EXEC

LANGUAGE

MANUAL

SYSTEMS:-I_NQ

REFERENCE

E=E EESEE S=EE=E
e ST T £ EES=
=Es===== =

= Emasem == e

s

0

=XEC

REFERENCE

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

LANGUAGE

MANUAL

Second Edition

Revised

Documentation by: C. P, Williams'
Software by: Timothy S. Williams

i
it

it
.
lllsll |
I

p SYSTEMS, INC.

_ 77b0 EDGEWATER DRIVE SUITE 830

— OAKLAND, CALIFORNIA 94621 USA

PREFACE

This manual describes the OASIS system EXEC Language. It provides sufficiently
detailed information necessary for the use of this language product in conjunction
with the OASIS Operating System.

This manual, named EXEC , like all OASIS documentation manuals, has the manual name
and revision number (if applicable) in the lower, inside corner of each page of the

body of the manual. In most chapters of the manual the last primary sugject being
discussed on a page will be identified in the lower outside corner of the page.

Related Documentation

The following publications provides additional information reduifed in the use of
the OASIS EXEC Language:

OASIS System Reference Manual
OASIS Text Editor Reference Manual

- iii -

TABLE OF CONTENTIS
Section . Page

CHAPTER 1 INTRODUCTION G0 ® 0 ¢ 6 0 00O OO0 OO O OO O OO VOO O OO PO O SO OO OO OO OG0 O 6O OO OO 6O O COEC OO
1.1 Sgstem Cancel during EXEC eXeCULiON .cccsceessccsevcscocosossnsosccsscnscs
102 Te EXEC IPL and User‘ Logon File ® 60 & B & & & 090 O © 9 00 OO C O DO O OO OO PO OO0 OCC OO L OO

The ExECn File © 09 ® @ 6 O C Q06 8 O G O T O C O O 8BS O PO OGO RO S COO OO OO0 QOO OO S0 000 O C &0

Variables and Constants @ 00 © © ¢ 0 00 & ® OO O OO DO OO E OO D600 OO O OO OO OO OOV 60O 0O OO

Labels ©0© 0000 6©600GCO06CO0CO0O0O6060C0GCS 06066660905 0C©060©00€C60CO0029@0O9O0O©O0O0COCS®AE @300 O

OperatOPS © 00 0000000000600 0CO0OGS®60O0O00CG0Q0EO0ECO00LHO00OO00OCE660600H8OC06000GCH600C603050©0C

D o b ad d
L] e o o
=~ o =W

Comments © 00 C000 @6 0CEOO00COCO0O6E0O 000060006 0OO000OE 6000006000 0CE60000OSC6G6O0Q0CS6ECEOCOGE O

2 EXEC INSTRUCTIONS ©0 9P O 00006090000 O 0O GO0 QOO CO0OP OO0 9000 OOL 0O 6000 OGS QOO
Variable Assignment Instruction .cccccceccocceccscccccsccccocoosccccncs
BEGSTACK Instrue tion ® 20 © 0 ©® 0 OO0 0 Q600 Qe O O QS OOO o O 2 € 00O OO O Q006000 0O OO0 0OO QOO ESE
BEGTYPE Instruc tion ® 60 060000 60000960 0O0LCOO0CEEECOCO OO0 OO 00O 0 OO 00 o © o o000
CONTROL Instrue tion ©® €& 88 090 DO 0060 Q00O SO OGO O © @@ 0e 0 CeO0O00OO®0CO 0000 G000 S0 60 OO 9 C
CRT Instruc tion ® 06 60 00 C 90000 OCOOO O OO S 60O EC OO 0" ® 6 606 ¢ 00 © 08¢0 O 0 0ee e e 0 00 0e
CSI command ® 09 © 0 ¢ 0O 090 00 OEeOCE OO OCO S OO OO0 O OO SO ..0 ® 0O 2 6 © 00 ° OO OO S C 0O O Qe 0O
END Instruc tion € 08 © 0 8 8 00 0 008 ¢ 0D P OO O O E 8L O S QOO O E DS RC OO L OG0 S0 0SS DPDOC O CEO OSSO
ERROR Instr‘uc tion ® 90 08 00 9 5 S B60 O S0 I O OO SO D O B O OO CO OO OO E GO SO 0L OO e NS N eDOC S
ESC InstruCtion ® o0 9 00 0 ® 0 0 00 0 20 0020 Q@00 60 S DO O OO O OO SO0 6O OO OO S SO OSSO O SIECOE
GOTO InstrUCtion ® 8 G O 0 0O SO0 OB C OO O e OO0 S S S0 OO OO 6O OC OO 6O SO S S S S e eSO OO SO G
IF Instruc tion ® 08 € 9 0 0 00O 0T OO PO OO ODE O OO OO O OO O OO S L OO0 L0 E OO OO O G OO OGS
QUIT Instruc tion ® 5.0 0 0 00 8 0 ¢ O O 0 OO0 S OO O OO H OO e O OO C OO OO O CPO PO OO OGSO COCOTCEC RSO
READ Instr.uc tion ® 80 0 00 0 8 60 0@ 90 9O P T e S C O SO L OOCE O 6O DO OO SECEDLECE OO S OSSO OGS
REPEAT Instrue tion LR) 0. ® 0 600680 026 SOOGS0 PSSP OO OO0 OO0 0SSOSO S SO C S IOES NS
SKIP Instruc tion ©® 99 00 009 0 SO OO VOO TR OO OO P OO C O I SO0 OO S E OGO O OO0 SO eOOCESOOC S
SPACE Instruc tion ® 89 0 00 0 80 OO0 ST OO OO PO PO OO0 P 0 SO0 SO0 O B0 S 09 eSS S E SO OO0 SE OO0
STACK Instruc tion © €0 6 0 0 5 0800 8 0 00 000 S S BCELE O L O OC OO SO0 OO S S0 S OGP ec e 000
TYPE InstruCtion ©® 0 S 0 0 0 09 8 S PO O P E O E O S OO OIS NL 0O DOO 00O 0 S e E OO SO0 00 0P
UNTIL Instruc tion ® o0 0 000 é ® 9 & © 0 00 & O © P 6O O OO OSSO O OO OO OO OO OO OO OO SNCO D OE SO
WAIT Instruc tion ® ©® 99 00 OG0 O SR O OO O EC SO OE P OCT OIS IPOEOEE OO .. © © 0 8 009 OO OO OO OO OOQOES
WHILE Instruc tion ® © 0 © C 0 0 6 © QOO S L OO S B OO O O C OO 6L OO EOOC OO0 O PLOREeC OO0 O CE OO SO

Q
o
=
9
=
=)

°

e 6 6 o' 6 o o o

VIEWN =T NORNN = s et a3 s w3 a0 00~ OV N =

WN = O~ I0MNIEHEWNN—-O

o o o 2 ¢ o 6 o © & o0 ©

TOKeNnizZing ..eccececessesoccosoceoncecsssssanocesccoccscocscoescccoscooscs

TOkeniZing ® €€ €8 000000 C0CHO0 OO0 06OCEAE00E O S0CI0SE6OL0COO00O00G6006060300C0O0O0CESOC

IX A EXEC EXAMPLES ® 0 0000660000000 0000O©0OCS®EEOCQCOC 6006000066000 00CCEECECGEOAOGEEESEOCS
Example 1 AbbreViate BASIC PPOgram © 26 0600060620000 6006EE6CE0CEO0OC OO 6000
Example 2 IPLOEXEC © 0 850008 €000 008 66000600006 66600§0C0C0C0O86660600060©0666060°ECES

Example g SELECTED.EXEC © 0 00690 € 0600006 00€00000C0O0ECCOEO0SOCO0COCECEEEOSEIOGOGIEOES

5

[CEEOVHVHMHVENHVHVEHVEVTSHVHVEE SV VIVEV TS EN] 8101 V)

APPEN

Example ASMQEXEC @ 8 6 8 8 0 C 0 0 0O 0 € OO 0 C O C OO OO C O 60 600 S @S OO OO OO0 NS OO SRS PO
. Example _CLEANUP.EXEC s escecsssesshenasenscsascctrsstenscesasacase e

APPENDIX B EXEC KEYWORD SUMMARY ..000..-ocoooon.oocoooo.o.oaoooo}ooo-co:ooo.co

CONMNVIUIUL WWNINI N = e 22 O O O OVWO\OWO 000II~JOVIUT SN NN =2 b =

—d el ol cd cmad e ok ek wd d wod ook) wd ad =D cd cnd ed

g g ol od
e o

n
iy

- i¥ -

CHAPTER 1
INTRODUCTION

The OASIS EXEC Language is a process control language used to perform repetitive
functions of the operating system. It can be compared to the JCL (Job Control
Language) used on larger computers with the added capabilities of operator
interaction and conditional execution. With EXEC proErams an operator can perform
tasks with 1less chance for error and with less nowledge about the operatinﬁ
system. For example an EXEC pro%ram might be written to perform the daily dis
backups. The operator would merely type the name of the EXEC program (it might
even be executed automatically by another EXEC program) and the program would
instruct him about which disks to load, where they can be found, what to do with
them afterwards and perform the actual copying. :

The format of the EXEC command is: ~
[EXEC] fn [argl [arg2 ... [argi6]]]

Where:
fn Indicates the file name of an EXECutive procedure file.
argi Indicates the first ar§ument to be passed to the EXEC file. This‘argument’
may contain all ASCII characters excegt the space character. Only the
giist eight characters of the argumen are actully passed to the EXEC
ile.
arg2 Indicates the second argument Eo be passed to the EXEC file.

arg16 Indicates the sixteenth argument to be passed to the EXEC file.

The EXECutive procedure 1language processor executes an EXEC program as if an
operator were enterinf programs to be executed from the console keyboard with the
added ability to include conditional execution (decision processing) and iterative
execution (repeat a process several times). With this ability you can write EXEC
programs for procedures and routines that are executed frequently or for executing
a sequence of programs without operator attention.

An EXECutive procedure file is a sequential file, created by you with the system
Editor or BUILD, containing CSI commands, EXEC instructions, data for a user
program, data for another EXEC file, etc. '

The EXECutive procedure processor is an interpretive type processor in that_ the
commands and data are not analyzed until they are executed by the processor. It is
the EXEC command that invokes this processor.

The arguments, argl through argl6, are optional but when specified they are
truncated to the first ei%ht characters and passed to the EXECutive procedure
processor as command variables. An argument of a percent si%n onlﬁ.(%) indicates
that the argument is empty and is used when other arguments follow this

An EXEC file is a high level language program. Each record or line in the file is
an instruction to the EXECutive procedure processor. An EXEC instruction is
composed of various elements, discussed in subsequent sections.

1.1 System Cancel during EXEC execution

When the System Cancel key is entered from the console while an EXEC is in control
the system will cancel the current command program and display the message:

Cancel EXEC (Y/N)?

You may respond with a Y or an N. A Y response will cause the current EXEC to be
canceled returning control to the Command Stri Interpreter. An N response will
gausgtghe curr?nt EXEC to continue execution. n%The return code will be set to 254
in either case. '

1.2 The EXEC IPL and User Logon File

An important feature of OASIS is the automatic execution of an EXEC program when
the system is turned on or when an operator logs on to a new account.

argument.

As explained in the chapter on "System Communications™ in the OASIS . System
Reference Manual, the OASIS Operating System will execute an EXEC program named
IPL.EXEC after the date and time is entered during initial system start-up. This
EXEC program file may belong to the IPL account (or its synonym) or the system
account and should contain the sequence of commands that you want executed when the

EXEC Rev B -1 -

-————

EXEC LANGUAGE REFERENCE MANUAL

system is turned on. Normally these commands would include a LOGON to the account
that contains the programs and data to be processed at the start of a day. When no
IPL account exists the system will ask you to LOGON to an account. .

When an account is first 1o%§ed on, the system will search that account's directory
for an EXEC file with the le name equal to the account name. If a file is found
it will be executed automatically, similar to the IPL.EXEC file during system
start-up. - For more information refer to the OASIS System Reference Manual chapters
on "System Communication" and the "LOGON Command". :

1.3 The EXECn File

An OASIS system disk contains a file named SYSTEM.EXEC1., This file is only
required by the EXEC language processor. Whenever an EXEC program executes another
system or user program (including another EXEC program) the variables currently in
use are saved in the EXEC1 file.

If your system disk does not have an EXEC1 file you may create one, using the
CREATE command. The EXEC1 file is a direct file with records of length 512 bytes
each, Each record corresponds to one level of nesting. Up to 255 records may be
specified when the file is created. :

Multi-user OASIS note: The SYSTEM.EXEC1 file is named SYSTEM.EXEC1, SYSTEM.EXEC2,
etc., one for each user partition.

1.4 Variables and Constants

A constant in an EXEC program is an unquoted string, not preceded by an ampersand
character (&). If a constant contains only numeric characters then it is a numeric
constant and has a numeric value. When a constant contains any non numeric
characters then it is a string constant and has no numeric value.

An EXEC programmer has three forms of variables available to him. These three
forms include true variables (value can be changed durin% program execution by the
program), command variables value determined by the Command String Interpreter
when the EXECutive procedure is invoked), and reserved variables (value determined
by conditions outside of the program).

True variables are identified by an ampersand followed by a alphabetic character,
optionally followed by alphanumeric characters. The number of characters in a true
variable name is technicall¥ unlimited, although the first eight characters
(including the ampersand) must be unique. True variable names may not be the same
as any of the EXEC keywords. The value of a true variable is determined by an
assignment or READ instruction. Only sixteen true variables may be in use in any
one EXEC program. Exceeding this limit causes a symbol overflow error.

Command variables are identified by an ampersand followed by one or two digits.

- The value of command variables is determined by the Command String Interpreter and

may not be changed during the execution of the EXEC program. The value of a
specific command variable is determined by a one to one relation with the arguments
in the EXEC command as defined in the syntax above. For instance &1 has the value
of the first argument, &3 has the va{ue of the third argument. There are only
sixteen (16) command variables available to the programmer. The value of a command
variable that has no matching argument (that is, fewer arguments were entered than
the number of this command variable) is null or empty.

Reserved variables are identified by their reserved names. The value of a reserved
variable is determined differently for each reserved variable but may not be
changed by the program itself.

&INDEX Numeric value indicating the number of command variables.

&LINE gumgric value indicating the ATTACHed linesize of the console
evice.

&NULL String value indicating an empty string (length = 0).

&PAGE gumgric value indicating the ATTACHed pagesize of the console
evice,

&RETCODE Numeric value indicating the system return code. This value is
set by each program executed.

-2 - EXEC Rev B

CHAPTER 1: INTRODUCTION

Examples:
ABCD String constant
TDEDWEFD String constant
1245 Numeric constant
y Numeric constant
124 Numeric constant
&VALUE , True variable
&A True variable
&Y o Command variable
&EDIT True variable ,
&INDEX Reserved variable .
&RESERVED True variable (Only &RESERVE is used)
&156 Invalid
&RETCODE Reserved variable
1.5 Labels

An EXEC program may have labels to be used as comments or as a reference point for
branching instructions. A 1label is identified by a negative sign (-) followed by
an alphabetic character and optionally followed by alphanumeric characters. The
lgng? of a label name is limited to eight characters (including the negative
sign). ;

Labels, when used, must start in column one of the 1line (no leading spaces other
than the single space following a line number).

Examples:

-BEGIN

-END

~-0PTION1

-BEGININPUT Causes an error
1.6 Operators

The EXEC language allows a minimal set of arithmetic and comparison operations to
be performed. To perform an operation an operator must be used. There are three
forms of operators: numeric operators, string operators, and comparison operators.

A numeric operator indicates that arithmetic is to be performed between two
variables or constants. The value of the variable or constant must be numeric in
type. The valid numeric operators include:

+ (addition)

- (subtraction)

*# (multiplication)
/ (division)

The string operators available in the EXEC language include:

écxgrtical bar concatenate two variables or constants

concatenate two variables or constants

&SUB - substrin% of following variable

&TYP - type of following variable (Alpha or Numeric)
&LIT - following characters are not to be tokenized
&LEN - length of following variable

Numeric and string operators are only allowed in the assignment instruction.

Comparison operators abe used between two variables or constants to indicate a
relationship. Comparison operators are onl allowed in the &IF, &WHILE, &UNTIL
instructions. There are six comparison operators:

EQ or = Equality

NE or <> Not equal

LT or . < Less than

GT or > Greater than

LE or <= Less than or equal

GE or >= Greater than or equal

EXEC Rev B : -3 - Operators

. EXEC LANGUAGE REFERENCE MANUAL
Relations allowed in these instruction must be simple relations:
| <variable>}<constant> <operator> <variable>!<constant>
In order to test a complex relationship the programmer‘must use the assignment
%g:%gggg%ggs.to create a single value for an <§xpression or use multiple &IF

Relational expressions may use two reserved keywords that may not be used
elsewhere. These keywords are &* and &$.

&® Keyword

{?g)%* keyword is a variable indicating "any of the command variables (&1 thru

&$ Keyword o :
E?g)§$ keyword is a variable indicating "all of the command variables (&1 thru

Examples:

&IF &A GT 5 &GOTO -LABEL1

&IF &INDEX EQ 0 &GOTO -ERROR

&IF &RETCODE NE 0 &TYPE Error in last program.
&IF &VAR = &NULL &IF &A = &NULL &QUIT

The following instruction tests_all of the command variables to determine
if any of them are equal to the literal PRINT.

&IF &* = PRINT &OUTDEV = PRINTER1

The following instruction tests all of the command variables to determine
if they are all unequal to a left parentheses. ’

&IF &$ NE (&SKIP 4
1.7 Comments
Comments may be inserted in an EXEC program by using the semi-colon (;) character.
Comments may be placed on the same line as an instruction with the exception of the
instructions:. &CONTROL, &TYPE, and assignment instruction.
It is germissible to use spaces at the beginning of a line (except lines defining

labels) or between tokens of an instruction to make the program easier to read but
tabs may not be used.

Comments : - - : : EXEC Rev B

CHAPTER 2
EXEC INSTRUCTIONS

The EXEC language has only a few instructions available to it but taken with the
fact that all of the OASIS commands and user written programs may be executed from
the EXEC environment the language is very powerful.

The following instructions are presented in alphabetic sequence.

It is important to keep in mind that the space character is a delimiting character
and may not be used as part of a variable name or contents.)

2.1 Variable Assignment Instruction

The assignment instruction allows {ou to change or set the value of a true
variable. The format of the instruction is:

[line #] [label] true-variable = expression
Where: '

true-variable Indicates any valid true variable name as defined previously.

expression Indicates any valid expression. Since this is the only instruction that
allows an expression it will be defined here:

<variable>{<const> [<numeric operator)> <expression>] ...
or
<variable>{<const> [<string operator> <variable>}!<const>]

The expression on the right side of the operator must match in type to the variable
or constant on the left side of the operator.

Any of the numeric or string operators may be used but they must be separated from
the other elements by at least one space.

Any arithemetic performed is in signed binary integers. The range of value for a
numeric expression is =32768 to 32767. Expression exceeding this range will be
converted to a value within the range by modulo arithmetic. (32770 is converted to
3, =32770 -is converted to +32766 etc.) All sub-expressions are computed,
integerized and converted to moduio 32768 Dbefore remaining expressions are
~computed. This means that 1024 * 64 + 1 is equal to 1. (1024 ¥ 64 = 65536, 65536
modulo 32767 = 0.)

&CAT Keyword
The &CAT keyword may be used in an assignment instruction to combine two string
variables together. Optionally the vertical bar character (|) may be used. The
format of an assignment instruction using the &CAT keyword is: :

{true var)> = &CAT <var> <var>

or i

~ <true var> = <var> | <var>
&LEN Keyword ,
The &LEN keyword may be used in an assignment instruction to determine the length
of the contents of another variable. The format of an assignment instruction using
the &LEN keyword is:

{true var> = &LEN <var>

The <true var> will contain a numeric value indicating the length of the contents
of <var>. The &LEN keyword must precede a variable name and only one variable name
may be specified.
&LIT Keyword

The &LIT keyword may be used in an assignment instruction before a string to
indicate that the string is not to be tokenized. This is especially useful when
the string 1looks 1like a reserved variable name. The format of an assignment
instruction using the &LIT keyword is:

EXEC Rev B -5 - LIT

EXEC LANGUAGE REFERENCE MANUAL
{true var> = &LIT <{string>
&SUB Keyword

The &SUB keyword may be used in an assignment instruction to access a portion of a
xariabée. or constant. The format of an assignment instruction using the &SUB
eyword is:

<{true var> = &SUB <token> <1st char> [<last char>]

When the &SUB is evaluated the token following is tokenized. The resulting string
is then used - the characters between the <1st character> and the <last character>
are extracted and assigned to the <true variable>. When <last character> is not
sgecified the characters from <1st character> position through the end of the
string are assigned to the <true variable>.

&TYP Keyword

The &TYP keyword is used in an assignment instruction to determine the variable
type of a variable. The format of an assignment instruction using the &TYP keyword
is: ; _

<true var> = &TYP <var>

The <var> is evaluated and the variable type (A or N) is assigned to the <true
variable>.

Examples:

&A = ABCDEFGH
&ALPHA = &A | EFGH

&A1 = &SUB &ALPHA 3 4 &A1 receives 'CD!
&A2 = &LEN &ALPHA &A2 receives an 8§
&X = &TYP &ALPHA s &X receives 'A' (alpha)
&BETA = &KAPPA + 123 / &DELT
2.2 BEGSTACK Instruction

The BEGSTACK instruction allows you to to create lines of data to be used by
programs executed from the EXEC program. The format of the instruction is:

[line #] [label] &BEGSTACK [LIFO!FIFO]

&A receives '"ABCDEFGH!
&ALPHA receives 'ABCDEFGHEFGH'
which is tokenized to 'ABCDEFGH'

“wewewewawse

Where:
label Indicates any valid label. _
LIFO Indicates that the 1lines of data following the instruction are to be

placed on the stack in a Last-In-First-Out manner.

FIFO Indicates that the 1lines of data following the instruction are to be
plgged on the stack in a First-In-First-Out manner. This is the default
option.

A stack may be created using both LIFO and FIFO elements by using multiple
BEGSTACK or STACK instructions.

The BEGSTACK instruction is followed by the lines of text or data that is to be
placed on the stack. The data is placed on the stack with no analysis (that is, if
a variable name is specified then the variable name is placed on the stack and not
the contents of it). The data is terminated with the &END instruction.

The information that is placed in the stack by this instruction (or the &STACK
instruction discussed later) is accessible by the next program that is executed by
this EXEC program. Programs executed from the EXEC environment that require
console keyboard input will receive any data in the stack instead of the keyboard.

After the information stored in the stack has been retrieved by a program, future
requests for console input will receive data from the keyboard directiy. Any
information not retrieved from the stack will be lost when the program is
terminated and control returns to the EXEC program.

BEGSTACK -6 - EXEC Rev B

’ CHAPTER 2: EXEC INSTRUCTIONS
2.3 BEGTYPE Instruction

The BEGTYPE instruction allows you to display informaﬁion on the console display.
The format of the instruction is:

[line #] [label] &BEGTYPE

The BEGTYPE instruction is followed by the 1lines of information that are to be

displayed on the console display. Similar to the BEGSTACK instruction, the data is

gott an%;yzed before display and the information is terminated with the &END
nstruction.

Each line of information following the BEGTYPE instruction is displayed on a
separate line of the console, one after the other. ' ’

2.k CONTROL Instruction

The CONTROL instruction‘allows you the ability to turn on or off the display of any
commands executed from the EXEC program. The format of the instruction is:

[line #] [label] &CONTROL ON | OFF | TRACE | STACK | NOSTACK

Where:

ON Indicates that CSI commands executed from the EXEC program are to be
displayed on the console. This is the condition that exists when the EXEC
program is first entered.

OFF. Indicates that CSI commands executed from the EXEC program are to be

_ gxgquidd"silently", that 1is, the display of the command itself is to be
inhibited. .

TRACE Indicates that all CSI commands and EXEC instructions are to be disglayed
on the console after tokenization, before execution. The line number of
EXEC instruction is displayed surrounded with angle brackes <> followed by
the result of the execution of the instruction.

STACK Indicates that information retrieved from the stack is to be displayed on
the console, just as if it had come from the keyboard. This is the
default condition when the EXEC program is first entered.

NOSTACK Indicates that information fetrieved from the stack is not to be displayed
on the console., In addition, when information is in the stack all output
to the console device is suppressed.

2.5 CRT Imnstruction
The CRT instruction allows you to position the cursor on the console output device
to any position or to perform screen control functions. The format of the
instruction is:
[line #] [label] &CRT <column# variable> <line# variable)
or
[1line #] [label] &CRT <variable>|<constant)>
Where:

column# variable Contains the value of the column number that you wish the cursor
positioned to. This must be a numeric value.

line# variable Contains the value of the line number that you wish the cursor
positioned to. This must be a numeric value. Caution: addressing a line
greater than the screen actually allows produces unpredictable results.

variable Contains the screen. control function to be performed. The specific
functions allowed vary from terminal to terminal and are controlled by the
class code that the console was ATTACHed as.

constant Is the literal specifying the screen control function to be performed.

EXEC Rev B -T = CRT

EXEC LANGUAGE REFERENCE MANUAL

The various screen control functions allowed by the system include the following:

HOME Move cursor to upper left corner
CLEAR Clear screen
EOS Erase to end of screen
EOL Erase to end of line
UP Move cursor up one line

.~ DOWN Move cursor down one line
LEFT Move cursor one position to the left
RIGHT Move cursor one position to the right
BELL Sound console bell/buzzer
IL Insert blank line
DL Delete line
IC Insert blank character
DC Delete character

_EU Erase screen, unprotected
PON Following charcters are to be screen protected
POFF Following charactes are not screen protected
KON Keyboard unlock
KOFF Keyboard lock
FON Format on
FOFF Format off
BON Blink mode one
BOFF Blink mode off:
RVON Reverse vidio on
RVOFF Reverse vidio off
ULON Underline on
ULOFF Underline off

Examples:

&A = 5)
&CRT 15 &A s Position to line 5, column 15
&CRT 3 4 ; Position to line 4, column’3 i’
&CRT &A &A 3 Position to line 5, column 5
&CRT CLEAR ; Clear screen

2.6 CSI command -

All OASIS commands and user written programs may be executed from an EXEC program.
The format of the CSI command is:

[line #] [label] <command-text>

The <command-text> must specify any parameters or ogtions desired. Before the text
specifying the command is passed to the Command String Interpreter it is analyzed
for variables, and substitutions are made as applicable.

No restriction is placed on the programs that may be executed in this manner. 1In
fact the program may specify another EXEC program to be executed., This is called
nesting. The maximum level of "nestin%" of EXEC program calls is determined by the
number of records that were created for the SYSTEM.EXEC1 file, This maximum, as
stated earlier, is 255. When an EXEC program is executed in this manner _the
current program will be suspended, control is transferred to the specified EXEC
program, and, upon termination of that program, control returns to the "calling"
Ero%ram. The current &CONTROL status is retained when the called EXEC is executed.
f that EXEC changes the &CONTROL the change will be in effect until changed again

Examples:
LIST FILE DATA S (PRINT
BASIC &1

FILELIST * &A &B (&C
FILELIST &A (FN

It is best to use the normal, complete spelling of command names in an EXEC due to
the reduction in search time. ,

2.7 END Instruction

The END instruction provides a means of terminating the data list following the
BEGTYPE or BEGSTACK instruction. The format of the instruction is: '

[1ine #] [label] &END
The END instruction must appear on a line by itself and must be used to terminate
END -8 - EXEC Rev B

CHAPTER 2: EXEC INSTRUCTIONS
the data lines of a BEGSTACK or BEGTYPE. '
2.8 ERROR Instruction -

The ERROR instruction allows {ou to specify an instruction to be executed in the
ivent that an error is detected by a CSI command. The format of the instruction
s: v

[line #] [label] &ERROR <instruction>
Where:

instruction Indicates any valid EXEC instruction described in this manual.
Omitting <instruction> indicates that the system return code will not

cause any EXEC instruction to be executed when the return code is
non-zero. - :

When the ERROR instruction is executed the <instruction>, when specified, is saved.
After any CSI command is executed by the EXEC the system return code is tested and,
if non-zero the saved instruction is automatical executed. This has the same
result as if the rogram had an IF instruction following each CSI command, that
tested the &RETCODE reserved variable for a non-zero condition. The ERROR
instruction has the added versatility of chan%ing the instruction to be executed
when an error is detected for all subsequent CSI commands.

Examples:

&ERROR &GOTO -LABEL
gERROR &IF &RETCODE GT 200 &GOTO -LABEL

ERROR
&ERROR &TYPE Error &RETCODE detected -- Program aborted!
2.9 ESC Instruction)

The ESC instruction allows you to perform the actions of the system control kegs
(thgse ggat _have a lead in of ESC) from within an EXEC program. The format of the
instruction is: ‘ -

[line #] [label] &ESC <function-character> [ON|OFF]
Where:

fundtion-character Indicates the 1literal character or variable that contains the
character.to be given to the operating system as if it had been typed from
the console keyboard following an escape character.

ON | OFF Indicates that the function is to be set to the specified status
irregardless of its current status. (&ESC P OFF will force the printer
echo function to. the off status.)

The command operates just as if the function were performed from the keyboard.
This means that execution of the instruction &SC P causes the status of the
printeg eghg switch to be changed from OFF to ON or ON to OFF, depending upon the
current status.

2.10 GOTO Instruction,

The GOTO instruction allows you to branch to another portion of the EXEC program,
The format of the instruction is:

[1ine #] [label] &GOTO label
Where:
label Indicates a valid label in the progranm.
Examples: ’
&GOTO -BEGIN
-LOOP1 &GOTO -RESTART

&GOTO -POINT1
&GOTO -LABEL10

EXEC Rev B | -9- | GOTO

EXEC LANGUAGE REFERENCE MANUAL
2.11 IF Imnstruction

The IF instruction allows you to test variables and, depending upon the results of .
the test, execute an instruction. The format of the instruction is:

[line #] [label] &IF <relation> <imstruction>
Where:

relation Indicates a simple relation as described previously.
instruction Indicates any of the EXEC instruction described in this section.

The IF instruction evaluates the relation and, if the relation is true, executes
the instruction specified. If the relation is false the instruction on the
following line is executed and the instruction following the relation is ignored.

2.12 QUIT Iastruction

The QUIT instruction allows you to specify the termination of the logic in an EXEC
program. The format of the instruction is:

[line #] [label] &QUIT [value]
Where:

value Indicates the optional value that the return code is to be set to. If
this value is not specified the return code is set to zero. This value
may be a numeric literal or any variable with numeric contents.

The QUIT instruction unconditionally terminates execution of the current EXEC
program. If the EXEC pro%ram was invoked from a keyboard command then control will
return to the Command String Interpreter. If the EXEC program was invoked from
another EXEC then control will return to the instruction following the one invoking
this program in the calling program.

2.13 READ Instruction

The READ instruction allows ¥ou‘to request input from the keyboard during the
execution of an EXEC program. he format of the instruction is:

[line #] [label] &READ [true-variable] ...

When the READ instruction is encountered execution of the pro%ram is interrupted.
The EXEC prompt character (:) is displayed on the console at the current cursor
position and data is accepted from the keyboard. If any data is currently in the
stack, whether loaded by this EXEC or a previous EXEC "calling" this program, the
required information will be retrieved from the stack. . Each element of the data
entered is truncated to eight characters and assigned to the list of variables in a
one to one relationship. When more variables are specified than data entered the
"extra" variables are set to null or empty. When more data is entered than
variables specified the "extra" data is ignored. The elements of the data entered
must be separated by at least one space and terminated by a carriage return.

When the READ instruction doesn't specify a variable for the input to be assigned
to, the data entered will be executed as if were part of the EXEC program.

Examples:
&READ &ALPHA &BETA &CHARLIE &DELTA
&READ &NEVADA
&READ &A &B
&READ
2.13 REPEAT Instruction

The REPEAT instruction, used in conjunction with the UNTIL or WHILE instruction,
provides a method of loop control. The format of the instruction is:

[line #] [1label] &REPEAT

When the REPEAT instruction is executed control of the program is transferred to
the first UNTIL or WHILE instruction that precedes the REPEAT instruction.

For examples of the REPEAT instruction see the UNTIL: and WHILE instructions.

REPEAT - 10 - o EXEC Rev B

CHAPTER 2: EXEC INSTRUCTIONS
2.15 SKIP Instruction
The SKIP instruction allows you to "jump relative™ to the current instruction.
This instruction is usually used as the instruction in an IF instruction or the
instruction following the IF instruction. The format of the instruction is:

[line #] [label] &SKIP count

Where:
count Indicates the number of lines, relative to the current instruction, that
are to be skipped.
Examples:
&SKIP 1
&SKIP 4
&SKIP -2

2.16 SPACE Instruction

The SPACE instruction allows you to display multiple carriage return, line feeds on
the console, The format of the instruction is:

[line #] [label] &SPACE [count]

Where:
count Indicates the number of lines that are to be advanced on the console. If
count is omitted one line will be advanced.
Examples:
&SPACE 5
&SPACE &A
&SPACE

2.17 STACK Instruction

The STACK instruction allows you to place one line of analyzed data on the stack.
The format of the instruction is:

[line #] [label] &STACK [FIFO{LIFO] data

Where:

FIFO Is as described for BEGSTACK.

LIFO Is as described for BEGSTACK.

data = Indicates the information to be placed on the stack. This data may
include constants or variables. Each variable encountered by the EXEC
prgcessor during analysis of the data will be replaced by its current
value.

Examples:

&STACK HELLO
&STACK LIFO &A &BETA HI
&STACK

2.18 TYPE Instruction

The TYPE instruction allows you to display one 1line of analyzed data on the
console. The format of the instruction is:

[line #] [label] &TYPE data ... [\]

Where:
data Is as described for the STACK instruction.
\ Indicates that the data is to be displayed with no automatic carriage

return, line feed following. This option is usually used when the
displayed text is the prompting message for a READ instruction.

EXEC Rev B -1 - | TYPE

EXEC LANGUAGE REFERERCE MANUAL
Examples:

&TYPE This is a message.

&TYPE This is another message &A

&TYPE And so is this

&TYPE &ALPHA &BETA HELLO &CHARLIE &ETC

2.19 UNTIL Instruction

The UNTIL instruction provides a method for conditional loop control. The format
of the instruction is:

[line #] [label] &UNTIL <relation>
Where:

relation Is the same as for the IF instruction.

When the UNTIL instruction is executed the <relation)> is analyzed and, if false,
the intructions following are executed. When the relation is true, the instruction
following the next REPEAT instruction is executed.

It is easiest to remember the function of the UNTIL instruction if you think of it
as: 'execute following instruction until <relation> is true’'..

Example:

&A = 123

&UNTIL &A LT 100
&A = &A - 1
&TYPE &A
&REPEAT

&TYPE Done

©
©

°

The above example wili execute the decrement and type instructions twenty-four
times; until the variable &A is less than one hundred, at which point the literal
'Done' will be displayed on the screen.

2.20 WAIT Instruction

The WAIT instruction causes the program to pause until the operator types a key.
The format of this instruction is:

[line #] [label] &WAIT

When this instruction is executed it invokes the same grocess that the system
programs use when displaying information to the screen., When encountered by the
EXEC processor an up arrow character (“) is displayed at the bottom left corner of
the screen and processing is suspended until the operator enters ackeK. The
function of this instruction may be suppressed if the Console Screen-wait key has
been used to disable the screen wait function (see System Control Keys in the
System Reference Manual). '

2.21 WHILE Instruction

The WHILE instruction provides an alternate means of loop control. The format of
the instruction is:

[1line #] [label] &WHILE <relation>
Where:
relation Is the same as for the IF instruction.
When the WHILE instruction is executed the <relation> is analyzed and, if true
the followin% instructions are executed. When the <relation> is false contro
transfers to the instruction immediately following the next REPEAT instruction.

It is easiest to understand the function of the WHILE instruction if you think of
it as: 'execute following instructions while the <relation> is true’'.

Example:

WHILE) -12 - EXEC Rev B

CHAPTER 2: EXEC INSTRUCTIONS

&WHILE &RETCODE = 0
&TYPE Command to execute
&READ

&REPEAT

The above example will ask the operator for a command name to execute and execute
that command as 1long as the system return code is zero. Notice that the READ
instruction is not followed by a variable name. In this situation the data read
from ttge console (or stack, 1if present), is treated as an EXEC instruction, and
executed.

2.22 Tokenizing

The EXEC language processor analyzes each instruction line in a right to left
manner, reducing each element to the most elementary form. This process of
reduction is called tokenizing. An element is tokenized until a space is
encountered or column one is encountered. For example, if &A1 contains a 25, &B2
contains 1, and &C contains 2, the element &A&B&C is tokenized in the following
manner: ‘

&A&B&C &C is replaced with 2
&A&B2 &B2 is replaced with 1
gé1 &A1 is replaced with 25

The end result of a tokenized element is always truncated to eight characters.
This process is performed on all elements of an instruction. The following
instructions will execute the BACKUP command:

0010 &A = BACKUP
0020 &A

The following example will also execute the BACKUP command:
0010 &A1 = BACKUP
0020 &B = 1
0030 &A&B
The &A&B element is.PAGE 6
2.23 Tokenizing
The EXEC 1language processor analyzes each instruction line in a right to left

manner, reducinf each element to the most elementary form. This process of
reduction is called ’

EXEC Rev B - 13 = Tokens

EXEC LANGUAGE REFERENCE MANUAL

(This page intentionally left blank)

Tokens - 13 - EXEC Rev B

APPENDIX A
EXEC EXAMPLES
A.1 Example 1 - Abbreviate BASIC Program

0010 &BEGSTACK
0020 CHANGE /PRINT/PRI/* %

TOP
0040 %E%NGE /GOTO/GO/* *
0060 %g%NGE /GOSUB/GOS/* *
0030 CHANGE / = /=/% #

TOP
0100 CHANGE / //%* %

TOP
0120 PAGE

(&END
0140 EDIT &1 &2 &3
0150 &QUIT

>EXEC EXAMPLE1 PROGRAM1 BASIC A

The above example will perform an edit of the BASIC program "PROGRAM1.BASIC:A",
changing all occurrences of PRINT to PRI, all occurances of GOTO to GO, etc. After
the five global changes have been made to the file the first page is displayed. At
this time the Edit program will have exhausted the stack and further input will
come from the keyboard.

A.2 Example 2 - IPL.EXEC

0010 &CONTROL OFF

0020 =AGAIN ’
0030 RUN MAINPROG.BASIC:S
0040 &GOTO -AGAIN

The above example 1is a typical system start EXEC program that executes a BASIC
application program until the system cancel key is used or the system is turned
off. This type of a program will "isolate" the user from using the OASIS commands.
Alternatel{ his program might have displayed a list of options for the user such
as making backups of the application diskettes, etc.

A.3 Example 3 - SELECTED.EXEC
>FILELIST * BASIC (EXEC
>EXEC SELECTED LIST (PRINT

This example will create an EXEC program containing command variables and file
descriptions of all of the BASIC programs on the attached diskettes (see the
FILELIST command). When the EXEC pro%ram is executed with the above specification
all of these BASIC program files will be listed on the printer. "LIST" replaces
all &1, "(" replaces all &2, "PRINT" replaces all &3. Similarly a group of files
could be copied, erased, renamed, etc. The EXEC program created from the FILELIST
command is normaily edited to remove or add file descriptions or EXEC instructions.

EXEC Rev B - 15 -

EXEC LANGUAGE REFERENCE MANUAL

A.4 Example 4§ - ASM.EXEC
The following example is a listing of the ASM.EXEC, distributed with the O0ASIS
operating system. Its purpose is to assemble and link an assembly language source
program using the MACRO and LINK commands.
>LIST ASM.EXEC:S

ASM procedure

Copyright (C) 1979 b
Timothy S. Williams y

[=]

(]

[w]
ewvewowewowe

0070 &IF &INDEX EQ 0 &GOTO ~NOFILE
0030 gIF &INDEX EQ 1 &IF &1 EQ HELP &GOTO -HELP

0090 &OPT = 0

0100 &IF &1 EQ (&GOTO -NOFILE

0110 &FN =

0120 &IF &INDEX EQ 1 &GOTO -ASM
0130 &IF &2 EQ (&GOTO ~OPTASM

0130 &FT = &2

0120 &IF &INDEX EQ 2 &GOTO -ASM
0160 &IF &3 EQ (&GOTO -OPTASM

0150 &FD ="&3

0180 &IF &INDEX EQ 3 &GOTO -ASM
0190 -OPTASM

0200 &CT =

0210 -LO0P1

+ 1
0230 &IF &CT GT &INDEX &GOTO -ASM
0240 &Ego%gCT NE (&GOTO -LOOP1

0260 &CT = &CT + 1

0270 &IF &CT GT &INDEX &GOTO -ASM
0280 &IF &&CT EQ / &GOTO -ASM
0290 &OPT = &OPT + 1

0300 &OPT&OPT = &&CT

0310 &ﬁgﬁo =LO0P2

0330 &PAREN =
0340 &IF &OPT NE 0 &PAREN = (

0350 MACRO &FN &FT &FD &PAREN &OPT1 &0PT2 &OPT3 &OPT4 &OPT5 &OPT6 &OPTT &OPTS
0360 &IF &RETCODE NE 0 &QUIT &RETCODE

03 o-&ggT&* EQ NOOBJ &QUIT

0390 &CT = 1

0400 -LOOP3

0410 &CT = &CT + 1

0420 &IF &CT GT &INDEX &GOTO -LINK
0430 &Igo&ﬁCT NE /7 &GOTO -LOOP3

0450 &CT = &CT + 1

0460 &IF &CT GT &INDEX &GOTO -LINK
0470 &OPT = &OPT + 1

0480 &OPT&OPT = &&CT

0490 &GOTO -LOOPY

0510 &IF &OPT EQ 1 &IF &OPT1 EQ NOLINK &QUIT
0520 &IF &OPT LT 2 &GOTO -NORE

0530 &IF &OPT1 NE RENAME &GOTO ~NOREN

0540 &FN = &QOPT

0550 ERASE &FN OBJECT ® (NOQU

0560 RENAME &1 OBJECT #* &FN = (NOQUERY
0570 &CT =

0580 &CT2 =

0590 &OPT = &OPT -2

0600 ~LOOPS

0610 &CT = &CT + 1
0620 &CT2 = &CT2 +
0630 &IF &CT GT &OPT &GOTO -NOREN
0640 &OPT&CT = &OPT&CT2
0650 &GOTO -LOOP5 ‘
0660 -NOREN
06%0 &PAREN =
&IF &OPT NE 0 &PAREN = (

- 16 - A EXEC Rev B

APPENDIX A: EXEC EXAMPLES

0690 &CT = &OPT
0700 -LOOP6
0710 &CT = &CT +
0720 &IF &CT GT 9 &GOTO -LINKIT
0730 &OPT&CT =
0740 &GOTO -LO0P6
0750 =-LINKIT
0760 LINK &FN &PAREN &OPT1 &OPT2 &OPT3 &OPT4 &OPT5 &OPT6 &OPT7 &OPT8 &OPT9
0770 &IF &RETCODE NE 0 &QUIT &RETCODE
0780 ERASE &FN OBJECT *#* NOQUERY
0790 &QUIT .
03800 =NOFILE
0810 &BEGTYPE

0820 Filename missing!

0840 2355 ASM HELP to display syntax.
0860 &QUIT 255
HELP

0830 &BEGTYPE
0890 Function: To assemble and link a source program,

0910 Syntax: AsSM fn [ft [fd 1] [(macro options [/ link options])]

0920 &END
0930 &QUIT

EXEC Rev B - 17 -

EXEC LANGUAGE REFERENCE MANUAL

Example 5 - CLEANUP.EXEC

&CONTROL OFF
; Default drive is * (all)
4DRV = *

&IF &INDEX EQ 0 &GOTO -DEFAULT
&IF &INDEX EQ 1 &IF &1 EQ HELP &GOTO -HELP
&IF &INDEX GT 1 &IF &1 EQ HELP &GOTO_-ERROR

&IF &1 NE & &DRV = &1
§%EX&1 gE &IF &INDEX EQ 1 &GOTO -DEFAULT

-&WHILE &IDX LT &INDEX

&IDX = &IDX + 1
&IF &&IDX EQ (&GOTO -OPTIONS
%REPEAT -

0
. &TYPE Syntax error
&QUIT

OPTIONS
&WHILE &IDX LT &INDEX
&IDX = &IDX + 1
&IF &OPTION EQ 1 &GOTO -NAMES
&IF &OPTION EQ 2 &GOTO -TYPES
&IF &&IDX EQ NAME &GOTO -NAME
&IF &&IDX EQ TYPE &GOTO -TYPE

H
; One or more options specified
8

&GOTO ~CONTINU
; Option NAME specified
ZNAME
&OPTION = 1
&IDX = &IDX + 1
; Still in option NAME
ZNAMES
&IF &IDX GT &INDEX &QUIT
&IF &&IDX EQ TYPE &GOTO -TYPE .)
ERASE &&IDX * &DRV (NOQUERY) ; Erase files with NAME
&GOTO ~CONTINU .
f Option TYPE specified
ZTYPE
&0OPTION = 2
&IDX = &IDX + 1
{ Still in option TYPE
ZTYPES
&IF &IDX GT &INDEX &QUIT
&IF &&IDX EQ NAME &GOTO -NAME
ERASE * &&IDX &DRV (NOQUERY) : Erase files with TYPE
-CONTINU
&REPEAT
&QUIT
+ Erase only BACKUP files ,
-DEFAULT
ERASE * BACKUP &DRV (NOQUERY)
&QUIT
-HELP
&BEGTYPE
Function: Erase groups of files from disk(s)
Syntax: CLEANUP [fd] [(options[)]]
Where:
fd - Drive to be cleaned (default = all)
Options:
NAME Followin% arguments are names to be erased
multiple file names may be specified.

EXEC Rev B

‘ o APPENDIX A: EXEC EXAMPLES
V 0750 ° TYPE Following arguments are types to be erased
0760 multiple file types may be specified.

0770 v
0 ﬁo When no options are specified all BgCKUP files will
0790 be erased from the specified disk(s).
03800 &END

0810 &QUIT

EXEC Rev B -19 -

(This page intentionally left blank)

, -20- . EXEC Rev B

&BEGSTACK
&BEGTYPE
&CAT

&CONTROL

&CRT
&END
&ERROR
&ESC
&GOTO .

&IF
&INDEX
&LEN
&LINE
&LIT

&NULL
&PAGE
&QUIT
&READ

&REPEAT
&RETCODE
&SKIP
&SPACE
&STACK
&SUB
&TYP
&TYPE
&UNTIL
SWAIT
&WHILE
&*

&$

Function

igacks the lines following in the console input buffer without tokenizing

emo ’) :

gxpes the lines following on the console output device without tokenizing
em. : ' i

Indicates a concatenation of two variables or tokens without the result

being tokenized. o :

Sets switch indicating whether commands executed are displayed on the

console device. -

Positions cursor on console device or perform screen function.

Terminates the data following a &BEGSTACK or &BEGTYPE.

Designate instruction to be executed in event of error.

Generates System Control Key sequences.

Unconditionally branches to a label in the EXEC file.

Tests variables and/or arguments.

Variable indicating the number of arguments passed to the EXEC processor.

Computes value of the length of the variable following.

Variable containing the value of the console line length.

Causes the following character to not be evaluated as a token.

Characters are truncated to eight. R

Variable containing no characters. x

Variable containing the value of the console page length.

Transfers control out of the current EXEC file.

Accepts input from the console input device. The data read is assigned

to the internal variables.

Execute previous loop again (used in conjunction with UNTIL or WHILE).

Variable indicating the return code passed to the EXEC grocessor.‘

Unconditionally branches to a line relative to this statement.

T{pes blank lines on the console output device.

Stacks a line in the console input buffer. Line is tokenized.

Indicates a sub-string of a variable or token.

Causes the variable type of the variable following to be determined.

Prints a line at the console output device. Line is tokenized.

Execute loop until _condition is true. ‘

Causes program to pause until operator responds.

Execute loop while condition is true. : .

Indicates a test of an{ tokens matching specified comparison.

Indicates a test of all tokens matching specified comparison.

EXEC Rev B - 21 -

