
o

o

o

PERQ.
Systems
Corporation

PROGRAMMING EXAMPLES

March 1984

This'manual is for use with POS Release G.5 and subsequent
releases until further notice.

Copyri9htCC) 1981, 1983, 1983, 198i
PERQ Systems Corporation
2600 Liberty Avenue
P. o. 80x 2600
Pittsbur9h, PA 15230
(H2) 355-0900

This document is not to be reproduced in any fonn or
transmitted in whole or in part, without the prior written
authorization of PERQ Systems Corporation.

The information in this document is subject to change
without notice and should not be construed as a commitment
by PERQ Systems Corporation. The company assumes no
responsibility for any errors that may appear in this
document.

PERQ Systems Corporation will make every effort to keep
customers apprised of all documentation changes as quickly
as possible. The Reader's Comments card is distributed with
this document to request users' critical evaluation to
assist us in preparing future documentation.

PERQ and PERQ2 are trademarks of PERQ Systems Corporation,

- ii

o

o

o

o

o

o

Table of Contents

1
2
5
6
8

10
11
13
15
17
17
19
19
20
20
22
22
24
26
29
32
33
34
35
36
37

Introduction.
Allocating Memory.
Reading in Large Files.
RasterOp and Line.
Windows.
Fonts.
Cursors.
Reading Characters from the Keyboard.
CmdParse and PopCmdParse.
General 1/0 Operation.
UnitIO
Single character 10
Reads
Writes
Interrupts
Device Operation.
HardDisk
Floppy
RS232 and Speech
GPIB
Keyboard
Clock
PointDev
Transkey
ScreenOut
Z80

January IS, 1984

Table of Contents January 15, 1984

o

o

o
- iv -

o

o

Q

Programming Examples - Introduction January 15, 1984

1. Introduction.

The manual describes how to use Fonts, Cursors, RasterOp, Line,
Windows, CmdParse, and PopUp menus and how to allocate large amounts
of memory. The manual also defines the interface between Pascal
modules and the Pascal 10 subsystem and includes examples of sample
appli cat ions.

Examples are given of the ways we have found to be successful in
performing these operations. Although there are obviously many ways
to perform these operations, the ones given here are successful.

The last part of this document describes the low level access to the
10 system. This is useful for applications that want to directly
control the PERQ's peripherals.

- 1 -

Programming Examples - Allocating Memory January 15. 1984

2. Allocating Memory.

This section describes how to allocate blocks of memory. Memory on
the PERQ is divided into "segments". Each segment can have up to 4096
blocks. Each block is 256 words or 512 bytes. You can allocate
segments with CreateSegment from module Memory or with CreateHeap from
module Dynamic. Although up to 2 megabytes (4096 blocks times 512
bytes per block) can be allocated in a segment, most of the software
cannot deal with segments bigger than 256 blocks (128 K Bytes). The
#only# way to address the blocks past this boundary is with RasterOp.
Therefore, for segments containing code or program data, the effective
limit of the size is 256 blocks.

When you create a segment with CreateSegment, the segment is given an
initial size, a maximum size, and an increment. When segments created
with CreateSegment become full, they automatically enlarge, by multi­
ples of the increment size, until there is enough free memory for the
allocation. Segments will not grow past their maximum size, however,
and it may be the case that there is simply not enough room in memory
for the segment, in which case a different exception will be raised.

When you create a segment with CreateHeap, the segment has a fixed
size but when it is full, another segment of the same size is
allocated and chained to the first segment. Allocation will then be
done from the new segment. The fixed size for a Heap segment is
specified at head creation time and must be less than or equal to 256
blocks. The segment number of the first segment allocated identifies
the heap. If an allocation is attempted which is larger than the size
of the segments, a single larger segment is created. CreateHeap
should only be used for segments from which NEW's will be done.

You may need to allocate blocks of memory to read in Fonts and
pictures from files, to create pictures off screen for RasterOp, and
to handle large amounts of data. For managing large amounts of data,
CreateHeap is appropriate; in all other cases, use CreateSegment.
Fonts and pictures are generally stored in files on the disk. To use
the fonts and pictures, read the file into memory. First, do a
FSLookUp (or use one of the other lookup functions) from module
FileSystem. A VAR parameter to this function is the number of blocks
in the file. You can pass the number of blocks returned from the
lookup to CreateSegment or CreateHeap to specify how much storage to
allocate.

Create the segment using the procedure from Memory:

Procedure CreateSegment(
var Seg: Integer;
initialSize,
sizeIncrement,
maximumSize: integer);

{in blocks}
{in blocks}
{in blocks}

where seg is assigned the segment number that has been created. Or,
create the segment using the procedure from Dynamic:

- 2 -

o

o

c

o

o

o

Programming Examples - Allocating Memry

Procedure CreateHeap(
var S: SegmentNumber;
Size: 1 •• 256)

January 15, 1984

where S is set to the number of the new segment and Size is the size
of the initial segment. Note that all subsequent segments use this
Size.

There are two ways to use a segment once created. The first is simply
to create it with a fixed size and use the entire segment at once (for
example, when reading an entire file into memry). Use MakePtr(seg,
offset, TypeOfPointer) to create a pointer of type TypeOfPointer in
that segment at word offset "offset". Segments used this way should
be created using CreateSegment.

The second way to allocate out of a segment is to use the standard
Pascal NEW. NEW has been extended to have two fOnDS. The standard
form, NEW(p), allocates the pointer out of the default segment. For
1/4 MByte systems, the default segment is made by

CreateSegment(heapSegment, 4,4,256)

For other systems, the default segment is made by

CreateHeap(heapSegment, 20)

The extended form, NEW(seg, alignment, p), allocates the storage out
of the specified segment. Some buffers need to be specially aligned.
For example, RasterOp buffers need to be on a multiple of 4. Do not
use 0 for the alignment. For DISPOSE, only the pointer should be
specified. Segments used this way can be created using CreateSegment
or CreateHeap, but CreateHeap is the prefered way.

NEW is implemented by a call to the procedure NewP in Dynamic. You
can call this procedure directly to specify the size of storage to
allocate. NewP is defined as

Procedure NewP(seg: integer;
allignment: integer;
var p: MMPointer;
size: integer);

The segment number of 0 is always defined to be the default segment
for NewP and NEW. All other segment numbers should come from a prior
CreateSegment or CreateHeap. To calculate the size of a record or
array, WordSize is a useful intrinsic. It returns the size of any
PASCAL variable or type and can be used in constant or variable
expressions. The user must remember the size used with NewP since
D i sposeP takes the size as a parameter.

Procedure DisposeP(var p: MMPointer; size: integer);

The size MUST be the same size used with NewP. One way to insure this
is to store the size as a field in a record. As an example of NewP,
we make a variable length array of strings:

- 3 -

Programming Examples - Allocating Memory

Type
s25 = Stringl251:
NameDesc = RECORD

numCommands: integer:
recSize: integer:

January 15. 1984

commands: array!I •• I! of s25: {vbl length array}
END;

pNameDesc = "'NameDesc;

To allocate a pNameDesc with NOM names in the segment seg, the
following would be done:

var p: MMPointer;
size: integer;
names: pNameDesc;

begin
size := 2*WordSize(integer) + { for the 2 integers }

NUMlEWordSize(s25); {the variable part }
NewP(seg, 1, p.p, size);
names := RECAST(p.p, pNameDesc);
names recSize := size:
names numCommands := NOM;

{$R-} {turn range checking off to assign names}
for i := 1 to NUN do

names commandslil := '<some string>':
{$R=} {return range checking to the previous state}

end;

Since Dynamic uses special places in the segment to store the free
list information used by NEW, it is bad practice to mix NEW and
MakePtr on the same segment.

When a program requires a large amount of data, consider the swapping
characteristics of the operating system. Since POS swaps an entire
segment at once, a big segment will take much longer to read in and
write out. Also, there may simply not be enough memory to hold the
large segment and all other necessary data. Therefore, the user might
divide the data into separate segments, each of which is about 10
blocks large. For example, this is what the editor does to hold the
piece table. An alternative, and easier, strategy, is to use
CreateHeap· with a small size for the initial segment. In this case,
the memory system automatically creates a number of segments and
manages their swapping.

- 4 -

o

o

o

Programming Examples - Reading in Large FlIes January 15, 1984

o 3. Reading in Large Files.

o

o

There are a number of ways to read in a font or a picture from the
disk. The fastest and most straightforward way is to use MultiRead.
This is a special procedure that uses the micro-code's ability to read
multiple blocks at once. The read, therefore, occurs at the maximum
possible speed (the actual speed depends on how contiguous the blocks
are on the disk). Note that the MultiRead procedure works only on
hard disks.

To use multi-read on a file called FileName do the following:

var fid: FileID; {imported from FileSystem}
blocks, bits: integer;
seg: Integer;

begin
fid := FSLookUp(FileName, blocks, bits);
if fid = 0 then {file not found}
else begin

end;

CreateSegment(seg, blocks, I, blocks); {allocate}
MultiRead(fid, MakePtr(seg, 0, pDirBlk), 0, blocks);
end;

MultiRead takes a fileID, a pointer to the start of the block of
memory, the first block to read of the file to read, and the number of
blocks. The above code reads in the entire file.

If you do not wish to import MultiRead, you can read in each block of
the file using FSBlkRead. Replace the MultiRead call above with the
following

for i := 0 to blocks - 1 do
FSBlkRead(fid, i, MakePtr(seg, il256, pDirBlk»;

The MakePtr creates a pointer to the i-th block (the i~th word) of
the segment. Remember that neither MultiRead or MakePtr can address a
segment bigger than 256 blocks long.

- 5 -

Programming Examples - RasterOp and Line January 15, 1984

4. RasterOp and Line.

RasterOp and Line are the chief graphics primitives of the PERQ. Each
is fast. The primitives allow drawing of rectangles and lines,
respectively. RasterOp is described in the PERQ Pascal Extensions
manual and Line is exported by the Screen module.

Use RasterOp to clear a rectangle (either white or black); transfer a
picture from one place to another; or combine two pictures. Use Line
to draw a single width line at any orientation.

RasterOp is a general utility. It can be used on buffers that are not
on the screen. Therefore, it takes parameters that describe the
dimensions of the buffer. For the Screen, the two variables SScreeni
and SScreenP are exported by the Screen module. As a first example,
we will clear an area of the screen 100 bits wide, 200 bits tall,
starting at position (300, 400):

RasterOp(RXor, 100, 200, 300, 400, SScreeni, SScreenP,
300, 400, SScreeni, SScreenP):

We do this by Xoring the area with itself. Similarly, to clear an
area to black, use the function RXNor. The function names are
exported by the module Raster. To move a rectange from one area of
the screen to another, simply use a different source and destination
position. Remember that the destination is specified first.

To move a rectangle one bit up:

RasterOp(RRpl, 100, 200, 300, 400, SScreeni, SScreenP,
300, 399, SScreeni, SScreenP):

The position (0,0) is in the upper left corner: the lower right corner
is (767, 1023) for a portrait screen and (1279, 1023) for a landscape
screen. RasterOp does not validate the widths or positions so be
careful. Be especially careful to avoid negative widths and heights
since these are taken as large positive numbers. The available
RasterOp functions are:

RRpl
RNot
RAnd
RAndNot
ROr
RorNot
RXor
RXNor

{dest get src}
{dest get invert of src}
{dest gets dest AND src}
{dest gets dest AND invert of src}
{dest gets dest OR src}
{dest gets dest OR invert of src}
{dest gets dest XOR src}
{dest gets dest XOR invert of src}

RasterOp can also move a picture from or to an off-screen buffer.
Suppose' a picture is 543 bits wide and 632 bits high. The buffers
used by RasterOp must be a multiple of 4 words in width. Therefore,
allocate a buffer that is 36 words (=576 bits) wide and 632 bits high.
This is 22752 words. Since segments can only be allocated on block
boundaries, round up to 22784 words or 89 blocks and create a segment

- 6 -

o

o

o

o

o

o

Prograuuning Examples - RasterOp and Line

of this size and a RasterPtr to its start:

CreateSegment (seg, 89, I, 89);
p := MakePtr(seg, 0, RasterPtr);

January 15. 1984

Now we might read a file into this buffer as described in Section 3.
Next, we want to transfer the picture onto the screen, say at position
(10, 100). We use

RasterOp(RRpl, 643, 632, 10, 100, SScreenW, SScreenP,
0, 0, 36, p);

The destination (given first) is (10, 100) on the screen, but the
source is now the buffer. The bit width to transfer is 643 (the
second argument), but the word width of the buffer is 36. (SScreenW
is 48 for portrait monitors and 80 for landscape monitors; it is the
number of words across the screen). p is the pointer to the buffer.
A picture can be transfered from the screen into a buffer, or between
buffers in a similar manner.

If you want to allocate a buffer using NEW or NewP for RasterOping to
or from, be sure to make the alignment 4.

Line is used for drawing straight, single width lines. It comes in
two forms. The first, called #Line# will draw lines on the screen or
on buffers with the same width as the screen. The second form, called
#SVarLine# will draw lines on any width buffer and takes the word
width of the buffer the same way RasterOp does. Both of these
procedures are exported by the Screen Module. Both take a source and
destination x and y position, a style and a pointer to the buffer to
draw in. Line is defined as:

Line(style: LineStyle; xl, yl, x2, y2: integer; p: RasterPtr);

where the style is DrawLine, XOrLine or EraseLine. Use SScreenP for
p. Similarly, SVarLine is defined as:

Line(style: LineStyle: xl, yl, x2, y2, width: integer: p:
RasterPtr) ;

where #Width# is the word width of the buffer described by p and must
be a multiple of 4.

The Screen module exports two variables that will be useful for
programs dealing with the screen. SBitWidth is the width of the
screen in bits (768 for portrait screen and 1280 for landscape).
SBitHeight is the height of the screen in bits (currently always
1024) •

- 7 -

Programming Examples - Windows January 15, 1984

5. Windows.

POS currently supports multiple, overlapping windows. However, POS
does not know when two windows overlap. Thus all windows are
"transparent" in that anything written to a covered window will "show
through" any windows that are on top. Even with this restriction,
windows are useful for a number of applications. For example, if
multiple things are going on and the user wants to separate the input
and output of each. The Screen package handles scrolling of the text
inside windows automatically. Therefore separate windows scroll
separately (if they do not overlap). This is useful, for example, in
a graphics package where there are commands typed in a small window
with the rest of the area used for the graphics (an example is the
CursDesign program from the User Library).

The user must maintain the allocation of windows; the user tells the
screen package where each window is and is expected to remember the
number for each window. Window zero is reserved for the system and
its size should not be changed. Use CreateWindow to create a new
window. The parameters passed are for the outside of the window.
There are two bits of border, then a hair line, then two more bits on
each side. On the top there may be a title line which is a band of
black with white letters in it. Once a window is created, it cannot
be moved or re-sized.

Creating a new window automatically changes output to go to the new
window. Given a set of windows, you can change amongst them by using
the ChangeWindow command. The procedure GetWindowParms returns para­
meters of the current window. Unfortunately, you must do transforma­
tions on the numbers returned to get the inside and outside areas of
windows:

GetWindowParms(var windx: WinRange; orgX, orgY, width, height:
integer:

var hasTitle: boolean);

windx is the current window number and hasTitle tells whether there is
a title line. Calculate the outside of the window as follows:

begin
orgX := orgX - 3:
width := width + 7:
orgY := orgY - 3:
height := height + 7:
if hasTitle then

begin
orgY := orgY - 15:
height := height + 15:
end:

end:

- 8 -

o

o

o

Programming Examples - Windows January 15. 1984

<::) Calculate the inside of the window as follows:

o

o

begin
orgX := orgX + 2;
width := width - 4;
orgY := orgY + 2;
height := height - 4:
end:

Each window has an associated font that is used for writing in· that
window. You can change the font with SetFont. Note that when you
create a window, the title line is written in the font from the
current window.

- 9 -

Programming Examples - Fonts January 15, 1984

6. Fonts.

The definition of fonts is given in the Screen module. Fonts
currently can be variable width, but there is no kerning (the font
must fit within the character block). A font starts with some global
information: the height of the font in bits and the offset of the
baseLine. Next is an array, which for each character has the position
and width of that character in the font. A width of zero means the
character is not defined. After this array are the actual bit
pictures for the characters which are defined •. The bit pictures are
defined in buffers whose width is always 48 (PortraitWordWidth) even
if the screen is a landscape monitor. Fonts can be created by using
the FontEd program from the User Library available from the Sales
department.

To use a font, it must first be loaded into memory. See the section
on reading files above. The Screen package allows you to change the
font to one you have defined. First, you should define a new window
so that you don't change the font for the default system. Now simply
call the function SetFont passing it a pointer to the top of the
segment into which you read the font. If you wish to RasterOp a
character (ch) using font FontP onto the screen by hand (at position
(xPos, yPos», use the following form (copied from SPutChr in Screen):

var Trik: Record Case Boolean of
true: (F: FontPtr);

begin

false: (seg, ofst: integer);
end;

with FontPA.Indexlord(ch)J do
if width> 0 then

begin

end;

Trik.f := FontP;
RasterOp(RRpl, width, FontPA.height, xPos,

yPos-FontpA.Base, SScreenW, SScreenP,
Offset, LinelEFontpA .height, KSetSLen,
MakePtr(Trik.seg, Trik.Ofst+#404, FontPtr»;

end;

The #404 is the size of the introductory part of a font. Trik is used
to create a pointer to the actual bit pattern part of a font. Note
that you should not use SScreenW for the Font Word width since the
word width is always fixed (at PortraitWordWidth) and SScreenW may be
different on Landscape monitors.

- 10 -

o

o

o

o

o

o

Programming Examples - Cursors January 15, 1984

7. Cursors.

In a PERQ system, the term "Cursor" is used in two ways. First, it is
the position where the next character will be placed on the screen.
This "cursor" is usually signified by an underline "_H. The second
"cursor" is the arrow or other picture that usually follows the pen or
puck on the tablet. This section discusses the latter form.

You can set the picture in the cursor. PERQ software uses a number of
different pictures. The default arrow cursor, the "scroll" and
"do-it" cursors for PopUp menus, the hand that moves down the side of
the screen, and the Busy Bee are all examples of cursors. The program
CursDesign from the User Library can be used to create cursors. Once
a picture has been created, it can be read into Memory froll the file
(see above) and then copied into the Cursor. Each cursor is 56 bits
wide and 64 bits tall which comes to 4 words wide and 64 bits tailor
exactly one block. Therefore a file with one cursor in it can be read
in directly into the cursor buffer. The definition of the cursor and
all utility procedures for manipulating it are in IO_Others.

var curs: CurPatPtr;
begin
New(O,4,curs);
Fid := FSLookup(CursorFile, blks, bits);
FSBlkRead(fid, 0, RECAST(curs, pDirBlk»;
end;

Note that the cursor buffer must be quad-word aligned (since a
RasterOp is done from it by the system). To set a cursor, use the
function IOLoadCursor, which takes a CurPatPtr and two integers to
locate the x and y offsets in the cursor from where the cursor is
positioned. Thus, for a "bull's eye" cursor where the center is the
interesting point, the offsets would be the offsets from the top left
of the center. For a right pointing arrow, the offsets would describe
the point of the arrow. The user then does not need to compensate
when reading the cursor position. IO_Others exports the cursor
DefaultCursor which is the upper-left pointing arrow.

The cursor can be used in a number of ways. If you want the cursor to
follow the tablet and then read the tablet coordinates, use the cursor
mode TrackCursor.

1000rsorMode(TrackCursor);

Be sure to turn the tablet on using IOSetModeTablet(TabletMode).
Specify relTablet (IOSetModeTablet(reITablet» as the argument to turn
the tablet on. When TabletMode is relTablet, puck position can be
read in absolute mode or in relative mode. #ReITablet# is misnamed.
It means turn the tablet on. Do not use AbsTablet or ScrAbsTablet to
turn on the tablet.

To control whether the tablet is in relative or absolute mode, use the
Procedure IOSetRealRelTablet. In absolute mode, cursor position on
the screen is determined by the actual (absolute) tablet coordinates

- 11 -

Programming Examples - Cursors January 15, 1984

of the puck; the x and y coordinates are simple linear transformations
of the actual values to provide a one to one mapping of the screen
into the tablet surface. If the puck is in the upper-left corner of
the tablet, the cursor is in the upper-left corner of the
screen. In relative mode, lifting the puck or pen from the tablet
surface and then returning it does not alter cursor position on the
screen. Only the movement of the puck or pen on the tablet surface
causes corresponding delta-x and delta-y changes in cursor position.
Typically, you specify the mode as a switch to the Login command (see
the PERQ Utility Programs Manual).

If you want to explicitly set the position of the cursor, use cursor
mode IndepCursor. To set the cursor position, use the function

IOSetCursorPos(x,y);

Note that if you set the cursor position in Track mode (and
RealRelTablet is false), it is overwritten almost immediately by the
position of the tablet. You can still read the tablet in IndepCursor
mode if it was turned on; the tablet poSition is simply not used to
set the cursor position.

To read the tablet position, use the function IOReadTablet. It
returns the last x and y position read from the tablet. If the pen or
puck is away from the tablet, it may be an old point. The buttons can
be read using the variables TabSwitch, TabYellow, TabBlue, TabWhite,
and TabGreen. TabSwitch tells if any button was pressed. For a puck,
the other booleans tell which button it was. For a three-button puck,
TabBlue is always false. For a pen, the "colored" booleans are always
false. These booleans are true while the button is held down. The
user is required to wait for a press-let up event:

repeat until tabswitch;
while tabswitch do;
{ read tablet position, or whatever }

The Cursor functions determine how the cursor interacts with the
picture on the screen under the cursor. The cursor function also
determines the background color. The even functions have zeroes in
memory represented as white and ones as black (this is the default:
white background with black characters). Odd functions have zeroes
represented as black and ones as white. The functions are as follows
(inverted means screen interpretation; zeroes black, ones white):

CTWhite:
CTCursorOnly:
CTBlackHole:
CTInvBlackHole:
CTNormal:

CTInvert:
CTCursCompl:

Screen picture is not shown, only cursor.
Same as CTWhite only inverted.
This function doesn't work.
This function doesn't work either.
Ones in the cursor are black, zeros allow

screen to show through.
Same as CTNormal only inverted.
Ones in the cursor are XORed with screen,

zeros allow screen to show through.
CTInvCursCompl: Same as CTCursCompl only inverted.

- 12 -

o

o

o

o

o

o

Programming Examples - Reading Characters January 15, 1984

8. Reading Characters from the Keyboard.

The normal PAOCAL character Read waits for an entire line to be typed
before returning any characters. This allows editing of the line
(backspace, etc.) as described in the PERQ System Overview. If you
want to get the characters exactly when they are hit, you must call
IOCRead in IO_Unit. The normal form for this call is

If IOCRead(TransKey, c) = IOEIOC then { c is a valid character }

where IOEIOC is a constant defined in the module IOErrors and c is a
character variable. If IOCRead returns some value other than IOEIOC,
then no character has been hit. "Transkey" tells 10 that you want the
standard AOCII interpretation of the character. If you use "KeyBoard"
instead, you will get the actual 8 bits returned by the keyboard.
This code allows you to distinguish the special keys (INS, DEL, etc.)
from the other keys and allows you to distinguish CTRL/SHIFTlkey from
CTRLlkey. Some keys raise exceptions. The only way to find out if
the HELP key, CTRL/SHIFT/C, and CTRL/SHIFTID have been hit is to catch
the exception. You will have to experiment to get the code for the
desired key. There is no way to tell when a key has been let up.

IOCRead does not write out the character typed. If you want it
printed, you should use Write(c). If you want to print all the
special symbols in the font file (there is a picture associated with
every control character), you can set the high bit of the character.
This prevents the Screen package from interpreting the character as
its special meaning if any. Thus, you could print the picture for
RETIJRN by us i ng

Write(chr(LOr(RETIJRN, #200»).

IOCRead also does not turn on the input marker ("_") which shows the
user that he is supposed to type something. Do a SCurOn (from Screen)
before requesting input and an SCurOff when done to make the underline
prompt appear.

The HELP key and CTRL/C are handled specially by the 10 system. If
the HELP key is hit, an exception is raised. If you do not handle
this exception (called HelpKey, exported by System), "IHELP<CR>" will
be put into the input stream as if typed. If you do handle this
exception, you can put chr(7) into the input stream: the code for
HELP. When CTRL/C is typed, the exception CtIC is raised (also
defined in System). If not caught, nothing special is done until the
second CTRL/C is hit when CtICAbort is raised. This causes the
program to exit. Note that the CTRL/C's are put into the input
stream. CTRL/SHIFT/C causes a separate exception to be raised. If
the user wants one CTRL/C to do something special in a program (for
example, abort type-out and go to top level as in FLOPPY), put the
following Handler at the top level:

- 13 -

Programming Examples - Reading Characters January 15, 1984

Handler CtlC:
begin
WriteLn('''c'):
IOKeyClear:
CtrlCPending := false;
goto 1;
end:

(remove the CmL/C from input stream}
(so next CmL/C won't abort program}
(top of command loop I

(IOKeyClear comes from IO_Others.)

Another special character to know about is CmL/S. This character
prevents any further output to the screen until a CTRL/Q is typed. If
you want to disable this processing, simply set CtrlSPending to false
after every character is read.

IOCRead always removes the character from the input buffer if it is
there. To test if a character is ready without removing it, use
IOCPresent(Keyboard).

- 14 -

o

o

o

o

o

o

Programming Examples - CmdParse and PopCmdParse January 15, 1984

9. CmdParse and PopCmdParse.

CmdParse and PopCmdParse export a number of procedures that help read
and parse strings of commands and arguments. Procedures exist for
handling command files (which may be nested), for parsing a string
containing inputs, outputs and switches into its components, and for
getting a command index from a string or a PopUp menu.

The modules CmdParse and PopCmdParse document how each of the
procedures work. This section provides an example of how to use the
parsing procedures in CmdParse.

var ins, outs: pArgRec;
switches: pSwitchRec;
switchAr: CmdArray;
err: String:
ok, leave: boolean:
c: Char:
s: CStri ng:'
isSwitch: boolean:
i: integer:

begin

<assign all switches to SwitchAr>

c := NextString(s, isSwitch); {remove "<utility>"}
i f (c<>' ') and (c<>CCR) then

StdError(ErI 1 lCharAiter, '<utility>', true):
ok := ParseCmdArgs(ins, outs, switches, err):
repeat

if not ok then StdError(ErAnyError, err, true);
while switches <> NIL do {handle all the switches}

begin
ConvUpper(switchesA.switch):
i := UniqueCmdIndex(switchesA.switch,

switchAr, NumSwitches):
case i of

1 : <handle switch # 1>
2 : <handle switch # 2, etc.>
otherwise: StdError(ErBadSwitch,

switchesA.switch, true):
end:

switches := switchesA.next:
end:

if (outsA.name <> ") or (outsA.next <> NIL) then
StdError(ErNoOutFile, '<utility>', true):

if insA.next <> NIL then
StdError(ErOnelnput, '<utility>', true):

if insA.name = " then
begin
Vlri tel '<Prompt for argument>: '):
ReadLn(s):
ok := ParseStringArgs(s, ins, outs, switches, err):
leave := false:
end

- 15 -

Programming Examples - CmdParse and PopCmdParse

else begin
leave := true;
if not RemoveQuotes(insA.name) then

StdError(ErBadQuote, ", true);
FSRemoveDots(insA.name);

<handle the argument>

end;
until leave;
end;

- 16 -

January 15. 1984

o

o

o

Programming Examples - General I/O Operation January 15. 1984

o 10. General 110 Operation.

o

o

This section provides an overview of some low level 10 calls.
Subsequent sections describe how to do 110 to specific devices. Only
applications that need to directly control PERQ peripherals will need
the information in these sections.

The module 10_Unit contains the pascal procedures which perform 10
operations.

10.1 UnitIO

The Procedure UnitlO does all 10 except for single character reads and
writes. UnitlO is defined as follows.

Procedure UnitlO(Unit: Un i tRng ,
Bufr : 10BufPtr,
Command : 100000ands,
ByteCnt : integer,
LogAdr : double
HdPtr : 10HeadePtr, .
StsPtr : IOStatPtr);

The definitions for the types of the parameters are in the module
10_Unit. The parameters have the following meanings:

Unit - Tells the 10 system which device it should work with. Unit
must be one of:

Clock
ElODisk
Floppy
GPlB
HardDisk
PointDev
RSA
RSB (EIO board only)
Speech
280 (ElO board only)

Bufr - Points to the information the 10 system should send to a device
or to a location where the 10 system should put information received
from a device.

Command - Tells the 10 system what it should do with respect to a
device. The valid commands are:

IOConfigure - Changes or sets some device state according to
the information pointed to by Bufr.

10DiagRead - Does a read of the HardDisk without checking the
logical header on the disk against the logical header pointed
to by HdPtr. The 10 system will write the logical header
from the disk to the area pointed to by HdPtr.

- 17 -

Programming Examples - General I/O Operation January 15, 1984

IOFormat - Formats one track of a floppy.

IORead - Reads ByteCnt bytes of information from a device
into the area pointed to by Bufr.

IOReadHiVol - Identical to IORead except that it uses a DMA
channel. For some devices, this results in a higher rate of
transfer of information.

10Reset - Puts the device into an idle state.

10Seek - Moves the floppy or disk head to the track specified
in LogAdr.

10Sense - Provides device dependent status information.

10Write - Sends ByteCnt number of bytes of information to a
Device.

10WriteEOI - Identical to 10Write except the the last byte is
sent with EOI on. This is meaningful only to the GPIB.

10WriteFirst - Does a write to the HardDisk without checking
the logical header on the disk with that pointed to by HdPtr.
The 10 system will write the logical header pointed to by
HdPtr to the disk.

10WriteHiVoi - Identical to IOWrite except that the informa­
tion is sent via a DMA channel. For some devices, this
results in a higher rate of transfer of information.

IOWriteRegs - Changes the registers of a device controller.
ByteCnt number of bytes of information are sent to the device
controller. The bytes are grouped in pairs, thus ByteCnt
must be even. The first byte of each pair is the identity of
a device controller register. The second is the value the 10
system should write to that register. The operating system
does NOT reset devices between programs. Thus, use of this
command may prevent other programs from using the device.
The IOReset command will undo and IOWriteRegs commands.

10Flush - Waits for Z80 data buffers to empty.

ByteCnt - The number of bytes of information to transfer to/from a
device.

LogAdr - The logical address for block structured devices. Used for
the harddisk and the floppy.

HdPtr - Pointer to the logical header. Used for the harddisk and
floppy.

StsPtr - Pointer to a three word status buffer which is defined as
follows:

- 18 -

o

o

o

o

o

Programming Examples - General I/O Operation

IOStatus = record
HardStatus : integer;
SoftStatus : integer;
Bytes Transferred : integer;

January 15. 1984

HardStatus - Status information provided by the device.
Hardstatus is device dependent.

SoftStatus - Status information provided by the 10 System.
IOErrors exports the complete list of SoftStatus values. If
SoftStatus is lOEIClC upon return from UnitlO, the operation
was successful. Anything else indicates that an error has
occured.

Bytes Transferred - Number of bytes of information transferred
between a device and the the 10 system. Should be equal to
ByteCnt upon return.

10.2 Single Character 10

10.2.1 Reads

There are two procedures which read a character from a character
device. They are defined as follows.

function IOCRead(Unit: UnitRng; var Ch: char): integer;
function IOCRNext(Unit: UnitRng; var Ch: char): integer;

Unit must be one of:
Keyboard
Transkey
GPIB
RSA
RSB

Ch is assigned a character value that the device sent to the 10
system.

The return value will be one of

IOEIOC - character read
IOEBUN - Unit not a legal Unit number
IOENCD - Unit not a character device
10EOVR - see below
IOEIOB - see below

IOEOVR - All character devices have an associated character buffer.
The 10 system puts characters received from a device into its
character buffer and removes characters from the character buffer when
IOCRead or IOCRNext is called. If IOCRead/IOCRNext returns the value
IOEOVR it means that the 10 system lost characters sent by a device
because the device"s character buffer was full. 'The returned charac­
ter is valid. The lost characters were received after the character
returned in the previous call to IOCRead, but before the returned

- 19 -

Programming Examples - General I/O Operation January 15. 1984

character.

IOEIOB - Only IOCRead can return this value. It means that there is
no character available from the specified device. IOCRNext does not
return until is has a character from the specified device, however
long it may have to wait.

To determine if a device has sent a character without actually reading
the character use the function IOCPresent, defined as .

function IOCPresent(Unit: UnitRng): boolean:

This function is true if the device specified is a character device
and has sent a character.

10.2.2 Writes

The function IOCWrite sends a character to a character device. It is
defined as:

Function IOCWrite(Unit: UnitRng: Ch: char): integer;

Unit must be one of
GPIB
RSA
RSB
ScreenOut
Speech

Ch is the character to write.

The return value will be one of

IOEIOC - character sent successfully
IOENCD - unit is not a character device
IOEBUN - unit is not a device

10.3 Interrupts

Usually, the 10 system handles all device interrupts. They are
transparent. to pascal modules. If pascal modules wish to trap
interrupts themselves, they can tell the 10 system to raise an
exception when it receives an interrupt from a device. To enable/dis­
able such exception raising use the IOSetExceptions procedure defined
as

Procedure IOSetExcept ions (Unit : UnitRng:
IntType : IntrType;
var Setting: boolean):

- Unit ':".the device for which to enable/disable interrupt exception

IntType - the type of interrupt exception to enable/disable must be
one of

- 20 -

o

o

o

o
Programming Examples - General I/O Operation January 15, 1984

IODataInterrupt
IOAlNInterrupt

Setting

true enables the interrupt exception
false disables the interrupt exception

When IOSetException returns, Setting will be true if the interrupt
exception was enabled before the call to IOSetException and false if
the interrupt exception was disabled before the call to IOSetExcep­
tion.

The exception the 10 system will raise is defined as

Exception DevInterrupt(Unit : UnitRng;
IntType : IntrType;
AlNCause : Integer);

Unit - the device sending the interrupt

IntType - the type of interrupt it sent will be one of

IODataInterrupt
IOATNInterrupt

IF)
~ ATNCause - the cause of an attention interrupt

o

The 10 system raises an IODataInterrupt whenever the character buffer
of a character device goes from empty to nonempty. The 10 system
raises an IOATNlnterrupt whenever the 10 system receives an attention
interrupt from a device. Before raising one of these exceptions, the
10 system disables attention and data available interrupts for that
device. This prevents the system from raising a second exception
while the first is being processed. The 10 system reenables these
interrupts upon returning from the exception handler or when IOClear
exceptions is called.

- 21 -

Programming Examples - Device Operation January 15, 1984

11. Device Operation.

This section describes specific device operation at the lowest level.

11.1 HardDisk

Normally, application access to the disk is through the file system,
which uses the interface described in this section. Few, if any,
applications will need to call UnitlO for the hard disk.

The Following UnitlO Commands are legal.
10DiagRead
10Format
IORead
IOReset
IOSeek
IOWrite
IOWriteFirst

Bufr - Must point to a 256 word aligned area of memory or be ni 1. If
it is neither, the 10 system will assign 10EBAE to Soft Status and
return without executing the command.

ByteCnt - Must be a nonnegative mUltiple of 512. If it isn"t, the 10
system will assign IOEBSE to SoftStatus and return without executing
the command.

LogAdr - LogAdr[Q) contains the Disk Address, LogAdrlll is ignored.

HdPtr - Points to the Disk Header. The Disk Header is defined as

IOHeader = record
SerialNum : double;
LogBlock integer;
Filler integer;
NextAdr double;
PrevAdr double
end;

StsPtr -
BytesTransferred will be set.

The hard status for the EIO disk differs from the hard status for
the hard disk. The hard status for the EIO disk is defined in
DiskDefs as SMStatus. The hard status for the hard disk follows.

DskResult = packed record
case boolean of

true : (Result : integer);
false : (CntlError : (OK,

AddrsErr
PHCRC,
LHSER,
LHLB,

-22-

o

o

o

o

o

Programming Examples - Device Operation

end:

LHCRC,
DaCRC,
Busy):

Fil12 : boolean;
TrackZero : boolean;
WriteFault : boolean;
SeekComplete : boolean;
DriveReady : boolean)

CntlError -
OK - operation successful
AddrsErr - address error
PHCRC - physical header CRC
LHSer - logical serial wrong
LHLB - logical block wrong
LHCRC - logical header CRC
DaCRC - data CRC
Busy - device busy

Fil12 - uses up space

TrackZero - the head is at track zero

WriteFault - write failed

SeekComplete - the head is not moving

DriveReady - drive is ready

Soft Status wi 11 be one of
IOEIOC = Operation successful
IOEILC = Command not one of those listed above
IOEBUN = Illegal Unit number (not a device)
IOEBSE = ByteCnt not a multiple of 512
IOENHP = Nil HdPtr
IOETIM = Disk operation did not complete
IOEWRF = A Write Fault of some sort
IOEADR = Address Error
IOEPHC = Physical Header CRC
IOELHS = Logical Serial Number Wrong
IOELHB = Logical Block Number Wrong
IOELHC = Logical Header CRe
IOEDAC = DataCRC
IOEDNI = Disk Busy
IOEBAE = Bufr not aligned properly

- 23 -

January 15, 1984

~~-------~-------------- -------~-.,

Programming Examples - Device Operation January 15. 1984

11.2 Floppy

The following UnitIO commands are legal:

IOFormat - formats the specified track. LogAdr[11 is the
cylinder to format. It must be within the range 0 to 76. If it
isn't, the 10 system will set SoftStatus to IOECOR and return
without formatting the floppy. ByteCnt must be a multiple of
four. If it isn't, the 10 system will set SoftStatus to IOEBSE
and return without formatting the floppy. The 10 system will
format the the specified track so that it has ByteCnt/4 sectors.
(POS generally assumes that a floppy has 26 sectors to a track,
thus ByteCnt should be 104.) Bufr points to at least ByteCnt
bytes of information. Each four bytes of information defines a
sector ID. A sector ID is defined as

Byte 1 - Cylinder (same as LogAdr[1])
Byte 2 - Head (0 •• 1)
Byte 3 - Sector (I •• ByteCnt/4)
Byte 4 - N (0=128, 1=256)

The 10 system does no checking of sector ID's. If byte values
are out of range, that sector on the floppy cannot be used. If
two sector ID's have the same Sector value, reads and writes to
that Sector will randomly choose between one and the other.
BytesTransferred is O.

IORead - reads data from the floppy. ByteCnt is the number of
bytes of data to read and must be a multiple of the SectorSize.
If it isn't, the 10 system will set SoftStatus to IOEBSE and
return without reading any data. Bufr points to the memory space
which will hold the data. LogAdr contains the initial cylinder
and sector number. The 10 system will read the data from this
sector. If it needs to read more data, it will read the next
sector on the cylinder. If there are no more sectors on the
cylinder it will read the first sector on the next cylinder. It
continues this process until it has read the necessary number of
bytes. BytesTransferred will be O.

IOReset - puts the floppy in an idle state. The heads are left
at track O. ByteCnt, Bufr, and LogAdr are ignored. Bytes Trans­
ferred is O.

IOSeek - moves the floppy's head to the specified track.
LogAdr[ll is the track number.

IOWrite - writes data to the floppy. It is identical to IORead
except that it writes data and that Bufr points to the data to
write to the floppy.

Unit - is Floppy

Bufr - see below (Must always point to a quad word aligned memory
space. If it doesn't, the 10 system will set SoftStatus to IOEBAE an
return without executing the command.)

- 24 -

o

o

o

o

o

o

Programming Examples'- Device Operation

Command - see below

ByteCnt - see below

LogAdr - see below

HdPtr - ignored

StsPtr -
BytesTransferred will be set

HardStatus is as follows

bit 0 - missing address mark
bit 1 - not writeable
bit 2 - no data
bit 3 - not used
bit 4 - overrun
bit 5 - data error
bit 6 - not used
bit 7 - end of cylinder

SoftStatus will be one of
IOEIOC - operation successful
IOEBUN - illegal unit number
IOIILC - illegal command
IOEBAE - bad buffer alignment
IOECOR - cylinder out of range
IOESOR - sector our of range
IOEBSE - ByteCnt not multiple of blocksize
IOEDNR - device not ready
IOEUEF - equipment fault (not your fault)
IOEOVR - floppy overrun
IOEMDA - missing header address mark
IOEDNW - device not writable
IOECMM - cylinder mismatch
IOESNF - sector not found
IOEDAC - data CRC error
IOELHC - logical header CRC error

-25-

January 15. 1984

Programming Examples - Device Operation January 15, .1984

11.3 RS232 and Speech

On the EIO board there are two RS232 channels, RSA and RSB. In
addition, Speech output and PointDev input is implemented via a third
RS232 Channel. On the CIO board, RSB does not exist. Below, RS232
stands for one of RSA, RSB, or Speech. Section 11.7 details the
PointDev.

Single Character reads are legal for RSA,
legal for RSB,

illegal for Speech.

Single Character writes are legal for all three.

The following UnitIO commands are legal:

IOConfigure
IOReset
IOSense
IOWrite
IOWriteHiVol { not legal for RSB }
IOWr i teRegs

Unit - Has the value RSA. RSB, or Speech

Bufr - See below

Command - See below

ByteCnt - See below

LogAdr - ignored

HdPtr - ignored

StsPtr -
Bytes Transferred see below
HardStatus will be 0
Soft Status will be one of

IOEIOC = Operation Successful
IOEBUN = Illegal Device
IOEILC = Illegal Command
IOEBAE = buffer not aligned correctly for hivol write
IOEBSE = see below
IOERDI = illegal register number
10ECDI = illegal baud rate

Interrupts - The 10 system will raise 10ATNlnterrupt exceptions and
10Datalnterrupt exceptions if so enabled.

The valid commands perform as follows:

Single Character Reads - Nothing unusual

Single Character Writes - Nothing unusual

- 26 -

o

o

o

-- ---

o

o

o

Programming Examples - Device Operation January IS, 1984

IOConfigure -
For RSA and RSB this command sets the transmit and

receive baud rate. ByteCount must be two. BytesTransferred will be
set to zero. Bufr points to at least two bytes 6f information. The
first byte of contains the transmit baud rate. The second byte
contains the receive baud rate. The baud rate must be one of

RSEXT
RS110
RSI50
RS300
RS600
RS1200
RS2400
RS4800
RS9600
RSI9200 (EIO board only)

For Speech, this command sets the bit rate. ByteCount
must be two. BytesTransferred will be set to zero. Bufr points to at
least two bytes of information. These two bytes form an integer
count. The first byte being the low order byte of the count, the

. second the high order byte. (For CIO boards, the second byte is
ignored.) The 10 system loads this count into the CTC chip. To
determine the correct count to load for a desired bit rate, divide the
base clock rate by the desired rate. The base clock rate of a CIO
board is 2.456 Mhertz. The base clock rate of an EIO board is 4
Mhertz.

IOReset - This command halts RS232 communications and places the
specified device into an idle state. Characters in the input
character buffer are not affected. Characters waiting to be sent to
the device are discarded. Both Bufr and ByteCnt are ignored.
BytesTransferred will be set to zero.

IOSense - This command puts two bytes of status information into the
memory Bufr points to. ByteCnt is ignored. Bytes Transferred is set
to 2. The 10 system puts Read Register 1 of the SIO chip into the
first byte, Read Register 2 into the second byte.

IOWrite - This command sends data out on the RS232. Bufr points to
the data to send. ByteCnt is the number of bytes of data to send.
Bytes Transferred is set to the number of bytes actually transferred.

IOWriteEOI - This command is like IOWrite except that the last byte is
sent with the a CRe. The name is rather confusing and may be changed
in the future.

IOWriteHiVol - This command is like IOWrite except that the informa­
tion is sent via a DMA chip.

IOWriteRegs - This command programs the SIO controller chip. ByteCnt
must be even and less than 13. If it isn't, the 10 system will set
SoftStatus to IOEBSE and return without sending any information to the
SIO controller chip. Bufr points to ByteCntl2 pairs of bytes. The
first byte of each pair must be one of

- 27 -

Programming Examples - Device Operation

o : Command Register
3 : Receiver Logic and Parameters
4 : Control for Ix and Rx
5 : Ix Control
6 : Sync Char 1
7 : Sync Char 2

January 15, 1984

If it isn't, the 10 system will set SoftStatus to IOERDl and return
without sending any information to the S10 controller chip. The
Second byte of the pair is the value to write to the register.
IO_Unit contains a type RS_WriteReg which gives more information about
these registers. BytesIransferred will be set to ByteCnt. NOTE :
Since the PointDev is implemented via the same port as Speech,
changing the registers of the Speech device may affect the PointDev.

After an IOReset command, the SIO controller registers have been set
to:

For ZSO reg 0 - Write to command register:

NextRegisterPointer is set to: 0
Command is set to: R NullCommand
ResetCRC is set to: R_NuIIResetCRC

For ZSO reg 3 - Write to receiver logic and parms:

RSRcvEnable is set to: true
SynCharLoadlnhibit is set to: false
AddressSearchMode is set to: false
RxCrcEnable is set to: false
EnterHuntPhase is set to: false
AutoEnables is set to: true
RSRcvBits is set to: RS_8

For Z80 reg 4 - Write to control for Ix and Rx:

RSParity is set to: RS_NoParity
RSStopBits is set to: RS_Stlx5
SyncMode is set to: R_BBitSync
ClockRate is set to: R_X16

For ZSO reg 5 - Write to control for Ix:

IxCrcEnable is set to: false
RTS is set to: true
UseCrc16 is set to: false
IxEnable is set to: true
SendBreak is set to: false
RSXmitBits is set to: RS Send8
DTR is set to: true -

-28-

o

o

o

o

o

o

Programming Examples - Device Operation

11.4 GPIB

Single Character Reads are legal.

Single Character Writes are legal.

The Following UnitIO Commands are legal.

IOConfigure
IOReadHiVol
lORe set
IOSense
IOWrite
IOWriteEOI
IOWriteHiVol
IOWriteRegs
IOFlush

Unit - has the value GPIB

Bufr - see below

Command - see below

ByteCnt - see below

LogAdr - timeout count

HdPtr - ignored

StsPtr -
Bytes Transferred see below
HardStatus will be 0
SoftStatus will be one of:

IOEBUN = Unit is not a legal device
IOEBSE = Bad ByteCnt, see below
IOEILC = Illegal command
IOEUDE = 10 System error (it's not your fault)
IOEIOC = Command Successful
IOERDI = Illegal register number
IOEBAE = Bufr not quad word aligned
IOECDI = Bad configure information
IOEDNR = Device not ready

January 15, 1984

Interrupts - The 10 system will raise ATNlnterrupt exceptions and
Datalnterrupt exceptions if so enabled. The GPIB will not send
attention interrupts unless it is configured to do so by an IOConfi­
gure command. Furthurmore. an IOWriteRegs command must be used to
indicate which attention interrupts the GPIB should send to the 10
system.

The valid commands perform as follows:

Single Character reads - IOCRead and IOCRNext will never return IOEOVR
as the character buffer can never fill completely. (The 10 system
doesn't let the GPIB send more characters if it has no place to put

- 29 -

Programming Examples - Device Operation January 15, 1984

them.)

Single Character writes - nothing unusual

IOConfigure - This command enables/disables Pascal's receiving inter­
rupts other than Data In and Data Out from the GPIB contoller chip.
ByteCnt must be 1. If it isn't, the 10 system will set SoftStatus to
IOEBSE and return without configuring the GPIB. Bufr points to at
least one byte of information. This value of this byte must be 0 or
255. If not, the 10 system will set Soft Status to IOECDI and return
without configuring the GPIB. If the first byte of information is 0,
the GPIB controller chip will not send attention interrupts to the 10
system. If it is 255, the GPIB controller chip will send attention
interrupts to the 10 system. BytesTransferred will be set to O.

IOReadHiVol - This command reads data from the GPIB via a DMA channel.
This provides a high transfer rate. ByteCnt is the number of bytes of
information to be read and must be greater than one. If it isn't, the
10 system will set SoftStatus to IOEBSE and return without reading any
characters. Bufr points to an area of memory into which the 10 system
will put the data read. This area must be aligned on a four word
boundary. If it isn't, the 10 system will set SoftStatus to IOEBAE
and return without reading any characters. BytesTransferred will be
set to ByteCnt.

IOReset - This command puts the GPIB controller into an idle state.
ByteCnt must be O. Bufr is ignored. BytesTransferred will be set to
O.

IOSense - This command provides 10 bytes of status information.
ByteCnt is ignored. Bufr must point to at least 10 bytes of memory.
The following bytes are provided:

Bytel: Interrupt Status 0
Byte 2 : Interrupt Status 1
Byte 3 : Address Status changed
Byte 4 : Bus Status
Byte 5 : Address Switch 1
Byte 6 : Command Pass Through
Byte 7 : Address Status
Byte 8 : Bus Status
Byte 9 : Address Switch
Byte 10: Command Pass Through

The difference between bytes 1 through 6 and bytes 7 through 10 is
that bytes 1 through 6 show status at most recent interrupt while
bytes 7 through 10 is current as of time IOSense is issued.

BytesTransferred is set to 5.

IO'IIrite - This command sends data out to the GPIB. ByteCnt is the
number of bytes of information to send. Bufr points the information
to send. BytesTransferred will be set to the number of bytes actually
sent to the GPIB. (This may differ from Bytecnt if some error occurs
during transmission.)

-30-

o

o

o

o

o

o

Programming Examples - Device Operation January 15. 1984

IOWriteEOI - This command is identical to IO'i'rite except that EOI is
set with the last byte of information.

IOWriteHiVol - This COIIIII8nd is identical to IOWrite except that the
information is sent via a DMA channel. This allows faster transmit­
ting of information.

IOWriteRegs - This command programs the registers on the GPIB
controller chip. ByteCnt must be even, otherwise the 10 system will
set SoftStatus to IOEBSE and return without writing any information to
the GPIB controller chip. Bufr points to pairs of bytes. The first
byte of each pair indicates which register to write and must be one of
the following:

o - Interrupt Mask 0
1 - Interrupt Mask 1
3 - Auxilliary Command
4 - Address Register
5 - Serial Poll
6 - Parallel Poll

If it isn·t, the 10 system sets SoftStatus to IOERDI and returns
without sending any information to the GPIB controller chip. Bytes­
Transferred is set to ByteCnt.

NOn -- The registers above are in the order given in the Texas
Instruments data manual for the GPIB controller Chip.

- 31 -

Programming Examples - Device Operation January 15, 1984

11.5 Keyboard

Single character reads are legal. Single character reads to the
keyboard return the eight bit character generated by the keyboard.
Some of these characters are not valid ASCII characters as they have
the high order bit set. If you wish to receive valid ASCII characters
only, use device Transkey. Transkey will map characters with the high
order bit set to appropriate control characters.

-32-

o

o

o

o

o

o

Programming Examples - Device Operation

11.6 Clock

TheUnitIO commands 1000nfigure and 10Sense are legal.

Unit - has the value Clock

Bufr - see below

Command - see below

LogAdr - ignored

HdPtr - ignored

StsPtr -
Bytes Transferred - see below
HardStatus will be 0
SoftStatus will be one of

10EIOC - operation successful
IOEILC - i Uegal command
10EBUN - illegal device

January 15, 1984

10EBSE - bad byte count for configure command
IOECDI - bad configure information

A specific description follows:

IOConfigure - sets the clock. ByteCnt must be six. Bufr points to
six bytes of information. The six bytes are as follows

1 - Cycles
2 - Year
3 - Month
4 - Day
5 - Hour
6 - Minute

(50 or 60)
(year mod 100)
(1. .12)
(0 •• 31)
(0 •• 23)
(0 .• 59)

If any of the bytes is not in the specified range, the 10 system sets
SoftStatus to 10ECDI and returns. Values before the out of range
value are set correctly. BytesTransferred is O.

IOStatus - Provides the date and time. ByteCnt is ignored. Bufr must
point to at least eight bytes of memory space. The 10 system provides
the following bytes of information.

ClockStat = packed record
Cycles : 0 •• 255;
Year O •• 255;
Month 0 •• 255;
Day O •• 255;
Hour : O •• 255;
Minute 0 •• 255;
Second : O •• 255;
Jiffies: 0 •• 255
end;

BytesTransferred will be 8.

-33-

Programming Examples - Device Operation January 15. 1984

1l.7 PointDev

The following UnitlO commands are legal:

1000nfigure - turns the pointdev on or off. ByteCnt IlUst be one.
If not, the 10 system will set Soft Status to 10EBSE and return
without changing the state of the PointDev. Bufr points to at
least one byte of information. If the first byte is zero, the 10
system will turn the PointDev off. If it is not zero, the 10
system will turn the PointDev on. BytesTransferred will be O.

IOSense - finds out if the PointDev is on or off. ByteCnt is
ignored. Bufr points to a memry area. The 10 system will
assign zero to the first byte of this area if the PointDev is on.
It will assign 255 to this byte if the PointDev is off.
BytesTransferred is set to 1.

Unit - has the value PointDev

Bufr - see below

Command - see below

ByteCnt - see below

LogAdr - ignored

HdPtr - ignored

StsPtr -
BytesTransferred see below
HardStatus will be 0
SoftStatus will be one of

IOEIOC - operation successful
IOEILC - illegal command
IOEBUN - illegal device
IOEBSE - see below
IOEUDE - undefined system error

(not your fault)

- 34 -

o

o

o

Programming Examples - Device Operation January 15. 1984

<::> 11.8 Transkey

o

o

Single character reads are legal. Single character reads to the
transkey are identical to single character reads to the keyboard
except that the 10 system maps characters with the high order bit set
to appropriate control characters.

-35-

Programming Examples - Device Operation January 15, 1984

11.9 ScreenOut

Single Character Writes are legal. IOCirite will always return
IOEIOC.

-36-

o

o

o

o

o

o

Programming Examples - Device Operation

11.10 Z80

The following Unitl0 commands are legal:

IOReadHiVol
IOSense
IOWriteHiVol
IOWr i teRegs

Unit - Has the value Z80

Bufr - See below

Command - See below

ByteCnt - See below

LogAdr - See below

HdPtr - ignored

StsPtr -
Bytes Transferred see below
HardStatus will be 0
SoftStatus will be one of

10EBUN = 280 commands not val id
IOEBSE = Bad block size
IOEBAE = buffer not quad word aligned
IOEILC = Illegal command
IOEIRD = Bad register number
IOEUDE = Unknown error
IOEIOC = Operation complete

The valid commands perform as follows:

January 15. 1984

IOReadHiVol - reads data from the Z80 memory. ByteCnt is the number
of pieces of data to read and must be greater than one. LogAdrlOl
contains the 280 memory address to start reading from. Bufr points to
an area of memory into which the 10 system will put the data from the
Z8O. Bufr must be quad word aligned.

IOWriteHiVol - writes data into the 280. ByteCnt Is the number of
bytes of data to write and must be greater than one. LogAdrlOl is the
Z80 address to write the data to. Bufr points to the data to write
and must be quad word aligned. WARNING: Changing the 280 memory can
result in the PERQ not working.

10Sense - provides two bytes of information. Bufr points to at least
2 bytes of memory. The 2 bytes of information are the major and minor
version numbers of the 280 code. See 10_Unit for a definition of the
280 status.

IOWriteRegs - transfers control to a specified location in the Z80
memory. LogAdrlOl contains the memory location to jump to. WARNING:
Jumping to random places in Z80 memory can result in the PERQ not
working.

-'51-

Programming Examples - Device Operation January 15, 1984

c

c
-38-
