USERS MANUAL

Intelligent Diskette Controller
Model 1070

INTRODUCTION

Since the following document was written, version F 1.3 of the PerSci
File Management Firmware has been released for use with the 1070 Controller.

The Kill Command Syntax of version F 1.3 is:
KK volume/drive seq.

The remaining commands are as in the previous versions. The double KK
was adopted as a device to reduce erroneous deletion of diskette files.

F 1.3 is issued in two versions; F 1.3P for controllers that do not have
the serial (RS232) option installed and F 1.3S for those that do.

Two versions have been coded because deletion of the code necessary to
handle serial data resulted in significantly faster controller operations.

Version F 1.3S retains the capability of the previous F 1.0 and F 1.2
and will work with either serial or parallel data transfers.

EPROM IDENTIFICATIONS

EPROMs coded at PerSci are marked U21, 22, 23, and 24 to indicate the
appropriate sockets on the controller PCB. Additional markings have been
made to indicate the coding as follows: '

F1.0 v21, 22, 23, 24
F1.2 U21A, 22B, 23C, 24D
F 1.3P 21p, 22pP, 23P, 24P

F 1.35 21S, 22S, 23S, 24S

PerSci Model 1870 Intelligent Diskette Controller
Preface

PREFACE

This document describes the definitive production version of the
PerSci Model 1070 Intelligent Diskette Controller using PerSci
File Management Firmware version Fl.2. It is also applicable to
the predecessor version, Fl1.0, with certain exceptions as noted
herein. (Version Fl.l1 was never released.)

Version F1.2 File Management Firmware offers several improvements
over its predecessor. It implements two additional commands
(Xecute and Zap), supports hexadecimal as well as decimal numeric
command parameters, provides automatic switching between the
serial and parallel interfaces, and has a number of internal
performance improvements. Fl.2 also takes advantage of new
revisions in the circuitry of the PerSci controller and drives to
eliminate the head load delays (and clatter) during disk-to-disk
copying and other multi-disk operations.

NOTE: when F1.2 is wused with earlier PerSci controllers and
drives which do not in combination have the necessary logic
circuitry to permit the firmware to load all heads
simultaneously, the controller Mode command must be usea at each
power up to inform the Firmware of this fact. Controllers and
drives which in combination support this simultaneous head load
capability are:

Model 1678 Controllers with Assembly 200350
(PCB 288349A, B, or higher)

Model 277 Drives with Data and Interface
"Assembly 2086263-883 Rev. H, or higher
(PCB 2006262C, or higher)

Model 70 Drives with PCB Assembly 2002068

(PCB numbers are etched on the non-component side of printed
circuit boards.)

NOTE: Predecessor Firmware version Fl.0 must be used only with
controllers and drives which DO NOT in combination have the
simultaneous head load circuitry.

It is the policy of PerSci not to distribute program source
listings of other details of the File Management Firmware beyond
those described in this manual. From time to time, PerSci will
issue new versions of the Firmware (for example, Fl.2) to correct
any known errors or to provide functional enhancements. Such
Firmware revisions in ROMs or EPROMs will be made available to
users of previous versions for a nominal charge. PerSci will
also assist users in adapting the dModel 1870 Controller to
special applications (within reason) which require specialized
controller software. The "Xecute" command (which permits special
disk-resident software to be 1loaded into the controller. and
executed) was added to Fl.2 to facilitate this. A charge will be
made for any such software development work.

PerSci Model 1070 Intelligent Diskette Controller
Preface

TABLE OF CONTENTS

1' GENERAL DESCRIPTION ® 6 0. 0.9 00000 0 00 000 OO O EO OO O SLINS CPSDS
l‘l. Summary of Features ®© 0 00000 0060000000 0060000600000000s00000
1.2. Hardware ® 5 0060066000060 0000 0600000866000 0000000000000 00000

1.30 Firmware ® & 5 00050006000 00060 00005000000 806060600000000000000

104. Interfaces ® O & 60 5 00500 0 00O H OO SO SO ON LSO e PPN NN e e

I R N N

1.5. Diskette Format ® 6 6 0 0 00000000 0O P L OE OO0 EELe NN

[8]

1.6. Companion Diskette DrivesS ..cceccecscescosccssncscsscns

. HARDWARE SPECIFICATIONS ® ¢ 0000000000060 0006000600020 080000000

w w W

.l. Physical Specificationscececeescscccoccssscsancs
.2. Microcomputer Interface Specifications ..eccecececccees
.3. Diskette Drive Interface Specifications ...ccceececees 4
2.4. Power ReqUIrementsS ...cceesecsesssccsncscsncscsssssecssss DO

2.5, RS232 Serial Interface OptiOn (.ieeecececceccscescsceas 5

3. FIRMWARE SPECIFICATIONS .ccieseeccscesnsscsccsscsscnsenses ©
3.1. Theory of Operationeeeessesscsesssscsscsscnscsses ©O
3.2. Controller CommandS .ccceeecceccccssccssssccsonsocscnses I
3.3. Controller Interface Protocol;.............. 18

3.4. DiSkette Format ® 6 060600 85000002 000000000008 0000060000000e0 21

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDICES

Sample Driver Program Flowchart
Sample 8(P8@ or Z8p Driver Program
Sample 68@@ Driver Program

Interface Schematic for S-100 Bus
Interface Schematic for 680
Timing Data

Brief History of the Model 179 Controller
Option Jumper Data

Connector Data

Schematic for Controller

Connection of Additional Drives

Sector Sequences

Applications Note for Simultaneous Head Load
Circuit Modifications

PerSci Model 1070 Intelligent Diskette Controller
Section 1 - General Description

SECTION 1 - GENERAL DESCRIPTION
1.1. SUMMARY OF FEATURES

The PerSci Model 10780 1is the first truly intelligent diskette
controller. Can you 1imagine a controller which manipulates
diskette files by name and provides the full functional
capabilities.of an advanced disk operating system, yet which
requires no more support software in your microcomputer than does
a paper tape reader or magnetic tape cassette drive? The Model
1870 accomplishes all of this on a single 4.5" by 7" circuit
board through a combination of state-of-the-art LSI and
microprocessor technology, advanced firmware techniques, and
high-density packaging. The controller supports up to four
PerSci Model 78 single diskette drives or up to two PerSci Model
277 dual diskette drives, providing a high-performance mass
storage subsystem with an on-line capacity of more than one
million bytes.

1.2, HARDWARE

The controller board incorporates a microprocessor and its
associated support electronics, a LSI diskette drive controller
chip, 4K bytes of ROM (optionally EPROM) containing the file
management firmware, 1K bytes of RAM used for sector buffers and
file tables, an eight-bit parallel microcomputer interface, and
an optional RS-232 serial asynchronous interface. Required power
for the controller (+5, +12, and =12 volts regulated) can be
derived either from the microcomputer or diskette drive power
supplies.

1.3. FIKMWARE

The controller firmware resides in ROM on the controller board
and performs the file management functions normally associated
with the most advanced microcomputer disk operating systems.
Supported functions include: diskette format initialization with
optional sector interleave; maintaining and searching and index
of files on each diskette; allocation and deallocation of
diskette space; sequential, random, stream, and direct file
access methods; blocking and unblocking of both fixed-length and
variable-length recoras; creating, deleting, renaming, and
copying of files; error detection and error retry; and even
diagnostic testing of the diskette drives. These file management
functions are specified by means of a high-level controller
command language. Only minimal support software is needed in the
host microcomputer, making it exceptionally easy to use the
controller with existing non-disk-oriented operating systems,
language processors, and other software.

1.4. INTERFACES

Two alternative methods are provided for interfacing with the
controller: parallel and serial. The ©parallel microcomputer
interface includes a buffered eight-bit bidirectional data bus
with handshake and address selection 1logic consistent with the
interface requirements of most currently-available
microprocessors including the 808P, 6864, 7z-88, etc. The

PerSci Model 1870 Intelligent Diskette Controller Page 2
Section 1 - General Description

optional EIA RS-232 serial asynchronous interface provides
sixteen switch-selectable transmission speeds from 56 to 19,200
bits per second, interfacinyg directly with virtually any standard
terminal, modem, or serial microcomputer interface port. Wwhen
using a controller which includes the optional serial interface,
switching between parallel and serial is performed automatically
by controller firmware.

1.5. DISKETTE FORMAT

The diskette initialization function of the controller creates a
soft-sectored diskette format which is IBM 3748 compatible. Each
diskette contains 77 tracks with 26 sectors per track and 128
data bytes per sector. The first track 1is reserved by the
"controller for use as an index of files, while the remaining 76
tracks are available for data storage. Formatted capacity of
each diskette is 252,928 bytes plus the index track.

l1.6. COMPANION DISKETTE DRIVES

The PerSci Model 780 single diskette drive and Model 277 dual
diskette drive incorporate many design features previously unigue
to large disk technology, resulting in unexcelled reliability and
performance, small size, and fast access to data. The use of
voice coil positioning provides access times which are five to
seven times faster than other available diskette drives with
stepping motor positioners. Automatic motor-driven diskette load
and unload assures simple and accurate ~diskette insertion and
eliminates the possibility of diskette damage. Power consumption
is one tourth of the power required by competitive drives, no
cooling fan is required, and operation is virtually noiseless.
Compact design permits five single drives or four dual drives to
be mounted within the width of a 19" rack. The PerSci Model 1676
intelligent diskette controller is especially designed to take
maximum advantage of the high-performance capabilities of these
drives.

PerSci Model 1070 Intelligent Diskette Controller Page 3
Section 2 - Hardware Specifications

SECTION 2 - HARDWARE SPECIFICATIONS
2.1. PHYSICAL SPECIFICATIONS

The controller consists of a single printed circuit board with
dimensions 4.58" x 7.08" which mates with edge connectors along
the two 4.58" sides of the board. One edge connector has 72 pins
(dual 36) with .188" spacing, and carries the parallel interface,
RS-232 serial interface, and controller power connections. The
other edge connector has 58 pins (dual 25) with ,108" spacing and
provides the interface with the diskette drive(s). The
controller board is physically compatible with Vector Electronics
plugboards and card cages with 72 pin connectors.

2.2. MICROCOMPUTER INTERFACE SPECIFICATIONS
2.2.1. Mating Connectors

The microcomputer interface uses an edge connector with 72 pins
(dual 36) and .108" spacing (Amphenol 225-23621-201 or
equivalent). 1In the listing below, all signals are TTL active
high, except those marked * are TTL active low and those marked
** are EIA RS-232 levels.

Pin 1D Signal Designation Pin ID Signal Designation
PARALLEL INTERFACE RS-232 SERIAL INTERFACE
1l thru 8 Data Bus @ thru 7 LL Transmit Data**
E thru T Addr Bus 4 thru 15 32 Receive Data**
27 Select* KK Data Term. Ready*¥*
18 . Read Strobe* 31 Data Set Ready**
19 Write Strobe* HH Request to Send*¥*
A Status/Data 29 Clear to Send**
CONTROLLER RESET CONTROLLER POWER
17 Reset Controller* RR,36 Ground
u Reset Complete* PP,35 +5v Regulated

34 +12v Regulated

NN -12v Regulated
2.2.2. Signal Definitions |

Address Bus 4 through 15:
when the controller is jumpered for internal address decode
(M to N and N to P), the presence of a 12-bit address on
these lines which matches the jumper-selectea controller
address causes the parallel interface to be enabled. These
lines are generally connected to the 12 high-order bits of a
microcomputer address bus.

PerSci Mc.uel 10878 Intelligent Diskette Controller Page 4
Section 2 - Hardware Specifications

Select*:

when the controller is jumpered for internal address decode
(M to N and N to P), this line is an output which goes low
whenever the parallel interface is enabled by the address
decode logic. Wwhen the controller is jumpered for external
address decode (N to P only), this line is an input which
causes the parallel interface to be enabled when it is
driven low.

‘Read Strobe*, Write Strobe*:
whenever the parallel interface is enabled, a 1low level on
the Read Strobe* or Write Strobe* line causes the controller
to transfer a byte of data to or from the data bus,
respectively.

Data Bus @ through 7:
These eight bidirectional data lines are tri-stated
(floating) except when the parallel interface is enabled and
Read Strobe* or Write Strobe* is active.

Status/Data:
whenever the parallel interface is enabled, a high level on
this line causes the controller status port to be selected,
and a low level causes the data port to be selected. This
line is generally connected to the low-order bit (A6) of a
microcomputer address bus.

Reset Controller*:
A low level on this line causes the controller to be reset.

Keset Complete*:
This line goes high when Reset Controller* is made active or
the controller reset button is depressed, and returns low
after the reset signal has been removed.

Transmit Data**, Receive Data**, Data Terminal Keady**, Data Set
Ready**, Request to Send**, Clear to Send**:
These 1lines have their standard RS-232 definitions,
Transmit Data** from the controller is serial asynchronous
with one start and one stop bkit, eight data bits, and no
parity.

2.3. DISKETTE DRIVE INTERFACE SPECIFICATIONS
2,3.1. Mating Connectors

The diskette drive interface uses an edge connector with 56 pins
(dual 25) and .168" spacing (Scotchflex 3415-8060 or egquivalent
for flat ribbon <cable, Viking Connector 3VH25/1JN-5 or TI
Connector #312125 or eguivalent for solder connections). All
odd-numbered pins are connected to ground to facilitate the use
of twisted-pair cable between the controller and diskette
drive(s), which is strongly recommended.

PerSci Model 1878 Intelligent Diskette Controller Page 5
Section 2 - Hardware Specifications

Pin Signal Designation Pin Signal Designation
4 Drive 3 Select 28 Drive 2 Select

10 Seek Complete 34 Direction

12 Restore 36 Step

14 Remote Eject 38 Write Data

16 Direct Head Load 40 Write Gate

18 Drive 1 Select 42 Track 066

20 Index 44 Write Protect

22 Ready 48 Separate Data

26 Drive @ Select 508 Separate Clock

2.3.2. Signal Definitions

For signal definitions, refer to PerSci Product Specificatiohs,
Model 70 or Model 277 Diskette Drive.,

2.4. POWER REQUIREMENTS

Power requirements for the Model 1878 controller are: +5 volts at
1.5 amp maximum, +12 volts at 150 ma maximum, -12 volts at 200 ma
maximum, all voltages regulated within plus or minus five
percent.

2.5. RS232 SERIAL INTERFACE OPTION

This is a factory-installed option which provides an EIA standard
RS-232 serial asynchronous interface in addition to the standard
parallel microcomputer interface. Switching between parallel and
serial is performed automatically by controller firmware; when
the controller receives a command over one of the interfaces, it
responds using the same interface. The RS-232 Serial Interface
Option includes an on-board speed selection switch with the
following settings:

Switch Transmission Switch Transmission
Setting Speed (BPS) Setting Speed (BPS)

(7] 50 8 1,800

1 75 9 2,000

2 118 A 2,400

3 134.5 B 3,600

4 150 C 4,800

5 300 D 7,200

6 600 E 9,600

7 1,200 F 19,200

NOTE: The controller outputs serial characters with one start

bit, eight data bits (no parity), and one stop bit for all
transmission speeds.

Per5ci Model 1878 Intelligent Diskette Controller Page 6
Section 3 - Firmware Specifications (Rev. Fl.2)

SECTION 3 - FIRKRMWARE SPECIFICATIONS
3.1. THEORY OF OPERATION
3.1.1. File Allocation

A diskette volume contains 77 tracks with 26 sectors per track
and 128 data bytes per sector. The outermost track is reserved
by the controller for use as an index (i.e., a table of contents)
tor the volume, while the remaining 76 tracks are available for
file storage.

When a new file is created on a diskette volume, it receives an
allocation of contiguous sectors. The minimum file allocation is
one sector, and the maximum allocation is 1,976 sectors (i.e., 76
tracks of 26 sectors, or 252,928 bytes). The first file created
on a newly initialized diskette receives an allocation starting
immediately above the index track. Subsequently created files
receive an allocation starting immediately above the allocation
of the previously created file. The allocation of each file is
recorded on the index track.

when a file 1is deleted, 1its block of contiguous sectors is
deallocatea, and 1its index entry is marked as deleted. The
controller provides a command ("Gap") to compress the allocations
on a volume, eliminating the gaps caused by previous file
deletions and making the space available for subsequent file
creations.

3.1.2. File Access Methods

The controller provides four methods for accessing and updating
data storea on Jdiskette.

The stream access method permits an entire file to be read or
written as a continuous stream of data bytes (as if the diskette
file were a very high speed paper tape). Stream access is the
simplest access method to use, requiring only a single controller
command to read (load) or write (save) an entire file. It is
ideally suited to the storage and retrieval of executable
programs or any other use in which paper tape or cassette tape is
conventionally used. Stream access is performed using the "Load"
and "Save" controller commands.

The punctuated access method treats a file as a sequence of
variable-length records separated by punctuation marks (the
controller uses the ASCII record separator character "RS" for
this). A punctuated file may be positioned at its beginning or
end, and variable-length records may be read or written in
sequence, one at a time. Records may span sector boundaries on
the diskette put this is made transparent by the controller.
Punctuated access 1is most appropriate for the storage of text
files (e.g., source programs or word processing files) or for any
application in which sequential access to variable-length records
is desirable. Because of its dependency on a unigue punctuation
cnaracter ("RS") to delimit records, rpunctuated access is not
well suited to the storage of arbitrary binary information.

PerSci Model 1070 Intelligent Diskette Controller Page 7
Section 3 - Firmware Specifications (Rev. Fl.2)

The relative access method treats a file as a byte-addressable
memory. A relative file may be positioned at its beginning, end,
or to any desired byte position within the file. Any number of
bytes may then be read or written. Relative read and write
operations may span sector boundaries but this is made
transparent by the controller. Relative access is ideal for data
base oriented applications in which random access 1is required.
Both punctuated and relative access are performed using the
"File", "Position", "Read", and. "wWrite" controller commands.

Finally, the direct access method permits any specified sector of
any specified track of a diskette to be read or written directly,
bypassing the file management functions of the controller
altogether. Direct access is performed using the "“Input" and
"Output" controller commands.

3.1.3. File References

A file reference identifies a particular file or group of files.
File references may be either unique or ambiguous: a unique file
reference identifies one file uniquely, while an ambiguous file
reterence may be satisfied by several different files.

File references consist of four components: a name of up to
eight characters (NNNNNNNN), a version consisting of a period
followed by up to three characters (.VVV), a type consisting of a
colon followed by a single character (:T), and a drive number
consisting of a slant followed by a digit between © and 3 (/D).
The version, type, and drive components are optional and are set
off from the name by means of their unique leading punctuation
characters (NNNNNNNN,.VVV:T/D). A missing name, version, or type
is assumed to be blank, and a missing drive number is assumed to
refer to the current default drive.

The following are examples of valid unambiguous file references:

MONITOR MASTER/2 STARTREK .BAS/1
MONITOR.SRC MASTER:$ STARTREK .XQT
MONITOR.OBJ:A MASTER.ONE STARTREK:Z/8

The special characters "?" and "*" may be used to make a file
reference ambiguous so that it may match a number of different
files. The "?" is used as a "wild-card" character which matches
any character in the corresponding position in a file reference.
Thus the ambiguous file reference:

PER?27?2?,.BA?
matches all of the following unambiguous file references:
PERFECT.BAL PERSCI.BAS PERQ.BAX
The character "*" is used to denote that all character positions
to the right are wild-cards unless otherwise specified. The

following examples illustrate the flexibility which this facility
provides:

PerSci Model 1078 Intelligent Diskette Controller Page 8
Section 3 - Firmware Specifications (Rev. Fl.2)

Reference Equivalent to . Ambiguous Reference Matches
MONITOR. * MONITOR.??22:? all files with name MONITOR
* ,BAS ?222722?2.BAS:? all files with version .BAS
A 22222222,222:? all files starting with 2
* 22222222.,222:7 all files on the diskette

PerSci dModel 1070 Intelligent Diskette Controller
Section 3 - Firmware Specifications (Rev.

3.2.

Controller commands consist
(in most cases)
must not contain

CONTROLLER COMMANDS

by one or more
embedded

of a single

spaces,

Page 9
Fl1.2)

command letter followed
command parameters. Parameters
must be set off from one

another by spaces, and may optionally be set off from the command
letter by spaces.

Command

Allocate

Copy

pDelete

Eject

File

Gap

Input

*Kill

Load

Mode

Name

Output

CONTROLLER COMMAND SUMMARY

Command Syntax

A

EI

file sectors

filel file2 sectors

file
/drive
file

unit

unit

/drive

track sector /drive
volume/drive seg
volumme/drive

file
date:options/drive
filel

file2

track sector /drive

Command Function Summary

Allocates an empty file "file"
of “"sectors" sectors.

Copies files matching "filel"
to same or different diskette,
optionally renaming according
to "file2" and reallocating
according to "sectors".

Deletes all files matching
"file".

Ejects diskette in drive
"drive".

Opens "file" and associates
with "unit".

Closes the open file associated
with "unit".

Closes all open files.

Compresses allocations on
"drive" to eliminate gaps.

Reads specified sector.

Initializes diskette with
interleave "seg".

Deletes all files on diskette
without initializing.

Reads entire file "file" as a
stream,

Sets current date, I/0 options,
and/or default drive.

"filel" in
"file2".

Renames file
accordance with

Writes specified sector.

PerSci Model 187¢ Intelligent Diskette Controller Page 18
Section 3 - Firmware Specifications (Rev. F1.2)

Position P unit sector byte Positions the open file
associated with “unit",

P unit Reports current position of
file associated with "unit".

yuery g file Reports index information for
tiles matching "file".

kead R uni: Dbytes Relative read of file
associated with "unit".
R unit Punctuated read of file
: associated with "unit".
Save S file Creates new file "file" by
: writing as a stream.
Test T option/drive Executes a diagnostic test on
drive "drive".
Write W unit bytes Relative write to file
‘ associated with "unit".
W unit Punctuated write to file
associated with "unit".
Xecute X file option Loads file "file" into
controller RAM and executes it.
Zap Z unit writes end-of-data mark at

present position of file
associated with "unit".

NOTE: Numeric command parameters (byte, bytes, sector, sectors,
seqg, track) must be decimal for version Fl.¢ Firmware, but may be
either decimal or hexaaecimal for version Fl.2. Hexadecimal
parameters must be prefixed by a letter (such as "H" or "X"; for
example, the commands:

A FNAME 32

A FNAME X208
will both allocate a tile whose length is 32 (decimal) sectors.

NUTE: ‘The commands Xecute ana Zap are not in the Fl1.0 version.

PerSci Model 1670 Intelligent Diskette Controller Page 11
Section 3 - Firmware Specifications (Rev. Fl.2)

3.2.1. Allocate Command (A file sectors)

The "Allocate" command creates a new, empty file with the
specified allocation (decimal or hex number of sectors).

Example:
A BIGFILE 10080
3.2.2., Copy Command (C filel file2 sectors)

The "Copy" command copies one or a collection of files from a
diskette volume to the same or a different diskette volume. The
copied files may have the same or different names as the original
files, and may have the same or different allocations. The
"Copy" command cannot be used if there are any open files.

Examples:

C ALPHA BETA

C ALPHA/8 */1

C ALPHA/6 BETA/1 100
C */8 */1

C a*/v B*/1

The first example makes a duplicate of the file ALPHA on the same
diskette (default drive), calling the duplicate BETA., The second
example copies the file ALPHA from drive ® to drive 1, leaving
the name and allocation unchanged. The third example also copies
ALPHA from drive 6 to drive 1, but changes the name to BETA and
gives the new file an allocation of 108 sectors (which may be
larger or smaller than ALPHA). The fourth example copies all
files from drive # to drive 1, preserving all file names and
allocations. The last example copies only files with names
starting with "A" from drive © to drive 1, <changing the first
character of each file name from "A" to "B".

3.2.3., Delete Command (D file)

The "Delete" command deletes a file or a collection of files from
a diskette.

Examples:
D GEORGE
b *,0BJ/1
D XZ?22/2

The first example deletes a single file GEORGE from the default
drive. The second example deletes all files on drive 1 which
have version .0BJ. The last example deletes all files on drive 2
which have two to four character names starting with "X2z2".

PerSci Model 1870 Intelligent Diskette Controller Page 12
Section 3 - Firmware Specifications (Rev. Fl1.2)

3.2.4. Eject Command (E /drive)
The "Eject" command causes the diskette to be ejected from the

specified drive. Note that this command is effective only if the
aiskette drive is equipped with the Remote Eject feature.

Examples:
E /2
bE

3.2.5. File Command (F wunit file)

The "File" command opens and closes diskette files. A file must
be open before punctuated or relative access is permitted by the
controller. An open file 1is associated with a logical unit
nuimber between 1 and 5 (a maximum of five files may be open at
one time).

Examples:

F 2 MASTER/1
F 2
F

The first example opens the file MASTER on drive 1 and associates
it with logical unit 2., The second example closes the open file
associated with logical unit 2. The third example closes all
open files.

3.2.6Q Gap Command (G /drive)

The "Gap" command compresses the allocations on a diskette volume
to eliminate any gaps in the allocations caused by prior file
deletions. The "Gap" command cannot be used if there are any
open files. ‘

kExamples:
G /3
G

3.2.7. Input Command (I track sector /drive)

The "Input" command reads a single specified sector of a diskette
volume. The sector is specified by decimal track number (8-76),
decimal sector number (1-26), and drive number. (In Fl1l.2, the
track and sector number may also be hexadecimal.)

Examples:

I 43 10 /1
I 1 1

PerSci Model 107¢ Intelligent Diskette Controller Page 13
Section 3 -~ Firmware Specifications (Rev. Fl.2)

*
3.2.8. Kill Command (K volume/drive seq)

The "Kill" command deletes all files on a diskette volume.
Optionally, the command also initializes (formats) the entire
diskette, erasing all previously recorded information thereon and
writing new sector headers on each track. The diskette may be
initialized with any one of thirteen sector interleave sequences
to enhance read/write performance. Further discussion of
interleave sequences appears in section 3.4.3 of this dogument.

Examples:

K SCRATCH/3
K BACKUP 1
K MASTER 9

The first example deletes all files on drive 3, labels the volume
SCRATCH, but does not initialize each track. The second example
initializes the diskette on the default drive without interleave.
The last example initializes with interleave sequence 9.

3.2.9. Load Command (L file)

The "Load" command reads a diskette file in its entirety as a
stream.

Examples:

L BASIC
L EDITOR/3

3.2.10. Mode Command (M date:options/drive)

The "Mode" command may be used to set the current date, the
default diskette drive, and/or various controller options. The
current date is entered as a six character value (the format
YYMMDD is suggested but not required by the controller). The
default diskette drive is entered as the character "/" followed
by a drive number (8#-3); this becomes the drive which is used for
all subsequent file references and commands which do not include
an explicit drive number., The options are entered as the
character ":" followed by a single hexadecimal digit (8 through

F) whose bits are microcoded as follows (this applies to Fl.2
only):

Option Meaning
:8 Supress non-fatal error messages
t4 Simultaneous head load NOT available
:2 Keep heads loaded continuously
:1 Model 78 drives in use

NOTE: At initial power wup, the controller assumes by default
that Model 277 drives with the simultaneous head load feature are
in use.

*F1.3 syntax KK volume/drive seq.

PerSci Model 1876 Intelligent Diskette Controller Page 14
Section 3 - Firmware Specifications (kev. Fl.2)

Examples:

M 770819
M /1
M :C

The last example above informs the controller that the controller
and/or drive do not support simultaneous head 1load, and that
non-fatal error messages are to be supressed.

3.2.11. wName Command (N filel file2)

Tne "Name" command modities the name, version, and/or tyre of a
tile. The wild=-card characters "?" ana "*" are used to indicate
that selected portions ot the file reference are to be left
unchangea, as illustrated in the exawmples.

‘Examples:
N ALPuA bETA
N BACKUP.2 *.3
N XRATED R¥*
Tne first example changes the file ALPHA to BETA. The second

example changes BACKUP.2 to BACKUP.3, while the third changes
XRATED to RRATED.

3.2.12. Output Command (O track sector /drive)

The “Output" command writes a single specified sector of a
diskette volume. 1Its parameters are identical to those for the
"Input" command.

Examples:

O 43 10 /1
0O 1 1

3.2.13. Position Command (P unit sector byte)
Tne “"Position" command permits open files to be positioned at the

peginning, end, or at any specified byte position. The commana
may also be useu to report the current position of an open file.

Examples:
P 2 213 &8s
p 2 213
P 2 @
P 2 9999
P 2

The first example positions the open file associated with logical
unit 2 to byte 88 in sector 213 of the file. The second examples
positions the file to byte @ of sector 213. The third example
positions the file at its beginning, and the fourth example
position the file at its end-of-data (note that the controller
does not permit a file to be positioned beyond its end-of-data).

PerSci Model 1076 Intelligent Diskette Controller Page 15
Section 3 - Firmware Specifications (Rev. F1l.2) '

Finally, the last example simply reports the current position of
the file.

3.2.14. Query Command (Q file)

The "Query" command 1lists the following index intormation for
one, some, or all files on a diskette volume:

Name, version, and type

Start of allocation (decimal track and sector)
Length of allocation (decimal number of sectors)
End of data (decimal sector and byte offset)
Date of creation

Date of last update

[] L] L[] . [L]

This information is preceded by a heading which lists the volume
name, next available track and sector, volume interleave, and
date initialized.

Examples:
Q ALPHA/2
Q *.SRC
Q *

Sample Query Listing:

SCRATCH.DSK 06-07 69 770215

FMF11.0BJ:3 01-91 6032 PO31 082 770430
TEXTED 02-07 0025 G824 090 778583

DOCUMENT . TXT b3-866 0079 ©VB78 BVl 778503 770618
3.2.15., Read Command (R unit bytes)
- The "Read" command reads an open file by means of either the

relative or punctuated access method (i.e., fixed-length or
variable-length records).

Examples:
R 2 88
R 2

The first example reads a fixed-length record of 86 bytes from
the current position of the open file associated with logical
unit 2. The second example reads a variable-length record
delimited by a record separator character ("RS").

NOTE: The maximum length of a fixed-length read 1is 65535 bytes
(HFFFF) .

3.2.16. Save Command (S file)

The "Save" command creates a new file by writing a stream of data
onto the diskette. The resulting file receives an allocation of
the minimum number of sectors needed to accomocdate the length of
the stream,

PerSci Model 1978 Intelligent Diskette Controller Page 16
Section 3 - Firmware Specifications (Rev. Fl.2) ;

Examples:

S BASIC
S EDITOR/3

3.2.17. Test Command (T option/drive)

The "Test" command pertorms one of several diagnostic tests on
the specified drive. Available tests are: V (random seek-verify
test), R (random seek-read test), and I (incremental seek-read
test).

Test V is a high-speed random-seek test. It performs a seguence
of seeks to a randomly-selected track, reads the first
encountered sector header on that track, and verifies that the
correct track has been reached.

lest R is a ranadom-seek-reaa test. It performs a seek to a
randomly-selected track, then - reaads a particular
randomly-selected sector on that track, and verifies that both
the sector neader and sector data are correct (using the CkC in
each case).

Test I is an incremental-read test. It reads and verifies both
the sector header and sector data of each sector on the diskette,
starting at track @ sector 1 and proceeding incrementally through
track 76 sector 26.

Once initiated, tests V and R run indefinitely until the
controller is reset or until a hard disk error 1is encountered
"which persists for five successive retries. Test 1 makes a
single pass over the diskette, reading each sector once, and then
terminates.

Examples:

T Vv/1
T R/0
T I

3.2.18., Write Command (W wunit bytes)

The "Write" command writes an open file by means of either the
relative or punctuated access method (i.e., fixed-length or
variable-length records). If data is written beyond the
end-of-data of the file, the end-of-data is moved accordingly.
The controller will not permit data to be written beyond the last
sector allocatea to the file.

Examples:
W 2 80
w 2

The first example writes a tixed-length record of 86 bytes to the
open file associated with logical unit 2, starting at the current
position of the file. The second example writes a
variable-length record to the file, followed by a record

PerSci Model 1870 Intelligent Diskette Controller Page 17
Section 3 - Firmware Specifications (Rev. Fl.2)

separator character ("RS").

NOTE: The maximum length of a 1ixed-length write is 65535 bytes
(HFFFF hex).

3.2.19. Xecute Command (X file option)

The “Xecute" command loads an executable diskette file into
controller RAM and executes it. This permits diskette-resident
routines to extend the effective command repertoire of the
controller. The option is a decimal or hex parameter which is
passed to the routine. The "Xecute" command is not available in
Fl.6.

Note that the "Xecute" command is not requirea for normal use of
the controller, but was incluaed to facilitate special
applications of the controller., For further details, contact
PerSci.

Examples:

X DRIVTEST 1
X CONVERT

3.2.28. Zap Command (Z unit)

The "Zap" command truncates an open file by establishing the
end-of~-data at the current position of the file. Note that this
command does not affect the allocation of the tile, only its
end-of~data position. The "Zap" command is not available in
E‘l.ﬂ.

Example:

z 2

PerSci Model 1670 Intelligent Diskette Controller Page 18
Section 3 - Firmware Specifications (Rev. F1.2)

3.3. CONTROLLER INTERFACE PROTOCOL

3.3.1. Protocol Definition

'The interface protocol between the microcomputer and the
controller consists of sequences of ASCII characters and makes
use of standard ASCII communications controls. The protocol for
the simplest controller commands (Allocate, Eject, File, Kill,
Mode, Name, Test, Xecute, Zap) is the following:

Microcomputer sends: command-text EOT
Controller sends: ACK EOT

The protocol for controller commands which return informational
text (Copy, Delete, Gap, FPosition, Query) is the following:

Microcomputer sends: command-text EOT
controller sends: informational-text CK LF ACK EOT

The protocol for controller commands which read data £from
diskette (lnput, Load, Read) is the following:

Microcomputer senas: command-text EOT
Controller sends: SOl diskette-data ACK EOT

1he protocol for controller commands which write data to diskette
(Output, save, Write) is the following:

Microcomputer sends: command-text EOT

Controller sends: ENQ EOT
Microcomputer sends: diskette-data EOT
Controller sends: ACK EOT

Finally, the controller may terminate any command at any time wih
a fatal error diagnostic message, using the following protocol:

Controller sends: NAK fatal-error-msg CR LF EOT

Note that no ACK will be transmitted by the controller in this
case.,

3.3.2. Error Diagnostic Messages

The controller issues two classes of error diagnostic messages:
fatal ana non-fatal. Fatal error diagnostic messages are always
precedea by a NAKk and followed py an EOT. They indicate the
premature and unsuccessful termination of a controller command.
The various fatal error diagnostic messages are listed below:

COMMAND LELRRKUK ON DRIVE #n
Indicates that the controller received an invalid command or
commana parameter.,

LUP FILE ERRUR ON DRIVE #n
Indicates that an attempt was made to create a new file with
the same name as an existing file on the same diskette.

PerSci Model 1878 Intelligent Diskette Controller Page 19
Section 3 - Firmware Specifications (Rev. Fl1.2)

HARD DISK ERROR ON DRIVE #n
Indicates that a seek, read, or write error occurred which
could not be successfully resolved in five retries.

NOT FOUND ERROR ON DRIVE #n
Indicates that the specified file could not be found in the
index of the specified diskette. '

OUT OF SPACE ERROK ON DRIVE én
Indicates that an attempt was made to exceed the capacity of
a diskette, an index track, or a file allocation.

READY ERROR ON DRIVE #n
Indicates that an attempt was made to access a diskette
drive which is not in ready status.

UNIT ERROR ON DRIVE #n
Indicates that an attempt was made to read, write, or
position a logical unit number with which no open file is
associated, or that an attempt was made to use the "Copy" or
"Gap" commands with one or more files open.

The clause "ON DRIVE #n" is omitted in the case of errors not
associated with a particular drive, and is not provided at all in
Fl.o.

Note that each fatal message begins with a unique letter, so that
an interfacing program need only analyze the first character
following a NAK to determine the type of fatal error.

Non-fatal error diagnostic messages are issued for soft disk
errors., They are not preceded by a NAK, and they contain the
following information:

type of disk operation (seek, read, or write)

error retry number (1 to 5)

track and sector at which error occurred

type of error (protect, fault, verify, CRC, or lost)

Multiple error-type indications may be received on a single
non-fatal error message, and their meanings are as follows:

protect: a write was attempted on a write-protected disk
fault: a write fault was received from the drive

verify: the desired sector header could not be found
CRC: the sector header and/or data failed the CRC test
lost: one or more bytes were lost during a data transfer

. L] L[] L] L

During the transmission of diskette data (Load, Save, Read,
Write, Input, and Output commands), non-fatal error messages are
suppressed. They may also be supressed under all circumstances
by means of the Mode command.

PerSci Model 1076 Intelligent Diskette Controller Page 20
Section 3 - Firmware Specifications (Rev. Fl.2)

3.3.3. Parallel Interface Considerations

The parallel interface offers a number of advantages in
interfacing the controller to a microcomputer system: (1) its
transfer rate is very fast, (2) it provides complete handshaking
to coordinate data transfers in both directions, and (3) it
provides a means for uniquely distinguishing communications
control characters (EOT, ACK, NAK, SOH, = ENQ) from data
characters. The last two of these functions are accomplished by
means of the controller status byte, whose format is:

bit 7 - receive data available, control character
bit 6 - receive data available, data charactet
bits 5,4,3,2 - always "1"

bit 1 - transmlt buffer full, data character

bit # - transmit buffer full, control character

when the microcomputer reads the controller data port, bits 7 and
6 of the controller status byte are reset and remain so until the
controller sends another character to the parallel interface.
when the microcomputer writes the controller data or status port,
bit 1 or bit @ (respectively) 1is set and remains so until the
controller has processed the character from the parallel
interface. Since communications control characters cannot be
confusea with data characters, arbitrary binary information may
be read or written freely when using the parallel interface.

Before attempting to write to the controller, the status byte
should be read and tested to ensure that no receive data is
available and that the transmit buffer is empty. In particular,
when the controller is powered up or reset, it outputs a control
EOT (in F1.6, a control ACK followed by a control EOT); these
must be read before any command is sent to the controller.

The design of the parallel interface requires two write
operations to transmit a control character (e.g., EOT). The
first write should address the status register (this will set
status bit @) followed immediately by the second write to the
data register (which will set status bit 1). Thus, the
controller will see both status bits @ and 1 set when reading a
control character. However, when reading data from the
controller, either status bit 6 or status bit 7 will be set by
the controller, but never. both. :

As previously described, reading the controller data register
will reset bits 6 and 7 of the status register, but reading the
status register does not affect the contents of either register.

3.3.4. 'RS-232 Serial Interface Considerations

Since the speed of the optional KS-232 serial interface is
regyulated by a bit-rate clock rather than by cooperative
handshaking, another means must be providea for preventing data
from being sent to the controller when it is not ready to accept
it. (This condition may occur when crossing sector boundaries
guring the "Save" or "write" commands.) When it is receiving data
over the RS-232 interface, the controller normally keeps its
kS-232 transmit data in a mark hold ("1") condition. when it is

PerSci Model 1076 Intelligent Diskette Controller Page 21
Section 3 - Firmware Specifications (Rev. Fl1.2)

momentarily unable to accept more data, it places its transmit
data in a space hold ("2") condition until it is again able to
accept data, then returns it to mark hold.

Since the RS-232 interface provides no means for distinguishing
between communications control and data characters, the user must
ensure that the significant communications control characters
(EOT, ACK, NAK, SOH, ENQ) are not embedded in data sent to or
from the controller. If arbitrary binary information is to be
read or written, the user must provide a suitable escape
convention for these characters.

3.3.5. Sample Driver Program

In order to provide additional guidance in the interfacing of the
controller to a microcomputer system, flowcharts and an annotated
assembly listing of a sample driver program are provided at the
end of this document. The sample driver program makes use of the
parallel interface and is coded for an 8886-based microcomputer
system.

3.4. DISKETTE FORMAT
3.4.1. General Format

The diskette initialization function of the controller ("Kill"
command) creates a diskette format which is IBM 3740 compatible.
Each diskette contains 77 tracks with 26 sectors per track and
128 data bytes per sector. Tracks are numbered from @ to 76
(outer to inner) and sectors are numbered from 1 to 26 on each
track. Each sector has a header which defines the track and
sector number (soft sectoring). Both the sector header and the
data itself are provided with a 1leée-bit polynomial «cyclic
redundency check (CRC) word.

3.4.2. Index Track Format

Track ® is reserved by the controller for use as an index (i.e.,
table of contents) for the diskette volume. The controller makes
use of an index track format which permits up to 180 files on
each volume and which is not IBM 3740 compatible (the IBM 3740
index track format allows only 19 files). Sector 1 of the index
track serves as a volume label. Sectors 2 through 26 each
contain room for four 32-byte file entries:

bytes 1-8 file name
bytes 9-11 version
byte 12 type

byte 13 (reserved)

bytes 14-15 start of allocation
bytes 16-17 end of allocation

bytes 18-19 end of data

byte 20 end of data (byte offset)
bytes 21-26 date of creation

bytes 27-32 date of last update

PerSci todel 1676 Intelligent Diskette Controller Page 22
Section 3 - Firmware Specifications (Rev. Fl.2)

3.4.3. Interleaved Sector Sequences

In order to enable wusers to optimize diskette subsystem
performance 1in a variety of situations, the diskette
initialization function of the controller ("Kill" command)
supports twelve optional interleaved sector sequences in addition
to the ordinary non-interleaved segquence. This function |is
controlled by the value (1 to 13) of the second parameter of the
"Kill" command. The effect of the interleaved sector seguences
is to provide additional time to process the data for a sector
"N" pefore sector "N+1" is encountered in the course of diskette
rotation. Sequence 1 (non-interleaved) provides the shortest
time interval between successively-numbered sectors, and
sequences 13 through 2 provide successively longer intervals.

NOTE: Sequences 6 through 9 generally provide optimal ;"esults
when wusing the parallel interface in most microcomputer
environments.

Additional information about these interleaved sector seguences
and other diskette formatting considerations may be found in the
tollowing IbM document: "The IBM Diskette for Standard Data
Interchange", GA 21-9182-0, File No. GENL-03/80.

PerSci Model 19076 Intelligent Diskette Controller
Appendix A - Sample Driver Programs

APPENDIX A

Sample Driver Program Flowchart
Sample 8088 or Z86 Driver Program
Sample 6880 Driver Program

e

INITIALIZE STACK

IS .
CONTROLLER
TALgING

YES

INPLN

INPUT COMMAND
LINE FROM
CONSOLE

”

DLINE

SEND COMMAND
LINE TO
CONTROLLER

DOUTC

SEND CTRLEOT”
TO CONTROLLER

”

'

&

‘DINP

INPUT A BYTE
FROM
CONTROLLER

CTRL
OR DATABYTE
?

DCTRL

OUTCH

OUTPUT BYTE
TO CONSOLE

SAMPLE DRIVE PROGRAM FLOWCHART

(DREAD)

HL < RAM |

OUTHX

DISPLAY HL IN
HEX ON
CONSOLE.

A

DINP

INPUT A BYTE
FROM
CONTROLLER

CTRL
OR DATA BYTE
?

(HL)+ BYTE
HLeHL + |

CTRL _

Com D

DINP

INPUT A BYTE
(EOT) FROM
CONTROLLER

HL < RAM |

OUTHX

DISPLAY HL IN
HEX ON
CONSOLE

DE «— RAM 2

OUTHX

DISPLAY DE IN
HEX ON
CONSOLE

GET BYTE < (HL)

DOUT

OUTPUT DATA
BYTE TO
CONTROLLER

HLeHL— |
RAM 2+ HL

OUTHX

DISPLAY HL IN
HEX ON
CONSOLE

Coom D

DCMP

COMPARE HL
WITH DE

NO

HL—HL +1|

SAMPLE DRIVE PROGRAM FLOWCHART

YES DEOT

PerSci Model 1670 Intelligent Diskette Controller
Appendix B - Hardware Interfacing Information

APPENDIX B

Interface Schematic for S-1068 Bus
Interface Schematic for 68d8
Interface Timing Data

ADDRESS BUS

CONTROL BUS

DATA BUS

79 A0 1)
80 :; ; PILE AR4
ADS
81 23 T PILF ADG 9 NOTE JUMPER
3) W ADDRESS
5 ad ! i AD? TaLsE L AP
A7.A8.A11
1 | ADDRESS (AL
4 A12.A13,
:) o NC O] DECODE A48 ATS
) PORT NC O=2u TOGND
: ! ADDRESS NC OS] FOR SYRANDAno
I JUMPERS A7 110 PORT
! ! NC 0= ADDRESS OF
| CO(DATA)
! ! 8C1(STATUS)
. Use this
) AS ADB standard
83 Ab] ADS v4 110 Address
748136 tobe
83 Al ! AD10 " compatibie
1 ADY! ADDRESS * with DISC
! DECODE O driver
i sottware
: | and o be
i able to
| o
| N JUMPERS software
A N programs,
| \ . with others
] using PERSCI
| : o
1
| PP AD12 CONTROLLER
| o AD13 s
II : PIS AD14 7408136
| PIT ADID ADDRESS u1g
| DECODE
h v : A12
: | IOPORT NC OB,
ADDRESS 3D
| ! JUMPERS NC Oty
| |' NC OR2y
! i
, M
1
! | JE
: SELECT
us -
7418139
CONTROLLER
8080 CPU
Geo>— o—— - - CLOCK
\ WRITE IO
741500 H—— - - u20
(> ey 554
1 RESET
] ~
& 1
' a7 [1
I S |
| — | _ : OPTIONAL
RESET
< | -1 ™ ‘h
3 BUSS O BUSS O
S et o 1
BIDIRECTIONAL o . 7405374 -
8us

o]} 1
1 BUSS 1
« DRIVER 6 BUSS =m —4 CONTROLLER

Di2 6 o BUSS 2 | |) Buss2 REGISTER
41] 821 1 i
D 02 [-4
! . F“"
1
i
a2 o3 3 BUSS 3 e >e2uss3 | [_J
003 S >
(89 > | DIEN [' -
! o
! f [! o e
X J T —— ! | —|—]=]| = |-~
| ADDRESS SELECT ! - 7418374
! | CONTROLLER
¥ & 1 - INPUT
I = = ! 1 - - PORT
DIEN es | .5 BUSS ! | REGISTER
TN 1=
o BIDIRECTIONAL ;
Ban s BUSSS BUSSS
S 005 DRIVER =D.. -]
.. t | ——— |~ [~ :
[}
ﬂ DI6 8216 10 BUSS6 m BUSS6 RN [U‘,,“
[0S 006 * > ' 3 7452
) ']
‘ | —
@_D_n__‘ 13 BUSS? e BUSST
}

$:100 TO PERSC! 1070 DISK CONTROLLER .
ADAPTER PCB INTERFACE LOGIC PERSCI 1070 FLOPPY DISK CONTROLLER PCB
| SR i S T T T i T

Figure 6. 8080S-100 Bus Controller Interface

Reprinted from INTERFACE AGE MAGAZINE September 1977

PerSci, Inc. :
Application Note 1070-6800

Appendix B-2

ASSUMPTIONS
1. Controller is operating on a parallel bus.

2. Controller is used as a memory ported device using two addresses with
Address Bus 00 selecting command or data address.

3. 6800 MPU data bus enable (DBE) is held high for 50 nanoseconds
after P2 goes to zero volts.

1070 , M6800
P1

ADD ADD
04 E
05 F
06 H
07 J
08 K
09 L To Address Buss
10 M A15-A04
11 N
12 P
13 R

14 S
15 T

DATA DATA
00 1 0
01 2 1
02 3 2
03 4 3 To Data Buss
04 5 4 DATA 00-7
05 6 5
06 7 6
07 8 7

COMMAND /DATA A ADD 00
SELECT * 27 NO CONNECTION - VMA 02
WRITE * 19— WRITE -———%3(
READ * 18 —READ . Write*

T L

Appendix B-3 Timing Data - 1070

READ TIMING
AD4-AD15 X X

o @ - — B —
setect* @) \‘—T?—] *l—
read % R g

Data B —Hl-{ -X- /_Hl—{ -

‘T;‘ > s "
WRITE TIMING
AD4 AD15 -4 X
S

W ® T R —

' T -
Se]ect* @ \4_ : ’} . {‘—T“‘
¥ - Ty ——
Write - T e TK" .
Data Wz X Y Wiz

Tw3 250maac Tp>150masc Tk > 100

Ti> 220 T3> Ta 50

* Active Low Signal
' Data Transfer Time

, O 1070 Controller Signal Pin Numbers

PerSci rMoael 1676 Intelligent Diskette Controller
Appendix C - Supplementary Controller Data

APPENDIX C

Brief History of the Model 1078 Controller
Option Jumper Data
Connector Data
Schematic for Controller

PerSci Model 1070 Intelligent Diskette Controller
Appendix C - Supplementary Controller Data

BRIEF HISTORY OF THE MODEL 1076 CONTROLLER

The PerSci Model 18780 Controller has evolved through several

versions in reaching its present state. The stages (in terms of
printed circuit board revisions) were:

PCB 200285-X1:
First production version. A number of cuts and jumpers were
reguired on this PCB.

PCB 200285~X3 (Schematic 2060287-X3):

Pull-up resistors (U34) were added to data and control lines from
the diskette drives. Filter capacitors were added (C6 and C7).
Jumper options were added (C,D,E,F,K,M,N,P,S,R). Two cuts and
jumpers were required on this PCB.

PCB 200285-X3 "Kludge" (2114 RAMs on Adapter Boards):

The previously-used RAM chips (9130s and 9131s) used on the -X3
boards became unavailable in the Spring of 1977, and were
temporarily replaced with 2114 RAMs mounted on miniature adapter
PCBs to correct the incompatibilities in pinouts.

PCB 200249-A (Schematic 200351A):

This is the first production PCB based on the 2114 RAM. The etch
is fully correct, with no cuts or Jjumpers. Space was added
between jumper points C and D so that a diode could be used to
tie the controller reset 1line to the host but leave the host
reset line isolated from the controller reset pushbutton. A
trace was added from Ul1l3 pin 15 to Jl pin 16 to enable the
controller firmware to simultaneously load all heads when the
controller is used with appropriately updated drives. A trace
was added to tie U360 pins 8 and 12 to pin 2 (+5v) in order to
permit '‘a change from Western Digital 1941 to SMC COMYU16
baud-rate generator cnips in the optional KkS232 serial interface.

PCB 20446349-B:

This is now the deiinitive production printed circuit board for
the Model 1078 controller. Primary change trom the -A board is
the use of a larger-capacity regulator IC for minus 5 volts, to
eliminate the need for an add-on thermal radiator used on the
previous regulator. ‘

X=- anda F-Series Firmware:

There have been two different series of firmware used with the
Model 107¢. Earliest deliveries used various versions of the
X-series firmware (X1 through X15), but PerSci no longer issues
or supports this firmware. Since Spring of 1977, the controller
has been delivered with the newer F-series File Management
Firmware. This has been issued in two versions, Fl.@ and Fl.2,
which are described in this document. (Fl.l was never issued.)

BRIEF HISTORY (continued)

PCB 20039-C

The "C" revision of the controller PCB was made the production standard
in the spring of 1978. Primary change for this board was the addition
of a 10 picofared capacitor in series with the 18.0 MHZ crystal used as
the frequency reference for the controller.

FREQUENCY REFERENCE CHANGE

" During production of the "B" PCB controllers, the controller frequency
standard (Y1) was changed from an 18.432 MHZ crystal to an 18.0 MHZ
crystal in series with a 10 picofared capacitor. (See schematic attached
Drwg. NO. 200351C). This change was made to improve interchangability

of diskettes formatted by different controllers.

FIRMWARE FMF 1.3

" Firmware used with the controller was updated to revision F 1.3 in April
of 1978. The command set for this revision was changed such that the
Kill Command requires a double KK. (KK volume/drive seq.) This change
was in response to users request to reduce operators inadverdent deletion
of diskettes files.

F 1.3 is issued in two versions. The first, F 1.3P, is coded for use
only with controllers that do not have the serial (RS232) option.

The second version, F 1.3S, is coded for use with either the serial or
parallel data ports.

FD1771 NEGATIVE VOLTAGE CHANGE

The negative voltage reference for the FD1771 was changed from minus
2.5 volts to minus 4.17 volts by changing R6 from 1K to 200 ohms. This
change was made possible by improved chip performance and results in
reduced noise sensitivity.

pPerSci Model 1879 Intelligent Diskette Controller
Appenaix C - Supplementary Controller Data

OPTION JUMPER DATA

A number of options are provided on the Model 1078 controller.
They may be selected by connecting jumpers between points as
described below:

A-to-B (Factory Installed):

This Jjumper enables the high-speed seek feature of the
controller, which permits head positioning signals to operate at
the speeds made possible by the PerSci voice-coil positioner.

C~-to-D:

This jumper connects the controller reset 1line to Pl pin 17,
where it may be tied to the host system reset line. On later
production PCBs (208349), points C and D were separated to
facilitate the use of an isolation diode (cathode at C) in place
of a jumper.

E-to-F:
This jumper connects the controller reset complete signal to Pl
pin U.

U-to~-T:
1his jumper is required only when the controller is used with
three or four PerSci Model 780 (single) Diskette Drives.

K-to=-S:

This jumper should be used if the optional KS232 serial interface
is installed to ground the Clear-to-Send line when using RS232
devices which do not provide this control signal. The serial
interface will not operate unless either a valid Clear-to-Send
signal is present or this jumper is installed.

J-to-H:

This jumper connects the output of flip-flop U9B (receive data
available) to Pl pin 22, so that it can be used as an interrupt
or other signal to the host system that the controller has a data
byte in its transmit buffer for the host.

M, N, P, K Combinations:
Jumpers between these points determine how the controller is
selected, described below.

M-to-N-to P (Internal Address Decode):

This connection will allow the controller to be selected by a
combination of 12 address signals (AD4 through AD15) determined
oy Jjumpers at points A4 through Al5. The select signal (active
low) is available at Pl pin 27 as an indication to the host
system that the controller has recognized its address.

N-to-P (External Select):
This connection will allow the controller to be selected by an
external signal (active low) at Pl pin 27,

K-to-P (Test Connection):

This connection makes the receive clock of the optional RS232
interface available at Pl pin 27. This connection is sometimes
used by PerSci for test purposes.

PerSci Model 1070 Intelligent Diskette Controller
Appendix C - Supplementary Controller Data

A4-through-Al5 (Address Selection):

Jumpers at these points determine which address will select the
controller. Each jumper is associated with an address input line
at Pl (e.g., jumper A7 with address line AD7). The jumper should
be connected if the associated address bit should be high to
select the controller.

For example, if the 12 most significant bits of a 16-bit host
system address bus (Al5 through A6¢) are connected to controller
inputs AD1S through AD4, and if the least significant host system
adadress 1line (A0) is connected to controller Pl pin A
(Command/Data), and if jumpers are installed at points Al5, Al4,
AY, and A5, then host address C200 hex will select the controller
data port, and host address C261 hex will select the controller
status port (addresses (282 through C20F hex are redundant and
should not be used).

CAUTION: Controllers will usually be delivered with Jjumpers
installed at M-to-N-to-P, Al5, Al4, and R-to-S (for the RS232
option). These jumpers are used by PerSci in checkout and final
test. PerSci may change these jumpers to other combinations,
without notice. Be certain to verify the proper jumper
configuration for your application before placing the controller
into service.

'CONNECTION OF ADDITIONAL DRIVES

The 1070 Controlier will accomodate two Model 277 drives or four Model 70's,
without change to the controllers. However, the address l1ogic of the drives
added must be modified.

Address logic for the Model 70 and 277 drives is set by jumpers on a select
module on the biggest PCB of the drives.

The following are the necessary jumpers:

Model 277 Select Module Jumpers (U11)
Drive 1 (Side 0 and 1) 2 to 13, 4 to 11

Drive 2 (Side 2 and 3) 1 to 14, 6 to 9

Model 70 Select Module Jumpers (U5)
Drive 1 (Side 0) 7 to 8, 3 to 12

Drive 2 (Side 1) 7 to 8, 4 to 11

Drive 3 (Side 2) ' 7 to 8, 5 to 10

Drive 4 (Side 3) 7 to 8, 6 to 9

SIGNAL

COMMAND(+) /DATA(-)

AD 04
AD 05
AD 06
AD 07
AD 08
AD 09
AD 10
AD 11
AD 12
AD 13
AD 14
AD 15
RESET COMPLETE

RTS

DTR
TXD (XMT DATA)

-12v
+5V
GROUND

P1
1070 CONTROLLER/HOST INTERFACE

CONTROLLER PINS
CONNECTOR
PINS
A 2 111
B 4 31 2
C 6 51 3
D 8 71 4
E 110 91 5
Fl12 111 6
H | 14 13| 7
J |16 15] 8
K {18 171 9
L {20 19 | 10
M 22 21|11
N | 24 23112
P 126 25113
R | 28 27 | 14
S 130 29115
T |32 31] 16
u | 34 33117
V | 36 351 18
W | 38 37119
X 140 39|20
Y | 42 41| 21
Z | 44 43| 22
AA| 46 451 23
BB | 48 47 | 24
CC| 50 49) 25
DD| 52 511 26
EE| 54 531 27
FF | 56 551 28
HH | 58 571 29
Jd | 60 59| 30
KK| 62 61} 31
LL| 64 63| 32
MM| 66 651 33
NN | 68 67| 34
PP{ 70 69| 35
RR| 72 71| 36

SIGNAL

BUSS 00
BUSS 01
BUSS 02
BUSS 03
BUSS 04
BUSS 05
BUSS 06
BUSS 07

RESET IN*
READ*
WRITE*

SELECT*
CTS

DSR
RXD (RCV DATA)

+12V
+5V ,
GROUND

CONNECTOR, CONTROLLER INTERFACE

Appendix C

Optional Sector Interleave Sequence

DISK RECORD SEQUENCES

blank 01 02 03 04 05 06 07 08 09 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 g 100 11 12 13 14
3 3 5 7 9 11 13 15 17 19 21 23 25. 2
4 4 7 10 13 16 19 22 26 2 2 2 2 15
5 5 9 13 71 26 2 2 11 12 13 14 3
6 6 11 18 21 26 2 9 10 20 22 24 26 16
7 7 13 19 26 2 8§ 16 18 3 3 3 3 4
8 8 16 22 2 7 14 23 28 12 13 14 15 17
9 e 17 25 6 12 20 3 3 2t 23 25 4 5
10 10 19 2 10 17 26 10 1 4 4 4 16 18
1" m 21 65 14 22 3 17 19 13 4 15 5 6
12 12 23 8 18 3 9 24 4 22 24 26 17 19
13 13 26 11 2 8 15 4 12 5 5 5 6 7
14 14 2 14 26 13 21 11 20 14 16 16 18 2
16 15 4 17 3 18 4 18 6 23 25 6 7 8
16 16 6 20 7 23 10 25 13 6 6 17 19 21
17 17 8 23 11 4 16 5 21 5 16 7 8 9
18 18 10 26 15 9 22 12 6 24 26 18 20 22
19 19 12 3 19 14 5 18 14 7 7 8 9 10

17 19 21 23

3
3

4 6 23 19 11 26 22 16
21 21 16 9 4 24 17 6 7 2% 8 9 10 N
22 2 18 12 8 5 23 13 15 8 18 9 22 24
23 23 20 15 12 10 6 20 23 17 9 10 11 112
24 24 22 18 16 15 12 7 8 286 19 21 23 25
25 26 24 21 20 20 18 14 16 9 10 11 122 13
26 26 26 24 24 26 24 21 24 18 20 22 24 26

Numbgrs at column top are interleave sequences specified
by ki1l command.

Columns show sector sequence for specified interleave.
N.B. "Blank" sequence changes index track only.

PerSci Moael 1678 Intelligent Diskette Controller
Appendix D - Applications Note for Simultaneous Head Load

‘APPENDIX D

Applications nNote for Simultaneous Head Load

APPENDIX D

APPLICATIONS NOTE FOR SIMULTANEOUS
HEAD LOAD CIRCUIT MODIFICATION

CONTROLLER MODIFICATIONS

Applicable: PCB 200285 X1, X3
Add Jumper Ul13 Pin 15 - # J1 Pin 16
DRIVE MODIFICATIONS

Applicable: Model 277 drive with Data and Interface Assembly
200263-003, Rev. A, B. C, D, E, or F (PCB 200262A).

1. Cut traces at U8 Pins 1, 2, and 3.

2. Add jumper from P1 Pin 16 to U8 Pins 1 and 2.

3. Add diode — anode at U3 Pin 3, cathode at U8 Pin 1.
4. Add diode — anode at U3 Pin 5, cathode at U8 Pin ‘1

The result should be as shown in the sketch below:

+5V
- J5
r i{§>—
—©®
2’;7
| &
5) uz Y4 |
= | HEAD
6 | thOA.D
7“ I SOLINOID

CONTROLLERS AND DRIVE WHEN MODIFIED AS ABOVE REQUIRE
FILE MANAGEMENT FIRMWARE VERSION F1.2

TDL Z80 RELOCATING ASSEMBLER VERSION 1,2 FAGE 2
Sample Driver Program for PerSci 1678 Controller
Section 1 - Controller Interface Routines

+SBTTL “Section 1 - Controller Interface Routines"

’

’

; This is the basic driver routine which sends console
; commands to the controller, controller messages to

; the console, and controls the transmission of files
; and records between the controller and microcomputer
’

;
D

RAM.
P00H 319BO1 RIVE: LXI SP,STACK s INITIALIZE STACK
@63 bDBCl IN DSTAT ;GET DISK STATUS
BOL5 E6CO ANI PCOH IS DISK TALKING?
667 C21500 JNZ DGET ;IF SO, LISTEN FIRST
B0BA CDAAGO : CALL INPLN ; INPUT CONSOLE LINE
800D CD7200 CALL DLINE ;SEND COMMAND TO DISK
2010 3E04 DEOT: MVI A,EOT ;SEND "EOT" TO DISK
pdl2 CD8DOSO " CALL DOUTC sAS CONTROL BYTE
P015 CD7CO0 DGET: CALL DINP : INPUT BYTE FROM DISK
@618 DA2100 JcC DCTRL ;CONTROL OR DATA BYTE?
801B CD4C@1 CALL OUTCH ;DATA, SENL TO CONSOLE
PO1E C3158¢0 JMP DGET
@021 FE@04 DCTRL: CPI EOT ;CONTROL, WHAT KIND?
8023 CAQPOOO - JdZ DRIVE ;"EOT", COMMAND IS DONE
@026 FEO1 CPI SOH
0828 CA3300 JZ DREAD ;"SOH", DO DISK READ
B02B FE@S5 CPI ENQ
@02D CA5000 Jz DWRIT ; "ENQ", DO DISK WRITE

8036 C31500 JMP DGET ;ELSE IGNORE (ERROR)

¢ we we wo

This routine controls a disk read into RAM.

’
0833 2AA600 DREAD: LHLD RAM1 ;GET RAM STAKTING ADDR
0636 CDOB501 CALL OUTHX ;DISPLAY ON CONSOLE
8839 CD7COO DREAL: CALL DINP ; INPUT BYTE FKOM DISK
UB3C DA4400 , JC DREAX ;CONTROL OR DATA BYTE?
PO3F 77 MOV M,A ;DATA, MOVE TO RAM
bo40 23 : INX H ;s INCREMENT RAM ADDR
0041 C33900 : JMP DREAL s NEXT BYTE
0044 F5- , DREAX: PUSH PSW ; CONTROL, SAVE BYTE
0045 2B ' DCX H : ;DECREMENT RAM ADDR
0046 22A800 ' SHLD RAM2 ;SAVE RAM ENDING ADDR
0049 CD@501 CALL OUTHX ;DISPLAY ON CONSOLE
204C Fl \ POP PSW ;GET CONTROL BYTE
604D C32100 . JMP DCTRL ;GO ANALYZE IT

This routine controls a disk write from RAM.

D ~e Se e ~e

08506 CDIC@0 WRIT: CALL DINP ; INPUT BYTE FROM DISK
0853 D25000 : JNC DWRIT ; SHOULD BE AN "EOT"
8856 2AA600 LHLD RAM1 ;GET RAM STARTING ADDR
0859 CD@501 : CALL OUTHX sDISPLAY ON CONSOLE
065C EB XCHG ‘

065D 2AA800 LHLD RAM2 ;GET RAM ENDING ADDR

106L Zbb KLLOCATING ASSLMBLER VERSION 1.2 PAGE
vanmple Lriver Program for PerSci 1£67¢ Controller
vection 1 - Controller Interface Routines

wbow CLE501 CALL = OUTHX ;CISPLAY CN CONSCLE
bbo3 EB XCHG ; START IN HL, END IN DE
tbod L DWRIL: MCV A, ;GET RYTE FRCM RAM
bbb CD8760 CALL pouT ;SEND CATA TO DISK

“bwey CD3Cel CALL DCMP ; COMPARL ADDR TO ENE
Geb L21606 JNC DEOT ;AT END, SEND "EOT"
OG6E 23 INX H ; ELSE INCREMENT KAM ADDR
bO6F C36400 JMP DWRIL ;s PREOCESS NEXT EYTE

This routine sends a command to the controller,

£ w0 we we =

be72 ChD26E1 LINE: CALL GETCH ;GET CHAR FROM BUFFEEK
675 L& RC ; EXHAUSTED, ALL DONE
wE76 CD8700 ‘CALL DOUT ; SEND CHARACTER TG DISK
ER79 C372006 JMP CLINE ; PRCCESS NEXT CHAEACTER

This routine inputs a byte from the controller
ana sets the carry flag if it is a control byte.

o we So wo ne ~e

bb7C DbC1 JINE @ IN DSTAT ;GET DISK STATUS BYTE
bu7L LoCl ANI @gCcen ;RECEIVE CATA AVAILABLE?
buokb CATCLE Ji DINF ;NO, wWAIT UNTIL IT IS
b3 17 RAL ;SET CAKRY IF CONTKOL
b4 DBCO IN DDATA :GET CISK DATA BYTE

oo CY KET ;ALL DONE

This routine outputs a data byte to the controller,

£ ~e we ~o ~

£e87 CL9500 CUT: CALL DOUTW ;WAIT UNTIL KEADY

UB8A D3CE ouT DDATA sWRITE DISK DATA BYTE
gg8C €9 KET sALL DCNE
H
H .
; This routine outputs a control byte to the controller,
H
6B8D CD9500 POUTC: CALL DOUTW sWAIT UNTIL READY
6296 £LC3Cl1 ouTt DSTAT sWRITE DISK STATUS EYTE
6692 L3CP ouT DCATA sWRITE DISK DATA BYTE
©€0Y%4 C9 RET ;sALL DONE

’
’
; This routine waits for the disk transmit buffer to be
; empty and ready for another byte., It also arbitrates
; if disk and host try to transmit to one another at

; the same time.

;

b

BoY5 FS jOUTw: PUSH - PSWw ;SAVE BYTE TO SEND
Puvo DBC1 IN DSTAT " ;GET DISK STATUS BYTE
By E6CO ‘ ANI gcon ;IS DISK TRANSMITTING?
bLYA C2A400 JNZ DOUTX ;YES, EREAK THE TIE
buyL DBC1 IN 'DSTAT ;GET DISK STATUS AGAIN

LE9F E683 ANI B3H ;IS TRNSMT BUFFER EMPTY?

TDL Z80 RELOCATING ASSEMBLER VERSION 1.2
Sample Driver Program for PerSci 1070 Controller
Section 1 - Controller Interface Routines

goal
00A4
@OAS

pOCO
peCl
pov4
vowl
0booB5

VoAb
DEAS

C29600
Fl
C9Y

vogo
£0eo

DOUTX:

* we “e we

’
DDATA
DSTAT
EOCT
SOH
ENQ

«e wo weo

RAM1:
RAMZ2:
7
H

PAGE

JNZ DOUTW+1 ;NO, WAIT UNTIL IT IS
POP PSW sRESTORE BYTE TO SEND
RET ;ALL DONE

Symbolic Equivalences

PCOH ;CONTROLLER DATA PORT
@ClH ;CONTROLLER STATUS PORT
U4H ;ASCII "EOT"

g1H ;ASCII "SOH"

05H ;ASCII "ENQ"

RAM Working Storage
«WORD 7] ;SAVE/LOAD START ADDR -

«WORD @ ;SAVE/LOAD END ADDR

PAGE 4

TDL Z86 RELOCATING ASSEMBLER VERSION 1.2 PAGE 5
Sample Driver Program for PerSci 1078 Controller
Section 2 - Common Subroutines

’.SBTTL "Section 2 - Common Subroutines"

This routine inputs a line from the console device
into a RAM buffer, and processes backspace and
line-delete functions.

b= o we wo we¢ we we

POAA CDFAQO NPLN: CALL CRLF ;CR/LF TO CONSOLE
POAD 3E3E - MVI A,*>" ;GET COMMAND PROMPT
0O0AF CD4Col CALL OUTCH ;SEND TO CONSOLE
g0B2 215801 LXI H,IBUFF ;GET BUFFER ADDRESS
POEB5 227801 SHLD IBUFP ;INITIALIZE POINTER
P0B8 GEQO MVI c,0 ; INITIALIZE COUNT
POBA CD4291 INPLI: CALL INPCH ;GET CHAR FROM CONSOLE
POBD E67F ANI 7FH ;STRIP PARITY BIT
POBF FE20 , CPI ' ;TEST IF CONTROL CHAR
906Cl DAD49@ : Jc INPLC :YES, GO PROCESS
goca 77 MOV M,A ;NO, PUT IN BUFFER
geC5 3E20 MVI A,32 :GET BUFFER SIZE
gBC7 - BY CMP C ;s TEST IF FULL

06C8 CABAQS JZ INPLI ;YES, LOOP

P8CB 7E MOV A,M ; RECALL CHARACTER
BeCcC 23 INX H ; INCR POINTER

00CD #8C INR C " ;AND INCR COUNT

PBCE Cb4cCol INPLE: CALL OUTCH ; ECHO CHAKACTEK

POD1l C3BAGS JMP INPLI ;GET NEXT CHAR

@@dD4 FEOS INPLC: CPI g8H : TEST IF BACKSPACE
@6D6 CAERQO Jz INPLB :YES, KILL CHAR
66DY FE1B CPI 1BH ; TEST 1IF ESCAPE

0ODE CAF500 JZ INPLK :YES, KILL LINE

QODE FE@D CPI 9DH ; TEST IF RETURN

90EQ C2BAQGY JINZ INPLI ;NO, IGNORE CHAR
BOE3 79 MOV a,C ;GET COUNT

POE4 327201 STA IBUFC :SAVE 1IT

@OE7 CDFAQO CALL CRLF :;SEND CR/LF TO CONSOLE
@OEA C9 RET : DONE

PBEB 2B INPLB: DCX H ; DECREMENT POINTER
POEC @D ' DCR C ;DECREMENT COUNT
POED F2CEQO JP INPLE :IF NOT NEG, GO ECHOC
gOFD 23 INX H ;IF NEG, UNDO DECR
PBF1 BC INR C

POF2 C3BAGSO JMP INPLI ;GET NEXT CHAR

PBF5 AF INPLK: XRA A ;KILL BY SETTING
BOF6 327A01 STA IBUFC ; COUNT TO ZERO

POF9 C9 RET ; DONE

This routine sends a CR LF sequence to the console.

() ¢ ~o ~o =

88FA 3EOD RLF: MVI A,9DH ;GET A CR
PUFC CD4Cgl CALL OuTCH ;DISPLAY IT
BOFF 3EGA MVI A,0ARH ;GET A LF
8101 CD4Col CALL OUTCH ;DISPLAY IT

0104 CY KET ;DONE

-e

TDL Z80 RELOCATING ASSEMBLER VERSION 1.2 PAGE 6
Sample Driver Program for PerSci 1670 Controller
Section 2 - Common Subroutines

This routine outputs the contents of registers H-L
as a four-digit hexadecimal number on the console.

8185 3E20 UTHX: MVI A,' ! sGET A SPACE
8187 CD4CHl CALL OUTCH s SEND TO CONSOLE
plea 7cC ' MOV A,H :GET TOP HALF OF WORD
016B CD@FO1 CALL OUTH1 sDISPLAY IN HEX
GlPE 7D MOV A,L ;SAME WITH BOTTOM HALF
BlOF FS OUTHl1: PUSH PSW ; SAVE LOW-ORDER DIG
8118 1F RAR +GET HIGH-ORDER DIG
0111 1F RAR
6112 1F RAR
9113 1F RAR
114 CDl8gl CALL OUTH ;DISPLAY HEX DIGIT
6117 Fl POP PSW ;GET OTHER DIGIT
0118 EG6BF OUTH: ANI OFH ;s EXTRACT DIGIT
011A Co38 ' ADI ‘g :ADD ASCII ZONE BITS
611C FE3A CPI '9'+] ;TEST IF A-F
Bl1E DA4CO1 JC OUTCH :NO, OUTPUT IT
8121 C607 ADI ‘A'~-'9t-] ;YES, ADD BIAS FOR A-F
8123 (C34Co01 JMP OUTCH ;OUTPUT 1T .
!
’ .
; This routine obtains a character from the RAM buffer
; and sets the carry flag if exhausted.
’
126 E5 GETCH: PUSH H 3+ SAVE REGS
8127 2A7801 LHLD IBUFP sGET POINTER
012A 3A7A01 . LDA IBUFC sGET COUNT
912D D601 SUI 1 ;:DECREMENT WITH CARRY
g12F DA3AQl JC GETCX ;NO MORE CHARACTERS
8132 327A01 STA IBUFC ;s REPLACE COUNT
8135 7E MOV A,M ;GET CHARACTER
6136 23 INX H s INCR POINTEK
0137 227801 SHLD IBUFP ;s REPLACE PCINTER
813A E1 GETCX: POP H s RESTORE REGS
13B CY RET ;DONE (CAKRRY IF NG CHAR)
’
’
; This routine compares D-E with H-L.
’
613C 7C DCMF: MOV A,H . ;GET MOST SIGNIF
2130 EBA CMP D ; COMPARE MOST SIGNIF
213E C# RNZ) ;s NONZERO, DONE
813F 7D MOV A,L sGET LEAST SIGNIF
8140 BB CMP E ;COMPARE LEAST SIGNIF
141 C9 RET s DONE

These routines perform input and output from and to

the console device, passing on character in the A-reg,.
They must be coded to work with the particular console
I/0 interface arrangement of each microcomputer. The
two routines must not modify any registers other than

Ne WO Wag WE W we o

TDL Z860 RELOCATING ASSEMBLER VERSION 1.2
Sample Driver Program for PerSci 1078 Controller
Section 2 - Common Subroutines

pl42
0144
Blae
0149
p14B

014cC
614D
D14F
2151
0154
8155
0157

8158
0178
617A
P17B
019B

0Leoe

DB@O
E601
Cz24201
DBG1
Cc9

F5
DBOO
E680
C24pA1
Fl
D301
C9

we we

INPCH:

’
OUTCH:

® “o we we

’

IBUFF:
IBUFP:
IBUFC:

STACK

we weo

IN
ANI
JNZ
IN
RET

PUSH

IN
ANI

- JNZ

POP
OUT

RET

«BLKB
.BLKB
+BLKB
.BLKB

.END

01H
INPCH

PSW
0
80H

- OUTCH+1

PSW
1

RAM Working Storage

32
2
1
32
; TOP OF

DRIVE

;GET CONSOLE STATUS
;RECEIVE DATA AVAILABLE?
;NO, WAIT UNTIL IT IS
;GET CONSOLE DATA

;ALL DONE

; SAVE DATA TO BE SENT
;GET CONSOLE STATUS

; TRANSMIT BUFFER EMPTY?
;NO, WAIT UNTIL IT IS
;GET SAVED DATA

;SEND TO CONSOLE

;ALL DONE

; INPUT TEXT BUFFER

- ; INPUT POINTER

; INPUT COUNTER
;STACK AREA
STACK

;END OF ASSEMBLY

PAGE 7

TDL 280 KELOCATING ASSEMBLER VEKSION 1.2 PAGE 8

Sample Driver Program for PerSci 1078 Controller
+++++ SYMBOL TABLE +++++

CKLF BOFA DCMP #13C DCTRL 0621 DDATA 08CO
DEOT 010 DGET pe15 DINP po7C DLINE 0872
DOUT 6o87 DOUTC 088D DOUTW @095 DOUTX @0a4
DREAD 0633 DREAL 6039 DREAX @044 DRIVE 0000
DSTAT @0C1 DWRIL 0064 DWRIT 00540 ENQ 0005
EOT 0004 GETCH 0126 GETCX @13A IBUFC #017A
IBUFF 0158 IBUFP €178 INPCH 0142 INPLB @0@EB
INPLC 00D4 INPLE @0CE INPLI @@BA INPLK @0F5
INPLN 0O0AA OUTCH 014C OUTH 8118 OUTH1 @10F
OUTHX 8165 RAM1 00A6 RAM2 60A8 SOH 0001

STACK 619B

PAGE 001 DRIVER

22001 N AM - DRIVER

ogoe2 *

Pe0e3 * ADAPTED TO 680@ FROM PERSC1 8080

podoa * PROGRAM BY MIKE SMITH

00005 * DeleYese INDUSTRIES

00006 * 17315 S«.E. RIVER ROAD

00007 * MILWAUKIE. OREGON 917222

peoos *

20009 *

00810 e 2 3 30 2 o o8 2 ok o 0 e 39 3K o 3 98 o o e ok 36 ok o o o o o o ok ok Kok ok

oP011 *SAMPLE DRIVER PROGRAM TO INTERFACE WITH
o012 *PERSCI MODEL 1076 DISKETTE CONTROLLER

90013 10200 0 2 20 o e ok o o0 ok o o ok o o 30 28 ok o e o ok o ol o o ok o o ok kK

00014 *

oee1s *THI S PROGRAM OPERATES ON A 6800 BASED MICRO-
00016 * COMPUTER. 1T ASSUMES THAT THE PERSCI MODEL
00017 %1070 DISKETTE CONTROLLER IS INTERFACED VIA
20018 *ITS PARALLEL PORT IN SUCH A MANNER THAT ITS
000619 *DATA AND STATUS BYTES APPEAR TO THE 6800 AS
go020 *MEMORY LOCATIONS E@OGP AND EP@1 HEX. RESPECT-
peo2] *JVELY. IT ALSO ASSWMES THAT AN ASCII CONSOLE
pee22 *DEVICE IS CONNECTED TO THE MICROCOMPUTER.
00623 x

90024 *

00025 *TH1S PROGRAM HAS BEEN MODIFIED TO BE

00026 *CALLED AS A SUBROUTINE.

00027 *

00028 x

00029 *THIS PROGRAM LISTING IS DIVIDED IN TWO SEC-
00030 *TIONS. SECTION ONE CONTAINS THOSE ROUTINES
08831 *WHICH ARE UNIQUE TO THE DI SKETTE CONTROLLER
90032 *INTERFACE. IT REQUIRES ONLY 151 BYTES OF
00033 *PROGRAM STORAGE AND 5 BYTES OF RAM.

20034 *

298035 *SECTION TWO CONTAINS GENERAL 1/0 SUBROUTINES
00036 *WHICH ARE ROUTINELY A PART OF MOST MICRO-
000837 *COMPUTER OPERATING SYSTEM OR MONITORS, AND
00038 *THUS WHICH VILL NOT NEED TO BE DUPLICATED IN
#0039 *MOST INSTALLATIONS.

00040 *

00041 *

0042 ook kkk SECTI ON ON Exe otk s e oo o o e ok o s 2ok ok ok ok

00843 *

00044 *

200845 *THIS 1S THE BASIC DRIVER ROUTINE WHICH SENDS
20046 *CONSOLE COMMANDS TO THE CONTROLLER, CONTROLLER
20047 *MESSAGES TO THE CONSOLE, AND CONTROLS THE
P00 a8 *TRANSMISSION OF FILES AND RECORDS BETVWVEEN THE
20049 *CONTROLLER AND MICROCOMPUTER RAM.

00050 *

20051 x

00052 *

20853 *

90054 *

PAGE

20055
80056
80057
20058
00059
eoece
eeoé6!l
geo e
20063
eoeéea
2e0 65
Peo 66
oeee?
eeecs
20069
26070
02871
eee72
20e73
200674
82875
20876
00077
00078
06879
ece8e
eo08 1
goo82
20083
00084
20085
900886
20087
ooess
20089
20090
8009 1
e8092
20093
20694
ese9 s
29096
20697
20098
20099
00100
eo101
gol1e2
22103
eo104
00105
20106
eo1e7
o108

002

Deee

Deee
DOe3
Doees
Dee7
Deea
peec
DGOE
DO11
D@13
De1s
Do 18
Dola
Dei1cC
DOIE
DOIF
D@21
De23
D@e2s
De27

Do29
De2C
DO2F
DB31
DB33
D@3s
D836
D@38
D@39
DA3A
De3D
De4e
De4li

DRI VER

Bé
84
26
BD
8D
86
BD
8D
25
BD
2e
81
26
39
81
27
81
27
20

FE
BD
8D
25
A7
es8
2o
36
@9
FF
BD
32
20

EQO!

oA
DE9 8
56
o4
D@7E
59
es
FEAA
F7
24
g1

o1
86
85
1C

ElQ@
DIIF
3B
@85
eo

F17
El@2
D11F

D7

DRIVE

START
DEOT

DGET

DCTRL

GO

*
*

*TH1 S
*
*

DREAD

DREAL

DREAX

L B BE BE B B SR B BN

ORG
OPT
OPT
OPT

LDaA
AND
ENE
JSR
BSR
LDA
JSR
BSR
BCS
JSR
BRA
cMP
BNE
RTS
QP
BEQ
cMp
BEQ
BRA

A
A

A

$Dooe

DSTAT
#5C0
DGET
INPLN
ILINE
#3504
DOUTC
DINP
DCTRL
OUTCH
DGET
#3504
GO

#350)
DREAD
#3505
DWRIT
DGET

GET DISC STATUS

SEE IF READY YET

IF NOT THEN CLEAN UP
INPUT CONSOLE LINE
SEND COMMAND TO DI SK
SEND “EOT" TO DISK
AS CONTROL BYTE

INPUT BYTE FROM DI SK
CONTROL OFE DATA BYTE?
DATA, SEND TO CONSOLE
GET NEXT BYTE
CONTROL, WHAT KIND?
EOT, COMMAND IS DONE
RETURN TO CALLER

SOH, DO DISK READ

ENQ, DO DISK VWKITE
ELSE IGNORE

ROUTINE CONTROLS A DISK READ INTO RAM

LDX
JSR
BSR
BCS
STA
INX
BRA
PSH
DEX
STX
JSR
PUL
BRA

RAM |
OUTHX
DINP
DREAX
2,X

DREAL
RAM2
OUTHX

DCTRL

GET RAM STARTING ADDR
DISPLAY ON CONSOLE
INPUT BYTE FROM DI SK
CONTROL OR DATA BYTE?
DATA, MOVE TO RAM
INCREMENT RAM ADDR
NEXT BYTE

CONTROL, SAVE BYTE
DECREMENT RAM ADDR
SAVE RAM ENDING ADDR
DISPLAY ON CONSOLE
GET CONTROL BYTE

GO ANALYZE IT

PAGE

20109
20110
20111
20112
e0113
20114
@e115
20116
20117

20118
20119
20120
20121
20122
20123
20124
20125
20126
00127
20128
20129
20130
20131
82132
@0 134
20135
20136
00137
20138
20139
e 140
20141
08142
80143
o144
20145
20146
00147
20148
20 149
20150
20151
20152
20153
20154
20155
20156
00157
00158
20159
20160
20161
20162
28163

083

De4a3
DB4S
Do 47
DB4A
Do4D
DOS59
D@53
Do56
Des8
Des5A
DOSD
DOSF
Do 6P

Doé2
D865
Dee7
Do68
Co6A

D@6C
DeéeF
D871
D873
De74
D@77

Do78
De7A
D87D

De7E

DRIVER

8D
24
FE
BD
FE
BD
FE

A6

8D
BC
27
28
20

BD
24
39
8D
20

B6
84
27
49
B6
39

8D
B7
39

8D

27
FC
El0@
DI1IF
El@2
DI11IF
E100
00
IE
El@g2
AD

Fq

Dl4a
21

QE
Fé

E@o1
F9

E0QO

8D
EGQO

a7

*THIS ROUTINE CONTROLS A DISK WRITE FROM RAM

*

*

DWRIT BSR
BCC
LDX
JSR
L DX
JSR
LDX

DWRIL LDA A
BSR
CPX
BEQ
INX
BRA

*

*

*THIS ROUTINE SENDS A LINE

*
*

DLINE JSR
BCC
RTS
CONT BSR
BRA

*
*

DINP
DWRIT
RAM 1
OUTHX
RAM2
OUTHX
RAM |
2,X
DOUT
RAM 2
DEOT

DWRIL

GETCH
CONT

DOUT
DLINE

INPUT BYTE FROM DISK
SHOULD BE AN EOT

GET RAM STARTING ADDR
DISPLAY ON CONSOLE
GET RAM ENDING ADDR
DI SPLAY ON CONSOLE
GET STARTING ADRS

GET BYTE FROM RAM
SEND DATA TO DI SK
COMPARE ADRS TO END
AT END, SEND EOT
ELSE INCREMENT RAM ADDR
PROCESS NEXT BYTE

TO THE CONTROLLER

GET CHAR FROM BUFFER
CHECK IF DONE

DONE? THEN RETURN

SEND CHARACTER TO DI SK
PROCESS NEXT CHARACTER

*THIS ROUTINE INPUTS A BYTE FROM THE CONTROLLER
*AND SETS CARRY=1 IF A CONTROL EBYTE

*

*

DINP L DA
AND
BEQ
ROL
LDA
RTS

>»>» D>

*
*

*THIS ROUTINE SENDS A DATA

*
*

DOUT BSR
STA A
RTS

*

L

*

x

%

®

*

DOUTC BSR

LSTAT
#5CO
DINP

" DDATA

DOUTW
DDATA

THIS ROUTINE SENDS A CTRL

DOUTW

GET LCISK STATUS BYTE
RECEIVE DATA AVALIABLE?
NO, WAIT WITL IT IS
SET CARRY 1F CONTROL
GET DISK DATA BYTE

AND RETURN

BYTE TO THE CON TOLLER

WAIT UNTIL READY

WRITE DISK DATA BYTE

ALL DONE RETURN

BYTE TO THE CON TROLLER

WAIT UNTIL READY

PAGE

0g164
00165
eg166
eo167
o168
28169
eo17¢
28171
ep172
00173
ee174
@0175
20176
ee177
00178
20179
00180
20181
00182
00183
00184
00185
82186
00187
00188
00189
26190
00191
ee192
80193
02194
28195
8B196
20197
20198
00199
00200

ea4

Dose
D83
De8 6

Des7
Degs
DesB
DO8D
DO8F
D@92
DO9 4
D@9 6
Do9 7

DRIVER

B7 EQ@O01
B7 E@0Q
39

36

B6 EQ@O!
84 Co
26 @7
B6 E0@!
84 03
26 F2
32

39

Egeo
EGO1

El100
El02
E184

STA

A

STA A

RTS
*
*

DSTAT
DDATA

WRITE DISK STATUS BYTE
WRITE DISK DATA BYTE
ALL DONE, RETURN

*THIS ROUTINE WAITS FOR THE DISK TRANSMIT BUFFER
*TO BE EMPTY AND READY FOR ANOTHER BYTE. IT ALSO
*ARBITRATES IF DISK AND HOST TRY TO TRANSMIT

*TO ONE ANOTHER AT THE SAME TIME.

*

x

DOUTW PSH
LDA
AND
BNE
LDA
AND
BNE

DOUTX PUL
RTS

*

*®

> P»>» >PDPD

DSTAT
#35C0
DOUTX
DSTAT
#3503
DOUTV+ 1]

* SYMBOLIC EQUIVALENCES

*
*
DDATA EQU
DSTAT EQU
*
*

SEQCQ
SEQQ]

*RAM VORKING STORAGE

*
*

RAM 1 EQU
RAM2 EQU
XTEMP EQU

*
*

$E100
$E102
SE104

SAVE BYTE TO SEND

GET DISK STATUS BYTE

IS DISK TRANSMITTING?
YES,BREAK THE TIE

GET DISK STATUS AGAIN
IS TRNSMT BUFFER EMPTY?
NO, WAIT UINTIL IT IS
RESTORE BYTE TO SEND
ALL DONE RETURN

CONTROLLER DATA BYTE
CONTROLLER STATUS BYTE

RAM START ADDR
RAM END ADDR
TEMP INDEX STORE

PAGE 005 DRIVER

g0202 *

20203 *

ee204 ok ook ok kokkok Rk kE SECTI ON T WOk ok ok ko i ok o ok sk sk o o ok o ok oK
08285 *

28206 *

ee207 *THIS ROUTINE INPUTS A LINE FROM THE CONSOLE
09208 *INTO A RAM BUFFER, AND PROCESSES BACKSPACE
00209 *AND LINE DELETE FWCTIONS.

ee210 *

ge211 *

0212 DR98 8D 7A INPLN BSR CRLF CR/LF TO CONSOLE
92213 DP9A 86 3E LDA A #$3E GET COMMAND PROMPT >
00214 DP9C BD FEAA JSR OUTCH SEND TO CONSOLE
00215 DP9F CE EI06 L DX #1 BUFF GET BUFFER ADDRESS
20216 DOBA2 FF E126 STX I1BUFP INITIALIZE POINTER
00217 DOAS 7F E129 CLR CTEMP INITIALIZE COUNT
00218 D@A8 BD FD61 INPLI JSR INPCH GET CHAR FROM CONSOLE
90219 DOAB 84 7F AND A #3$7F MASK OUT PARITY
00220 D@AD 81 4@ CMP A #3540 . CHECK FOR NO PRINT @
90221 DOAF 26 @8 ENE EXCL NO THEN CONT

0222 DOB1 BD FEAA JSR OUTCH ECHO

00223 DOB4 7F El2A CLR PRINT = SET NO PRINT

09224 D@B7 20 DF BRA INPLN GO0 BACK FOR MORE
90225 DEB9 81 21 EXCL CMP A #3521 TEST IF SET PRINT !
90226 DBBB 26 @A BNE EQUAL NO THEN CONT

02227 DOBD BD FEAA JSR OUTCH ECHO

90228 DBCO 86 FF LDA A #SFF " GET PRINT CH

20229 D@C2 B7 Ei12a STA A PRINT SET TO PRINT

02230 DOCS 20 DI BRA INPLN GO BACK FOR MORE
Pe231 DOC7 81 3D EQUAL OCMP A #$3D TEST IF EGUAL SGN
P0232 DBCY9 26 @5 BNE UTST NO THEN CONT

290233 D@CB BD D164 JSR SETUP GO SET ALDRESSES
@0234 DOCE 20 C8 BRA INPLN GO BACK FOR MORE
90235 DBDP 81 3C UTST CMP a #53C TEST IF UTILITY <
20236 DOD2 26 03 ENE GO1 NO THEN CONTINUE
P0237 DOD4 7E FE32 JMP UTIL GO TO UTILITY

20238 DED7 81 20 GOl CMP A #3520 TEST IF CONTROL CHAR
00239 DOBD9 25 14 BCS INPLC YES, GO PROCESS
00240 DODB A7 00 STA A 2,X NO, PUT IN BUFFER
@e24) DODD 86 20 LDA A #32 GET BUFFER SIZE
90242 DODF Bl E129 CMP A CTEMP TEST IF FULL

0243 DPE2 27 C4 BEQ INPLI YES, LOOP

90244 DOEA A6 00 LDA A 2. X RECALL CHARACTER
20245 DOE6 08 INX INCREMENT POINTER
90246 DBE?7 7C E129 INC CTEMP AND INCR COUNT
20248 DO@EA BD FEAA INPLE JSR OUTCH ECHO CHARACTER
00249 DBED 20 B9 BRA INPLI GET NEXT CHAR

p0250 DOEF 81 OF INPLC CMP A #3SOF TEST IF BACKSPACE t0
26251 D@F1 27 OF BEQ INFPLB YES,KILL CHAR

g9252 DOF3 81 18 CMP A #3518 TEST 1F X

9253 DOFS 27 19 BEQ INPLK YES,KILL LINE

20254 DOF7 81 @D CMP A #30D TEST 1F RETURN
20255 DOF9 26 AD BNE INPLI NO, 1GNORE CHAR
20256 DOFB Bé E129 LDA A CTEMP GET COUNT

PAGE

008257
20258
28259
00260
00261
pB262
00263
ee264
008265
20266
08267
60268
00269
08270
ee271
eg272
88273
00274
28275
038276
208277
20278
28279
es28¢
ee281
ge282
00283
90284
00285
00286
20287
20288
28289
eB290
ge291
8e292
28293
20294
80295
2a296
ee297
22298
20299
82300
20301
ve3e2
20303
203084
20305
223086
20307
00308
86309
ee310

206

DOFE
Dio1
D102
D163
D105
D108
D1GA
D1@B
DIPE
D110
D113

Dl14
Dllé6
D119
D11B
DI1E

D!IF
Di22
D124
D125
D127
D12A
D12D
D130
D132
D135
D136
D137
D138
D139
D13A
D13C
D13D
Di3F
Di4}
D143
D145
D147

Dl4a
D14D
D15@

DRIVER

B7
39
29
A6
74
a2c
e8
7C
20

39

86
BD
86
BD
39

7D
26
39
86
BD
FF
B6
8D
B6é
36
44
44
44
44
8L
32
84
8B
81
23
8B
7E

FF
FE
B6

E128

0o
E129
EQ

E129
98
E128

oD
FEAA
PA
FEAA

El2A
o1

20
FEAA
El104
El104
23
E105

01

OF

30

39
g2
e7
FEAA

El104
El26
El28

STA A IBUFC SAVE IT
RTS DON E, RETURN

INPLB DEX DECREMENT POINTER
LDA A B.X GET DELETED CHARACTER
DEC CTEMP DECREMENT COUNT
BGE INPLE IF NOT NEG,»GO ECHO
INX IF NEG,UNDO DECR
INC CTEMP IF NEG,INC COUNT
BRA INPLI GET NEXT CHAR

INPLK CLR IBUFC KILL COUNT TO @
RTS DONE, RETURN

*

*

*

*THIS ROUTINE SENDS A CR/LF TO CONSOLE
* ‘

CRLF LDA A #30D GET A CR
J SR OUTCH DISPLAY IT
LDA A #3504 GET A LF
J SR OUTCH DISPLAY IT
RTS DONE, RETURN

*
*THIS ROUTINE OUPTUTS THE CONTENTS OF THE INDEX

*REGISTER AS A FOUR DIGIT HEXADECIMAL NWBER.
*

OUTHX TST PRINT TEST FOR PRINT

BNE OUTHX 1 YES THEN PRINT

RTS NO THEN RETURN
OUTHX1 LDA A #320 GET A SPACE

JSR OUTCH SEND TO CONSOLE

STX - XTEMP SAVE INDEX REG

LDA A XTEMP GET HI BYTE

BSPR OUTH] DISPLAY IN HEX

LDA A XTEMP+1 GET OTHER HALF
OUTH! PSH A SAVE LOW ORDER DIG

LSR A GET HIGH ORDER DIG

LSR A

LSR A

LSR A

BSR OUTH DI SPLAY HEX DIGIT

PUL A GET OTHER DIGIT
OUTH AND A #S0F EXTRACT DIGIT

ADD A #$30 ADD ASCII ZONE BITS

CMP A #3$39 TEST IF A-F

BLS cOoN I1F CLEAR THEN CONT

ADD A #3507 YES, ADD BIAS FOR A-F
CON JMP OUTCH AND PRINT IT

*
*THIS ROUTINE OBTAINS A CHARACTER FROM THE RAM
*BUFFER AND SETS CARRY=] lF EXHAUSTED.

*

GETCH STX XTEMP SAVE INDEX REG
L DX IBUFP GET POINTER
LDA A IBUFC GET COUNT

PAGE 087 DRIVER

20311 D153 82 @1 SBC A #3501 DECREMENT VWITH CARRY
@312 D155 25 09 BCS GETCX NO MORE CHARACTERS
28313 D157 B7 El128 STA A IBUFC REPLACE COWNT
86314 D1I5A A6 00 LDA A 2,X GET CHARACTER
ee315 D1SC @8 INX INCR POINTER

@6316 DISD FF E126 STX IBUFP REPLACE POINTER
90317 D160 FE E184 GETCX LDX XTEMP RESTORE INDEX REG
06318 D163 39 RTS DONE, CARRY IF NO CHAR
20319 * :

00320 *

20321 *THIS ROUTINE ALLOWS THE SETTING OF THE BEGINNING
@e322 *AND ENDING ADDRESSES IN RAM] AND RAM2 WITHOUT
#9323 *HAVING TO RETURN TO YOUR MONITOR PROGRAM.
00324 *

88325 * '

90326 D164 BD FEAA SETUP JSR OUTCH GO PRINT =

08327 D167 8D 18 BSR BYTEA MSB OF ADDRS

008328 D169 B7 E100 STA A RAM 1 AND STORE

60329 Dl16C 8D 13 BSR BYTEA GET LSB

22330 DI6E B7 E101 STA A RAM 1+ 1 AND STORE

28331 D171 86 20 LDA A #5520 GET A SPACE

86332 D173 BD FEAA JSR OUTCH AND PRINT IT

88333 D176 8D @9 BSR BYTEA INPUT MSB

20334 D178 B7 El@2 STA A RAM2 AND STORE

68335 DI7B 8D @4 BSR BY TEA GET LSB

#0336 D17D B7 EI163 STA A RAM2+ 1 AND STORE

88337 D188 39 RTS AND RETURN

29338 D181 8D QA BYTEA BSR INHEX PUT IN HEX CH
28339 D183 48 ASL A PUT IN HIGH HALF
809340 D184 48 ASL A

26341 D185 48 ASL A

80342 D186 48 ASL A

#8343 D187 16 TAB SAVE A

00344 D188 8D @3 BSR INHEX INPUT OTHER HEX CH
00345 Di18A 1B ABA ADD

#0346 DI8BB 16 TAB

206347 D18C 39 RTS AND RETURN

00348 D18D 8D 18 INHEX BSR INCHA INPUT HEX CH

29349 DI8F 84 7F AND A #S7F MASK OUT PARITY
20358 D191 BD FEAA JSR OUTCH AND PRINT 1T

22351 D194 80 30 SUB A #3530 :

88352 D196 2B 17 BMI1 Cl1 NOT HEX

20353 D198 81 @9 CMP A #5509

20354 DI19A 2F @A BLE INIHG

@355 DI9C 81 11 MP A #3811 NOT HEX

28356 DI9E 2B @F BM1 Cl NOT HEX

80357 D1AG 81 16 CMP A #$16

@8358 DlA2 2E @B BGT o} NOT HEX

26359 D1A4 80 87 SUB A #3507

203606 Dl1A6 39 INIHG RTS AND RETURN

88361 D1A?7 7E FD61 INCHA JMP INPCH

28362 D1AA 86 3F LDA A #$3F SEND A ?

88363 DIAC BD FEAA JSR OUTCH

P0364 DIAF 7E D@E@ C1| JMP DRI VE

PAGE 008

20365
@6366
es367
20368
26369
28370
20371
28372
20373
@0374
20375
28376
08377
e0378
20379
20380
2038 |
00382
20383
28384
20385
20386
20387
20388
20389
28390
2039 1
20392
@039 3

DRIVE
START
DEOT
IGET
DCTRL
GO
DREAD
DREAL
DREAX
DWRIT
DWRIL
ILINE
CONT
DINP
DOUT
DOUTC
DOUTV
DOUTX
DDATA
DSTAT
ReM |
RAM 2
XTEMP

INPLN
INPLI

El106

El06
El126
El128
E129
El2a

DoRo
Dee7
DaecC
De11l
Data
DO1IF
DB 29
DO2F
Do 38

. DO43

D@56
DB e2
Do 68
Do 6C
D@78
DO7E
Do87
D@9 6
E000
E@O1
E100
El@2
E104

D@98
DO AB

DRI VER

FE32
FDé61
FEAA

ge20e
eee2
geo1l
geel
FF

E'3
*

*THESE ROUTINES PERFORM
*AND TO THE CONSOLE,

INPUT AND OUTPUT FKOM
PASSING ONE CHARACTER IN

*THE A ACCUMULATOR. THEY MUST BE CODEL TO WORK
*WVITH THE PARTICULAR CONSOLE I/0 INTERFACE
*ARRANGEMENT OF EACH MICROCOMPUTER.

*
*
UTIL
INPCH
OUTCH
*

*

EQU
EGU
EQU

$SFE32
$FD61
S$FEAA

*RAM WORKING STOFRAGE

*
*

*
IBUFF
IBUFP
IBUFC
CTEMP
PRINT

* * *

ORG

RMB
RMB
RMB
RMB
FCB

XTEMP+2

32
e2
21
o1
SFF

START OF UTILITY
CONSOLE INPUT ROUTINE
CONSOLE OUTPUT ROUTINE

INPUT TEXT BUFFER
INPUT POINTER
INPUT COUNTER
PHONY C REGISTER
PRINT INDICATOR

PAGE 009 DRI VER

EXCL DOEB9
EQUAL DecC7?
UTST DO Do
GO} Dep7
INPLE D@EA
INPLC D@EF
INPLB Dl@2
INPLK D110
CRLF D114
OUTHX DIIF
QTHX1 D125
QUTH1 DI3S
OUTH D13D
CoN D147
GETCH Dl4A
GETCX Dl16@
SETUP Dlé4
BYTEA D181
INHEX DI8D
INIHG DlAé6
INCHA DlA7
Cl D1AF
UTIL FE32
INPCH FDé6l1
OUTCH FEAA
IBUFF EI106
IBUFP EI126
IBUFC E128
CTEMP EI129

PRINT El2A

TOTAL ERRORS 00000

PeErScI, INC.

12210 Nebraska Ave
W Los Angeles
CA 90025

APRIL, 1978

[200351]D |

REVISIONS 200351 [@
+5v REV] DESCRIPTIONS CHKIDATE[APPR.
4t A _|ENG REL ey 11;“
U3a B_|MFG REL ECO 70 53T el
:gg? RESISTOR PACK C {Eco 121 (I3
AOD 2 220/330 D [Eco 174 [Trdd
ADD 2 +5v ey HCHBE z?lﬂ : .
4 =
& i : e n
ADD Al2 [N 15 ROM ENABLE’ Al 1, (ES L4 RAMWRITE
ADD A3 21h READ SR Rav REA A2 \OWRITE 3352 Sk CONT W, %5 . 50| SEPARATE
200 A 3o 1 02l D:Ei:EA A8 302 11 el L WRT cPU BuSS STA*
. 7415138 7ALS138 Lo wer ceu pussourat | o 27 :<,E | SEPARATE
A5 - A5 4 DATA
ol i g o7hl WRI DSK CTLY a6 EANES
30 HEMR e 44| WRT PROTECT O(LEFT)
Al 22 42| TRACK 00
ne 20| INDEX O
37 ADD i3
H A% o 10| SEEK COMPLETE
A3 400 8228 INTERRUPT :
ADD
AlS) x
= . i i
willé E’o‘ag NTERRUPT : 6080 INTERRUPT 3@ Y 22/ READY O
R) v ET] , | mssE . 3 40| WRITE GATE
+5V t‘jﬂ RESISTOR PACK . N - 17
o 47K = wpisl | 2 = l<38| WRITE DATA
50 | 080 ESEEEHIEN 080 Lo pmilis o A
AL KX4 (12708 T 08 | STEP K36| STEP
AN I B B g 0B E) PHIIE 9 8 == |NWARD TOWARDS SPINDLE, |E_TRACK 4C.
IR 4 D85 T g DB DA-2 bi 1<34] DIRECTION ¥ ZOUTWARD TOWARDS DOOR i TRACK 00.
> s “5‘ : o 4 ves !
1ag 21142 DB 6
7l L 0B apas Rz L re
16 = RESET [Eq MR 00 - I IK
BBhe p:) CLK 2mH2] = =
! ge :,———‘24 - = =Ty
3 —K30
= 2 —K32) :
13 T (26| DRIVE SELECT | (LEFT)
A8 U278 IpL {18 | DRIVE SELECT 2 (LEFT)
,50#16745,39 2pld 28| DRIVE SELECT | (RIGHT)
204 11 LE 3p - <41 DRIVE SELECT 2 (RIGHT)
3 — 16| DIRECT HEAD LOAD
BRI\ 10~ . — REMOTE FJECT
g : : &3 o [oNSELECT DRIVE
28 5L E -l@x’——ﬂ{ RESTORE
8080A f z i vy P
. B [T I [SNN -
é o’eur 5VC| l7omosc] o 334 +|=§\\$
A 4 9T I+ +5v _|. TR s
; . -
A +5v . : 51 T 18RRY 6rounD
7 208 1§ . e L |
v = =
7 g ; 2!|] HIGH TRUE
o 1 % g 5
4[4
82 D83 ol U2, 2| | eromectionat
A 7} ‘:2 I3 >g DATA BUSS
D6 v S
“oeT 1 8
T
-5Val{2708 =
' pama—— P L HIGH IS TRUE
DBO 2
D5 : Tl SF|ADa
0BG |4 A H| AD6
- = 7315‘2% 5 B3 J| AD?
3
15] 2
7 3
0] ®
K| AD 8
' L| AD 9 | CONTROLLER
Aocig - . WRT DSK CTL* <m ADIO [ADDRESS SELECT
208 1) :
DBO 2 %2 p-pso
B 4 [l
%T! - 7] (68082
28 -
UI3 [16 resToRE 10
4 - T
%E T%! 7;‘_}-45 15 _DIR HEAD LOAD 9ju2s)8
BB ;
OB - 19 REMOTE EJECT 7Ls32
g2 OE!
T p| AD 12 -
R| ADI3 "S'PARTS USED FOR HIGH PWR [NTERFACE.
i = RESET N2 Ssl apia *LS’ PARTS USED FOR LO PWR INTERFACE.
— v 57 ul T| ADIS] [BJuiB & U32 TOBE 74LSI4 AND U33 TO BE 7406.
1oli4] 4 {@)FOR VARIABLE COMPONENTS & JUMPER
lofg PR o2l _s[y PR 2 LOCATIONS SEE MANUAL.
UI0B LI i JUMPER FROM A TO B FOR FAST SEEK
e * S .
741574 [CCK o MODE.
vol < XD é?s §§, RESET 2.ALLCAPACITORS IN MICROFARADS.
14 = u 1. ALL RESISTORS. IN OHMS |[/4W.,5%.
ar . X COMPLETE 19
u20 cs 1y, RXD i] K NOTES: UNLESS OTHERWISE SPECIFIED;
8224 sz,,‘iﬁ“””’ TR 1 ESES = K_
xm +5v H-READ i6 . N %
6 g2 DSR ' . o (DTN 4 ol T T A[CSMIA?_N)D(W 7 .
RTS 10, Uis - Al 27| SELECT *
Pl Mes o a cre Elra Ot Sarus | g END! 18| READ ¥ R PERSCI, INC.
B uoB [| | : S
D [5|7] RESET _ER 1489 A ewrr oura 1217951391 4 PERSCI v -
— IN*] i ’ DCL AT STA 1] ?3?: " scaie AP;’ROVED néAwu ¥z
e), E &
= 7L 113 Enpl2 19| WRITE® DATE 1%y 11 Aoy REVISED
. - i 2 SCHEMATIC
741500 | | DISKETTE DR CONTROLLER-2
MoDEL lo70 | $&ET | 200351 [D

