Systems
Corporation

PERQ. @coODE REFERENCE MANUAL

March 1984

This manual is for use with P0S Release G.5 and subsequent
releases until further notice.

Copyright(C) 1981, 1982, 1983, 1984
PERQ Systems Corporetion

2600 Liberty Avenue

P. 0. Box 2600

Pittsburgh, PA 15230

(412) 355-0S00

This document is not to be reproduced in any form or
transmitted, in whole or in part, without the prior written
authorization of PERQ Systems Corporation.

The information in this document is subject to change
without notice and should not be construed as a commitment
by PERQ Systems Corporation. The company assumes ho
responsibility for any errors that may appear in this
document.

PERQ Systems Corporation will make every effort to Kkeep
customers apprised of all documentation changes as quickly
as possible. The Reader’s Comments card is distributed with
this document to request users’ critical evaluation to
assist us in preparing future documentation.

PERQ and PERQ2 are trademarks of PERQ Systems Corporation.

- ji =

Table of Contents

Q-Machine Architecture

[N
.

Definitions

(S

O twommom >

Memory Organization

! Memory Organization at the Process Level
{.a Global Data

1.b Local Data

.1.c Run-Time Stack Organization

2 - Memory Organization at the System Level
.2.a System Segment Address Table

2.b System Segment Information Table

2.c Code Segment Organization

. .

o
.

Error Handling and Fault Conditions
Instruction Format

Pointers

QCode Descriptions

Variable Fetching, Indexing, Storing and Transferring
Loads and Stores of One Word

Constant One Word Loads

Local One Word Loads and Stores

Own One Word Loads and Stores

Global One Word Loads and Stores
Intermediate One Word Loads and Stores
Indirect One Word Loads and Stores

Loads and Stores of Multiple Words
Double Word Loads and Stores

Multiple Word Loads and Stores

Byte Arrays

Strings

Record and Array Indexing and Assignment

N D WD N +— v e e e et e
0O Q0 o

oo

Top of Stack Arithmetic and Comparisons
Logical

Integer

Reals

Sets

Strings

Byte Arrays

Array and Record Comparisons

Long Operations

VU N B LN —

Jumps

O o PEbEEIEEEE PrEEEEEEREEEREE T

Routine Calls and Returns

- iii -

Table of Contents

4.E Systems Programs Support Procedures

Index

- iV -

PERQ QCode Reference Manual January 15, 1984

1.

Q-Machine Architecture

1.A Definitions

Segment - A segment is the underlying structure of PERQ’s virtual
memory system. It is the largest area of contiguous memory,
and also the unit of swappability. Segments come in two
types: code segments, which are byte-addressed, read-only,
and fixed in size with a maximum size of 64K bytes (32K

words); and data segments, which are word-addressed,
read-write, and variable in size with a maximum size of 64K
words.

MSTACK - Memory Stack. A data segment which contains the user
run-time stack.

ESTACK - Expression Stack. A 16 level expression evaluation stack
(internal to the PERQ processor).

MIOS - Top of MSTACK. MIOS refers to the virtual address of the
top of the memory stack. (MIOS) denotes the item on the top
of the MSTACK.

ETOS - Top of ESTACK. (ETOS) denotes the item on the top of the
ESTACK.

Activation Record - Stack segment fragment for a single routine
containing local variables, parameters, function result,
temporaries (anonymous variables), other housekeeping values
(Activation Control Block - defined below), and a copy of
the EStack at the time the activation record is created.

CB - Code Base (register). Physical adddress of the base of the
current code segment.

SB - Stack Base (register). Physical address of the base of the
current stack segment.

PC - Program Counter (register). Physical address of the current
instruction.

GDB - Global Data Block. A GDB contains the global variables for
a particular module. GDBs always begin on a double-word
boundary.

ISN - Internal Segment Number (compiler-generated).

PERQ QCode Reference Manual January 15, 1984

SSN -

L -

RN -

s -

RPS -

LTS -

System Segment Number (system-generated). Note, System
Segment O is reserved and may never be used.

Lexical Level. Note: the Lexical Level of the main body of
a process is always O.

Routine Number (register). RN contains the ordinal number
of the current routine. Note: RN must lie in the range O to
255. ’

Code Segment (register). CS contains the system segment
number (SSN) for the current code segment. This segment
must be resident in physical memory for a process to be
runnable.

Stack Segment (register). SS contains the system segment
number (SSN) for the current stack segment. This segment
must g? resident in physical memory for a process to be
runnable.

Parameter Size. PS is the number of words in an activation
record which are used for parameters.

Result + Parameter Size. This is the number of words in an
activation record which are used for function result and
parameters.

Local + Temporary Size. LTS is the number of words in an
activation record which are used for locals and temporaries
(anonymous variables). (Note: the LTS of a main program
body is always forced to 0.)

Activation Pointer (register). AP contains the physical
address of the current activation record.

Dynamic Link. This is the AP of the caller, represented as
an offset from SB.

Static Link. This is the AP of the surrounding routine,
represented as an offset from SB.

Top Pointer (register). TP contains the physical address of
the top of the run-time MStack.

Top Link. TP of the caller, represented as an offset from
SB.

PERQ QCode Reference Manual January 15, 1984

GP -

GL -

LP -

XGP -

XST -

&

ACB -

EEB -

Global Pointer (register). Physical address of the GDB for
the current code segment.

Global Link. GP of the caller, represented as an offset
from SB.

Local Pointer (register). Physical address of the current
activation record. When the LP is stored in an Activation
Control Block (ACB), it is represented as an offset from SB.
Unlike other values in the ACB, the LP value is the current
value of the Local Pointer, not some previous value.

eXternal Global Pointer. Pointer to another code segment°‘s
GDB, represented as an offset from SB.

eXternal Segment Table. For a given program module, the XST
translates ISNs to SSNs and XGPs.

Return Segment. RS is the CS of the caller.

Return Address. PC of the caller, represented as an offset
from CB.

Return Routine. RN of the caller.

Routine Dictionary. Each code segment contains a routine
dictionary which is indexed by RN. For each routine, the
routine dictionary gives the lexical level (LL), entry
address, exit address, parameter size (PS), result +
parameter size (RPS), and local + temporary size (LTS).

Activation Control Block. The ACB contains housekeeping
values in the activation record. It contains the SL, LP,
DL, GL, RS, RA, RR and EP. In the ACB, the DL, GL, RS, RA,
and RR are the AP, GP, CS, PC, and RN of the caller,
respectively. The SL is the AP of the routine that
surrounds the current one. The LP in the ACB is the current
local pointer.

Exception Enable Block - Each EEB enables a single exception
by associating an exception with a handler. A (possibly
empty) list of EEBs 1is associated with each activation
record in the stack.

Enabling an Exception - Associating a certain exception handler

with a certain exception.

PERQ QCode Reference Manual January !5, 1984

EP - Exception Pointer. The address (as an offset from SB) of a
list of nodes that describe which exceptions are enabled in
a certain routine.

ER - Exception Routine Number. The routine number of an

exception.

ES - Exception Segment Number. The segment number of an
exception.

Exception - An error or unusual occurrence in the execution of a

routine or program.

Exception Handler - A procedure to be executed when a certain
exception' is raised.

HR - Handler Routine Number. The routine number of an exception
handler.

NE - Next Exception. The address (as an offset from SB) of the
next. in a list of nodes that describe which exceptions are
enabled in a certain routine.

Raising an Exception - Asserting a certain exception.

PERQ QCode Reference Manual January 15, 1984

1.B Memory Organization

The PERQ’s virtual memory system features a segmented 32-bit
virtual address space mapped into a 20-bit physical address space.
The segment is the unit of swappability, and comes in two types:

1) Code segments which are byte-addressed, read-only, and fixed in
size with a maximum size of 64K bytes (32K words).

2) Data segments which are word-addressed, read-write, and variable
in size with a maximum size of 64K words.

A PERQ process is a collection of up to 64K code and data
segments. One of the data segments is the stack segment. Every
process must have a stack segment and at least one code segment.

All segments are allocated in 256 word chunks and when in
physical memory are aligned on 256 word boundaries. Note: A single
segment must exist in contiguous memory. It may not be fragmented.

1.B.1 Memory Organization at the Process Level

The memory organization is designed with the following attributes
in mind: 1) to allow separately compiled code segments to be grouped
into a single process, 2) to allow code segments to be shared among
processes, 3) to allow each code segment to have its own global
variables, and 4) to allow one code segment to reference routines and
global variables in other code segments. To achieve this, the
following high-level characteristics are implemented:

1) All code is re-entrant.

2) Each code segment only refers to other code segments by internal
(compiler-generated) segment numbers, which are not necessarily
the same as the system-assigned segment numbers.

3) Each code segment in a process has its own Global Data Block on
the run-time stack.

4) Each code segment has an external segment table to permit
referencing global variables and routines from other code
segments.

PERQ QCode Reference Manual January {5, 1984

1.B.1.a Global Data

At the global level, there is a Global Data Block (GDB) and an
eXternal Segment Table (XST) associated with each code segment in a
process. For a particular program module, the GDB contains the global
variables, and the XST translates internal (compiler-generated)
segment numbers (ISNs) to actual system segment numbers (SSNs) and
eXternal Global Pointers (XGPs). To simplify the system, we devote a
single pointer to reference both the current GDB and XST. This Global
Pointer (GP) points to the lowest address in the GDB and is ALWAYS
aligned on a double-word boundary.

-—

B o> 1
i undetermined space i
1 |
T OXST I |
! GDB I !
T H
[} |
]) 1
1 [}
XST i
GP e !
GDB i
-

_— -

toward the top of stack

The XST for each segment is indexed by the internal segment
numbers (ISNs). The entry is at GP - 2XISN (Note: There is no entry
for ISN 0; ISN O always refers to the current segment). Each entry
contains the offset from stack base (SB) of an external data block
(XGP) and the actual system segment number (SSN) of the external
segment. The XGP values are set by the linker, and the SSN values are
set by the loader.

PERQ QCode Reference Manual January (5, 1984

eXternal Global Pointer (XGP)

s s =

System Segment Number (SSN)

+ -t ==t

1.B.1.b Local Data

At the local level, there is an activation record, which consists
of local wvariables, function result, parameters, temporaries
(anonymous variables), the Activation Control Block (ACB), the
previous EStack, exception enable blocks, and extra values that the
routine may push and pop from the run-time stack. Three pointers are
used to access and keep track of this information: the top-of-stack
pointer (TP), the current-activation pointer (AP), and the
local-variables pointer (LP).

Result m-1

Parameters m-1

Locals m-1

Temporaries m-1

D ks Tk SRS Sy—S

Exceptions m-1

Extra m-1

Bk r YN S A e r S 1

— =t

PERQ QCode Reference Manual January 15, 1984

4 -

LP ———>
Result m

+
+

Parameters m

+
+

Locals m

+

Temporaries m

+

-3
ha

AP —=-=>
ACB m

i

1
-+
+

+

EStack m-1

Exceptions m

+

Extra m

TP ————>

+

<
+

toward the top of stack

The function result, parameters, locals and temporaries are
located by an offset from LP.

PERQ QCode Reference Manual January 15, 1984

Each ACB has the following form:

Static Link (SL)

Local Pointer (LP) (current)

Dynamic Link (DL)
Global Link (GL)
Top Link (TL)

Return Segment Number (RS)

Return Address within Segment (RA)

Return Routine Number (RR)

Exception Pointer (EP)

B X Y SN S S BRI RIS R
I SN R R R R R ot ¥

toward the top of stack

The values in the ACB are the AP of the surrounding routine (SL),
the current (not previous) LP, the AP of the caller (DL), the GP of
the caller (GL), the TP of the caller (TL), the SSN of the caller
(RS), the program counter (PC) of the caller (RA), the RN of the
caller (RR) and a pointer to the current exception enable records
(EP). Note: When previous pointer values are saved in the ACB they
are called links: SL, DL, GL, TL. Because the current (not previous)
LP and EP are stored in the ACB, they are called pointers, not links.
The static link is not used for main programs and top-level routines.
It is zero for these routines and is therefore a means of detecting
top-level routines. The dynamic link is zero for the first routine on
the stack (the one at the base of the stack). This is used to detect
the end of the stack during stack searches.

PERQ QCode Reference Manual January iS5, 1984

The EStack image immediately follows the ACB and looks like this:

Number of Words Saved
(ETOS)
(ETOS-1)

— e —— -}
R R R Y

(ETOS-n)

R
+ - -

toward the top of stack

- 10 -

PERQ QCode Reference Manual January 15, 1984

1.B.l.c Run-Time Stack Organization

The following is an outline of the stack for a process of n
-segments, executing the mth routine call, which is in the ith segment:

SB ————>
undetermined space

XST 1
GDB 1

R T SR SpR—

B Lk T - Y

LI Y

-
+ -

XST i

+
F

GP ---->

g

-

ACB 0 (main program)

L oy TN SRR S R NUGS I I R SN G

Exceptions 0

Extra 0

Result 1|

Parameters |

Locals |

Temporaries 1

i Tk ek T Tt Tk Tt Sy RyUIST ST R,

- 11 -

PERQ QCode Reference Manual

LP ——-->

AP ———->

TP ———->

ACB 1

EStack 0

Exceptions 1

Extra |

T P S S

+

Result m

[SR S S RV R

Parameters m

+

"Locals m

+

Temporaries m

+

+ —

ACB m

+

EStack m-1

+

-+

Exceptions m

+

+

Extra m

+

e
+

e
as

toward the top of stack

- 12 -

January 15, 1984

PERQ QCode Reference Manual January 15, 1984

1.B.2 Memory Organization at the System Level

The system makes use of two tables to control memory usage, the
System Segment Address Table and the System Segment Information Table.
The former contains all information which is needed by the Q-Code
micro-code (location, size, residency, etc). The latter contains
other information which is only referenced by the operating system
(reference, 1/0 and lock counts; maximum size; etc).
1.B.2.a System Segment Address Table

The System Segment Address Table is a dynamic table, which is
always resident in physical memory starting at physical address 0.
This table contains two words per segment, and contains all
information that the Q-Code micro-code needs to know about each
segment. The information contained in this table is:

1) Segment Base Address (upper 12 bits)
2) Segment Size (number of 256 word blocks - 1)

3) Flags
Not Resident
Recently Used
Moving
Shareable
Segment Kind
Segment Full
Segment Table Entry In Use

The Segment Base Address is the upper 12 bits of the physical
address of the base of the segment. If the segment is not resident in
physical memory, this field is undefined. The lower 8 bits of the
Segment Base Address are always guaranteed to be zero (since all
segments are aligned on 256-word boundaries).

The Segment Size is one less than the size of the segment in
256-word blocks (i.e., Segment Size 0 = 256 words).

The Flags have the following meanings and uses:

Not Resident - When true, this flag indicates that the segment
is either swapped out or that the segment table entry
is not in use. When false, this flag indicates that
the entry is in use and the segment it describes is
resident in physical memory. (See the "Segment Table
Entry In Use"” flag.)

- 13 -

PERQ QCode Reference Manual January (5, 1984

Recently Used - This flag is set when a segment is accessed.

It is used by the swapper to determine which segments
are likely candidates to be swapped out when space is
needed.

Moving - This flag, when true, indicates that the segment is

being moved from one location in physical memory to
another. If moving is true, Resident will be false.
Moving is used only by the swapper to determine how to
handle segment faults. (Not used by the Q-Code
micro-code).

Shareable - When true, this flag indicates that a segment may

Segment

Segment

Segment

be shared by several processes. (Not used by the
Q-Code micro-code)

Kind - This flag indicates whether the segment is a
data or code segment. (Not used by the Q-Code
mi cro-code)

Full - This flag, when true, indicates that the entire
data segment has been allocated (via the Pascal New
procedure). This flag is needed to distinguish full
and empty data segments (and has no relevant meaning
for code segments). (Not used by the Q-Code
mi cro-code)

Table Entry In Use - This flag is set true when the
segment table entry describes a valid segment.

The arrangement of these fields within the two words are shown

below:

Bit 15 87 0

Word 0 | Base Addr (bits 8-15) | Flags !
- + +

Bit 15 _ 43 0

Word | ? Segment Size i BA (16-19) E

- 14 -

PERQ QCode Reference Manual January 15, 1984

The positions of the flags within the low byte of Word O are:
Bit Flag

Resident

Moving

Recently Used
Shareable

Segment Kind
Segment Full

Table Entry In Use
not used

NOoONHWNN—O

1.B.2.b System Segment Information Table

There is no information in the System Segment Information Table
which is needed by the Q-Code micro-code; hence it is not described
here. See "Module Memory"” in the Operating System Manual.

1.B.2.c Code Segment Organization

A code segment contains the code for all routines in a segment
and a routine dictionary which contains vital information about each
of these routines.

The first word of every code segment is the offset from the base
of the segment to the first word of the routine dictionary. The
second word contains the number of routines which are defined in the
segment. These two words are followed by the actual code which
comprise the routines. Finally, the code is followed by the routine
dictionary. The code is padded with 0 to 3 words of zero (by the
compiler) so that the routine dictionary is aligned on a quad-word
boundary. This is possible since the compiler knows that the base of
the segment is also aligned on a quad-word boundary. It should also
be noted that each entry in the dictionary is exactly 2 quad-words
long (8 words). The routine dictionary is indexed by (Base Address of
Dictionary)+8%RN.

- 15 -

PERQ QCode Reference Manual January 15, 1984

Each entry has the following form:

Parameter Size (PS)

Result + Parameter Size (RPS)

Local + Temporary Size (LTS)

Entry Address Within Segment

Exit Address Within Segment
Lexical Level (LL)

not used 1|

not used 2

Y N S Y ST N N S S
R R o e ek

toward high memory

The Entry and Exit Addresses are the offsets from code base (CB)
to the beginning of the routine and the beginning of the "terminate
code” of the routine.

- 16 -

PERQ QCode Reference Manual January 15, 1984

The following is a sample of a code segment containing 3
routines:

Pointer to Routine Dictionary

! 1.
! Number of Routines (3) !
Code for Routine | v
Code for Routine 2 \
Code for Routine 3 v
RD Entry for Routine 1 <——+

RD Entry for Routine 2

RD Entry for Routine 3

+ =t =t ——+
+ ——t ==t -+

toward high memory

-17 -

PERQ QCode Reference Manual January 15, 1984

1.C Error Handling and Fault Conditions

Error processing is done through an exception handling mechanism.
The syntax of exception and handler is described in the PERQ Pascal
Extensions manual. The QCodes used to enable and raise exceptions are
described in Section "Routine Calls and Returns.”

An exception is declared in a way which is similar to a procedure
declaration. Therefore it is convenient to assign a routine number at
the point of definition of an exception. There is a corresponding
entry in the routine dictionary to describe this exception. This
entry describes a procedure with the correct number of parameters
along with no locals or temporaries. The system segment number of the
module, which contains the exception, and its routine number uniquely
identify the exception.

An exception handler is simply a procedure--handlers may not
return a value. An exception handler is enabled by declaring it
inside some routine. This outer routine is called the enabler of the
handler. The code segment numbers and global pointers of the enabler
and handler are the same. The static link of the handler is the same
as the activation pointer of the enabler. Thus an exception handler
is uniquely identified by the ACB of the enabler and the routine

number of the handler.

An excegtion enable record consists of the definition of the
exception to be handled (ER and ES), the routine number of the handler
(HR), and a link to the next exception enable record (NE). ER and ES
are negative for a handler of all exceptions.

Exception Segment Number (ES)

Exception Routine Number (ER)

Handler Routine Number (HR)

Next Exception Pointer (NE)

ot =t ——+

gy S S

When a routine is called, the exception pointer (EP) within the
new ACB is set to zero to indicate that there are no exception
handlers. If exception handlers are declared within the routine, the
compiler generates appropriate QCodes to add those handlers to the
routine’s exception list. When a routine is exited, the exception
records are popped from the run-time stack along with the rest of the
activation record.

- 18 -

PERQ QCode Reference Manual January 15, 1984

When an exception is raised, the QCode interpreter microcode
calls the procedure RaiseP in the module Except. This routine
searches back through the run-time stack to find the most recent
routine which contains a handler for that exception. Once such a
candidate is found, the stack is searched again to determine if that
handler is already active. If it is, the search for a candidate
continues. This implementation ensures that while a particular
instance of a handler is active, it will not be activated again. A
recursive routine may contain a handler, and there may be several
instances of the same handler. In this case, each handler is
activated separately.

Determining if a handler is active by searching the stack is not
the best method. If we assume that the depths of handler activation
records are related to the number of active handlers, then the total
stack search time for raising an exception is related to the square of
the number of active handlers of that exception. This should rarely
be burdensome because it is not expected that there will be more than
one or two active handlers for a given exception. Recursive routines
that pass exceptions up the call stack are pathological cases.

¥hen an unused enable for the exception is found, the associated
handler is called. The handler has the option of exiting to the
routine which enabled the exception (via a Goto) or of returning to
the point where the exception was raised (by falling off the end of
the procedure).

If no handler is found, the default handler is called. The
search order for a certain routine’s exception list is the reverse of
the order in which they were enabled. If a handler of all exceptions
is declared within a certain routine, the compiler enables it first.

A handler of all exceptions is called in a special way. When it
is called, the parameters that were passed when the exception was
raised have already been pushed onto the stack. A new activation
record for the handler is built above those parameters. Such a
handler for all exceptions must have four words of parameters: the
segment and routine numbers of the exception that was raised, a
pointer to the first word of the original parameters, and a pointer to
the first word after the original parameters. The two pointers are
represented as integer offsets from the base of the stack.

- 19 -

PERQ QCode Reference Manual January 15, 1984

2. Instruction Format

Instructions on the Q-machine are one byte long followed by zero
to four parameters. Parameters are either a signed byte (B : range
-128 to 127), an unsigned byte (UB : range O to 255) or a word (W).
Words need not be word aligned (unless specified). The low byte is
first in the instruction byte stream.

Any exceptions to these formats are noted with the instructions
where they occur.

3. Pointers

There are five different types of pointers, defined as follows:
(Note: 20-bit offsets may only exist on the EStack).

Word Pointer: A 20-bit offset from StackBase (StackBase is the 20
bit physical address of the base of the stack).

Byte Pointer: A 20-bit offset from StackBase to the base of the
byte array (T0S-1) and a byte offset into the array (TOS).

String Pointer: Same as a byte pointer.

Packed Field Pointer: A 20-bit offset from StackBase to the base
of the word the field is in (TOS-1) and a one word field
descriptor (TOS).

Field Descriptor:
Bits 0-3: The field width (in bits) minus |

Bits 4-7: The rightmost bit of the field.

Pascal Pointer: Obtained by declaring a variable as a pointer to
another data type (i.e., var I: “Integer;). (TOS-1) is the
system segment number that contains the datum. (TOS) is the
offset from the segment base to the datum.

Implementation Note: Stacks grow from low addresses to high

addresses (i.e., if the address of TOS is 10 then the address of TOS-1
is 9 -- not 11).

- 20 -

PERQ QCode Reference Manual January 15, 1984

4. QCode Descriptions

This section provides a detailed description for each QCode. The
QCode descriptions appear categorically. The following lists the
QCodes and equates each with its respective QCode number. Thus, if
you only know the QCode number, you can use the list to equate the
number to the named QCode.

QCode OpCode Definitions:

LDCO
LDC1
LDC2
LDC3
LDC4
LDCS
LDC6
LDC7
LDC8
LDC9
LDC10
LDC1!
LDCi2
LDCI3
LDC14
LDCI5
LDCMO
LDCB
LDCW
LSA
ROTSHI
STIND
LDCN
LDB
SIB
LDCH
LDP
STP
SICH
EXGO
LAND
LOR
LNOT
EQUBoo!
NEQBool
LEQBool
LESBool
GEQBool
GTRBool

(Assignment of Byte/Word opcodes are important)

® we wes wo wo we

wos woe wo

OO NDBWNN—O

(=]

$s WO Ve Ve We W we we we

we w

; (Opcode assignment of all EQU,NEQ,LEQ,LES)
; (GEQ and GIR qcodes are important

-e

LI L L L (O { (L L I T ([O T | O (O O T O 2 O | O T IO T I O [
P
00

BIRBLERLEBRIURRRBNN

-21 -

PERQ QCode Reference Manual January 15, 1984

EQUI = 39;
NEQI = 40;
LEQI = 41;
LESI = 42;
GEQI = 43;
GIRI = 44;
EQUStr = 51;
NEQStr = 52;
LEQStr = 83;
LESStr = 54;
GEQStr = 65;
GIRStr = 56;
EQUByt = &7,
NEQByt = 58;
LEQByt = 59;
LESByt = 60;
GEQByt = 61;
GIRByt = 62;
EQUPowr = 63;
NEQPowr = 64;
LEQPowr = 65;
SGS = 66; (there is no LESPowr
GEQPowr = 67;
SRS = 68; (there is no GIRPowr
EQUWord = 69; (Word is the last comparison and only EQU
NEQWord = 70; and NEQ exist)
ABI = 71;
ADI = 72;
NGI = 73;
SBI = 74;
MPI = 75;
DVI = 76;
MODI = T7;
CHK = 78;
INN = 88;
UNI = 89;
QINT = 90;
DIF = 91;
EXIT = 92;
NOOP = 93;
REPL = 94;
REPL2 = 95;
MMS = 96;
MES = 97;
LVRD = 98;
LSSN = 99;
XJP = 100;
RASTEROP = 102;
STARTIO = 103;
INTOFF = 105;

PERQ QCode Reference Manual

INTON
LDLB
LDLW
LDLO
LDL1
LDL2
LDL3
LDL4
LDLS
LDL6
LDL7
LDLS
LDL9
LDL10
LDL11
LDL12
LDL13
LDL14
LDL1S
LLAB
LLAW
STLB
STLW
STLO
SILI
STL2
STL3
STL4
STLS
STL6
STL7
LDOB
LDOW
LDOO
LDO!
LDO2
LDO3
LDO4
LDOS
LDO6
LDO7
LDO8
LDO9
LDO10
LDO11
LDO12
LDOI3
LDO14
LDO1S
LOAB

106;
107;
108;
109;
110;
111;
112;
113;
114;
115;
116;
117;
118;
119;
120;
121;
122;
123;
124;
125,
126;
127;
128;
129;
130,

148;
149.

181;
182;
153;
164;
165;

January 15, 1984

PERQ QCode Reference Manual January 15, 1984

LOAW = 156;
STOB = 157;
STOW = 158;
STO0 = 159;
STO!l = 160;
ST02 = 161;
STO3 = 162;
STO4 = 163;
STOS = 164;
STO6 = 165;
ST07 = 166;
MVEB = 167;
MVBW = 168;
MOVB = 169;
MOVW = 170;
INDB = 171;
INDW = 172;
SINDO = 173;
SINDI = 174;
SIND2 = 175;
SIND3 = 176;
SIND4 = 177;
SINDS = 178;
SIND6 = 179;
SIND7 = 180;
LDIND = 173; (Same as INDO))
LGAWW = 181;
STMW = 182;
STDW = 183;
SAS = 184;
ADJ = 185;
CALL = 186;
CALLV = 187;
ATPB = |88;
ATPW = 189;
WCS = 190;
JCS = 191;
LDGB = 192;
LDGW = [93;
LGAB = 194;
LGAW = 195;
STGB = 196;
STGW = 197;
RETURN = 200;
MMS2 = 201;
MES2 = 202;
LDTP = 203;
JMPB = 204;
JMPW = 205;
JFB = 206;

- 24 -

PERQ QCode Reference Manual

Real

; (See below for 2nd byte)

(See below for 2nd byte)

Operations - Second byte of ROPS opcode:

JFW = 207;
JIB = 208;
JIV = 209;
JEQB = 210;
JEQW = 211;
JNEB = 212;
JNEW = 213;
IXP = 214;
LDIB = 215;
LDIW = 216;
LIAB = 217;
LIAW = 218;
STIB = 219;
STIW = 220;
I1XAB = 221;
IXAW = 222;
IXAl = 223;
1XA2 = 224;
IXA3 = 225;
I1XA4 = 226;
TLATE! = 227;
TLATE2 = 228;
TLATE3 = 229;
EXCH = 230;
EXCH2 = 231;
INCB = 232;
INCW = 233;
CALLXB = 234;
CALLXW = 235;
LDMC = 236;
LDDC = 237;
LDMW = 238;
LDDW = 239;
STLATE = 240;
LINE = 241;
ENABLE = 242;
RAISE = 243;
LDAP = 244;
ROPS = 250;
INCDDS = 251;
LOPS = 252;
BREAK = 254;
ReFillOp = 255;
TNC = 0;

FLT = 1;

ADR = 2;

NGR = 3;

January 15, 1984

PERQ @Code Reference Manual - January 15, 1984

SBR
MPR
DVR
RND
ABR
EQUReal
NEQReal
LEQReal
LESReal
GEQReal
GTRReal
RUNUSED

Long Operations - Second byte of LOPS opcode:

CVILI
CVTIL
ADL
NGL

SBL
MPL
DVL
MODL
ABL
EQULong
NEQLong
LEQLong
LESLong
GEQLong
GTRLong
LUnused

—0
® we woe we wo wo we

\oooqg\cnawto

4.A Variable Fetching, Indexing, Storing and Transferring
4.A.1 Loads and Stores of One Word

4.A.1.a Constant One Word Loads

LDCO..15 O0-15 Load Word Constant. Pushes the value (0..15),
with high byte zero, onto the EStack.

LDCN 22 Load Constant Nil. Pushes the value of NIL onto
the EStack.

LDCMO 16 Load Constant -1.

-2 -

PERQ QCode Reference Manual January {5, 1984

LDCB B 17 Load Constant Byte. Pushes the next byte on the
EStack, with sign extend.

LDCW W I8 Load Constant Word. Pushes the next ﬁord on the
EStack.

-27 -

PERQ QCode Reference Manual January 15, 1984

4.A.1.b Local One Word Loads and Stores

is

LDLO..15 109-124 Short Load Local Word. LDLx fetches the word
with offset x in the current activation record
and pushes it onto the EStack.

LDLB UB 107 Load Local Word/Byte Offset. Fetches the word
with offset UB in the current activation
record and pushes it on the EStack.

LDLW W 108 Load Local Word/Word Offset. Fetches the word
with offset W in the current activation record
and pushes it on the EStack.

LLAB UB 125 Load Local Address/Byte Offset. Pushes a word
pointer to the word with offset UB in the
current activation record on EStack.

LLAW W 126 Load Local Address/Word Offset. Pushes a word
pointer to the word with offset W in the
current activation record on EStack.

STLO..7 129-136 Short Store Local Word. Store (ETOS) into word
with q offset x in the current activation
record.

STLB UB 127 Store Local Word/Byte Offset. Store (ETOS) into
word with offset UB in the current activation
record.

STLW W 128 Store Local Word/Word Offset. Store (ETOS) into
word with offset W in the current activation
record.

Implementation Note: The address of the first local (offset O0)
contained in the Local Pointer register (LP). The address of the

Nth local is computed as (LP) + N.

PERQ QCode Reference Manual January 15, 1984

4.A.1.c Own One Word Loads and Stores
139-154 Short Load Own Word. LDOx fetches the word

LDOO. .16

LDOB UB

LDOW W

LOAB UB

LOAW W

ST00. .7

STOB UB

STOW W

137

138

185

156

with offset x in the current Global Data Block
(GDB) and pushes it on the EStack.

Load Own Word/Byte Offset. Fetches the word
with offset UB in the current Global Data
Block (GDB) and pushes it on the EStack.

Load Own Word/Word Offset. Fetches the word
with offset W in the current Global Data Block
(GDB) and pushes it on the EStack.

Load Own Address/Byte Offset. Pushes a word
pointer to the word with offset UB in the
current Global Data Block (GDB) on EStack.

Load Own Address/Word Offset. Pushes a word
pointer to the word with offset W in BASE
activation record on EStack.

169-166 Short Store Own Word. STOx stores (ETOS) into

157

158

the word with offset x in the current Global
Data Block (GDB).

Store Own Word/Byte Offset. Stores (ETOS)
into the word with offset UB in the current
Global Data Block (GDB).

Store Own Word/Word Offset. Stores (ETOS)
into the word with offset W in the current
Global Data Block (GDB).

Implementation Note: The address of the first own (offset 0) is
contained in the Global Pointer register (GP). The address of the Nth
own is computed as (GP)+N.

- 29 -

PERQ QCode Reference Manual January 15, 1984

4.A.1.d Global One Word Loads and Stores

LDGB UBI,UB2 192 Load Global Word/Byte Offset. Loads the word with
offset UB2 in the Global Data Block (GDB) for
program segment UB! onto EStack.

LDGW TUB,W 193 Load Global Word/Word Offset. Same as LDGB except
a full word offset is used.

LGAB UBI,UB2 194 Load Global Address/Byte Offset. Pushes a word
pointer to the word with offset UB2 in the
Global Data Block (GDB) for program segment
UB! onto EStack.

LGAW UB,V 195 Load Global Address/Word Offset. Same as LGAB
except a full word offset is used.

LGAWW W1,W2 18! Load Global Address/Word Segment, Word Offset.
Same as LGAB except a full word is used both
for the segment number and the offset.

SIGB UBI,UB2 196 Store Global Word/Byte Offset. Stores (ETOS) in
word with offset UB2 in the Global Data Block
(GDB) for program segment UBI.

STGW UB,W 197 Store Global Word/Word Offset. Same as STGB except
a full word offset is used.

Note: To achieve LDGW and STGW with full word
é%gﬁgnt numbers, use LGAWW with LDIND or
IND.

Implementation Note: Self-relative pointers to the Global Data
Blocks (GDB) for each externally referenced segment are contained in
the External Segment Table (XST), pointed to by the Global Pointer
(GP). The address of the first global (offset 0) in the designated
GDB is computed as GP - 2 % ISN, where ISN (Internal Segment Number)
is the program segment number specified in the load or store
instruction. The Nth global is addressed by the base address
(computes as above) plus N.

PERQ QCode Reference Manual January 15, 1984

4.,A.1.e Intermediate One Word Loads and Stores

LDIB UBI,UB2 215 Load Intermediate Word/Byte Offset. UBI
indicates the number of static links to
traverse to find the activation record to use.
UB2 is the offset within the activation record
gg thz desired word. The datum is pushed on

tack.

LDIW UB,W 216 Load Intermediate Word/Word Offset. Same as
LDIB except a word offset is used.

LIAB UB!,UB2 217 Load Intermediate Address/Byte Offset. A word
Egigger is pushed on EStack (determined as in

LIAW UB,W 218 Load Intermediate Address/Word Offset. A word
Eginser is pushed on EStack (determined as in
Iv).

STIB UBI,UB2 219 Store Intermediate Word/Byte Offset. Stores
{g}g?) in memory (address determined as in

STIW UB,W 220 Store Intermediate Word/Word Offset. Stores
(ETO?) in memory (address determined as in
LDIW).

Implementation Note: The Activation Pointer register (AP)
contains the address of the current Activation Control Block (ACB).
Within the ACB is the Static Link (SL) to the previous ACB. To
compute the address of the first intermediate word of the desired
level, traverse the Static Links to the correct ACB. Within the ACB
is the Local Pointer (LP) for that activation record.

- 31 -

PERQ QCode Reference Manual January 15, 1984

4.A.1.f- Indirect One Word Loads and Stores

STIND 21 Store Indirect. (ETOS) is stored into the word
pointed to by word pointer (ETOS-1).

LDIND 173 Load Indirect. Word pointed to by word pointer
(ETOS) is pushed on EStack. :

PERQ QCode Reference Manual | January 15, 1984

4.A.2 Loads and Stores of Multiple Words
4.A.2.a Double Word Loads and Stores (Reals and Pointers)

LDDC

LDDW

<block> 237

239

183

Load Double Word Constant. <block> is a
ggublﬁ word constant. Load the constant onto
tack.

Load Double Word. (ETOS) is a word pointer to
Esdougle word. The double word is pushed onto
tack.

Store Double Word. (ETOS),(ETOS-1) is a
double word and (ETOS-2) is a word pointer to
a double word block of memory. The double
word is popped from ESTACK into the double
word pointed to by (ET0S-2).

4,A.2.b Multiple Word Loads and Stores (Sets)
LDMC UB,<block> 236 Load Multiple Word Constant. UB is the

LDMW

182

number of words to load, and <block> is a
block of UB words, in reverse word order.
Load the block onto the MStack.

Load Multiple words. (ETOS-1) is a word
pointer to the beginning of a block of (ETOS)
words. Push the block onto the MStack.

Store Multiple Words. The MStack contains a
block of (ETOS) words, (ETOS-1) is a word
pointer to a similar block. Transfer the
block from MStack to the destination block.

PERQ QCode Reference Manual ‘ January i5, 1984

4.,A.3 Byte Arrays

Note: A byte pointer is loaded onto the stack with a LLA, LOA or
LGA of the base address of the array followed by the computation of
the offset.

LDB 23 Load Byte. Push the byte (after zeroing the
high Byte) pointed to by byte pointer
(ETOS), (ETOS-1) on EStack.

STB 24 Store Byte. Store the low byte of (ETOS) into
the location specified by byte pointer
(ETOS-1), (ETOS-2).

MVBB UB 167 Move Bytes/Byte Counter. (ETOS),(ETOS-1) is a
source byte pointer to a block of UB bytes,
and (ET0S-2),(ETOS-3) is the destination byte
pointer to a similar block. Transfer the
source block to the destination block.

MVBW 168 Move Bytes/Word Counter. Same as MVBB except
(ETOS-1), (ETOS-2) is the source byte pointer,
(ETOS-3), (ETOS-4) is the destination byte
pointer, and (ETOS) is the number of bytes to
transfer.

PERQ QCode Reference Manual January 15, 1984

4.,A.4 Strings

LSA UB,<chars> 19 Load String Address. UB is the length of the

LDCH

SICH

184

28

string constant <chars>. A string pointer is
pushed on EStack (the virtual address of UB is
pushed followed by a =zero). UB is word
aligned. ‘

String Assign. (ETOS-1),(ETOS-2) is the
source string pointer, and (ET0S-3),(ET0S-4)
is the destination string pointer. (ETOS) is
the declared length of the destination. The
length of the source and destination are
compared, and if the source string is longer
than the destination, a run-time error occurs.
Otherwise all bytes of source containing valid
information are transferred to the destination
string.

Load Character. (ETOS),(ETOS-1) is a string
pointer. (ETOS) is checked to insure that it
lies within the dynamic length of the string.
If so, the character pointed to by
(ETOS), (ETOS-1) is pushed; otherwise, a
run-time error occurs.

Store Character. (ETOS) is a character and
(ETOS-1),(ETOS-2) is a string pointer.
(ETOS-1) is checked to insure that it lies
within the dynamic length of the string. If
so, the character (ETOS) is stored in the
string, at the position pointed to by
(ETOS-1),(ETOS-2); otherwise, a run-time error
occurs.

PERQ QCode Reference Manual January 15, 1984

4.A.5 Record and Array Indexing and Assignment

MOVB UB
MOVW
SINDO-7
INDB UB
INDW 1}
INCB UB
INCW]
Note

IXAB UB
IXAW

169 Move Words/Byte Counter. (ETOS) is a word
pointer to a block of UB words, and (ETOS-1)
is a word pointer to a similar block. The
block pointed to by (ETOS) is transferred to
the block pointed to by (ETOS-1).

170 Move Words/Word Counter. Same as MOVB
except (ETOS-1) is the source pointer,
(ETOS-2) is the destination pointer, and
(ETOS) is the number of words to be
transferred.

173-180 Short Index and Load Word. SINDx indexes
the word pointer (ETOS) by x words, and pushes
the word pointed to by the result on ESTACK.
(Note: SINDO is synonymous to LDIND).

171 Static Index and Load Word/Byte Index.
Indexes the word pointer (ETOS) by UB words,
and pushes the word pointed to by the result
on ESTACK.

172 Static Index and Load Word/Word Index.
Same as INDB except a full word index is used.

232 Increment Field Pointer/Byte Index. The
word pointer (ETOS) is indexed by UB words and
the resultant pointer is pushed on ESTACK.

233 Increment Field Pointer/Word Index. Same
as INCB except a full word index is used.

: INCB and INCW are equivalent to add UB or W to (ETOS).

221 Index Array/Byte Array Size. (ETOS) is an
integer index, (ETOS-1) is a word pointer to
the base of the array, and UB is the size (in
words) of an array element. A word pointer to
the first word of the indexed element is
pushed on ESTACK.

222 Index Array/Word Array Size. Same as IXAB
except (ETOS-1) is the integer index, (ET0S-2)
is the word pointer to the base of the array,
and (ETOS) is the size (in words) of an array
element.

PERQ QCode Reference Manual January 15, 1984

IXAl..4

IXP UB

LDP

ROTSHI UB

223-226 Index Array/Short Array Size. Same as

214

26

27

IfﬁB except array element sizes are fixed at
l .

Index Packed Array. (ETOS) is an integer
index, and (ETOS-1) is a word pointer the base
of the array. Bits 4-7 of UB contain the
number of elements per word minus 1, and bits
0-3 contain the field width (in bits) minus 1.
Compute and push a packed field pointer.

Load a Packed Field. Push the field
described by the packed field pointer
(ETOS), (ETOS-1) on ESTACK. :

Store into Packed Field. Store (ETOS) in
the field described by the packed field
pointer (ET0OS-1),(ET0S-2).

Rotate/Shift. (ETOS-1) is the argument to
be rotated or shifted, and (ETOS) is the
distance to rotate or shift. If UB is O then
a right rotate occurs, and if UB is 1 then a
shift occurs. The direction of the shift is
determined from (ETOS); If (ETOS) >= O then a
left shift occurs; otherwise, a right shift.
(ETOS) must be in the range from -15 to +15.

PERQ QCode Reference Manual - January 15, 1984

4.B Top of Stack Arithmetic and Comparisons

4.B.1 Logical

LAND
LOR
LNOT
EQUBOOL
NEQBOOL
LEQBOOL
LESBOOL
GEQBOOL
GTRBOOL

8

8 9 8 88 88

Logical Add. AND (ETOS) into (ETOS-1).
Logical Or. OR (ETOS) into (ETOS-1).

Logical Not. Take one’s complement of (ETOS).
Boolean =,

and > comparisons.
Compare (ETOS-1) to (ETOS) and push true or
false on ESTACK.

PERQ QCode Reference Manual January 15, 1984

4.B.2 Integer
ABI

ADI

NGI

SBI

MPI

DVI

MODI

CHK

EQUI
NEQI
LEQI
LESI
GEQI
GIRI

71

72

73

74

75

76

78

40
41
42
43
44

Absolute Value of Integer. Take absolute value
of (ETOS). Result is undefined if (ETOS) is
initially -32768.

Add Integers. Add (ETOS) and (ETOS-1).

Negate Integer. Take the twos complement of
(ETOS).

Subtract Integers. Subtract (ETOS) from
(ETOS-1).

Multiply Integers. Multiply (ETOS) and
(ETOS-1). This instruction may cause overflow
if the result is larger than 16 bits.

Divide Integers. Divide (ETOS-1) by (ETOS) and
pushh)quotient (as defined by Jensen and
Virth).

Modulo Integers. Divide (ETOS-1) by (ETOS) and
gushhghe remainder (as defined by Jensen and
irth).

Check Against Subrange Bounds. Insure that
(ETOS-1) < (ETOS-2) < (ETOS), leaving
(ETOS-2) on top of the stack. If conditions
are not met a run-time error occurs.

Integer =,

and > comparisons.
Compare (ETOS-1) to (ETOS) and push true or
false on ESTACK.

PERQ QCode Reference Manual January 15, 1984

4,B.3 Real Operations
ROPS UB 250 Real Operations. Arithmetic operations on

N o 2 WwN

10
11

floating point (32 bit) values. In general,
(ETOS) is the low-order word and (ETOS-1) is
the high-order word of the value. When two
floating point values are involved, (ETOS-2)
is the low-order word of the second real and
(ETOS-3) is the high-order word.

All over/underflows cause a run-time error.
Division by zero (0) also causes a run-time
error.

UB determines the operation according to the
following table:

The real (ETOS),(ETOS-1) is truncated (as defined by
Jensen and Wirth), converted to a single precision
integer, and pushed onto EStack.

The single precision integer (ETOS) is converted to a
floating-point number and pushed onto EStack.

Add (ETOS),(ETOS-1) and (ETOS-2),(ETOS-3).

Negate the real (ETOS),(ETOS-1).

Subtract (ETOS),(ETOS-1) from (ETOS-2),(ETOS-3).
Multiply (ETOS),(ETOS-1) and (ETOS-2),(ETOS-3).

Divide (ETOS),(ETOS-1) by (ETOS-2),(ETOS-3).

The real (ETOS),(ETOS-1) is rounded (as defined by
Jensen and Wirth), truncated and converted to a single
precision integer, and pushed onto EStack.

Take the absolute value of the real (ETOS),(ETOS-1).

= of two real values. (ETOS) = true or false.

< of two real values.

<= of two real values.

- 40 -

PERQ QCode Reference Manual January 15, 1984
12 - < of two real values.

13 - >= of two real values.

14 - > of two real values.

- 41 -

PERQ QCode Reference Manual January 15, 1984

LEQPOWR 65 <= (subset of),
GEQPOWR 67 and >= (superset of) comparisons

of the two sets on top of ESTACK, with sizes
(ETOS) and (ETOS-1).

- 43 -

PERQ QCode Reference Manual January 15, 1984

4.,B.5 Strings
EQUSTR
NEQSTR
LEQSTR
LESSTR
GEQSTR
GTRSTR

51
62
83

&

and > comparisons.
The string pointed to by string pointer
(ET0S-2),(ETOS-3) is lexicographically
compared to the string pointed to by string
pointer (ETOS),(ETOS-1).

- 44 -

PERQ QCode Reference Manual

4.B.6 Byte Arrays

EQUBYT
NEQBYT
LEQBYT
LESBYT
GEQBYT
GTRBYT

UB

S § § &§ &

§7
58
59
60
6!
62

January 15, 1984

and >
comparisons. <=, <, >, and > are only
emitted for packed arrays of characters. The
argument, UB, if non-zero, is the size of the
array. If UB is equal to O, then (ETOS) is
the size of the array.

- 45 -

PERQ QCode Reference Manual January 15, 1984

4.B.7 Array and Record Comparisons
EQUWORD UB 69 Word or multiword structure =
NEQWORD UB 70 and <
comparisons. The argument, UB, if non-zero,

is the size of the array. If UB equals O,
then (ETOS) is the size of the array.

- 46 -

PERQ QCode Reference Manual January i5, 1984

4.B.8 Long Operations
LOPS UB 252 Long rations. Arithmetic operations on long

0

O 00 4 O B2 WON -

—
o

11
12
13
14

(32 bit) values. In general, (ETOS) is the
low-order word and (ETOS-1) is the high-order
word of the value. When two long values are
involved, (ETOS-2) is the low-order word of
the second long and (ETOS-3) is the high-order
word. UB determines the operation according
to the following table:

- Converts the long value (ETOS), (ETOS-1) to a single
word. The high- order word must be O or all 1's, as it

is

truncated. If not, a runtime error is generated.

Converts a single word (ETOS) into a long value.

Adds two long values.

Negates long value.

Subtracts two long values.

Multiplies two long values.

Divides two long values.

Mods two long values.

Absolute value of a long value.

<>

i

>

>

of two long values. (ETOS) = true or false.
of two long values.
of two long values.
of two long values.
of two long values.

of two long values.

- 47 -

PERQ QCode Reference Manual January 15, 1984

4.C Jumps
JMPB B

:

JNEW W

204

205

206

207

208

209

210

211

212

213

Unconditional Jump/Byte Offset. B is added to
the IPC. Negative values of B cause backward

Jjumps.

Unconditional Jump/Word Offset. W is added to
the IPC. Negative values of W cause backward
Jjumps.

False Jump/Byte Offset. Jump (as in JMPB) if
(ETOS) is false.

False Jump/Word Offset. Jump (as in JMPW) if
(ETOS) is false.

True Jump/Byte Offset. Jump (as in JMPB) if
(ETOS) is true.

True Jump/Word Offset. Jump (as in JMPW) if
(ETOS) is true.

Equal Jump/Byte Offset. Jump (as in JMPB) if
integer (ETOS) equals (ETOS-1).

Equal Jump/Word Offset. Jump (as in JMPW) if
integer (ETOS) equals (ETOS-1).

Not Equal Jump/Byte Offset. Jump (as in JMPB)
if integer (ETOS) is not equal to (ETOS-1).

Not Equal Jump/Word Offset. Jump (as in JMPW)
if integer (ETOS) is not equal to (ETOS-1).

XJP WI,W2,W3,<Case Table> 100

Case Jump. Wl is word-aligned, and is the
minimum index of the table. W2 is the maximum
index. W3 is the offset to the code to be
executed if the case specified has no entry in
the case table. The case table is W2 - Wl + |
words long and contains offsets to the code to
be executed for each case.

If (ETOS), the actual index, is not in the
range W1..W2 then W3 is added to PC.
Otherwise, (ETOS) - Wl is used as an index
into the case table and the index entry is
added to PC.

- 48 -

PERQ QCode Reference Manual January i5, 1984

4.D Routine Calls and Returns

CALL UB 186

CALLXB UBI!,UB2 234

CALLXW W,UB 235

LVRD W,UBI1,UB2 98

Note: There can be at most 256 routines in a
segment. '

Call Routine. Call routine UB, which is in
the current segment.

Call External Routine/Byte Segment. UBI is
the internal segment number (ISN) which
contains the routine numbered UB2 to be
called. First the ISN is translated to the
correct SSN, and residency of that segment is
checked. If the segment is resident, the call
proceeds; if not, the PC is backed up so that
the call will be re-executed, and a segment
fault occurs. The second attempt s
guaranteed to succeed, since the process is
unable to resume execution until the segment
SSN is resident.

Call External Routine/Word Segment. Same as
CALLXB except the internal segment number
(ISN) is given in a full word.

Load Variable Routine Descriptor. This Q-Code
pushes a Variable Routine Descriptor on the
EStack for the routine UBl in segment ISN W,
at lexical level UB2. The following values
(which comprise a variable routine descriptor)
are pushed: (ETOS) = System Segment Number
(SSN); (ETOS-1) = Global Pointer, represented
as an offset from SB; (ETOS-2) = Routine
Number; and (ETOS-3) = Static Link (determined
as if a call were actually performed to the
routine here).

CALLV 187 Call Variable Routine. The ESTACK elements

(ETOS) --- (ET0OS-3) are a variable routine
descriptor (as described above in LVRD).
Residency of the segment are checked. If the
segment is resident, the call is made as will
CALL, except the GP and SL are taken from the
variable routine descriptor; if not, a segment
fault occurs as with CALLX.

RETURN 200 Return from Routine. Return from the current

routine. If the routine was a function, the
function value is left on the top of the
MStack. Since the first word of a- code
segment is not code, but an offset to the

- 49 -

PERQ QCode Reference Manual January 15, 1984

routine dictionary, if the RA which is being
returned to is 0, the return is performed to
the exit code of that routine. (This proves
gsefu% for the EXIT and EXGO Q-Codes described
elow).

EXIT W,UB 92 Exit from Routine. Exit from all routines up
to and including the most recent invocation of
the routine UB in ISN W. This is accomplished
by setting the RAs in all the ACBs to O, from
the most recent through and including the
first ACB which was created from an invocation
the routine to be exited, and jumping to the
exit code of the current routine.

EXGO W!,UB,W2 29 Exit and Goto. Exit from all routines up to,
but not including, routine UB in ISN W!, and
then jump to the instruction with offset W2
from CB. The implementation is similar to
EXIT,wzexcept the last RA modified is loaded
with W2.

ENABLE W,UB!1,UB2 242 Enable Exception Handler. W and UBI are the
internal segment and routine numbers,
respectively, of the exception being enabled.
UB2 is the routine number of the handler. A
new exception enable record is pushed (quad
word aligned) onto the MStack and linked into
the routine’s current exception list.

RAISE W!,UB,W2 243 Raise Exception. Wl and UBI are the internal
segment and routine numbers, respectively, of
the exception to be raised. W2 is the number
of words of parameters that have already been
pushed onto the memory stack. The exception
is raised.

PERQ QCode Reference Manual January {5, 1984

4.E Systems Programs Support Procedures

BREAK

NOOP
REPL
REPLZ

MES

MES2

RASTER-OP

254

93
94
95

201

202

102

Breakpoint QCode. Causes a Qcode level
breakpoint to the microcode kernel (KRNL).

No-Operation.
Replicate. Replicate (ETOS).

Replicate Two. Replicate two top-of-estack
words (i.e., first push original (ETOS-1),
then- push original (ETOS)).

Move to Memory Stack. Push (ETOS) onto MIOS
(16-bit transfer).

Move to Expression Stack. Push (MIOS) onto
ETOS (16-bit transfer - top 4 bits are
zeroed).

Move Double to Memory Stack. Transfer the top
two words from the EStack to the MStack. The
order is reversed; old (ETOS) is (MIO0S-1),
(ETOS-1) is (MIOS).

Move Double to Expression Stack. Transfer the
top two words from the MStack to the EStack.
THe order is reversed; old (MIOS) is (ETOS-1),
(MTOS-1) is (ETOS).

RasterOp. RasterOp is a special QCode which is
used to manipulate blocks of memory of
arbitrary sizes. It is especially useful for
creating and modifying displays on the screen.
RasterOp modifies a rectangular area (called
the "destination”) of arbitrary size (to the
bit). The picture drawn into this rectangle
is computed as a function of the previous
contents of the destination and the contents
of another rectangle of the same size called
the "source”. The functions performed to
combine the two pictures are described below.

RasterOp can be used on memory other than
that used for the screen bitmap. There are
two parameters that specify the areas of
memory to be used for the source and
destination: a pointer to the start of the
memory block and the length (in words) of
scanlines in the block. A scanline is one of

-5l -

PERQ QCode Reference Manual Janvary 15, 1984

the elements that cross the block. On the
screen, for example, a scanline is one of the
horizontal lines with a length of 48 words.
Within these regions, the positions of the
source and destination rectangles are given as
offsets from the pointer. Thus position (0,0)
would be at the upper left corner of the
region, and, for the screen, (767, 1023) would
be the lower right.

The EStack must be arranged in the
following order for RASTER-OP:

(ETOS-10) Function

(ETOS-9) Width

(ETOS-8) Height

(ETOS-7) Destination-X-Position
(ETOS-6) Destination-Y-Position
(ETOS-5) Destination-Area-Line-Length
(ETOS-4) Destination-Memory-Pointer
(ETOS-3) Source-X-Position

(ETOS-2) Source-Y-Position

(ETOS-1) Source-Area-Line-Length
(ETOS) Source-Memory-Pointer

The values on the stack are defined
below:

"Function” defines how the source and the
destination are to be combined to create the
final picture stored at the destination. The
RasterOp functions are as follows (Src
represents the source and Dst the
destination):

Function Name Action

RRpl Dst gets Src

RNot Dst gets NOT Src

RAnd Dst gets Dst AND Src
RAndNot Dst gets Dst AND NOT Src
ROr Dst gets Dst OR Src
ROrNot Dst gets Dst OR NOT Src
RXor Dst gets Dst XOR Src
RXNor Dst gets Dst XNOR Src

NoONsaWwWN—O

- 52 -

PERQ QCode Reference Manual January iS5, 1984

"Width" specifies the size in the
horizontal ("x") direction of the source and
destination rectangles (given in bits).

"Height" specifies the size in the
vertical ("y") direction of the source and
destination rectangles (given in scan lines).

"Destination-X-Position”™ is the bit
offset of the left side of the destination
rectangle. The value is offset from
Destination-Memory-Pointer (see below).

"Destination-Y-Position" is the scan-line
offset of the top of the destination
rectangle. The value is offset from
Destination-Memory-Pointer (see below).

"Destination-Area-Line-Length” is the
number of words which comprise a line in the
destination region (hence defining the
region’s width). The appropriate value to use
when operating on the screen is 48. The
specified value must be a multiple of four (4)
and within the range 4 through 48.

"Dest inat ion-Memory-Pointer” is the
virtual address of the top left corner of the
destination region. This pointer MUST be
quad-word aligned, however.

"Source-X-Position” is the bit offset of
the left side of the source rectangle. The
value is offset from Source-Memory-Pointer
(see below).

"Source-Y-Position” is the scan-line
offset of the top of the source rectangle.
The value is offset from Source-Memory-Pointer
(see below).

"Source-Area-Line-Length” is the number
of words which comprise a line in the source
region (hence defining the region’s width).
The appropriate value to use when operating on
the screen is 48. The specified value must be
a multiple of four (4) and within the range 4
through 48.

PERQ QCode Reference Manual January 15, 1984

LINE

STARTIO
INTOFF
INTON
EXCH
EXCH2

TLATEL

TLATE2

TLATE3

241

103

106

231

227

229

“Source-Memory-Pointer” is the virtual
address of the top left corner of the source
region. This pointer MUST be quad-word
aligned, however.

Line Drawing. (ETOS) is a pointer to the
origin (relative 0,0) of the area on which the
line is drawn. (ETOS-4) and (ETOS-3) are the
x and y coordinates (respectively) of the
first endpoint of the line. (ETOS-2) and
(ETOS-1) are the x and y coordinates
(respectively) of the second endpoints on the
line. (ETOS-5) is the style of the line where
a value of | means erase the line, 2 means to
xgr lthe line and anything else means to draw
the line.

(ETOS) is the channel on which to start IO.
Disable interrupts.

Enable interrupts.

Exchange. (ETOS) and (ETOS-1) are swapped.

Exchange Double. The pair (ETOS) and (ETOS-1)
are swapped with the pair (ETOS-2) and
(ETOS-3).

Translate Top of Stack. (ETOS),(ETOS-1) is a
virtual address. If the segment SSN (ETOS-1)
is resident, convert the virtual address to an
offset from stack base (SB) and execute the
next Q-Code (what ever it may be), with out
interrupts, to competion. If the segment SSN
(ETOS-1) is non-resident, restore the EStack
to its previous state, backup the PC to
re-Txecute the TLATEl and perform a segment
fault.

Translate Top of Stack - 1. Same as TLAIEl
except the virtual address is at
(ETOS-1), (ETOS-2).

Translate Top of Stack - 2. Same as TLAIE!
except the virtual address is at
(ET0S-2), (ET0S-3).

PERQ QCode Reference Manual January 15, 1984

STLATE UB 240

LSSN 99
LDTP 203
LDAP 244
ATPB 188
ATPW 189
WCS 190
JCsS 191

Special Translate. This translate is similar
to the previous translate Q-Codes, except that
it can specify a greater depth than TLATE3,
and that it may specify the translation of 2
virtual addresses. Each half of UB is
interpretted as the depth of the System
Segment Number word of the virtual address to
be translated (prior to any stack alteration).
A depth of O indicates no translation. All
segments sgecified in the SILATE must be
resident efore any translations occur;
otherwise a segment fault occurs. Note, if
both nibbles of UB are non-zero then the
low-order nibble (bits 0-3) must be less than
the high-order nibble (bits 4-7).

Load Stack Segment Number. Pushes the system
segment number of the MStack onto EStack.

Load Top Pointer (plus 1). Pushes the value of
Top Pointer (TP) plus 1 onto EStack.

Load Activation Pointer. The current
activation pointer (as an offset from the base
of the stack) is pushed onto the EStack.

Add to Top Pointer/Byte Value. Adds SB to TP.
Add to Top Pointer/Word Value. Adds (ETOS) to
TP.

Write Control Store. A control store word is
written from information on the EStack.
(ETOS) is the address (with bytes exchanged)
in the control store to which the word will be
written. (ETOS-1) is the value to be written
into the high-order third, (ET0S-2) is the
value to be written into the middle third and
(ETE?—B) is to be written into the low-order
third.

Jump to a Location in the Control Store.
Control is transferred to the control store
address (with bytes exchanged) given in
(ETOS). A routine called with JCS should exit
with a NextInst(0) jump.

PERQ Qdee Reference Manual January 15, 1984

REFILLOP 255 Refill the OpFile. This instruction causes

execution to proceed from the beginning of the
next quad-word.

INCDDS 251 Increment Diagnostic Display. The value of the'
diagnostic display is incremented and the
contents of the EStack is checked. If the

EStack is not empty, a runtime error Iis
generated.

PERQ QCode Reference Manual January 15, 1984

INDEX

ABI
ACB
Activation Record

ADJ
AP
ATPB
ATPW
BREAK
CALL
CALLV
CALLX
CALLX
CB
CHK
CS
DIF
DL

DVI
EEB
ENABLE
E;abling an Exception

EQUBOOL
EQUBYT
EQUI
EQUPOWR
EQUSTR
EQUWORD
ER

ES
ESTACK
ETOS
Exception
Exception Handler
EXCH
EXCH2
EXG0
EXIT
GDB
GEQBOOL
GEQBYT
GEQI
GEQPOWR
GEQSTR
GL

GP

RRORDB—wB

bbb
OO \O\O —

RS8R 8 - 880l e n n R B8R0 B S Be

PERQ QCode Reference Manual

GTRBOOL
GIRBYT
GIRI
GTRSTR

INCB
INCDDS
INCW
INDB
INDW
INN
INT
INTOFF
ISN
IXAl
IXAB
IXAW
IXP
JCS
JEQB
JEQW
JFB

JMPB

JNEB
JNEW

LAND
LDAP
LDB
LDCO
LDCB
LDCH
LDCMO
LDCN
LDCW
LDDC
LDDW
LDGB
LDGW
LDIB
LDIND
LDIV
LDLO
LDLB
LDLW
LDMC
LDMW

8884

31
31

&

SBBEE

January 15, 1984

PERQ QCode Reference Manual January 15, 1984

LDOO
LDOB
LDOW
LDP
LDTP
LEQBOOL
LEQBYT
LEQI
LEQPOWR
LEQSTR
LESBOOL
LESBYT
LESI
LESSIR
LGAB
LGAW
LGAWW
LIAB
LIAW
LINE
LL

LLA
LLAW
LNOT
LOAB
LOAW
LOPS
LOR

LP

LSA
LSSN
LTS
LVRD
Memory Organization
MES

MES2
MMS
MMS2
MODI
MOVB
MOVW
MPI
MSTACK
MTOS
MVB
MVB

NE
NEQBOOL
NEQBYT
NEQI

pRLRRBWRFEREBGERNURIRN

RHLEIVVBBE

H
[¢)RVe] \V)

gueo

BHEE~RE~ - BRL

- 59 -

PERQ QCode Reference Manual . January 15, 1984

NEQPOWR 42
NEQSTR 44
NEQWORD 46
NGI 39
NOOP 51
PC

PS

Q-Machine Architecture
RA

RAISE

Raising an Exception
RASTER-OP

RD

REFILLOP

REPL

REPL2

RETURN

RN

ROPS

ROTSHI

RPS

RR

RS

SAS

SB

SBI

Segment

SGS

SIND

SL

SRS

SS

SSN

STARTIO

STB

STCH

STDW

STGB

STGW

STIB

STIND

STIW

STLO

STLATE

STLB

STLVW

STO0
STOB
STOW

BERERRIRLRLRBBRRE. B BB - B-BuwwniBrn322Rwl s 8w——

PERQ QCode Reference Manual . January 15, 1984

STP 37
TL 2
TLATE! 54
TLATE2 54
TLATE3 54
P 2
UNI 42
WCS 55
XGP 3
XJP 48
XST 3

-6l -

PERQ QCode Reference Manual January 15, 1984

- 62 -

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62

