
OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

EXEC
LANGUAGE
REFERENCE·
MANUAL

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

EXEC
LANGUAGE
REFERENCE
MANUAL

Second Edition

Documentation by: C. P. Williams
Software by: Timothy S. Williams

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA
7700 Edgewater Drive, Suite 830

Oakland, California 94621
Telephone (415) 562-8085

TWX 910-366-7139

Second edition, first printing: March, 1980

PROPRIETARY NOTICE

The software described in this manual is a proprietary product developed by Timothy
S. Williams and distributed by Phase One Systems, Inc., Oakland, California. The
product is furnished to the user under a license for use on a single computer
system and may be copied (with inclusion of the copyright notice) only in
accordance with the terms of the license.

Copyright (C) 1980 by Phase One Systems, Inc.

Previous editions copyright 1978, 1979, and 1980 by Phase One Systems, Inc. All
rights reserved. Except for use in a review, the reproduction or utilization of
this work in any form or by any electronic, mechanical, or other means, now known
or hereafter invented, including xerography, photocopying, and recording, and in
any information storage and retrieval system is forbidden without the written
permission of the publisher.

Z80 is a registered trademark of Zilog, Incorporated.

PREFACE

This manual describes the OASIS system EXEC Language. It provides sufficiently
detailed information necessary for the use of this language product in conjunction
with the OASIS Operating System.

This manual, named EXEC, like all OASIS documentation manuals, has the manual name
and revision number in the lower, inside corner of each page of the body of the
manual. In most chapters of the manual the last primary subject being discussed on
a page will be identified in the lower outside corner of the page.

This manual describes some features that are only available with the multi-user
version of the OASIS operating system. For documentation purposes, any information
that pertains to multi-user only will be denoted by the vertical bar character in
both margins, similar to this paragraph.

Related Documentation

The following publications provides additional information required in the use 6f
the OASIS EXEC Language:

OASIS System Reference Manual

OASIS Text Editor Reference Manual

- iii -

TABLE OF CONTENTS

Section

INTRODUCTION ••• CHAPTER 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

System Cancel during EXEC execution
The EXEC IPL and User Logon File
The EXECn File ..
Variables and Constants ...
La bels •••••.••••••.••••.•••••.•••••.•.•.•.•.•.•••••••••..••.•••.•.•.••
Operators
Comments

... ..
EXEC INSTRUCTIONS · .. .

Variable Assignment Instruction
CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

.......................................

2.21
2.22

BEGSTACK Instruction
BEGTYPE Instruction

·
CONTROL Instruction •••
CRT Instruction ...
CSI command •••
END Instruction •• ~ ••••••
ERROR Ins t ruc t ion ••••••••••••••••••••.•••••••••••••••••••••••••••••••••
ESC Instruction •••

GOTO Ins truction •••
IF Instruction •••
QUIT Instruction •••
READ Instruction •••
REPEAT Ins t ruc t ion •••
SKIP Instruction
SPACE Instruction
STACK Instruction
TYPE Instruction
UNTIL Instruction
WAIT Instruction
WHILE Instruction

· .. . · .. . · .. . · ' · .. . · · .. .
Tokenizing ••••••••••••••••••••••• .

APPENDIX A EXEC EXAMPLES
A.l
A.2
A.3
A.4
A.5

Example
Example
Example
Example
Example

1
2
3
4
5

Abbreviate BASIC Program ••••••••••••••••••••••••••••••••••
IPL.EXEC · .. .
SELECTED.EXEC ••••••••• . '
ASM.EXEC
CLEANUP. EXE.C ••

APPENDIX B EXEC KEYWORD SUMMARY

iv

Page

1
2
2
2
2
4
4
5

7
7
9
9
9

10
11
12
12
12
13
13
13
14
14
14
15
15
16
16
17
17
17

19
19
19
19
20
22

25

CHAPTER 1

INTRODUCTION

The OASIS EXEC Language is a process control language used to perform repetitive
functions of the operating system. It can be compared to the JCL (Job Control
Language) used on larger computers with the added capabilities of operator
interaction and conditional execution. With EXEC programs an operator can perform
tasks with less chance for error and with less knowledge about the operating
system. For example an EXEC program might be written to perform the daily disk
backups. The operator would merely type the name of the EXEC program (it might
even be executed automatically by another EXEC program) and the program would
instruct him about which disks to load, where they can be found, what to do with
them afterwards and perform the actual copying.

The format of the EXEC command is:

Where:

fn

argl

arg2

arg16

[EXEC] fn [argl [arg2 ••• [arg16]]]

Indicates the file name of an EXECutive procedure file.

Indicates the first argument to be passed to the EXEC file. This argument
may contain all ASCII characters except the space character. Only the
first eight characters of the argument are actully passed to the EXEC
file.

Indicates the second argument to be passed to the EXEC file.

Indicates the sixteenth argument to be passed to the EXEC file.

The EXECutive procedure language processor executes an EXEC program as if an
operator were entering programs to be executed from the console keyboard with the
added ability to include conditional execution (decision processing) and iterative
execution (repeat a process several times). With this ability you can write EXEC
programs for procedures and routines that are executed frequently or for executing
a sequence of programs without operator attention.

An EXECutive procedure file is a sequential file, created by you with the system
Editor or BUILD, containing CSI commands, EXEC instructions, data for a user
program, data for another EXEC file, etc.

The EXECutive procedure processor is an interpretive type processor in that the
commands and data are not analyzed until they are executed by the processor. It is
the EXEC command that invokes this processor.

The arguments, argl through arg16, are optional but when specified they are
truncated to the first eight characters and passed to the EXECutive procedure
processor as command variables. An argument of a percent sign only (%) indicates
that the argument is empty and is used when other arguments follow this argument.

An EXEC file is a high level language program. Each record or line in the file is
an instruction to the EXECutive procedure processor. An EXEC instruction is
composed of various elements, discussed in subsequent sections.

EXEC - 1 -

EXEC LANGUAGE REFERENCE MANUAL

1.1 System Cancel during EXEC execution

When the System Cancel key is entered from the console while an EXEC is in control
the system will cancel the current command program and display the message:

Cancel EXEC (yiN)?

You may respond with a Y or an N. A Y response will cause the current EXEC to be
canceled returning control to the Command String Interpreter. An N response will
cause the current EXEC to continue execution. (The return code will be set to 254
in either case.)

1.2 The EXEC IPL and User Logon File

An important feature of OASIS is the automatic execution of an EXEC program when
the system is turned on or when an operator logs on to a new account.

As explained in the chapter on "System Communications" in the OASIS System
Reference Manual, the OASIS Operating System will execute an EXEC program named
IPL.EXEC after the date and time is entered during initial system start-up. This
EXEC program file may belong to the IPL account (or its synonym) or the system
account and should contain the sequence of commands that you want executed when the
system is turned on. Normally these commands would include a LOGON to the account
that contains the programs and data to be processed at the start of a day. When no
IPL account exists the system will ask you to LOGON to an account.

When an account is first logged on, the system will search that account's directory
for an EXEC file with the file name equal to the account name. If a file is found
it will be executed automatically, similar to the IPL.EXEC file during system
start-up. For more information refer to the OASIS System Reference Manual chapters
on "System Communication" and the "LOGON Command".

1.3 The EXECn File

An OASIS system disk contains a file named SYSTEM.EXEC1. This file is only
required by the EXEC language processor. Whenever an EXEC program executes another
system or user program (including another EXEC program) the variables currently in
use are saved in the EXEC1 file.

If your system disk does not have an EXEC1 file you may create one, using the
CREATE command. The EXEC1 file is a direct file with records of length 512 bytes
each. Each record corresponds to one level of nesting. Up to 255 records may be
specified when the file is created.

Multi-user OASIS note: The SYSTEM.EXECI file is named SYSTEM.EXECl, SYSTEM.EXEC2,
etc., one for each user partition.

1.4 Variables and Constants

A constant in an EXEC program is an unquoted string, not preceded by an ampersand
character (&). If a constant contains only numeric characters then it is a numeric
constant and has a numeric value. When a constant contains any non numeric
characters then it is a string constant and has no numeric value.

An EXEC programmer has three forms of variables available to him. These three
forms include true variables (value can be changed during program execution by the

- 2 EXEC

CHAPTER 1: INTRODUCTION

program), command variables (value determined by the Command String Interpreter
when the EXECutive procedure is invoked), and reserved variables (value determined
by conditions outside of the program).

True variables are identified by an ampersand followed by a alphabetic character,
optionally followed by alphanumeric characters. The number of characters in a true
variable name is technically unlimited, although the first eight characters
(including the ampersand) must be unique. True variable names may not be the same
as any of the EXEC keywords. The value of a true variable is determined by an
assignment or READ instruction. Only sixteen true variables may be in use in any
one EXEC program. Exceeding this limit causes a symbol overflow error.

Command variables are identified by an ampersand followed by one or two digits.
The value of command variables is determined by the Command String Interpreter and
may not be changed during the execution of the EXEC program. The value of a
specific command variable is determined by a one to one relation with the arguments
in the EXEC command as defined in the syntax above. For instance &1 has the value
of the first argument, &3 has the value of the third argument. There are only
sixteen (16) command variables available to the programmer. The value of a command
variable that has no matching argument (that is, fewer arguments were entered than
the number of this command variable) is null or empty.

Reserved variables are identified by their reserved names. The value of a reserved
variable is determined differently for each reserved variable but may not be
changed by the program itself.

& INDEX Numeric value indicating the number of command variables.

&LINE

&NULL

&PAGE

Numeric value indicating the ATTACHed linesize of the console
device.

String value indicating an empty string (length = 0).

Numeric value indicating the ATTACHed pagesize of the console
device.

&RETCODE Numeric value indicating the system return code. This value is
set by each program executed.

Examples:

ABCD String constant
TDEDWEFD String constant
1245 Numeric constant
34 Numeric constant
124 Numeric constant
&VALUE True variable
&A True variable
&4 Command variable
&EDIT True variable
&INDEX Reserved variable
&RESERVED True variable (Only &RESERVE is used)
&156 Invalid
&RETCODE Reserved variable

EXEC - 3 -

EXEC LANGUAGE REFERENCE MANUAL

1.5 Labels

An EXEC program may have labels to be used as comments or as a reference point for
branching instructions. A label is identified by a negative sign (-) followed by
an alphabetic character and optionally followed by alphanumeric characters. The
length of a label name is limited to eight characters (including the negative
sign) •

Labels, when used, must start in column one of the line (no leading spaces other
than the single space following a line number).

Examples:

-BEGIN
-END
-OPTIONl
-BEGININPUT Causes an error

1.6 Operators

The EXEC language allows a minimal set of arithmetic and comparison operations to
be performed. To perform an operation an operator must be used. There are three
forms of operators: numeric operators, string operators, and comparison operators.

A numeric operator indicates that arithmetic is
variables or constants. The value of the variable
type. The valid numeric operators include:

to be performed between two
or constant must be" numeric in

+ (addition)
- (subtraction)
* (multiplication)
/ (division)

The string operators available in the EXEC language include:

I vertical bar - concatenate two variables or constants
&CAT - concatenate two variables or constants
&SUB - substring of following variable
&TYP - type of following variable (Alpha or Numeric)
&LIT - following characters are not to be tokenized
&LEN - length of following variable

Numeric and string operators are only allowed in the assignment instruction.

Comparison operators are used between two variables or constants to indicate a
relationship. Comparison operators are only allowed in the &IF, &WHILE, &UNTIL
instructions. There are six comparison operators:

EQ or Equality
NE or <> Not equal
LT or < Less than
GT or > Greater than
LE or <= Less than or equal
GE or >= Greater than or equal

Operators - 4- EXEC

CHAPTER. 1: INTRODUClION

Relations allowed in these instruction must be simple relations:

<variable>l<constant> <operator> <variable>l<constant>

In order to test a complex relationship the programmer must use the assignment
instruction to create a single value for an expression or use multiple &IF
instructions.

Relational expressions may use two reserved keywords that may not be used
elsewhere. These keywords are &* and &$.

&* Keyword

The &* keyword is a variable indicating "any of the command variables (&1 thru
&16)".

&$ Keyword

The &$ keyword is a variable indicating "all of the command variables (&1 thru
&16)".

Examples:

&IF &A GT 5 &GOTO -LABELl
&IF &INDEX EQ 0 &GOTO -ERROR
&IF &RETCODE NE 0 &TYPE Error in last program.
&IF &VAR = &NULL &IF &A = &NULL &QUIT

The following instruction tests all of the command variables to determine
if any of them are equal to the literal PRINT.

&IF &* = PRINT &OUTDEV = PRINTERl

The following instruction tests all of the command variables to determine
if they are all unequal to a left parentheses.

&IF &$ NE (&SKIP 4

1.7 Comments

Comments may be inserted in an EXEC program by using the semi-colon (;) character.
Comments may be placed on the same line as an instruction with the exception of the
instructions:. &CONTROL, &TYPE, and assignment instruction.

It is permissible to use spaces at the beginning of a line (except lines defining
labels) or between tokens of an instruction to make the program easier to read but
tabs may not be used.

EXEC -5- C~ents

EXEC LANGUAGE REFERENCE MANUAL

Comments - 6 - EXEC

CHAPTER. 2

EXEC INSTRUCTIONS

The EXEC ,language has only a few instructions available to it but taken with the
fact that all of the OASIS commands and user written programs may be executed from
the EXEC environment the language is very powerful.

The following instructions are presented in alphabetic sequence.

It is important to keep in mind that the space character is a delimiting character
and may not be used as part of a variable name or contents.

2.1 Variable Assignment Instruction

The assignment instruction allows you to change or set the value of a true
variable. The format of the instruction is:

[line #] [label] true-variable expression

Where:

true-variable Indicates any valid true variable name as defined previously.

expression Indicates any valid expression. Since this is the only instruction that
allows an expression it will be defined here:

<variable>l<const> [<numeric operator> <expression)]

or

<variable>l<const> [<string operator> <variable>l<coDst)]

The expression on the right side of the operator must match in type to the variable
or constant on the left side of the operator.

Any of the numeric or string operators may be used but they must be separated from
the other elements by at least one space.

Any arithemetic performed is in signed binary integers. The range of value for a
numeric expression is -32768 to 32767. Expression exceeding this range will be
converted to a value within the range by modulo arithmetic. (32770 is converted to
3, -32770 is converted to +32766, etc.) All sub-expressions are computed,
integerized and converted to modulo 32768 before remalnlng expressions are
computed. This means that 1024 * 64 + 1 is equal to 1. (1024 * 64 = 65536, 65536
modulo 32767 = 0.)

&CAT Keyword

The &CAT keyword may be used in an assignment instruction to combine two string
variables together. Optionally the vertical bar character (I) may be used. The
format of an assignment instruction using the &CAT keyword is:

<true var> = &CAT <var> <var>

or

<true var> = <var> I <var>

EXEC 7 - CAT

&LEN Keyword

The &LEN keyword may be used in an assignment instruction to determine the length
of the contents of another variable. The format 6f an assignment instruction using
the &LEN keyword is:

<true var> = &LEN <var>

The <true var> will contain a numeric value indicating the length of the contents
of <var>. The &LEN keyword must precede a variable name and only one variable name
may be specified.

&LIT Keyword

The &LIT keyword may be used in an assignment
indicate that the string is not to be tokenized.
the string looks like a reserved variable name.
instruction using the &LIT keyword is:

instruction before a string to
This is especially useful when

The format of an assignment

<true var> = &LIT <string)

&SUB Keyword

The &SUB keyword may be used in an assignment instruction to access a portion of a
variable or constant. The format of an assignment instruction using the &SUB
keyword is:

<true var> = &SUB <token> <1st char> [<last char>]

When the &SUB is evaluated the token following is tokenized. The resulting 'string
is then used - the characters between the <1st character> and the <last character>
are extracted and assigned to the <true variable>. When <last character> is not
specified the characters from <1st character> position through the end of the
string are assigned to the <true variable>.

&TiP Keyword

The&TYP keyword is
type of a variable.
is:

used in an assignment instruction to determine the variable
The format of an assignment instruction using the &TYP keyword

<true var> = &TiP <var>

The <var> is evaluated and the variable type (A or N) is assigned to the <true
variable>.

Examples:

TiP

&A = ABCDEFGH
&ALPHA = &.A I EFGH

&A1 = &SUB &ALPHA 3 4
&A2 = &LEN &ALPf~
&X = &TYP &ALPHA ,
&BETA = &KAPPA + 123 / &DELTA

&A receives 'ABCDEFGH'
&ALPHA receives 'ABCDEFGHEFGH'
which is tokenized to 'ABCDEFGH'
&A1 receives 'CD'
&A2 receives an 8
&X receives 'A' (alpha)

-8- EXEC

CHAPTER. 2: EXEC INSTRUCTIONS

2.2 BEGSTACK Instruction

The BEGSTACK instruction allows you to to create lines of data to be used by
programs executed from the EXEC program. The format of the instruction is:

Where:

label

LIFO

FIFO

[line I] [label] &BEGSTACK [LIFOIFIFO]

Indicates any valid label.

Indicates that the lines of data following the instruction are to be
placed on the stack in a Last-In-First-Out manner.

Indicates that
placed on the
option.

the lines of data following the
stack in a First-In-First-Out manner.

instruction are to be
This is the default

A stack may be created using both LIFO and FIFO elements by using multiple
BEGSTACK or STACK instructions.

The BEGSTACK instruction is followed by the lines of text ot data that is to be
placed on the stack. The data is placed on the stack with no analysis (that is, if
a variable name is specified then the variable name is placed on the stack and not
the contents of it). The data is terminated with the &END instruction.

The information that is placed in the stack by this instruction (or the &STACK
instruction discussed later) is accessible by the next program that is executed by
this EXEC program. Programs executed from the EXEC environment that require
console keyboard input will receive any data in the stack instead of the keyboard.

After the information stored in the stack has been retrieved by a program, future
requests for console input will receive data from the keyboard directly. Any
information not retrieved from the stack will be lost when the program is
terminated and control returns to the EXEC program.

2.3 BEGTYPE Instruction

The BEGTYPE instruction allows you to display information on the console display.
The format of the instruction is:

[line I] [label] &BEGTYPE

The BEGTYPE instruction is followed by the lines of information that are to be
displayed on the console display. Similar to the BEGSTACK instruction, the data is
not analyzed before display and the information is terminated with the &END
instruction.

Each line of information following the BEGTYPE instruction is displayed on a
separate line of the console, one after the other.

2.4 CONTROL Instruction

The CONTROL instruction allows you the ability to turn on or off the display of any
commands executed from the EXEC program. The format of the instruction is:

EXEC -9- COBTBOL

EXEC LANGUAGE REFERENCE MANUAL

[line #] [label] &CONTROL ON I OFF I TRACE I STACK I MOSTACK

Where:

ON Indicates that CSI commands executed from the EXEC program are to be
displayed on the console. This is the condition that exists when the EXEC
program is first entered.

OFF Indicates that CSI commands executed from the
executed "silently", that is, the display of the
inhibited.

EXEC program are to be
command itself is to be

TRACE Indicates that all CSI commands and EXEC instructions are to be displayed
on the console after tokenization, before execution. The line number of
EXEC instruction is displayed surrounded with angle brackes <> followed by
the result of the execution of the instruction.

STACK Indicates that information retrieved from the stack is to be displayed on
the console, just as if it had come from the keyboard. This is the
default condition when the EXEC program is first entered.

NOSTACK Indicates that information retrieved from the stack is not to be displayed
on the console. In addition, when information is in the stack all output
to the console device is suppressed.

2.5 CRT Instruction

The CRT instruction
to any position or
instruction is:

allows you to position the cursor on the console output device
to perform screen control functions. The format of the

[line #] [label] &CRT <column# variable> <line# variable>

or

[line #] [label] &CRT <variable> I <constant>

Where:

column# variable Contains the value of the column number that you wish the cursor
positioned to. This must be a numeric value.

line# variable Contains the value of the line number that you wish the cursor
positioned to. This must be a numeric value. Caution: addressing a line
greater than the screen actually allows produces unpredictable results.

variable Contains the screen control function to be performed. The specific
functions allowed vary from terminal to terminal and are controlled by the
class code that the console was ATTACHed as.

constant Is the literal specifying the screen control function to be performed.

CRT - 10 - EXEC

CHAPTER. 2: EXEC INSTRUCTIONS

The various screen control functions allowed by the system include the following:

Examples:

2.6 CSI

HOME
CLEAR
EOS
EOL
UP
DOWN
LEFT
RIGHT
PON
POFF
KON
KOFF
FON
FOFF
RVON
RVOFF
ULON
ULOFF

&A
&CRT
& CRT
&CRT
&CRT

5

Move cursor to upper left corner
Clear screen
Erase to end of screen
Erase to end of line
Move cursor up one line
Move cursor down one line
Move cursor one position to the left
Move cursor one position to the right
Following charcters are to be screen protected
Following charactes are not screen protected
Keyboard unlock
Keyboard lock
Format on
Format off
Reverse vidio on
Reverse vidio off
Underline on
Underline off

15 &A Position to line 5, column 15
3 4 Position to line 4, column 3
&A &A Position to line 5, column 5
CLEAR ; Clear screen

command

All OASIS commands and user written programs may be executed from an EXEC program.
The format of the CSI command is:

[1ine I] [1abel] <command-text>

The <command-text> must specify any parameters or options desired. Before the text
specifying the command is passed to the Command String Interpreter it is analyzed
for variables, and substitutions are made as applicable.

No restriction is placed on the programs that may be executed in this manner. In
fact the program may specify another EXEC program to be executed. This is called
nesting. The maximum level of "nesting" of EXEC program calls is determined by the
number of records that were created for the SYSTEM.EXECI file. This maximum, as
stated earlier, is 255. When an EXEC program is executed in this manner the
current program will be suspended, control is transferred to the specified EXEC
program, and, upon termination of that program, control returns to the "calling"
program. The current &CONTROL status is retained when the called EXEC is executed.
If that EXEC changes the &CONTROL the change will be in effect until changed again

Examples:

EXEC

LIST FILE DATA S (PRINT
BASIC &1
FILELIST * &A &B (&C
FILELIST &A (FN

- 11 - CSI

EXEC LANGUAGE REFERENCE MANUAL

It is best to use the normal, complete spelling of command names in an EXEC due to
the reduction in search time.

2.7 END Instruction

The END instruction provides a means of terminating the data list following the
BEGTYPE or BEGSTACK instruction. The format of the instruction is:

[line #] [label] &END

The END instruction must appear on a line by itself and must be used to terminate
the data lines of a BEGSTACK or BEGTYPE.

2.8 ERROR Instruction

The ERROR instruction
event that an error
is:

allows you to specify an instruction to be executed in the
is detected by a CSI command. The format of the instruction

[line #] [label] &ERROR <instruction>

Where:

instruction Indicates any valid EXEC instruction described in this manual.
Omitting <instruction) indicates that the system return code will not
cause any EXEC instruction to be executed when the return code is
non-zero.

When the ERROR instruction is executed the <instruction), when specified, is saved.
After any CSI command is executed by the EXEC the system return code is tested and,
if non-zero, the saved instruction is automatically executed. This has the same
result as if the program had an IF instruction following each CSI command, that
tested the &RETCODE reserved variable for a non-zero condition. The ERROR
instruction has the added versatility of changing the instruction to be executed
when an error is detected for all subsequent CSI commands.

Examples:

&ERROR &GOTO -LABEL
&ERROR &IF &RETCODE GT 200 &GOTO -LABEL
&ERROR
&ERROR &TYPE Error &RETCODE detected -- Program aborted!

2.9 ESC Instruction

The ESC instruction allows you to perform the actions of the system control keys
(the ones that have a lead in of an ESC character) from within an EXEC program.
The format of the instruction is:

Where:

data

ESC

[line #] [label] &ESC <data>

Indicates the literal character or variable that contains the character to
be given to the operating system as if it had been typed from the console

- 12 - EXEC

CHAPTER 2: EXEC INSTRUCTIONS

keyboard following an escape character.

This instruction might be used to cause the display of the EXEC program to be
output to the printer (&ESC P) or to slow down the display of the console (&ESC B),
etc.

Note that the command operates just as if the characters were entered from the
keyboard. This means that execution of the instruction ESC P causes the status of
the printer echo switch to be changed from OFF to ON or ON to OFF, depending upon
the current status.

2.10 COlO Instruction

The GOTO instruction allows you to branch to another portion of the EXEC program.
The format of the instruction is:

Where:

label

Examples:

[line I) [label] &GOTO label

Indicates a valid label in the program.

&GOTO -BEGIN
-LOOPI &GOTO -RESTART
&GOTO -POINTI
&GOTO -LABELlO

2.11 IF Instruction

The IF instruction allows you to test variables and, depending upon the results of
the test, execute an instruction. The format of the instruction is:

[line I) [label] &IF <relation> <instruction>

Where:

relation Indicates a simple relation as described previously.

instruction Indicates any of the EXEC instruction described in this section.

The IF instruction evaluates the relation and, if the relation is true, executes
the instruction specified. If the relation is false the instruction on the
following line is executed and the instruction following the relation is ignored.

2.12 QUIT Instruction

The QUIT instruction allows you to specify the termination of the logic in an EXEC
program. The format of the instruction is:

[line I) [label) &QOIT [value)

Where:

value Indicates the optional value that the return code is to be set to. If

EXEC - 13 - QUIT

EXEC LANGUAGE REFERENCE MANUAL

this value is not specified the return code is set to zero. This value
may be a numeric literal or any variable with numeric contents.

The QUIT instruction unconditionally terminates execution of the current EXEC
program. If the EXEC program was invoked from a keyboard command then control will
return to the Command String Interpreter. If the EXEC program was invoked from
another EXEC then control will return to the instruction following the one invoking
this program in the calling program.

2.13 READ Instruction

The READ instruction allows
execution of an EXEC program.

you to request input from the keyboard during the
The format of the instruction is:

[line II] [label] &READ [true-variable]

When the READ instruction is encountered execution of the program is interrupted.
The EXEC prompt character <:) is displayed on the console at the current cursor
position and data is accepted from the keyboard. If any data is currently in the
stack, whether loaded by this EXEC or a previous EXEC' "calling" this program, the
required information will be retrieved from the stack. Each element of the data
entered is truncated to eight characters and assigned to the list of variables in a
one to one relationship. When more variables are specified than data entered the
"extra" variables are set to null or empty. When more data is entered than
variables specified the "extra" data is ignored. The elements of the data entered
must be separated by at least one space and terminated by a carriage return.

When the READ instruction doesn't specify a variable for the input to be assigned
to, the data entered will be executed as if were part of the EXEC program.

Examples:

&READ &ALPHA &BETA &CHARLIE &DELTA
&READ &NEVADA
&READ &A &B
&READ

2.14 REPEAT Ins~ruction

The REPEAT instruction, used in conjunction with the UNTIL or WHILE instruction,
provides a method of loop control. The format of the instruction is:

[line #] [label] &REPEAT

When the REPEAT instruction is executed control of the program is transferred to
the first UNTIL or WHILE instruction that precedes the REPEAT instruction.

For examples of the REPEAT instruction see the UNTIL and WHILE instructions.

2.15 SKIP Instruction

The SKIP instruction allows you to "jump relative" to the current instruction.
This instruction is usually used as the instruction in an IF instruction or the
instruction following the IF instruction. The format of the instruction is:

[line #] [label] &SnP count

SKIP - 14 - EXEC

Where:

count

Examples:

CHAPTER 2: EXEC INSTRUCTIONS

Indicates the number of lines, relative to the current instruction, that
are to be skipped.

&SKIP 1
&SKIP 4
&SKIP -2

2.16 SPACE Instruction

The SPACE instruction allows you to display multiple carriage return, line feeds on
the console. The format of the instruction is:

[line I) [label) &SPACE [count]

Where:

count Indicates the number of lines that are to be advanced on the console. If
count is omitted one line will be advanced.

Examples:

&SPACE 5
&SPACE &A
&SPACE

2.17 STACK Instruction

The STACK instruction allows you to place one line of analyzed data on the stack.
The format of the instruction is:

[line I) [label) &STACK [FIFOILIFO) data

Where:

FIFO Is as described for BEGSTACK.

LIFO Is as described for BEGSTACK.

data Indicates the information to be placed on the stack. This data may
include constants or variables. Each variable encountered by the EXEC
processor during analysis of the data will be replaced by its current
value.

Examples:

EXEC

&STACK HELLO
&STACK LIFO &A &BETA HI
&STACK

- 15 - STAa

EXEC LANGUAGE REFERENCE·. MANUAL

2.18 TYPE Instruction

The TYPE instruction allows you to display one line of analyzed data on the
console. The format of the instruction is:

[line #] [1abel] &TYPE data ••• [\]

Where:

data Is as described for the STACK instruction.

\

Examples:

Indicates that the data is to be displayed with no automatic
return, line feed following. This option is usually used
displayed text is the prompting message for a READ instruction.

&TYPE This is a message.
&TYPE This is another message &A
&TYFE And so is this
&TYPE &ALPHA &BETA HELLO &CHARLIE &ETC

2.19 UNTIL Instruction

carriage
when the

The UNTIL instruction provides a method for conditional loop control. The format
of the instruction is:

[line #] [label] &UNTIL <relation>

Where:

relation Is the same as for the IF instruction.

When the UNTIL instruction is executed the <relation> is analyzed and, if false,
the intructions following are executed.· When the relation is true, the instruction
following the next REPEAT instruction is executed.

It is easiest to remember the function of the UNTIL instruction if you think of it
as: 'execute following instruction until <relation> is true'.

Example:

&A = 123
&UNTIL &A LT 100
&A = &A - 1
&TYPE &A
&REPEAT
&TYPE Done

The above example will execute the decrement and type instructions twenty-four
times, until the variable &A is less than one hundred, at which point the literal
'Done' will be displayed on the screen.

UNTIL - 16 - EXEC

CHAPTER. 2: EXEC INSTRUctIONS

2.20 WAIT Instruction

The WAIT instruction causes the program to pause until the operator types a key.
The format of this instruction is:

[line 11 [label] &WAIT

When this instruction is executed it invokes the same process that the system
programs use when displaying information to the screen. When encountered by the
EXEC processor an up arrow character (A) is displayed at the bottom left corner of
the screen and processing is suspended until the operator enters a key. The
function of this instruction may be suppressed if the Console Screen-wait key has
been used to disable the screen wait function (see System Control Keys in the
System Reference Manual).

2.21 WHILE Instruction

The WHILE instruction provides an alternate means of loop control. The format of
the instruction is:

[line 11 [label] &WHILE <relation>

Where:

relation Is the same as for the IF instruction.

When the WHILE instruction is executed the <relation> is analyzed, and, if true,
the following instructions are executed. When the <relation> is false control
transfers to the instruction immediately following the next REPEAT instruction.

It is easiest to understand the function of the WHILE instruction if you think of
it as: 'execute following instructions while the <relation> is true'.

Example:

&WHILE &RETCODE = 0
&TYPE Command to execute
&READ
&REPEAT

The above example will ask the operator for a command name to execute and execute
that command as long as the system return code is zero. Notice that the READ
instruction is not followed by a variable name. In this situation the data read
from the console (or stack, if present), is treated as an EXEC instruction, and
executed.

2.22 Tokenizing

The EXEC language processor analyzes each instruction line in a right to left
manner, reducing each element to the most elementary form. This process of
reduction is called tokenizing. An element is tokenized until a space is
encountered or column one is encountered. For example, if &Al contains a 25, &B2
contains 1, and &C contains 2, the element &A&B&C is tokenized in the following

EXEC - 17 - Tokens

EXEC LANGUAGE REFERENCE MANUAL

manner:

&A&B&C
&A&B2
&A1
25

&C is replaced with 2
&B2 is replaced with 1
&A1 is replaced with 25

The end result of a tokenized element is always truncated to eight characters.
This process is performed on all elements of an instruction. The following
instructions will execute the BACKUP command:

0010 &A = BACKUP
0020 &A

The following example will also execute the BACKUP command:

0010 &A1 = BACKUP
0020 &B = 1
0030 &A&B

The &A&B element is tokenized in the following manner:

Tokens

&A&B
&A1
BACKUP

&B is replaced with 1
&A1 is replaced with BACKUP
The command is executed because it does not
start with an "&" character.

- 18- EXEC

APPENDIX A

EXEC EXAMPLES

A.l Example 1 - Abbreviate BASIC Program

0010 &BEGSTACK
0020 CHANGE /PRINT/PRI/* *
0030 TOP
0040 CHANGE /GOTO/GO/* *
0050 TOP
0060 CHANGE /GOSUB/GOS/* *
0070 TOP
0080 CHANGE / = /=/* *
0090 TOP
0100 CHANGE / //* *
0110 TOP
0120 PAGE
0130 &END
0140 EDIT &1 &2 &3
0150 &QUIT

)EXEC EXAMPLE1 PROGRAM1 BASIC A

The above example will perform an edit of the BASIC program "PROGRAM1.BASIC:A",
changing all occurrences of PRINT to PRI, all occurances of GOTO to GO, etc. After
the five global changes have been made to the file the first page is displayed. At
this time the Edit program will have exhausted the stack and further input will
come from the keyboard.

A.2 Example 2 - IPL.EXEC

0010 &CONTROL OFF
0020 -AGAIN
0030 RUN MAINPROG.BASIC:S
0040 &GOTO -AGAIN

The above example is a typical system start EXEC program that executes a BASIC
application program until the system cancel key is used or the system is turned
off. This type of a program will "isolate" the user from using the OASIS commands.
Alternately this program might have displayed a list of options for the user such
as making backups of the application diskettes, etc.

A.3 Example 3 - SELECTED.EXEC

)FILELIST * BASIC (EXEC

)EXEC SELECTED LIST (PRINT

This example will create an EXEC program containing command variables and file
descriptions of all of the BASIC programs on the attached diskettes (see the
FILELIST command). When the EXEC program is executed with the above specification
all of these BASIC program files will be listed on the printer. "LIST" replaces
all &1, "(" replaces all &2, "PRINT" replaces all &3. Similarly a group of files
could be copied, erased, renamed, etc. The EXEC program created from the FILELIST
command is normally edited to remove or add file descriptions or EXEC instructions.

EXEC - 19 -

EXEC LANGUAGE REFERENCE MANUAL

A.4 Example 4 - ASK.EXEC

The following example is a listing of the ASM.EXEC, distributed with the OASIS
operating system. Its purpose is to assemble and link an assembly language source
program using the MACRO and LINK commands.

)LIST ASM.EXEC:S

0010 ASM procedure
0020
0030 Copyright (C) 1979 by
0040 Timothy S. Williams
0050
0060
0070 &IF &INDEX EQ 0 &GOTO -NOFILE
0080 &IF &INDEX EQ 1 &IF &1 EQ HELP &GOTO -HELP
0090 &OPT = 0
0100 &IF &1 EQ (&GOTO -NOFILE
0110 &FN = &1
0120 &IF &INDEX EQ 1 &GOTO -ASM
0130 &IF &2 EQ (&GOTO -OPTASM
0140 &FT = &2
0150 &IF &INDEX EQ 2 &GOTO -ASM
0160 &IF &3 EQ (&GOTO -OPTASM
0170 &FD = &3
0180 &IF &INDEX EQ 3 &GOTO -ASM
0190 -OPTASM
0200 &CT = 0
0210 -LOOPI
0220 &CT = &CT + 1
0230 &IF &CT GT &INDEX &GOTO -ASM
0240 &IF &&CT NE (&GOTO -LOOPI
0250 -LOOP2
0260 &CT = &CT + I
0270 &IF &CT GT &INDEX &GOTO -ASM
0280 &IF &&CT EQ / &GOTO -ASM
0290 &OPT = &OPT + 1
0300 &OPT&OPT = &&CT
0310 &GOTO -LOOP2
0320 -ASM
0330 &PAREN =
0340 &IF &OPT NE 0 &PAREN = (
0350 MACRO &FN &FT &FD &PAREN &OPTI &OPT2 &OPT3 &OPT4 &OPT5 &OPT6 &OPT7 &OPT8
0360 &IF &RETCODE NE 0 &QUIT &RETCODE
0370 &IF &* EQ NOOBJ &QUIT
0380 &OPT = 0
0390 &CT = 1
0400 -LOOP3
0410 &CT = &CT + 1
0420 &IF &CT GT &INDEX &GOTO -LINK
0430 &IF &&CT NE / &GOTO -LOOP3
0440 -LOOP4
0450 &CT = &CT + I
0460 &IF &CT GT &INDEX &GOTO -LINK
0470 &OPT = &OPT + I
0480 &OPT&OPT = &&CT

- 20 - EXEC

0490 &GOTO -LOOP4
0500 -LINK
0510 &IF &OPT EQ 1 &IF &OPTI EQ NOLINK &QUIT
0520 &IF &OPT LT 2 &GOTO -NOREN
0530 &IF &OPTI NE RENAME &GOTO -NOREN
0540 &FN = &OPT2
0550 ERASE &FN OBJECT * (NOQUERY
0560 RENAME &1 OBJECT * &FN = = (NO QUERY
0570 &CT = 0
0580 &CT2 = 2
0590 &OPT = &OPT - 2
0600 -LOOPS
0610 &CT = &CT + 1
0620 &CT2 = &CT2 + 1
0630 &IF &CT GT &OPT &GOTO -NOREN
0640 &OPT&CT = &OPT&CT2
0650 &GOTO -LOOPS
0660 -NOREN
0670 &PAREN =
0680 &IF &OPT NE 0 &PAREN = (
0690 &CT = &OPT
0700 -LOOP6
0710 &CT = &CT + 1
0720 &IF &CT GT 9 &GOTO -LINKIT
0730 &OPT&CT =
0740 &GOTO -LOOP6
0750 -LINKIT

APPENDIX A: EXEC EXAMPLES

0760 LINK &FN &PAREN &OPTI &OPT2 &OPT3 &OPT4 &OPT5 &OPT6 &OPT7 &OPT8 &OPT9
0770 &IF &RETCODE NE 0 &QUIT &RETCODE
0780 ERASE &FN OBJECT * (NOQUERY
0790 &QUIT
0800 -NOFILE
0810 &BEGTYPE
0820 Filename missing!
0830
0840 Use: ASM HELP to display syntax.
0850 &END
0860 &QUIT 255
0870 -HELP
0880 &BEGTYPE
0890 Function: To assemble and link a source program.
0900
0910 Syntax: ASM fn [ft [fd]] [(macro options [/ link options])]
0920 &END
0930 &QUIT

EXEC - 21 -

EXEC LANGUAGE REFERENCE MANUAL

A.5 Example 5 - CLEANUP.EXEC

0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280

&CONTROL OFF
; Default drive is * (all)
&DRV = *
&IF &INDEX EQ 0 &GOTO -DEFAULT
&IF &INDEX EQ 1 &IF &1 EQ HELP &GOTO -HELP
&IF &INDEX GT 1 &IF &1 EQ HELP &GOTO -ERROR
&IF &1 NE (&DRV = &1
&IF &1 NE (&IF &INDEX EQ 1 &GOTO -DEFAULT
&IDX = 0
&WHILE &IDX LT &INDEX

&IDX = &IDX + 1
&IF &&IDX EQ (&GOTO -OPTIONS
&REPEAT

-ERROR

,

&TYPE Syntax error
&QUIT

One or more options specified

-OPTIONS
&WHILE &IDX LT &INDEX

&IDX = &IDX + 1
&IF &OPTION EQ 1 &GOTO -NAMES
&IF &OPTION EQ 2 &GOTO -TYPES
&IF &&IDX EQ NAME &GOTO -NAME
&IF &&IDX EQ TYPE &GOTO -TYPE
&GOTO -CONTINU

0290 Option NAME specified
0300
0310 -NAME
0320
0330
0340

&OPTION = 1
&IDX = &IDX + 1

0350 Still in option NAME
0360
0370 -NAMES

&IF &IDX GT &INDEX &QUIT 0380
0390
0400
041'0
0420

&IF &&IDX EQ TYPE &GOTO -TYPE
ERASE &&IDX * &DRV (NOQUERY) ; Erase files with NAME
&GOTO -CONTINU

0430 Option TYPE specified
0440
0450 -TYPE
0460
0470
0480

&OPTION = 2
&IDX =. &IDX + 1

0490 Still in option TYPE
0500
0510 -TYPES

&IF &IDX GT &INDEX &QUIT 0520
0530
0540

&IF &&IDX EQ NAME &GOTO -NAME
ERASE * &&IDX &DRV (NOQUERY) ; Erase files with TYPE

- 22 - EXEC

0550 -CONTINU
0560 &REPEAT
0570 &QUIT
0580 ; Erase only BACKUP files
0590 -DEFAULT
0600 ERASE * BACKUP &DRV (NOQUERY)
0610 &QUIT
0620 -HELP
0630 &BEGTYPE
0640
0650 Function: Erase groups of files from disk(s)
0660
0670 Syntax:
0680
0690 Where:
0700 fd
0710
0720 Options:
0730 NAME
0740
0750
0760
0770

TYPE

CLEANUP [fd] [(options [)]]

Drive to be cleaned (default all)

Following arguments are names to be erased
multiple file names may be specified.

Following arguments are types to be erased
multiple file types may be specified.

APPENDIX A: EXEC EXAMPLES

0780
0790
0800
0810

When no options are specified all BACKUP files will
be erased from the specified disk(s).

&END
&QUIT

EXEC - 23-

EXEC LANGUAGE REFERENCE MANUAL

- 24 - EXEC

APPENDIX B

EXEC KEYWORD SUMMARY

Keyword Function
===

&BEGSTACK Stacks the lines following in the console input buffer without tokenizing
them.

&BEGTYPE Types the lines following on the console output device without tokenizing
them.

& CAT Indicates a concatenation of two variables or tokens without the result
being tokenized.

&CONTROL Sets switch indicating whether commands executed are displayed on the
console device.

&CRT
&END
&ERROR
&ESC
&GOTO
&IF
&INDEX
&LEN
&LINE
&LIT

&NULL
&PAGE
&QUIT
&READ

&REPEAT
&RETCODE
&SKIP
&SPACE
&STACK
&SUB
&TYP
&TYPE
&UNTIL
&WAIT
&WHILE
&*
&$

EXEC

Positions cursor on console device or perform screen function.
Terminates the data following a &BEGSTACK or &BEGTYPE.
Designate instruction to be executed in event of error.
Generates System Control Key sequences.
Unconditionally branches to a label in the EXEC file.
Tests variables and/or arguments.
Variable indicating the number of arguments passed to the EXEC processor.
Computes value of the length of the variable following.
Variable containing the value of the console line length.
Causes the following character to not be evaluated as a token.
Characters are truncated to eight.
Variable containing no characters.
Variable containing the value of the console page length.
Transfers control out of the current EXEC file.
Accepts input from the console input device. The data read is assigned
to the internal variables.
Execute previous loop again (used in conjunction with UNTIL or WHILE).
Variable indicating the return code passed to the EXEC processor.
Unconditionally branches to a line relative to this statement.
Types blank lines on the console output device.
Stacks a line in the console input buffer. Line is tokenized.
Indicates a sub-string of a variable or token.
Causes the variable type of the variable following to be determined.
Prints a line at the console output device. Line is tokenized.
Execute loop until condition is true.
Causes program to pause until operator responds.
Execute loop while condition is true.
Indicates a test of any tokens matching specified comparison.
Indicates a test of all tokens matching specified comparison.

-25-

Reader's Comments

Name ~ __ ~ ______________________________ Date ___ / ___ / __ _
Organization --Street
City ---------------------------- State Zip

Name of manual:

Did you find errors in this manual? If so, specify with page number.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of
the software described in this manual? If not, what material is missing and where
should it be placed?

Indicate the type of user/reader that you most nearly represent:

Assembly language programmer
Higher-level language programmer (BASIC, FORTRAN, etc.)
Occasional programmer (experienced) == User with little programming experience
Student programmer
Non-programmer interested in computer concepts and capabilities
Data entry operator

Mail to: OASIS Documentation
Phase One Systems, Inc.
7700 Edgewater Drive #830
Oakland, CA 94621

