. DYNAMIC
D et

MANUAL

S mm— o wm — —— v rm——
_—— = s s — ——
F— - ——— — —
——— = = = ———
—3 R ag = = S om—
i S S “—— S— . ————————]
e — — — — o— = = —
—_— i et e = =

= = Sm——= e — mw—
= - ——————+ o—— ———

| =

DYNAMIC

DEBUGGING
REFERENCE

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

MANUAL

Second Edition

Revised

Documentation by: C. P. Williams
Software by: Timothy S. Williams

l
L
il

|
I

L

L
5 1]

"Il
l
o
i
il

7700 EDGEWATER DRIVE SUITE 830
OAKLAND, CALIFORNIA 94621 USA

IS

PREFACE

This manual describes the. OASIS = assembly languége Debugger. It provides
sufficiently detailed information necessary to the use of this Debugger in
conjunction with the OASIS Operating System. :

This manual, named DEBUG like all OASIS documentation manuals, has the manual
name and revision number (if applicable) in the lower, inside corner of each page
of the body of the manual. In most chapters of the manual the last primary subject
being discussed on a page will be identified in the 1lower outside corner of the

page.

Related Documentation

The following publications provides additional information that may be required in
the use of the OASIS Debugger: - ,

OASIS System Reference Manual
OASIS MACRO Assembler Reference Manual

TABLE OF CONTENIS

i

Section

CHAPTEB INTRODUCTION o...o.oo..o.‘.o...0.0CCoco..ﬁ.o.o.00...000.0.000060@.00
101 DEBUG Promgting character © 00 600 CBQe 0 0CTBO0IDOEeCCC0CE 0006000 CEQOQADHOD0OEOB6 0
102 Sstem con rol eys 0.0.'.O0.00‘....QO'......00'090.......008DD.O@G@QOG '

103 Proteeted Memory 0200090 RIQCE0 00RO CEEEPBOOOSOR2G6CTRG00030000666000006000@eaa

DEBUG Commands 000000800000'0..000..OO....QQQ_OOO‘QIO0009090000000000000

105 Numeric EXPPGSSiODS 000000008060 08000050080000000008060000C006C@000000660600C0C

cHAPTERa DUG COWANDS .0006000.00000.'0006”0000000'000000./009.B.OOQ.OOOOGGG
01 Assemble Comand noooooooeooocoaoeeeocaovoooeeeoooeeeceoesaooaoeeeoaeot
Base Command 0000.'600.000609006QO0900960960060GOQOOOOOOQOQOOWQDOGOSOGG

caleulate Comand 009.300908000&‘00000.0000'0660.08OG«Q.OOOOGOOOOOOOQOOC

o

um Oman oeoeaeoooeeeeoewooecooeoowaweeooooeoocoooocoonoooooeeeeono
Fil COmand @oooeaoeaooooeeaoaowooooaqouowooaeeoooe/ooocoooeocooecoooao
Go omand 0Q.O‘OQO@BOGOQG360000l0.°°0.606000®OQDOOG000.000006000000600‘
Input Command eo.oeoeneooo.wooe'....Q.o.ao..olOO0.0/..oaooooooneoooo‘oo.
List Coman c00000069'00000ecooaooooso.oooooooeoooooeoaocooeooo-oeuooo
Load COmmand oooaeoooooonooooceoeoeeeo‘couoeocooesﬁcoocoooocoooouoOQ.~o
Move comand 0000..0000..600..0.°.'Q9EQCOQ00O0.000-..@0005000060000000

output Command caoooeeoooeaaooooooo-o-oeooo'uooouaoc.ooeeooeoooeaoooook
P e List command Q000‘.0"@000.'0000...0...@090.0900QOOOOOQQQQOGQQOG.
Pr nt COmmand #6000 060 0000088068 0C0008000080000006080000008CCG660006668 0
Qllit command 0200 RECEE O OCE0CIOCPR00080EeCG00DO000C0000C00C0CCEODOBOSGIGROGECEDDTTS
Read DiSk COmmand @O0 09GO OCI PO EINOOCEOOIOO0PDICOEIOEO80000C000CC©IBSETEOOCEOEO
Register Command .'OQQ..QOOQ....."00...‘..0..0.0‘OG.QOO.DQOGOOO...O..
Save Program command 90 300 0D 90 60008000 0COCEOCEON QS SDO00G0CTOI0OOSPO0OCCSOCOCE
Search comand .0...‘0....'.99"......0.0"..0'.8".00.00000..060"000
DiSk Seleet Command eo‘oo‘ooocea-oooo»ooe-o-ooo.oaoo.o-oecooo-osooeoec.oo
set Memory comand 00 O0CECO 000000 CPO0P2OCIOCEOCO0ETO0COACEEOeO0O0O0R0COO0CGOE O T-0
Trace COmmand © 90 00003 SO00CIO0 OIS 20000CVECECCOO00C60CO0000000006C0600C00CDIESECESE
Trace Call COmmand 00000 Q00000 S OO0 O6GO0OSOBOCRCCQEOEOIEOEOEOOC0OEQEOCROOCCOEOCES S
verify Memory Command © 0000000000660 00000606000060060000000G0CO0OCE0OCOESESOBOE
write Disk Command 098000 00C0BQTEC0DOCGO00V0CIOCOCO00LOOEODOO0CO0O0COORSEEGSEODCE
Immediate Instruction Command ©06060600000000000000000008660000560600600000S

APPENDIXA USING BASE REGISTERS ©e ©00Q000000CC0000C0OO00ECREOHO00O00C0600CIOEEOCG@OEOCCOCOTESE
APPENDIX B DEBUGGING DEVICE DRIVER ROUTINES .cccececcocoscscescccoscscoceassss
APPENDIXC DEBUG COWAND SUWARY $C 000 CQCOOO0O0CE00CO 006000000 0GO00O0CCOSOOOOCOCEGESTDC

N ND DD NI I\ =2 b b ond s cndh b b 2D OO~ OWIT A N

N

® © e 2 8-0 o © © © 6 o 06 ©& O & & o0 e © o0 ©

- =2 0 © OWOOAD 00 00 00~I=I=I—~J YOV S=SLAWLIIN NN =ded b b |

DSISOS IS DSOSV HV S HVEVES HVH SV VO VIVDVDVLVTN S VN

L3
- oed D
Oy N W

CHAPTER 1
i INTRODUCTION

The DEBUG command allows you to perform on-line, interactive‘debugging of a
program. The format of the DEBUG command is:

DEBUG

When this command is exeeuted ‘the DEBUG program is loaded into;high memory and
executed. When the DEBUG program is first executed it will display on the console: .

OASIS Z80 Debugger version n.n

To exit DEBUG, use ESC-Q; to re-enter, use ESC-D. ' ‘ :
Type "HELP" to list command syntax. C -

1.1 DEBUG Prompting Character

When the DEBUG commandbis in control the equal sign (:) character will be displgged
at the left side of the console, This is the prompting character for the DEBUG
program and indicates that the DEBUG program is waiting for operator input.

Once the Debugger has been loaded the user may return control to the CSI by using
the GO command. When the user wishes to re-enter the Debugger he must type the
System Debug-ke{. This will transfer control to the Debugger and the program.
counter (PC) will be displayed. :

1.2 System Control Keys

When the Debugger is in control the System Debug-key is inoperative as this would
cause a break into the Debugger itself. Instead, the Program Cancel-key may be
used to quit the current operation of the Debugger and return to the Debug command
mode. For example, a Trace of several thousand instructions can be aborted by
typing the Program Cancel-key.

The System Cancel-key should be used to quit the program bein§h debugged, return
control to the CSI but leave the Debugger loaded in memory. e Debugger may be
re-entered by using the System Debug-key. ’

It is not advised that you use the GO 0 command to return control to the CSI
because the program that was being debugged may have set a QET to gerform required
clean-up duties. The best procedure for returning control to the CSI is to issue a
GO command followed by the entry of the System Cancel-key.

1.3 Protected He-ory

The Debugger will not allow you to examine or change memory areas outside of the
user area. (The user area is the contiguous memory area from the end of the
NUCLEUS to the beginning of device drivers, the Debugger, etc.) When an attemgg is
made to access these areas with the commands: ASM UMP, FILL, LIST, MOVE, AD,
SAVE, SEARCH, SET, TRACE, VERIFY, WRITE, the bebugger will not perform the
operation but instead dispiay "Protected Area®.

DEBUG Rev B -1-

DEBUG REFERENCE MANUAL
1.4 DEBUG Commands

The commands available to the user when - the DEBUG command is in control of the
system are: ‘ '

ASM addr

[num[,org]] Loy -
expr S°P3=+,-,*,/,\,&,g, 1$9>3 7 9=, 8)
[addr

start,end, value

[addl"/’[, rkdoo] hd

Eort[start,end}

addr

name[addr]

start,end, to
port,fvalue/start,end]

sect,addr[,count]
name value

name start,end
start,end,value

drive

"addr{,value...
laddr{, J{count]]

FY start,end,to
sect,addrf,eount]
2280inst (immediate execute)

The above 1ist of commands' comprises the HELP message and will be displayed in
response to the user typing HELP. -

1.5 NKumeric Expressions

The OASIS DEBUG utility allows the user to use numeric expressions wherever a
numeric value may be used. Numeric expressions may contain humeric literals
(assumed hexadecimal base), string literals (one or two characters enclosed within
ﬁuotes), and arithmetic and logfeal operators (listed under the CALC command).
umeric exgressions in the debugger have no hierarchy: strict left to right
evaluation is performed.

The indirect address operator (€) may be used in one o{ two ways: 8 efix and

gostfix. When the operator is used with prefix notation (i.e., 6000) it means
hat the following numeric literal is the address of the value to be used. When
the operator is used with postfix notation (i.e., 123+6000€8) it means that the .
grevious numeric expression is the address of the value to be used (123460008 is
dentical to €6123). :

-2 - : DEBUG Rev B

CHAPTER 2
DEBUG COMMANDS
2.1 Assemble Command

The DEBUG ASM command allows the user to assemble Z80 code directly into memory
without using the system assembler. The format of the ASM command is:

ASM <addr-exp>
Where:
addr-exp Indicates the address that the assembled code is to be saved at.

When the ASM command is executed the Debugger will prompt the user with the address
that the next instruction will be save at. The user then may tgpe the 280
assembly code that he wishes assembled. The opcode and operand must be separated
b{ at least one space. Labels are not allowed. Only one instruction per line is
allowed. When the wuser is finished entering code a carriage return with no
instruction preceding it will transfer control out of the assemble command.

2.2 Base Command

The DEBUG' BASE command provides a means of debugging relocatable programs, The
format of the BASE command is:

BASE [<n>[,<addr-exp>]]
Where: ‘

n Indicate the "base register" number to be used. Base register numbers are
in the range of 0 - 8. When the Debugger is first entered base register 0
is set with a base address of 0000H. Omitting the base register number
will cause the disglay of all base registers defined with an asterisk (%)
by the register number currently in use.

addr-exp Indicates the address that the base register indicated by the preceding
number is to be set to.

For information describing the use of base registérs see the appendix "Using Base
Registers™ at the back of this manual.

2.3 Calculate Command

The DEBUG CALC command allows the user to perform hexadecimal arithmetic and
logical functions on hexadecimal numbers. The format of the CALC command is:

[CALC] <nnnn>[<op><nnnn>...]

Where:

nnnn Indicates a number (or ASCII characters) that the operation is to be
. performed on. P _

op Indicates the arithmetic or logic operation to be performed. Do not

separate with spaces!
The available operators in the CALC command include:
Op Function

Addition

Subtraction

Multiplication

Division

Modulo

Shift left (second value indicates number of bits to shift)
ggift right (second value indicates number of bits to shift)

AND

XOR Exclusive OR

Unary two's complement

Unary one's complement

Unary indirect address contents

IRO=e= VAN L+

|3]

o

DEBUG Rev B -3 - CALC

DEBUG REFERENCE MANUAL
For example:

36288, 35T, 1.1
tm57 "

=C 23 v
00159‘ 345T, '.Y!
=C 23 1533/2 , \'
281113 3697, ‘.q
00041, 65T, 'A'

=C ! A'

25031, 8257{‘ ! A
02041, 8257T, ' At
=C =12

OgFggé 65518T, *..°*
OFFED, 65517T, %..°
=C 7\
00001, 1T,
=C @4000

OFEC9, 65225T, '..!

T ¢
-

2.8 Dump Command

The DEBUG DUMP command allows the user to display the contents of memorg on the
console terminal, The format of the display is identical to the CSI DUMPDISK

command except that the header information is not displayed in the Debugger. The
format of the DUMP command is:

DUMP [<addr-exp>]

Normally the user will specify the address that he wishes the display to start at.

If the address is omitted then the dump will display memorf starting with the last

address DUMPed, LISTed, or ASseMbled. The DUMP command will display one screen of

information, or 16 lines, whichever is less. A down arrow indicates that the dump

ég tg cogtinued; an up arrow indicates that the previous block of memory is to be
splayed.

The format of the display of a memory dump is divided into three sections. The
first section is the address of memory being displayed on that line. This address
is the address of the first byte of data displayed on each line. The second
section is the contents of memory for that address. The data is broken bx sgaces
everX four bytes for readablity. The third section is the conversion to ASCII of
the line of data. Any byte that cannot be converted to an ASCII character will be
displayed as a period (.).

For example:

C9FETF20
C9FD3600
09E6FO1F
9B4FFD§6
C E

CDD89B
4C9BFD36
23C34C9B
0021509C
269DC32D
9DC3BA9D
C§0293C3
54FD3600
2ABg F3A
S5E10003E
TT00FD23

13CDD19B 1820FD36
52FD23C9 FEBF2005
1F1F1FCD 419C8947
002CFD23 T8FE1A20
7C2006CD D19BC34C
C34C9B79 FEOF2018
0028FD23 CDC59CFD
CDh419CC MCgBSDSF
193ABDA E9 27D9C
DC3459D C38 9DC8
3C %DC 9DC3F

OT9EE638 1F1F1FE6
28FD23CD C59C3ABE
BFAFBT28 032B1804

2BCB7B28 O0GTBEDAY 5

CD4F9DFD 360029FD

oouana'
CDD89B1

E6OFCA4C °*

06CDB59B

9BFETE20 '.L
CDOF9EC3 '

260029FD

E2DFD
23C93ABE

Y:L..6.(.#....6.).

?

OGGORO L - Q0 000
ecccoseoBRoVlZooo
'.0. -,o#x‘o cece
oc:oo oyoo ©cec e o
D1 2O NS it
'&oo‘.o ©e06¢000000
I X OF I

'Q:.' 0+.0 oo
"to)"’o{ .{.Dt>-e
'w.0#000060)‘#0=@

-
W W W W W W W e W

'00. ©0 0o e 06010#:

2.5 Fil1l1 Command

The DEBUG FILL command allowsvyou to fill a section of memory with a constant. The -
format of the FILL command is:

FILL <start-exp>,<end-exp>,<{value-exp>

FILL -8 - DEBUG Rev B

CHAPTER 2: DEBUG COMMANDS
Where: - :‘ | o
start-exp Indicates the first address to be filled.
end-exp Indicates the last address to be filled.
value-exp Is the value that the memory space is to be filled with.
2.6 Go Command ')

The DEBUG GO command allows the user a means of sgecifying that execution is to be
resumed or started., The format of the GO command is:

GO [<addr-exp>{® [<brk-exp> ...]]
Where:

addr-exp Indicates the address that control is to be transfered to. This may be an
asterisk or blank, indieatin% that execution is to continue at the point
that it was interupted b he Debugger. An address of 0 will return
control to the CSI (the Debugger will remain in memory).

brk-exp Indicates a breakpoint address. Up to eight breakpoints may be set at any
’ one time. When the Debuffer detects that a breakpoint address is about to
be executed a break wi occur--control will return to the Debugger and
the breakpoint address will be displayed on the console. Breakpoints must
be reset every time a GO command is executed because the Debugger clears

all unused breakpoints when it regains control.

The GO command can be used to set a breakpoint that will be encountered when a
COMMAND program is loaded and executed from the CSI.

To specif{ this Ggygelof breakpoint is to occur the Debugger is invoked and the
ype

operator s: n this command the * is a special Indicator that tells the
8§gugger to break at the entry point address of the next COMMAND executed from the

2.7 Input Command

The INPUT comand provides an easy method of getting data from an input port. The
format of the INPUT command is:

INPUT <port-exp>[,<start-exp>,<end-exp>]
Where:

port-exp Indicates the port number (physical device number) that the input is to
come from. '

start-exp Indicates the starting address of memori to be used for storage 6f the
.data input. When this field is not specified the data is displayed on the
console and only one byte of data is accepted.

end-exp Indicates the endinf address of memory to be used for storage of the data
inpug. This field is used to determine the number of bytes of data to be
nput. .

When the INPUT command is executed the port specified by <port> is reéd and the
byte(s) is either displayed on the console or saved in memory.

2.8 List Command

The DEBUG LIST command allows the user to "dis-assemble"™ machine code into 280
mnemonics. The format of the LIST command is:

LIST [<addr-exp>[,<# lines>]]
Where:
addr-exp Indicates the address that the dis-assembly is to begin at. If this field
is not specified then the list will begin at the last "address DUMPed,
LISTed, or ASseMbled. A

lines 1Indicates the number of dis-assembled lines of code to be displayed. When
this field is not specified sixteen lines will be displayed.

'DEBUG Rev B -5 - | LIST

DEBUG REFERENCE MANUAL .

The LIST command assumes that the starting address is the address of a Z80 ogcodee
Since almost all values could be interpreted as an opcode no error will be detected
if the wrong address is specified. However the listing may be meaningless. '

When the list command is executed one screen of dis-assembly will be displayed on
the console device. The display is divided into four columns of information. The
first column is the address of the opcode for that 1line. The second column
contains the machine code representation of the instruction. The third column is
the Z80 mnemonic of the opcode. The forth column is the operand of the
instruction. Labels are displayed as absolute addresses. :

All values displayed are hexadecimal.

Refer to the appendix "Using Base RegiSters“ in the back of this manual for
addition information regarding the LIST command.

For example:

RET

CP TF

4003 2013 JR NZ,4018

4005 CDD198 CALL 9BD1

4008 1820 JR ho2A

4JOOA FD360049 LD (I¥+0),49
FD23 INC IY

40OE NC

4010 C9 RET

4011 ansoosz LD (IY¥+0),52
4015 FD23 INC IY

u01§ c9 RET

4018 FEBF CP OB

U014 2003 JR NZ,3021
401C CDDB9B ~ CALL 9BD8
401F 1809 JR ho2A

4021 C9 RE

2.9 Load Command

The LOAD command provides an easy means of loading a program to be tested. The
format of the command is:

LOAD frd [addr-exp]
Where:
fd Is the file description of the program to be loaded.

addr-exp Indicates the load address to be used. When this field is not specified
. the program will be loaded in its normal location.

2.10 Move Command

The MOVE command allows the user to move blocks of data in memory. The format of
the MOVE command is: ‘ _

MOVE <start-exp> <end-exp> <to-exp>
Where:
start-exp Indicates the first address that is to be moved.
end=-exp Indicates the last address thét is to be moved.
- to-exp Indicates the destination address that the data is to be moved to.

When the MOVE command is executed the block of data starting with the start address
is move to the area starting with to address, one byte at a time.

MOVE -6 = DEBUG Rev B

CHAPTER 2: DEBUG COMMANDS
For example: '
0

1020304 05060708 090A0BOC ODOBOF10 vevvvvososassnss

0
090A0B0OC ODOEQF10 00000000 00000000 eecceeeecescccas
00000000 00000000 00000000. 00000000 tesessectsnccas

[e]leolalw]
N=O
ooou
oo 00 00

500F 5008

020304 05060708 01020304 05060708 ...u.......;....
020%0” 0506070% 00000800 00000%00

[=l=3w}4
-0
oouwn
0 s OO

o0
o000
—d eud

0 9008000000000

e e o VIUIN W e o o AN

2.11 Output Command

The OUTPUT command provides an easy method of outputting data to a port. The
format of the command is:

QUTPUT <port~-exp>,<value-exp>|<{<start-exp>,<{end-exp>-exp>
Where:

port-exp Indicates the port number (physical device number) to be accessed.
value-exp Indicates the 8-bit value to be output to the port.

start-exp Ingicates the 16-bit memory address of the first byte to be output to the
port.

end-exp Ind%cates the 16-bit memory address of the last byte to be output to the
por L] . .

When the OUTPUT command is executed no device drivers are accessed.

When only one number is specified following the port address the OUTPUT command
will output that number <value>) to the specified port. When two numbers are
specified following the gort address then these numbers are interpreted as memory
addresses for the <start> and <end>. In this later situation the data in the
locations specified is output to the port.

2.12 Page List Command

The DEBUG PAGE command, similar to the LIST command, disassembles and displays a
portion of the program in memory. The PAGE command will display one full console
screen of disassembled code. {The LIST command always displays sixteen lines of
code.) The format of the PAGE command is:

PAGE
. Refer to the DEBUG LIST command for information regarding the display format.
2.13 Print Command

The DEBUG PRIﬁT command allows the user to specify that output from the debugging
process is to be output on the printer device. The format of the PRINT command is:

PRINT

When this command is executed the first time all subsequent output generated by the
debug%er will be output to the device PRINTER1. The next time this command is
executed the output from the debugger will be displayed on the console. The output
generated by the program being debugged is not affected by this command.

2.1% Quit Command

The DEBUG QUIT command allows the user to unload the system Debugger and return
control to the CSI. The format of the QUIT command is:

QuIT

When this command is executed the memory used by the Debugger is released and
control returns to the Command String Interpreter. Any program in the memory area

DEBUG Rev B -7- QUIT

DEBUG REFERENCE MANUAL

will be lost (the process of reloading the Debugger causes most,»br all, of the
user memory to be changed).

It is possible that no memori will be returned to the user area by this command.
This would happen if a new device was attached while the Debugger was loaded. This
can be avoided (if known in advance) by first detaching any device drivers 1loaded
since the DEBUG command was first loaded; then entering the debugger and executing
the QUIT sub-command.

2.15 Read Disk Command

The READ command allows you to read a sector or sectors of data from the disk into
memory. The format of the READ command is:

READ <sect-exp> <addr-exp> [<count-exp>]
Where:

sect-exp Indicates the relative sector number of the disk to be read. The disk
drive number is specified by the SELECT command. .

addr-exp Indicates the address in memory that the data is to be read into.

count-exp Indicates the number of contiguous sectors to be read. If this field is
not specified then a value of one is assumed.

2.16 Register Command

The REG command allows you to display or set the Z80 registers. The format of the
- REG command is: ‘

REG [<name> <value-exp>]
Where:

name Indiéates the name of the refister to set. If this field is not specified
then all of the registers will be displayed. ,

value-exp Indicates the value that the register is to be set to.
For example: '

=REG : '

E_ZP AF=0044 BC=0901 DE=1F7D HL=3108 PC=34BC XOR A

I=10 AF'C898 BC!'FFFF DE'FFFF HL'FFFF SP=9083 IX=0000 IY=0000
BC): 01020304 05060708 090A0BOC ODOEOF10 '.eooccoescccsces’
gf 2100113E C3180403 C30811BE 20151803 '!.eeDcocesscs o

SP

REG AF 5454
REG

1
%gg?FDZB CD4FIDFD 360029FD 23C93ABE 'w..#.0..6.).#.:."
EZ AF=5454 BC=0901 DE=1FT7D HL? 108 PC=34BC XOR A

I=10 AF'C898 BC'FFFF DE'FFFF HL'FFFF SP=9083 IX=0000 IY=0000
BC): 01020304 05060708 090A0BOC ODOEOF10 '..ceccceecececans’
2100113E C3180 03 CgO811BE 20151803 *leedcecesere vos!
%%g?FD 3 CDUFIDFD 360029FD 23CI3ABE 'w..#.0..6.).#.:.7

o6 %e 00 00

o0 o0 00 00

DE
HL
Sp

As can be séen from the examples the REG command displays all of the registers,
including the alternate set, the stack pointer, index registers, program counter

the st2§us of the flags, interrupt enable sﬁatus, and the mnemonic of the next
instruction to be executed.

The four 1lines following the régister display are partial dumps of memory
corresponding to the values contained in the BC, DE, HL, and SP register pairs.

Refer to the chapter "Z80 CPU Overview™ in the MA Assern
i for information regarding these registers and flags.
ech u for more detailed information.

2.17 .Savo_Progra-_Co-and

The SAVE command provides an easy method of saving a program written with the
debugger. The format of the command is: : ,

SAVE ' -8 - DEBUG Rev B

CHAPTER 2: DEBUG COMMANDS
SAVE fd <start-exp>,<end-exp> :
Where: . _

fd Is the file description of the program to be saved.
start-exp Indicates the starting address of the program in memory.
end-exp Indicates the ending address of the program in memory.
2.18 Search Command

The SEARCH command provides a method to search memory for a specific value. The
format of the command is: ~

SEARCH <start-exp>,<end-exp>,<{value-exp>...
Where: , .
start-exp Indicates the starting address of the block of memory to be searched.
end-exp Indicates the ending address of the block of memory to be searched.
value-exp Is the value(s) to be searched for.

When the SEARCH command is executed the block of memory specified by the <start>
and <end> fields will be searched for the <value> 1list. hen a match occurs the
address of the location that matched will be displayed on the console, When there
is more than one match found in the block of memor{ searched the question 'Again?!
will be asked. Any response other than an N will be interpreted as a yes response
and the next matching location address will be displayed on the console. When no
match occurs the DEBUG prompt character will be displayed. A

2.19 Disk Select Command

The SELECT command provides the user with the ability to specify the disk drive
that future reads or writes by the Debugger are to be performed on. The format of
the SELECT command is: :

SELECT Ldrv>
Where:

drv Indicates the logical disk drive code (A, B, etc.) that future disk reads
or writes are to access.

2.20 Set Memory Command

The DEBUG SET command allows the user to change the contents of memory. The format
of the SET command is:

SET <addr-exp> [,<value-exp>]...
Where:
addr-exp Indicates the starting address to set.

value-exp Indicates a list of values, separated by commas (or spaces), that the
addresses are to be set to. When values are specified the éET command
executes in immediate mode, returning to the command level when done.
When a value is not specified the SET command will be in "set" mode. 1In
this latter mode the Debugger will display the address to be set, followed
by the current contents in hexadecimal and ASCII. At this point the
Debugger awaits input from the user. The user may type the value that the
address is to Dbe set to or he may use the arrow commands to change the
address to be set:

Th§ up key (default CNTRL/Z) will decrement the address by one (back

up ‘

The down key (default CNTRL/J) will increment the address by one
(advance) .

The right key (default CNTRL/F) will increment the address by one
(advance)

DEBUG Rev B _ -9 - SET

DEBUG REFERERCE MANUAL v ,
The carriage return will exit from the "set"™ mode.)
Any of the above commands may be péeceded with a value indieating that the
current address is to be set to that value and then the address is to be
, changed according to the command.
2.21 Trace Command

The TRACE command allows the user to "trace" the flow of execution of a program.
The format of the TRACE command is:

IRACE [<addr-exp>|, J[<count-exp>1]

Where:

addr-exp Indicates the address that execution and tracing is to begin at. When
this field is not specified execution will be%in at the current program
counter. A comma may be used as a positional filler to allow the user to
specify a count. : .

count-exp Indicates the number of consecutive instructions to be traced. When this
field is not specified a value of one is assumed (single step mode).

When the TRACE command is in effect an instruction will be executed and then an
abbreviated REG will be displayed. If the count has not been reached this sequence
will be repeated. :

The Debugger normally does not allow the tracing of the execution of a system call
r

(SC) instruction as most of these are time critical.
For example:
>@15E0"*

=T ,5 -
E 2P~ AF=0044 BC=3F3E DE=4D9

7 HL=0017 PC=15D2f LD A,(15FA')
E ZP AF=0044 BC=3F3E DE=4D97 HL=0017 PC=15D5' OR A
E ZP AF=00u4Y4 BC=3F3E DE=4D97 HL=0017 PC=15Db' RET
E ZP AF=0044 BC=3F3E DE=4D97 HL=0017 Pc=1sagv JR Z,15E0!
E ZP AF=0044 BC=3F3E DE=4D97 HL=0017 PC=15ED' CALL 15D2'

2.22 Trace Call Command _
The DEBUG TRCALL command grovides an easy method of tracing through a call to a

gubroutine without tracing the subroutine itself. The format of the TRCALL command
8¢ .

JRCALL , ; ,
When the TRCALL command is executed and the PC is addressing a CALL instruction the
call will be traced but the subroutine called will not. If the PC is addressing an
instruction that is not a CALL the TRCALL command acts like a TRACE command.
2.23 Veriry Memory Command

The VERIFY command grovides an easy means of comparing two blocks of memory for
equality. The format of the command is:

YERIFY <starti-exp>,<end-exp’,<{start2-exp>
Where:

starti-exp %fdigates the starting address of the bloék of memory to oompére
ag nSO

end-exp Indicates the ending address of the block of memory to compare against.
start2-exp Indicates the starting address of the block of memory to be compared.
When the VERIFY command is executed the Debugger compares the first byte of each
block to the other. If the two bytes equal each other the address gointers for the
blocks are incremented and the test continues. When the two bytes do not equal

each other their respective addresses and contents are displayed on the console
before the address pointers are incremented.

VERIFY - : - 10 - DEBUG Rev B

CHAPTER 2: DEBUG COMMANDS
For example: ‘

=V 3900,3904 ,4900
3903: 18?91;960? B5
3901: ﬁ’ 4901: €3
joz: B e
390%5 42, ugoai FD

The above example indicates a total mismatch between the locations 3900H and 4900H
for 5 bytes. ‘

2.2% Vrite Disk Command

The WRITE command allows the user to write a sector or sectors of data from memory
onto disk., The format of the WRITE command is:

‘ NRITE <sect-exp> <addr-exp> [<count-exp>]
Where:

sect-exp Indicates the relative sector number that the data is to be written to.
The disk drive is selected with the SEL command.

addr#exp Indicates the first address of data that is to be written to disk.

count-exp Indicates the number of contiguous sectors to be written. If this field
is not specified then a value of one is assumed.

gggiégszigho integrity of the disk is _the responsibility of the user when this

2.25 Immediate Instruction Command

"The OASIS Debugger allows any valid Z80 instruction to be executed in immediate
mode. To. exec%%e an immediate instruction you type a period followed bg the 280
mneumonic of the instruction to be executed. Use a space to separate the opcode
from the operand. Any synonyms described in the MACRO Assembler Reference Manual
are not valid as immediate instructions (i.e. ADD D is okay, not ADD A,D).

If the instruction is valid it will be executed, the primary registers will be
displayed and the Debug prompt character will be displayed again.

For example:

AF=0000
AF'0000 B

0 00000 00 LN]

110 023
A%DB‘IX:OOOO g%:OOOO
'
'

1..2
!.0)0.0‘0...‘ .OQ'
1eo? '

©9 6060 04ec0 L

~~~ BN
EUWH
=an
AN -

nen =N
. .
54'."

AF=FF00 BC=00000 DE=0000 HL=0000 PC=1100 JP 02393

DEBUG Rev B - 11 = Immediate



DEBUG REFERENCE MANUAL

(This page intentionally left blank)

Immediate e f12- DEBUG Rev B



APPENDIX A
USING BASE REGISTERS

The OASIS MACRO Assembler supports the generation of relocatable programs. This is
a very convenient and powerful feature but causes difficulties duri the
development and debugging of the relocatable programs as the listing generated by
the assembler displays addresses relative to the origin of the program and not the.
addresses that the program will be executing at. v

There are two features of the OASIS dynamic debuggingagrogram that greatly ease
this problemn. One is the GO command used with a breakpoint of * (i.e., GO,%).
This causes a breakpoint to be set at the origin of the next command to' be
executed. Whenever a breakpoint is encountered b{ the debugger the break address
is displayed on the console. At this {oint you will know the origin address of the
program to be debufged and you could use this address to debug your program by
always addinﬁ it (plus 3 for the jump instruction placed at the beginning of your
program by the linkage editor) to the addresses 1listed by the assembler. This is

not too difficult to do and most systems that support relocatable programs require
you to do so. ‘ '

However,‘a second feature in the OASIS debugger alleviates this requirement, The
BASE command gives you access to nine internal base registers with eight of them
settable by the user (base register 0 is always defined with an address of 0000H).

Sag that the GO,* command was used followed by the execution of the program to be
debugged. Assuming that the breakpoint address displayed was 02E00H you would then
enter the command: BASE 1 2E03. From this point on, until ¥ou specified another
base register to be used, all instructions listed 6y the LIST or TRACE command
would be displayed with the same addresses as those listed in the assembly listing
of your program. Any time that you wanted to know the absolute or execution
addresses merely enter the command: BASE 0. This resets the base register to zero
which has an offset address of zero.,

To determine what the base re%isters are currently set to and which base register
is currently being used enter the command: BASE.

For example:

=BASE 1 2E03

=BASE 7 3F00
=BASE 8 2FF0
=BASE

1 2E03

g 3F00
* 2FF0

The * in the above example indicates that base register 8 is the current base
register.

The availability of multiple base registers ﬁrovides the capability of debugging
programs with multiple program address blocks (PABs). In that situation a base
register would be defined for each PAB.

When a base register other than zero is defined all addresses disgla¥ed by the

Debugger that have been adjusted to reflect that base register will be followed by

a single quote character (') or a period character (.). Similarly, when you

specify an address that is to be treated as the address specified plus the base

gggistgr offset, you must follow the address with a single quote or period
aracter. :

For example:
=BASE 0
=RE

=REG
E ZP AF=0044 BC=3F3E DE=4D97 HL=0017 PC=15D2 JP  15D2
=BASE 1 1100 3F3 7 T °

=REG
E ZP AF=0044 BC=3F3E DE=4FQ7 HL=0017 PC=04D2' JP ouD2?
=REG HL 17!

=REG
E ZP AF=0044 BC=3F3E DE=z4F97 HL=1117 PC=04D2' JP puna'
' The contents of the registers, with the excegtion of the PC register, are not

offset by the base register as it is not determinable whether the contents are data
or addresses.

DEBUG Rev B -13 -



DEBUG REFERENCE MANUAL

(This page intentionally left blank)

o I} = : DEBUG Rev B



APPENDIX B
DEBUGGING DEVICE DRIVER ROUTINES

Debugging device .drivers presents difficulties for two reasons:>.the 'drivei.is'
gglogagggggy the ATTACH command into high memory and is protected from access by
e de r. v .

To properly debug a user written device driver you should link it togetbér'with.
your test program and debug it as a command, calling the entry points as
subroutines instead of using the system calls. -

After a user written . device driver has been tested in the "?tand'alone" mode
described above Kou can re-link it as a system device driver

option of the LINK command) and it will be treated by the operating system as a
standard device driver. '

DEBUG Rev B » ~ - 15 =

using the SYSTEM -



”:a===-=a=======;éﬁ----;-
ASM <addr> T s
“BASE [<n5[,<addr>1]
fﬂnLC [(nnnn>]{<op)]<nnnn>
DUMP [<addr>]
CFILL <start>,<end>,<value>
@0 [(addr)][ <brk>]...
INPUT <port>[ <start> <end>]
LIST [<addr>[,<1ines>]]
LOAD Xfd> [(addr)]
_ MOVE <start,<end>,<to>
”OUTPUT'<port> <value> |<<start>;<end>>
"PAGE
PRINT
QUIT
~READ <secﬁ> épddr>[ <equnt>]
REG [<reg> <value>]
_?SAVE <£d>, <start>,<epd>
* SEARCH <start>,<end>,<value>...
SELECT <drv>_
" SET <addr>[ <value>],..
TTRACE {<addr> '][ (cgﬂnt)]
“TRCALL .
VERIFY <start> <end> <with>

WRITE (aec&),(aﬂdr>[ <oount>]
.(inst)

_Assemple Z280 mnemonics
‘5Set/display base registers

e

Calculate values

VDisplay memory »
‘Fi1l memory with" eonstant o

Executqawith optional breakpoints
Input data from I/0 port

Dis-assemble memory

Load program into’memory
Move data in memory

uOutput data to I/0 port

Dis-assemble one screen of memory

- Output debug info on printer
- Exit and unload Debugger -
’:Raad data from disk.
'”Set/displgy 80 regiﬁters

' Save program from memory .
~Search mggpry for data
‘Select disk drive to be used
v $9§ memory to value

- Trace execution of program
"'Tpace through subroutire call

Compare two regions of"memory

“MWrite data to disk

Execute immediate mnemenic instruetion

- 16 - DEBUG Rev B



