
PERQ
Systems
Corporation

PERQ"PASCAL EXTENSIONS

March 1984

This manual is··"o';'use with p(j~R~lease G.S.~d subsequel1t Q
•

releases unt i'l'::~4fther not i Ct!.'" ;.;. '.:;,;" ,." .

PERQ Pascal is,'.:,';ipward-compa.t .. ilt!e extensi~rof the st.~d.ard
programming 18risuage Pascal • .. 1'hti document ,:cJescr ibes only'
the extens i Oft.-i'.t6?~.scal. . . :::

PERQ Pascal Extensions

December 27, 1983

This manual is for use with POS Release G.3 and subsequent
releases until further notice.

PERC Pascal is an upward-compatible extension of the
standard programming language Pascal. This document
describes only the extensions to PASCAL.

Copyright (C) 1982, 1983
PERQ Systems Corporation
2600 Liberty Avenue
P. O. Box 2600
Pittsburgh, PA 15230
(412) 355-0900

This document is not to be reproduced in any form or
transmitted, in whole or in part, without the prior written
author izat i on of PERQ Systems Corporat i on.

The information in this document is subject to change
without notice and should not be construed as a commitment
by PERQ Systems Corporation. The company assumes no
responsibility for any errors that may appear in this
document.

PERQ Systems Corporation will make every effort to keep
customers apprised of all documentation changes as quickly
as possible. The Reader's Comments card is distributed with
this document to request users' critical evaluation to
assist us in preparing future documentation.

PERQ and PERQ2 are trademarks of PERQ Systems Corporation.

- ii -

PERQ Pascal Extensions December 27, 1983

TABLE OF CONlENTS

1. Introduction

2. Declarations
2.1 Identifiers
2.2 Declaration Relaxation
2.3 Fi les

3. Numbers
3.1 Whole Numbers
3.2 Floating Point Numbers
3.3 Type Coercion Intrinsics
3.4 Assignment Compatibility
3.5 Mixed Mode Expressions

4. Extended Constants
4.1 Constant Expressions
4.2 Unsigned Octal Whole Numbers

5. Type Compatibility
5.1 Type Coercion - RECAST

6. Extended Case Statement

·7. Control StructUres
7.1 EXIT Statement

8. Sets

9. Record Comparisons

10. Strings
10.1 Length Function

11. Generic Types
11.1 Generic Pointers
11.2 Generic Files

12. ProcedurelFunct i on Parameter Types
12.1 Parameter·Lists
12.2 Function Result Type
12.3 Procedures and Functions as Parameters

13. Modules
13.1 IMPORTS
13.2 EXPORTS

iii

PERC Pascal Extensions

14. Exceptions

15. Dynamic Space Allocation and Deallocation
15.1 New
15.2 Dispose

16. Single Precision Logical Operations
16.1 And
16.2 Inclusive Or
16.3 Not
16.4 Exclusive Or
16.5 Shift
16.6 Rotate

17. Input/Output Intrinsics
17.1 REWRITE
17.2 RESET
17.3 READIREADLN
17.4 WRITEIWRITELN
17.5 CLOSE

18. Miscellaneous Intrinsics
18.1 Start 10
18.2 Raster-Dp
18.3 WordSize
18.4 MakePtr
18.5 MakeVRD
18.6 InLineByte
18.7 InLineWord
18.8 InLineAWord
18.9 LoadExpr
18.10 LoadAdr
18.11 StorExpr
18.12 Float
18.13 Stretch
18.14 Shrink

Command Line and Compiler Switches
Command Line

19.
19.1
19.2
19.2.1
19.2.2
19.2.3
19.2.4
19.2.5
19.2.6
19.2.7
19.2.8
19.2.9
19.2.10

Compi ler Sw itches
File Inclusion
List Switch
Range Checking
Quiet Switch .
Symbols SWitch
Automatic RESETIREWRITE
ProcedurelFunct i on Names
Version Switch
Comment Sw itch
Message Switch

iv

December 27, 1983

PERQ Pascal Extensions

19.2.11
19.2~f2
19.2.13

Conditional Compilation
Errorfile Switch
Help Switch

20. Qu irks and Other Odd i ties

21. References

Index

v

December 27. 1983

PERQ Pascal Extensions December 27, 1983

vi

PERQ Pascal Extensions December 27, 1983

1. Introduction

PERQ Pascal is an upward-compat i ble extens i on of the programmi ng
language Pascal defined in PAOCAL User Manual and Report (JW741. This
document describes only the extensions to Pascal. Refer to PASCAL
User Manual and Report for a fundamental definition of Pascal. This
document uses the BNF notation used in PAOCAL User Manual and Report.
The existing BNF is not repeated but is used in the syntax definition
of the extensions. The semantics are defined informally.

These extensions are designed to support the construction of
large systems programs. A major attempt has been made to keep the
goals of Pascal intact. In particular, attention is directed at
simplicity, efficient run-:-time implementation, efficient compilation,
language security, upward-compatibility, and compile-time checking .•

lhese extensions to the language are derived from the BSl/1SO
Pascal Standard [BSI791, . the UCSD Workshop on Systems Programming
Extensions to the Pascal Language [UCSD791 and, most notably, PascalI
[PIl.

- 1 -

PERQ Pascal Extensions December 27, 1983

2. Decl arat ions

You must declare all data items in a Pascal program. To declare
a data item, specify the identifier and then what it represents.

2.1 Identifiers

You can include the underscore character "" as a significant
character in identifiers.

2.2 Declaration Relaxation

The order of declaration for labels, constants, types, variables,
procedures and·functions has been relaxed. These declaration sections
may occur in any order and any number of times. It is requ i red that an
identifier be declared before it is used. Two exceptions exist to this
rule:

1) Pointer types may be forward referenced as long as the
declaration occurs within the same type-definition-part, and

2) Procedures and functions may be predeclared with a forward
declaration.

The new syntax for the declaration section is:

<block> ::= <declaration part><statement part>

<declaration part> :-:= <declaration> I
<declaration><declaration part>

<declaration> ::= <empty> I
<import declaration part> I
<label declaration part> I
<constant definition part> I
<type definition part> I
<variable declaration part> I
<procedure and function declaration part>

; Note: See "IMPORTS Declaration" in this document.

- 2-

PERQ Pascal Extensions December 27, 1983

2.3 Files

PERQ Pascal permits the use of files as the component type of
arrays, pointers and record fields.

3. Numbers

3.1 Whole Numbers

Single precision whole numbers are of the predefined tYPe
INlEGER. They occupy 16 bits (15 bits . and a sign bit) and range in
value from -~768 to +~767. Whole numbers of the predefined type LONG
are double precision. They occupy ~ bits (31 bits and a sign bit) and
range in value from -2147483648 to +2147483647. Arithmetic operations
and comparisons are defined for both single and double precision whole
numbers. You can only use Longs as assignments in arithmetic
expressions. See the section "Extended Constants" for a discussion of
single and double precision constants.

3.2 Floating Point Numbers

PERQ Pascal floating point numbers (type REAL) occupy 32 bits and
conform to the IEEE floating point format. See [FPS01. Positive values
range from approximately 1.1754945e-38 to 3.402823e+38 and negative
values range from approximately -1.1754945e-38 to -3.402823e+38 •
Arithmetic operations and comparisons are defined for floating point
numbers.

3.3 Type Coercion Intrinsics

The STRETCH intrinsic can be used to explicitly convert a single
precision whole number into a double precision whole number. The
SHRINK intrinsic converts double precision into single precision,
provided that the value of the double precision number is within the
legal range of single precision. If it is not, a runtime error
occurs. The FLOAT intrinsic converts a single precision whole number
into a floating point number. lRUNe and ROUND convert a floating point
number into a single precision whole number, provided that the value
of the floating point number is within the legal range of single
precision. If not, 8 runtime error occurs. (The module CONVERT,
described in the PERQ Operating System Manual, provides three
functions to convert a floating point number into a double precision
whole number or vice versa.)

- 3 -

PERQ Pascal Extensions

For example:
VAR R : real;

L' : long;
I : integer;

•
•

R := ncAT(I);
I := lRUNC(R);
I := ROUND(R);
L := STRETCH(I);
I := SHRINK(L);

3.4 Assignment Compatibility

December Z1, 1983

Single precision whole numbers are assignment compatible with
double precision whole numbers and floating point numbers. That is,
expressions of type INTEGER can be assigned to variables of tYPe LONG
or REAL and INTEGER expressions can be passed by value (only) to LONG
or REAL formal parameters. Double precision whole numbers and floating
point numbers' are not assignment compatible witb single precision
whole . numbers. The type coercion intrinsics SHRINK, FLOAT and lRUNC
can be used for this purpose. The module CONVERT, described in the
PERO Operating System Manual, allows assignments between double
precision whole numbers and/floating point numbers.

3.5 Mixed Mode Expressions

Mixed mode expressions between single and double precision whole
numbers or between single precision whole numbers and floating point
numbers are allowed. Mixed mode expressions containing double
precision whole numbers and floating point numbers are not allowed.
IMPORTANT NOTE: A mixed mode expression is evaluated from left to
right (taking normal operator precedence and parentheses into account)
in single precision mode until the first LONG (or REAL) is
encountered. Starting at that point, all single precision operands are
.converted to double precision (or floating point) before used in
evaluation. Single precision overflow or underflow can occur while in
single precision mode. The STRETCH (or FLOAT) intrinsics may be used
to avoid this problem.

- 4 -

PERQ Pascal Extensions December 27, 1983

4. Extended Constants

4.1 Whole Number Constants

Unsigned octal whole number (INTEGER or LONG) constants are
supported as are decimal constants. Octal constants are indicated by a
'" preced i ng the number.

The syntax for an unsigned integer is:

<uns i gned integer> :: = <uns i gned dec i mal integer>
<unsigned octal integer>

<unsigned decimal integer> ::= <digit>{<digit>}

<uns i gned octal integer> :: = #<og i t>{ <og it> }

<digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 9

<ogit> ::= 0 I 1 : 2 I 3 : 4 I 5 I 6 I 7

NOlE: Unsigned constants do not imply unsigned arithmetic. For
example, .11/111 has the value -I, not +65535. .

4.2 Single and Double Precision Constants

A constant in the range -32768 to +32767 is considered single
precision (an INTEGER). Constants exceeding this range are cOnsidered
double precision (LONG). The maximums for double precision constants
are ~2147483648 and +2147483647. When us i ng octal constants, a
constant with the 16th bit set is interpreted as a negative integer,
not as a positive long integer.

4.3 Constant Expressions

PERQ Pascal extends the definition of a constant to include
expressions which may be evaluated at compile-time. Constant
expressions support the use of the arithmetic operators +, -, I, DIV,
MOD and I , the log i cal operators AND, OR and NOT, the type coerci on .
functions CHR, ORD and RECAST, the WORDSlZE intrinsic, and previously
defined constants. (See "WordSize" in this manual and RECAST under
"Type Compatibility", also in this manual.) All logical operations are
performed as full 16-bit operations.

- 5 -

PERQ Pascal Extensions December ZI, 1983

The new syntax for constants is:

<constant> ::= <string constant> r <constant expression>

<constant expression> ::= <csimple constant expression>
<constant expression> <relational operator>
<csimple constant expression>

<relational operator> ::= = I <> I < I <= I > I >=

<simple constant expression> ::= <cterm> I <sign><cterm> I
<simple constant expression><adding operator><cterm>

<add i ng operatol-> :: = + I - I OR

<sign> ::= + I -

<cterm> :: = <cfactor> I
<cterm><multiplying operator><cfactor>

<multiplying operator> ::= • I I I DIV I MOD I AND

<cfactor> :: = <uns i gned constant> I
(<constant expression>) I NOT <cfactor> I
CHR«constant expression» I
ORD(<constant expression» I
RECAST(<constant expressi on>, <type i dent i f i er»
WORDSIZE(<name>)

- 6 -

PERQ Pascal Extensions December 27. 1983

5. Type Compatibility

PERQ Pascal now supports strict type camp"atability as defined by
the BSI/IOO Pascal Standard [BSI791. with one addition; Any " tllO
strings, regardless of their maximum static lengths, are considered
compatable.

5.1 Type Coercion - RECAST

The function RECAST converts the type of an expression from one
type to another type when both types require the same amount of space.
RECAST. 1 ike the standard funct ions CHR and ORD, is processed at
compi Ie-time and thus does not incur run-time overhead. The function
takes two parameters: the expression and the type name for the reSUlt.
Its declaration is:

function RECAST(value:expression"7type; T:result_type_name) :T;

The following is an example of its use:

program RecastDemo;
type color = (red, blue, yellow, green);
var C: color; I: integer
begin
I := 0;
C := RECAST(I, color); {C:= red; }
end.

Note that RECAST does not work correctly for all combinations of
types; use the RECAST function sparingly and always scrutinize the
results. Generally, only the following conversions produce" expected
results:

- longs, reals, and pointers to any other type
- arrays and records to either arrays or records
- sets of O •• n to any other type
- constants to long or real
- one word types (except sets) to one word types (except sets)

Avoid the use of the RECAST function for any other conversion.

WARNING: successful compilation does NOT imply that the RECAST
function will execute correctly.

- 7 -

PERQ Pascal Extensions December 27, 1983

6. Extended Case Statement

Two extensions have been made to the case statement:

1) Constant subranges as labels.

2) The "otherwise" clause which is executed
if the case selector expression fails to
match any case label.

Case labels may not overlap. A compile-time error occurs if any
label has multiple definitions.

The extended syntax for the case statement is:

<case statement> :: = CASE <express i on> OF
<case list element> {;<case list element>} END

<case list element> ::= <case label list> : <statement>
<empty>

<case label list> ::= <case label> {,<case label»

<case label> ::= <constant> [•• <constant>] : OTIIERWlSE

If the selector expression is not in the list of case labels and
no OTIlERWlSE label is used, then the case statement is a no-op. This
is different from PAOCAL as defined by the PAOCAL User Manual and
Report, which suggests that this be a fault.

- 8 -

PERQ Pascal Extensions December 27, 1983

7. Control Structures

7 • 1 EXIT Statement

The procedure EXIT allows forced termination of procedures or
functions. The statement can exit from the current procedure or
function or from any of its parents. EXIT takes the procedure or
function name to exit from as a parameter. Note that the use of an
EXIT statement to return from a function can result in the function
returning undefined values if no assignment to the function identifier
is made prior to executing the EXIT statement. Below is an example
use of the EXIT statement:

program ExitExample(input,output);
var Str: string;

pro~dure P;
begIn
readln(Str);
writeln(Str);
if Str = "This is the first line" then

exit(ExitExample)
end;

begin
P;
while Str <> "Last Line" do

begin

end.

readln(Str) ;
writeln(Str)
end

If the above program is supplied with the following input:

This is the first line
This is another line
Last Line

the follOWing output would result:

This is the first line

If the procedure or function to be exited has been called
recurSively, then the most recent invocation of that procedure exits.

WARNING: The parameter to EXIT can be any procedure or function name.
If the specified routine is not on the call stack, the PERQ
crashes.

-9-

PERQ Pascal Extensions December 27, 1983

8. Sets

PERQ Pascal supports all of the constructs defined for sets· in
Chapter 8 of PAOCAL User Manual and Report (JW741. Space is allocated
for sets in a bit-wise fashion -- at most 255 words for a maximum set
size of 4,080 elements. If the base type of a set is a subrange of
integer, that subrange must be within the range 0 •• 4079, inclusively.
If the base type of a set is a subrange of an enumerated type, the
cardinal number of the largest element of the set must not exceed
4,079.

- 10 -

PERQ Pascal Extensions December 27, 1983

9. Record Compari sons

PERQ Pascal supports comparison of records with one restriction:
No portion of the records can be packed. For example,

program P(input,output);
var

Rl ,R2 : record
RealPaTt : integer;
Imagine : integer;

end;
begin
Rl.RealPart := 1; Rt. Imagine := 2;
R2.ReaIPart := 1; R2. Imagine := 2;
if R1 = R2 then writeln(·Records equal·);
end. .

produces as output
·Records equal·

- 11 -

PERQ Pascal Extensions December 27, 1983

10. Strings

PERQ Pascal includes a string facility which provides variable
length strings with a maximum size limit imposed upon each string.
The default maximum length of a SIRING variable is 80 characters.
This may be overridden in the declaration of a STRING variable by
appending the desired maximum length (must be a compile-time constant)
within square brackets after the reserved type identifier STRING.
There is an absolute maximum of 255 characters for all strings. The
following are example declarations of SIRING variables:

Line : SIRING; (defaults to a maximum length of 80
characters)

ShortStr : SIRING(12]; (maximum length of ShortStr
is 12 characters)

Assignments to string variables may be performed using the
assignment statement or by means of a READ statement. Assignment of
one STRING variable to another may be performed as long as the dynamic
length of the source is within the range of the maximum length of the
destination -- the maximum length of the two strings need not be the
same.

The individual characters within a STRING may be selectively read
and fir i t ten. The characters are indexed start i ng from 1 through the
dynamic length of the st~ing. For example:

program StrExample(input,output);
var L-ine : string(251;

Ch : char;

begin
Line:='this is an example. ';
Linerl]:='T'; {Line now begins with upper case T }
Ch:=Line[51; {Ch now contains a space }
end.

A STRING variable may not be indexed beyond its dynamic length.
The following instructions, if placed in the above program, would
produce an "invalid index" run-time error:

Line:=' 12345';
Ch:=Line[61;

STRING variables (and constants) may be compared regardless of
their dynamic and maximum lengths. The resulting comparison is
lexicographical according to the M£II character set. The full 8 bits
are compared; hence, the AOCII Parity Bit (bit 7) is significant for
lexical comparisons.

- 12 -

PERQ Pascal ~xtensions December 27, 1983

A SIRING variable, with maximum length N, can be conceived as
having the following internal form:

packed record DynLength : O •• 255; { the dynamic length }
Chrs: packed array [l.~Nl of char;

end; { the actual characters go here }

10.1 LENGlH Funct i on

The predefined integer function LENGm is provided to return the
dynamic length of a string. For example: .

program LenExample(input,output);
var Line:string;

Len: integer;
begin
Line:='This is a string with 35 characters';
Len:=length(Line)
end.

assigns the value 35 into Len.

- 13 -

PERQ Pascal Extensions December 27, 1983

11. Generic Types

Generic types are general forms of more specific types. PERQ
Pascal provides two predefined generic types:

1) Pointers

2) Files

11.1 Generic Pointers

Generic pointers provide a tool for generalized pointer handling.
Variables of type POINlER can be used in the same manner as any other­
pointer variable with the following exceptions:

1) Since there is no notion of type associated with the
reference variable of a generic pointer, generic pointers
cannot be dereferenced.

2) Generic pointers cannot be used as an argument to NEW or_
DISPOSE.

3) Any pointer type can be passed to a generic pointer
parameter. To make use of a generic pointer, RECAST should
be used to convert the pointer to some usable pointer type.

- 14 -

PERC Pascal Extensions· December 27 ~ 1983

The following is a sample program utilizing generic pointers:

program P(input,output);
type

Ptrlnt = Ainteger;
PAOrChar = packed array[1 •• 2) of char;
PtrPAOfChar = APAOfehar;

var
I : Ptrlnt;.
C : PtrPAOfehar;

procedure Procl (GenPtr : poi nter) ;
var Vi : PtrPAOfChar;
begin

Vi := recast (GenPtr ,PtrPAOfChar) ;
writeln(WA[11,WA[21)

end;

begin
nell(l);
IA := 16961; {First byte = 'A', second = 'B' }
Procl(I);
new(e);
CA[I] := 'C';
CA [2] : = 'D • ;
Procl (e);
end.

produces output

11.2 Generic Files

AB
CD

Generic fi les have very restricted usage. Their purpose is to
provide a facility for passing various types of flIes to a single
procedure or function. Generic files may onl yappear as routine V AR
parameters. Their type is FILE. They can be used in only two ways:

1) Passed as a parameter to another generic file parameter,or

2) As an argument to the ·LOADADR i ntri ns i c.

- 15 -

PERQ Pascal Extensions December 27, 1983

lbe following examples show tliO ways of using generic files:

program P;
type

var
FOfInt = file or integer;

F- : text;
F2 : file of boolean'~

procedure Procl (var GenFi Ie : fi Ie);
var

UseGenFi Ie : record

begin

case boolean of

end;

true : (FileOflnterest : AFOflnt);
false : (Offset : integer;

Segment: integer);

loadAdr(GenFile);
storexpr(UseGenFile.Orfset);
storexpr(UseGenFile.Segment);
(Now FileOflnterest can be used)

end;

procedure Proc2(var GenFile : file);
const

smw = 183;
var

FileOflnterest : AFOfInt;
begin
loadAdr(FileOflnterest);
loadAdr(GenFile);
InLineByte(SID\V) ;
{ Now FileOflnterest can be used }

end;

begin
Procl (F);
Procl (F2);
Proc2(F);
Proc2(F2);
end.

- 16 -

PERQ Pascal Extensions December 27, 1983

12. ProcedurelFunction Parameter Types

12.1 Parameter Lists

PERQ Pascal permits, but does not require, the parameter list of
procedures and functions which have been forward declared to be
repeated at the site of the actual declaration. If given, the
parameter list must match the previous declaration or a compilation
error occurs. For redeclaration of function parameters, both the
parameter list and the function type must be repeated.

12.2 Function Result Type

PERQ Pascal functions may return any type, with the exception of
type FILE.

12.3 Procedures and Functions as Parameters

PERQ Pascal supports passing procedures and functions as
parameters to other procedures or functions, as described by the
BSI/Ioo Pascal Standard lBSI791.

You must put the full description of the procedure parameter in the
routine header (just as if it was defined by itself). For example:

Procedure EnumerateAII (directory: String; Function for each one
(filename: String): boolean; all:boolean);

Note that if the procedure is forward declared or in an export
section, the routine header for this procedure cannot be repeated.

- 17 -

PERQ Pascal Extensions December 27, 1983

13. Modules

The module facility provides the ability to encapsulate
procedures, functions, data and types, as well as supporting separate
compi lat i on. Modules may be separately compi led, and i ntermodule type
checking will be performed as part of the compilation process.~ Unless
an identifier is exported from a module, it is local to that module
and cannot be used by other modules. Likewise all identifiers
referenced in a module must be either local to the module or imported
from another module.

Modules do not contain a main statement body. A program is a
special instance of a module and conforms to the definition of a
program gi ven by the PAOCAL User Manual and Report (.JW741 • Only a
program may contain a main body, and every executable group of modules
must contain exactly one instance of a program.

Exporting allows a module to make constants, types, variables,
procedures and functions available to other modules. Importing allows
a module to make use of the EXPORTS of other modules.

Global constants, types, variables, procedures and functions can
be declared by a module to be private (available only to code within
the module) or exportable (available within the module as well as from
any other module which imports them).

r

MOdules which contain only type and constant declarations cause
no run-time overhead; making them ideal for COIDDDn declarations. It
should also be noted that such _modules may not be compiled (as errors
will be produced), however they may be successfully imported.

13.1 IMPORTS Declaration

The IMPORTS Declaration specifies the modules which are to be
imported into a module. The declaration includes the name of the
module to be imported and the file name of the source file for that
module. When campi 1 ing an import declaration, the source fi Ie
containing the module to be imported must be available to the
compiler.

Note: I f the module is composed of several INCLUDE files, only those
files from the file containing the program or module beading through
the file which contains the word PRIVATE, must be available. (See
"Compiler SWitches" in this manual.)

The syntax for the IMPORTS declaration is:

<import declaration part> ::= IMPORTS <DKXiule name>
FROM <file name>;

- 18 -

PERQ Pascal Extensions December 27, 1983

13.2 EXPORTS Declaration Section

If a program or module is to contain any exports, the EXPORTS
Declaration section must immediately follow the program or lOOdule
heading. The EXPORTS Declaration section is comprised of the word
EXPORTS followed by the declarations of those items which are to be
exported. These definitions are given as previously specified with
one except i on: procedure and funct ion bodi es are not given in the
exports section. Only forward references. are given. (See "Declaration
ReI axat i on" in thi s manual.) (See Chapter 11.2 in the "PA9:AL User
Manual and Report" [JW741.) The inclusion of "FORWARD;" in the EXPORTS
reference is omitted.

The EXPORTS Declaration section is terminated by the occurrence
of the word PRIVAlE. This signifies the beginning of the declarations
which are local to the module. The PRIVATE Declaration section must
contain the declarations and bodies for all procedures and functions
def i ned in the EXPORTS Decl arat i on sect ion.

If a program is to contain no EXPORTS Declaration section. the
inclusion of PRIVAlE following the program heading is optional
(PRIVATE is assumed). (Note: A module with no EXPORTS would be
useless, since its contents could never be referenced -- it only makes
sense for a program not to have any EXPORTS.)

The new syntax for a unit .of compilation is:

<eomp i I at i on un i t> :: = <mOdule> I <program>

<progr8m> ::= <program heading><mOdule body><statement part>.

<mOdule> ::= <mOdule heading><mOdule body>.

<program heading> ::= PROGRAM <identifier> (<fi Ie identifier>
{, <file identifier>});

<mOdule heading> ::= MODULE <Identifier>;

<mOdule body> ::= EXPORTS <declaration part> PRIVAlE
<declaration part> I PRIVATE <declaration part>
<declaration part> .

- 19 -

PERC Pascal Extensions December 27, 1983

14.0 Exceptions

PERQ Pascal provides an exception handling facility. Exceptions
are typically used for error conditions. There are three steps to
using an exception:

1) The except i on must be decl ared.

2) A handler for the exception must be defined.

3) The exception must be raised.

An exception is declared by the word EXCEPTION followed by its
name and optional list of parameters. For example: '

EXCEPTION DivisionByZero(Numerator : integer);

Exceptions can be declared anywhere in the declaration portion of a
program or module.

The second step is to specify the code to be executed when the
exception condition occurs. This is done by defining a handler with
the same name and parameter types as the declared exception, for
example:

HANDLER DivisionByZero(Top : integer);
<block>

(See "Declaration Relaxation" in this document for a definition of
<block>.) Essentially, a handler looks like a procedure with the word
HANDLER substituted for the 1I0rd PROCEDURE. Handlers may appear in the
same places procedures are allowed, with one difference. Handlers
cannot be global to a module (they may, however, be global to the main
program). The number and type of parameters of a handler must match
those of the corresponding exception declaration but the names of the
parameters. may be different. Multiple handlers can exist for the same
exception as long as there is only one per name scope. The exception
must be declared before its handler(s).

Raising an exception is analogous to a procedure call. The word
RAISE appears before the name and parameters of the exception, for
example:

RAISE DivisionByZero(N);

causes the appropriate handler to execute. The appropriate handler is
determi ned by the current subprogram call i ng sequence. The run-t i me
stack is searched until a subprogram containing a handler (of the same
name) is found. The search starts from the subprogram which issues the
RAISE. .

- 20 -

PERC Pascal Extensions

For example:

program ExampleException;

exception EXi

handler Ex;
begin
writeln(-Global Handler for exception Ex-);
end;

procedure Procl;
begin
raise Ex;
end;

procedure Proc2;
handler Ex;

begin
writeln(-Local Handler for exception Ex-)
end;

begin
raise Ex;
Procl;
end;

begin
raise Ex;
Proc2;
Procl;
end •

. produces the following output:

Global Handler for exception Ex
Local Handler for exception Ex
Local Handler for exception Ex
Global Handler for exception Ex

December 27, 1983

Handlers which are already active are not eligible for
reactivation. In this case the search continues down the run-time
stack until a non~active handler is found. A handler cannot,
therefore, invoke itself by raising the same exception it was meant to
handle. If a recursive procedure contains 8 handler, each activation
of the procedure has its own eligible handler.

- 21 -

PERC Pascal Extensions December 27, 1983

If an exception is raised for which no handler is defined or
eligible, the system catches the exception and invokes the debugger. A
facility is provided to allow the user to catch such exceptions before
the system does. Handlers can be defined for the predefined exception
AlL:

EXCEPTION ALL(ES, ER, PSt art , PEnd : integer);

where

1 lES is the system segment number of the exception,

2) ER the routine number of the exception,

3) PStart the stack offset of the first word of the exception's
original parameters and,

4) PEnd the stack offset of the word following the original
parameters.

Any raised exception that does not have an eligible handler in
the same or suceeding level (of the calling sequence), in which an ALL
handler is defined,. is caught by that ALL handler. The four integer
parameter values are calculated by the system and supplied to the ALL
handler. Extreme caution should be used .hen defining an AlL handler,
as the handler also catches system exceptions. All cannot be raised
explicitly. The ability to define ALL handlers is intended for
"systems hackers" only.

The operating system provides several default handlers.
Information on these handlers can be found in the "Program System" and
"Module Except" descriptions in the Operating System Manual.

Since exceptions are generally used for serious errors, careful
consideration should be given as to whether or not execution should be
resumed after an exception is raised •. When a handler terminates,
execution resumes at the place following the RAISE statement. The
handler can, of course, explicitly dictate otherwise. The EXIT and
0010 statements may prove useful here (See "Control Structures" in
this manual.)

-22-

PERC Pascal Extensions December· 27, 1983

15.0 Dynamic Space Allocation and Deallocation

The PERQ Pascal Compiler supports the dynamic allocation
procedures NEW and DISPOSE defined on page 105 of PAOCAL User Manual
and Report (JW741 , along with several upward compatible extensions
which permit full utilization of the PERC memory architecture.

There are two features .of PERC's memory' architecture which
require extensions to the standard allocation procedures. First,
there are situations which require particular alignment of memory
buffers, such as 10 operations. Second, PERQ supports mUltiple data
segments from which dynamic allocation may be performed. This
facilitates grouping data together which are to be accessed together,
which may improve PERQ's performance due to improved swapping. Data
segments . are multiples of 256 words in size and are always aligned on
256 word boundaries. For further information. of the memory
architecture and available functions see the documentation on the
memory manager.

15.1 NEW

If the- standard form of the NEW procedure call is used:

NEW(Ptr{,Tagl, ••• TagN})

memory for Ptr is allocated with arbitrary alignment from the default
data segment.

The extended form of the m;w procedure call is:

NEW(Segment,Alignment,Ptr{,Tagl, ••• TagN})

Segment is the segment number from which the allocation is to be
perfonned. This number is returned to the user when creating a new
data segment. The value 0 is used to indicate the default data
segment.

Alignment specifies the desired alignment; Any power of 2 to 256
(2HO through 288) is permissable~ Do not use zero to specify the
desired alignment. .

I f the extended form of NEW is used, both a segment aoo al i gnment
must be specified; there is no form which permits selective inclusion
of either characteristic.

If the desired allocation from any call to NEW cannot be
performed, a NIL pointer is usually returned. However, if memory is
exhausted, the FULLMEMORY exception may be raised. If the call to NEW
fai Is and raises FULI.JlEMORY, the user program wi 11 abort unless it

-23-

PERQ Pascal Extensions December Z7, 1983

includes a handler for FULLYEMDRY.

15.2 DISPOSE

DISPOSE is identical to the definition given in PA9:AL User
Manual and Report lJW741. Note that the segment and al ignment are
never given to DISPOSE, on~y the pointer and tag field values.

- 24 -

PERC Pascal Extensions December 27 t 1983

16. Single Precision Logical Operations

The PERQ Pascal compiler supports a variety of single precision
(INlEGER) logical operations. The operations supported include: and,
inclusive or, not, exclusive or, shift and rotate. The synt&(for
their use resembles that of a function call; however the code is
generated inline to the procedure (hence there is no procedure call
overhead associated with their use). The syntax for the logical
functions are described in the following sections.

16.1 And

Function LAND(Vall,VaI2: integer): integer;

LAND returns the bitwise AND of Vall and Va12.

16.2 Inclusive Or

Function LOR(Vall,Va12: integer): integer;

LOR returns the bitwise INCLUSIVE OR of Vall and Va12.

16.3 Not

Function LNOT(Val: integer): integer;

LOOT returns the bitwise complement. of Val.

16.4 Exclusive Or

Function LXOR(Vall,Va12: integer): integer;

LXOR returns the bitwise EXCLUSIVE OR of Vall and Va12.

16.5 Shift

Function SHIFT(Value, Distance: integer): integer;

SHIrr returns ·Value shifted Distance bits. If Distance is
positive, a left shift occurs, otherwise, a right shift occurs. When
performing a left shift, the Least Significant Bit is filled with a 0,
and likewise when performing a right shift, the Most Significant Bit
is filled with a O. '

-25-

PERQ Pascal Extensions December 27 t 1983

16.6 Rotate

Function ROTAlE(Value, Distance: integer): integer;

ROTAlE returns Value rotated Distance bits to the right. ROTATE
accepts only a positive integer in the ra~e 0 through 15 for
distance. Note that the direction of the ROTAlE 1S the opposite of
SHIFT.

- 26-

PERQ Pascal Extensions December 27, 1983

17. InputlOutput Intrinsics

PERQ"s Input/Output intrinsics vary slightly from P~AL User
Manual and Report (JY(74 1 •

17.1 REWRITE

The REWRITE procedure has ·the following form:

REWRI1E(F ,Name)

F is the rile variable to be associated with the file to be written
and Name is a string containing the name of the file to be created.
EOF(F) becomes true and a new file may be written. The only
difrerence between the PERQ and PAOCAL User Manual and Report[Ji741
REWRITE is the inclusion of the filename string.

17.2 RESET

The RESET procedure has the following form:

RESET(F,Name)

F is the file variable to be associated with the existing file to be
read and Name is a string containing the name of the file to be. read.
The current file position is set to the beginning of file, i.e. RESET
assigns the value of the first element of the file to FA. EOF(F)
becomes false if F is not empty; otherwise, EOF(F) becomes true and
FA is underined.

17 • 3 READIREADLN

PERQ Pascal supports extended versions of the READ and READLN
procedures derined by PAOCAL User Manual and Report [JVf741. Along
with the ability to read longs, integers (and subranges or integers),
reals and characters, PERQ Pascal also supports reading booleans,
packed arrays or characters, and str i ngs •

The strings lRUE and FALSE (or any unique abbreviations) are
valid input for parameters of type boolean. Mixed upper and lower case
are permissible.

If the parameter to be read isa PACKED ARRAY[m •• n] of CHAR, then
the next n-ID+ 1 characters from the input 1 i ne will be used to fill the
array. If there are fewer than n-JD+l characters on the line, the
array will be filled with the available characters, starting at the
m"th position, and the remainder .of the array will be filled with

- 27-

PERQ Pascal Extensions December 27, 1983

blanks.

If the parameter to be read Is of type SIRING, then the string
variable will be filled with as many characters as possible until
either the end of the input lir~ is reached or the maximum length of
the string is met. If there are not enough characters on the line to
fill the entire string, the dynamic length of the string will be set
tp the number of characters read.

17.4 WRIlElWRIlELN

PERQ Pascal provides many extensions to the WIlE and WRIlELN
procedures defined by PAOCAL User Manual and Report [Ji741. Due to
the scope of these extensions, the WRITE and WRIlELN procedures are
completely redefined below:

1. write(pl, ••• ,pn) stands for write(output,pl, ••• ,pn)

2. write(f,pl ••••• pn) stands for BEGIN write(f,pl);
write(f.pn) END

3. writeln(pl •••• ,pn) stands for writeln(output.pl, ••• pn)

4. writeln(f.pl, ••• ,pn) stands for BEGIN write(f,pl);
write(f,pn); writeln(f) END .

5. Every parameter pi must be of one of the forms:

e

e : el

e : el : e2

where e, el and e2 are expressions.

...

6. e is the VALUE to be written and may be of type CHAR, long,
integer (or subrange of integer), real, boolean, packed
array of char, or string. For parameters of type boolean,
one of the str i ngs !RUE • FALSE or UNDEF will be written;
UNDEF is written if the internal form of the expression is
neither 0 nor 1. '. .

7. el, the minimum field width, is optional. In general,the
value e is written with el characters (with preceding
blanks). With one exception, if el is smaller than the
number of characters required to print the given value, more
space is allocated; if e is a packed array of char, then
only the first el characters of the array are printed.

-28-

PERQ Pascal Extensions December 27, 1983

8. e2,which is optional, is applicable only when e is of type
long, integer (or subrange of integer) or real. If e is or
type long or integer (or subrange or . integer) then e2
indicates the base in which the value of e is to be printed.
The valid range for e2 is 2 •• 36 and -36 •• -2. Ir e2 is
positive, then the value of e is printed as a signed
quantity (l6-bit twos complement); otherwise, the value of e
is printed as a full 16-bit unsigned quantity. If e2 is
omitted, the signed value of e is printed in base "10. If e
is of tyPe real, then e2 specifies the number of digits to
follow the decimal point. The number is then printed in
fixed-point notation." If e2 is omitted, then real numbers
are printed in floating-point notation.

17.5 CLOSE

The CLOSE intrinsic closes an output file. The intrinsic has the
following form:

CLOSE(F)

F is the file variable to be associated with the file to be closed.
Note that if you do not close a file for which a rewrite was performed
and the program exits, or aborts, the data is lost.

-29-

PERQ Pascal Exten·s ions December 27, 1983

18. Miscellaneous Intrinsics

18.1 StartlO

STARTIO is a special QCode (See the PERQ QCode Reference Manual)
which is used to initiate inputloutput operations to raw devices.
PERQ Pascal supports a procedur:-e, STARTIO, to facilitate generation of
the correct QCode sequence for 1/0 programming. The procedure call
has the following form:

STARTIO(Unit)

where Unit is the hardware unit number of the device to be activated.

18.2 RasterOp

RasterOp is a special QCode which is used to manipulate blocks of
memory of arbitrary sizes. It is especially useful for creating and
lIKXIifying displays on the screen. RasterOp axxiifies a rectangular area
(called the -destination-) of arbitrary size. (to the bit). The
picture drawn. into this rectangle is computed as a function of the
previous contents of the destina~ion and the contents of another
rectangle of the same size called the -source-. The functions
performed to combine the two pictures are described below.

To allow RasterOp to work on memory other than that used for the
screen bitmap, RasterOp has parameters that specify the areas of
memory to be used for the source and destination: a pointer to the
start of the memory block and the width of the block in words. Within
these regions, the positions of the source and destination rectangles
are given as offsets from the pointer. Thus position (0,0) would be at
the upper left corner of the region, and, for the screen, (767, 1023)
would be the lower right. The operating system module Screen exports
useful parameters.

-30-

PERQ Pascal Extensions December 2:1, 1983

The compiler supports a RASTEROP intrinsic which may be used to
invoke the RasterOp QCode. The form of this .call is:

RASTEROP(Function,
Width,
Height,
Destination-X-Position,
Destination-Y-Position,
Destination-Area-Line-Length,
Destination-Memory-Pointer,
Source-X-Position,
Source-Y-Position,
Source-Area-Li ne-Length,
Source-Memory-Poi nter)

Note: the values for the destination precede those for the source.

The arguments to RasterOp are defined below:

WFunctionW defines how the source and the destination are to be
cOmbined to create the final picture stored at the
destination. The RasterOp functions are as follows: (Src
represents the source and Dst the destination):

Function Name Action

0 RRpl Dst gets Src
1 RNot Dst gets NOT Src
2 RAnd Dst gets Dst AND Sic
3 RAndNot Dst gets Dst AND NOT Src
4 ROr Dst gets Dst OR Stc
5 ROrNot Dst gets Dst OR NOT Sic
6 RXor Dst gets Dst XOR Sic
7 RINor Dst gets Dst XNOR Src

The symbol i c names are exported by the file wRaster. Pas W •

wWidthW specifies the size in the horizontal (WxW) direction of
the source and destination rectangles (given in bits).

wHeightW specifies the size in the vertical (WyW) direction of
the source and dest i nat i on rectangles (gi ven in scan 1 i nes) •

wDestination-X-Positionw is the bit offset of the left side of
the destination rectangle. The value is offset from
Destination-Kemory-Pointer (see below).

- 31 -

PERQ Pascal Extensions December 27, 1983

~stination-Y-PositionW Is the scan-line offset of the top of
the destination rectangle. The value is offset from
Dest i nat i on-Memory-Poi nter (see below).

wDestination-Area-Line-Lengthw is the number of words which
comprise a line in the destination region (hence defining
the region's width). The appropriate value to use when
operating on the screen is 48. The specified value must be a
multiple of four (4) and within the range 4 through 48.

wDestination-Kemery-PointerW is the 32-bit virtual address of the
top left corner of the dest i nat ion regi on (i t may be 8
pointer variable of any type). This pointer MUST be
quad-word aligned, however. (See wNeww in this document for
details on buffer alignment.)

wSource-X-Positionw is the bit offset of the left side of the
source rectangle. The value is offset from
Source-Memery-Pointer (see below).

wSource-Y-Positionw is the scan-line offset of the top of the
source rectangle. The value is offset from
Source-Memory-Pointer (see below).

wSource-Area-Line-Lengthw is the number of words which comprise a
line in the source region (hence defining the region's
width). The appropriate value to use when operating on the
screen is 48. The specified value must be a multiple of four
(4) and within the range 4 through 48.

wSource-Memory-PointerW is the 32-bit virtual address of the top
left corner of the source region (it may be a pointer
variable of any type). This pointer MUST be quad-word
aligned, however. (See wNeww in this document for details on
buffer alignment.)

18.3 WordSize

The WordSize intrinsic returns the number of words of storage
required for any item which has a size associated with it. This
includes constants, types, variables and functions. The intrinsic
takes a single parameter, the item whose size is desired, and returns
an integer.

Note: WordSize generates compile time constants, and hence may be used
in constant expressions.

-32-

PERQ Pascal Extensions December 27, 1983

18.4 llakePtr

The lrIakePtr intrinsic permits the user to create a pointer to a
data type given a system segment number and offset. Its use is
intended for those who are familiar with ·the system and are sure of
what they are doing. The function takes three parameters. The first
two are the system segment number and offset within that segment to be
used in creating the pointer, respectively, given as integers. The
last parameter is the typeoC" the pointer to be created. KakePtr
returns a pointer of the type named by the third parameter.

Note: The next seven intrinsics, MakeVRD, InLineByte, InLineWord,
InLineAWord, LoadExpr, LoadAdr and StorExpr, require that the user
have knowledge oC how the compiler generates code (which will not be
discussed bere). These intrinsics are intended for ·system backing",
and are made available for those who know what they are doing. The
programmer who wishes to experiment with these may find the QCode
disassembler, QDIS, is very useful to determine if the desired results
were produced.

18.5 lrIakeVRD

MakeVRD is used to load a variable routine descriptor for a
procedure or function. (See ·Routine Calls and Returns· for a
description oC LVRD and CALLV in the QCode Reference Manual.) The
variable routine descriptor is leCt on the expression stack of the
PERQ, and any further operations must be performed by the user. This
procedure takes one parameter, the name oC the function or procedure
for which the variable routine descriptor is to be loaded. The use of.
this intrinsic assumes that the programmer is -familiar with QCode
(primarily a ·hacker·s· intrinsic) .•

18.6 InLineByte

InLineByte permits· tbe user to place expl icit bytes directly into
the code stream generated by the campi ler • Thi s i ntr i ns i cis
particulary useful for insertion of actual QCodes into a program.
InLineByte requires one parameter, the byte to be inserted. The type
of thi s parameter must be either integer or subrange oC integer.

18.7 InLineWord

InLineWord permits the user to place explicit words directly into
the code stream generated by the compi ler • Thi s i ntr i ns i cis
particulary useful for insertion of directQCodes into a program.
I nLi neWord requ i res one parameter, the word to be inserted. Thi sword

-33-

PERC Pascal Extensions December 27, 1983

will be inserted immedi ate I y as the next ~wo bytes of the code stream
(no word alignment is performed). The type of this parameter must be
either integer or subrange of integer.

18.8 lriLineAWord

InLineAWord . permits the. user to place explicit words. directly
into the code stream generated by the campi ler • Thi s i ntr i ns i cis
.particulary useful for insertion of. direct QCodes into a program.
I nLi neAWord requi res one parameter, the word .to be inserted. Thi s
word is placed on the next word boundary of the code stream. The type
of this paraJDeter must be either integer or subrange of integer.

18.9 LoadExpr

The LoadExpr intrfnsic takes an arbitrary expression as its
parameter and "loads" the value of the expression. The result of the
"load" is wherever the particular expression type would normally be
loaded (expression stack for scalars, memory stack for sets, etc.).

18.10 LoadAdr

The LoadAdr intrinsic loads the- address of an arbitrary data item
onto the expression stack. The parameter to LoadAdr. the item whose
address is desired, may include array indexing, pointer dereferencing
and field selections. The address which is left on the expression
stack will be a virtual address if .the parameter includes either the
use of a VAR parameter or a pointer dereference; otherwise a 20-bit
stack offset will be loaded.

18.11 StorExpr

StorExpr stores the single word on top of the expression stack in
the variable given as a parameter. The destination for the store
operation must not require any address computation; the destination
must be a local, intermediate or global variable; it must not be a VAR
parameter; if it is a record, a field specification may be given.

18.12 Float

The Float intrinsic converts an integer into a floating point
number.

-34-

PERQ Pascal Extensions December 27. 1983

18.13 Stretch

The Stretch intrinsic converts a single precision Integer to a
double precision integer.

18.15 Shrink

The Shrink intrinsic cOnverts 8 double precision integer to a
single precision integer. If the double precision integer is outside
the range of -~768 to +~67, a runtime error occurs.

-35-

PERQ Pascal Extensions December 27, 1983

19. Command Line and ComplIer Switches

19.1 Command Li ne

The PERQ Pascal compiler is invoked by typing a compile command
line to the PERQ Operating System. The syntax for the compile command
line is:

COMPILE [<InputFile>] [~<OutputFile>] {</Switch».

<InputFile> is the name of the source file to be compiled. The
compiler searches for <InputFile>. If it does not find <InputFile>, it
appends the extension ".PAS" and searches again. If <InputFile> is
still not found, the user .,ill be prompted for an entire command line.
If <InputFile> is not specified, the compiler uses for <InputFile> the
last file name remembered by the system.

<OutputFile> is the name of the file to contain the output of the
compiler. The extension" • SEa" will be appended to <OutputFile> if it
is not already present. Note that if <OutputFile> is not specified,
the compiler uses the file name from <InputFile>. Then, if the ".PAS"
extension is present, it is replaced with the ".SEO" . extension, else
if the ".PAS" extension is not present, the ".SEO" extension is
appended. If <OutputF i Ie> already ex i sts , it. iiI be rewritten.

</Switch> is the name of a campi ler switch. All compi ler switches
speci f i eel on·· the command 1 i nemust begin·. i th the "'" character. Any
number of switches may be specified, and if a switch is specified
multiple times, the last occurrence is used. Also, if the /HELP switch
is specified, the other information on the command 1 lne is ignored.
The available switches are defined in the following sections.

The interface to the compiler is slightly different when invoked
from a command file. If there is an error in the command 1 i ne, it
does not prompt for input, but rather logs an entry in a file called

CmdFilePascal.ERR

in the local directory. If this file does not exist in the local
directory, the compiler creates the file and inserts the entry.
Otherwise, the compiler simply appends the entry to the existing file.
The compiler never deletes this file. '

-36-

PERQ Pascal Extensions December 27 t 1983

19.2 Compiler SWitches

PERQ Pascal compiler switches may be set either in a mode similar
to the convention described on pages 100-102 of PA9:AL User Manual and
Report (JVI741 or on the command line described abOve (see above
Sect ion, "Command Li ne"). The first form of compi ler sw itches may be
written as comments and are designated as such by a dollar sign
character (.) as the first ¢taracter of the comment followed by the
switch (unique abbreviations are acceptable) and possibly switch
parameters. The second form is given after the input file
specification in the command line preceded by the slash (I) character.
The actual switches provided by the PERQ Pascal compiler, although
similar in syntax, bear little resemblance to the switches described
in PAS:AL User Manual and Report (JVI741.

The following sections describe the various switches currently
supported by the PERQ Pascal Compi ler •

19;2.1 File Inclusion

The PERQ Pascal compiler may be directed to include the contents
of secondary source files in the compilation. The effect of using the
file inclusion mechanism is identical to having the text of the
secondary f i le(s) present in the pri mary source file (the primary
source file is that file which the compiler was told to compile).

To include a secondary file, the following syntax is used:

(,INCLUDE FILENAME)

The characters between the ",INCLUDE" and the "}" are taken 8S the
name of the file' to be i ncl uded (lead! ng spaces and tabs are ignored).
The comment must terminate at the end of the filename, hence no other
options can follow the filename.

If the file FILENAME does not exist, ".PAS" will be concatenated
onto the end of FILENAME, and a second attempt will be made to find
the file.

The file inclusion mechanism may be used anywhere in a program or
JOOCIule, and the results wi II be as if the entire contents of the
include file were contained in the primary source file (the file
containing the include directive).

Note: There is no form of th is switch for the command 1 i ne, it
may only be used in comment form within a program.

-'37-

P£RQ Pascal Extensions December Z1, 1983

19.2.2 List S.itch

The List Switch controls whether or not the compiler generates a
program listing oC the source text. The default is to not generate a
list file. The format for the List switch is:

(ILIST <filename>)

or

ILIST [= <filename>]

where <f i lename> is the name of the file to be sri tten. The extens ion
".LST" will be appended to <filename> if it is not already present. If
<filename> is not specified, the compiler uses the source file name.
If the ".PAS" extension is present, it is replaced with the ".~
extension, else if the ".PAS" extension is not present, the ".~
extension is appended. Like the file inclusion mechanism, in the
comment form of the switch, the fi lename is taken as all characters
between the "SLIsr" and the "}" (ignoring lead i ng spaces and tabs) ;
~nce no other options may be included in this comment.

With each source line, the compiler prints the line number,
segment number, and procedure number.

19.2.3 Range Checking

This switch is used to enable or disable the generation of
additional code to perform checking on array subscripts and
assignments to subrange types.

Default value: Range checking enabled

SRANGE+ or !RANGE

SRANGE- or INORANGE

SRANGE=

enables range checking

disables-range checking

resumes the state of range checking which
was in force before the previous
SRANGE-or IRANGE+ switch.

If "$RANGE" is not followed by a "+", "-", or "=", then "+" is
assumed.

Note that programs compiled with range checking disabled run
slightly faster, but invalid indices go undetected. Therefore, until
a program is fully debugged, it is advisable to keep range checking
enabled.

-38-

PERQ Pascal Extensions DeCember Zl, 1983

19.2.4 Quiet Switch

This switch is used to enable or disable the Compiler from
displaying the name or each procedure and runction as it is compiled.

Derault value: Display or procedure and function names enabled

~UIEr+ or !VERBOSE . enables display or procedure and function
names

IQUIEr- or IQUIET disables display of procedure and
funct i on names

SQUIEr= resumes the state or the quiet switch
which was In force before the previous
IQUIET- or SQUIET+ switch.

If -SQUIET- is not followed by a -+-, ---, or -=-, then -+- is
assumed.

19.2.5 Symbols SWitch

This switch is used to set the number or symbol table swap blocks
used by the Compiler. As the number of symbol table swap blocks
increases, compiler execution time becomes shorter; however physical
memory requirements increase (and the Compiler may abort due to
insufficient memory). The format for this switch is:

-/SYMBOLS = <t of Symbol Table Blocks>

Note: There is no comment form of this switch, it may only be used on
a command 1 i ne.

The derault number or symbol table blocks and the maximum number or
symbol table blocks are both dependent on the. size or memor-y. For
systems with 256k bytes of main memory, the default number of symbol
table blocks is 24 and the maximum number of. symbol table blocks is
32 •. Note that you can specify mre than 32 symbol table blocks with a
256k byte system, but perrormance usually degrades considerably. For
systems with 512k or 1024k bytes of main memory, the derault number or
symbol table blocks is 200 and the maximum number of symbol table
blocks is also 200. .

-39-

PERQ Pascal Extensions December Z1, 1983

19.2.6 Automatic RESETIREWRITE

The PERQ Pascal compiler automatically generates a RESET(INPUf)
and REVlRIlE(OUTPUr). This may be disabled if desired with the use of
the AUTO switch. The format for this switch is:

Default value: Automatic initialization enabled

IAUI'O+ or IAUfO enables automatic initialization

IAUTO- or INOAUTO disables automatic initialization

If "SAUTO" is not followed by a "+" or "-", then "+" is assumed.

If the comment form of this switch is used, it must precede the
BEGIN of the main body of the program.

19.2.7 ProoedurelFunction Names

The PERQ Pascal compiler generates a table of the procedure and
function names at the end of the" .SEG" file, if so directed. This
table may be useful for debugging programs. The format for this switch
is:

Default value: Name Table is generated

,NAMES+- or /NAMES enables generation of the Name Table

lNAMES- or INONAMES disables generation of the Name Table

If "SNAMES" is not followed by a "+" or "-" , then "-" is
assumed.

Note: currently two programs, the debugger and the disassembler, use
the information stored in the Name Table.

19.2.8 Version S.itch

The Version Switch permits the inclusion of a version string in
the first block of the ".SEG" file. This string has a maximum length
of 80 characters. Currently this string is not used by any other PERQ
software, however, it may be accessed by user programs to identify
".SEO" fi lese The format for this switch is:

SVERSION <string> or !VERSION = <string> to set the Version
string.

-40-

PERQ Pascal Extensions December 27, 1983

When using the IVERSION form of the switch,the version string is
terminated by the end of the comment or the end of the line. ... If the
comment exceeds a single line, the remainder of the comment is
ignored. If the !VERSION form is used, the versio~ string is
terminated by either the end of the command line or the occurrence of
a -,- ·character (hence a -,- may not appear i nthe version string).

19.2.9 Comment SWitch

The Comment SWitch permits the inclusion of arbitrary text in the
first block of the" .SEG" file. This string has a maximum length of
80 characters. It is particularly useful for including copyright
notices in ".SEG" files. The format for this switch is:

IOOMlffiNT <string> or 'COMMENT = <string> to set the comment
string.

When utilizing the IOOMMENT form of the switch, the comment text
is terminated by the end of the comment or the end of the line. If
the comment exceeds a single line, the remainder of the comment is
ignored.

19.2.10 Message Switch

The Message Switch causes the text of the switch to be printed on
the user-s screen when the switch is parsed by the compiler. It has
no effect on the compilation process. The format for this switch is:

$MESSAGE <string> to print <string> on the console during
compilation

The message is terminated by the end of the comment or the end of
the line. If the comment exceeds a single line, the remainder of the
comment is ignored.

Note: There is no command line form for this switch, it may only be
used in its comment form.

19.2.11 Conditional Compilation

The PERQ Pascal conditional compilation facility is implemented
through the standard switch facility. There are three switches which
are used for conditional compilations. The first is the IIFC switch.
which has the following form:

{IIFC<boolean expressiOn> THEN}

- 41 -

PERQ Pascal Extensions December Z7, 1983

This switch indicates the beginning of a region of conditional
compilation. If the boolean expression, evaluated at compile time, is
true, the text to follow 15 included in the compilation. If the
boolean expression evaluates to false, then the text which follows is
not i ncl uded.

The region of conditional compilation is terminated by the SENDC
switch:

{IENOC)

Upon encountering the SENOC switch, the state of compilation returns
to whatever state was present prior to the most recent IIFC.

The remaining switch is the IEISEC switch, and it functions much
in the same way as the else clause in an IF statement. If the boolean
expression of tbe IIFC switch is true, then the SELSEC text is
ignored, otherwise it is included.

If a SELSEC switch is used, no IENOC preceeds the SELSEC; the
IELSEC signals the end of the SIFC region. A SENDC is then used to
terminate the IElSEC clause.

Conditional compilations may be nested.

The following are two examples of the conditional compilation
mechanism:

Const CondSw = lRUE;
PROCEDURE Test;
begin
(IIFC CondSw mEN)

Writeln(·CondSw
(SENDC)
end { Test };

TYPE Base = record -i ,j,k: integer end;
(IIFC WORDSlZE(Base) = 3 mEN)

Cover = arrayIO •• 21 of integer
{SELSEC}

Cover = arrayIO •• l0] of integer
(SENOC);

19.2.12 Errorfile Switch

When the compi ler detects an error ina program, it dl splays
error information (file, error number" and the last two lines where
the error occurred) on the screen and then requests whether or not to
continue. The IERRORFlLE switch overrides this action. When you

- 42 -

PERQ Pascal Extensions December 27, 1983

specify the switch and the compiler detects an error, the error
information is written to a file and there is no query of the user.
However, the compiler does display the total nUmber of errors
encountered on the screen.

The format for this switch is: IERRORFILE [= <fi lename>]

. where <filename> is the name of the file' to be written. The extension
".ERR" will be appended to <filename> if it is not already present. If
<rilename> is not specified, the compiler uses the source file name.
If the ".PAS" extension is present, it is replaced with the ".ERR"
extension, else if the" • PAS" extension is not present, the ".ERR"
extens ion is appended.

The. error file exists arter a compilation if and only if you
specify the IERRORFILE switch and an error is encountered. If the file
<filename>.ERR already exists from a previous compilation, it will be
rewritten, or deleted in the case of no compiliation errors. This
switch allows compilations to be left unattended.

19.2.13 Help Switch

The Help switch provides general information and overrides all
other sw itches. The format is /HELP.

- 43-

PERQ Pascal Extensions December 27, 1983

20.0 Quirks and Other Oddities

The following are descriptions of known quirks and problems with
the PERQ Pascal compiler. Future releases may correct these problems.

1. FOR loops with an upper bound of greater than
32.766 never terminate.

2. The last line of 8ny PROGRAM or MODULE must end
with a carriage return, or an "Unexpected End of
Input" error occurs.

3. Although unique abbreviations are accepted for
switches. the following abbreviations cause
compilation errors:

Switch

SELSEC
SENOC
lIfe
,INCLUDE

Bad Abbreviation

$ELSE
SEND
SIF
SIN

4. Procedures and functions whIch are forward
declared (this includes EXPORT declarations) and
contain procedure parameters. may not have their
parameter lists redeclared at the site of the
procedure body.

5.· The compiler currently permits the use of an EXIT·
statement where the routine to be exited from is
at the same lexical level as the routine
containing the EXIT statement. For example:

program Quirk;

p~ure ProcOne;
begin
end;

p~ure ProcTwo;
begin
exit(Prod)ne)
end;

begin
ProcTwo
end.

If there is no invocation of the routine to be

-44-

PERQ Pascal Extensions December Z1, 1983

exited on the run-time stack, the PERQ hangs and
must be re-booted.

6. The fi lename specification given In IKPORTS
Declarations must start with an alphabetic
character.

7. Record comparisons . involving packed records
(illegal comparisons) will not be caught unless
the word PACKED appears explicitly in the record
definition. For example, records with ,fields of
user-defined type Foo, where Foo contains packed
information, are considered comparable by the
compiler when in actuality they are not.

8. Reals and longs cannot be used together in an
expression.

9. The camp i ler II ill not detect an error in the
definition or use of a set that exceeds set size
limitations. If such 8 set is used, incorrect code
will be generated.

10. Many functions that exist for integers (for
example, LAND) are not implemented for longs.
Also, you can only use Longs as assignments in
arithmetic expressions.

11. The RECAST i ntri ns i c does not work II i th tllo-WOrd
scalers (for example, LONG) and arrays.

- 45·-

PERQ Pascal Extensions December 27, 1983

20. References

-(BSI791 "BSI/I&> Pascal Standard," Computer, April 1979.

[FPSOl "An Implementation Guide to a Proposed Standard for Floating
Po i nt ", Computer, January .1980

[JW741 K. Jensen and N. Wirth, PA~AL ~ Manual and Report, Springer
Verlag, New York, 1974.

[PI] J. Hennessy and F. Baskett, "Pascali: A Pascal Based Systems
Programming Language," Stanford university Computer Science
Department, 1RN 174, August 1 CJ79.

[OCSD79J K. Bowles, Proceedings of UCSD Workshop 2!l System Programming
Extensions 12 the Pascal Language, Institute for Information
Systems, University of California, San Diego, California, 1979.

-46-

PERC Pascal Extensions December Z7, 1983

INDEX
(Entries entirely In upper case are reserved words or
predeclared identifiers)

ALL 22
AND 25
Assignment Compatibility 4
Automatic RESETIREWRIlE 40
CASE Statement . 8
. CLOSE 29
Command Line 36
Comment SWitch 41
Compiler SWitches - 36
Conditional Compilation 41
Constant Expressions 5
Constants 5
Control Structures 9
-Declaration Relaxation 2
Declarations 2
DISPOSE 24
Dynamic Space Allocation and Deallocation 23
~C 41
ENOC 41 -
Error notification file 42
Errorfile Switch 42
EXCEPTION 20
Exceptions 20
Exclusive Or 25
EXIT Statement 9
EXPORTS Declaration 19
FILE 15
Fi Ie Inclusion '37
Files 3
FLOAT 34
Floating Point Numbers 3
Function Result Type 17
Functions . 17
Generic Files 15
Gener i c Poi nters 14
HANDLER 20
Help switch 43
Identifiers 2
IFC 41
I~LWE '37
Inclusive Or 25
INLINEAWORD 34
I~Imm~ ~
INLINEWORD 33
Input/Output Intrinsics 27

- 47-

PERQ Pascal Extensions December 27, 1983

INlEGER 3
INlEGER Logical Operations 25
LAND 25
LENGTH 13
LIST 38
~T 25
LOADADR 34
WIDEX~ 34
WOO 3
LOR 25
LXOR 25
UAKEP1R 33
UAKEVRD 33
MESSAGE 41
Miscellaneous Intrinsics 30
Mixed Mode Expressions 4
Modules 18
~i ~
NOT 25
Numbers 3
00 ~
OlHERWI$ 8
Parameter Lists 17
Parameters 17
POINTER 14
PRIVATE 19
ProcedurelFunction Names 40
Procedures 17
OOIET ~
Quirks 44
RAISE 20
~GE· ~
Range Checking 38
RASIEROP 30
~AD ~
~~~ ~ 
~~ 3 
RECASI' 7 
Record Comparisons 11 
References 46 
RESET 27 
REWRIlE 27 
ROTAlE 26 
Sets 10 
mIIT 25 
SHRINK 35 
Single and Double Precision Constants 5 
Single Precision Logi~al Operations 25 
STARTIO 30 
STOREXPR 34 . 

- 48-



PERC Pascal Extens ions 

SI'RETCH 
SIRING 
Strings 
SWltches 
Symbols Slritch 
Type Coercion 
Type Coercion Intrinsics 
Type Compatibility 
VERSION 
Whole Number Constants 
Whole Numbers 
I'ORDSIZE 
WRITE 
I'RIlELN 

- 49-

December Xl, 1983 

3S 
12 
12 
36 
39 
7 
3 
7 

40 
5 
3 

32 
28 
28 


	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49

