D then can continue with
program, otherwise aborts when exit

Parameters:

ES - segment number of exception

ER - routine number of exception

PStart - offset of start of parameters to exception

PEnd - offset of end of garameters to exception

ExcSeg - the segment number of the exceptions module if (ES =
ExcSeg) and (ER = ErrDump) then is “SHIFT-D For now, can’t
tell “SHIFT-C

RaiseAP - the offset for AP for Raise itself (caller is person who
did the raise)

- 263 -

POS Operating System - Module Sid January 18, 1984

module Sid;

Sid - Screen Image Dump.
J Strait 15 Mar 83.
Copyright (C) PERQ Systems Corporation, 1983.

Abstract:

Several hardcopy options available for the PERQ computer are
capable of printing an image of the display screen. A module to
print an image of the screen is included with each of these
hardcopy options. The interfaces to these modules are identical
in order that programs may be written without knowing which
hardcopy option is available. This version of Sid is provided for
systems with no hardcopy option. Programs which provide hardcopy
ability may import Sid and later be linked with the version of Sid
which is specific to a hardcopy device.

Every incarnation of Sid should implement all routines included
here. This module may be used as a skeleton for other versions.

The comments in every incarnation should specify the name of the
device served and a description of the reasons for raising
failure:

Device name: Null. Errors raised: SidNone is always
raised.

Version Number V1.1

exports
type SidWhy = (SidNone, { the device is not connected }
SidBroken, { the device is physically broken }
SidHelp, { the ?evice needs human help, e.g. paper
out
SidBusy); { the device is busy: try later }

procedure Sid(Destination: String);
function SidExplain(Why: SidWhy): String;
function SidDevice: String;

exception SidFail(Why: SidwWhy);
Abstract:

SidFail is raised when the screen image cannot be printed.
Resuming from this exception is allowed: resuming from fatal
errors (SidNone, SidBroken) exits from Sid and resuming from
non-fatal errors (SidHelp, SidBusy) retries.

- 264 -

POS Operating System - Module Sid January {5, 1984

Parameters:

Why - The reason that the screen image could not be printed. This
value may be converted to a character string with the SidExplain
function. .

- 265 -

POS Operating System - Module Sid January 15, 1984
procedure Sid(Destination: String);

Abstract:
The Sid procedure prints an image of the PERQ display screen to a
certain hardcopy device.

Parameters:
Destination - A string describing the destination of the hardcopy.
For the EtherNet version of Sid this is the string name of the
EtherNet Sid server. If non-null, Destination is used as the name
of the server machine, and if null, Sid looks in the user profile
for an entry of the form #Sid <ServerName> to determine the name
of the server machine. If the parameter is null and there is no
entry in the user Erofile, any available server is used.
Destination could be defined differently for other versions of

Sid. For example, it could be the name of a file to which a screen
image is written.

Errors: SidFail is raised if the screen image cannot be printed. This
incarnation of Sid always raises SidFail(SidNone).

function SidExplain(Why: Sidwhy): String;

Abstract:

SidExplain converts a SidWhy value into a character string.

Parameters:

Why - The value to explain.

Returns: The explanation of Why.

function SidDevice: String;
Abstract:

SidDevice returns the string name of the hardcopy device used by
this version of Sid.

- 266 -

POS Operating System - Module Sid January 15, 1984

»

Returns: The name of the hardcopy device.

- 267 -

POS Operating System - Module Stream January {5, 1984

module Stream;

Stream - Perq Pascal stream packagg.

John Strait ca. Jan 80.

Copyright (C) PERQ Systems Corporation, 1980, 1981, 1982, 1983

Abstract:

This module implements the low-level Pascal I/0. It is not
intended for use directly by user programs, but rather the
compiler generates calls to these routines when a Reset, Rewrite,
Get, or Put is encountered. Higher-level character 1/0 functions

(Read and Write) are implemented by the two modules Reader and
Writer.

In this module, the term "file buffer variable” refers to F* for a
file variable F.

Version Number V1.25
exports
imports FileDefs from FileDefs;
const StreamVersion = ‘1.23°;
IdentLength = 8; _{ significant characters in an identifier)}
type pStreamBuffer = “StreamBuffer;

StreamBuffer = record case integer of { element size: }
0: (W: arrayl0..255] of integer); { 1 or more words, or

> 8 bits)

1: (Bl: packed arrayl[0..0] of 0..1); { 1 bit }

2: (B2: packed arrayl0..0] of 0..3); { 2 bits }

3: (B3: packed arrayl(0..0] of 0..7); { 3 bits }

4: (B4: packed arrayl[0..0] of 0..15); { 4 bits)

5: (BS: packed arrayl0..0] of 0..31); { S bits }

6: (B6: packed arrayl0..0] of 0..63); { 6 bits }

7: (B7: packed array(0..0] of 0..127); { 7 bits)

8: (B8: packed arrayl0..0] of 0..255); { 8 bits }

9: (C: packed arrayl0..255] of char); { for character structured }
end;

ControlChar = 0..#37; { ordinal of an ASCII control

character }
FileKind = (BlockStructured, CharacterStructured);
FileType = { file of Thing)

packed record
Flag: packed record case integer of

0: (CharReady : boolean; { character is in file window }
FEoln : boolean; { end of line flag }
FEof : boolean; { end of file)

- 268 -

POS Operating System - Module Stream

January 15, 1984

FNotReset : boolean; { false if a Reset has been
performed on this file)
FNotOpen : boolean; { false if file is open }
FNotRewrite: boolean; { set false if a Rewrite has
been performed on this file }
FExternal : boolean; { not used - will be
permanent/temp file flag }
FBusy : boolean; { I0 is in progress }
FKind : FileKind); ’
I: (skipl : 0..3;
ReadError : 0..7);
2: (skip2 : 0..15;
VriteError: 0..3)

end;

EolCh, EofCh, EraseCh, NoiseCh: ControlChar; {self explanatory)

OmitCh : set of ControlChar;

FileNum : integer; { POS file number }

Index : integer; { current word in buffer for un-packed
files, current element for packed
files }

Length : integer; { length of buffer in words for un-

BlockNumber : integer;
Buffer : pStreamBuffer;
LengthInBlocks: integer;
LastBlockLength: integer;
SizelnWords : integer;

SizelnBits : 0..16;
ElsPerWord : 0..16;

-~ P, gumy, g, gy G

packed files, in elements for packed
files)}

next logical block number }

1/0 buffer }

file length in blocks)}

last block length in bits }

element size in words, 0 means
packed file }

element size in bits for packed
files }
{ elements per word for packed files }

Element: { Thing } record case integer of {The File window}

1: (C: char);

2: (W: arrayl[0..0] of integer)

end
end;

ChArray = packed arrayll..1] of char; {For read/write character array}

Identifier = stringlIdentLengthl;
IdentTable = arrayl{0..1] of Identifier;
var StreamSegment: integer; { Segment buffer for 1/0 buffers }

KeyBuffer: packed arrayl0..255] of char;

KeyNext, KeyLength: integer;

procedure StreamInit(var F: FileType; WordSize, BitSize: integer;
CharFile: boolean);

procedure StreamOpen(var F: FileType; var Name: PathName;
WordSize, BitSize: integer; CharFile: boolean;
OpenWrite: boolean);

procedure StreamClose(var F: FileType);

procedure GetB(var F: Filetype);
procedure PutB(var F: Filetype);
procedure GetC(var F: Filetype);

- 269 -

POS Operating System - Module Stream January 15, 1984

procedure PutC(var F: FileType);

procedure PReadln(var F: Filetype);

procedure PWriteln(var F: Filetype);

procedure InitStream;

function StreamName(var F: FileType): PathName;

function FullLn(var F: Text): Boolean;

procedure StreamKeyBoardReset(var F: Text);

exception ResetError(FileName: PathName);
Abstract:

Raised when unable to reset a file--usually file not found but
also could be ill-formatted name or bad device name.

Parameters:
FileName - name of the file or device.

exception RewriteError(FileName: PathName);

Abstract:
Raised when unable to rewrite a file--usually file unknown device
or partition but also could be ill-formatted name or bad device
name.
Parameters:
FileName - name of the file or device.
exception NotTextFile(FileName: PathName);
Abstract:
Raised when an attempt is made to open a non-text file to a
character-structured device.
Parameters:
FileName - name of the device.
exception NotOpen;
Abstract:

Raised when an attempt is made to use a file which is not open.

- 270 -

POS Operating System - Module Stream January {5, 1984

exception NotReset(FileName: PathName);

Abstract:

Raised when an attempt is made to read a file which is open but
has not been reset.

Parameters:
FileName - name of the file or device.
exception NotRewrite(FileName: PathName);
Abstract:
Raised when an attempt is made to write a file which is open but
has not been rewritten.
Parameters:
FileName - name of the file or device.
exception PastEof(FileName: PathName);
Abstract:
Raised when an attempt is made to read past the end of the file.
Parameters:
FileName - name of the file or device.
exception UnitIOError(FileName: PathName);

Abstract:

Raised when IOCRead or IOCWrite returns an error status.
Parameters:
FileName - name of the device.
exception TimeOutError(FileName: PathName);

Abstract:

Raised when a device times out.

- 271 -

- POS Operating System - Module Stream January 15, 1984

Parameters:
FileName - name of the device.
exception UndfDevice;

Abstract:

Raised when an attempt is made to reference a file which is open
to a character-structured device, but the device number is bad. In
the current system (lacking automatic initialization of file
variables), this may be caused by referencing a file which has
never been opened.

exception Notldentifier(FileName: PathName);

Abstract:
Raised when an identifier is expected on a file, but something
else is encountered.
Parameters:
FileName - name of the file or device.
exception NotBoolean(FileName: PathName);
Abstract:
Raised when a boolean is expected on a file, but something else is
encountered.
Parameters:
FileName - name of the file or device.
exception BadldTable(FileName: PathName);
Abstract:

Raised by Readldentifier when the identifier table is bad.

Parameters:

FileName - name of the file or device.

- 272 -

POS Operating System - Module Stream January 15, 1984

exception IdNotUnique(FileName: PathName; Id: Identifier);
Abstract:
Raised when non-unique identifier is read.

Parameters:

FileName - name of the file or device. Id - the identifier which
was read.

exception IdNotDefined(FileName: PathName; Id: Identifier);
Abstract:
Raised when an undefined identifier is read.
Parameters:
FileName - name of the file or device.
Id - the identifier which was read.
exception NotNumber(FileName: PathName);
Abstract:
Raised when a number is expected on a file, but something else is
encountered.
Parameters:
FileName - name of the file or device.
exception LargeNumber(FileName: PathName);
Abstract:
Raised when a number is read from a file, but it is too large.
Parameters:
FileName - name of the file or device.
exception SmallReal(FileName: PathName);
Abstract:

Raiffd when a real number is read from a file, but it is too
small.

- 273 -

POS Operating System - Module Stream January 5, (984

Parameters:
FileName - name of the file or device.
exception BadBase(FileName: PathName; Base: Integer);
Abstract:

Raised when an attempt is made to read a number with a numeric
base that is not in the range 2..36.

Parameters:
FileName - name of the file or device.
Base - numeric base (which is not in the range 2..36).
exception LargeReal(FileName: PathName);
Abstract:

Raised when a real number is read from a file, but it is too
large.

Parameters:
FileName - name of the file or device.
exception RealWriteError(FileName: PathName);
Abstract:

Raised when an attempt is made to write a real number which is
invalid.

Parameters:
FileName - name of the file or device.
exception NotReal(FileName: PathName);
Abstract:

Raised when a real number is expected on a file, but something
else is encountered.

Parameters:
FileName - name of the file or device.
Procedure StartTranscript(fileName: PathName; append: boolean);

Procedure StopTranscript;
Procedure TransChar(c: Char);

- 274 -

POS Operating System - Module Stream January iS5, 1984

Exception TransError(kind: String);

Abstract:

Raised when startTranscript called but a transcript is already
open or if StopIranscript is called and no transcript is active.
Also, if StartTranscript and file cannot be created.

Parameters:
Kind - a string describing the error.

procedure Streamlnit(var F: FileType; WordSize, BitSize: integer; CharFile:
boolean);

Abstract:

Initializes, but does not open, the file variable F.
Automatically called upon entry to the block in which the file is
dec%ared. (To be written when the compiler generates calls to
it.

Parameters:
F - the file variable to be initialized.
WordSize and BitSize are the size of an element of the file.
CharFile - determines whether or not the file is of characters.

procedure StreamClose(var F: FileType);

Abstract:

Closes the file variable F.

Parameters:
F - the file variable to be closed.

procedure StreamOpen(var F: FileType; var Name: PathName; WordSize,
BitSize: integer; CharFile: boolean; OpenWrite: boolean);

Abstract:

Opens the file variable F. This procedure corresponds to both
Reset and Rewrite.

Parameters:

F - the file variable to be opened.

Name - the file name.

WordSize - number of words in an element of the file (0 indicates
a packed file).

BitSize - ?umber of bits in an element of the file (for packed
files).

CharFile - true if the file is a character file.

OpenWrite - true if the file is to be opened for writing
(otherwise it is opened for reading).

- 275 -

POS Operating System - Module Stream January 15, 1984

Errors:
ResetError if unable to reset the file.
RewriteError if unable to rewrite the file.
NotATextFile if an attempt is made to open a non-text file to a
character structured device.
procedure GetB(var F: Filetype);
Abstract: '

Advances to the next element of a block-structured file and gets
it into the file buffer variable.

Parameters:
F - the file to be advanced.
Errors:
NotOpen if F is not open.
NotReset if F has not been reset.
PastEof if an attempt is made to read F past Eof.
procedure GetC(var F: Filetype);
Abstract: ‘

Advances to the next element of a character-structured file and
gets it into the file buffer variable.

Parameters:
F - the file to be advanced.
Errors:
NotOpen - if F is not open.
NotReset - if F has not been reset.
PastEof - if an attempt is made to read F past Eof.
TimeOutError - if RS: or RSX: times out.
UnitIOError - if IOCRead doesn’t return IOEIOC or IQOEIOB.
UndfDevice - if F is open, but the device number is bad.
procedure PutB(var F: Filetype);
Abstract:

Writes the value of the file buffer variable to the
block-structured file and advances the file.

Parameters:

F - the file to be advanced.

- 276 -

POS Operating System - Module Stream | January 15, 1984

Errors:
NotOpen - if F is not open.
NotRewrite- if F has not been rewritten.

procedure PutC(var F: FileType);

Abstract:

Writes the value of the file buffer variable to the character-
structured file and advances the file.

Parameters:

F - the file to be advanced.

Errors:
NotOpen - if F is not open.
NotRewrite - if F has not been rewritten.
UnitlOError- if I0OCWrite doesn‘t return IOEIOC or IOEIOB.

TimeOutError- if RS: or RSX: times out.
UndfDevice - if F is open, but the device number is bad.
procedure PReadln(var F: Filetype);

Abstract:

Advances to the first character following an end-of-line.

Parameters:
F - the file to be advanced.
procedure PWriteln(var F: Filetype);
Abstract:

Writes an end-of-line.

Parameters:

F - the file to which an end-of-line is written.
procedure StreamKeyBoardReset(var F: Text);

Abstract:

Clears the keyboard input buffer and the file variable F so that
all input typed up to this point will be ignored.

Parameters:

F - file to be cleared.

- 277 -

POS Operating System - Module Stream January 16, [984

procedure InitStream;

Abstract:
Initializes the stream package. Called by System.

function FullLn(var F: Text): Boolean;

Abstract:

Determines if there is a full line in the keyboard input buffer.
This is the case if a carriage-return has been typed. This
function is provided in order that a program may continue to do
other things while waiting for keyboard input. If the file is not
open to the console, FulllLn is always true.

Parameters:
F - file to be checked.
Returns: True if a full line has been typed.

Errors:
NotOpen - if F is not open.
NotReset - if F has not been reset.

function StreamName(var F: FileType): PathName;

Abstract:

Returns the file name associated with the file variable F. For
block-structured files, the full path name including device and
partition is returned. For character-structured files, the device
name is returned.

Parameters:
F - file variable whose name is to be returned.
Procedure StartTranscript(fileName: PathName; append: boolean);

Abstract:

Starts a transcript to the specified file. The transcript will
contain all characters written to the screen. A user-typed
backspace character will be echoed to the file as a backslash "\".
All other characters will be copied directly. Do not leave the
transcript on while running screen-based programs like PATCH or
the EDITOR since they will input lots of garbage into the
transcript. The transcript cannot be read until the
StopIranscript routine is called. Note that some programs,
notably TYPEFILE, will not output anything to the transcript since
they RasterOp to the screen directly. To get a file into the
transcript, use COOPY file = CONSOLE:

¥XXWARNINGxxx% It is VERY dangerous to have transcripting on while

- 278 -

POS Operating System - Module Stream January {5, (984

running the Scavenger or any similar program. No checking is done
to insure that this is not done. Caveat Emptor. %XXWARNINGXXXX

Also, it is dangerous to run Typefile while transcripting is on.
The data typed out will be wrong (since TypeFile uses ReadDisk)
and the the PERQ may crash. ¥XXWARNINGX%¥%X .

Parameters:
fileName - the name of the file that the transcript is supposed to

go in. If the name is empty or the file cannot be opened
then the TransError exception is raised.

append - if false, the file is started from scratch. That is, it
will contain only the text from this session. If append is
true, then the new text will be put at the end of the file if
it already exists. If the file does not exist, append will

be identical to not append.

Errors:

TransError - raised if this procedure is called and a transcript
is already in effect or if the filename passed is invalid.

Procedure TransChar(c: Char);
Abstract:
Enters a character into the transcript.
Parameters:
¢ - the character to put into the transcript.
Errors:
TransError - raised if transcript is not open.
Procedure StopTranscript;

Abstract:

Closes the transcript file. You must call this before accessing
the transcript. If not, the file will be incomplete and not

closed.

Errors:

TransError - raised if no transcript is open.

- 279 -

POS Operating System - Program System Janvary 5, 1984

Program System;
Perq Software Group.

Copyright (C) PERQ Systems Corporation, 1980, 1981, 1983.

Abstract:

Initialize POS and go into loop alternately running Shell and user

program
Version Number V2.17

{ HEARRXXXRRAXARXXKLKXN) EXPOrts { REXRRREXREHRRANNNNX }

Const MainVersion = ‘G’;
DebugSystemlnit = False;
FirstDDS = 199;
ShellConst = °Shell. ’;
LogConst = ‘Logln. °;

PFileConst = ‘Default.Profile’;

SysTiming = True; { Gather System timing statistics. If this
constant is changed, 10, Loader, Memory,
Movemem, System, and Shell should be
re-compiled, and the System should be
re-linked. }

Type Sys9s = Stringl10];

Var UsrCmdLine: Stringl255];
UseCmd: Boolean;
UsrCmdLine}
InCmdFile: Boolean;
LastFileName,
RFileName,
ShellName: String;

CurUserlD,
CurGrouplD: 0..255;
CurUserName,
CurPFile: String;
UserMode: Boolean;

CtrlCPending: Boolean;

NextSSize: Integer;
NextSComplemented: Boolean;
NextSOff: Boolean;
DefCursFunct: Integer;
DefScrComp: Boolean;
DefScrOff: Boolean;

ShellCtrl: pointer;
TimeFID: integer;
CmdSegment: Integer;

InPmd: Boolean;

{Command line entered by user)}
{Set True to tell shell to execute

{True if shell commands from file}
{Name of file to use if none given}
{Name of next program to run)

{Name of Shell)}

{Index of user in System.Users}
{Groupid of current user)

{LogIn name of current user}

{Name of current profile file}
{True while executing user program}

{True if one control-C typed)

{Screen size for next program)

{Whether to complement bottom for next pgm}
{Whether bottom should display data bits
{What to set curs func to after each prog)}
{Default value for NextSComplemented)
{Default value for NextSOff}

{Pointer to information record for Shell)
{File ID of file holding current time}
{SegmentNumber of seg holding command files)

{True if in Scrounge (PostMortemDump)}

- 280 -

POS Operating System - Program System January 18, 1984

SysDisk: Integer; {Number of the disk booted from}
SysBootChar: Integer; {Ord(char held down to boot)}

StrVersion: string; {System version number as a string)
SystemVersion: Integer; {Integer giving system version number}
Systemlnitialized: Boolean; {True after system initialized}

DDS: Integer; {Keeps current diagnostic display value}
ShouldReEnableSwapping: Boolean; {True if swapping must be reenabled)
SavedSwapld: Integer; {Save id of where to swap to}

{8ifc SysTiming then)

LoadTime, OldLoadTime: long;
ExecuteTime, OldExecuteTime: long;
SwapTime, OldSwapTime: long;
MoveTime, OldMoveTime: long;
10Time, OldIOTime: long;
PrintStatistics: Boolean;

{$endc}

UserPtr: pointer; {A pointer variable for use between user
programs. (Use IncRefCount to keep
segment) }

UserInt: integer; {May be a segment number for UserPtr}

DemoInt: Integer; {reserved for Demo system}

isFloppy: Boolean; {true if booted from floppy, else false}

pointAllowed: Boolean; {true if should use pointing device}

DefRealRelTablet:boolean; (;gge %f KrizTablet/BitPad in true relative
e
DefTabletType: integer; {assigned ord(KrizTablet) by Login etc }

CurRFileName: String; {the current run file; used by the symbollic
debugger}

{%%% WARNING!! IF YOU CHANGE THE EXPORTED PROCEDURES AND EXCEPTIONS, MAKE
{3%%x SURE THE NUMBERS FOR THE FOLLOWING EXCEPTIONS ARE UPDATED
{ %%% AND RECOMPILE SCROUNGE IF CHANGED 11111 xxxx}

{%%% WARNING!! DO NOT CHANGE THE ORDER OF THE “C EXCEPTIONS 111! xexxx)

Procedure Command;
Procedure SetDDS(Display: Integer);
Procedure SysVers(n: integer; var S: string);

Const ErrCtlC = 4; {xx%xxx)

- 281 -

POS Operating System - Program System January 15, 1984

Exception CtIC;
Abstract:

CtlC is raised by the KeyBoard interrupt routine when a control-c
is typed. If you handle this exception you should clear
CtriCPending in your handler. If you are catching control-c’s to
try to prevent aborts, you should enable CtlCAbort also, since the
Stream package will raise it when the control-c is read.

Const ErrCtlCAbort = 5; {¥¥%xex)
Exception CtlCAbort;
Abstract:

Ct1CAbort is raised by the KeyBoard interrupt routine when the
second of two adjacent control-c’s is typed. It is also raised by
the Stream package when a control-c is read. If you handle this
exception you should clear CtrlCPending in your handler.

When this is raised by the KeyBoard interrupt routine, the
KeyBoard type-ahead buffer is cleared. If you want to prevent
this, you must catch CtlC also.

If your program uses a Text file and you want to clear the line
editing buffer for that file, you should call the Stream routine
StreamKeyBoardReset(F) (assuming F is the name of the file). If F
is a Text file which is attached to the console, this will get rid
gff}he character F* points to and clear Stream’s line editing
uffer.

Const ErrCtIShftC = 6; {®x%%xx%x%)
Exception Ct1ShftC;

Abstract:

Ct1ShftC is raised by the KeyBoard interrupt routine when a
control- shift-c is typed. If you handle this exception you
should clear CtrlCPending in your handler.

Vhen this is raised by the KeyBoard interrupt routine, the
KeyBoard type-ahead buffer is cleared. You cannot prevent this.

If your program uses a Text file and you want to clear the line
editing buffer for that file, you should call the Stream routine
StreamkeyBoardReset(F) (assuming F is the name of the file). If F
is a Text file which is attached to the console, this will get rid
gff}he character F* points to and clear Stream’s line editing
uffer.

- 282 -

POS Operating System - Program System January 15, 1984

Const ErrExitProgram = 7; {%%%%%%}.
Exception ExitProgram;
Abstract:
ExitProgram is raised to abort (or exit) a program. The default
handler for CtlCAbort and Scrounge raise this exception.
WARNING: No one but System and Loader should Handle this
exception. Anyone may raise it to exit a program.
Const ErrHelpKey = 8; {%%xx%x%}
Exception HelpKey(var retStr: Sys9s);
Abstract:
HelpKey is raised when the HELP key is hit.
Parameters:
retStr - the set of characters to put into the input stream. This
should be set by the handler if it continues from the
exception. Likely values are "/Help<CR>" and chr(7) (the current
value returned). The key board interupt routine sets retStr to °°
before raising this exception so if not set, and the handler
resumes, nothing will be put into the input stream.

Resume: Allowed. Should set retStr first.
Const ErrHardCopy = 9; {%%xxx%}

Exception HardCopy;

Abstract:

HardCopy is raised when Control-Shift-P is typed. A default
handler is provided in System which calls Sid to do a Screen Image
Dump. The HardCopy exception may be raised by a program which
wishes to print a screen image dump.

Resume: Encouraged.

type DoubleWord = “integer; {should use Long instead}

- 283 -

POS Operating Syétem - Program System January {5, 1984

Procedure SetDDS(Display: Integer);
Abstract:
SetDDS sets the diagnostic display to a particular value.
Parameters:
Display - Desired value of the diagnostic display.
procedure SysVers(n: integer; var S: string);
Abstract:

This procedure will provide the caller with a string that is the
Version number of the current system.

Parameters:
n is the minor version number of the system.
S will be set to the current minor version of the system.
Procedure Command;
Abstract:
This procedure alternately loads Shell and the user programs whose

runfile names are generated by Shell. It is invoked by the main

program in System and can be exited only if the user types “C or
if a runtime error occurs.

- 284 -

POS Operating System - Module UserPass . January i5, 1984

module UserPass;
Abstract:

This module provides facilities for dealing with the password and
accounts file for PERQ. The login and protection facilities for
Perq provide a very simple user validification. This system is
NOT completly secure.

Written by: Don Scelza
Copyright (C) PERQ Systems Corporation, 198l.

Version Number VI.4
{ RRRHRRRRRAAAXREXXRXX) Exports R333333333333333331:d

type IDType = 0..255;
PassType = “Integer; { a two word value }

UserRecord = packed record
InUse: boolean;
Name: Stringl31];
UserID: IDType;
GrouplID: IDType;
EncryptPass: PassType;
Profile: String;

is this entry in use. }

Name of the user }

The user ID of the user. }

The group ID of the user. }

The encrypted password. }

?§}h n?me of the profile
ile.

Sy gy gy g, gy g

end;

function FindUser(UserName: String; var UserRec: UserRecord): Boolean;
function ValidUser(UserName, Password: String;

var UserRec: UserRecord): Boolean;
function AddUser(UserName, Password: String; Group: IDType;

ProPath: String): Boolean;

procedure NewUserFile;
procedure ListUsers;
function RemoveUser(UserName: String): boolean;

const PassFile = ‘>System.Users’;

10;

const MaxUsers

type Users = arrayl0..MaxUsers] of UserRecord;

POS Operating System - Module UserPass January 15, [984

function FindUser(UserName: String; var UserRec: UserRecord): Boolean;
Abstract:
This function is used to see if a user exists in the user file.
Parameters: |)
UserName is the name of the user that we are looking for.

UserRec is a var parameter that is used to return the information
about the user UserName if he is in the file.

Results: This procedure will return true if the user UserName was in
the user file. It will return False otherwise.

function ValidUser(UserName, Password: String;
var UserRec: UserRecord): Boolean;

Abstract:
Sees if a user name and password match.

Parameters:
Username is the name of the user that we want to check.
Password is the password for the user.

UserRec will be filled with the user information if the user name
and password match.

Results: If the password is valid for the user then return true.
Otherwise return false.

Side Effects: This function will change the file PassFile.

function AddUser(UserName, Password: String; Group: IDType; ProPath:
String): Boolean; '

Abstract:

Adds a new user to the user file or changes the parameters of an
existing user.

Parameters:
Username is the name of the user to add or change.
Password is the password for the user.
Group is the group number for the new user.

ProPath is the path name of the profile file for this user.

- 286 -

POS Operating System - Module UserPass January 15, 1984
Results: If the user could be added or changed then return true.
Otherwise return false.
Side Effects: This function will change the file PassFile.
procedure NewUserFile;
Abstract:
This procedure is used to create a new user file.

Side Effects: This procedure will create a new file. It will destroy
any information in the current file.

procedure ListUsers;
Abstract:
Supplies a list of the valid users.
function RemoveUser(UserName: String): boolean;
Abstract:
Removes a user from the list of valid users.
Parameters:
UserName is the name of the user that is to be removed.

Resultsi If the user could be removed, return true. Otherwise return
false.

POS Operating System - Module UtilProgress January 15,

module UtilProgress;
Progress Reporting Routines
Copyright (C) 1981 PERQ Systems Corporation
Abstract:
Routines to show progress of utilities.
exports
Procedure LoadCurs;
Procedure ShowProgress(NumLines: Integer);
Procedure QuitProgress;
Procedure StreamProgress(var F: File);
Procedure ComputeProgress(Current, Max: Integer);
Procedure LoadBusy;
Procedure LoadCurs;
Abstract:
Sets up the cursor before showing progress.
Procedure LoadBusy;

Abstract:

1984

Sets up the cursor so that we can show that we are busy. In busy

mode, each ShowProgress moves the cursor by one in a random

direction. This should be used when an operation is taking place

and the utility cannot tell how long until it is done.
Procedure QuitProgress;
Abstract:
No more progress to report, turn off the cursor.
Calls: I0CursorMode.
Procedure ShowProgress(NumLines: Integer);

Abstract:

If started by LoadCurs then Indicate progress by moving the cursor
down a certain number of scan lines. If started by LoadBusy then

update busy cursor to show that doing something.

Parameters:

NumLines is the number of scan lines to move the cursor.

POS Operating System - Module UtilProgress January {5, [984

Side Effects:

CursPos is modified.

BusyX is modified if © -1.
Environment: Assumes LoadCurs or LoadBusy has been called.
Calls: 10SetCursorPos.

Procedure StreamProgress(var F: File);

Abstract:

Indicate progress reading a Stream file.
Parameters:

F is a Stream file which has been Resét.
Side Effects: CursPos is modified.
Calls: 10SetCursorPos.
Errors:

NotOpen if F is not open.

NotReset if F is open but not Reset.

Procedure ComputeProgress(Current, Max: Integer);

Abstract:

Indicate progress given a current and maximum value.
Parameters:

Current is the current value.

Max is the maximum value.
-Side Effects: CursPos is modified.
Calls: 10SetCursorPos.

- 289 -

POS Operating System - Module Virtual January 15, 1984

module Virtual;

Virtual - Perq virtual memory manager.
J. P. Strait 1 Jan 80.
Copyright (C) PERQ Systems Corporation, 1980, 1982.

Abstract:

Virtual is the Perq virtual memory manager. It supervises the
segment tables and exports procedures for swapping memory
segments, Virtual is the portion of the Perq memory manager which
must remain memory resident at all times. Perq physical memory is
segmented into separately swappable items (called segments) which
may contain either code or data.

Design: See the Q-Code reference manual.
Version Number V3.2
exports
const VirtualVersion = ‘3.2°;

imports Memory from Memory;
imports I0_Unit from IO _Unit;
imports DiskIO from DiskIO;

function ReturnSegment: SegmentNumber;

procedure ReleaseSegmentNumber(Seg: SegmentNumber);

function NewSegmentNumber: SegmentNumber;

procedure MakeEdge(var E: MMEdge; S: SegmentNumber);
procedure DeleteSegment(var S: SegmentNumber);

procedure SwapOut(var E: MMEdge);

procedure SwapIn(E: MMEdge; S: SegmentNumber; P: MMPosition);
procedure Compact;

procedure KeepSegments;

procedure FindHole(Fsize: MMIntSize; ForUserSegment: Boolean);
procedure InclOCount(S: SegmentNumber);

procedure DecIOCount(S: SegmentNumber);

procedure SwapSegmentsIn(SI, S2, S3, S4: SegmentNumber);

var Screenlast: Integer;
Keepl, Keep2, Keep3, Keep4: SegmentNumber;
Kludge: record case Integer of
I: (A: DiskAddr);
2: (D: Double)
end;
BlockHeader: IOHeadPtr;
BlockAddress: Double;
BlockSId: Segld;
Status: I0StatPtr;
BootSerialNum: Double;
BootSegld: Segld;
SwapSId: Segld;

- 290 -

POS Operating System - Module Virtual January 15, 1984
function ReturnSegment: SegmentNumber;
Abstract:

ReturnSegment finds the segment number of the caller of the
procedure which called ReturnSegment by searching the call stack.

Result: ReturnSegment = Segment number of the caller.

Design: This routine depends on the Perq running a single process
operating system where the caller is in the same process as the
memory manager.

procedure ReleaseSegmentNumber(Seg: SegmentNumber);
Abstract:

ReleaseSegmentNumber releases a segment number to the list of
segment numbers which are not in use.

Parameters:
Seg - Segment number to return to the segment number free list.
function NewSegmentNumber: SegmentNumber;
Abstract:
NewéegmentNumber allocates the next unused segment number.
Errors: NoFreeSegments if there are no unused segment numbers.
procedure MakeEdge(var E: MMEdge; S: SegmentNumber);
Abstract:
MakeEdge makes an MMEdge record which the head field set to a
certain segment number and the tail field set to the previous
segment number (in physical address order).
Parameters:
E - MMEdge record to build.
S - Segment to put in the head field.

Errors: EdgeFailure if MakeEdge can’t find the previous segment
number.

- 291 -

POS Operating System - Module Virtual January 15, 1984

procedure DeleteSegment(var S: SegmentNumber);

Abstract:

DeleteSegment returns a segment to the free memory list. This is
done (for example) when the segment ‘s reference and 10 counts both

reach zero.

Parameters:

S - Number of the segment to be destroyed. To facilitate segment
table scanning loops that contain calls to DeleteSegment:

¥ If S was resident, it is changed to be the number of the segment
which represents the free memory. This may not be the same as the

original value if the original segment is coalesced with an
adjacent free segment.

¥ If S was not resident, it is changed to be the number of the
segment which preceded it in the segment table.

¥ MMFirst is set to have the same value as S on exit.
procedure SwapOut(var E: MMEdge);
Abstract:
SwapOut swaps a data segpent out to disk.

Parameters:

E - An edge where the head is the segment to be swapped and the
tail is the previous segment.

Result: E.T and E.H both are set to the number of the new free
segment.

Errors:
PartNotMounted if the swapping partition is not mounted.

SwapError if attempt to swap segment out while swapping is
disabled.

procedure SwapIn(E: MMEdge; S: SegmentNumber; P: MMPosition);
Abstract:
Swapln swaps a segment in from disk.

Parameters:

E - An edge describing where to put the segment in memory. The
head is a free segment which will be filled by the segment to
be swapped in. The tail is the previous segment.

S - The segment to swap in.

P - The position (low end or high end) to use within the head

- 292 -

POS Operating System - Module Virtual January 15, 1984

segment of the edge.

Errors: SwapInFailure if attempt to swap in a segment which was never
swapped out.

procedure Compact;

Abstract:

Compact compacts physical memory by moving as many segments as
possible toward low addresses. System segments (those with a
reference count greater than one) will not be moved into the
screen area, as segments cannot jump over one another.

Errors: CantMoveSegment if attempt to move a segment with non-zero IO
count.

procedure KeepSegments;
Abstract:

KeepSegments marks the segments Keepl through Keep4 as not
RecentlyUsed so that they won’t be swapped out.

procedure FindHole(Fsize: MMIntSize; ForUserSegment: Boolean);

Abstract:

FindHole attempts to find a hole (free memory) of a certain size.
It performs a first-fit search. If a hole cannot be found, memory
is compacted, and another first-fit search is performed.
Eventually, a swap-out pass will be performed.

Parameters:
Fsize - Minimum size of the hole. This is an internal
size--Fsize=n means n+l blocks.
ForUserSegment - True iff this hole is to be used for a user
segment. System segments may not be allocated in the screen
area.

procedure IncIOCount(S: SegmentNumber);

Abstract:

IncIOCount increments the count of input/output references to a
data segment. A non-zero I0 count prevents a segment from being
moved, swapped, or destroyed.

IncIOCount will increment the count of only one segment and thus

should not be applied to the base segment number of a heap. The
segment number should be extracted from the pointer being used.

- 293 -

POS Operating System - Module Viriual Jdanuary 1§, (984

Parameters:
S - Segment number.
Errors:
UnusedSegment if S is not in use.

FullMemory if S is not resident and there isn‘t enough memory to
swap it in.

procedure DecIOCount(S: SegmentNumber);
Abstract:
DecIOCount decrements the I0 count of a data segment by one. If
the reference and 10 counts both become zero:
¥ if the segment is a data segment, it is destroyed.

¥ if the segment is a code segment, it is destroyed only if it is
in the screen or is non-resident.

DeclOCount will decrement the count -of only one segment and thus
should not be applied to the base segment number of a heap. The
segment number should be extracted from the pointer being used.

Parameters:
S - Number of the segment.

Errors: UnusedSegment if S is not in use.

procedure SwapSegmentsIn(Sl, S2, S3, S4: SegmentNumber);
Abstract:

SwapSegmentsIn ensures that when it returns, Si, S2, S3, and S4
are resident.

Parameters:
S1, 82, S3, S4 - segments to swap in.
Errors:
NilPointer if one of the segments is zero.
UnusedSegment if one of the segments is not really in use.

FullMemory if there isn’t enough memory to swap one of the
segments in.

- 294 -

POS Operating System - Module VolumeSystem January (&, 1984

module VolumeSystem;
VolumeSystem - TV. (Tony Vezza)
CopyRight (C) 1983, PERQ Systems Corporation.

Abstract:

This module provides uniform abstractions of the disks available
on a Perq. Disks are named by unique Constants of an eneumerated
Type exported by the module. A set of operations is provided and
each is named by a Constant of an another enumerated Type exported
by the module. Each disk is made to appear as an array of pairs of
data blocks and logical headers. A general address Type with two
components, one to specify a disk and another to specify an index
into the array on that disk, is defined and exported. Mounting and
dismounting of disks is supported by a pair of Procedures.
(Mounting a disk means reading a symbolic name from a known
address on that disk and Recording a mapping of that symolic name
to an identifier for the disk.) Operations are provided to
determine the number of pages (pairs of data blocks and logical
headers) and the last valid address on a given disk.

Naming conventions (necessitated by short identifier limits):

"Int" - means "Internal” (hard disk without removable packs).
"Ext" - means "External” (hard disk with removable packs).
"Flp" - means "Floppy”.

"Mic” - means "Micropolis”.

"Phy” - means "Physical”.

"Vol” - means "Volume".

"ID" - means "identifier” and refers to an abstract name Type.

Version Number V4.8
{ 33386 REHRLANNHX) exports { 0NN MN RS RRN R RNNXX)

Imports IOErrors From IOErrors;

Type

{ Values of Type DiskKinds denote distinct classes of disk devices
which can be connected to a Perq. }

DiskKinds = (FlpDisk, IntDisk, ExtDisk);

{ FlpUnitNumber, IntUnitNumber, and ExtUnitNumber are Types
for numbers denoting physical units of each distinct class of disk.
Separate Types are defined to express the necessity of performing
distinct run time checks on values of unit numbers for each class of
disk. Precise ranges cannot be specified at compile time (i.e. in
this program text) because of the requirement that this program must
run on machines of many possible configurations without recompilation. }

Cardinal =0 .. #77777;

- 295 -

POS Operating System - Module VolumeSystem January (5, 1984

FlpUnitNumber = Cardinal;
IntUnitNumber = Cardinal;
ExtUnitNumber = Cardinal;

{ Values of Type PhyDiskID are used to uniquely identify disk units
for the volume mounting and dismounting operations. }

PhyDiskID = Record
Case Kind : DiskKinds Of
FlpDisk : (FlpUnit : FlpUnitNumber);
IntDisk : (IntUnit : IntUnitNumber);
P ExtDisk : (ExtUnit : ExtUnitNumber)
nd;

{ InternalDiskKinds is the Type whose values denote the various kinds of
internal disks. }

IntDiskKinds = (Shugart!4, Mic8, MicS5, unsupported);

{ OnVolAddress is used to represent the logical address of a block
of a volume in data structures on THAT volume or on a nonremovable
volume; these are typically hints which link multiple file structures
together. SOLAR requires that such hints be two word objects with
the two high order bits set and the eight low order bits cleared.
The remaining 22 bits are divided into two fields: a 3 bit logical
volume specifier and a 19 bit volume relative logical biock number.
Certain volume specifiers refer to the nonremovable volumes which are
mounted as the corresponding logical disk (see comments below for Type
VolID. The remaining possible values of a volume specifier field all
denote the volume that the hint itself is written on. }

OnVolAddress = Long;

{ VolName is a string used as part of full file names to name mounted
file system disks. }

VolName = String(8];

{ MaxTotalVols is the upper limit on the number of file system volumes
that can be mounted at one time. MinVolID and MaxVolID delimit
the range of non-nil (i.e. actually mounted) file system volumes.
NilVolID denotes a volume different from any possible mounted volume. }

Const
MaxTotalVols = 8;
MaxVolID = MaxTotalVols - I;
MinVolID = O;
NilVolID = MinVolID - I;

{ VolID uniquely identifies a mounted file system volume or a nil
volume; it is also used as a component of a VolAddress. VolID values
in the subrange 0 .. MaxInternalUnits - | always denote a nonremovable
file system volume, i.e. an internal class disk device. (This is related
to the requirement that internal physical disks be mounted at
corresponding fixed VolIDs by the VolMount Function.) Values in

- 296 -

POS Operating System - Module VolumeSystem January 15, 1984

MaxInternalUnits .. MaxVolID denote mounted removeable
volumes. MaxInternalUnits is an implicit Constant whose value is
determined by the configuration of the machine.

VolRangeType is intended for use as an index Type for arrays which
correspond to mounted actual disks only. }

Type
VolID = NilVolID .. MaxVollID;
VolRangeType = MinVolID .. MaxVolID;

{ VolBlockNumber is a subrange of Long used to uniquely specify a block of
a file system volume. A better Type definition (were it expressible
in current Perq Pascal) would be: #0 .. #1777771, i.e. 19 bit non-
negative Integers. }

VolBlockNumber = Long;

{ VolAddress uniquely specifies a block on any of the mounted file
system disks. }

VolAddress = Record

Volume : VollID;
P dBlockNumber : VolBlockNumber;
nd;

{ VolBuffer defines an unintergreted structure to be used for input
and output buffers for data blocks during volume io operations.
These buffers must be aligned on 256 word boundaries. }

VolBuffer = Packed Array[0 .. 4095] Of Boolean;

ptrVolBuffer = “VolBuffer;

{ VolHeaderBuffer defines an structure to be used for translated input
and output buffers for header blocks during volume io operations. }

VolHeaderBuffer = Record

SerjalNumber : VolBlockNumber;
SegmentBlockNumber : Integer;

FreeListHint : Integer; {formerly called filler)
PreviousBlock,

NextBlock : VolBlockNumber;

End; { VolHeaderBuffer }
PtrVolHeaderBuffer =_‘VolHeaderBuffer;

{ VolIOCommand enumerates the commands available in the volume io
operations, VolI0O and TryVollO. }

Vol1OCommand = (VolRd, VolRdCheck, VolWr, VolWrCheck, VolReset,
{ Last two for error reporting only (floppy only) }
)VolHdrRead, VolHdrWrite

procedure InitVolumeSystem ;

- 297 -

POS Operating System - Module VolumeSystem January 1§,

Procedure VolDiskReset(VID : VolID);
Function GetIntDiskKind : IntDiskKinds;
Function VolMount(PID : PhyDiskID-) : VolID;
Procedure VolDisMount(PID : PhyDiskID);
Function VolIDLookUp(Name : VolName) : VolID;
Function VolNameLookUp(VID : VolID) : VolName;
Function VolToOnVolAddr(VA : VolAddress) : OnVolAddress;
Function OnVolToVolAddr(VID : VollD;

OVA : OnVolAddress) : VolAddress;
Function VolIDToPhyID(VID : VolID) : PhyDiskID;
Function PhyIDToVolID(PID : PhyDiskID) : VollD;
Function LastVolAddress(VID : VolID) : VolAddress;
Function VolNumberPages(VID : Volld) : VolBlockNumber;

Procedure VolIO(VA : VolAddress;
Ptr : PtrVolBuffer;
HPtr : PtrVolHeaderBuffer;
VolCommand : VollOCommand) ;
Function TryVollO(VA : VolAddress;
Ptr : PtrVolBuffer;
HPtr : PtrVolHeaderBuffer;

VolCommand : VolIOCommand;
NumIries : Integer) : Boolean;

Exception NoSuchNameForVol(N : VolName);
Raised by VolldLookUp(n) if no mounted Volume has N as its name
Exception VBNOutOfRange(VID : VolID; VBN : VolBlockNumber);

Raised when a VolAddress, VA, passed to an operation is such that
VA.BlockNumber is greater than VolNumberPages(VA.Volume)

Exception NoSuchVol(vid : VolID);

1984

Raised when a VolAddress, VA, or a VolID, VID, passed to an operation
is such that VA.Volume or VID denote a Volume which is not Mounted

Exception NoSuchDevice(D : PhyDiskID);

Raised when a PhyDiskID, D, passed to an operation denotes a Disk not

in the
configuration

Exception VolErrInc(Error_code : Integer {IOEFirstError .. IOELastError});

Raised whenever an entry in VolErrorCnt is incremented;
this is a temporary measure to allow the compatibility version of
DiskIO to keep its variable ErrorCnt updated.

- 298 -

POS Operating System - Module VolumeSystem January 15, 1984

Exception VollOFailure(Msg : String;
Operation : VollOCommand;
Addr : VolAddress;
SoftStat : Integer);

Exception VolDiskError(Msg : String);

Exception VMountErr(D : PhyDiskID);

Var VolErrorCnt : Arrayl IOEFirstError..I10ELastError,
VolRangeTypel Of Integer;

Procedure InitVolumeSystem ;
Abstract:
Initialize Volume System
Results: Currently Mounts Volumes - Floppy and HardDisk.

Calls:
- Vinitialize

Function GetIntDiskKind : IntDiskKinds;

Abstract:

Tells What Type of disks are connected to the Internal Disk
Controller one of the three values:

- Shugartl4

- Mi

- Mich
Parameters:

None. Just returns the Value of the Variable, IntDiskType, which
is set up at InitVolumeSystem.

Results: Returns the value Internal Disk Kind.
Function VolIDLookUp(Name : VolName) : VolID;

Abstract:

Scan the Disk Control Array for a Volume with Name and return that
Volume ’s ID.

Parameters:

Name is a Volume Name (a Stringl8]).

- 299 -

POS Operating System - Module VolumeSystem January 15, 1984

Results: The Volume ID corresponding to the Volume with Name if such a
Volume exists and is mounted (in the DCA). If no Volume is mounted

then return the Nil Volume ID.

Errors:

- NoSuchNameForVol.
Function VolNameLookUp(VID : VollID) : VolName;

Abstract:

This Function returns the Volume Name of a Volume ID.

Parameters:
VID - VolID,

Results: VolName corresponding to the VID. The VolumeName for a mounted
Volume is set up by the Volume Mount Function.

Errors:
- NoSuchVol, Raised if this VID is not Mounted.

Function VolToOnVolAddr(VA : VolAddress) : OnVolAddress;

Abstract:
Result given, in general, by
- OnVolAddress := 2%31 + 230

- + VA.Volume ¥ 2°27
- + VA.BlockNumber % 28

Note that if VA.Volume > 3, use 7.

Parameters:

VA - VolAddress

Results:

- OnVolAddress, given by formula above.

Calls:
- VolToLogAddr
- VolNumberPages

Errors:
- NoSuchVol (in VolNumberPages)

- VBNOutofRange

- 300 -

POS Operating System - Module VolumeSystem | January 5§, 1984

. Function OnVolToVolAddr(VID : VolID; OVA : OnVolAddress) : VolAddress;
Abstract:

Result given by

- VolAddress.Volume := VID
- VolAddress.BlockNumber := OVA Bits <26:8>

' Note that the other bits of OVA are Ignored.

Parameters:

OVA - OnVolAddress.
Results:

- VolAddress, given by formula above.
Calls:

- LogToVolAddr

- VolNumberPages
Errors:

- 585832X?éa£;2 VolNumberPages)

Function VolIDToPhyID(VID : VolID) : PhyDiskID;

Abstract:

Takes a Volume ID and returns that Volumes Physical Disk ID.
Parameters:

VID - VolID.
Results:

- PhyDiskID selected by given Volume ID.
Errors:

- NoSuchVol

Function PhyIDToVolID(PID : PhyDiskID) : VollD;

Abstract:

Takes a Physical Disk ID and returns that Disk’s Volume ID.

Parameters:

PID - PhyDiskID.

- 301 -

POS Operating System - Module VolumeSystem January 15, 1984

Results:
- VolID of given Physical Disk ID.
Errors:
- NoSuchDevice
Function LastVolAddress(VID : VolID) : VolAddress;

Abstract:

Returns the Volume Address of the last Sector on the selected
disk. Given by:

- LastVolAddress.Volume := VID
- LastVolAddress.BlockNumber := VolNumberPages - 1

Parameters:
VID - VolID
Results:
LastVolAddress - VolAddress
Calls:
- VolNumberPages
Errors:
- NoSuchVol
Function VolNumberPages(VID : Volld) : VolBlockNumber;
Abstract:
Returns the total number of Blocks on the Volume. Given by:
VolNumberPages := (PtrDCA*[VID].PhysParameters.Cylinder
- ¥ PtrDCA*[VID].PhysParameters.Head

- ¥ PtrDCA*~[VID].PhysParameters.Sector)
- - PtrDCA*[VID].PhysParameters.BootSize

Parameters:
VID - VolID

PhyParameters in DCB

- Cylinder (Number of Cylinder on Disk.)
- Head (Number of Tracks per Cylinder.)

- Sector (Number of Sectors per Track.)

- BootSize (Number of Sectors for Boot.)

- 302 -

POS Operating System - Module VolumeSystem January i5, 1984

Results:
VolNumberPages - VolBlockNumber (Long)
Errors:

- NoSuchVol

Procedure VolIO(VA : VolAddress;

Ptr : PtrVolBuffer;
HPtr : PtrVolHeaderBuffer;
VolCommand : VollOCommand) ;

Abstract:

This routine is used by the File System to perform Disk I0. It
calls DoVolIO with a retry count of 1S.

Parameters:
VA - VolAddress
Ptr - PtrVolBuffer
HPtr - PtrVolHeaderBuffer
VolCommand - VolIOCommand

Results: The Buffers are either Written onto the Disk, or Disk Data is
read into the Buffers.

Calls:
- DoVol 10
Errors:

- (See DoVollO.)

Function TryVolIO(VA : VolAddress;
Ptr : PtrVolBuffer;
HPtr : PtrVolHeaderBuffer;

VolCommand : VollOCommand;
NumTries : Integer) : Boolean;

Abstract:

This Function is used by the File System to perform Disk I0. It
calls DoVollO with a retry count of NumlIries.

Parameters:
VA - VolAddress
Ptr - PtrVolBuffer
HPtr - PtrVolHeaderBuffer
VolCommand - Vol I0Command
NumIries - Integer

- 303 -

POS Operating System - Module VolumeSystem January i5, 1984

Results:
TryVolIO - Boolean. Indicates whether or not transfer was

completed successfully.
- The Buffers are either Written onto the Disk, or Disk Data is
read into the Buffers.
Calls: DoVollIO
Errors: (See DoVollO.)
Function VolMount(PID : PhyDiskID) : VollD;
Abstract:

The Mount Procedure is used to create a DCB for a particular drive
and enter that DCB in the Disk Control Array. Returns the VID of
the DCA entry which was used to Mount the Disk.

Parameters:
PID - PhyDiskID
Results: VolMount - VolID
Calls: Mount
Errors: (See Mount.)
Procedure VolDisMount(PID : PhyDiskID);
Abstract:

Volume DisMount

The DisMount Procedure Disolves the DCB for a particular Drive
that was previously mounted, and frees up the Disk Control Array
entry which was allocated for that DCB.

Parameters:

PID - PhyDiskID
Results: DisMounts the Disk.
Calls: Dismount

Errors: (See DisMount.)

- 304 -

POS Operating System - Module VolumeSystem January 15, 1984

Procedure VolDiskReset(VID : VolID);

Abstract:

Used to Reset and Initialize the Disk Controller, Disk Drive and
Disk uCode. Drive is Recalibrated.

Parameters:

VID - VollID. Of Disk to be affected.
Results: Drive and Controller is reset and reclibrated.
Calls: UnitlO

Errors: NoSuchVol and VolIOFailure

POS Operating System - Module Writer , January i§, 1984

module Writer;

WVriter - Stream package output conversion routines.
J. P. Strait ca. | Jan 81.
Copyright (C) PERQ Systems Corporation, 198l.

Abstract:

Writer is the character output module of the Stream package. It
is called by code generated by the Pascal compiler in response to
a Write or Writeln. It is one level above Module Stream and uses
Stream’s output routines.

Version Number V2.2
exports
imports Stream from Stream;

procedure WriteBoolean(var F: FileType; X: Boolean; Field: integer);
procedure WriteCh(Var F: FileType; X: char; Field: integer);
procedure WriteChArray(var F: FileType; var X: ChArray;

Max, Field: integer);
procedure Writeldentifier(var F: FileType; X: integer;

var IT: IdentTable; L, Field: integer);

procedure Writelnteger(var F: FileType; X: integer; Field: integer);
procedure WriteString(var F: FileType; var X: String; Field: integer);
procedure WriteX(var F: FileType; X, Field, B: integer);

procedure- WriteBoolean(var F: FileType; X: Boolean; Field: integer);
Abstract:
Writes a boolean in fixed format.
Parameters:
X - the boolean to be written.
F - the file into which X is to be written.
Field - the size of the field into which X is to be written.
procedure WriteCh(var F: FileType; X: char; Field: integer);
Abstract:
Writes a character in a fixed format.
Parameters:
X - the character to be written.

F - the file into which X is to be written.
Field - the size of the field into which X is to be written.

POS Operating System - Module Writer , January {5, 1984
procedure WriteChArray(var F: FileType; var X: ChArray;
Max, Field: integer);
Abstract:
Writes a packed character array in fixed format.
Parameters:
X - the character array to be written.
F - the file into which X is to be written.
Field - the size of the field into which X is to be written.
Max - the declared length of X.

procedure Writeldentifier(var F: FileType; X: integer;
var IT: IdentTable; L, Field: integer);

Abstract:

Writes an identifier from a table in fixed format.
Parameters:

X - the ordinal of the identifier in the range O to L.

F - the file to which X is written.

IT - the table of identifier names indexed from O to L.

L - the largest identifier ordinal defined by the table.

Field - the size of the field into which X is written.
Errors: BadldTable if the length of identifier table is less than 1.

procedure Writelnteger(var F: FileType; X: integer; Field: integer);

Abstract:

Writes a decimal integer in fixed format.
Parameters:

X - the integer to be written.

F - the file into which X is to be written.

Field -_the size of the field into which X is to be written.

procedure WriteString(var F: FileType; var X: String; Field: integer);

Abstract:

Writes a string in fixed format.
Parameters:

X - the string to be written.

F - the file into which X is written.
Field - the size of the field into which X is written.

- 307 -

POS Operating System - Module Writer January 15, {984

procedure WriteX(var F: FileType; X, Field, B: integer);

Abstract:
Writes an integer in fixed format with base B.

Parameters:
X - the integer to be written.
F - the file into which X is to be written.
Field - the size of the field into which X is to be written.
B - the base of X. It is an integer whose absolute value must be

between 2 and 36, inclusive.

Errors: BadBase if the base is not in 2..36.

- 308 -

POS Operating System - Index January iS5, 1984

98 Abort [Module Except]

217 AbortOnKey [Module PopUp]

286 AddUser [Module UserPass]

203 Adjust [Module PERQ_String]
7 AllocDisk [Module AllocDisk]

219 AllocNameDesc [Module PopUp 1

206 AppendChar [Module PERQ_String]

205 AppendString [Module PERQ_String 1]

- 245 ArcCos [Module RealFunctions]

240 ArcCoslarge [Module RealFunctions]

245 ArcSin [Module RealFunctions]

240 ArcSinLarge [Module RealFunctions]

246 ArcTan [Module RealFunctions 1

246 ArcTan2 [Module RealFunctions]

240 ArcTan2Zero [Module RealFunctions]
1 BadAlignment [Module AlignMemory]

274 BadBase [Module Stream)

248 BadBaudRate [Module RS232Baud]

272 BadldTable [Module Stream]

188 BadIncrement [Module Memory]

101 BadLength [Module FileAccess)

188 BadMaximum [Module Memory]

216 BadMenu [Module PopUp 1

15 BadMobility [Module BigArea]
5 BadPart [Module AllocDisk)

209 BadPatterns [Module PMatch 1

190 BadPointer [Module Memory 1]

248 BadRSDevice [Module RS232Baud]

188 BadSize [Module Memory]

19 BadTime [Module Clock]

BadWNum [Module Screen)

BufferPointer [Module ReadDisk]
CantMoveSegment [Module Memory]

CCos [Module ComplexFunctions]
CCosImLarge [Module ComplexFunctions]
CCosReLarge [Module ComplexFunctions]
CExp [Module ComplexFunctions]
CExplmLarge [Module ComplexFunctions]
CExplmSmall [Module ComplexFunctions]
CExpReLarge [Module ComplexFunctions]
CExpReSmall [Module ComplexFunctions]
Cf_Init [Module Configuration]
ChangeDisk [Module ReadDisk]
ChangeHeader [Module ReadDisk 1
ChangeSize [Module Memory]
ChangeTitle [Module Screen]
ChangeWindow [Module Screen)

Chghdr [Module ReadDisk]
CleanUpMemory [Module Memory]
Clk_Initialize [Module I0Clock]
Clk_Interrupt [Module I0Clock 1

"Clk_UnitIO [Module I0Clock)

CLn [Module ComplexFunctions]

CLnSmal 1 [Module ComplexFunctions]
CMult [Module ComplexFunctions]
CnvUpper [Module CmdParse 1

T T Lot CIN] XN IRIRIRPRORINIRL -1

- 309 -

POS Operating System - Index January 15, 1984

191 CodeOrDataSeg [Module Memory]
284 Command [Program System]
293 Compact [Module Virtual]
289 ComputeProgress [Module UtilProgress]
204 Concat [Module PERQ_String]
16 ConsecutiveSegments [Module BigArea]
206 ConvUpper [Module PERQ_String]
244 Cos [Module RealFunctions]
247 CosH [Module RealFunctions]
241 CosHLarge [Module RealFunctions]
239 CosLarge [Module RealFunctions]
245 CoTan [Module RealFunctions]
40 CPowerC [Module ComplexFunctions]
40 CPowerR [Module ComplexFunctions)
38 CPowerZero [Module ComplexFunctions]
16 CreateBigArea [Module BigArea]
17 CreateContiguousArea [Module BigArea]
81 CreateHeap [Module Dynamic]
192 CreateSegment [Module Memory)
102 CreateSpiceSegment [Module FileAccess]
260 CreateWindow [Module Screen]
39 CSin [Module ComplexFunctions]
37 CSinlmLarge [Module ComplexFunctions 1
37 CSinRelLarge [Module ComplexFunctions]
39 CSqrt [Module ComplexFunctions)
282 CtlC [Program System]
282 CtlCAbort [Program System)
282 CtIShftC [Program System]
196 CurrentSegment [Module Memory]
256 CursOutSide [Module Screen)
191 DataSeg [Module Memory 1
13 DblEql [Module Arith]
14 DblGeq [Module Arith]
14 DblGtr [Module Arith]
14 DblLeq [Module Arith]
14 Dblles [Module Arith 1]
13 DblNeq [Module Arith 1]
9 DeallocChain [Module AllocDisk]
8 DeallocDisk [Module AllocDisk]
17 DecBigAreaRef [Module BigArea)
18 DecContiguousAreaRef [Module BigArea]
294 DeclOCount [Module Virtual]
193 DecRefCount [Module Memory]
117 DelError [Module FileUtils 1]
205 Delete [Module PERQ String 1]
106 DeleteFileID [Module FileDir)
292 DeleteSegment [Module Virtual 1
220 DestroyCurs [Module PopUpCurs]
81 DestroyHeap [Module Dynamic)
217 DestroyNameDesc [Module PopUp]
218 DestroyRes [Module .PopUp]
102 DestroySpiceSegment [Module FileAccess)
6 DeviceDismount [Module AllocDisk)
5 DeviceMount [Module AllocDisk)
176 Devinterrupt [Module IO _Unit 1
195 DisableSwapping [Module Memory 1

- 310 -

POS Operating System - Index January i5, 1984

DismountPartition [Module AllocDisk)
DisplayPartitions [Module AllocDisk 1
DisposeP [Module Dynamic]
DivZero [Module Except]
DoCmdFile [Module CmdParse]
DoSwap [Module DoSwap]
DoubleAbs [Module Arith]
DoubleAdd [Module Arith]
DoubleBetween [Module Arith]
DoubleDiv [Module Arith]
DoubleInt [Module Arith]
DoubleMod [Module Arith]
DoubleMul [Module Arith]
DoubleNeg [Module Arith)
DoubleSub [Module Arith]
DstryArgRec [Module CmdParse)
DstryCmdFiles [Module CmdParse)
DstrySwitchRec [Module CmdParse)
Dump [Module Except]
E10BadCommand [Module Ether10IO]
E10ByteCount [Module EtheriQIO]
ElQDataBytes [Module Ether10I0]
E10DByteError [Module Etherl10IO0)
E10GetAdr [Module Ether!0IO]
E10Init [Module Ether!10IO]
E10I0 [Module Ether!0I0]
EIONInited [Module Ether!0IO]
E1ONoHardware [Module Etherl0IO 1]
E10NReset [Module Ether!0IO0 1]
E1OReceiveDone [Module Ether!0I0 1]
E10Reset [Module Ether!0IO0]
E10Srv [Module EtherlInterrupt]
E10State [Module Ether10I0)
E10STooMany [Module Ether!0I0]
E10TooMany [Module Ether10IO0]
E10Wait [Module Ether10IO]
E1OWIO [Module Ether!10IO]
EdgeFailure [Module Memory 1
EnableSwapping [Module Memory 1
EStack [Module Except 1
ExitAllCmdFiles [Module CmdParse]
ExitCmdFile [Module CmdParse]
ExitProgram [Program System]
242 Exp [Module RealFunctions]
237 ExplLarge [Module RealFunctions]}
238 ExpSmall [Module RealFunctions]
109 FilelDtoSegID [Module FileSystem)
196 FindCodeSegment [Module Memory]
231 FindDiskBuffer [Module ReadDisk]
293 FindHole [Module Virtual 1

6 FindPartition [Module AllocDisk 1}
286 FindUser [Module UserPass]
110 FixFilename [Module FileSystem]
46 Floatlong [Module Convert]
141 FLP_Initialize} [Module I0Floppy !
141 FLP_Interrupt [Module IOFloppy 1

IBRBow

—
P fune

SR B8 B8R BR BN B BB YER YRR RN

3

- 311 -

POS Operating System - Index

231 FlushAll [Module ReadDisk)
231 FlushBuffer [Module ReadDisk)
230 FlushDisk [Module ReadDisk]
228 FlushFail [Module ReadDisk]

122 FSAddToTitleLine [Module FileUtils]

108 FSBadName [Module FileSystem]
114 FSBlkRead [Module FileSystem]
114 FSBlkWrite [Module FileSystenm]
113 FSClose [Module FileSystem]
119 FSDelete [Module FileUtils 1
109 FSDirClose [Module FileSystem]
110 FSDismount [Module FileSystem]
113 FSEnter [Module FileSystem]
123 FSExtSearch [Module FileUtils]
122 FSGetFSData [Module FileUtils 1
111 FSGetPrefix [Module FileSystem]
109 FSInit [Module FileSystem]

{11 FSInternalLookUp: [Module FileSystem 1]

114 FSIsFSDev [Module FileSystem]
111 FSLocalLookUp: [Module FileSystem]
112 FSLookUp [Module FileSystem]

121 FSMakeDirectory [Module FileUtils]

110 FSMount [Module FileSystenm]
108 FSNotFnd [Module FileSystem)

121 FSPopSearchltem [Module FileUtils]
122 FSPushSearchItem [Module FileUtils 1]

123 FSRemoveDots [Module FileUtils 1
120 FSRename [Module FileUtils]

120 FSScan [Module FileUtils]

112 FSSearch [Module FileSystem 1]
122 FSSetFSData [Module FileUtils]
110 FSSetPrefix [Module FileSystem)

121 FSSetSearchList [Module FileUtils]

114 FSSetupSystem [Module FileSystem]
125 FTPAddRequest [Module FTPUtils]
127 FTPChkDev [Module FTPUtils]

126 FTPGetFile [Module FTPUtils]
126 FTPInit [Module FTPUtils]

126 FTPPutFile [Module FTPUtils]
125 FTPQuitNet [Module FTPUtils 1

127 FTPSetMyAddr [Module FTPUtils)
278 Fullln [Module Stream]

189 FullMemory [Module Memory]

190 FullSegment [Module Memory]

276 GetB [Module Stream]

276 GetC [Module Stream] :
213 GetCmdLine [Module PopCmdParse]
214 GetConfirm [Module PopCmdParse]
105 GetDisk [Module FileDir 1}

96 GetEtherTime [Module EtherTime]
105 GetFileID [Module FileDir]

261 GetFont - [Module Screen]

299 GetIntDiskKind [Module VolumeSystem]

21 GetPERQ2GMT [Module Clock 1
2] GetPERQ2Local [Module Clock 1

213 GetShellCmdLine [Module PopCmdParse 1

- 312 -

January iS5, 1984

POS Operating System - Index January i5, 1984

31 GetSymbol [Module CmdParse]

128 GetTStamp [Module GetTimeStamp)
20 GetTString [Module Clock 1]

261 GetWindowParms [Module Screen]

134 GiveHelp [Module Helper]

132 gpAuxCommand [Module gpib)

143 GPB_GetStatus [Module IOGPIB]
143 GPB_Initialize [Module IOGPIB]
143 GPB_Interrupt [Module IOGPIB]
143 GPB_ReadChar [Module IOGPIB]
143 GPB_UnitI0 [Module IOGPIB]

143 GPB_WriteChar [Module IOGPIB 1
133 gpCleanup [Module gpib 1]

133 gpFlushBuffer [Module gpib 1]

131 GPIBerror [Module gpib]

132 gplnit [Module gpib]

133 gplTalkHeListens [Module gpib]
132 gpPutByte [Module gpib]

19 GTSNotPERQ2 [Module Clock]

20 GISNoZ80 [Module Clock]

283 HardCopy [Program System]

232 HeaderPointer [Module ReadDisk 1
283 HelpKey [Program System]

273 1dNotDefined [Module Stream]
273 IdNotUnique [Module Stream)
293 InclOCount [Module Virtual]

193 IncRefCount [Module Memory 1
102 Index [Module FileAccess)

5 InitAlloc [Module AllocDisk]
231 InitBuffers [Module ReadDisk]

24 InitCmdFile [Module CmdParse]
220 InitCurs [Module PopUpCurs]

98 InitExceptions [Module Except]
221 InitFooter [Module PopUpCurs]
156 InitI0 [Module IO_Init)

191 InitMemory [Module Memory]

217 InitPopUp [Module PopUp]

226 InitRandom [Module RandomNumbers]

278 InitStream [Module Stream]

299 InitVolumeSystem [Module VolumeSystem)
205 Insert [Module PERQ_String !

13 IntDouble [Module Arith]

225 IntegerSort [Module QuickSort]
208 IntToStr [Module PERQ_String]

98 InxCase [Module Except]

179 10Beep [Module I0_Unit]

178 10Busy [Module 10_Unit]

162 10ChooseTablet [Module I0_Others]
180 IOClearExceptions [Module IO_Unit]
180 I0CPresent [Module I0_Unit]

177 10CRead [Module 10_Unit]

179 I10CRNext [Module I0_Unit 1

158 I0CursorMode [Module I0_Others]
177 10CWrite [Module I0_Unit]

138 IOErrString [Module IOErrMessages 1
178 10GetStatus [Module I10_Unit 1

- 313 -

POS Operating System - Index January iS5, 1984

161 10GetTime [Module I0_Others]
161 I0KeyClear [Module IO _Others]
161 10KeyDisable [Module I0_Others]
161 10KeyEnable [Module 10 _Others]
189 I0LoadCursor [Module 10 _Others]
178 IOPutStatus [Module 10 Unit)
1589 10ReadCursPicture [Module 10 Others 1
160 I0ReadTablet [Module 10_Others]
160 10ScreenSize [Module I0_Others)
162 10SetBitPadUpdateTimeOut [Module 10 _Others)
160 10SetCursorPos [Module IO _Others]
180 I0SetExceptions [Module IO _Unit]
1589 10SetFunction [Module 10 Others]
1589 10SetModeTablet [Module 10 _Others]
162 10SetRealRelTablet [Module 10_Others]
160 10SetTabPos [Module 10_Others]
98 I0SFlt [Module Except]
178 10Wait [Module I0_Unit }
210 IsPattern [Module PMatch]
45 JumpControlStore [Module ControlStore]
293 KeepSegments [Module Virtual]
146 Key Clear [Module I0Keyboard)
146 Key Disable [Module I0Keyboard]
146 Key Enable [Module IOKeyboard]
145 Key_Initialize [Module I0Keyboard]
145 Key_Interrupt [Module I10Keyboard]
145 Key_ReadChar [Module IOKeyboard]
145 Key_TLate [Module I0Keyboard 1
273 LargeNumber [Module Stream]
274 LargeReal [Module Stream)
302 LastVolAddress [Module VolumeSystem)
262 Line [Module Screen]
287 ListUsers [Module UserPass]
242 Ln [Module RealFunctions]
182 Load [Module Loader]
288 LoadBusy [Module UtilProgress 1
44 LoadControlStore [Module ControlStore]
288 LoadCurs [Module UtilProgress]
45 LoadMicrolnstruction [Module ControlStore]
242 Logl0 [Module RealFunctions]
238 LogSmall [Module RealFunctions]
291 MakeEdge [Module Virtual)
195 MarkMemory [Module Memory]
218 Menu [Module PopUp 1]
118 MKDirErr [Module FileUtils 1]
6 MountPartition [Module AllocDisk 1]
98 MParity [Module Except] -
98 MulOvfl [Module Except]
197 MultiRead [Module MultiRead]
1 NewBuffer [Module AlignMemory 1
258 NewLine [Module Screen]
80 NewP [Module Dynamic 1]
291 NewSegmentNumber [Module Virtual 1
287 NewUserFile [Module UserPass)
26 NextID [Module CmdParse]
27 NextIDString [Module CmdParse)

- 314 -

POS Operating System - Index January 15, 1934

27 NextString [Module CmdParse]
190 NilPointer [Module Memory)
3 NoFreePartitions [Module AllocDisk]
190 NoFreeSegments [Module Memory]
298 NoSuchDevice [Module VolumeSystem]
298 NoSuchNameForVol [Module VolumeSystem 1}
298 NoSuchVol [Module VolumeSystem)
101 NotAFile [Module FileAccess]
80 NotAHeap [Module Dynamic]
272 NotBoolean [Module Stream)
188 NotDataSegment [Module Memory]
272 Notldentifier [Module Stream)
273 NotNumber [Module Stream)
270 NotOpen [Module Stream]
274 NotReal [Module Stream)
271 NotReset [Module Stream]
271 NotRewrite [Module Stream)
270 NotTextFile [Module Stream]
212 NullldleProc [Module PopCmdParse]
301 OnVolToVolAddr [Module VolumeSystem]
216 Outside [Module PopUp 1
98 OverReal [Module Except)
98 OvfILI [Module Except)
208 Pad [Module PERQ_String]
28 ParseCmdArgs [Module CmdParse]
29 ParseStringArgs [Module CmdParse]
S5 PartFull [Module AllocDisk]
189 PartNotMounted [Module Memory]
271 PastEof [Module Stream)
209 PattDebug [Module PMatch)
210 PattMap [Module PMatch)
210 PattMatch [Module PMatch)
223 PFileEntry [Module Profile)
223 PFilelnit [Module Profile)
301 PhyIDToVolID [Module VolumeSystem)
222 PNotFound [Module Profile]
222 PNotInited [Module Profile]
94 PopDCB [Module EtherInterrupt]
216 PopKeyHit [Module PopUp 1
212 PopUniqueCmdIndex [Module PopCmdParse]
207 Pos [Module PERQ String)
206 PosC [Module PERQ_String]
243 Power [Module RealFunctions]
239 PowerBig [Module RealFunctions 1
243 Powerl [Module RealFunctions 1]
238 PowerNeg [Module RealFunctions]
239 PowerSmall [Module RealFunctions)
238 PowerZero [Module RealFunctions 1
277 PReadln [Module Stream]
207 PrependChar [Module PERQ_String)
148 Ptr_GetStatus [Module IOPointDev]
147 Ptr_Initialize [Module IOPointDev)
147 Ptr_Interrupt [Module IOPointDev]
148 Ptr_PutStatus [Module IOPointDev)
148 Ptr_Unitl0 [Module IOPointDev]
94 PushDCB [Module EtherInterrupt]

- 315 -

POS Operating System - Index January 15, (984

276 PutB [Module Stream]
277 PutC [Module Stream)
106 PutFilelD [Module FileDir]
21 PutPERQ20ffset [Module Clock)
277 P¥riteln [Module Stream]
288 QuitProgress [Module UtilProgress]
46 R2LOvrFlow [Module Convert 1
99 RaiseP [Module Except 1
226 Random [Module RandomNumbers]
229 ReadAhead [Module ReadDisk)
233 ReadBoolean [Module Reader 1
233 ReadCh [Module Reader]
234 ReadChArray [Module Reader 1
198 ReadD [Module PasLong]
229 ReadDisk [Module ReadDisk]
229 ReadHeader [Module ReadDisk 1
234 Readldentifier [Module Reader 1}
234 ReadInteger [Module Reader]
200 ReadR [Module PasReal]
250 ReadRunFile [Module RunRead]
251 ReadSegNames [Module RunRead]
103 ReadSpiceSegment [Module FileAccess)
235 ReadString [Module Reader)
235 ReadX [Module Reader]
98 Real2Int [Module Except]
98 RealDiv0 [Module Except]
274 RealWriteError [Module Stream)
260 RefreshWindow [Module Screen)
156 RelnitDevices [Module 10_Init)
231 ReleaseBuffer [Module ReadDisk]
291 ReleaseSegmentNumber [Module Virtual]
31 RemDelimiters [Module CmdParse]
28 RemoveQuotes [Module CmdParse]
287 RemoveUser [Module UserPass)
119 RenDir [Module FileUtils]
117 RenError [Module FileUtils]
119 RenToExist [Module FileUtils]
270 ResetError [Module Stream]
291 ReturnSegment [Module Virtual]
207 RevPosC [Module PERQ_String]
270 RewriteError [Module Stream]
47 RoundLong [Module Convert]
151 RSA_Interrupt [Module IORS]
151 RSB_Interrupt [Module IORS]
149 RS Initialize [Module IORS 1
150 RS PutStatus [Module IORS]
180 RS ReadChar [Module IORS)
151 RS Unitl0 [Module IORS]
150 RS WriteChar [Module IORS]
258 SavelineEnd [Module Screen)
259 SBackSpace [Module Screen]
258 SChrFunc [Module Screen)
259 SClearChar [Module Screen 1}
262 Screenlnit [Module Screen 1
261 ScreenReset [Module Screen]
263 Scrounge [Module Scrounge]

- 316 -

POS Operating System - Index January 15, 1984

257 SCurChr [Module Screen]
257 SCurOff [Module Screen]
257 SCurOn [Module Screen]

109 SeglDtoFileID [Module FileSystem]

80 SegTooBigForNew [Module Dynamic]
125 SendStopVax [Module FTPUtils]
248 SetBaud [Module RS232Baud 1
220 SetCurs [Module PopUpCurs]

284 SetDDS [Program System]
261 SetFont [Module Screen)

194 SetHeap [Module Memory]

194 Setlncrement [Module Memory]

195 SetKind [Module Memory]

194 SetMaximum [Module Memory]

193 SetMobility [Module Memory]

248 SetRS232Port [Module RS232Baud]

20 SetTStamp [Module Clock)

20 SetTString [Module Clock 1
260 SFullWindow [Module Screen]

288 ShowProgress [Module UtilProgress 1
266 Sid [Module Sid]

266 SidDevice [Module Sid]

266 SidExplain [Module Sid]

264 SidFail [Module Sid]

244 Sin [Module RealFunctions]

246 SinH [Module RealFunctions]

24! SinHLarge [Module RealFunctions)
239 SinLarge [Module RealFunctions)
273 SmallReal [Module Stream) :

18 SortSeglist [Module BigArea]

151 Spc_Interrupt [Module IORS 1
259 SPutChr [Module Screen)
241 Sgrt [Module RealFunctions]
237 SqgrtNeg [Module RealFunctions]
118 SrchErr [Module FileUtils]
‘118 SrchWarn [Module FileUtils]
257 SReadCursor [Module Screen)
257 SSetCursor [Module Screen)
258 SSetSize [Module Screen)

20 StampToString [Module Clock]
256 StartLine [Module Screen]

278 StartTranscript [Module Stream]

30 StdError [Module CmdParse)

98 STLATETooDeep [Module Except |
279 StopTranscript [Module Stream)
203 StrBadParm [Module PERQ_String]
275 StreamClose [Module Stream)

275 StreamInit [Module Stream]
277 StreamKeyBoardReset [Module Stream]
278 StreamName [Module Stream]
275 StreamOpen [Module Stream]
289 StreamProgress [Module UtilProgress]

98 Strindx [Module Except]

225 StringSort [Module QuickSort)

21 StringToStamp [Module Clock]

98 Strlong [Module Except 1

- 317 -

POS Operating System - Index January 15, 1984

204 SubStr [Module PERQ_String]
262 SvarLine [Module Screen]
190 SwapError [Module Memory |
292 SwapIn [Module Virtual
189 SwaplnFailure [Module Memory]
292 SwapOut [Module Virtual 1
294 SwapSegmentsIn [Module Virtual]
284 SysVers [Program System]
244 Tan [Module.RealFunctions]
247 TanH [Module RealFunctions]
240 TanLarge [Module RealFunctions]
183 TekLoad [Module LoadZ80]
271 TimeOutError [Module Stream]
256 - ToggleCursor [Module Screen 1}
279 TransChar [Module Stream]
275 TransError [Module Stream]
102 TruncateSpiceSegment [Module FileAccess]
47 Trunclong [Module Convert]
303 TryVollO0 [Module VolumeSystem 1]
98 UndeReal [Module Except]
272 UndfDevice [Module Stream)
98 UndfInt [Module Except]
98 UndfQcd [Module Except 1
98 UnimplQCodes [Module Except]
30 UniqueCmdIndex [Module CmdParse]
179 UnitIO [Module I0_Unit]
271 UnitlCError [Module Stream)
187 UnusedSegment [Module Memory]
208 Upper [Module PERQ_String]
206 UpperCase [Module PERQ String]
232 UseBuffer [Module ReadDisk 1
286 ValidUsere [Module UserPass]
298 VBNOutOfRange [Module VolumeSystem]
152 Vid_Initialize [Module IOVideo]
1583 Vid_Interrupt [Module I0Video]
183 Vid_SetUpUDevTab [Module IOVideo]
299 VMountErr [Module VolumeSystem]
299 VolDiskError [Module VolumeSystem]
305 VolDiskReset [Module VolumeSystem]
304 VolDisMount [Module VolumeSystem]
298 VolErrinc [Module VolumeSystem]
299 VolIDLookUp [Module VolumeSystem]
301 VolIDToPhyID [Module VolumeSystem]
303 VolIO [Module VolumeSystem)
299 VollIOFailure [Module VolumeSystem]
304 VolMount [Module VolumeSystem)
300 VolNameLookUp [Module VolumeSystem]
302 VolNumberPages [Module VolumeSystem 1]
300 VolToOnVolAddr [Module VolumeSystem]
256 WBadSize} [Module Screen]
44 VWCSSizeError [Module ControlStore 1
8 WhichPartition [Module AllocDisk]
306 WriteBoolean [Module Writer]
306 WriteCh [Module Writer]
307 WriteChArray [Module Writer]
198 VWriteD [Module PasLong]

- 318 -

POS Operating System - Index January 15, [984

230 WriteDisk [Module ReadDisk 1}

230 WriteHeader [Module ReadDisk)

307 Writeldentifier [Module Writer]

307 Writelnteger [Module Writer]

202 WwriteR [Module PasReal]

252 WriteRunFile [Module RunWrite 1]

103 WriteSpiceSegment [Module FileAccess]
307 WriteString [Module Writer]

308 WriteX [Module Writer 1

256 WTooBig [Module Screen]

98 XSegmentFault [Module Except]

98 XStackOverflow [Module Except]

154 780 _Initialize [Module 10Z80]

154 Z80_Interrupt [Module 10Z80 1

154 Z80_UnitIO0 [Module 10Z80]

169 Z_CriticalSection [Module I0_Private]
169 Z_DqSysMsg [Module IO_Private]

169 Z_QSysMsg [Module I10_Private]

168 Z_SendMsg [Module IO _Private 1

- 319 -

POS Operating System - Exported Types, Var., & Constants January 15, i984

Index of Exported Types, Variables, and Constants

Name: Attribute: Location:
AlignedBuffer TYPE Module AlignMemory 1
AlignedPointer TYPE Module AlignMemory 1
ArgRec TYPE Module CmdParse)
Attention VAR Module 10 Private)
BadFile CONST Module FileTypes 1
BigStr TYPE Module 10_Unit)
BinaryFile CONST Module FileTypes]
BinFile CONST Module FileTypes 1
BitPadTimeOut TYPEP Module 10_Others 1
BitSize: integer; CharFile VAR Module Stream]
BlamCh CONST Module I0Keyboard]
BlkInFile VAR Module FileSystenm]
BlkNumbers TYPE Module FileSystem]
BlksInFile VAR Module FileUtils 1]
BlksPerFile CONST Module FileSystem]
block VAR Module DiskIO 1
BlockAddress VAR Module Virtual]
BlockHeader VAR Module Virtual 1

BlocksForLandscapeScreen CONST
BlocksForPortraitScreen CONST

Module Memory]
Module Memory]

(
{
[
[
[
[
[
[
|
|
[
[
[
[
[
[
[
[
[
[
[
[
[
{
BootFileld VAR { Module Memory]
[
[
[
[
[
(
{
{
(
(
[
[
[
[
[
[
[
(
[
[
[
[
[

BlockSId VAR Module Virtual)
BlocksInHalfMeg CONST Module Memory)
BlocksInMeg CONST Module Memory]
BlocksInQuarterMeg CONST Module Memory)
BootedMemoryInBlocks CONST Module Memory 1
BootLength CONST Module FileSystenm |
BootSegld VAR Module Virtual)
BootSerialNum VAR Module Virtual]
BotComplemented VAR Module I0Video 1
BotCursF VAR Module I0Video 1
BrkChar VAR Module CmdParse)
BrkChar VAR Module CmdParse]
BufPtr VAR Module DiskDef]
ByteCnt VAR Module IOGPIB]
BytelIntRecord TYPE Module FTPUtils']
ByteType CONST Module FTPUtils]
cardinal TYPE Module VolumeSystem]
CBufPtr TYPE Module I0 Unit)
CBufr TYPE Module I0_Unit]

CCR CONST Module CmdParse]
CCursMode VAR Module I0Video 1
Cf_BootChar VAR Module Configuration]
Cf_BootUnit VAR Module Configuration]
Cf_FloatingHardware VAR Module Configuration)
Cf_10Board VAR Module Configuration 1]
Cf_I10BoardType TYPE Module Configuration]
Cf_KeyboardStyle VAR Module Configuration]
Cf_KeyPad VAR Module Configuration]
Cf_Monitor VAR Module Configuration]

- 320 -

POS Operating System - Exported Types, Var., & Constants January 5, (984

Cf_MonitorType TYPE [Module Configuration]
Cf_RS232MaxSpeed VAR [Module Configuration]
Cf_RS232Ports VAR [Module Configuration]
Cf_WCSSize VAR [Module Configuration]}
CharFile VAR [Module Stream]
ChArray TYPE [Module Stream]
ClmpInfo TYPE [Module Code]
CirBufltem TYPE [Module 10_Private 1
CirBufPtr TYPE [Module I0_Private)
CirBufSize CONST [Module 10_Private]
CircularBuffer TYPE [Module 10_Private]
Clock CONST [Module 10_Unit]
ClockStat TYPE [Module 10_Unit 1
ClockVersion CONST [Module Clock 1
CmdArray TYPE [Module CmdParse]
CmndChar CONST [Module CmdParse]
CmdFi leChar CONST [Module CmdParse 1
CmdListRec TYPE [Module CmdParse]
CmdPVersion CONST [Module CndParse 1]
CmdSegment VAR [Program System]
CodeVersion CONST [Module Code)
ComFile CONST [Module FileTypes 1
CommentLen CONST [Module Code]
Complex TYPE [Module ComplexFunctions)
ControlChar TYPE [Module Stream]
CString TYPE [Module CmdParse 1
CtriC CONST [Module 10Keyboard]
CtrlCPending VAR [Program System]
CtrlQ CONST [Module 10Keyboard]
CtrlS CONST [Module I10Keyboard]
CurGroupID VAR [Program System]
CurPatPtr TYPE [Module I0_Others]
CurPFile VAR [Program System]
CurRFileName VAR [Program System]
CursF VAR [Module I0Video]
CursFunction TYPE [Module 10_Others]
CursMode TYPE [Module 10 Others]
Cursor VAR [Module I0Video]
CursorFile CONST [Module FileTypes]
CursorPattern TYPE [Module I0_Others 1
CursorSeg CONST [Module Memory]
CursorX VAR [Module I0Video]
CursorY VAR [Module IOVideo]
CursType TYPE [Module PopUpCurs]
CurUserID VAR [Program System]
CurUserName VAR [Program System]
Cur¥ind VAR [Module Screen]
CurVWindp VAR [Module Screen]
Cyl TYPE [Module DiskDef)
Cylinder-Head-Sector VAR { Module DiskIO]
DataAvailable VAR [Module IO_Private]
DatFile CONST [Module FileTypes)
DirFile CONST [Module FileTypes 1
DBLINDSIZE CONST [Module DiskIO 1
DBLZERO CONST [Module FileDefs 1
DBpFT CONST [Module DiskDef]

- 32! -

POS Operating System - Exported Types, Var., & Constants January 15, 1984

DCBStatus TYPED { Module DiskDef]
DCBStack VAR [Module EtherInterrupt]
DDS VAR [Program Systenm]
DebugSystemInit CONST [Program System]
DefaultCursor VAR [Module 10_Others]
DefaultDeviceName VAR [Module FileDir)
DefaultPartitionName VAR [Module FileDir)
DefCursFunct VAR [Program System]
DefHeapSize CONST [Module Code]
DefIncHeap CONST [Module Code)
DefIncStack CONST [Module Code]
DefRealRelTablet VAR [Program System]
DefScrComp VAR [Program System]
DefScrOf f VAR [Program System]
DefStackSize CONST [Module Code]
DefTabletType VAR [Program System]
Demolnt VAR [Program System]
DeviceRecord TYPE [Module AllocDisk]
DeviceType TYPE [Module DiskIO]
DevStatusBlock TYPE [Module I0_Unit]
DevIblEntry TYPE [Module 10 _Private]
DevTypes TYPE { Module FTPUtils 1
Dev_AckReceived CONST [Module 10_Private]
Dev_Attention CONST { Module I0_Private]
Dev_DataAvailable CONST [Module I0_Private]
Dev_Micropolis CONST [Module 10 _Private)
Dev_NakReceived CONST [Module I0_Private]
Dev_ScreenUpdate CONST [Module I0_Private]
Dev_Shugart CONST [Module IO_Private]
Dev_SMD CONST [Module I0_Private]
Dev_StatReceived CONST [Module I0_Private]
Dev_Unused CONST [Module 10_Private]
DIBAddress CONST [Module DiskDef]
DIBlock TYPE [Module DiskDef]
DirBlk TYPE [Module FileSystem)
DIRECTSIZE CONST [Module DiskIO]
DirEntry TYPE { Module DiskIO]
DiskAddr TYPE [Module FileDefs]
DISKBITS CONST [Module DiskIO]
DiskBuffer TYPE [Module DiskIO]
DISKBUFSIZE CONST [Module FileDefs)
DiskCheatType TYPE [Module DiskIO]
DiskCommand TYPE [Module DiskIO]
DiskCtrlBlock TYPE [Module DiskDef 1]
DiskKinds TYPE [Module VolumeSystem]
DiskSegment VAR [Module DiskIO]
DiskTable VAR [Module AllocDisk)
DiskType TYPE [Module DiskDef]
Double TYPE [Module SystemDefs]
DoubleWord TYPE { Program System]
DskBlockSize CONST [Module DiskDef 1]
DskCmds TYPE [Module DiskDef]
DskCtrlArray TYPE [Module DiskDef 1
DskCyls CONST [Module DiskDef]
DskExHds CONST [Module DiskDef]
DskHds CONST [Module DiskDef]

-39 -

POS Operating System - Exported Types,

DskResult
DskSPC
DStatus
DumpCh

e
EBoardlO
EBoardOption
EIODisk
EIODskCtrlBlock
EIOFlag

EP Ethernet

EP GetChar

EP GetCircBuffer
EP HardDisk

EPF I0Start

EP PutCircBuffer
EP ReadCause
EP ReadTimer
EP SetEnableMask
EP_UcodeMsg
EP_Z80Msg
ErrCtiC
ErrCtiCAbort
ErrCt1ShftC
ErrExitProgram
ErrHelpKey
ErrorCnt
ErrorType
ErrStatus
Etherl0
Ether10MBaud
Ether3
Ether3MBaud
EtherAddress
EtherAdRec
EtherBuffer
EtherCommand
EtherDCB
EtherHeader

. EtherRegSave
EtherStatus
ExceptVersion
ExcSeg
ExDirFile
ExecuteTime
ExtFile
ExtUnitNumber
FastEType

FFS

FHeadPtr

FHpS

FIBlk

FIdS

Field

file system volume
FilelD

TYPE |

CONST
TYPE
CONST
VAR
CONST
CONST
CONST
TYPE
VAR
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
VAR
TYPE
TYPE
CONST
CONST
CONST
CONST
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
CONST
VAR
CONST
VAR
CONST
TYPE
CONST
CONST
VAR
CONST
CONST
CONST
VAR
CONST
TYPE

P P g e gy R P PR G N TR GUTN) (U famy ey PN PR (RSN g gRuR (R (RN (S Ry gy Py Gy Gy GrRY fRmy gy gy (R ey Ry (R Gy Gy R Emy gy gy gy g feeq (g gumy gmey gy (e guey Py gumy gy gy Pewy

Var., & Constants

Module IO _Unit]
Module DiskDef]
Module DiskDef]
Module I0Keyboard]
Module PasReal 1]
Module Etheri0IO)
Module Ether10I0)
Module 10_Unit 1
Module DiskDef]
Module DiskDef]
Module 10 Private
Module I0 Private
Module 10 Private
Module 10 _Private
Module I0 Private
Module 10 Private
Module 10 Private
Module 10 Private
Module 10 Private
Module 10 _Private
Module I0_Private
Program System)
Program System)
Program System]
Program System]
Program System]
Module DiskIO]
Module CmdParse)
Module FTPUtils)
Module I0_Unit)
Module SystemDefs]
Module IO_Unit]
Module SystemDefs]
Module Ether10I10)
Module Ether!0IO)
Module Ether!i0I0]
Module Ether10I0]
Module Ether!0I0]
Module Etheri0I0 }
Module Etheri0IO)
Module Ether!0I0]
Module Except 1
Module Except)
Module FileTypes 1
Program System]
Module FileTypes 1

[A e e kS K N S =]

Module VolumeSystem

Module FTPUtils]
Module DiskDef]
Module DiskDef 1]
Module DiskDef)
Module FileSystem]
Module DiskDef]
Module Writer]

January 15, 1984

,

Module VolumeSystem]

Module FileSystem]

-323 -

POS Operating System - Exported Types,

FilelD;
FilelD;
FileKind
FileLength
FileName
FILESPERDIRBLK
FileType
FillerSemantics
FirstBlk
FirstDB
FirstDDS
FirstFC
FirstSeg
FirstSeg
FirstSystemSeg
FirstUserSeg
FirstUserSeg
FirstUserSeg
FirstWindp
FLOPBITS
FlopHdArray
FlopHeadPtr
Floppy
FLOPPYNUMBER
FlpUnitNumber
FNString

Font

FontFile
FontPtr
FontSeg
FootAr

footW

ForFile
format
FracDigits
FSBit16
FSBit32
FSBit8
FSDataEntry
FSDebug
FSDirPrefix
FSOpenType
FSpDB

FSpT
FSSysSearchList
FSVersion
FTPPacket
FudgeStack
GetTSVersion
gpacg
gpAuxi | i aryCommands
gpBuffer
gpBufMax
gpBufPtr
gpBufSize

gpByte

VAR
VAR
TYPE
CONST
VAR
CONST
TYPE
TYPE
CONST
CONST
CONST
CONST
CONST
VAR
VAR
CONST
VAR
VAR
VAR
CONST
TYPE
TYPE
CONST
CONST
TYPE
TYPE
TYPE
CONST
TYPE
CONST
TYPE

CONST
VAR
VAR

TYPE
TYPE
TYPE
TYPE
CONST
" VAR
TYPE

CONST

CONST
VAR

CONST

TYPE

CONST

CONST

CONST

TYPE
TYPE

CONST
VAR

CONST

TYPE

P PR PSR TN N ST P PR PR P P P P SR P R G P G S £ G (R P Py P P (G prey gy gy (e (e guey pemy pmmy gmmy fmeqy ey ey gmmy emy peeq (ey gy gy gue gy guey gy gy gy g gey gy ey

Var., & Constants

Module FileSystem]
Module FileSystem]
Module Stream)
Module Code 1
Module FileUtils 1]
Module DiskIO)
Module Stream)
Module DiskIO 1]
Module FileSystem]
Module DiskDef]
Program System]
Module DiskDef 1
Module RunWrite]
Module RunRead]
Module Memory)
Module RunWrite)
Module RunRead]
Module RunRead]
Module Screen]
Module DiskIO]
Module DiskDef 1]
Module DiskDef]
Module 10_Unit]
Module DiskIO]
Module VolumeSystem]
Module Code]
Module Screen]
Module FileTypes]
Module Screen |
Module Memory]
Module PopUpCurs 1
Module PopUpCurs]
Module FileTypes 1
Module PasReal]
Module PasReal]
Module FileDefs 1
Module FileDefs]
Module FileDefs]
Module FileDefs 1
Module FileSystem]
Module FileSystem]
Module FileDefs)
Module DiskDef]
Module DiskDef]
Module FileSystem]
Module FileSystem]
Module FTPUtils 1]
Module Code)
Module GetTimeStamp]
Module gpib 1]
Module gpib]
Module gpib 1
Module gpib]
Module gpib 1
Module gpib]
Module gpib 1

- 324 -

January 15, 1984

POS Operating System - Exported Types, Var., & Constants January 15, 1984

gpCommandBuf fer
gpCommandBuf fer

gpdcl

gpDeviceAddress

gpget
gpgtl

gpHaveAuxil i aryCommands
gpllaveDataBytes

GPIBIntMask

GPIBpadConnected

GPIBStat
GPIBTabBuf

GPIBTabletState

GpibVersion
GPIBxFudge
GPIByFudge
gplag
gpllo

gpmla

gpmsa
gpmta

gpParmType
gppBuffer
8PPPC
gpppd
gpppe
gPPpU
gpRange
gpscg
gpsdc
gpspd
gpspe
gptag
gptct
gpuag
gpunl
gpunt

HardDisk
HARDNUMBER
HdPtr
HdPtr
HdrPtr
Header
Header
HisAddr
HisName
HiVolBlock
Identifier
IdentLength
IdentTable

IDType
ImpNode

in
IncludeFile
InCmdFile
indep

VAR
VAR
CONST
TYPE
CONST
CONST
VAR
VAR
VAR
TYPEP
TYPE
VAR
VAR
CONST
CONST
CONST
OONST
CONST
CONST
CONST
CONST
TYPE
TYPE
CONST
CONST
CONST
CONST
TYPE
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST

VAR
VAR
VAR
TYPE
VAR
VAR
TYPE
TYPE
CONST
TYPE
TYPE
TYPE
VARW
CONST
VAR
TYPEP

Module gpib]
Module gpib]
Module gpib]
Module gpib]
Module gpib]
Module gpib]
Module gpib]
Module gpib 1
Module IOGPIB]
Module I0_Others]
Module 10_Unit 1)
Module IOGPIB]
Module IOGPIB 1
Module gpib 1]
Module IOGPIB]
Module IOGPIB)
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib
Module gpib 1
Module I0_Unit]
Module DiskIO)
Module IODisk]
Module I10_Unit)
Module DiskDef]
Module RunRead]
Module DiskIO]
Module FTPUtils]
Module FTPUtils]
Module 10_Private]
Module Stream)
Module Stream)
Module Stream)
Module UserPass 1
Module Code]
Module Screen 1
Module FileTypes]
Program System]
Module I0_Others 1

Py gy gy g pEmy g e gy gy PNy G ey peey gy GRS PRy P gReq pUAM gy gy (UM fEy (RN PEI) (I Ry N PR GUNY RN pany pumy G PRI PRI PNy PR TR TR PR SR SN N PR ST PR MY GRRR Y SR PSR PR SR N e
T S e e N e

- 325 -

POS Operating System - Exported Types, Var., & Constants January 5, {984

INDSIZE OONST [Module DiskIO]
Initialized VAR [Module DiskDef]
InPmd VAR [am System]
IntArray TYPE [Module QuickSort]
IntDiskKinds TYPE [Module VolumeSystem)
IntDiskType VAR [Module DiskDef 1
IntType VAR [Module I0_Unit 1
IntUnitNumber TYPE [Module VolumeSystem]
1024MByte VAR [Module 10_Unit)
I0Buffer TYPE [Module 10_Unit)
IOBufPtr TYPE [Module 10_Unit]
I10Commands TYPE [Module 10 _Unit]
IOEABN CONST [Module IOErrors]
I0EADR CONST [Module IOErrors]
I0EBAE CONST [Module IOErrors]
IOEBSE CONST [Module IOErrors 1
IOEBUN CONST [Module IOErrors]
IOECBF CONST [Module IOErrors)
I0ECDI CONST [Module IOErrors 1}
IOECMM CONST { Module IQErrors 1}
IOECOR CONST [Module IOErrors]
I0EDAC CONST [Module IOErrors]
JIOEDNI CONST [Module IOErrors]
IOEDNR CONST [Module IOErrors)
IOEDNW CONST [Module IOErrors 1
IOEDRS CONST [Module IOErrors]
ICEFirstError CONST [Module IOErrors)
ICEFirstError CONST [Module IOErrors)
IOEFLT CONST [Module IOErrors)
IOEFRS CONST [Module IOErrors]
ICEILC CONST [Module IOErrors 1}
IOEIOB CONST [Module IOErrors]
IOEIOC CONST [Module IOErrors]
IOELastError CONST [Module IQOErrors)
IOELHB CONST [Module IOErrors)
IOELHC CONST [Module IOErrors]
IOELHE CONST [Module IQErrors]
IOELHS CONST [Module IOErrors)
I0EMDA CONST [Module IOErrors]
IOEMHA CONST [Module IOErrors)
I0ENBD CONST [Module IOErrors]
IOENCD CONST { Module IOErrors]
IOENHP CONST [Module IOErrors)
IOENOC ' CONST [Module IOErrors)
IOEOVR CONST [Module IOErrors]
IOEPHC CONST [Module IOErrors |
IOEPTL CONST [Module IOErrors]
I0ERDI CONST [Module IOErrors]
IOESKE CONST [Module IOErrors 1}
IOESME CONST [Module IOErrors]
IOESNF , CONST [Module IOErrors 1}
IOESOR CONST [Module IOErrors)
I0ETO CONST [Module ICErrors 1}
IOETIM - CONST { Module IOErrors)
IOEUDE CONST [Module ICErrors 1
IOEUEF CONST [Module I1QErrors 1

- 326 -

POS Operating System - Exported Types,

IOEWRF
I0Header
I0HeadPtr
I0InProgress
10IntrTypes
I0PtrKludge
10Seg
10SegNum
I10SegSize
10SegSize
10SegSize
I0Start
I0StatPtr
I0Status
10Time
10_KeyStat
isFloppy
Keepl

Keep2
Keep3

Kee
Keyggard

KeyBuffer
KeyEnabled
KeyLength
KeyNext

Kludge

KrizInfo
KrizTabConnected
KrizTablet
KrizXFudge
KrizYfudge
KSetSLen

KTBuf
LandscapeBitHeight
LandscapeBitWidth
LandscapeWordWidth
Language
LastBlk
LastFileName
LastSeg

LastUnit

LibFile
LightCompiler
LightHeight
LightRecalibrate
LightScavenge
LightSpacing
LightSwap
LightUsed
LightWidth
LightY

line

LineStyle
LoaderVersion
LoadTime

CONST
TYPE
TYPE
VAR
TYPE
TYPE
CONST
VAR
CONST
CONST
CONST
CONST
TYPE
TYPE
VAR
TYPE
VAR
VAR
VAR
VAR
VAR
CONST
VAR
VAR
VAR
VAR
VAR
VAR
TYPEP
VAR
CONST
CONST
CONST
VAR
CONST
CONST
CONST
TYPE
CONST
VAR
VAR
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
VAR
TYPE
CONST

VAR

ey gy gy gy ey pEEy U G g guay gy g g gy e (R gEey Ry e (A e EIY () RNy GEIy) (e (R (A pEmy gy gy gy ey U REy U PR pURy (R U gy GREy (U FRE re SR SRV PRI Y PN IR R PR SRS AR

Var., & Constants

Module IOErrors 1
Module I0_Unit]
Module 10_Unit]
Module 10_Unit)
Module 10_Unit]
Module I0_Private]
Module Memory 1
Module IO_Private]
Module Memory)
Module Memory 1
Module Memory]
Module 10_Unit 1
Module I0_Unit)
Module 10_Unit 1
Program System]
Module IO_Unit)
Program Systenm]
Module Virtual 1
Module Virtual]
Module Virtual]
Module Virtual 1]
Module 10_Unit]
Module Stream]
Module I0_Private 1
Module Stream]
Module Stream]
Module Virtual]
Module IOPointDev]
Module I0_Others)
Module 10_Others 1
Module I0PointDev 1
Module IOPointDev 1
Module Screen 1
Module I10Keyboard]
Module Screen)
Module Screen]
Module Screen 1
Module Code 1
Module FileSystenm 1]
Program System)
Module RunRead]
Module 10 _Unit 1]
Module FileTypes]
Module Lights
Module Lights
Module Lights
Module Lights
Module Lights
Module Lights
Module Lights
Module Lights
Module Lights

[V W i S S S R e R N)

Module PopCmdParse]

Module Screen)
Module Loader]
Program System]

- 327 -

January 15, 1984

POS Operating System - Exported Types, Var., & Constants January {5, 1984

LogAdr
LogAdr
LogAdr
LogConst

LS
MainVersion
MAXALIAS
MaxCmds
MaxCString
MaxDataBytes
MAXDISKS
MAXPARTCHARS
MAXPARTITIONS
MaxPStringSize
MaxRecv
MaxSegment
MaxTotalVols
MaxUnit
MaxUsers
MaxVolID
MaxWIndx
MaxWIndx
MBootFile
MemoryInBlocks
MemoryVersion
MicroBinary
MicroFile
MicroFile
Microlnstruction
MinDataBytes
MinVolID
MitCstAddr
MitCstAll
MItCstGrp
MltCstNone
MMAddress
MMArray
MMBit12
MMBit4
MMBit8
MMBlockArray
MMEdge
MMExtSize
MMFirst
MMFound);
M\MFree
MMFreeNode
MMHeap
MMHole
MMIntSize
MMLast
MMMaxBlocks
MMMaxCount
MMaxExtSize
MMMaxIntSize
MMNotFound

VAR

VAR
CONST
TYPE
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
CONST
VAR
CONST
TYPE
CONST
TYPE
TYPE
CONST
CONST
CONST
CONST
CONST
CONST
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
VAR
VAR
VAR
TYPE
VAR
VAR
TYPE
VAR
CONST
CONST
CONST
CONST
VAR

Module IOGPIB]
Module 10Z80]

Module I10_Unit]
Program System)
Module Screen 1
Program System]
Module FTPUtils]
Module CmdParse]
Module CmdParse].
Module Ether!0I0]
Module AllocDisk]
Module AllocDisk]
Module AllocDisk]
Module PERQ_String 1
Module FTPUtils 1]
Module Memory]
Module VolumeSystenm]
Module 10_Unit]
Module UserPass]
Module VolumeSystem]
Module Screen]
Module Screen]
Module FileTypes 1]
Module Memory 1
Module Memory 1
Module ControlStore]
Module FileTypes]
Module ControlStore]
Module ControlStore]
Module Ether10I0 1
Module VolumeSystem)
Module Etherl10I0]
Module Ether10I0]
Module Etherl1010]
Module Ether10I0]
Module Memory]
Module Memory]
Module Memory]
Module Memory]
Module Memory]
Module Memory)
Module Memory)
Module Memory]
Module Memory)
Module Memory)
Module Memory)
Module Memory]
Module Memory]
Module Memory)
Module Memory |
Module Memory]
Module Memory]
Module Memory)
Module Memory)
Module Memory 1
Module Memory]

TN TN PRI PN PN PR P R GG SRR PN PY S N PN PR P P P ST R (e SR (R (TR Gy (R G e ey fummy pmmy pe) gEmG gue puey M) g gumy gem (R geiny iy ey ey Geey Ry Rewy (eamy ey gmemy gmy gy guen gumy gueey

- 328 -

POS Operating System - Exported Types, Var., & Constants January 5, 1984

MMPointer TYPE [Module Memory]
MMPosition TYPE [Module Memory)
MMScanl0 , VAR [Module Memory]
MMScanl | VAR [Module Memory 1
MMScan6 VAR { Module Memory 1
MMScan7 VAR [Module Memory)
MMScan8 VAR [Module Memory]
MMScan9 VAR [Module Memory]
MMState VAR [Module Memory]
MoveTime VAR [Program System]
MyAddr VAR [Module FTPUtils]
MyDble TYPE [Module DiskIO]
MyDouble TYPE [Module Arith]
MyName VAR [Module FTPUtils]
NameAr TYPE [Module PopUp]
NameDesc TYPE [Module PopUp]
newFunct VAR [Module I0Video)
NextSComplemented VAR [Program System]
NextSOff VAR [Program System]
NextSSize VAR [Program System]
NilVolID CONST [Module VolumeSystem]
NumAlias VAR [Module FTPUtils 1
number VAR [Module DiskIO)
NumDCBs CONST [Module Ether10I0]
NumDCBUsed VAR [Module DiskDef]
NUMIRIES CONST [Module DiskIO 1]
OffsetFile CONST [Module Clock 1
ointDev TYPEP [Module 10 _Others]
01dCurX VAR [Module IOVideo]
0ldCurY VAR [Module IOVideo]
OldExecuteTime VAR [Program System]
01dI0Time VAR [Program System]
OldLoadTime VAR [Program System]
OldMoveTime VAR [Program System]
0ldSwapTime VAR [Program System]
OnVolAddress TYPE [Module VolumeSystem]
OpenWrite VAR [Module Stream)
Origin VAR [Module Screen]
OrgX VAR [Module Screen]
OrgY VAR [Module Screen]
pArgRec TYPE [Module CmdParse)
PartialPathName TYPE [Module FileDefs]
PartitionType TYPE [Module DiskIO]
PartRecord TYPE [Module AllocDisk]
PartString TYPE [Module AllocDisk]
PartTable VAR [Module AllocDisk]
PasFile CONST [Module FileTypes]
PassFile CONST [Module UserPass]
PassType TYPE [Module UserPass 1
Past VAR [Module GetTimeStamp]
PastStamp VAR [Module GetTimeStamp]
PathName TYPE [Module FileDefs 1]
pClockStat TYPE [Module I0_Unit 1]
pCmdList TYPE [Module CmdParse 1
PDIBlock TYPE [Module DiskDef 1
PDirBlk TYPE [Module FileSystem)

- 329 -

POS Operating System - Exported Types,

PDiskCtrlBlock
PDskCtrl
pEtherAdRec
pEtherBuffer
pEtherDCB
pEtherHeader
pEtherRegSave
pEtherStatus
PFileConst
pFNString
pFootAr
pGPIBStat
pHiVolBlock
PhyDiskID
pImpNode
PIntArray
pKeyStat
PLoglead
PLogHead
pMMArray
pMMBlockArray
pms255
pNameAr
pNameDesc
pointAl lowed
PointBuf
PointDev = 11;
PointDevStat
PointX

PointY

popOK: boolean)
PortraitBitHeight
PortraitBitWidth
PortraitWordWidth
pPointBuf
pPointDevStat
PrintStatistics
ProfStr

prompt: String; def
pRS232Stat

pSAT

pSegBlock
pSegNode

PsgFile

pSIT

PStrArray
pStreamBuffer
PString
pSwitchRec
pSysNames

ptr

ptr

PtrDCA
ptrDiskBuffer
PtrDskCtrlArray
ptrFSDataEntry

Tablet

TYPE

TYPE
TYPE
TYPE
CONST
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

VAR
TYPE

TYPE

{
(
(
[
{
{
[
(
(
(
(
[
[
[
(
[
[
[
[
{
[
(
[
[
[
[
[
(
[
(
[
(
[
[
[
[
[
(
[
[
{
[
[
[
[
[
(
[
[
{
[
[
[
(
[
{

Var., & Constants

Module DiskDef 1
Module DiskDef 1
Module Etheri010)

'Module Ether!10I0)

Module Ether!10IO0)
Module Ether10I0 1
Module Ether10I0]
Module Ether!0IO0)
Program System]
Module Code)

Module PopUpCurs 1
Module IO _Unit]
Module 10_Private]
Module VolumeSystem]
Module Code)

Module QuickSort 1
Module 10_Unit]
Module DiskUtility]
Module DiskUtility]
Module Memory)
Module Memory |
Module PMatch]
Module PopUp 1
Module PopUp]
Program System]
Module I0PointDev]
Module 10_Unit)
Module 10 Unit]
Module 10Video)
Module I0Video)
Module PopCmdParse)
Module Screen]
Module Screen)
Module Screen 1}
Module IOPointDev)
Module 10_Unit]
Program System)
Module Profile)
Module PopCmdParse |
Module I0_Unit]
Module Memory]
Module Code)
Module Code)
Module FileTypes 1
Module Memory]
Module QuickSort]
Module Stream)
Module PERQ_String]
Module CmdParse]
Module Memory]
Module FileAccess]
Module FileAccess]
Module DiskDef]
Module DiskIO]
Module DiskDef)
Module FileDefs]

- 330 -

January 15, i984

POS Operating System - Exported Types, Var., & Constants January 15, 1984

ptrHeader TYPE [Module DiskIO)
ptrScanRecord TYPE [Module FileUtils]
ptrSearchList TYPE [Module FileSystenm]
PtrVBuf VAR [Module DiskDef]
PtrVHBuf VAR [Module DiskDef 1
ptrVolBuffer TYPE [Module VolumeSystem)
ptrVolHeaderBuffer TYPE [Module VolumeSystem]
pUDeviceTable TYPE [Module I0_Private]
pUDevTab VAR [Module IO Private]
puSC1kDCB TYPE [Module Etherl10I0]
PVolHead [Module DiskUtility)
PVolHead [Module DiskUtility]
pZ80Stat TYPE [Module IO _Unit 1

_Msg TYPE [Module IO Private 1]
QCodeVersion CONST [Module Code)
QVerRange TYPE [Module Code]
RaiseException VAR [Module IO_Private 1
RAnd CONST [Module Raster]
RAndNot CONST [Module Raster]
Random Index CONST [Module DiskIO]
RasterArray TYPE [Module Raster]
RasterPtr TYPE [Module Raster]
RealMIndefinite CONST [Module RealFunctions]
RealMInfinity CONST [Module RealFunctions]
RealMLargest CONST [Module RealFunctions]
RealMSmallest CONST [Module RealFunctions]
RealPIndefinite CONST [Module RealFunctions]
RealPInfinity CONST [Module RealFunctions]
RealPLargest CONST [Module RealFunctions]
RealPSmallest CONST [Module RealFunctions]
RealRelTablet VAR [Module I0_Others 1
RECORDIOBITS CONST [Module DiskIO]
RecvsPosted VAR [Module Etherlnterrupt 1
RelFile CONST [Module FileTypes]
ResArray TYPE [Module PopUp]
ResRes TYPE [Module PopUp 1
RFileFormat CONST [Module Code 1
RFileName VAR [Program System]
RListHead VAR [Module Etherlnterrupt 1
RListTail VAR [Module EtherInterrupt]
iNot CONST [Module Raster]
ROr CONST [Module Raster]
ROrNot CONST [Module Raster]
RRpl CONST [Module Raster]
RSI10 CONST [Module 10_Unit 1
RS1200 CONST [Module I0_Unit)
RS150 CONST [Module I0_Unit]
RS19200 CONST [Module I0_Unit]
RS232Stat TYPE [Module 10_Unit]
RS2400 CONST [Module 10_Unit]
RS300 » CONST [Module I0_Unit]
RS4800 CONST [Module I0_Unit]
RS600 CONST [Module 10_Unit]
RS9600 CONST [Module I0_Unit]
RSA=4;RS2320ut=RSA;RS232In CONST [Module I0_Unit)
RSB CONST [Module I0_Unit]

-3l -

POS Operating System - Exported Types,

RSExt
RSIntMask
RS_MaxBytes
RS MaxWords
RS StatusType
RS_VWrtReg
RunElement
RunFile
RunFileType
RunInfo
RunReadVersion
RunW¥riteVersion
RXNor

RXor

s25

SAT

SATarray
SATentry
SATSeg

Save :
SavedSwapld
SBitHeight
SbitWidth
SBootFile
SBottomY
ScanRecord
ScreenlLast
ScreenOut
ScreenSeg
ScreenVersion
SCurBitHeight
SCursorOn
SearchList
SEARCHSIZELIST
SegBlock
SegFile
SegFileType
SegHint

SegID
Seglength
SegmentKind
SegmentMobility
SegmentNumber
SegNode
SendsPosted
SetStkBase
SetStkLimit
Setting

SFunc
ShellConst
ShellCtrl
Shel lName
ShouldReEnableSwapping
SimpleName
SIsLandScape
SIT

CONST
VAR
CONST
CONST
TYPE
TYPE
TYPE

CONST

CONST
CONST
CONST
VAR
VAR
TYPE
CON
TYPE
CONST
TYPE
TYPE
TYPE
CONST
TYPE
TYPE
TYPE
TYPE
VAR
CONST
CONST
VAR
VAR
CONST
VAR
VAR
VAR
TYPE
VAR
VAR

[
[
[
[
[
[
[
[
[
[
{
{
(
[
[
[
(
[
[
{
[
{
{
[
[
[
[
[
(
{
[
[
[
[
[
(
(
[
[
[
[
[
[
[
[
[
[
(
(
[
[
[
[
[
{
[

Var., & Constants

Module I0_Unit]
Module IORS]
Module 10_Unit)
Module 10_Unit]
Module 10_Unit]
Module 10_Unit 1
Module Code]
Module FileTypes)
Module Code]
Module Code)
Module RunRead 1
Module RunWrite]
Module Raster]
Module Raster]
Module PopUp]
Module Memory]
Module Memory)
Module Memory]
Module Memory]
Module I0_Private 1
Program System]
Module Screen]}
Module Screen 1
Module FileTypes }
Module I0_Private]
Module FileUtils)
Module Virtual]
Module I0_Unit)
Module Memory]
Module Screen]
Module Screen 1
Module Screen 1
Module FileSystem]
Module FileSystem]
Module Code 1
Module FileTypes)
Module Code]
Module Code]
Module FileDefs]
Module Code]
Module Memory)
Module Memory]
Module Memory]
Module Code
Module EtherlInterrupt 1
Module Memory]
Module Memory)
Module IO _Unit]
Module Screen)
Program System)
Program System 1
Program System]
Program System]
Module FileDefs)
Module Screen]
Module Memory 1

- 332 -

Jenuary 15, 1984

POS Operating System - Expdrted Types, Var., & Constants January 15, 1984

SITarray TYPE { Module Memory]
SITentry TYPE (Module Memory]
SITSeg CONST [Module Memory 1]
SLeftX CONST [Module I0_Private]
SListHead VAR { Module EtherInterrupt)
SMStatus TYPE [Module DiskDef 1
SNArray TYPE [Module Code]
SMaxBitHeight VAR [Module Screen]
SNumTitleChars VAR [Module Screen]
softStat VAR [Module DiskIO]
Speech CONST [Module I0_Unit]
SpiceSegKind TYPE [Module DiskIO]
SRightX CONST [Module IO_Private]
5525 TYPE [Module QuickSort]
SScreenP VAR [Module Screen)
SScreenW CONST [Module Screen)
Swapld VAR [Module Memory 1
StackLeader CONST [Module Code
StackPointer VAR [Module EtherlInterrupt]
StackSegment VAR [Module Memory]
StanleyTablet VAR [Module I0Video 1
StartBlk CONST [Module FileSystem]
Stat: pEtherStatus; Bytes CONST [Module Ether!10I0]
StatBlk VAR [Module IOFloppy]
StatPtr VAR [Module DiskDef 1]
Status VAR [Module Virtual 1
STitStrType CONST [Module Screen 1
STopY CONST [Module I0_Private]
StrArray TYPE [Module QuickSort]
StreamBuffer TYPE [Module Stream]
StreamSegment VAR [Module Stream)
StreamVersion CONST [Module Stream]
StrVersion VAR [Program System)
StsPtr VAR [Module IOGPIB]
StsPtr VAR [Module IOPointDev]
StsPtr VAR [Module IORS]
StsPtr VAR { Module I0_Unit]
SwapFile CONST [Module FileTypes 1
Swapld VAR [Module Memory]
SwappingAl lowed VAR [Module Memory]
SwapSld VAR [Module Virtual)
SwapTime VAR [Program System]
SwitchRec TYPE [Module CmdParse]
Sys9s TYPE [Program System]
SysBootChar VAR [Program System]
SysDisk VAR [Program System]
SysFile CONST [Module FileSystem)
SysiNameArray TYPE [Module Memory)
SysNameSeg CONST [Module Memory]
SysSeglength CONST [Module Memory 1
SysSegName TYPE [Module Memory 1
Systemlnitialized VAR [Program System)
SystemVersion VAR [Program System]
SysTiming CONST [Program System]
TabAbsX VAR [Module 10_Others)
TabAbsY VAR [Module 10_Others]

- 333 -

POS Operaiing System - Exported Types, Var., & Constants

TabBlue
TabCount
TabFinger
TabGreen
Tablgnore
TabLeft
TabletMode
TabletType
TabMiddle
TabMode
TabMouse
TabRelX
TabRelY
TabRight
TabSwitch
TabWhite
TabYellow
TekResult
TempFile
TextFile
TimeBuf
TimeFID
Timer
TimeReference
times
TimeStamp
TimeString
TitStrLength
TotalWidth
TotSize: integer; Mob
TransKey
TransMicro
TransMode
TRCCAdrHigh
TRCCAdrMid
UDeviceTable
Unit
UnitNumber
UnitRng
UnknownF'i le
uSC1kDCB
UseCmd
UserInt
UserMode
UserPtr
UserRecord
Users
UsrCmdLine
value
VirtualVersion
VolAddress
VolBlockNumber
VolBuffer
VolErrorCnt
VolHeaderBuffer
VolID

VAR
VAR
VAR
VAR
CONST
TYPEP
TYPE
TYPE
TYPEP
VAR
VAR
VAR
VAR
TYPEP
VAR
VAR
VAR
TYPE
CONST
CONST
VAR
VAR
CONST
TYPE
CONST
TYPE
TYPE
CONST
VAR

CONST
TYPE
TYPE

CONST

CONST
TYPE

VAR
TYPE
TYPE

CONST

TYPE
VAR
VAR
VAR
VAR

TYPE

TYPE
VAR
VAR

CONST
TYPE
TYPE
TYPE

VAR

TYPE

TYPE

[
[
[
[
[
(
[
(
[
{
{
[
(
[
[
(
(
(
(
[
(
[
[
[
[
[
(
[
{
{
(
[
{
[
{
{
(
{
(
(
(
(
[
[
[
[
{
[
[
!
{
[
[
[
[
[

Module I0_Others]
Module I0Video]
Module 10_Others]
Module 10_Others)
Module I0Video]
Module 10_Others
Module 10_Others
Module 10_Others
Module I10_Others
Module I0Video)
Module 10_Others
Module 10_Others
Module 10 Others
Module 10_Others
Module 10 Others
Module 10_Others
Module 10_Others
Module LoadZ80)
Module FileTypes)
Module FileTypes 1
Module I0_Private]
Program System]
Module I0_Unit]
Module GetTimeStamp]
Module IOGPIB]
Module GetTimeStamp]
Module Clock)

Module Screen]
Module PasReal]
Module BigArea 1]
Module 10_Unit)
Module ControlStore 1
Module FTPUtils]
Module Etheri010]
Module Ether1010)
Module 10_Private]
Module 10_Private]
Module DiskDef)
Module I0_Unit]
Module FileTypes 1
Module Etheri0I0]
Program System]
Program System]
Program Systei]
Program System]
Module UserPass 1
Module UserPass)
Program System]
Module PasReal]
Module Virtual]
Module VolumeSystem]
Module VolumeSystem)
Module VolumeSystenm 1
Module VolumeSystem 1
Module VolumeSystem 1
Module VolumeSystem]

U
et el Govmd Somd

Gt Gt bund St bl Smad Sumd

- 334 -

January 15, 1984

POS Operating System - Exported Types,

Vol 10Command
VolName
VolRangeType
Vidth
WindowP
VindowType
VinRange
VinTable
VordSize

WpDB

WpFS

Z80

Z80Stat
Z_CmdRegister
Z_ Commands

Z Data

Z DataSize

Z FirstData

Z IntDisabled
Z MaxData

Z Msg
Z_MsgNotAvailable
Z_MsgPtrKludge
Z NoData

Z Queue

Z_SOM
#Cylinders
#Heads
#Sectors

TYPE
TYPE
TYPE
VAR
TYPE
TYPE
TYPE
VAR
VAR
CONST
CONST
CONST
TYPE
TYPE
TYPE
TYPE
CONST
CONST
VAR
CONST
TYPE
VAR
TYPE
CONST
TYPE
CONST
TYPE
TYPE
TYPE

(
{
[
(
[
[
[
[
{
!
[
(
{
[
(
(
[
[
[
[
[
[
(
(
(
(
[
[
[

Var., & Constants

Module VolumeSystem }
Module VolumeSystem)
Module VolumeSysten)
Module Screen
Module Screen]
Module Screen)
Module Screen 1
Module Screen]
Module Stream]
Module DiskDef]
Module DiskDef)
Module 10 Unit]
Module 10 Unit]
Module IO Private
Module I0 Private
Module 10 Private
Module 10 Private
Module 10 Private
Module 10 Private
Module 10 Private
Module IO Private
Module IO Private
Module I0 Private
Module IO Private
Module I0 Private
Module I0_Private
Module DiskDef)
Module DiskDef 1
Module DiskDef]

ot et bt Gnd bt St St bt bnd S ud bond Sl

January 15, 1984

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335

