
OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

DYNAMIC
DEBUGGING
REFERENCE
MANUAL

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA

OPERATING SYSTEM SOFrWARE

MAKES MICROS RUN LIKE MINIS

DYNAMIC
DEBUGGING
REFERENCE
MANUAL

Second Edition

Documentation by: C. P. Williams
, Software by: Timothy S. Williams

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA
7700 Edgewater Drive, Suite 830

Oakland, California 94621
Telephone (415) 562-8085

TWX 910-366-7139

Second edition, first printing: March, 1980

PROPRIETARY NOTICE

The software described in this manual is a proprietary product developed by Timothy
S. Williams and distributed by Phase One Systems, Ince, Oakland, California. The
product is furnished to the user under a license for use on a single computer
system and may be copied (with inclusion of the copyright notice) only in
accordance with the terms of the license.

Copyright (C) 1980 by Phase One Systems, Inc.

Previous editions copyright 1978, 1979, and 1980 by Phase One Systems, Inc. All
rights reserved. Except for use in a review, the reproduction or utilization of
this work in any form or by any electronic, mechanical, or other means, now known
or hereafter invented, including xerography, photocopying, and recording, and in
any information storage and retrieval system is forbidden without the written
permission of the publisher.

Z80 is a registered trademark of Zilog, Incorporated.

PREFACE

This manual describes the OASIS assembly
sufficiently detailed information necessary
conjunction with the OASIS Operating System.

language Debugger. It provides
to the use of this Debugger in

This manual, named DEBUG, like all OASIS documentation manuals, has the manual name
and revision number in the lower, inside corner of each page of the body of the
manual. In most chapters of the manual the last primary subject being discussed on
a page will be identified in the lower outside corner of the page.

Related Documentation

The following publications provides additional information that may be required in
the use of the OASIS Debugger:

OASIS System Reference Manual

OASIS MACRO Assembler Reference Manual

- iii -

TABLE OF CONTENTS

Section

INTRODUCTION
DEBUG Prompting Character

CHAPTER 1
1.1
1.2
1.3
1.4

...
System Control Keys •••
Protected Memory ••
DEBUG Commands ..

DEBUG COMMANDS ...
Assemble Command

CHAPTER 2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

..

2.18
2.19
2.20
2.21
2.22

Base Command · .. .
Calcula te Command •••
Dump Command
Fill Command

· .. . · .. .
Go Command ..
List Command
Load Command
Input Command
Move Command

· .. . ·
Output Command •••
Qui t Command •••
Save Program Command •••
Read Disk Command ••
Regi s te r Command •••
Search Command •••
Disk Select Command ••
Set Memory Command •••
Trace Command ••
Verify Memory Command ••
Wri te Disk Command •••
Immediate Instruction Command ..

APPENDIX A USING BASE REGISTERS ..
APPENDIX B DEBUGGING DEVICE DRIVER ROUTINES
APPENDIX C DEBUG COMMAND SUMMARY ...

iv

Page

1
1
1
1
2

3
3
3
3
4
5
5
6
7
7
8
8
9
9
9

10
10
11
11
12
12
13
13

15

17

18

CHAPTER 1

INTRODUCTION

The DEBUG command allows you to perform on-line, interactive debugging of a
program. The format of the DEBUG command is:

DEBUG

When this command is executed the DEBUG program is loaded into high memory and
executed. When the DEBUG program is first executed it will display on the console:

OASIS Z80 Debugger version n.n

To exit DEBUG, use ESC-Q; to re-enter, use ESC-D.
Type "HELP" to list command syntax.

1.1 DEBUG Prompting Character

When the DEBUG command is in control the equal sign (=) character will be displayed
at the left side of the console. This is the prompting character for the DEBUG
program and indicates that the DEBUG program is waiting for operator input.

Once the Debugger has been loaded the user may return control to the CSI by using
the GO command. When the user wishes to re-enter the Debugger he must type the
System Debug-key. This will transfer control to the Debugger and the program
counter (PC) will be displayed.

1.2 System Control Keys

When the Debugger is in control the System Debug-key is inoperative as this would
cause a break into the Debugger itself. Instead, the Program Cancel-key may be
used to quit the current operation of the Debugger and return to the Debug command
mode. For example, a Trace of several thousand instructions can be aborted by
typing the Program Cancel-key.

The System Cancel-key should be used to quit the program being debugged, return
control to the CSI but leave the Debugger loaded in memory. The Debugger may be
re-entered by using the System Debug-key.

It is not advised that you use the GO 0 command to return control to the CSI
because the program that was being debugged may have set a QET to perform required
clean-up duties. The best procedure for returning control to the CSI is to issue a
GO command followed by the entry of the System Cancel-key.

1.3 Protected Memory

The Debugger will not allow you to examine or change memory areas outside of the
user area. (The user area is the contiguous memory area from the end of the
NUCLEUS to the beginning of device drivers, the Debugger, etc.) When an attempt is
made to access these areas with the commands: ASM, DUMP, FILL, LIST, MOVE, READ,
SAVE, SEARCH, SET, TRACE, VERIFY, WRITE, the Debugger will not perform the
operation but instead display '~Protected Area".

DEBUG - 1 -

DEBUG REFERENCE MANUAL

1.4 DEBUG Commands

The commands available to the user when the DEBUG command is in control of the
system are:

ASM
BASE
CALC
DUMP
FILL
GO
INPUT
LIST
LOAD

addr
[num[,org]]
expr (ops=+,-,*,/,\,&,I,A,<,),_,-)
[addr]
start,end,value
[addr/*[, brk •••]
port[,start,end]
[addr]
name [addr]

MOVE start,end,to
OUTPUT port,[value/start,end]
QUIT
READ sect,addr[,count]
SAVE name start,end
REG [name value]
SEARCH start,end,value
SELECT drive
SET addr[,value •••]
TRACE [addr/*[,count]]
VERIFY start,end,to
WRITE sect,addr[,count]
.ZSOinst (immediate execute)

The above list of commands comprises the HELP message and will be displayed in
response to the user typing HELP.

- 2 - DEBUG

CHAPTER 2

DEBUG COMMANDS

2.1 Assemble Command

The DEBUG ASM command allows the user to assemble Z80 code directly into memory
without using the system assembler. The format of the ASM command is:

ASH <address>

Where:

address Indicates the address that the assembled code is to be saved at.

When the ASM command is executed the Debugger will prompt the user with the address
that the next instruction will be saved at. The user then may type the Z80
assembly code that he wishes assembled. The opcode and operand must be separated
by at least one space. Labels are not allowed. Only one instruction per line is
allowed. When the user is finished entering code a carriage return with no
instruction preceding it will transfer control out of the assemble command.

2.2 Base Command

The DEBUG BASE command provides a means of debugging relocatable programs. The
format of the BASE command is:

Where:

n

BASE [<n>[.<addr>ll

Indicate the "base register" number to be used. Base register numbers are
in the range of a - 8. When the Debugger is first entered base register a
is set with a base address of 000011. Omitting the base register number
will cause the display of all base registers defined with an asterisk (*)
by the register number currently in use.

addr Indicates the address that the base register indicated by the preceding
number is to be set to.

For information describing the use of base registers see the appendix "Using Base
Registers" at the back of this manual.

2.3 Calculate Command

The DEBUG CALC command allows the user
logical functions on hexadecimal numbers.

to perform hexadecimal arithmetic and
The format of the CALC command is:

Where:

nnnn

CALC <n1llllV<Op><nmm>

Indicates a number (or ASCII characters) that the operation is to be
performed on.

op Indicates the arithmetic or logic operation to be performed. Do not
separate with spaces!

DEBUG - 3 - CALC

DEBUG REFERENCE MANUAL

The available operators in the CALC command include:

Op Function
==

+ Addition
Subtraction

* Multiplication
/ Division
\ Modulo
< Shift left (second value indicates number of bits to shift)
> Shift right (second value indicates number of bits to shift)
I OR
& AND

XOR Exclusive OR
Unary two's complement
Unary one's complement

@ Unary indirect address contents

For example:

=c 23*15
002DF, 735T, '
=c 23T*15T
00159, 345T, '.y'
=c 23*15+3/2
00171, 369T, ' .q'
=C ' A'
00041, 65T, ' A'
=C ' A'
02041, 8257T, ' A'
=C ' A'
02041, 8257T, ' A'
=C -12
OFFEE, 65518T, '
=C -12
OFFED, 65517T, '
=C 7\3
00001, 1 T, '.'
=C @4000
OFEC9, 65225T, '
=

2.4 Dump Command

The DEBUG DUMP command allows the user to display the contents of memory on the
console terminal. The format of the display is identical to the CSI DUMPDISK
command except that the header information is not displayed in the Debugger. The
format of the DUMP command is:

DUMP [<addr)l

Normally the user will specify the address that he wishes the display to start at.
If the address is omitted then the dump will display memory starting with the last
address DUMPed, LISTed, or ASseMbled. The DUMP command will display one screen of
information, or 16 lines, whichever is less. A down arrow indicates that the dump
is to continuer; an up arrow indicates that the previous block of memory is to be

DUMP - 4 - DEBUG

CHAPTER 2: DEBUG COMMANDS

displayed.

The format of the display of a memory dump is divided into three sections. The
first section is the address of memory being displayed on that line. This address
is the address of the first byte of data displayed on each line. The second
section is the contents of memory for that address. The data is broken by spaces
every four bytes for readablity. The third section is the conversion to ASCII of
the line of data. Any byte that cannot be converted to an ASCII character will be
displayed as a period (.).

For example:

=D 4000
4000: C9FE7F20 13CDD19B 1820FD36 0049FD23' •••••• 6.1.#'
4010: C9FD3600 52FD23C9 FEBF2005 CDD89B18 ' •• 6.R.# •••••••• '
4020: 09E6F01F 1F1F1FCD 419C8947 E60FCA4C ' •••••••• A.vG ••• L'
4030: 9B4FFD36 002CFD23 78FE1A20 06CDB59B '.0.6.,.#x •••••• '
4040: C34C9BFE 7C2006CD D19BC34C 9BFE7E20 '.L •• I ••••• L •• -'
4050: 06CDD89B C34C9B79 FEOF2018 CDOF9EC3 ' ••••• L.y ••••••• '
4060: 4C9BFD36 0028FD23 CDC59CFD 360029FD 'L •• 6.(.# •••• 6.).'
4070: 23C34C9B CD419CC3 4C9B3D5F 87835F16 '#.L •• A •• L.= ••• '
4080: 0021509C 193ABDAF E9C37D9C C3829CC3 '.!P •• : •••• }~ •• ~.'
4090: 269DC32D 9DC3459D C38E9DC3 9E9DC3AA '& •• - •• E ••••••••• '
40AO: 9DC3BA9D C3CA9DC3 E69DC3FC 9DC3C59C ' ••••••••••••••••
40BO: C3029EC3 079EE638 1F1F1FE6 07FE0620 ' ••••••• 8 •••••••• '
40CO: 54FD3600 28FD23CD C59C3ABE AFB72827 'T.6.(.# ••• : ••• ("
40DO: 2AB9AF3A BFAFB728 032B1804 2322B9AF '* .. : ... (.+ •• #" •• '
40EO: 5E16003E 2BCB7B28 067BED44 5F3E2DFD 'A ••)+.{(.{.D A

)_.'

40FO: 7700FD23 CD4F9DFD 360029FD 23C93ABE 'w •• #.0 •• 6.).#.:.'

2.5 Fill Command

The DEBUG FILL command allows you to fill a section of memory with a constant. The
format of the FILL command is:

FILL <start>, <end>, <value>

Where:

start Indicates the first address to be filled.

end Indicates the last address to be filled.

value Is the value that the memory space is to be filled with.

2.6 Go Command

The DEBUG GO command allows the user a means of specifying that execution is to be
resumed or started. The format of the GO command is:

GO [<address>l* [<brk) •••]]

DEBUG - 5 - GO

DEBUG REFERENCE MANUAL

Where:

address Indicates the address that control is to be transfered to. This may be an
asterisk or blank, indicating that execution is to continue at the point
that it was interupted by the Debugger. An address of 0 will return
control to the CSI (the Debugger will remain in memory).

brk Indicates a breakpoint address. Up to eight breakpoints may be set at any
one time. When the Debugger detects that a breakpoint address is about to
be executed a break will occur--control will return to the Debugger and
the breakpoint address will be displayed on the console. Breakpoints must
be reset every time a GO command is executed because the Debugger clears
all unused breakpoints when it regains control.

The GO command can be used to set a breakpoint that will be encountered when a
COMMAND program is loaded and executed from the CSI.

To specify this type of breakpoint is to occur the Debugger is invoked and the
operator types: GO,* In this command the * is a special indicator that tells the
Debugger to break at the entry point address of the next COMMAND executed from the
CSI.

2.7 List Command

The DEBUG LIST command allows the user to "dis-assemble" machine code into Z80
mnemonics. The format of the LIST command is:

LIST [<address)[,<1 lines)]]

Where:

address Indicates the address that the dis-assembly is to begin at. If this field
is not specified then the list will begin at the last address DUMPed,
LISTed, or ASseMbled.

lines Indicates the number of dis-assembled lines of code to be displayed. When
this field is not specified an entire screen will be displayed.

The LIST command assumes that the starting address is the address of a Z80 opcode.
Since almost all values could be interpreted as an opcode no error will be detected
if the wrong address is specified. However the listing may be meaningless.

When the list command is executed one screen of dis-assembly will be displayed on
the console device. The display is divided into four columns of information. The
first column is the address of the opcode for that line. The second column
contains the machine code representation of the instruction. The third column is
the Z80 mnemonic of the opcode. The forth column is the operand of the
instruction. Labels are displayed as absolute addresses.

All values displayed are hexadecimal.

Refer to the appendix "Using Base Registers" in the back of this manual for
addition information regarding the LIST command.

LIST - 6 - DEBUG

CHAPTER 2: DEBUG COHHANDS

For example:

=L 4000
4000 C9 RET
4001 FE7F CP 7F
4003 2013 JR NZ,4018
4005 CDD198 CALL 9BDl
4008 1820 JR 402A
400A FD360049 LD (IY+0),49
400E FD23 INC IY
4010 C9 RET
4011 FD360052 LD (IY+0),52
4015 FD23 INC IY
4017 C9 RET
4018 FEBF CP OBF
401A 2005 JR NZ,4021
401C CDD89B CALL 9BD8
401F 1809 JR 402A

2.8 Load Command

The LOAD command provides an easy means of loading a program to be tested. The
format of the command is:

LOAD fd [address]

Where:

fd Is the file description of the program to be loaded.

address Indicates the load address to be used. When this field is not specified
the program will be loaded in its normal location.

2.9 Input Command

The INPUT comand provides an easy method of getting data from an input port. The
format of the INPUT command is:

INPUT (port)[,(start),(end)]

Where:

port Indicates the port number (physical device number) that the input is to
come from.

start

end

Indicates the starting address of memory to be used for storage of the
data input. When this field is not specified the data is displayed on the
console and only one byte of data is accepted.

Indicates the
input. This
input.

ending address of memory to be used for storage of the data
field is used to determine the number of bytes of data to be

When the INPUT command is executed the port specified by (port) is read and the
byte(s) is either displayed on the console or saved in memory.

DEBUG - 7 - INPUT

DEBUG REFERENCE MANUAL

2.10 Move Command

The MOVE command allows the user to move blocks of data in memory. The format of
the MOVE command is:

MOVE <start> <end> <to>

Where:

start Indicates the first address that is to be moved.

end Indicates the last address that is to be moved.

to Indicates the destination address that the data is to be moved to.

When the MOVE command is executed the block of data starting with the start address
is move to the area starting with to address, one byte at a time.

For example:

=D 5000
5000: 01020304 05060708 090AOBOC ODOEOF10
5010: 090AOBOC ODOEOF10 00000000 00000000
5020: 00000000 00000000 00000000 00000000

=M 5000 500F 5008
=D 5000
5000: 01020304 05060708 01020304 05060708
5010: 01020304 05060708 00000000 00000000

2.11 Output Command

The OUTPUT command provides an easy method of outputting data to a port. The
format of the command is:

Where:

port

value

start

OUTPUT <port>,<value>I«start>,<end»

Indicates the port number (physical device number) to be accessed.

Indicates the 8-bit value to be output to the port.

Indicates the 16-bit memory address of the first byte to be output to the
port.

end Indicates the 16-bit memory address of the last byte to be output to the
port.

When the OUTPUT command is executed no device drivers are accessed.

OUTPUT - 8- DEBUG

CHAPTER 2: DEBUG COHHANDS

When only one number is specified following the port address the OUTPUT command
will output that number «value» to the specified port. When two numbers are
specified following the port address then these numbers are interpreted as memory
addresses for the <start> and <end>. In this later situation the data in the
locations specified is output to the port.

2.12 Quit Command

The DEBUG QUIT command allows the user to unload the system Debugger and return
control to the CSI. The format of the QUIT command is:

QUIT

When this command is executed the memory used by the Debugger is released and
control returns to the Command String Interpreter. Any program in the memory area
will be lost (the process of reloading the Debugger causes most, or all, of the
user memory to be changed).

It is possible that no memory will be returned to the user area by this command.
This would happen if a new device was attached while the Debugger was loaded. This
can be avoided (if known in advance) by first detaching any device drivers loaded
since the DEBUG command was first loaded, then entering the debugger and executing
the QUIT sub-command.

2.13 Save Program Command

The SAVE command provides an easy method of saving a program written with the
debugger. The format of the command is:

SAVE fd <start>,<end>

Where:

fd Is the file description of the program to be saved.

start Indicates the starting address of the program in memory.

end Indicates the ending address of the program in memory.

2.14 Read Disk Command

The READ command allows you to read a sector or sectors of data from the disk into
memory. The format of the READ command is:

READ <sect> <address> [<count>]

Where:

sect Indicates the relative ·sector number of the disk to be read. The disk
drive number is specified by the SELECT command.

address Indicates the address in memory that the data is to be read into.

count

DEBUG

Indicates the number of contiguous sectors to be read. If this field is
not specified then a value of one is assumed.

-9- READ

DEBUG REFERENCE MANUAL

2.15 Register Command

The REG command allows you to display or set the Z80 registers. The format of the
REG command is:

REG [<name> <value>]

Where:

name Indicates the name of the register to set. If this field is not specified
then all of the registers will be displayed.

value Indicates the value that the register is to be set to.

For example:

=REG
E ZP AF=0044 BC=0901 DE=lF7D HL=3108 PC=34BC XOR A

1=10 AF'C898 BC'FFFF DE'FFFF HL'FFFF SP=9083 IX=OOOO IY=OOOO
(BC): 01020304 05060708 090AOBOC ODOEOF10 ' ••••••••••••••••
(DE): 2100113E C3180403 C30811BE 20151803 '! .. > .••..•....• '
(HL): 7700FD23 CD4F9DFD 360029FD 23C93ABE 'w •• #.0 •• 6.).#.:.'
(SP): EC31

=REG AF 5A5A
=REG
E Z AF=5A5A BC=0901 DE=lF7D HL=3108 PC=34BC XOR A

1=10 AF'C898 BC'FFFF DE'FFFF HL'FFFF SP=9083 IX=OOOO IY=OOOO
(BC): 01020304 05060708 090AOBOC ODOEOF10 ' ••••••••••••••••
(DE): 2100113E C3180403 C30811BE 20151803 '! .. > '
(HL): 7700FD23 CD4F9DFD 360029FD 23C93ABE 'w •• #.0 •• 6.).#.:.'
(SP): EC31

As can be seen from the examples the REG command displays all of the registers,
including the alternate set, the stack pointer, index registers, program counter,
the status of the flags, interrupt enable status, and the mnemonic of the next
instruction to be executed.

The four lines following the register display are partial dumps of memory
corresponding to the values contained in the BC, DE, HL, and SP register pairs.

Refer to the chapter "Z80 CPU Overview" in the MACRO Assembler Language Reference
Manual for information regarding these registers and flags. Also refer to ZILOG's
Z80 Technical Manual for more detailed information.

2.16 Search Command

The SEARCH command provides a method to search memory for a specific value. The
format of the command is:

SEARCH <start>,<end>,<value>

Where:

start Indicates the starting address of the block of memory to be searched.

SEARCH - 10 - DEBUG

CHAPTER. 2: DEBUG COHHANDS

end Indicates the ending address of the block of memory to be searched.

value Is the value(s) to be searched for.

When the SEARCH command is executed the block of memory specified by the <start>
and <end> fields will be compared against the <value>. When a match occurs the
address of the location that matched will be displayed on the console. When no
match occurs nothing will be displayed.

2.17 Disk Select Command

The SELECT command provides the user with the ability to specify
that future reads or writes by the Debugger are to be performed on.
the SELECT command is:

SELECT <drv>

Where:

the disk drive
The format of

drv Indicates the logical disk drive code (A, B, etc.) that future disk reads
or writes are to access.

2.18 Set Memory Command

The DEBUG SET command allows the user to change the contents of memory. The format
of the SET command is:

SET <address> [,<value>] •••

Where:

address Indicates the starting address to set.

value Indicates a list of values, separated by commas (or spaces), that the
addresses are to be set to. When values are specified the SET command
executes in immediate mode, returning to the command level when done.
When a value is not specified the SET command will be in "set" mode. In
this latter mode the Debugger will display the address to be set, followed
by the current contents in hexadecimal and ASCII. At this point the
Debugger awaits input from the user. The user may type the value that the
address is to be set to or he may use the arrow commands to change the
address to be set:

DEBUG

The up arrow (CONTROL/Z) will decrement the address by one (back up)

The down arrow (CONTROL/J) will increment the address by one
(advance)

The right arrow (CONTROL/F) will increment the address by one
(advance)

The carriage return will exit from the "set" mode.

Any of the above commands may be preceded with a value indicating that the
current address is to be set to that value and then the address is to be
changed according to the command.

- 11 SET

DEBUG REFERENCE MANUAL

2.19 Trace Command

The TRACE command allows the user to "trace" the flow of execution of a program.
The format of the TRACE command is:

TRACE [(address>l* [<count>]]

Where:

address Indicates the address that execution and tracing is to begin at. When
this field is not specified execution will begin at the current program
counter. An asterisk may be used as a positional filler to allow the user
to specify a count.

count Indicates the number of consecutive instructions to be traced. When this
field is not specified a value of one is assumed (single step mode).

When the TRACE command is in effect an instruction will be executed and then an
abbreviated REG will be displayed. If the count has not been reached this sequence
will be repeated.

The Debugger normally does not allow the tracing of the execution of a system call
(SC) instruction as most of these are time critical.

For example:

>@15EO
=T * 5
E ZP AF=OO44 BC=3F3E DE=4D97 HL=OO17 PC=15D2 LD A, (15FA)
E ZP AF=OO44 BC=3F3E DE=4D97 HL=OO17 PC=15D5 OR A
E ZP AF=0044 BC=3F3E DE=4D97 HL=OO17 PC=1SD6 RET
E ZP AF=0044 BC=3F3E DE=4D97 HL=OO17 PC=1SE3 JR Z,1SEO
E ZP AF=0044 BC=3F3E DE=4D97 HL=OO17 PC=1SEO CALL 1SD2

2.20 Verify Memory Command

The VERIFY command provides an easy means of comparing two blocks of memory for
equality. The format of the command is:

VERIFY <startl>,<end>,<start2>

Where:

start1 Indicates the starting address of the block of memory to compare against.

end Indicates the ending address of the block of memory to compare against.

start2 Indicates the starting address of the block of memory to be compared.

When the VERIFY command is executed the Debugger compares the first byte of each
block to the other. If the two bytes equal each other the address pointers for the
blocks are incremented and the test continues. When the two bytes do not equal
each other their respective addresses and contents are displayed on the console
before the address pointers are incremented.

- 12 - DEBUG

For example:

=V 3900,3904,4900
3900: 18, 4900: B5
3901: 33, 4901: C3
3902: 44, 4902: B3
3903: 45, 4903: B2
3904: 42, 4904: FD

CHAPTER 2: DEBUG COMMANDS

The above example indicates a total mismatch between the locations 3900H and 4900H
for 5 bytes.

2.21 Write Disk Command

The WRITE command allows the user to write a sector or sectors of data from memory
onto disk. The format of the WRITE command is:

WRITE <sect> <address> [<count>]

Where:

sect Indicates the relative sector number that the data is to be written to.
The disk drive is selected with the SEL command.

address Indicates the first address of data that is to be written to disk.

count Indicates the number of contiguous sectors to be written. If this field
is not specified then a value of one is assumed.

Caution: The integrity of the disk is the responsibility of the user when this
command is used.

2.22 Immediate Instruction Command

The OASIS Debugger allows any valid Z80 instruction to be executed in immediate
mode. To execute an immediate instruction you type a period followed by the Z80
mneumonic of the instruction to be executed. Use a space to separate the opcode
from the operand. Any synonyms described in the MACRO Assembler Reference Manual
are not valid as immediate instructions (i.e. ADD D is okay, not ADD A,D).

If the instruction is valid it will be executed, the primary registers will be
displayed and the Debug prompt character will be displayed again.

DEBUG - 13 - Iaaediate

DEBUG REFERENCE MANUAL

For example:

=REG
E AF=OOOO BC=OOOO DE=OOOO BL=OOOO PC=1100 JP 02393

1=10 AF'OOOO BC'OOOO DE'OOOO BL'OOOO SP=A2DB IX=OOOO IY=OOOO
(Be): 2100113E C3180403 C30811BE 20151803 '! .. > ...•.....
(DE): 2100113E C3180403 C30811BE 20151803 '! .. >
(RL): 2100113E C3180403 C30811BE 20151803 '! .. > .•.......... '
(SP): EC31
=.LD A,FF
Invalid Command
=.LD A,OFF
E AF=FFOO BC=OOOOO DE=OOOO HL=OOOO PC=1100 JP 02393

Immediate - 14 - DEBUG

APPENDIX A

USING BASE REGISTERS

The OASIS MACRO Assembler supports the generation of relocatable programs. This is
a very convenient and powerful feature but causes difficulties during the
development and debugging of the relocatable programs as the listing generated by
the assembler displays addresses relative to the origin of the program and not the
addresses that the program will be executing at.

There are two features of the OASIS dynamic debugging program that greatly ease
this problem. One is the GO command used with a breakpoint of * (i.e., GO,*).
This causes a breakpoint to be set at the origin of the next command to be
executed. Whenever a breakpoint is encountered by the debugger the break address
is displayed on the console. At this point you will know the origin address of the
program to be debugged and you could use this address to debug your program by
always adding it (plus 3 for the jump instruction placed at the beginning of your
program by the linkage editor) to the addresses listed by the assembler. This is
not too difficult to do and most systems that support relocatable programs require
you to do so.

However, a second- feature in the OASIS debugger alleviates this requirement. The
BASE command gives you access to nine internal base registers with eight of them
set table by the user (base register 0 is always defined with an address of OOOOH).

Say that the GO,* command was used followed by the execution of the program to be
debugged. Assuming that the breakpoint address displayed was 02EOOH you would then
enter the command: BASE 1 2E03. From this point on, until you specified another
base register to be used, all instructions listed by the LIST or TRACE command
would be displayed with the same addresses as those listed in the assembly listing
of your program. Any time that you wanted to know the absolute or execution
addresses merely enter the command: BASE O. This resets the base register to zero
which has an offset address of zero.

To determine what the base registers are currently set to and which base register
is currently being used enter the command: BASE.

For example:

=BASE 1 2E03
=BASE 7 3FOO
=BASE 8 2FFO
=BASE
1 2EQ3
7 3FOO
8* 2FFO

The * in the above example indicates that base register 8 is the current base
register.

The availability of multiple base registers provides the capability of debugging
programs with multiple program address blocks (PABs). In that situation a base
register would be defined for each PAB.

When a base register other than zero is defined all addresses displayed by the
Debugger that have been adjusted to reflect that base register will be followed by
a single quote character ('). Similarly, when you specify an address that is to be

DEBUG - 15 -

DEBUG REFERENCE MANUAL

treated as the address specified plus the base register offset, you must follow the
address with a single quote character.

For example:

=BASE 0
=REG
E ZP AF=0044 BC=3F3E DE=4D97 HL=0017 PC=15D2 JP 15D2
=BASE 1 1100
=REG
E ZP AF=0044 BC=3F3E DE=4F97 HL=0017 PC=04D2' JP 04D2'
=REG HL 17'
=REG
E ZP AF=0044 BC=3F3E DE=4F97 HL=1117 PC=04D2' JP 04D2'

The contents of the registers, with the exception of the PC register, are not
offset by the base register as it is not determinable whether the contents are data
or addresses.

By using or not using the single quote following addresses you have the
simultaneous capability of specifying absolute or relative values.

- 16 - DEBUG

Debugging device drivers
relocated by the ATTACH
the debugger.

APPENDIX B

DEBUGGING DEVICE DRIVER. ROUTINES

presents difficulties for
command into high memory and

two reasons: the driver is
is protected from access by

To properly debug a user written device driver you should link it together with
your test program and debug it as a command, calling the entry points as
subroutines instead of using the system calls.

After a user written device driver has been tested in the "stand alone" mode
described above you can re-link it as a system device driver (using the SYSTEM
option of the LINK command) and it will be treated by the operating system as a
standard device driver.

, ;

DEBUG - 17 -

APPENDIX C

DEBUG COMMAND SUMMAllY

===

ASM <addr>
BASE [<n>[,<addr>]]
CALC [<nnnn>] [<op>] <nnnn>
DUMP [<addr>]
FILL <start>,<end>,<value>
GO [<addr>] [,<brk>] •••
INPUT <port>[,<start>,<end>]
LIST [<addr>[,<lines>]]
LOAD <fd>,[<addr>]
MOVE <start>,<end>,<to>
OUTPUT <port>,<value>I«start>,<end»
QUIT
READ <sect>,<addr>[,<count>]
REG [<reg>, <value>]
SAVE <fd>,<start>,<end>
SEARCH <start>,<end>,<value> •••
SELECT <drv>
SET <addr>[,<value>] •••
TRACE [<addr>I*][,<count>]
VERIFY <start>,<end>,<with>
WRITE <sect>,<addr>[,<count>]
.<inst>

Assemble Z80 mnemonics
Set/display base registers
Calculate values
Display memory
Fill memory with constant
Execute with optional breakpoints
Input data from I/O port
Dis-assemble memory
Load program into memory
Move data in memory
Output data to I/O port
Exit and unload Debugger
Read data from disk
Set/display Z80 registers
Save program from memory
Search memory for data
Select disk drive to be used
Set memory to value
Trace execution of program
Compare two regions of memory
Write data to disk
Execute immediate mnemonic instruction

===

- 18 - DEBUG

Reader's Comments

Name __________________________________ Date ___ / ___ / __ _
Organization --Street
City ---------------------------- State Zip

Name of manual:

Did you find errors in this manual? If so, specify with page number.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of
the software described in this manual? If not, what material is missing and where
should it be placed?

Indicate the type of user/reader that you most nearly represent:

Assembly language programmer
Higher-level language programmer (BASIC, FORTRAN, etc.)
Occasional programmer (experienced)
User with little programming experience
Student programmer
Non-programmer interested in computer concepts and capabilities
Data entry operator

Mail to: OASIS Documentation
Phase One Systems, Inc.
7700 Edgewater Drive #830
Oakland, CA 94621

