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PREFACE

This document provides enough information to allow a microprogrammer
to successfully use and exploit the features of the PERQ! and PERQIA
microprogrammable CPUs. The document assumes that the reader is

unfamiliar with PERQ but has some prior experience with horizontally
programmed microEngines.

The PERQIA CPU is an enhanced version of the PERQ1 CPU. The PERQIA
CPU is optional on the PERQ and standard on the PERQ2. Some
references to the PERQIA call the CPU the 16K ControlStore CPU. The
design of the enhancements was made with certain goals in mind:

Current Microcode should run essentially unmodified;

Board space is at a premium and must be conserved;

Timing in certain critical chains must not be degraded.

The following features are available in the PERQIA CPU but not in the
PERQ CPU:

16K writable control store.

A 14 bit computable Goto with the address coming from the
processor shift output.

Single precision multiply step and divide step hardware.
A base register for addressing the X and Y registers.
A readable victim latch.

Ability to use a long constant in a microinstruction which pushes
the EStk.

This document is intended to be self-contained. A goal of this
document is to explicitly identify implementation-dependent behavior
as such. The document provides a full and complete description of the
PERQ microprogramming language.
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CHAPTER 1
INTRODUCTION

The syntax is described with a meta-language called EBNF (extended
BNF). The following meta-symbols are used.

: : surround literal text.
separate alternatives.
surround optional parts.
surround parts which may
be repeated zero or more
times.

( ) - are used for grouping.

- ends a description.

—
(&)
LI S I |

1.1 FORMAT

Type programs in free format; a single micro-instruction can extend to
as many lines as desired. You can insert blank lines and lines
consisting only of comments anywhere. The exception to this rule is
that a new micro-instruction must begin with a new line; you cannot

place more than one instruction per line.

1.2 NAMES

Names can be any length, but only 10 characters are significant when
two names are compared.

1.3 COMMENTS

Indicate comments by an exclamation mark (!). The remainder of the
line following the exclamation mark is ignored. Comments can also be
enclosed in braces Pascal style: ‘{° and ‘}’ or ‘(%' and "¥%)°.
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1.4 CONSTANT EXPRESSIONS

Expressions are allowed in most places where numeric values are
required. In a few instances, only numbers or named constants are
allowed and expressions are nci. The syntax of constant expressions
mimics that of Pascal. Expressions consist of operators and operands
with certain precedence rules. Parentheses are used for controlling
the order of evaluation.

As in Pascal, operators fall into one of three precedence classes:
Multiplying operators have the highest priority, adding operators are
next, and relational operators have the lowest priority. The
multiplying operators are:

3 Signed integer multiply
div Signed integer divide
mod Signed integer remainder

and Bitwise logical product

nand Inverted bitwise logical product
Ish Left shift

rsh Right shift

rot Right rotate

Lsh, rsh, and rot shift their lefthand operands the number of bits
specified by their righthand operands.

The adding operators are:

+ Signed integer sum

- Signed integer difference

or Bitwise logical sum

nor Inverted bitwise logical sum

The relational operators are:

Signed integer equal-to

< Signed integer not-equal-to

< Signed integer less-than

> Signed integer greater-than

<= Signed integer less-than-or-equal-to
>z Signed integer greater-than-or-equal-to
xor Exclusive-or

xnor Inverted exclusive-or

Xor and xnor are considered to be relational operators because they
perform bitwise equality and inequality operations. The integer
comparison operators return O for false and 1 for true.
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In addition to the three precedence classes, three unary operators are
available:

+ Unary integer identity
- Unary integer negation
not Unary bitwise complement

The unary identity and negation fall between the adding operators and
the multiplying operators in precedence. The unary complement is
higher priority than the multiplying operators.

Constant expressions are computed using 16-bit arithmetic and no
overflow checks are applied (with the exception of a check for
division by zero). In order to eliminate certain syntactic
ambiguities, constant expressions must often be surrounded by
parentheses. For example, the expression

not |

could be interpreted as an ALU expression or a constant expression.
For example,

R :=not 1; ! complement 1 at execution time
R := (not 1); ! complement | at assembly time

The first form is preferable for constants which are less than 255
because the assembler can use a short constant, whereas the second
form requires a long constant. This can be used to your advantage to
create a 16-bit value with a short constant:

R := not (not 177400); ! mask 177400 is formed by
! the short constant 377
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1.6 SYNTAX
name = letter {letter | digit) .
number = [“2#° | ‘S#° | °1O#° | "#° ) digit {digit} .

constant = name | number .

register = ["°] name .

! " constant .

I °° °(° ConstExpr °)° .
label = name .
empty = .

» l.'

MicroProgram = {Instruction *;"} ‘end’ °;

ConstExpr = ConstSimpleExpr ConstRelOp ConstSimpleExpr .

ConstRelOp = ‘=" | ‘o | <" |
=:<=p = ;>=p : axort : oxnora.

ConstSimpleExpr = [‘+° | ’-°] ConstTerm {ConstAddOp ConstTerm}.

ConstAddOp = *+° | = | ‘or’ | ‘nor’ .
ConstTerm = ConstFactor {ConstMulOp ConstFactor} .

ConstMulCp = ‘%’

o
Q
3
Q.
—
wn
o <

ConstFactor = { ‘not "} (constant | ‘(" ConstExpr °)°) .
Instruction = {label °:°} Phrase {’,’ Phrase) .

Phrase = empty
! Pseudo
| PascalStyleConstant
| {Result “:="} ALU
| Jump
| Special .
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Pseudo = ‘Define’ °(° [°°] name °,’ ConstExpr °)°
‘Constant’ ‘(° name °,° ConstExpr °)°
‘Opcode’ ‘(° [ConstExpr ‘, ‘]l ConstExpr °)°
‘Loc’ °(° ConstExpr °)’

‘Binary’

‘Octal”’

‘Decimal *

'Nop'

‘Case’ ‘(° ConstExpr °,’ ConstExpr ‘)’
‘Place’ ‘(’ ConstExpr °,’ ConstExpr °)° .

’n?

PascalStyleConstant = name ‘=" ConstExpr .

Result = register
= ITOS [ = DMA » z Dm 4 = 'Bm »
| *SrcRasterOp’ | ‘DstRasterOp’
| ‘WidRasterOp’ | ‘MQ’ ! ‘RBase” .

ALU = [‘not’] (Amux | Bmux)

Amux Op [ ‘not ‘] Bmux

Amux ‘+° Bmux [°+° °OldCarry’]
Amux ‘-’ Bmux [°-° ‘OldCarry’]
Amux ‘amux’ Bmux

Amux ‘bmux’ Bmux

'’

‘Victim® .

Amux = register | ‘Shift’ | ‘NextOp” | °IOD’
| ‘MDI* | ‘MDX* | °TOS’
| *UState’ [°(’ register °)°] .

Bmux = register | constant | ‘(" ConstExpr )’ .

’ . .

Op= ‘and” } ‘or’ | ‘xor” | ‘nand” | ‘nor’ | ‘xnor

Jump = [“If’ Condition] Directive ["(" Target °)°] .

Condition = ‘True’ | ‘False’ | ‘BPCI31° | °C19°
! ‘IntrPend’ { '0dd’ | ‘ByteSign’
= 0quc = -Neqa = 'th’" : oGeqo
| ‘Lss’ | ‘Leq” |} ‘Carry’ | ‘OverFlow’.

Directive = “Goto’ | ‘Call’ ! ‘Return’ | ‘Next’ | ‘JumpZero’

! *LoadS’ | ‘GotoS’ | ‘CallS’ | ‘Nextlnst’
‘ReviveVictim’ | ‘PushLoad’ | ‘Vector® | ‘Dispatch’
‘RepeatLoop’ | ‘Repeat’ | ‘JumpPop” |{ ‘LeapPop’
‘Loop’ | ‘ThreeWayBranch® .

Target = label | constant | “Shift’ .

Special = Nonary | Unary | Binary .

1 -5
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Nonary = ‘WCSlow’ | ‘WCSmid" | ‘WCShi° | ‘LoadOp® | ‘Hold’
‘StackReset’ | ‘Push’ | ‘Pop’ | ‘Fetch® | ‘Fetch2’
‘Fetch4® | °‘Fetchd4R® | ‘Store’ | ‘Store2’

‘Store4’ | °Stored4R’ | ‘LatchMA® | ‘ShiftOnR’ .
‘MultiplyStep’ | ‘DivideStep’ .

Unary = UnaryName °(° ConstExpr °)° .

UnaryName = ‘LeftShift’ | ‘RightShift’ | ‘Rotate’ | °IOB’
i ‘CntlRasterOp’ .

Binary = BinaryName ‘(’ ConstExpr °,° ConstExpr °)° .

BinaryName = ‘Field’ .

1.6 NOTES ON THE SYNTAX
Numeric constants preceded by a ‘#° are octal constants.
Constants can be defined Pascal style:

name = value;

This allows including a file which contains constant definitions into
both a Pascal program and a micro-program.

The syntax allows constructions which are semantically incorrect. In
other words, there are many combinations of actions which cannot be
represented in a single instruction. For example,

TOS := MA := 10; is valid, but
TOS := BPC := 10; is invalid.

Section 2.3 shows which fields of a micro-instruction are used by a
particular action. The rule is that a certain field may be used only
once. Thus since °‘TOS :=" and °‘BPC :=° both use the SF (special
function) field, they ©both <cannot be wused in a single
micro-instruction.

Some features of the hardware are specific to the PERQI or the PERQIA.
The assembler reflects this by restricting usage of these features.
The percent sign which signals the use of the base register may only
be used on the PERQIA. MQ, RBase, Victim, LeapPop, Goto(Shift),
MultiplyStep, and DivideStep may only be used on the PERQIA. LatchMA
may only be used on the PERQI.

Some goto types do not allow tests (are unconditional), and for some

1 -6



INTRODUCTION January 15, 1984

the test is optional. Similarly, some do not allow addresses, some
require them, and for some the address field is optional. For PERQIA,
some goto types do not allow Shift to be used as the address. The
following specifies the rules:

req - required, opt - optional, <blank> - not allowed

Goto type test address Shift
Goto opt req opt
Call opt req opt
Return opt

Next

JumpZero

LoadS req opt
GotoS opt opt opt
CallS opt opt opt
NextInst req
ReviveVictim

PushLoad opt req opt
Vector opt req

Dispatch opt req

RepeatLoop

Repeat req opt
JumpPop opt req opt
LeapPop opt req opt (PERQIA only)
Loop opt

ThreeWayBranch opt req
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1.7 PERQ HARDWARE ARCHITECTURE

PERQ is implemented with a high-speed microprogrammed processor which
has a 170 nanoseconds microcycle time. The microinstruction is 48
bits wide. Most of the data paths in the micro engine are 20 bits
wide. The data coming in and out of the processor (for example, IO
and Memory data) are 16 bits wide. The extra 4 bits allow the
microprogrammed processor to calculate real addresses in a 1 megaword
addressing space. The assumption is that virtual addresses are kept
in a doubleword in memory but calculations on addresses can be single
precision within the processor. The programmer of the virtual machine
never sees the 20 bit paths.

The major data paths are diagrammed below:

MD‘ /,5 e-a /’.op
‘ o2 ° i R )
] it .
IOB —+ L - L—> MDO
¢ v STATE !
2., MOI(5:2T |
|Aml£33}
MD1 ..
(MO£) et 1 ESTK LR .__J
¥ SHIFT AT A Ll‘ﬁr ’ Lﬁ% MA
,_3"_1
AA
XY X ‘ 4 A ' ‘o
e ALy o , RESULT
257 P! , P L_‘ %3
256x20 70 -, N To2d 14 ICB
:Ld._. el [Fe>1C
y /& =27
I0 ADDRESS + DIRECTION
VA, Z ————————n 7 ~ i
sF.2 1 § 8
o ———-———H'
cP > ’ hjux 2910 JA ’
YECTER e | 12 ¢ vy
Z,SHIFT— 5
YICTIM e ———— . f —14
4 owp
— ::2
—-——..
mm—— M B
_._)" (CNDITION ‘MICRO sTORE v | i:u
5] R sWFT ZK <3 PROM BRI F
{'/'6 /fé 4K X 48 PROM Zoo
% : Jmp
RASTER OP ,
MDl ———f  an2 N
° re SHIFTER 7o > MDO
e .
z —+___'
8 FERQ
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The XY registers (256 registers x 20 bits) form a dual ported file of
general-purpose registers. The X port outputs are multiplexed with
several other sources (the AMux) to form the A input to the ALU. The
Y port outputs, multiplexed with an 8- or 16-bit constant via the
BMux, form the B input to the ALU. The ALU outputs (R) are fed back
to the XY registers as well as the memory data output and memory
address registers. Memory data coming from the memory is sent to the
ALU via the AMux. The IO bus (IOB) connects the CPU to IO devices.
It consists of an 8-bit address (I0A) which is driven from a microword
field and a 16-bit birectional data bus (IOD) which is read via AMux
and written from R.

Opcodes and operands that are part of the instruction byte stream are
buffered in a special 8 x 8 RAM (the Op file). The Op file is loaded
16 bits at a time from the memorg data inputs. The output of the Op
file is 8 bits wide and can be read via AMux or can be sent to the
micro-addressing section for opcode dispatch. The read port of the Op
file is addressed by the 3-bit BPC (Byte Program Counter).

A shift matrix (Shift), which is part of the special hardware provided
for the RasterOp operator, can be accessed by loading an item to be
shifted via the R bus, and reading the shifted result on AMux.

A 16-level push down stack (EStk) is written from R and read on AMux.
The stack is used by the Q-code interpreter to evaluate expressions.
BPC and the microstate condition codes can be read as the Micro State
Register (UState) via AMux.
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CHAPTER 2
MICROINSTRUCTIONS

Each microinstruction is a collection of 12 fields with a total of 48
bits, executed by the machine in 170 ns. Each of these 170 nanosecond
intervals is refered to as a microcycle.

An "instruction” is a sequence of “Phrases”. The microassembler
produces microinstructions from one or more of these instructions.
Each instruction can be associated with zero or more labels.
Instructions are separated by semicolons (";").

NOTE: Some microinstructions, notably those produced by fetch and
store type instructions, must be executed at specific
microcycles, and influence several following microcyles.

The general syntax of a microinstruction is:
Instruction = {label ‘:°} Phrase {°," Phrase} .

Phrase = empty

Pseudo
PascalStyleConstant
{Result ‘:="} ALU
Jump

Special .

2.1 LABELS

A label is a name which can be prefixed to an instruction for use as a
branching target. The syntax of a label is:

label = name .

Instructions can have simple or compound lébels, as described in
sections 2.1.1 and 2.2.2.
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2.1.1 Simple Labels

A simple label is a name, separated from its associated instruction
with a colon. This name can then be used as a target in a branch or
jump instruction. A name is formed from a letter followed by any
number of letters or digits. The microassembler recognizes the first
ten letters or digits of a name. Names with more than ten letters or
digits, are only to the first ten letters or digits.

2.1.2 Compound Labels
Compound labels are formed by concatenating label-colon pairs to the
front of an instruction. Thus, each instruction can have several
names. For example, the construction

foobar:zeetix:looptarget: A + B + OldCarry;
allows the microinstruction ‘A + B + OldCarry’ to be named ‘foobar’,
‘zeetix’, or ‘looptarget’.
2.2 PHRASES
A phrase is a syntactic building block, you use to build instructions.
An instruction is formed from a concatenation of phrases, with each
phrase separated by a comma (°,"). The assembler recognizes six types
of phrases. Chapter 3 describes the six types in detail. The syntax

is as follows:

Phrase = empty

! Pseudo

| PascalStyleConstant
! {Result ‘“:="} ALU

| Jump

| Special .

2.3 MICROINSTRUCTION FORMAT

Each 48-bit microinstruction is composed of 12 fields, as shown below.

8 8 3 111 4 2 4 8 4 4
X ? Y E A jB?W?H; ALU ? F i SF ? Z CND | JMP

+ -—+
+ —=+
+ —-=+
+ -+

If the base register is set to zero, or is not loaded after booting,
register addressing on the PERQIA is compatible with the PERQI. In
this case, the $NOBASE assembler option may be used so that the
assembler will not require the percent sign prefix.

2-2
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A brief description of each field is presented in sections 2.3.1
through 2.3.12. The microassembler produces microinstructions based
upon the instructions described in detail in Chapter 3.

2.3.1 X (bits 47..40)

The X-field contains the address for the X port of the XY register
file. This same field is used to reference a given register in the XY
file for a register write operation. :

2.3.2 Y (bits 39..32)

The Y-field contains the address for the Y port of the XY register
file. It can also be used as the low order byte of a constant.

2.3.3 A (bits 31..29)

The A-Field contains the select lines used to drive the Amux. The
A-field is encoded as follows:

A Field  Selects

0 Shifter output

1 NextOp (OpfilelBPC])

2 IOD (10 Data bus)

3 MDI  (Memory Data inputs). See section
3.3.2.1 for more details.

4 MDX (Memory Data input, extended). See
section 3.3.2.1 for more details.

5 Microstate register (UState).

6 XY register at location specified by the X
field.

7 Expression Stack.

2.3.4 B (bit 28)

The B-field contains the Bmux select line. While B remains set, the
Bmux selects a constant. While B remains cleared, Bmux selects the
register specified by the Y-field contents.
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2.3.5 W (bit 27)
The Write bit, while set, causes the contents of R to be written into

the register specified in the X field. While reset, no XY registers
are modified.

2.3.6 H (bit 26)

The Hold bit, while set, prevents I0 devices from accessing memory.
It is also used with the JMP field (see section 2.3.12) to modify
address inputs.

2.3.7 ALU (bits 25..22)

The ALU field encodes the function used by the ALU to combine the A
and B inputs to the ALU. It is encoded as follows:

ALU Field ALU Function
0 A
| B
2 NOT A
3 NOT B
4 A AND B
5 A AND NOT B
6 A NAND B
7 AORB
10 A OR NOT B
11 A NOR B
12 A XOR B
13 A XNOR B
14 ' A+B
15 A + B + OldCarry
16 A-B
17 A - B - OldCarry

2 -4
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OldCarry is the carry from the immediately preceeding microinstruction
and is used for multiple precision arithmetic.
2.3.8 F (bits 21..20)

The Function field controls the interpretation of the SF and Z field
contents. For PERQI, it is encoded as follows:

Function SF Use Z use
0 Special Function Constant/Short Jump
l Memory Control Short Jump
2 Special Function Shift Control
3 Long Jump Long Jump
For PERQIA, it is encoded as folows:
Function SF Use Z use
0 Special Function Constant/Short Jump
1 Memory Control Short Jump
and extended
Special Func.
2 Special Func. Shift Control
3 Long Jump Long Jump

2.3.9 SF (bits 19..16)

Vhile the function field (see 2.3.8 above) selects Memory Control, the
Special Function bits contain the memory control bits. While the
function field selects Long Jump, the Special Function field contains
the four high-order memory address bits. Otherwise, the Special
Function field selects the following functions:

SF FUNCTION

0 LongConstant

1 ShiftOnR

2 StackReset (clear the EStk)
3 TOS := (R) (Top of EStk)

4 Push (the Estack)

5 Pop (the Estack)

6 CntlRasterOp := (Z)
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7
10
11
12
13
14
15
16
17

SrcRasterOp := (R)
DstRasterOp := (R)
VidthRasterOp := (R)
LoadOp (OP := MDI)
BPC := (R)
WCS[15..01 := (R)
WCSI[31..16]1 := (R)
WCS[47..32] := (R)
IOB Function

When used as Memory Control:

Fetch4R Fetch 4 words in reverse order
StoredR Store 4 words in reverse order
Fetch4 Fetch 4 words

Store4 Store 4 words

Fetch2 Fetch 2 words

Store2 Store 2 words

Fetch Fetch 1 word from memory
Store Store | word from memory

For PERQIA when used as Extended Special Function:

NonsWwNN—O

(R) := Victim Latch
Multiply step or divide step
Load multiplier or dividend
Load base register

(R) := product or quotient
Push long constant (EStk)
2910 address inputs := Shift
Leap address generation

The following example performs a single precision divide of a single
precision dividend and a single precision divisor yielding a single
precision quotient and a single precision remainder.

Constant(OffMultiply, 0);
Constant(OffDivide, 0);
Constant(UnSignedDivide, 100);
Constant(UnSignedMultiply, 200);
Constant (SignedMultiply, 300);

Define(Dividend, 200);
Define(Divisor, 202);
Define(Quotient, 203);
Define(QuotientSign, 204);
Define(RemainderSign, 205);
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»

Tos := 0, Push; ! 0 for two’s complementing
RemainderSign := DividendHigh, RightShift(0); ! set sign of Mod
QuotientSign := Shift xor Divisor, ! set sign of Div

if Geq Goto(A);
DividendLow := Tos - DividendLow;! abs value of dividend
DividendHigh := Tos - DividendHigh - OldCarry;

Divisor;

A: if Gtr Goto(B); - v if divisor >= 0
Divisor := Tos - Divisor; ! abs value of divisor

B: Rotate(10#15); ! shifter must rotate left |
MQ := Dividend; ! load dividend
WidRasterOp := UnSignedDivide; ! set unsigned divide
LoadS(10#15); ! S := 10#15
Remainder := 0, ! initialize remainder

DivideStep; ! get started

C: Remainder := Shift - Divisor, DivideStep, Repeat(C);! 10#16 steps

WidRasterOp := OffDivide, ! turn off divide hardware

if Geq Goto(D); ! if remainder >= 0
Remainder := Remainder + Divisor;! correct remainder

D: Quotient := MQ; ! read quotient
QuotientSign;
RemainderSign, if Geq Goto(F); ! if quotient should be >= 0
Quotient := Tos - Quotient; ! set negative quotient
RemainderSign;
F: if Geq Goto(Done); ! if remainder should be >= 0
Remainder := Tos - Remainder; ! set negative remainder
Done: Pop; ! restore stack

2.3.10 Z (bits 15..8)

The Z-field contains the low eight bits of a jump address, the high
eight bits of a Constant, shift control, or an I0B address, depending
on the state of the Function (F) and Special Function (SF) fields.

The encodings of the F field do not necessarily enforce restrictions
on the use of the Z field, they merely enable some of them. In
particular, B=1, SF=0, and F =0 or 2 selects a long constant
using the Z field. For PERQIA, F =1 and SF = § also selects a long
constant using the Z field. In the PERQI, long constants and special
functions may not be used in the same microinstruction. The PERQIA
has a special function which pushes the EStk and selects a long
constant in the same instruction. The programmer need not select this
special function explicitly--the assembler takes care of it. When F
< 2, the Z field is used for a jump address. When SF =17 and F = 0
or 2, the Z field is used for an IOB address. When F = 2, the Z field
is loaded into the Shift Control register. These are the only
specific actions taken by the hardware that affect the usage of the Z
field. The hardware does nothing to prevent the Z field from being
used for several things at once. For example, it could be used for a
long constant and a jump address at the same time, or it could be used
as an I0 address and a jump address at the same time. The assembler,
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however, will flag an error if the programmer tries to load two
different values into the same microinstruction field.

- 2.3.11 CND (bits 7..4)

The Condition (CND) field determines what to test during a conditional
jump. They are encoded as follows:

CND Test
0 True - always jump
1 False - never jump
2 IntrPend - interrupts pending
3 Spare (unused)
4 BPC[3] - Op File is empty
5 C19 - no carry out of bit 19 of the ALU (R[19])
6 0dd - ALU bit O (R[O])
7 ByteSign - ALU bit 7 (R[7])
10 Neq - Not equal to
11 Leq - Less than or equal to
12 Lss - Less than
13 Overflow - 16 Bit overflow in the ALU
14 Carry - carry out of bit 15 of the ALU (R[15])
1S Eql - Equal to
16 Gtr - Greater than
17 Geq - Greater than or equal to

2.3.12 JMP (bits 3..0)

The JMP field is described in detail in the AMD 2910 documentation;
phrases which use it are described in detail in section 3.4.
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For PERQ!, the JMP field is encoded as follows:

CIA = Current Instruction Address.
NIA = Next Instruction Address.
Addr = CIA[11:81,,Z[7:0]  (Short)
or SFI3:01,,Z[7:0] (Long).
S = Internal Address Register.
CStk = Top of 5-Level Call Stack.
OpCode = ZI[7:6],,(not OpFilelBPC})[7:01,,Z[1:0].
Vector = Z[7:21,,0,,(not Device)l2:01,,Z[1:0].
Dispatch = Z[7:2],,(not Shift)(3:0],,Z[1:0].
Push =  Push CIA+l onto call stack
Pop = Pop call stack
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CODE NAME "~ PASS FAIL
0 JumpZero NIA :=0 NIA := 0
Clear CStk Clear CStk
| Call NIA := Addr NIA :=CIA + |
Push CStk
2 NextInst (H=0) NIA := OpCode NIA := OpCode
ReviveVictim (H=1) NIA := Victim NIA := Victim
3 Goto NIA := Addr NIA :=CIA + |
4 PushLoad NIA :=CIA + 1 NIA :=CIA +1
Push CStk Push Cstk
S := Addr
5 CallS NIA := Addr NIA := S
Push CStk Push CStk
6 Vector (H=0) NIA := Vector NIA :=CIA + |
Dispatch (H=1) NIA := Dispatch NIA := CIA + |
7 GotoS NIA := Addr NIA := S
10 RepeatLoop
S<o 0 NIA := CStk NIA := CStk
S :=8S-1 S =S -1
S=0 NIA :=CIA + 1 NIA :=CIA + |
Pop CStk Pop CStk
11 Repeat
S< 0 NIA := Addr NIA := Addr
S :=§8-1 S =8-1
S=0 NIA :=CIA+1 NIA :=CIA + 1
12 Return NIA := CStk NIA :=CIA + |
Pop CStk

2 -10
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13 JumpPop NIA := Addr NIA :=CIA + |

Pop CStk
14 LoadS NIA :=CIA+1 NIA :=CIA + 1
S :=Addr S :=Addr
15 Loop NIA :=CIA + 1 NIA := CStk
Pop CStk
16 Next NIA :=CIA +1 NIA :=CIA + |
17 ThreeWayBranch
S< 0 NIA := CIA + | NIA := CStk
Pop CStk
S :=§S-1 S :=S-1
S=0 NIA :=CIA + | NIA := Addr
Pop CStk Pop CStk
For PERQIA, the JMP field is encoded as follows:
CIA =Current Instruction Address.
NIA =Next Instruction Address.

CBank =Current 4K microstore Bank.

Addr =CBank[1:01,,CIA[11:8],,Z2[7:0)(Short) or
CBank(1:01,,SF[3:01,,Z217:0]1 (Long) or
Y(5:01,,Z217:0} (Leap).

S =Internal Register/Counter.

CStk =Top of S5-level call stack. -

OpCode =Z17:6],,(not OpFilelBpcl)(7:01,,Z[1:01.

Vector =Z17:21,,0,,(not device)(2:01,,Z[1:01.

Dispatch=Z17:2],,(not Shift)(3:01,,Z[1:0].

Push =Push CIA + 1 onto call stack.

Pop =Pop call stack.

(lo) =Bits [11:0].

(hi) =Bits [13:12].

CODE NAME PASS FAIL
0 JumpZero NIA :=0 NIA :=0
Clear CStk Clear CStk
| Call NIA:=Addr NIA:=CIA+]
Push CStk
2 NextInst (H=0) NIA(lo):=0pCode NIA(lo):=OpCode

NIA(hi):=CBank NIA(hi):=CBank

ReviveVictim (H=1) NIA(lo):=Victim NIA(hi):=Victim
NIA(hi):=CBank NIA(lo):=CBank

2 -11
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3 Goto
4 PushlLoad
5 CallS
6 Vector (H=0)

10

11

12

13

14

Dispatch (H=l)
GotoS

RepeatLoop
if S(lo) « 0

if S(lo) =0

Repeat

if S(lo) ©« 0

if S(lo) =0

Return

JumpPop (H=0)

LeapPop (H=1)

LoadS

NIA:=Addr

NIA(lo):=CIA+!]
NIA(hi ) :=CBank
Push CStk(lo)
S:=Addr

NIA:=Addr
Push CStk

January 15, 1984

NIA(lo):=CIA+1
NIA(hi):=CBank

NIA(lo):=CIA+1
NIA(hi):=CBank
Push CStk(lo)

NIA:=S
Push CStk

NIA(lo):=Vector NIA:=CIA+l

NIA(hi):=CBank

NIA(hi):=CBank

NIA(lo):=Dispatch NIA:=CIA+l

NIA(hi):=CBank
NIA:=Addr
NIA(lo):=CStk
NIA(hi):=CBank
S(lo):=S(lo)-1
NIA(lo):=CIA+]

NIA(hi):=CBank
Pop CStk(lo)

NIA(lo):=Addr
NIA(hi):=CBank
S(lo):=S(lo)-1

NIA(lo):=CIA+1
NIA(hi):=CBank

NIA:=CStk

Pop CStk
NIA:=Addr

Pop CStk(lo)
NIA:=Addr

Pop CStk
NIA(lo):=CIA+l

NIA(hi):=CBank
S:=Addr

2-12

NIA(hi ) :=CBank
NIA:=S

NIA(lo):=CStk
NIA(hi):=CBank
S(lo):=S(lo)-1

NIA(lo):=CIA+!
NIA(hi ) :=CBank
Pop CStk(lo)

NIA(lo):=Addr
NIA(hi):=CBank
S(lo):=S(lo)-1

NIA(lo):=CIA+l
NIA(hi):=CBank

NIA(lo):=CIA+l
NIA(hi):=CBank

NIA(lo):=CIA+1
NIA(hi):=CBank

NIA(lo):=CIA+1
NIA(hi):=CBank

NIA(lo):=CIA+]
NIA(hi):=CBank
S:=Addr
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15 Loop

16 Next

17 ThreeWayBranch
if S(lo) © 0

if S(lo) =0

NIA(lo):=CIA+!
NIA(hi ):=CBank
Pop CStk(lo)

NIA(lo):=CIA+]
NIA(hi):=CBank

- NIA(lo) :=CIA+!

NIA(hi):=CBank
Pop CStk(lo)
S(lo):=S(lo)-1

NIA(lo):=CIA+l
NIA(hi ) :=CBank
Pop CStk(lo)

2-13
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NIA(lo):=CStk
NIA(hi):=CBank

NIA(lo):=CIA+]
NIA(hi ) :=CBank

NIA(lo):=CStk
NIA(hi):=CBank
S(lo):=S(lo)-1
NIA(lo):=Addr

NIA(hi ) :=CBank
Pop CStk(lo)
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CHAPTER 3
PHRASES

This chaEter describes each of the phrases recognized by the
microassembler.

The general syntax of a phrase is as follows:

Phrase = empty
| Pseudo
| PascalStyleConstant
| {Result “:="} ALU
| Jump
| Special .

3.1 PSEUDO PHRASES

A "Pseudo” is a phrase which is used by the microassembler to alter
its own state. Its syntax is:

Pseudo = ‘Define” “(° [°°] name °,’ ConstExpr °)°
‘Constant” “(° name °,’ ConstExpr ")’
‘Opcode® “(° [ConstExpr °, ‘] ConstExpr °)’
‘Loc® “(° ConstExpr ‘)’

‘Binary”’

‘Octal *

‘Decimal *

DNop L

‘Case’ ‘(’ ConstExpr °,’ ConstExpr ‘)’
‘Place’ “(° ConstExpr °,’ ConstExpr °)° .

Sections 3.1.1 through 3.1.10 describe the defined PSEUDOs.

3.1.1 ‘Define” (" ["’} name °,’ ConstExpr °)’

Associates a name with a certain register number. The ConstExpr must
be in the range 0..255.

3-1
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For example, the instruction

Define(aRegister, #10);
informs the assembler that the name aRegister refers to register
number #10. When the $PERQIA and the $Base assembler options are

used, the percent sign () is required for registers with numbers less
than #100.

3.1.2 Constant

Associates a name with a numeric constant. For example,
Constant(Fourteen, 2%7);

informs the assembler that the name Fourteen should be synonymous with

the constant 14.

3.1.3 Opcode

Assembles the current instruction into the location specified by the
following formula:

Opcode(0Op) => (Op xor #377) lsh 2
Opcode(Base, Op) => (Op xor #377) Ish 2 + Base

For example, the instruction
Opcode(1), Tos := Tos + I;
assembles into the location
(1 xor #377) lsh 2 = #376 1lsh 2 = 1770

This computation matches the hardware for the NextInst jump so that
statements containing

Obcode(dumpTableBase, OpcodeNumber), ...
can be used in conjunction with a jump of the form

NextInst(JumpTableBase)

3.1.4 Loc

Assembles the current instruction into the location specified by
ConstExpr.
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3.1.5 Binary

Make 2 the default base for numeric constants.

3.1.6 Oc;al

Make 8 the default base for numeric constants.

3.1.7 Decimal

Make 10 the default base for numeric constants.

3.1.8 Nop

A placeholder. Assembles a No-Op instruction, wused for
synchronization between the processor and the memory/IO systems.

In response to a NOP, the microassembler builds a Microlnstruction
with the X, Y, B, W, H, ALU, and CN fields equal to zero, and the A
field equal to 6 (select XY[X]). The JMP, SF, and Z fields are used
to encode a jump to the following instruction (in the source code).

NOTE: The condition codes are not preserved during a Nop
instruction because the hardware executes an ALU operation
during every instruction, including Nop.

3.1.9 Case

Assembles the next instruction into the location specified by the
following formula:

Case(Val) ==> (Val xor #17) lsh 2
Case(Base, Val) ==> (Val xor #17) Ilsh 2 + Base

For example, the instruction
Case(#100, 1), Tos := Tos + 1;
assembles into the location

(1 xor #17) 1sh 2 + #100 = #16 Ish 2 + #100 = #170
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This computation matches the hardware for the Dispatch jump so that
statements containing

Case(JumpTableBase, CaseNumber), ...
can be used in conjunction with a jump of the form

Dispatch(JumpTableBase)

3.1.10 Place

Makes a range of locations available for assembly. The statement

Place(A, B)

specifies the range A to B (inclusive). Several Place statements can
be used, in which case the union of all ranges can be used. This
function is used by the PLACER.

"Place"” allows the microstore to be partitioned, so that explicit
subranges of it can be loaded without risk of inadvertant damage to
the remainder. For example, a range of the microstore could be
defined, using place, as an overlay area. Attempts to load
microinstructions outside the range specified in the place (through
the ‘LOC’ directive, for example) cause the microassembler to flag an

error.
3.2 PASCAL STYLE CONSTANTS
The Pascal style constant definition

name = ConstExpr
is functionally identical to

Constant(name, ConstExpr).
This construction allows a constant definition file to be included by
both a Pascal program and a microprogram. The instruction causes all
references to the name to be interpreted as constants.
This is wuseful in defining entities such as register assignments or

parameters which must be wused by both Pascal programs and PERQ
MicroPrograms.
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For example, suppose a file labeled "AFile” contained the following
statements:

Regload = 1002;
StartVal = 1023;
StopVal = 3049;
and a Pascal program and a Perq microProgram looked like:
PASCAL PROGRAM PERQ MICROPROGRAM
Const $INCLUDE Afile

$Include AFile

The constants "Regload”, "StartVal", and "StopVal™ would be available
to both the Pascal program and the MicroProgram, and a change to their
value (in AFile) is conveniently passed into both.
The syntax for a Pascal Style Constant is:

PascalStyleConstant = name ‘=’ ConstExpr .
WARNING: The default base in Pascal is always Decimal, but the default
base in microcode is usually Octal (but may be changed). Thus it is
safest to use declarations of the form

name = #number

which is interpreted as Octal in both Pascal and microcode.
Alternatively, the microprogram could contain

Decimal; ! change default base to 10
$Include AFile
Octal; ! change default base back to 8

3.3 {Result °‘:="} ALU

Sections 3.3.1 and 3.3.2 describe the primitives that form the
constructions of section 3.3.3. Section 3.3.1 describes the optional
result assignment locations and section 3.3.2 describes Amux, Bmux,
the operators which drive the ALU, and the OldCarry bit. Section
3.3.3 describes the permissable constructions formable from Amux,
Bmux, the operators, and the OldCarry bit.

The 20-Bit AMux output (AMUX[19:01) and the 20-Bit BMux output
(BMux[19:01) form the A and B inputs to the ALU. The ALU output is
latched in the R register (R[19:01).
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s

The syntax is:

Result = register

| ‘'TOS* | MA* | °MDO° | 'BPC’
| ‘SrcRasterOp° | ‘DstRasterOp’
| ‘WidRasterOp’ | ‘MQ° | ‘RBase” .

3.3.1 {Result ":="}

The ALU output can be written into zero or more RESULT locations,
described in sections 3.3.1.1 through 3.3.1.8, below.

The assignment construction stores the full or partial result of the
ALU (R[19:01) in the designated target location. In addition to
simple assignments (which store R in one location), compound
assignments (which store R in several locations) can be constructed,
subject to the constraint that each microinstruction field can only be
assigned ONCE.

NOTE: The syntax allows multiple assignment of the same ALU
output in the same microinstruction. Since each field of
the microinstruction can only be assigned once (see
section 2.3) per micro- instruction, care should be
exercised in multiple assignments to prevent conflicts.
The microassembler dissallows such conflicts.

Simple Assignments (result := ALU) copy the bits in R to the location
specified by result, bit for bit. If the result location is less than
20 bits wide (BPC, for example), the assignment maps only those bits
of R which also appear in result. For example,

BPC := I0OD;

copies the four low-order bits of the I0 data bus into the four-bit
BPC register.

Compound Assignments (a := b := ... := ALU) copy the bits in R to
each location specified so long as each result location can be
specified without a conflicting use of any microinstruction field.
For example,

DEFINE(Foo, #15), Foo := TOS := MA := 10, Fetch;

is valid (TOS uses the SF and F fields, MA uses no fields), while the
instruction

TOS := BPC := 10;
is invalid (TOS uses the SF field in a way which conflicts with the

BPC use of the same field). The microassembler dissallows these
invalid combinations.

3-6
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The syntax is

result ::= register
.Tos'

'MA »

Dm »

le »
‘SrcRasterOp”’
‘DstRasterOp”’
‘WidRasterOp”’

3.3.1.1 Register

Directs the contents of R to Register. Register must be a previously
defined register name (see section 3.1.1).

A base register facility is available on the PERQIA. Some suggested
uses are:

1.) Saving and restoring register values in a loop.

2.) Establishing context dependent registers in a way that they may
co-exist with a set of globally accessable registers.

3.) Using the registers as a deep stack.

The use of the base register is controlled by bits 6 and 7 of the X
and Y fields of the microinstruction. For register numbers 0 through
77, the base register value is OR-ed with the X or Y field to form the
register address. Register numbers 100 through 377 are not modified.
Thus if the base register is loaded with 0, the PERQIA register
addressing mechanism is compatible with that of the PERQl.

The base register is loaded from R with the "RBase := " special
function. The value loaded into the base register is inverted when it
is loaded. Thus to load a value V.into the base register, use "RBase
:= not V". The base register is cleared when the boot button is
pressed. This is done to allow normal register access during boot
sequences.

In order to help prevent inadvertant errors, the assembler requires
the programmer to explicitly indicate whether a register is affected
by the base register. This is required both at the point of
definition and the point of use. Registers whose numbers are less
than 100 must have a percent sign (%) prefixed to their names.

This instruction uses the X and W fields (X := address, W := 1).
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3.3.1.2 T0S

A reference to the top of the expression stack. Each assignment to
TOS replaces the previous contents of the expression stack with the
- current ALU output.

A reference to TOS uses the F and SF fields.

3.3.1.3 MA

The memory address register. MA is latched from R during fetch or
store type microinstructions. An assignment to the MA register does
not occupy any microinstruction fields, but is helpful as a mnemonic
aid.

NOTE: The MA register is latched from R during EACH fetch or
' Store type microinstruction. It is therefore a good
programming practice to reflect this in an assignment to

it, making its contents (for the fetch or store) explicit.

3.3.1.4 MDO

The memory data output register. Each assignment to MDO directs the

low-order 16 bits of the ALU output (R(15:0]) to MDO[15:0]. Like the

MA register, an assignment to MDO does not occupy any fields, but is

helpful as a mnemonic aid.

Note: The MDO register is latched from R during the data
transfer portion of each store type instruction. It is

therefore a good programming practice to reflect this in
an assignment to it, making its contents explicit.

3.3.1.5 BFC

A reference to the four-bit BPC counter. An assignment to BPC loads
R[3:0) (the four low-order bits of R) into the BPC.

This instruction uses the F and SF fields (F:=0, SF:=8#13).

3.3.1.6 SrcRasterOp

SrcRasterOp is a control register in the raster-op/shifter hardware.
An assignment to SrcRasterOp loads R into the SrcRasterOp register.

This instruction uses the F and SF fields (F:=0, SF:=8#7).
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3.3.1.7 DstRasterOp

DstRasterOp is a control register in the raster-op/shifter hardware.
An assignment to Dstrasterop loads R into the DstRasterOp register.

This instruction uses the F and SF fields (F:=0, SF:=8#10).

3.3.1.8 WidRasterOp

WidRasterOp is a control register in the raster-op/shifter hardware.
An assignment to WidRasterOp loads R into the WidRasterOp register.

This instruction uses the F and SF fields (F:=0, SF:=8#11).

3.3.1.9 RBase

The PERQIA provide a base register facility. See section 3.3.1.1 for
a description of how the base register affects register addressing.
An assignment to RBase loads the complement of R[7:0] (the low order 8
bits) into the base register.

This instruction uses the F and SF fields (F:=1, SF:=3).

3.3.1.10 MQ

The PERQIA provides hardware to assist integer multiply and divide.
See sections 3.5.1.16 and 3.5.1.17 for a description of the
multiply/divide hardware. As assignment to MQ loads R into the
multiplier/quotient register. '

This instruction uses the F and SF fields (F:=1, SF:=2).
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3.3.2 ALU
The syntax is

Amux ::= register
‘Shift”’
‘NextOp*
‘10D
“MDI *
DX *
‘TOS’
.‘UState’ [ “(° register ")° ]

Bmux ::= registericonstant

3.3.2.1 AMWX

The microassembler uses the following primitives to control the AMUX.

The 20 AMux output bits (AMux[19..0]) form the A input to the ALU.
Amux = register | ‘Shift’ | °NextOp“” | ‘IOD’

{ ‘MDI° } ‘MDX* | °‘TOS®

| ‘UState’ [°(’ register ")°] .

Register directs the contents of the register addressed by the X field
to the AMux output. Register must be a previously defined register
name (see section 3.1.1). If part of an assignment construction, the
register specified in AMux be the same as the register being written.
For example, the statement: ’

Foo := Foo + Bar;
works, while the statement

Foo := Bar + Zee;
does not.
SHIFT directs the output of the shifter onto the AMux output lines.
This output is the shifted value of whatever was on R in the last
executed microinstruction.
NOTE: For meaningful results, the shift control function must

have been specified during a prior microinstruction using

3-10
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a LeftShift (section 3.5.2.1), RightShift (section
3.5.2.2), Rotate (section 3.5.2.3) or ShiftOnR (section
3.5.1.18) special function. ,

NEXTOP directs the contents of the OP File byte currently pointed to
by the BPC onto the AMUX output lines, and BPC is incremented by one.

NOTE: If BPC overflows, the microinstruction eventually executes:
again. This precludes instructions such as "Foo := NextOp
+ Foo".

The microassembler automatically adds an "IF BPCI3] GOTO(Refill)"™ jump
clause. Thus, if BPC overflows, control passes to refill. The
instructions at ‘refill’ must increment UPC by four (pointing to the
next quadword), set BPC to O (clearing the overflow), and start a
Fetch4 to the Op File (loading the next quadword). The special
function LoadOp must be executed in the t! after the Fetch4 to cause
the Op file to be loaded with the data coming in on MDI. Refill must
then jump back to the instruction which needed the byte so that the
instruction may be re-executed. This is easily accomplished with a
‘ReviveVictim’ jump directive (see section 3.4.2.10).

The PERQIA can read the victim register directly; see Section 3.3.3.4.

WARNING: When a NextOp executes with BPCI3] set, the current address
is loaded into the Victim register and locked. No new value is loaded
until the Victim register is cleared by the ReviveVictim jump or by
reading the Victim register directly.

10D directs the contents of the 10 databus to the 16 low bits of the
AMUX output. Bits 19..16 are cleared.

MDI extracts a memory word; the contents of the Memory Data Bus are
directed to the low-order 16 bits of the AMux output (AMux[15:01).
The remaining high order bits (AMux[19:16) of the output are cleared.

MDI is valid only during the four cycles which immediately follow a
fetch-type instruction. Section 3.5.1 contains details of memory
control timing.

MDX extracts a memory extension; the low order 4 bits of the Memory
Data Bus (MD[3:01) are directed to AMux[19:16]. Bits AMux[15:0] are
cleared. MDX is used in conjunction with MDI to obtain a full 20 bit
physical address.

For example, a 20 bit physical address at memory address FOO can be
placed in register BAR as follows:

MA:= FOO, Fetch2; ! initiate the Fetch sequence

BAR := MDI; ! get the first word
BAR := BAR Or MDX;! get the rest

3-11
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TOS directs the contents of the top of the Expression stack to the
AMux output.

USTATE [(Register_Name)] directs the contents of the microstate
register to the AMux output. If Register_Name is specified,
UStatel15:12] contains the inverted high-order four bits of the
selected register (using the Y field and BMux). If Register_Name is
not specified, UStatel15:12] contains Bmux[19:16] (inverted).

The UState register contains various interesting items packed in a
single word. The UState register (A=5) looks like:

9 16 15 121110 9 8 7 6 5§ 43 0

- - -+ e

0 E BMux l9:l6€uu¥uuf Euu? NE CE Zi Vi BPC

<
-+
|
|
< 4
- T T T L T T T T T ha

-

uu Unused

BPC Byte Program Counter

N Negative (ALU result < 0)

Z Zero (ALU result = 0)

C Carry (ALU carry out of bit 15)

\4 Overflow (ALU overflow occured)

SE EStk Empty (inverted data -- 0 = empty)

BMux 19:16 Upper 4 Bits of BMux, used to read bits 19:16
a register (inverted data).

NOTE: UStatel15:12] contain the INVERIED register or BMux bits.
They can be complemented again (using the NOT function,
section 3.3.1) and a field qualifier can provide a mask.
For example,

NOT UState(aRegister), Field(14,4);
aResult := shift;
3.3.2.2 BMWX

The microassembler uses the following primitives to control the BMUX.
The 20 BMux output bits (BMux[19..0]) form the B input to the ALU.

The syntax is
Bmux ::= register | constant} °(° ConstExpr °)’

Register directs the contents of Register to the BMux output. The
register name must have been previously defined (see section 3.1.1).

Constant directs a one or two byte constant onto the low order 8 or 16
bits of the BMux output (BMux[7:0] or BMux[15:01). The high-order 4
bits of the BMux output (BMux[19:16]1) are cleared. The microassembler
determines the required length of the constant (one or two bytes) and
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uses the F and SF fields accordingly.

Constant may be either implicit (through the use of a predefined
constant name, section 3.1.2) or literal.

3.3.2.3 Operators
The microassembler recognizes several operators. These keywords are
used by the microassembler to determine which ALU functions are to be
enabled.
The syntax is
Op= ‘and” | ‘or’ | “xor’ | ‘nand” | ‘mor” | ‘xnor’ .
All of these instructions use the ALU field of the microinstruction.
AND - R gets the bitwise logical AND of AMux and BMux.
OR - R gets the bitwise logical OR of AMux and BMux.
XOR - R gets the bitwise logical XOR of AMux and BMux.
NAND - R gets the inverted bitwise logical AND of AMux and BMux.
NOR - R gets the inverted bitwise logical OR of AMux and BMux.

XNOR - R gets the inverted bitwise logical XOR of AMux and BMux.

3.3.2.4 OldCarry Bit

The OldCarry bit, used in several ALU constructions, contains the
carry (or borrow) from bit 16 of the immediately preceding
microinstruction, and is used to perform multiple precision arithmetic
operations.

OldCarry contains a carry bit if the immediately preceding
microinstruction was an addition and a borrow bit if the immediately
preceding microinstruction was a substraction.

3.3.3 Constructions

This section presents valid ALU constructions. They are grouped into
constructions which use one operand, constructions which imply logical
operations between two operands, constructions which cause arithmetic
operations among two operands (sometimes including the oldcarry bit
for multiple precision arithmetic, and several special constructions
used primarily for diagnostic purposes). :

3-13



PHRASES January 15, 1984

For each of these instructions, result, Amux, Bmux, the operator, and
OldCarry is specified using the syntax defined in the previous
sections.

Each of these constructions uses the ALU field of the microinstruction
in addition to the fields used by the elements of the construction.

The syntax is

ALU = [‘not’] (Amux } Bmux)

Amux Op [ ‘not ‘] Bmux

Amux ‘+° Bmux [°+° °OldCarry’)
Amux ‘-’ Bmux [°-° °OldCarry’]
Amux ‘amux’” Bmux

Amux “bmux’® Bmux

OMQ'

Victim® .

3.3.3.1 Single Operand Constructions

Single operand instructions extract either AMux or BMux. They may be
preceded by the keyword NOT, causing the bitwise inversion of the

operand.

The syntax is

[‘not’] (Amux | Bmux)

AMux directs the AMux outputs to R[19:0]. When preceded by the
keyword NOT, inverts the sense of R[19:0]. Amux is specified using
one of the forms described in section 3.3.2.1.

BMux directs the BMux outputs to RI[19:0]. When preceded by the
keyword NOT, inverts the sense of R[19:0]. Bmux is specified using
one of the forms described in section 3.3.2.2.

3.3.3.2 Double Operand logical Constructions

These constructions are used to form logical combinations of the Amux
and Bmux outputs.

The syntax'is

Amux Op [ ‘not’] Bmux

AMux Operator BMux uses one of the operators described in section
3.3.2.2, and combines the Amux outputs with the Bmux outputs placing
the result in R(19:0].

AMux Operator NOT BMux combines the Amux outputs (specified in section
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3.3.2.1) with the INVERTED Bmux outputs (specified in section
3.3.2.2), placing the result in R[19:0].

NOTE: The following constructions are not implemented in the
ALU:

‘nand” ‘not ° Bmux
Amux ‘nor’ ‘not’ Bmux
Amux ‘xor’ ‘not’ Bmux

4

Amux ‘xnor’ ‘not’ Bmux

The microassembler disallows these four constructions.

3.3.3.3 Double Operand Arithmetic Constructions

These constructions are used to form arithmetic combinations of the
Amux and Bmux outputs.

The syntax is

Amux ‘+° Bmux [°+° ‘OldCarry’]
lAmux ‘-° Bmux [°-" °OldCarry’]

AMux + BMux [+ OldCarry] forms the 20-bit binary sum of AMux and Bmux.
The oldCarry bit is the carry from AMux(15] and BMux[1S]. Thus, for
multiple precision arithmetic, the appropriate sequence is:

1. Amux + Bmux ; ! Low order word
2. Amux + Bmux + OldCarry; ! High-order word,

To minimize overhead during normal arithmetic operations from memory,
the condition codes are set based upon the low-order 16 bits of the
result [R[15:0]. Thus, while the four high-order bits of Amux and
Bmux do participate in the addition, and the result is maintained in
R[19:16], they DO NOT participate in the state of the condition codes.
This affects the outcome of conditional branches (see section 3.4).

AMux - BMux [- OldCarryl forms the 20-bit binary difference of AMux
and Bmux. The oldCarry bit is the borrow from AMux(15) and BMux([15].
Thus, for multiple precision arithmetic, the appropriate sequence is:

1. Amux - Bmux ; ! Low order word
2. Amux - Bmux - OldCarry; ! High-order word,

To minimize overhead during normal arithmetic operations from memory,
the condition codes are set based upon the low-order 16 bits of the
result (R[15:01). Thus, while the four high-order bits of Amux and
Bmux do participate in the subtraction, and the result is maintained
in RI[19:16], they DO NOT participate in the state of the condition
codes. This affects the outcome of conditional branches (see section
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3.4).

The special operators AMUX and BMUX permit the state of both the AMUX
outputs and the BMUX outputs to be specified while only one or the
other is being directed to R[19:0].

In certain situations, primarily diagnostic, this is a necessary
addition to the machine’s functionality. For examgle, an
diagnostic can use these operators to identify Bmux bits which are
inappropriately coupled to the ALU output, by setting both Amux and
Bmux outputs to a known value and checking that the ALU generates the
correct output.

The syntax is

Amux ‘amux’ Bmux
! Bmux ‘bmux’ Bmux

Amux AMUX Bmux causes the Amux outputs to be directed to RI[19:01],
while simultaneously putting a known value on the Bmux outputs.

Amux BMUX Bmux causes the Bmux outputs to be directed to R[19:0],
while simultaneously putting a known value on the Amux outputs.

3.3.3.4 Special Constructions

The PERQIA allows two more constructions to read the M
(multiplier/quotient) and Victim registers. These are used as though
they were ALU operations. For example

Result := MQ;

Reads the MQ register and assigns its value to the register named
Result. The Victim register (see section 3.3.2.1) is read in a
similar way. Reading the Victim register clears it an makes it
possible to load a new Victim value. The Victim register is defined
only from the time a NextOp is executed with BPCI3] set until it is
read or used in a ReviveVictim jump. Therefore the Victim register
may only be read once.

WARNING: Reading MQ and Victim does not actually use the ALU and thus
no computation may be done with the value. Reasonable actions are to
assigne the value to a register or send it to the shifter. Note that
since the value does not pass through the ALU, condition codes are
invalid in the cycle which follows.

3.4 JUMP

Jump microinstructions are used to alter the sequential control flow
of a microprogram. A Jump microinstruction is constructed from an
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optional condition, a directive, and a target address.

A jump needing an address normally gets it from the Z field. Since Z
is only eight bits wide, and the control store requires a 12 bit
address, another four bits of address are needed.

The microassembler derives these other four bits based upon the target
of the jump. Short jumps branch to a location on the same 256-word
page as the current microinstruction (CIA). To go to an arbitrary
location in the control store, the F field can specify a long jump
(F=3), which uses the SF field for the upper four bits of address.

The PERQIA has a writable controlstore that is expandable in multiples
of 4K up to 16K instructions. The 4K multiples are referred to as
banks of the controlstore. The microinstruction address paths are
expanded to provide 2 more address bits. Hardware was added to
provide 2910-like functions for the high order bits. This agproach
has numerous drawbacks because the 2910 is not an expandable bit
slice. The problems are twofold. It is not possible to expand the 12
bit counter on the 2910 since it does not provide a carry out.
Secondly, instructions such as ‘RepeatlLoop’ and ‘ThreeWayBranch’
manipulate the control stack depending on the state of the counter.
The state of the counter is not available external to the chip. This
could lead to the two stacks getting ‘out of sync’ with each other.

The upper 2 and the lower 12 bits of the micro address are treated
differently. In fact, the sequencer instructions will be different
for the upper and lower bits. The jump control table shows the
differences between them.

In addition to Short and Long jumps there is a level of address
generation called Leap which is capable of addressing the entire 16K.
A 2-bit bank register supplies the current bank address during Long
and Short jumps. When we Leap, however, the 14-bit address will be
formed from concatenation of the Y and Z fields, with the Y field
supplying the most significant byte. The assembler generates leap
addresses (by setting F = | and SF = 7) when the target address of a
jump is in another bank. The assembler restricts a single assembly to
one bank. This means leaps are required only for constant addresses
in another bank.

The following notes are provided as an aid to reading the jump control
table for PERQIA.

1. Incrementing or decrementing of the microinstruction
program counter and the S register do not affect the upper
2 bits. Thus these will not cross bank boundaries.

2. The low 12 bits of S are not available to the circuitry
controlling the upper 2 bits of S and the upper 2 bits of
the microinstruction program counter. Thus jumps which
depend on whether S has reached zero will not cross bank
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boundaries, and are allowed to push or pop only the lower
12 bits of the CStk.

3. Since Repeat, RepeatLoop, Loop, and ThreeWayBranch only pop
the lower 12 bits of the CStk, PushLoad only pushes the low
12 bits of the CStk. This means that the short version of
JumpPop must be used to exit such a loop.

4. Since Call and CallS push both parts of the CStk, the long
version of JumpPop (called LeapPop) must be used to clear
the call stack.

5. NextInst, Vector, and Dispatch jumps may not be used across
bank boundaries.

The micro-assembler provides minimal support for Leaping jumps. A
single assembly must fit entirely inside a 4K bank of the
controlstore. This means that Leaps are allowed only with constant
addresses or with the Goto(Shift) described in Section 3.4.3.3. The
assembler, therefore, always knows whether to generate a Leap.

Since the JumpPop type has two variants to control whether to pop the
upper stack, a new jump type is necessary: LeapPop. This is a JumpPop
which pops the upper stack.

For both PERQl and PERQIA, the address for jumps might not come from
the Z, SF, or Y fields.

In addition to control-store addresses which come from the Z and SF
fields, a jump address can also come from the following sources:

SOURCE DESCRIPTION

The S register Internal to the microsequencer

The Call Stack Five-level stack internal to the
microsequencer

Current Address + | Uses full 12-bit Address

Victim Register Hardware register, contains the address of
' the most recent ‘failed” NextOp.

Processor Shifter For PERQIA.
There are three jumps which are multi-way branches. For each of these

three jumps, the Z field provides the address bits needed to complete
the 12-bit control-store effective address.
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DIRECTIVE DESCRIPTION

NextInst 256-way branch, based on the next byte from the Op
file. The next byte provides bits 9..2 of the
effective address (inverted); bits 11..10 come from
Z[7:6] and bits 1..0 come from Z[1:0). This results in
a 256-way branch with a spacing of four instructions.

OP File (next byte):} 7} 6! 5} 4! 3} 2! 1} 0}
| S A
| 1 ! [} | | ] 1 [} 1
not 1<===I NVERTE D-==>]
I | | [} 1 [l | 1 ! 1
1 | | ! [} ! ! | | |
v VVVVVVVVYVY
Effective Address: EllilOi 9E 85 7? 6E 5? 45 3? 2? li OE
AR YA / /7 7/
/°\ AR WA /7 7/
| AR WA /7 7/
| AN / /7 7/
AV AN /7 7/
Z Field 171 61 5! 4} 31 2! 1} 0!
Dispatch © 16 Way branch, based on the low-order four bits of the

Shifter. Bits 5..2 come from the shifter (inverted);
the remainder come from Z. This results in a 16 way
branch with a spacing of four instructions.

s s L St T T T s

Shifter: ... 7V 61 5 4! 31 2! 11 0!
, A S S S S
] [] ! ] ] ]
not {-INVERTED- |
] ] [] ] ] [}
] ] ] ] [] ]
\Y VvV V.V Vv vV
Effective Address: !11!10} 9! 8! 7! 6! 5! 4! 3! 2! 1! 0!
NEVEYE YR VR R VY,
7"\ NN Y /77

7
rd
7~
7
7
e
7
~
~
~

NN NN N NN
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Vector An up-to-eight way branch, based on the three
micro-interrupt priority encoder bits (the V bits).
Bits 4..2 come from the priority encoder (inverted),
bit 5 is always zero, and the remaining bits come from
Z. This results in an eight way branch with a spacing
of four microinstructions.

FRREFRRRS—
Micro-Interrupt Priority Encoder: | 2{ 1} O}
o

]

I
not
i
v

/°\ NN N N N NN / /7 /

”
7
7
7
7
e
7
~
~N
~

NN N NNNNZ
Z Field 171 6] 51 41 31 21 1} 0}

- ha T h T r

The syntax is: _
Jump = [“If* Condition] Directive [°(’ Target °)’l .

Condition = ‘True’ | ‘False’ | °BPCI3]1" | °C19°
| “IntrPend’ { "0dd’ | ‘ByteSign’
! "Eql” | ‘Neq’ | ‘Gtr’ | ‘Geq’
| ‘Lss’ | ‘Leq” | ‘Carry’ | ‘OverFlow’.

Directive = ‘Goto” | “Call’ | ‘Return’ | ‘Next’ | "JumpZero’
! *LoadS’ | ‘GotoS’ | ‘CallS’ | °‘Nextlnst’
‘ReviveVictim’ | ‘PushLoad’ | ‘Vector’ | ‘Dispatch’
‘RepeatLoop” | ‘Repeat’ | ‘JumpPop’ | ‘LeapPop’
‘Loop’ | ‘ThreeWayBranch® .

Target = label | constant | ‘Shift” .

3.4.1 Jump Conditions

Conditions are used to control whether or not a given jump is taken.
Some jump directives do not allow conditions, while for the remainder
the condition is optional. Section 3.4.2 presents in more detail
which directives may or may not allow condition execution.
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All ALU related condition codes test the result of the ALU operation
from the previous microcycle. Thus, the normal sequence is to perform
an ALU operation and test its result in the next microinstruction.
For example, comparison of two registers A and B could be done in this
way:

A - B;
if gtr GOTO(Label); !'Jumps if A > B

All ALU tests with the exception of Cl19 test the lower 16 bits of the
ALU. These are intended for data comparisons. After a subtraction,
these condition codes compare the two operands. After other
operations, these condition codes compare the 16-bit ALU result
against zero.

The condition codes are not entirely sensible after a double precision
add or subtract:

ALower - BlLower;
AUpper - BUpper - OldCarry;
if Lss Goto(AisLessThanB);

The Z condition code flag considers only the result of the upper
precision operation and not the result of the lower precision
operation. This means that EQL, NEQ, LEQ, and GIR condition codes
(which use the Z flag) are not valid after a double precision add or
subtract unless the low order 16 bits of the result are zero. Only
LSS, GEQ, CARRY, and OVERFLOW reflect the result of the entire double
precision operation. The following subroutine may be used to compare
the two double precision numbers:

DblCmp: ALower - BlLower;
AlLower - BLower - OldCarry,
if Eql Return; ! if AlLower = BLower, the
! condition codes are good
not O, if Lss Return; ! A <B
1, Return; !tA>B

After calling DblCmp you may use the LSS, LEQ, EQL, NEQ, GEQ, and GIR
condition codes. Carry and Overflow, however, are not valid.

C19 is designed for unsigned address comparisons. After an addition,
it contains the INVERTED carry from bit 19; after a subtraction, it
contains the borrow from bit 19.

Assuming that A and B are registers containing 20-bit addresses and T
is a temporary register, the following code fragments show how C19 may
be used to compare A and B.
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A-1; ! Jumps if A =0;
if C19 GOTO(label), ! doesn’t jump if A = 0
T := A;
T:=T-B;
T-1; ! Jumps if A =B;
if C19 GOTO(label); ! doesn’t jump if A o B
A - B; ! Jumps if A < B;
if C19 GOTO(label); ! doesn’t jump if A >=B
B - A; ! Jumps if A > B;
if C19 GOTO(label); ! doesn’t jump if A<B
The syntax is
condition ::= °If true’ | °If false’
‘If BPCI31° | °If C19°
‘If IntrPend’ | °‘If Odd’
‘If ByteSign® | °If Eql’
‘If Neq’ { ‘If Gtr’
‘If Geq’ { 'If Lss’
‘If Leq’ { 'If Carry’
‘If Overflow

3.4.1.1 True

Always Pass. Equivalent to no conditional.

3.4.1.2 False

Never Pass.

3.4.1.3 BPCI3]

Pass if BPC overflow has occurred (BPCI3] = 1). This implies that the
Op file is empty.

3.4.1.4 CI9

Pass if the inverted carry from ALU bit 19 of the last

microinstruction was set. The sense of Cl9 is inverted, so if C19 is
reset, a Pass occurs and if C19 is set, a Fail occurs.



PHRASES January 1§, 1984

3.4.1.5 IntrPend

Pass if any device is requesting an interrupt.

3.4.1.6 0dd

Pass if ALU bit O of the last microinstruction was set.

3.4.1.7 ByteSign

Pass if ALU bit 7 of the last microinstruction was set.

3.4.1.8 Eql

Pass if equal to zero. After a subtraction, this tests whether the
two operands were equal (16-bit test). Otherwise, this tests whether
the result was equal to zero (16-bit test). -

3.4.1.9 Neq

Pass if not equal to zero. After a subtraction, this tests whether
the two operands were unequal (16-bit test). Otherwise, this tests
whether the result was unequal to zero (16-bit test).

3.4.1.10 Gtr

Pass if greater than zero. After a subtraction, this tests whether
the A-input was greater than the B-input (16-bit test). Otherwise,
this tests whether the result was greater than zero (16-bit test).

3.4.1.11 Geq

Pass if greater than or equal to zero, whether or not an overflow
occurred. After a subtraction, this tests whether the A-input was
greater than or equal to the B-input (16-bit test). Otherwise, this
test§ whether the result was greater than or equal to zero (16-bit
test).

3.4.1.12 Lss
Pass if less than zero. After a subtraction, this tests whether the

A-input was less than the B-input (16-bit test). Otherwise, this
tests whether the result was less than zero (16-bit test).
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3.4.1.13 Leq

Pass if less than or equal to zero. After a subtraction, this tests
whether the A-input was less than or equal to the B-input 16-bit
test). Otherwise, this tests whether the result was less than or
equal to zero (16-bit test).

3.4.1.14 Carry

Pass if carry bit from bit 15 of the previous instruction was set.
The ALU performs subtraction using two’s complement arithmetic, and so
the carry bit after a subtraction is a two’s complement carry.

3.4.1.15 Overflow

Pass if a 16-bit overflow occurred in the previous microinstruction.
Overflow is set under two conditions, as follows:

Sign of A,
B Inputs Operation Result Sign

SAME Addition Different
DIFFERENT Subtraction Different from A

3.4.2 Jump Directives

Each directive specifies an action to take. Some directives do not
allow a conditional to be specified (see section 3.4.1 for details on
specifying the conditional). Some directives require a target to be
specified, for some a target is optional, and for some the target is
implied by the directive and cannot be explicitly specified. Targets
are described in more detail in section 3.4.3.

The description for each directive includes whether or not a
conditional and/or target can be supplied.

Further information about details of the jump instructions is
available in the documentation for the AMD 2910 microsequencer.

The syntax is

Directive = ‘Goto” | ‘Call” | ‘Return’ | °‘Next’ | ‘JumpZero’
| ‘LoadS® | ‘GotoS’ | ‘CallS’ | °‘Nextlnst’
i ‘ReviveVictim® | ‘PushLoad’ | ‘Vector’ | ‘Dispatch’
| ‘RepeatLoop’ | ‘Repeat’ | ‘JumpPop’ | ‘LeapPop’
| ‘Loop” | ‘ThreeWayBranch® .

w
I

24
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3.4.2.1 Goto

If the optional condition succeeds, or if no condition is supplied,
branches to the specified target. If the optional condition fails,
execution continues at the current instruction address plus one.

The condition is optional; the target is required.

3.4.2.2 Call

If the optional condition succeeds, or if no condition is supplied,
pushes the current instruction address plus one onto the call stack
and branches to the target. If the optional condition fails,
execution continues at the current instruction address plus one.

The condition is optional; the target is required.

3.4.2.3 Return

If the optional condition succeeds, or if no condition is supplied,
branches to the value of the top of the call stack and pops the call
stack. If the optional condition fails, execution continues at the
current instruction address plus one. The condition is optional; the
target cannot be specified.

3.4.2.4 Next

Execution continues at the current instruction address plus one. The
condition cannot be specified; the target cannot be specified.

3.4.2.5 JumpZero

Jumps to address zero in the control store.

The condition cannot be specified; the target cannot be specified.

3.4.2.6 Loads

Load the target into the S register. The S register is an address
register internal to the microsequencer.

The condition cannot be specified; the target is required.
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3.4.2.7 Gotos

There are three cases. If the optional condition succeeds (or no
condition is supplied), and the optional target is supplied, branches
to the target. If no target is supplied, branches to the next
microinstruction in the source. If the condition fails, execution
continues at the microinstruction at S.

The condition is optional if there is no target and required if there
is a target. Unlike other jumps, the default condition is False which
uses the value of the S register. The target is optional.

3.4.2.8 Calls

If the optional condition succeeds, or if no condition is supplied,
branches to the target and pushes the current instruction address plus
one onto the call stack. If the condition fails, pushes the current
instruction address plus one onto the call stack and execution
continues at control store address S.

The condition is optional if there is no target and required if there
is a target. Unlike other jumps, the default condition is False which
uses the value of the S register. The target is optional.

3.4.2.9 Nextlnst

A 256-way branch, based on the next byte from the Op file. The next
byte provides bits 9..2 of the effective address (inverted); bits
11..10 come from Z[7:6) and bits bits 1..0 come from ZI[1:0]. This
results in a 256-way branch with a spacing of four instructions.

OP File (next byte):! 7} 6! 5} 4} 3! 2} 1} 0!
I
] ] ] 1 ) ] ] ] ]
not l<csI'NVERTE Doee>!|
[} ] ] [] ] ] ] [} ] ]
] ] ] 1 ] ] [} [} ] ]
\" vV V.V V V V V VYV
Effective Address: !11!10! 9! 8! 7! 6! 5! 4! 3! 21 1! 0!
R /1 7
/*\ R /7
: NN /77
: v\ A YAV,
NN VAV,
Z field 171 6! 5! 4! 3! 2! 11 0!
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If the Op file is empty (BPCI3] = 1) then the OP File bits are forced
to #377. Since these bits are inverted in the effective address,
control passes to the base address generated from the Z bits
(effective address bits 9..2 are zero). It is necessary to place a
special refill function at this address (°‘Zaddr’) which fetches four
new bytes, increments UPC by four, performs a LOADOP (see section
3.5.1.4), and repeats the NEXTINST. The return from this special
refill should be via Nextlnst.

The Z field is derived from the target by the assembler (see section
3.4.3).

The condition cannot be specified; the target is required.

3.4.2.10 ReviveVictim

Control branches to the value of VICTIM register. The victim register
contains the address of the most recent microinstruction which
included a NEXTOP while BPCI[3] was set.

NOTE: The contents of the victim register are defined only from
the time the nextOp is executed (with BPCI3] set) to the
first execution of ReviveVictim. Therefore, REVIVEVICTIM
can be executed only once after a failed NextOp.

The condition cannot be specified; the target cannot be specified.

3.4.2.11 Pushload

If the optional condition succeeds or if no condition is supplied,
execution continues at the current instruction address plus one, the
current instruction address plus one is pushed onto the call stack,
and the target is stored in S. If the condition fails, the current
instruction address plus one is pushed onto the call stack and
execution continues at that address.

The condition is optional; the target is required.

3.4.2.12 Vector

An up-to-eight way branch, based on the three micro-interrupt priority
encoder bits (the V bits). Bits 4..2 come from the priority encoder
(inverted), bit § is always zero, and the remaining bits come from Z.
This results in an eight way branch with a spacing of four
microinstructions.
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s S X
Micro-Interrupt Priority Encoder: | 2} 1} 0O}
e taan
| N
not | INVERTED
i ot + 11
\" vV V. V Vv V
Effective Address: !11110! 9! 8! 7! 6! 5! 41 3! 2! 1! 0!
N Y Y W W WY /7 /7 /
/°\ NN N N N AN /7 /7 /
NN N N N VN / 7/ 7/

NNNNNNN 7/
NN NNNNNZ Y
s S St M S S S A £

Z Field | 71 6} 5} 4} 3} 2} 1} 0}

4 'R i < n e 3 I 2
L T T T T T T T a

The microassembler derives the Z field from the target (see section
3.4.3).

If the optional condition succeeds, or if no condition is supplied,
execution continues at the effective address. If the condition fails,
execution continues at the current instruction address plus one. The
condition is optional; the target is required.

3.4.2.13 Dispatch
A 16 Way branch, based on the low-order four bits of the Shifter.

Bits 5..2 come from the shifter (inverted); the remainder come from Z.
This results in a 16 way branch with a spacing of four instructions.
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The Z field is derived from the target by the microassembler (see
section 3.4.3 for details).

If the optional condition succeeds, or if no condition is supplied,

execution continues at the effective address. If the condition fails,
execution continues at the current instruction address plus one.

The condition is optional; the target is required.

3.4.2.14 RepeatLoop

If S is non-zero, execution continues at the instruction whose address
is at the top of the call stack and S is decremented by one.

If S is zero, execution continues at the current instruction address
plus one and the call stack is popped.

The conditional cannot be specified; the target cannot be specified.

3.4.2.15 REPEAT

If S is non-zero, execution continues at the target address and S is
decremented by one.

If S is zero, execution continues at the current instruction address
plus one.

The condition cannot be specified; the target is required.
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3.4.2.16 JumpPop and LeapPop

If the optional condition succeeds, or if no condition is supplied,
execution continues at the target address and the call stack is
popped. If the condition fails, execution continues at the current
instruction address plus one.

LeapPop is used on the PERQIA CPU to pop both the upper and lower call
stacks. LeapPop is encoded by the assembler as a JumpPop with the
Hold bit set. See Section 3.4 for a description of the upper and
lower call stacks of the PERQIA.

The condition is optional; the target is required.

3.4.2.17 Loop

If the optional condition succeeds, or if no condition is supplied,
execution continues at the current instruction address plus one. If
the condition fails, then execution continues at the address specified
by the top of the call stack and the call stack is popped.

The condition is optional; the target cannot be specified.

3.4.2.18 ThreeWayBranch

If the optional condition succeeds, or no condition is supplied, then
execution continues at the current instruction address plus one. The
call stack is popped, and if S is non-zero, S is decremented.

If the condition is supplied and fails, then if S is non-zero,
execution continues at the address specified by the top of the «call

stack and S is decremented. If S is zero, execution continues at the
target address and the call stack is popped.

The condition is optional; the target is required.

3.4.3 Targets
Targets are used by the microassembler to derive the appropriate
contents for the F, SF, Z fields. The microassembler determines

whether or not a jump is long or short and sets the F and SF fields
accordingly.

The syntax is

target = label | constant | ‘Shift” .
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3.4.3.1 Label

A label is formed from a letter followed by an arbitrary number of
letters or digits. The microassembler will use, as the target address
of the jump, the control store address of the instruction labelled
with the corresponding name (see section 2.1 for details of
microinstruction labelling).

3.4.3.2 Constant

A constant is either an explicit constant contructed from a sequence
of digits (optionally preceded by a radix indicator) or it may be a
previously defined name (see section 3.1.2).

3.4.3.3 Goto(Shift)

On the PERQIA, the ‘shifter outputs may be used as the address by
typing the word "Shift" where a jump address is allowed. The shifter
may be used with the following jump types: Call, Goto, PushLoad,
CallS, GotoS, Repeat, JumpPop, LeapPop, and LoadS. The following
example jumps to an address in a register named Addr.

Addr, RightShift(0); ! run address through shifter
Goto(Shift); ! jump

The following example performs an n-way dispatch (n <= 4096) to
address Addr + N ¥ 4.

N, LeftShift(2); ! multiply N by 4 by shifting
Shift + Addr, RightShift(0); ! add base and send to shifter
Goto(Shift); ! jump

3.5 SPECIAL FUNCTIONS

Memory references, Writable Control Store (WCS) references, certain
rasterOp control functions, and several housekeeping operators are
handled by the microassembler as special functions.

Special functions requiring no arguments (Nonary functions) are
described in section 3.5.1, special functions requiring one argument
are described in section 3.5.2, and special functions requiring two
arguments are described in section 3.5.3.

3 -3l
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The ‘syntax is
Special = Nonary | Unary | Binary .

Nonary = ‘WCSlow’ | ‘WCSmid® | °‘WCShi° | ‘LoadOp’ | "Hold’
‘StackReset’ | ‘Push’ | ‘Pop’ | ‘Fetch’ | ‘Fetch2’

| ‘Fetch4® | ‘FetchdR’ | °‘Store’ | °‘Store2’

| ‘Stored4’ | ‘StoredR’ | ‘LatchMA’ | °ShiftOnR’ .

| ‘MultiplyStep’ | ‘DivideStep” .

Unary = UnaryName °(° ConstExpr °)° .

UnaryName = ‘LeftShift” | ‘RightShift’ | ‘Rotate’ | ‘IOB’
| ‘CntlRasterOp’ .

Binary = BinaryName °(° ConstExpr °, " ConstExpr ‘)’ .
BinaryName = °‘Field’ .

3.5.1 Nonary

Nonary functions require no arguments. It should be noted that the
memory reference functions (the fetch-type and store-type functions)
require that specific timing constraints be satisfied. Other
constraints or specific timing requirements are detailed in the
relevant section.

The memory system cycles in 680 nanoseconds (exactly four
microcycles). Microcycles are numbered starting at 0O, and denoted
t0°, ‘t1°, °t2°, and ‘t3°. Requests must be made in a particular
cycle (depending on the type of the request). If a memory request is
made in the wrong cycle, the processor will be suspended until the
correct cycle, or, in some cases, the improper request will be ignored
altogether. In the discussions which follow, ‘fetch’ or °‘store’ refer
to a memory function which fetches or stores exactly one word. The
generic terms ‘fetch type’ and ‘store type’ refer to any fetching or
storing reference.

There are eight types of memory references, coded into the SF field
while F = |. They are encoded as follows:

SF Type Description

10 FetchdR Fetch four words, transport in reverse order
11 Store4R Store four words, transport in reverse order
12 Fetch4 Fetch four words

13 Store4 Store four words

14 Fetch2 Fetch two words

15 Store2 Store two words

16 Fetch Fetch one word from memory

17 Store Store one word into memory

3-32
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The address for all memory references comes from R. For all fetch
type references, the address (and the request itself) is latched at t3
and data is available from MDI or MDX at the following t2. If MDI or
MDX is used during a t0 or t1 immediately following a fetch type
memory reference, the processor is suspended until t2. :

Any address may be used with a Fetch, and the memory word may be read
during any cycle from t2 until the following tl.

The low-order bit of the address for a Fetch2 is ignored, so that a
Fetch2 is always double-word aligned. . After a Fetch2, the first word
must be read at t2, and the second word must be read at t3.

The two low-order bits of the address for a Fetch4 or Fetch4dR are
ignored, so that a Fetch4 or Fetch4R is always quad-word aligned.
After a Fetch4 or FetchdR, the first word must be read at t2, the
second at t3, the third at the next t0, and the last at the next tl.
Fetch4R returns word3 of the quad-word first, then word2, wordl, and
word0. This word reversal (from the fetch4 sequence) is primarily
useful for RasterOp so that it can do left to right as well as right
to left transfers.

Any address may be used with a Store. The address and Store command
are given in a t2 cycle and the data to be written is supplied on R in
the following t3.

The low-order bit of the address for a Store2 is ighored, so that a
Store2 is always double-word aligned. The address and Store2 are
given in a t3 cycle, and the data is supplied on R during the
following t0 and tl.

The two low-order bits of the address for a Store4 or StoredR are
ignored, so that a Store4 or Store4R is always quad-word aligned. The
address and Store4 are given in a t3 cycle, and the data is supplied
in the four following cycles (t0, tl, t2, t3). Stored4R stores word3
of the quad-word first, then word2, wordl, and word0. This word
reversal (from the Store4 sequence) is primarily useful for RasterOp
so that it can do left to right as well as right to left transfers.
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The following are examples of each type of reference and their code:

Fetch:

Fetch2:

Fetchd:

FetchdR:

Store:

Store2:

Stored:

StoredR:

MA := Addr, Fetch;

ﬁéia = MDI;
MA := Addr, Fetch2;

ﬁéiao := MDI;
Datal := MDI;

MA := Addr, Fetch4;

Data0 := MDI;
Datal := MDI;
Data2 := MDI;
Data3 := MDI;

MA := Addr, Fetch4R;

Data3 := MDI;
Data2 := MDI;
Datal := MDI;
Data0 := MDI;

MA := Addr, Store;
MDO := Data;

MA := Addr, Store2;
MDO := Data0;
MDO := Datal;

MA := Addr, Store4;
MDO := Data0;
MDO := Datal;
MDO := Data2;
MDO := Data3;

MA := Addr, StoredR;
MDO := Data3;
MDO := Data2;
MDO := Datal;
MDO := Data0;

(t3)
(t0)
(t1)
(t2)

(t3)
(t0)
(t1)
(t2)
(t3)

(t3)
(t0)
(t1)
(t2)
(t3)
(t0)
(t1)

(t3)
(t0)
(tl)
(t2)
(t3)
(t0)
(tl)

(t2)
(t3)

(t3)
(t0)
(tl)

(t3)
(t0)
(tl1)
(t2)
(t3)

(t3)
(t0)
(t1)
(t2)
(t3)

The IO system can request memory cycles at any time. The memory
system gives priority to the I0 system so that if both the processor
and the I0 system make memory requests, the 10 is served first while

the processor is delayed.

3-34
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while it is set. To be effective, Hold must be asserted in a t2.
This is necessary only when doing overlapped memory references.

In some contexts, a request made in an improper cycle will be ignored
as follows: '

1. After a Fetch or Fetch2 (in t3), any memory reference in t0
or tl 1is ignored. A Store specified in the t2 will start
immediately, but all others will abort until the correct
time.

2. Fetch4 and Fetch4R follow the rules for Fetch and Fetch2
with the exception that a Store4 (in the same
direction--forward or reverse) can be specified in t0, but
this is only used for RasterOp.

3. After a Store (in t2), any memory reference in t3 or t0 is
ignored. References started in tl are aborted until the
correct cycle.

4. After a Store2, Store4 or StoredR (in t3), any memory
reference in t0 through t3 is ignored. Memory references
started in t0 are aborted until the correct cycle.

5. To be effective, Hold must be asserted in a t2. You must
be careful about aborts caused by using MDI in the wrong
cycle--you may be aborted past the t2, causing the Hold to
be ignored. You may not specify Hold too often--you must
allow an IO reference at least once in every 3 memory
cycles.

6. After a Fetch, MDI is valid from t2 through the following
t! (four full cycles). For Fetch2, Fetch4, and Fetch4R,
each MDI is valid for a single microcycle.

These " six constraints can be simplified into the following two simple
rules. These two rules, if followed, will never cause a problem, but
they may preclude certain performance optimizations permitted under
rigorous application of the above six constraints. The simple
guidelines are:

A. Never start a memory reference after a fetch type reference
until you have taken all the data.

B. Never start a memory reference during the four
microinstructions which follow a store type request.

Following these rules, we can construct many interesting overlapped
memory requests. Note that in the following examples, Hold is always
asserted in a t2. A Fetch ... Store sequence is an exception--you
need not use Hold, but it doesn’t hurt performance, so we assert it
for consistency.
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Indirect fetches:

MA := Addr, Fetch;
instruction or Nop;
instruction or Nop;

MA := MDI, Fetch<n>, Hold;

Data := MDI;

January 15, 1984

(t3)

(t0) must be explicit

(t1) must be explicit

(t2, t3) any type of fetch

(t2)

Hold is asserted in t2 so that 10 requests do not pre-empt
the processor. The instruction "MA := MDI, Fetch<n>, Hold;"

first tries to execute
because it contains a fetch.

in t2, but is aborted until t3

The MDI is still valid because

MDI is valid from t2 to the following tl after a Fetch.

MA := Addr, Fetch;
instruction or Nop;
instruction or Nop;
instruction, Hold;
MA := MDI, Fetch<n>;

Daté';= MDI;

(t3)

(t0) must be explicit
(t1) must be explicit
(t2)

(t3) any type of fetch

(t2)

Again, Hold is asserted in t2. Note that this differs from
the previous example in that the Hold and Fetch<n> are not
done in the same instruction. These two examples show that
for indirect fetches, the two fetches may be separated by
two or three other instructions.

Indirect stores:

MA := Addr, Fetch;
instruction or Nop;
instruction or Nop;

MA := MDI, Store, Hold;
MDO := Data;

(t3)
(t0) must be explicit
(tl1) must be explicit
(t2)
(t3)

In this case, the MDI, the Store, and the Hold all execute

in t2.

MA := Addr, Fetch2;
instruction or Nop;
instruction or Nop;

MA := MDI, Store, Hold;
MDO := MDI;

(t3)
(t0) must be explicit
(t1) must be explicit
(t2)
(t3)

In this case, the first fetched word is used as an address,
and the second is used as data to be stored.
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MA := Addr, Fetch; (t3)

instruction or Nop; (t0) must be explicit
instruction or Nop; (t1) must be explicit

MA := MDI, Store<n>, Hold; (t2, t3) any except Store
MDO := Data; (t0)

Hold is asserted in t2 so that 10 requests do not pre-empt
the processor. The instruction "MA := MDI, Store<n>, Hold;"
first tries to execute in t2, but is aborted until t3
because it contains a store. The MDI is still valid because
MDI is valid from t2 to the following t1 after a Fetch.

MA := Addr, Fetch; (t3)
instruction or Nop; (t0) must be explicit
instruction or Nop; (t1) must be explicit
instruction, Hold; (t2)
MA := MDI, Store<n>; (t3) any except Store
MDO := Data; (t0)

Again, Hold is asserted in t2. Note that this differs from
the previous example in that the Hold and Store<n> are not
done in the same instruction, These two examples show that
for indirect stores, the Fetch and the Store<n> may be
separated by two or three other instructions.

Copy operations:

MA := Addr!, Fetch; (t3)
instruction or Nop; (t0) must be explicit
instruction or Nop; (t!) must be explicit
MA := Addr2, Store, Hold; (t2)
MDO := MDI; (t3)

A word is copied from one memory location to another.
Unfortunately, two or four word copies are not possible
because the times when data must be read and written are
different for the fetches and stores.

3.5.1.1 WCS Directives

The WCS directives are used to write locations within the writeable
control store. The microinstruction word is 48 bits long, so each WCS
word is written as three 16-bit words, using WCSLow, WCSMid and WCSHi.
In order to write a location of the controlstore, the address which is
to be written should be placed in the S register with a LoadS
instruction. The WCSLow, WCSMid, and WCSHigh functions are executed
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in three successive microinstructions together with the jump code
GotoS. During each one of these WCS functions, 16 bits of a
microinstruction is written with the value of the ALU result from the
previous micro- instruction. It is important that the jump codes be
written correctly, as it is this part of the microinstruction that
supplies the address.

Each instruction which contains a WCSLow, WCSMid, or WCSHigh takes 340
nanoseconds to complete because it is executed twice. This precludes
instructions which change their own initial conditions such as

R:=R + 1, WSLow

The following example writes a microinstruction with the values in
three registers. The example does not show values being loaded into
the registers, but this must be done prior to the execution of the
WCSLow, WCSMid, and WCSHi functions.

Define(LowWord, 100);

Define(MidWord, 101);

Define(HighWord, 102);

LowWord, LoadS(MicroAddress);

MidWword, WCSLow, if True GotoS(A); A: HighWord, WCSMid, if True
GotoS(B); B: WCSHi, if True GotoS(C); C:
Note that since each directive takes two microcycles to complete, a
total of at least 6 microcycles is needed to write any location in the
writeable control store.

The WCSLow directive causes the contents of R to be written into the
low order 16 bits of a location in the Writeable Control Store
(WCS[15:01).

Note: The WCSlow directive requires two microcycles to complete.

The WCSmid directive causes the contents of R to be written into the
middle 16 bits of a location in the Writeable Control Store
(WCSI[31:161).

Note: The WCSmid directive requires two microcycles to complete.

The WCShi directive causes the contents of R to be written into the
high order 16 bits of a location in the Writeable Control Store
(WCS[47:321).

Note: The WCShi directive requires two microcycles to complete.

3.5.1.2 LoadOp
The PERQ provides special hardware to speed up the filling of the Op
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file (in order to improve the performance of refill). After a Fetchd,
a LoadOp specified in the t1 immediately following the fetch4 causes
the hardware to load four words into the Op file without further
microcode assistance.

The LoadOp should be given in the t1 immediately following the Fetch4.
The instruction which follows the LoadOp can go back to the
NextInst/NextOp since the first byte is guaranteed to be in. The
three remaining words arrive and are placed in the Op file without
microcode assistance.

Note: If BPC is non-zero (to start reading in the middle of the
quadWord), the refill code must wait until the correct
byte is in the Op file.

3.5.1.3 Hold

The HOLD function is used to inhibit 10 devices from accessing memory.
The 10 system can request memory cycles at any time. The memory
system gives priority to the IO system so that if both the processor
and the IO system make memory requests, the IO is served first while
the processor is delayed. 10 requests are locked out during the
execution of a microinstruction with the hold function set. To be
effective, hold must be set in a T2. This is necessary only while
goéng og?rlapped memory references (see sections 3.5.1.9 through
.5.1.15).

The hold function must not be set all the time; an IO reference must
be permitted at least once every three memory cycles.

3.5.1.4 StackReset

The StackReset special function causes the expression stack to be
emptied. The StackEmpty (SE) bit in the microstatus word (USTATE(8])
is asserted (to the zero state) when this function is executed, and
the DDS is incremented.

Note: The result of operations other than ‘push’ which reference
the stack while the stack is empty are

implementation-dependent and should be considered
undefined.

3.5.1.5 Push

The Push special function causes the expression stack pointer to be
incremented. Data is placed on the stack through an assignment using
the Push special function, as follows:

TOS := Data, Push; ! Pushes ‘data’ on the stack.
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A Push into the StackTop (the 16°th push) causes the stack empty bit
to become set (to the zero state). This indicates that subsequent
pushes (without intervening pops) produce undefined results.

Note: The result of a push while the stack is full is
implementat ion-dependent and should be considered
undefined.

3.5.1.6 Pop

The Pop special function causes the expression stack poiner to be
decremented. One or more pops while the stack is empty (with no
intervening pushes) produces undefined results.

Note: The result of pop while the stack is empty is
implementation dependent and should be considered
undefined.

3.5.1.7 Fetch

The Fetch special function initiates a one word memory data read
sequence. The memory address for a Fetch is latched from the contents
of the R register at the time that the Fetch is recognized (t3).

The data from a fetch is available from MDI or MDX at the next t2. If
MDI or MDX is used during the intervening t0 and tl, the processor is
suspended until t2.

Any address may be used with a Fetch, and the resulting data word may
be read in any cycle from t2 until the following tl1 (inclusive).

3.5.1.8 Fetch2

The Fetch2 special function initiates a double word memory data read
sequence. The memory address for a Fetch2 is latched from the
?oggents of the R register at the time that the Fetch2 is recognized
t3).

The first data word returned from a Fetch2 (word O of the double word)
must be read at the next t2; the second word (word | of the double
word) must be read at the next t3. The state of MDI and MDX is
undefined in succeeding cycles. If MDI or MDX is used during the
intervening t0 and t! (after a Fetch2 at t3) the processor is
suspended until t2.

The low-order address bit of a Fetch2 request is ignored, so that a
Fetch2 is always double-word aligned (rounded down).
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3.5.1.9 Fetch4

The Fetch4 special function initiates a quad-word memory data read
sequence. The memory address for a Fetchd is latched from the
cogtents of the R register at the time that the Fetch4 is recognized
(t3).

The first data word returned from a Fetch4 (word O of the quad word)
must be read at the next t2; the second word (word | of the quad word)
must be read at the next t3, the third (word 2 of the quad word) at
t0, and the last (word 4 of the quad word) at tl. The state of MDI
and MDX is undefined in succeeding cycles.

The two low-order address bits of a Fetch4 request are ignored, so
that a Fetch4 is always quad-word aligned (rounded down).

3.5.1.10 Fetch4R

The Fetch4R special function initiates a quad-word memory data read
sequence. The Fetchd4R is exactly like the Fetch4, with the exception
that the quad word is returned in reverse order. Thus, the high-order
word is received first and the low-order word last. The memory
address for a Fetch4R is latched from the contents of the R register
at the time that the Fetchd4R is recognized (t3).

The first data word returned from a Fetch4R (word 3 of the quad word)
must be read at the next t2; the second word (word 2 of the quad word)
must be read at the next t3, the third (word | of the quad word) at
t0, and the last (word O of the quad word) at tl. The state of MDI
and MDX is undefined in succeeding cycles.

The two low-order address bits of a Fetch4R request are ignored, so
that a Fetchd4 is always quad-word aligned (rounded down).

3.5.1.11 Store

The Store special function initiates a one word memory data write
sequence. The memory address for a Store is latched from the contents
of the R régister at the time that the Store is recognized (t2).

Any address may be used with a Store. The data for a Store is
supplied on R in the following t3.

3.5.1.12 Store2 "’
The Store2 special function initiates a double word memory data write
sequence. The memory address for a Store2 is latched from the

contents of the R register at the time that the Store2 is recognized
(t3).
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The low-order bit of the address for a Store2 is ignored, so a Store2
always writes to a double-word aligned location (rounded down). The
first data word for a Store2 (word O of the double word) is supplied
on R during the next t0 and the second data word (word 1 of the double
word) is supplied on R during the following tl.

3.5.1.13 Store4

The Stored4 special function initiates a quad-word memory data write
sequence. The memory address for a Store4 is latched from the
contents of the R register at the time that the Store4 is recognized
(t3).

The two low-order bits of the address for a Store4 are ignored, so a
Store4 always writes to a quad-word aligned location (rounded down).
The first data word for a Store4 (word O of the quad-word) is supplied
on R during the next t0, the second data word (word 1| of the
quad-word) is supplied on R during the following tl, the third data
word (word 2 of the quad-word) is supplied on R during the following
t2, and the last data word (word 3 of the quad-word) is supplied on R
during the following t3.

3.5.1.14 Stored4R

The StoredR special function initiates a quad-word memory data write
sequence. The StoredR is exactly like the Store4, with the exception
that the quad word is written in reverse order. Thus, the high-order
word is written first and the low-order word last. The memory address
for a StoredR is latched from the contents of the R register at the
time that the Stored4R is recognized (t3).

The two low-order bits of the address for a Store4R are ignored, so a
Store4R always writes to a quad-word aligned location (rounded down).
The first data word for a Store4dR (word 3 of the quad-word) is
supplied on R during the next t0, the second data word (word 2 of the
quad-word) is supplied on R during the following ti, the third data
word (word | of the quad-word) is supplied on R during the following
t2, and the last data word (word O of the quad-word) is supplied on R
during the following t3.

3.5.1.15 ShiftOnR

The ShiftOnR special function, by obtaining the shift control from the
R register, allows a shift function to be a variable.

The shifter hardware can either rotate a 16-bit item 0 to 15 places

(rightward), can right justify an arbitrarily positioned 0 to (5 bit
subfield of an item, or it can right or left shift a 16-bit item 0 to
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16 places.

The shifter hardware is driven by two four bit nibbles, encoded as
follows (R has a 16 bit item to shifted):

a) Mask Operations:

Mask Width (bits, one origin)
| < m< 16

Index of low-order bit of Mask
0<=i<=15

i

For i <= 16 - m, .
m i
Result = {Rand [(2 -1) ¥21])

Low-order Nibble := m-1
High-order Nibble := i

b) LeftShift Operations:
j := Number of places to shift, 0 <= j < 156

Low-order Nibble := #17
High-order Nibble := j
c) Rotate Operations:
j := Number of places to rotate, 0 <= j <= 15
For 0 < j <= 17,
Low-order Nibble #15

High-order Nibble := j

For 8 <= j <= 1§,
Low-order Nibble := #16
High-order Nibble := j + 8

d) RightShift Operations

n := Number of places to RightShift,
0<=n<= 156

IS -n
n

Low-order Nibble
High-order Nibble :

The usage sequence for the ShiftOnR special function is:

1. Put the shift control byte on R and execute ShiftOnR.
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2. Put the item to be shifted on R.

3. Read the shifted result on shift. The shifter control
logic always keeps the last shift control function loaded
so that the shifter can shift a succession of words without
respecifying the shift control function. The shift ouputs
always have the shifted value of what was last on R.

3.5.1.16 MultiplyStep

The PERQIA has hardware to support single precision multiplication and
division. The multiply/divide hardware consists of a 16-bit shift
register called MQ and a control circuit. The function of the
multiply/divide hardware (off, signed multiply, unsigned multiply,
unsigned divide) is controlled by 2 bits in the WidRasterOp register:

WidRasterOp<7:6> Operation
0 off
l Unsigned Divide
2 Unsigned Multiply
3 Signed Multiply

Signed divides are faked by remembering the signs of the dividend and
divisor. The divide is performed on the absolute values of the
dividend and divisor. The resulting quotient and remainder are
negated if necessary.

At each step of a multiplication, the multiplicand is added to the
partial product if the least significant bit of the multiplier is set.
The partial product and the multiplier are then shifted to the right.
Sixteen steps are needed to compute the full product.

¥ The MQ register is initially loaded with the multiplier by the "MQ
:=" special function. This may be done before or after the multiply
hardware is enabled.

¥ The ALU add and subtract functions (without OldCarry) perform
normally if the low order bit of MQ is set, but if it is not set,
the ALU passes the AMux value through unchanged. Thus, the adding
or subtracting of the multiplicand is done only if the corresponding
bit of the multiplier is set.

¥ A Rotate(l) shift function should be used. When Shift is used as
the AMux source, Shift<I5> contains Result<|5> Xor Overflow from the
previous instruction for signed multiply or contains the Carry from
the previous instruction for unsigned multiply. The remaining bits
of Shift have their normal values.
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% When the MultiplyStep special function is executed, the MQ register
is shifted to the right and Result<0> from the current instruction
is shifted into MQ<15>. Thus, the low precision word of the product
is shifted into MQ.

% The upper precision word of the product is left in an XY register.

% The low precision word of the product is read by using the ":= MQ"
special function which forces MQ onto R. This value does not pass
through the ALU, thus no computation is possible during this cycle.
Reasonable actions are 1) to write the value of MQ into a register
and 2) push MQ onto the EStk and send MQ to the processor shifter.
Note that since the value does not pass through the ALU, condition
codes are invalid in the cycle which follows reading MQ.

The following example performs signed multiplication of two single
precision numbers yielding a double precision product. Note that the
last MultiplyStep is done with a subtract rather than an add. This is
because we interpret the multiplier as:

MQ<O> ¥ 270 + MQ<1> % 2*1 + ... + MQ<14> % 2°14 - MQ<I5> % 2715

Constant (OffMultiply, 0);
Constant(OffDivide, 0);
Constant (UnSignedDivide, 100);
Constant (UnSignedMultiply, 200);
Constant(SignedMultiply, 300);

Define(Multiplier, 200);
Define(Multiplicand, 201);
Define(ProductLow, 202);
Define(ProductHigh, 203);

Rotate(1); ! shifter must rotate right 1
MQ := Multiplier; ! load the multiplier
WidRasterOp := SignedMultiply; ! set signed multiply
ProductHigh := 0, ! partial product to shifter

PushLoad(10#14);! push .+l, set S to 10#14
Shift + Multiplicand, MultiplyStep, RepeatLoop; ! 10#15 steps
Shift - Multiplicand, MultiplyStep; ! 10#16th step for sign bit

ProductHigh := Shift; ! read upper precision product
ProductlLow := MQ; ! read lower precision product
WidRasterOp := Of fMultiply; ! turn off multiply hardware
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During unsigned multiply all multiply steps use addition. This is
because we interpret the multiplier as:

MA<O> % 270 + MQ<I> % 2*1 + ... + MQ<l4> % 214 + MQ<I5> ¥ 2°15

ProductHigh := 0, ! partial product to shifter
PushLoad(10#15);! push .+l, set S to 10#15
Shift + Multiplicand, MultiplyStep, RepeatLoop; ! 10#16 steps
ProductHigh := Shift; ! read upper precision product
ProductLow := MQ; ! read lower precision product

3.5.1.17 DivideStep

The multiply/divide hardware can also be used to do unsigned division
by a non-restoring division algorithm. At each step, the divisor is
subtracted (or added) from the partial remainder and a new bit of the
dividend is shifted left into the partial remainder. Rather than
restoring the partial remainder after subtracting (or adding) too
much, the divisor is added (or subtracted) on the next step.

¥ The MQ register is initially loaded with the dividend by the "MQ :="
special function. This may be done before or after the divide
hardware is enabled.

¥ The ALU subtract function (without OldCarry) performs normally if
Result<l5> of the previous instruction was not set, but if it was
set, an add (without OldCarry) is performed instead. Thus the
subtracting or adding of the divisor is controlled by the sign bit
of the previous ALU result.

¥ A Rotate(10#15) shift function should be used. When Shift is used
as the AMux source, Shift<0> contains the value that MQ<I5> had at
the beginning of the previous instruction. Thus the dividend is
shifted into the AMux from the right.

% When the DivideStep special function is executed, the MQ register is
shifted to the left and the complement of Result<lS> from the
current instruction is shifted into M0<0>. Thus the quotient is
shifted into MQ.

¥ The quotient is read 16 bits at a time by the ":= MQ" special
function which forces the lower precision quotient onto R. This
value does not pass through the ALU, thus no computation is possible
during this cycle. Reasonable actions are 1) to write the value of
MQ into a register and 2) push MQ onto the EStk and send MQ to the
processor shifter. Note that since the value does not pass through
the ALU, condition codes are invalid in the cycle which follows
reading M.

¥ The remainder is left in an XY register. Since a non-restoring
algorithm is used, the loop may terminate with a negative remainder.
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In this case, the divisor is added back into the remainder.

The following example performs a full single precision divide of a
double precision dividend and a single precision divisor yielding a
double precision quotient and a single precision remainder. The
division proceeds in two parts each of which does 16 bits of the
division.

Constant(OffMultiply, 0);
Constant(OffDivide, 0);

Constant (UnSignedDivide, 100);
Constant (UnSignedMultiply, 200);
Constant(SignedMultiply, 300);

Define(DividendLow, 200);
Define(DividendHigh, 201);
Define(Divisor, 202);
Define(QuotientLow, 203);
Define(QuotientHigh, 204);
Define(QuotientSign, 205);
Define(RemainderSign, 206);

Tos := 0, Push; ! 0 for two’s complementing
RemainderSign := DividendHigh, RightShift(0); !set remainder sign
QuotientSign := Shift xor Divisor, ! set sign of quotient

if Geq Goto(A);
DividendLow := Tos - DividendLow;! abs value of dividend
DividendHigh := Tos - DividendHigh - OldCarry;

Divisor;
A: if Geq Goto(B); ! if divisor >= 0
Divisor := Tos - Divisor; ! abs value of divisor
B: Rotate(10#15); ! shifter must rotate left |
MQ := DividendHigh; ! load upper dividend
WidRasterOp := UnSignedDivide; ! set unsigned divide
LoadS(10#15); ! S := 10#15
Remainder := 0, ! initialize partial remainder
DivideStep; ! get started
C: Remainder := Shift - Divisor, DivideStep, Repeat(C); ! 10#16 steps
QuotientHigh := MQ; ! read upper quotient
MQ := DividendLow; ! load lower dividend
LoadS(10#15); ! S := 10#15
Remainder, ! send remainder conditional subtract
DivideStep; ! get started
D: Remainder := Shift - Divisor, DivideStep, Repeat(D);! 10#16 steps
VidRasterOp := OffDivide, ! turn off divide hardware

if Geq Goto(E); ! if remainder >= 0
Remainder := Remainder + Divisor;! correct remainder
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E: QuotientLow := MQ; ! read lower quotient
QuotientSign;
RemainderSign, if Geq Goto(F); ! if quotient should be >= 0
QuotientLow := Tos - QuotientLow; ! set negative quotient
QuotientHigh := Tos - QuotientHigh - OldCarry;

RemainderSign;
F: if Geq Goto(Done); ! if remainder should be >= 0
Remainder := Tos - Remainder; ! set negative remainder
Done: Pop; ! restore stack
3.5.2 Unary

Unary special functions are special functions which require one
argument to be specified (in the ’‘constant’ phrase) along with the
function keyword.

3.5.2.1 LeftShift

The LeftShift function is used to perform a logical left shift of the
contents of the R register zero to 16 places.

The shifter control logic always keeps the latest shift control
function loaded so that the shifter can shift a succession of words
without respecifying the function.

3.5.2.2 RightShift

The RightShift function is used to perform a logical right shift of
the contents of the R register zero to 16 places.

The shifter control logic always keeps the latest shift control
function loaded so that the shifter can shift a succession of words
without respecifying the function.

3.5.2.3 Rotate

The Rotate function is used to perform a logical rotate (right) of the
contents of the R register zero to 16 places. Positive arguments from
zero to 16 rotate R rightwards; negative arguments from 0 to -16
rotate R leftwards.

The shifter control logic always keeps the latest shift control
function loaded so that the shifter can shift a succession of words
without respecifying the function.
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3.5.2.4 10B
The I0B special function is used to supply an 10 bus address. The

high-order bit of the argument indicates the direction of transfer
(IOBI7) = 1 for write, IOB[7] = O for read).

3.5.2.5 CntlRasterOp

The CntlRasterOp function is used to load an argument into the
internal control register of the RasterOp hardware.

3.5.3 Binary

Binary functions are special functions which require two arguments.
At this time, ‘Field’ is the only binary function implemented by the
microassembler.

Field is used to extract a subfiled of R. The first argument is the

bit index of the low order (right-most) bit of the field; the second
argument is the width of the field.
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CHAPTER 4
MICROASSEMBLER USER‘S GUIDE

Section 4.1 describes the command level interface to the
microassembler and placer, while section 4.2 describes the
microassembler directives within @ source file that are recognized by
the microassembler.

4.1 MICROASSEMBLER COMMANDS

Before a microprogram can be run it must be assembled with PrqMic and
then placed with PrqPlace. PrgMic translates the program into binary
machine language, and PrqPlace assigns physical microstore locations
to those instructions which are not assigned by the microprogrammer.
This section shows how to assemble and place a microprogram. A
microprogram source file name has the form <src>.micro. <src> is
called the "root name”.

Once a microprogram has been assembled and placed, it can be used in
one of the following ways:

1. Load it into another Perq, using ODTPerq.
2. Load it into the same Perq with the ControlStore module.

3. Write it into a boot file with MakeBoot.

4.1.1 Assemble

To assemble a microprogram, type "PrqMic” or "PrgMic <src>". If the
root name is not supplied, PrqMic will prompt for it as follows:

"Root file name?”
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4,1.2 Place
To place a microprogram, type
"PrqPlace”
or
"PrqPlace <src> [<lst>]".
If <src> is not supplied, PrqMic will prompt for it. To place without
a listing, type carraige return in response to the list filename
prompt (if no arguments were supplied with the command line) or type

the command line with <src> supplied but no <lst>. <lst> is the
filename of the listing, if desired.

4.2 MICROASSEMBLER DIRECTIVES

There are several command lines which are directives to the
microassembler and placer to perform special actions. These are
indicated by the presence of a dollar sign (§) in column | of the
command line. The entire line is considered to be a microassembler
commaTd. and thus, other microinstructions cannot be present on the
same line.

4.2.1 INCLUDE

This directive inserts text from a file into the microprogram as
though it were present in the original source file. The syntax is

‘¢Include’ filename

Included files cannot be nested, and so only the original source file
may contain an include command.

4.2.2 TITLE

This directive prints a title string on the first line of every page
of the assembly listing. The syntax is

‘$Title’ TitleString
The first Title command sets the main title, which is printed at the

left of each page. Each subsequent title command sets the subtitle
wvhich is printed at the right of each page.
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4,2.3 NOLIST
This directive turns off listing. The syntax is
‘$NoList’
The listing is turned off until a List command (see 4.2.4) is

encountered. This command has an effect only if a listing has been
requested when the placer is executed (see section 4.1).

4.2.4 LIST
This directive resumes listing. The syntax is
‘$List’
The listing is resumed if it was turned off by a NoList (see 4.2.3)

command. This command has an effect only if a listing has been
requested when the placer is executed (see section 4.1).

4,2.5 PERQI

The assembler will not recognize PERQIA features. This is the
default. The syntax is

$PERQI

4,2.6 PERQIA

The assembler recognizes PERQIA features. $PERQI is the default. The
syntax is

$PERQIA

4,2.7 BASE

Registers with numbers less than 200 must be declared and used with a
percent sign (%) appended to their names. The percent sign indicates
that the register is one to which the base register is applied. This
directive is valid only in PERQIA mode and is the default. The syntax
is

$BASE

4.2.8 NOBASE

The percent sign is not required for registers with numbers less than
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200. , This is used to maintain compatibility with the PERQl. When
used, this option forces the programmer to be certain that the base
register contains 0. This directive is valid only in PERQIA mode.
The syntax is

$NOBASE
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CHAPTER §
QUIRKS AND ODDITIES

The following quirks are known:

1. The % field is inverted for shift functions (assembler fixes
this).

2. The Op file is inverted on NextInst (assembler Opcode does
it).

3. Th? Z field is inverted for all addresses (assembler fixes
it).

4. 1I0B functions are executed twice if an abort occurs.
5. Cl19 will not be valid if an abort occurs on the test.

6. Cé9 test is inverted sense (i.e. jump if no carry out of bit
19).

7. Ustate 15:12 (the upper BMUX bits) are inverted.

8. Condition codes are not quite right after double precision
adds and subtracts. See the ‘Condition Codes® section
(section 2.3.11).

9. Tge ?F bits are inverted for JMP addresses (assembler fixes
this).

10. Condition codes are invalid after reading MQ or Victim.

11. RBase must be loaded with inverted data.

12. Instructions containing the ALU operation A + B + OldCarry or
Ab- B - OldCarry will not produce correct results if they are
aborted.

13. Constant expressions may not be used as jump targets. The

S-1
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assembler should allow this but does not.

14. On the PERQIA, when the S register is used strictly as a
12-bit counter by RepeatLoop, Repeat, or ThreeWayBranch, its
upper 2 bits are ignored. In upper banks of the controlstore
the assembler will generate leap jumps for LoadS and PushLoad

instructions even though current bank jumps would be
acceptable.
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APPENDIX A
ERROR CODES

Meaning

conflicting use of X field
conflicting use of Y field
conflicting use of A field
conflicting use of B field
conflicting use of W field
conflicting use of H field
conflicting use of ALU field
conflicting use of F field
conflicting use of SF field
conflicting use of Z field
conflicting use of CND field
conflicting use of JMP field
"8" or "9" in octal number
unknown symbol

undefined identifier
constant expected

identifier expected

"(" expected

")" expected

condition expected

identifer previously defined
label or constant expected
goto expected

bad shift count

bad field specification

"," expected

":=" expected

register expected

not allowed as left operand
not allowed as right operand
"Not" not allowed here
unexpected symbol

"0ldCarry” expected

A-1

January 15, 1984



ERROR CODES

January 1§, 1984

goto target not allowed

goto target expected

uncommented text found after “;"

missing "End;" supplied

condition required for this kind of jump
condition not allowed for this kind of jump
argument of OpCode larger than 377 (255)
address larger than 77%7 (4095)

argument of CntlRasterOp larger than 377 (255)
argument of Iob larger than 377 (255)

XY register number larger than 377 (255)
"2".."9" in binary number

radix must be 2, 8, or 10 -- 8 assumed

number expected

number larger than 177777 (65536)

this pseudo—og must be on a line by itself
"Place” must be used only once, and must come first
first address greater than last address

size of ﬁrogram exceeds size allowed by "Place”
case number larger than 17 (15)

base address must have bits 2-5 equal to zero
unknown assembler option

"$Include” not allowed from an included file
"=" expected

missing ";" supplied

"$Perql” or "$PerqlA” must come before any code
placement in more than one bank is not allowed
cross bank jump not allowed with this jump type
"Shift"” not allowed with this jump type
conflicting result-bus specifications

address must have bits 9:2 equal to zero
interrupt number out of range 0..7

division by zero

"%" not allowed for register in the range 100..377
(64..255)

"%" required for registers in the range 0..77 (0..63)
not allowed as operand :
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APPENDIX B
WRITABLE CONTROL STORE (WCS) MAP

The following provides a map of the Writable Control Store (WCS) and
describes the microcode register usage.

When you boot the system, VFY.MICRO runs memory diagnostics. EIOSYSB,
CIOSYSB, or EIOSSYSB then loads microcode from the MBoot file. At
boot time, microcode can only be loaded into WCS addresses O through
7377. At the end of the boot, only PERQ.MICRO and IO.MICRO are in the
WCS. This leaves 7000 through 7777 for user-defined microcode. (You
can use 7000 through 7377 for bootable special purpose microcode.)

PERQ.MICRO - PERQ Q-Code interpreter microcode. Temporary registers
store state information during Q-Code interpretation. Registers:
3-21, 51-57, 64-67, 370. Temporary registers: 30-50, 61-63, 70-77.
Placement: 0-4377.

I0.MICRO - Input/output microcode. Registers: 200-207, 211-217,
221-233, 235-252, 255-260, 262-266, 276, 277, 327, 373, 374. Temporary
registers: 220, 261. Placement: 4400-5777.

LINK.MICRO - 16 bit parallel interface microcode (not normally booted
into WCS). Registers: 350, 351. Placement: 6744-7400.

EIOSYSB, CIOSYSB, EIOSSYSB - system boot microcode. Registers: 0-74,
204, 267, 376. Placement: 7000-7777.

BOOT.MICRO - Boot microcode. Registers: 0-2, 4, 10, 20, 40, 100,
200, 252, 267, 277, 307, 330-340, 342-350, 357, 367, 373, 375, 376,
377. Placement: O0-777.

KRNL.MICRO - PERQ microcode kernel. Registers: 0, 356-377.
Placement: 7400-7777.

GOODBY .MICRO - Power down microcode. Placement: S5000-5377.

ETHERIO.MICRO - 10MBaud ETHERNET microcode. Registers: 300-321.
Placement: Part of I0.MICRO.

RO.MICRO - Raster-op microcode. Registers: 100-124, 130-143, 370.
Placement: Part of PERQ.MICRO.

LINE.MICRO - Line drawing microcode. Registers: 100, 101, 103-116.
Placement: Part of PERQ.MICRO.

VFY.MICRO - Verifies that the hardware seems to work. Registers:
0-25, 300, 301, 370. Placement: 4000-6377.
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