
OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

MACRO
ASSEMBLER
LANGUAGE
REFERENCE
MANUAL

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA

OPERATING SYSTEM SOFrWARE

MAKES MICROS RUN LIKE MINIS

MACRO
ASSEMBLER
LANGUAGE
REFERENCE
MANUAL

Second Edition

Documentation by: C. P. Williams
Software by: Timothy S. Williams

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA
7700 Edgewater Drive, Suite 830

Oakland, California 94621
Telephone (415) 562-8085

TWX 910-366-7139

Second edition, First printing March, 1980

PROPRIETARY NOTICE

The software described in this manual is a proprietary product developed by Timothy
S. Williams and distributed by Phase One Systems, Inc., Oakland, California. The
product is furnished to the user under a license for use on a single computer
system and may be copied (with inclusion of the copyright notice) only in
accordance with the terms of the license.

Copyright (C) 1980 by Phase One Systems, Inc.

Previous editions copyright 1978, 1979, and 1980 by Phase One Systems, Inc. All
rights reserved. Except for use in a review, the reproduction or utilization of
this work in any form or by any electronic, mechanical, or other means, now known
or hereafter invented, including xerography, photocopying, and recording, and in
any information storage and retrieval system is forbidden without the written
permission of the publisher.

Z80 is a registered trademark of Zilog, Incorporated.

PREFACE

This manual describes the OASIS MACRO Assembler Language. It assumes the reader is
familiar with computer software fundamentals and has had some exposure to assembly
language programing on micro-computers. The section "Additional and Reference
Material" below lists documents that may prove helpful in reviewing those areas.

The user who is unfamiliar with OASIS should first read or review those chapters of
interest in the OASIS System Reference Manual to become familiar with system
conventions.

Included in this manual is a chapter on "Interfacing to OASIS" which provides
information about writing device drivers, assembly language subroutines that are
called by a BASIC program, console class code drivers, etc.

This manual, named MACRO, like all OASIS documentation manuals, has the manual name
and revision number in the lower, inside corner of each page of the body of the
manual. In most chapters of the manual the last primary subject being discussed on
a page will be identified in the lower outside corner of the page.

Additional and Referenced Haterial

The following manuals and publications were used in the creation of this manual and
contain additional information not included in this document.

Zll..OG Z80 Assembler Manual

ZILOG Z8O-CPU TeChnical Manual

ZILOG Z8D-CPU Programming Reference Card

OASIS System Reference Manual

OASIS Text Editor Reference Manual

OASIS EXEC Language Reference Manual

OASIS DEBUG Reference Manual

OASIS Diagnostic & Conversion Utilities Reference Manual

- iii -

TABLE 01' COBTENTS

Section

INTRODUCTION ... CHAPTER 1
1.1 Creating A Source File ..

CHAPTER 2 OASIS MACRO COMMAND ..
MACRO INSTRUCTION SYNTAX •••

Line Numbers
CHAPTER 3

3.1
3.2
3.3

..
Labels ••
Op-codes ..

3.4 Operands ..
3.4.1 Expressions ••

3.5 Connnents ••

PROGRAM ADDRESS BLOCKS (PABS) CHAPTER 4
4.1 PAB Restrictions ..

CHAPTER 5 MACRO DIRECTIVES & PSEUDO-OPS
MACROS ...

Preparing Macro Prototypes ••
Mac ro Calls •••
Macro Keywords ••

CHAPTER 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Labels ..
Concatenation •••
Macro Subs trings ••
Macro Nesting •••
Macro Reserved Variables ••
Macro Connnents ••

Macro Example ••

SYSTEM CALLS ... CHAPTER 7
7.1 Documentation Conventions ...

Z80 CPU OVERVIEW ... CHAPTER 8
8.1
8.2
8.3

Add res sing modes ••
Regis ters •••
Flags "

CHAPTER 9
9.1
9.2
9.3
9.4
9.5
9.6
9.7

INTERFACING TO OASIS "
General Information •••
Peripheral Device Drivers •••
Disk Device Drivers •••
Terminal Class Code Drivers •••
System Start-up Program •••
USR Programs ••
BASIC Fields ..

Page

1
2

3

5
5
5
6
6
7
8

9
10

13

27
27
27
29
30
30
30
31
31
31
32

33
33

119
119
121
122

125
125
126
129
133
135
136
137

APPENDIX A SYSTEM CALL SUMMARY ••• 139

APPENDIX B ERROR MESSAGES •• 143

- iv-

Section

APPENDIX C

APPENDIX D

APPENDIX E

TABLE OF CONTENTS

CONTROL BLOCK DEFINITIONS ...
PROGRAMMING EXAMPLES ..

Page

145

153

CHAR.ACTER SET ••• 172'

-v-

CHAPTER 1

IRTRODUCTIOR

The OASIS MACRO Assembler (usually refered to as the Assembler) is a symbolic
assembly program for the Z80 cpu. It is a two-pass assembler (requiring the source
program to be read twice to complete the assembly process) designed to run under
the OASIS Operating System. It is, therefore, device independent, allowing
complete user flexibility in the selection of standard input and output device
options.

The Assembler performs many functions, making machine language programming easier,
faster, and more efficient. Basically, the Assembler processes the programmer's
source program statements by translating mnemonic operation codes to the binary
codes needed for the appropriate machine instruction, relating symbols to numeric
values, assigning memory addresses for program instructions and data, and preparing
an output listing of the program which includes any errors encountered during the
assembly.

The MACRO Assembler may be used to generate either absolute or relocatable object
code from a source program file. The type of object file produced is controlled by
the occurence of certain directives in the source file. Both types of object
programs must be processed by the LINK command before they can be executed as
programs.

The value
recognized
separately
encountered
predefined,
example:

assigned to an instruction mnemonic is the binary bit configuration
by the processor for that instruction. Predefined symbols are kept
by MACRO and recognized as reserved symbols only when they are
in the proper context. In context other than that where their usage is
the symbol will assume whatever value the user may wish to assign. For

LX:
CALL:

The Assembler has
the op-code field
user-defined.

LD A,O
JP CALL
ADD 2
CALL INPUT
JP XXXX

no problem differentiating the two CALL symbols since the one in
is predefined and the one in the label and operand fields are

Along with relating symbols to numbers, another major function of the Assembler is
to enable the programmer to reference a symbol that is defined later in the
program. This is called FORWARD REFERENCING, and is resolved by the second pass of
the assembly process (some directives restrict the use of forward referencing).
References may be made to symbols defined in other programs (EXTERNAL REFERENCING).
The values of these symbols is resolved by the linking editor (LINK).

An optional function of the MACRO Assembler is that of producing a tabulated
listing of all user-defined symbols, their value and all references to them. This
CROSS-REFERENCE table generation consists of recording all definitions of, and
references to, user-defined symbols, sorting the references, and merging them with
their values.

Another function
(Program Address
time. By using

MACRO

of the MACRO Assembler is the maintenence of up to 16 PABs
Blocks) which may be used to locate data and code at assembly

PABs the programmer gains the ability to write programs whose

- 1 -

MACRO REFERENCE MANUAL

actual execution addresses are determined at load time (relocatable programs).

A final function of the MACRO Assembler is to maintain assembler macros, hence the
name MACRO Assembler. A macro is a single user-defined instruction that is
replaced at assembly time with one or more assembler instructions and/or
directives.

1.1 Creating A Source File

An assembly language source file is created by using the system editor. Refer to
the OASIS System Reference Manual for complete details on using the EDIT program.

Assembly language source files usually have a file type of ASSEMBLE. When the
Editor is invoked and given a file description including a file type of ASSEMBLE,
MACRO or COPY, the Editor sets some of its global commands to the values associated
with an assembly source file. These values include setting LINEMODE OFF because
line numbers are not normally used in the source file; setting TABSET 10 16 29
which allows for the standard format of source statements; setting CASEMODE AM.

-2-

CHAPTER. 2

OASIS MACRO COMHAND

The MACRO command allows the user to translate Z80 source code and MACRO directives
into machine object code. The format of the MACRO command is:

MACRO <f ile-desc> [«option> ••• [)]]

Where:

file-desc Indicates the file description of the source file to be assembled. When
the file type is omitted from this description the default file type of
ASSEMBLE is used.

MACRO COMHAND Options

Options for the MACRO command include the following:

NOOBJ Indicates that no object file is to be produced.

OBJ[=fd] Indicates that an object file is to be produced. This is a default
option. An fd following OBJ indicates that the object file is to be
written to the disk whose directory has that label. when fd is omitted
the system disk is used.

TYPE Indicates that the listing is to be displayed on the console terminal.
Specifying this option pre-sets LIST to on.

PRINTER[n] Indicates that the listing is to be displayed on the primary printer or
PRINTERn. Specifying this option pre-sets LIST to on.

DISK[=fd] Indicates that the listing is to be written to a disk file with "LISTING"
as the filetype. An fd following LIST indicates that the listing file is
to be written to the disk whose directory has that label. When fd is
omitted the system disk is used. Specifying this option pre-sets LIST to
on. The listing file created will be in packed format, using ANSI forms
control characters.

LIST

NOLIST

Indicates that LIST is to be pre-set to on.
source program may change this setting.

Indicates that LIST is to be preset to off.
source program may change this setting.

Any LIST directives in the

Any LIST directives in the

SYM Indicates that the symbol table is to be included in any listing. This
option may only be specified if an output device has been specified (TYPE,
PRINTER, or DISK).

XREF

NOXREF

MACRO

Indicates that no symbol table listing is to be produced. This is a
default option.

Indicates that a cross-reference table is to be produced. This option is
only effective when a listing device has been specified (TYPE, PRINTER, or
DISK).

Indicates that no cross-reference table is to be produced. This is a
default option.

- 3 -

MACRO REFERENCE HAlmA!.

COPY

NOCOPY

DATA

NODATA

MACRO

Indicates that the source and object code produced from COPY files
included in the assembly are to be included in any listing. This option
is only effective when a listing device has been specified.

Indicates that the source and object code produced from COPY files
included in the assembly are not to be included in the listing. This is a
default option.

Indicates that data defined by DC and DW directives is to be fully
included in any object code listing. This option is only effective when a
listing device has been specified. In addition to the DC and DW
directives this option specifies that code generated by a REPT directive
is also to be included in any listing.

Indicates that only the first four bytes of the data defined by DC and DW
directives is to be included in any object code listing. Also, code
generated by a REPT directive is not listed when this option is in effect.
This is a default option.

Indicates that macro expansions are to be included in any listing. This
option is only effective when a listing device has been specified.

NOMACRO Indicates that only the macro calls, not the macro expansions, are to be
included in any listing produced.

IF

NOIF

EXTRN

Indicates that source code not assembled into object code due to
conditional assembly is to be included in any listing produced. This
option is only effective when a listing device has been specified.

Indicates that source code not assembled is to be omitted from any listing
produced. This is a default option.

Indicates that all undefined symbols are to be treated as external symbol
references (16 bit) and are not to be reported as errors.

NOEXTRN Indicates that all undefined symbols are to be treated and reported as
errors. This is a default option.

During the assembly process the segment names and line numbers are displayed on the
console during both passes, unless the option TYPE was specified.

-4- MACRO

CBAPTK1l 3

MACRO INSTRUCTION SYNTAX

An assembly language program consists of a sequence of statements in the assembler
language. Each statement is written on one line, and terminated by a carriage
return. The MACRO Assembler is a free format assembler in the sense that the
various statement elements are not placed at specific numbered columns on the line.
The Editor does have default tab settings for the elements but these are used only
for purposes of consistency of the listing and are not required by the Assembler.

There are four elements in an assembler statement, separated from each other by
specific characters. These elements are identified by their order of appearance in
the statement and by the separating (delimiting) character which follows or
proceeds the elements. Statements are written in the general form:

line' label: op-code operandl,operand2 ;com.ent

Not all of the elements are required for any specific instruction.

3.1 Line Numbers

The line number field is completely optional. The Assembler will create line
numbers for the source statements if there are no line numbers on the statements.
When a line number is included on the source statement it must: be the first field,
use only digits, and be followed by a space character.

Line numbers may be used for some of the source statements and not others. The
Assembler, when an unnumbered line is encountered, adds one to the line number used
for the previous statement. This facilitates identifying the lines associated with
a multi-segmented source file. The first line of each segment would be numbered by
the programmer and the following lines would be unnumbered.

3.2 Labels

The label field is an optional field that may be specified with any or all of the
op-codes and directives. When used the label field must be the first field in the
source line (following the line number, if used).

Labels are used to reference a specific location during assembly. A label may be
used on a line that is not referenced or even on a line by itself.

A label is a sequence of one or more characters terminated by a colon (:). A label
must start with a letter character (local labels are an exception to this rule) and
may include only letters, digits, and the dollar sign ($). No embedded spaces are
allowed.

Labels longer than eight characters are tokenized internally to eight characters by
taking the first four characters and the last four characters of the actual label.
It is possible that this may cause a duplicate label error.

The dollar sign character ($) used as a label by itself in the operand field, is
valid and indicates the current location counter.

Labels are of three types: global, local and external. A global label must be
uniquely defined within a source program and may be referenced from anywhere in the
program.

MACRO - s-

MACRO REFERENCE HABUAL

A local label may be duplicately defined within a source program but must be
uniquely defined between two global labels, and has a value only between those two
global labels. Local labels are identified by preceding the label with a period
(.). All references to a local label must include the preceding period. The
character following the period in a local label must be alphabetic. Macro local
labels only have a value in the macro defining them. Macro local labels are
identified by preceding the label with an at-sign (@). All references to a macro
local label must include the preceding at sign and these references may only be
from within the macro defining them.

Local labels are maintained internally in the assembly process by appending the
most recent global label to the local label (macro labels are maintained by
appending the macro name and macro index to the label).

External labels are labels whose value is defined outside of the source program.
The values of these external labels are resolved by the Link program.

Examples:

LABEL
LSTOS
NAME
OKAY
NOOBJECT
• INPUT

3.3 Op-codes

DONE
OBJECT
• OKAY
MOOOOOI0
.OUTPUT
@LABEL

The op-code field of a source statement may only include the directives and Z80
op-codes described in this manual. An op-code is separated from a label by the
colon. An op-code is separated from any operands by a space or tab character.

Op-codes must be spelled exactly as specified in this manual.

3.4 Operands

Operands modify the op-codes and provide the information needed by the assembler to
perform the designated operation. Certain symbolic names are reserved as key words
in the assembly language operand fields. These are:

1. The contents of 8 bit registers
corresponding to the register names.
E, H, L, I, R.

are specified by the character
The register names are A, B, C, D,

2. The contents of 16 bit double registers and register pairs consisting of
two 8 bit registers are specified by the two characters corresponding to
the register name or register pair. The names of double registers are
IX, IY and SP. The names of register pairs are AF, BC, DE, and HL.

3. The contents of the auxiliary register pairs consisting of two 8 bit
registers are specified by the two characters corresponding to the
register pair names followed by an apostrophe. The auxiliary register
pair names are AF', BC', DE', and HL'. Only the pair AF' is actually
allowed as an operand, and then only in the EX AF,AF instruction.

- 6- MACRO

CHAPTER. 3: MACRO DfSTRUCTlOB SYNTAX

4. The state of the five flags is testable as follows:

FLAG ON OFF
===

Carry
Zero
Sign
Parity
Overflow

3.4.1 Express~ons

C
Z
M (minus)
PE (even)
V

NC
NZ
P (positive)
PO (odd)
NV

Expressions in the operand may be simple or complex. A simple expression is an
expression that includes only one term. A complex expression includes more than
one term with logical t arithmetic t or relational operators joining them.

Expressions are allowed as operands whenever the symbols n t nn t or d are used in
the syntax of the instruction.

Expressions are analyzed in a left to right manner with no implied hierarchy except
that specified by parentheses or brackets.

Expressions wholly contained within parentheses are evaluated as an indirect
address reference. Expressions that contain sub-expressions in parentheses or
brackets are evaluated as indicating a hierarchy of evaluation. Parentheses and
brackets are equivalent but not interchangable t that iS t they must appear in pairs.

A term in an expression may be anyone of the following:

label Indicates the current value of the specified label.

numeric-constant May be any unsigned numeric value less than 65536
expressed in decimal (default or terminate with D)t hexadecimal
(terminate with the character H)t octal (terminate with the
character Q or 0) (Q assumes number is 16 bit octal; 0 assumes
number is two 8 bit octal numbers), binary (terminate with the
character B). All numeric constants must have a digit for the
first character. If necessary a hexadecimal value may have a
leading 0 such as OFFFFH.

string-constant One or two ASCII characters enclosed within a pair of
single or double quotes. (Storage definition directives DC and
DW allow longer strings.)

The arithmetic operators allowed by the assembler include:

+ Addition or unary plus
Unary minus or binary subtraction (two's complement)

/ Division
* Multiplication

MACRO - 7 -

MACRO REFERENCE HARUAL

The logical operators allowed by the assembler include:

.AND. Logical and, bit by bit

.OR. Logical inclusive or, bit by bit

.XOR. Logical exclusive or, bit by bit

.NOT. Unary one's complement

.MOD. Modulo (remainder function)

.SHL. Logical shift left (vacated bits replaced by 0)

.SHR. Logical shift right (vacated bits replaced by 0)

The relational operators allowed by the assembler include:

.EQ. Test equality, arithmetic or string - both must be

.GT. Test for greater than

.LT. Test for less than

.UGT. Test for unsigned greater than

.ULT. Test for unsigned less than
• NUL. Empty string or value •

The following examples represent typical expressions:

BASE+2l00H
'A'-l
(LSTDSK)
LNKLIT+8
256

8 is a decimal number
256 is a decimal number
refers to the local label

same

• LABEL 1
$ indicates the current location counter
''''
1232560 evaluated as: OlOlOOlllOlOlllOB or 53AEH
l23256Q evaluated as: lOlOOllOlOlOlllOB or A6AEH
lOllOlOlB+324-12H/2Q evaluated as: 243 decimal or F3H
l23+(45D-LABEL)
(123+(45D-LABEL»
(123+[45D-LABEL])

Further restrictions in the use of expressions are discussed in the chapter on
PABs.

3.5 C01IIIIIent:s

Comments may be included on any source line. To indicate a comment use the
semi-colon character (;). All characters ~fter the semi-colon will be ignored by
the assembler except for listing purposes. A comment may start in any column.

-8-

CHAPTER. 4

PROGRAM ADDRESS BLOCKS (PADS)

The concept of Program Address Blocks (PABs) may be used extensively when
programming with the MACRO Assembler. A PAB is a name assigned to an address
(either relative or absolute) that is referenced in a source program to define the
relationship between groups of code (instructions and/or data).

The use of PABs allows the programmer to write several modules of code (each module
probably performing a small, but complete, function), each module defining the
instructions and data that it requires and accessing data defined in other modules,
that, when linked together, form a contiguous program and data blocks.

Absolute programs must use an absolute PAB. When no PAB is defined in a program
the Assembler assumes that a relocatable PAB is implied.

Normally a relocatable program would only have one or two PABs defined. One PAB
would probably contain nonvolatile instructions and another PAB containing
nonvolatile and volatile data to be used by the program. However, a complex
program such as an operating system or compilor might use several PABs. In this
complex program the PABs would be differentiated by major functions such as device
drivers, logical I/O, arithmetic package, etc.

There are essentially three types of PABs.

The Absolute PAD

The absolute PAB is the Program Address Block that most assembly language
programmers are familiar with. An absolute PAB is one whose base address is
assigned by the programmer using the ABS directive. Symbols, instructions, and
data defined using an absolute PAB can be completely resolved by the Assembler into
executable machine code.

Instructions assembled in an absolute PAB can only be executed when the
instructions are loaded at the address they were assembled at (unless the
programmer uses position independant programming methods).

Programs that use an absolute PAB may only have the one PAB defined.

Different segments
together, form a
previous.

The Relocatable PAR

of code using
contiguous block

the same
of code,

absolute PAB name would, when linked
each segment being appended to the

The relocatable PAB is one whose base address is assigned by the program loader at
load time. Symbols, instructions, and data defined using a relocatable PAB are
only completely resolved when the program is loaded into memory for execution. The
relocatable PAB allows the user to write, assemble, and link programs that can be
executed at any address they may be loaded at.

A relocatable PAB is defined by the programmer using the REL directive. More than
one relocatable PAB may be defined and used in a program. (The MACRO Assembler
allows sixteen PABs per assembly, the LINK program allows 128 PABs per load module.

Different segments of code using the same relocatable PAB name would, when linked
together, form a contiguous block of code, each segment being appended to the

MACRO - 9 -

llAeRO REFERENCE HARUAL

previous.

The CODllllOD Relocatable PAD

The common relocatable PAB is very similar to the relocatable PAB. Its base
address is assigned by the program loader at load time and the symbols,
instructions, and data defined using a common relocatable PAB are only completely
resolved when the program is loaded into memory for execution.

A common relocatable PAB is defined by the programmer using the COM directive.
More than one common relocatable PAB may be defined and used in a program.

The difference between a relocatable PAB and a common relocatable PAB is that when
different segments of code, using the same common relocatable PAB name, are linked
together the code from one segment overlays the previous segment's code.

This type of PAB is very useful for buffer definitions where several modules use
the same memory area for volatile working storage. Each segment would define the
layout of the buffer with the specific symbols and locations that it requires.
This sounds like the same result as using the EQU directive and in fact might
produce the same results. However, when the common relocatable PABs are used no
one segment would have to allocate the maximum buffer size that would be used: the
Linkage editor would create the PAB as large as required by the segment that
defined the largest area. Mainly, when a common relocatable PAS can be used and is
called for in the design of the program, it results in a more easily coded and
maintained program.

The uses of PABs is probably best explained with
invent some meaningless examples at this time it
programs in the appendix "Program Examples".

a few examples. Rather than
would be best to look at the

4.1 PAD Restrictions

Programming with PABs provides more versatility and makes the programming task more
dynamic but it does carry some restrictions. These restrictions are mainly related
to the use of symbols that are defined in a relocatable or common relocatable PAB.

There are a few, but important, rules to keep in mind when formulating expressions
containing symbols. They are:

1. All relocatable symbols have full word (16 bit) values. This means
that a relocatable symbol or expression can only be used when a 16
bit value can be used.

2. The sum or difference of a relocatable symbol and an absolute symbol
is a relocatable value.

3. The difference between two relocatable symbols defined in the same
PAB is an absolute value.

4. The sum, difference, product, or quotient of two absolute symbols is
an absolute value.

5. The difference between two relocatable symbols defined in different
PABs is an error.

- 10 - HACRO

CHAPTER. 4: PROGlWI ADDRESS BLOCKS (PABS)

6. All other operations between two relocatable symbols defined in the
same PAB or in different PABs is an error.

7. All other operations between a relocatable symbol and an absolute
symbol are errors.

Another restriction in relation to relocatable PABs is that the execution address
is not known at assembly time. This seems obvious and of little importance except
when the program listing is taken into account: the addresses listed at the left
side of an assembly listing are not necessarily the execution addresses!

HACM - 11 -

MACRO REFERENCE MANUAL

- 12 - MACRO

CHAPTER. 5

MACRO DIRECTIVES & psmoo-ops

The OASIS MACRO Assembler provides many directives and pseudo-ops that make
programming in the Z80 assembler language easier by providing a means of assigning
values to labels, allocating and initializing storage, conditional assembly,
linking together several source files, incorporating source files into other files,
and access to powerful system subroutines incorporated in the operating system.

ABS Directive

The ABS directive defines an absolute PAB. The ABS directive, unlike the ORG
directive discussed later, does not change the location counter of the instructions
following - the USING directive is responsible for that. The general format of the
directive is:

<label> ABS [exp] [; comment]

Although, as indicated, the label field is required for the ABS directive the
expression field is not. The label field is used by the USING direct~ve to specify
which PAB to use. The expression field, when specified, indicates the address that
the PAB is to start on.

A PAB definition, such as the ABS directive, implies a USING directive following.
It is not necessary for you to follow an ABS directive with a USING directive.

ALIGN Directive

The ALIGN directive can not be used when relocatable PABs have been defined.

The ALIGN directive allows the programmer to set the location counter to a user
defined boundary. The general format of the directive is:

[<label>] ALIGN <exp> [;couaent]

All of the terms of <exp> must have been previously defined - no forward
references. <Exp> is evaluated and then the location counter is set to the value
of the current location counter plus current location counter modulo <exp>. This,
in effect, advances the location counter to the next <exp> boundary- For instance
if the location counter is 315 and an ALIGN 256 is encountered then the location
counter is set to 512.

BP Pseudo-op

The BP pseudo-op allows a break-point to be assembled into a program. The general
format of the BP is:

[<label>] BP [;co..ent]

When assembled the BP directive occupies one byte of storage (a RST instruction).
During program execution this code will cause a jump into the DEBUG program. If
the DEBUG program has not been loaded then the instuction has no effect. Refer to
the OASIS Dynamic Debugging Reference Manual.

MACRO - 13 -

HACllO REFERERCE MANUAL

COH Directive

The COM directive defines a common PAB. The general format of the directive is:

<label> OOK [<ezp>] [;COBBeDt]

As indicated, the label field is required for the COM directive, like all of the
PAB definition directives. The <exp> field, when specified, is not used for the
location of object code but only for listing purposes. A common PAB is a
relocatable PAB but differs from a relocatable PAB defined by the REL directive in
that the Linkage editor overlays common PABs of the same name instead of appending
them. When several object files are being Linked that use common PABs each of the
common PABs define the same address area, starting with relative location zero.
(DS directives in a common PAB only cause previously undefined storage in the PAB
to be set to zero.)

A PAB definition, such as the COM directive, implies a USING directive following.
It is not necessary for you to specify a USING directive immediately following a
COM directive.

COpy Directive

The COpy directive allows the programmer to specify that a sequence of code is to
be found in another source file. The general format of the directive is:

[<label>] COPY <file-desc> [;co-.ent]

The COPY directive is not a macro! No parameter replacement is allowed. When the
COPY directive is encountered by the assembler the specified file is copied into
memory and assembled at the current location counter as if the code were included
in the source program. The copied code will be listed according to the
specifications of the LIST directive.

This directive allows the programmer to easily reference frequently used sequences
of code without entering the code in each program that references it.

When the <file-desc> only specifies a file name the default file type of COpy is
used.

DB Directive

The DB (Define Byte) directive is a synonym of the DC (Define Constant) directive
discussed next.

DC Directive

The DC directive is the most general form of the storage definition directives.
The general format of the directive is:

[<1abe1>] DC <ezp list> (;co..ent]

Similar to the DW directive the DC directive allows the terms in the expression
list to be forward references. Each expression is evaluated independently of the
others. The individual expressions may be string literals (enclosed in quotes), 16
bit words (enclosed in parentheses), integer values, floating point values (decimal
point specified), floating point scientific format values (decimal point and

- 14 -

CHAPTER 5: MACRO DIRECTIVES & PSEUDO-OPS

exponent specified).

The various forms of an expression are evaluated and assembled according to the
following rules:

strings strings Each ASCII character in the quoted string is evaluated and the 7
bit code is generated, one per byte. If the quotes are double quotes (")
the last byte will have bit position 7 set (1). If the quotes are single
quotes (') the last byte is not altered.

words The expression within the parentheses is evaluated identical to the DW
directive.

integers The expression is evaluated with the least significant 8 bits assembled at
the current location counter. Overflow error results if the high order 8
bits are not zero or FFH.

floating point floating point The expression is evaluated and the six byte value is
assembled at the current location counter. Floating point values are
formatted using a normalized, binary, hidden bit format, consistent with
the way that BASIC maintaines its numeric variables.

The hidden bit format is used to gain one more bit of precision without using an
extra bit of storage. The floating point value is formatted in two sections: one
byte of signed characteristic and five bytes of signed mantissa. The value of the
characteristic and mantissa is in binary, the eight bits of characteristic has a
decimal range of about +38 to -38.

The value is first normalized, that is, the mantissa is first converted to a
fraction less than +1, greater than -1, adjusting the characteristic accordingly.
Then the mantissa is repeatedly multiplied by two (and the characteristic
decremented) until the most significant "on" bit is in the most significant
position. Then, since it is known that this bit is always "on" the position is
occupied by the sign bit of the mantissa. This hidden bit technique implies that
the hidden bit will have to be re-instated before the number can actually be used
in arithmetic operations.

The following example of the
format to internal format
format:

conversion of a floating point number from external
illustrates the result of the hidden bit, normalized

Value = 123.
Binary = 0111 1011. (7BH)
Conversion:
Char Mantissa

00

08

08

07

07

MACRO

01111011 00000000 00000000 00000000 00000000
Normalize decimal point:
01111011 00000000 00000000 00000000 00000000
Save sign bit, set to absolute value:
01111011 00000000 00000000 00000000 00000000
Adjust MSB:
11110110 00000000 00000000 00000000 00000000
Change MSB to sign bit:
01110110 00000000 00000000 00000000 00000000

- IS -

KACRO REFERENCE MANUAL

DC Examples

Addr Obj-Code Line *** Source Statement ***
0000 00 1 DC 0
0001 3412 2 DC (1234H)
0003 4142534F 3 DC 'ABSOLUTE'
0007 4C555445
OOOB 4142534F 4 DC "ABSOLUTE"
OOOF 4C5554C5
0013 00010241 5 DC 0,1,2,'A'
0016 6 DS OFH
0025 FFOO 7 DW 255
0027 01999999 8 DC 1.2
002B 9999
002D OB1A5224 9 DC 1234.567
0031 DD2D
0033 1516B43F 10 DC 1234567.890123
0037 1EF5
0039 FD7CD6E9 11 DC .123456789
003D B9C6

DS Df.rectf.ve

The DS directive allows the programmer to advance the location counter a specified
amount, thus reserving a storage area. The general format of the directive is:

All of the
references.
bytes.

DW Df.rectf.ve

[<label>] DS <exp> [;co..ent]

terms used in <exp> must have been previously defined - no forward
<Exp> is evaluated and the location counter is advanced that many

The DW directive allows the programmer to define words of storage to be specific
values. The general format of the directive is:

[<label>] DW <exp If.st> [;comment]

The expressions in the list are separated by commas. Each expression is evaluated
independently of the other expressions in the list. The terms of the expressions
may include forward references. Each expression is evaluated and assembled at the
current location counter. The word is assembled with the least significant 8 bits
(LSB) first followed by the most significant 8 bits (MSB). The location counter is
advanced by two for each expression evaluated.

- 16 -

CHAPTER. 5: MACRO DIRECTIVES & PSKUDO-OPS

EJECT Directive

The EJECT directive indicates that a page eject is to be generated in the listing.
The general format of the directive is:

EJECT [; comaent]

The EJECT directive is only effective when a listing is being generated. The
directive, when encountered, causes an immediate page eject to be generated in the
listing. The EJECT directive itself is not listed in the listing, although it does
advance the line number.

ELSE Directive

The ELSE directive allows the programmer to specify an alternate set of
instructions to be assembled when the <exp> of an IF directive is evaluated to be
false. The general format of the directive is:

[<label>] ELSE [;comment]

The ELSE directive is an extension of a prior IF (or
therefore the ELSE directive may only be used between
directive or between an ELSEIF and ENDIF directive.

ELSEIF) directive and
an IF and ENDIF ENDIF

When the <exp> of an IF or ELSEIF directive is evaluated to be false the assembler
searches forward for an ELSE (or ELSEIF) directive. The instructions following the
ELSE directive are then assembled. 'V'hen the <exp> is evaluated to be true the
instructions following the ELSE directive are not assembled.

ELSEIF Directive

The ELSEIF directive provides "case" statement conditional assembly capability.
The general format of the directive is:

[<label>] ELSEIF <exp> [;comment]

When used, the ELSEIF directive must be between an IF, ELSEIF or ELSE directive and
an ELSE, ELSEIF, or ENDIF directive. All terms in the <exp> must have been
previously defined.

Only one ELSE statement is allowed per IF statement but there may be several ELSEIF
statements following an IF statement.

During the analysis of an IF - ELSEIF ••• ELSEIF - ENDIF statement group assembly of
source statements is suppressed until a true condition is detected for one of the
IF, ELSEIF, or ELSE statements. When this occurs the statements are assembled
until an ELSE, ELSEIF, or ENDIF statement is encountered-~then the statements are
skipped until the matching ENDIF is encountered.

MACRO - 17 -

MACRO REl'ERENCE IWmAL

Examples

LABELl: EQU
LABEL2: EQU
LABEL3: EQU
LABEL4: EQU

IF

1
o
LABEL2*LABELl
LABEL2.AND.LABEL3
LABELl

ELSEIF LABEL2

ELSE

ENDIF
IF LABEL 3

ENDIF
IF LABEL4

ELSE

ENDIF

Elm Directive

This code will be assembled

This code will not be assembled

This code will be assembled

This code will not be assembled

This code will not be assembled

This code will be assembled

This code will be assembled

The END directive specifies the physical end of the source code. In addition this
directive may specify the entry point address. The general format of the directive
is:

[<label>] ERD [<exp>] [;ca..ent]

It is not necessary to terminate the
however, it is recommended and when
analyzed.

source program with the END directive,
used, it will be the last line of code

When the <exp> is specified it indicates the address to be used for
point. That is the address at which execution will begin when the
executed.

EBDII' Directive

the entry
program is

The ENDIF directive is required to terminate the instructions that are to be
conditionally assembled. The general format of the directive is:

[<label>] ElIDII' [;c~t]

Every IF directive must have a matching ENDIF directive.

- 18 - HACIlO

CBAPTKR. 5: MACRO DIRECTIVES & PSEUDO-OPS

ENDH Directive

The ENDM directive indicates the physical end of a macro prototype definition. The
general format of the directive is:

ENDH [;comment]

The usage of this directive is explained in the chapter on Macros.

ENTER. Directive

The ENTER directive is identical to the VALUE directive except that the <exp> is
entered from the keyboard during pass one of assembly. The general format of the
directive is:

<label> ENTER. [<quoted string prompt>] [;co..ent]

When the ENTER directive is encountered during pass one of the assembly the <quoted
string prompt> is displayed on the console. If the <quoted string prompt> is
omitted the <label> name is displayed for prompting purposes. At this time the
operator enters the expression to be assigned to <label>.

The ENTER directive must have a label. When the ENTER directive is encountered by
the assembler during pass one the operator is allowed to enter the value (this
value may be in the form of an expression using literal and previously defined
labels. The label being defined with the ENTER directive may have been previously
defined and used.

Examples

DEBUG:
LABELl:

ENTER 'Is this a debugging assembly? (YiN)'
ENTER 'Please type the value of LABELl'

IF DEBUG.EQ.'Y'

END IF

ENTRY Directive

The ENTRY directive allows you to specify that a label, defined in the current
assembly, is an external reference (EXTRN) of another assembly. The general format
of the directive is:

ER7RY <label>[,<label>] ••• [;ca.aent]

The list of labels may be forward references to labels defined later in the
assembly but the labels must be defined at some time during the current assembly.
This directive is the logical inverse of the EXTRN directive.

The ENTRY directive would be used in a module of source code that defines a
label(s) whose value will be needed in another module(s) that is not to be
assembled with this one but will be LINKed with the current module.

For more explanation of the use of this directive and the EXTRN directive see the

MACHO - 19 -

MACRO REFERENCE MANUAL

OASIS LINK Editor Reference Manual.

EQU D1.rective

The EQU directive allows the programmer to assign a value to a label. The general
format of the directive is:

<label> EQU <exp> [jcomment]

The EQU directive must have a label. All terms in <exp> must have been previously
defined - no forward references are allowed.

When the EQU directive is encountered by the assembler <exp> is evaluated and
assigned to <label>.

A label that has been equated with the EQU directive may not have been defined by
any other directive or instruction in the program.

ERR Directive

The ERR directive is used to display an error message during the assembly process.
Normally this would be used in conjunction with the conditional directives when an
invalid condition has been detected. The general format of the directive is:

ERR 'message' [;coaaent]

When the ERR directive is encounted the message is displayed on the console along
with the line number and the error message is included in any listing file being
generated. This directive does not cause the assembly process to be cancelled but
it will cause the return code to be set to a non-zero value. This return code can
be displayed when the RDYMSG has been set ON and it can be tested by an EXEC
program.

EX Pseudo-ops

The EX pseudo-op provides a convenient method of expressing some frequently used
register exchanges with the Z80 registers.

MACRO Pseudo-op

EX
EX
EX
EX

AF,AF'
AF,AF
HL,DE
BCDEHL,BCDEHL'

Equivalent Z80 Ins~ruction

EXA
EXA
EX
EXX

DE,HL

As can be seen, the pseudo-ops are more graphic in their meaning and would be very
useful for the programmer who is unfamiliar with the Z80 exchange instructions.

- 20- MACRO

CHAPTER. 5: :NACRO DIRECTIVES & PSEUDO-OPS

EXITH Directive

The EXITM directive is used in a macro prototype, usually in conjunction with the
conditional directives, to skip to the ENDM directive. The general format of the
directive is:

EXI'lH [j comment]

The EXITM directive is discussed in the chapter on Macros.

EXTRN Directive

The EXTRN directive allows you to specify that a label is defined externally to the
current assembly. The general format of the directive is:

EXTRN <label>[,<label>] ••• [jcomment]

The list of labels specified in the operand field cannot include any labels defined
during the current assembly, either before or after this directive.

For more information regarding the use of this directive and the ENTRY directive
see the OASIS LINK Editor Reference Manual.

IF Directive

The IF directive allows the programmer to include code that is assembled only when
an expression is true. The general format of the directive is:

[<label>] IF <exp> [j co.-ent]

All terms referenced in <exp> must have been defined previously in the program. No
forward references are allowed.

The <exp> is evaluated and, if true, the instructions following are assembled.
When the value of the <exp> is false the instructions following, up to the next
ELSE, ELSEIF, or ENDIF, are not assembled.

LD Pseudo-ops

The LD pseudo-op provides a convenient method of performing some frequently used
double register loads that are not available in the Z80 instruction set. The
general format of the pseudo-op is:

[<label>] LD <rr>, <rr> [; co~nt]

[<label>] LD <rr'>, <1.i +d> [j c~nt]

[<label>] LD <ii.-hi>,<rr'> [;co..ent]

MACRO - 21 -

MACRO REFERENCE MANUAL

Where:

rr Is any of the double register pairs: BC, DE, HL, IX, or IY.

rr' Is any of the double register pairs: BC, DE, or HL.

ii Is either of the index register pairs: IX or IY.

d Is a signed displacement value.

The LD pseudo-op is the same op-code as the Z80 LD instruction except in its
permissible syntax. The LD pseudo-op generates the corresponding instructions to
perform the desired load. For examp1e- the pseudo-instruction: LD HL,DE will
generate the Z80 instructions: LD H,D and LD L,E.

LINK Directive

The LINK directive provides a means of segmenting the source program into more
workable units. The general format of the directive is:

LINK <file-desc> [;comment]

When the LINK directive is encountered by the assembler the specified file is used
for the next line of source code. Obviously the LINK directive should be the last
line of code in the current file as any code following the LINK directive will be
ignored.

When the <fi1e-desc> only specifies a file name the file type used in the OASIS
MACRO command is used - that command had a default file type of ASSEMBLE.

LIST Directive

The LIST directive specifies how (and if) the assembler is to list the source
program. The general format of the directive is:

LIST [<option 1ist>] [;comment]

The LIST directive is only effective when one of the listing output options was
specified in the OASIS MACRO command. The LIST directive may be used more than
once in a source program to change the listing options. Similar to the USING and
ORG directives, when the option list is specified the current list options are
pushed onto an 8 level, internal LIST stack. When the option list is omitted the
previous list options are popped from this LIST stack.

The options that may be specified include:

ON Indicates that a listing is to be created.

OFF Indicates that no listing file is to be created.

COpy Indicates that code found in a "COpy" file is to be included in the
listing.

NOCOPY Indicates that code found in a "COpy" file is not to be included in the
listing. This option does not affect the object program generated.

- 22 - MACRO

CHAPTER. 5: MACRO DIRECTIVES & PSEUDO-OPS

IF Indicates that source code not assembled due to conditional assembly is
included in the listing.

NOIF Indicates that source code not assembled due to conditional assembly is
not included in the listing.

DATA Indicates that all data generated by the storage definition directives is
to be included in the listing.

NODATA Indicates that only the first four bytes of data generated by each storage
definition directive is to be included in the listing.

MACRO Indicates that macro expansions are to be included in the listing.

NOMACRO Indicates that macro expansions are not to be included in the listing.

The options specified in the CSI MACRO command
options, however (assuming a listing output
directive may override these options.

MACLIB Di.recti.ve

initially
device was

set the various list
specified) the LIST

The MACLIB directive allows the programmer
definitions is to be located and remembered.
is:

to specify that a file of macro
The general format of the directive

[<1abel>] MACLIB <fi.le name> [. <fi.le type>] [: <fi.le di.sk>] [; co-.ent]

When the MACLIB directive is encountered by the assembler the specified file
(default file tYRe of MACLIB) is located. The macro definitions contained in the
file are noted and the macros may be used by the program just as if the macro were
defined by the program.

No listing of the MACLIB file will be produced.
macro definitions.

MACRO Di.recti.ve

The MACLIB file may only contain

The MACRO Directive specifies that the code following (up to and including the ENDM
directive) is a macro prototype definition. The general format of the directive
is:

HACRO [; co..ent]

The MACRO directive, along with the other macro related directives, is discussed in
the chapter on Macros.

MACRO - 23 -

MACRO REFEREBCE HANUAL

ORG Directive

The ORG directive allows the programmer to change the value of the location
counter. This location counter is used to determine the address at which to
assemble the next instruction. The general format of the directive is:

[<label>] ORG [<exp>] [; cOIIIIEnt]

The ORG directive always specifies that the location counter is to be changed.
When the ORG directive is encountered in an ABS PAB the expression specifying the
new location counter is absolute. When the ORG directive is encountered in a REL
or COM PAB the expression specifying the new location counter must be a relocatable
expression.

All of the terms in <exp> must have been previously defined - no forward references
are allowed. When the ORG directive is encountered <exp> is evaluated and assigned
to the location counter and <label>, when specified.

When <exp> is specified with the ORG directive the current location counter is
placed on an internal 8 level ORG stack. When <exp> is omitted the previous
element on the internal ORG stack is popped off.

This feature allows the programmer to place the code
near the code referencing this storage even though
working storage may be any place in memory.

defining the working storage
in fact the address of the

For example:

Addr Obj-Code Line *** Source Statement ***
1 MAIN: ABS

4000 2 ORG 4000H
4000 320090 3 LD (LABELl) ,A
4003 E3 4 EX (SP) ,HL
4004 7E 5 LD A, (HL)
4005 23 6 INC HL
4006 E3 7 EX (SP) ,HL
4007 FE45 8 CP VALUE 2
4009 3805 9 JR C,LABEL2
400B 3A0090 10 LD A, (LABELl)
400E 37 11 SCF
400F C9 12 RET
9000 13 ORG 9000
9000 0000 14 LABELl: DC (0)
9002 00 15 LABEL3: DC 0
4010 16 ORG
4010 17 LABEL2:

- 24 -

CHAPTER 5: HACRO DIRECTIVES & PSEUDO-OPS

BEL Directive

The REL directive is used to define the relocatable PAB. The general format of the
directive is:

[<label>] BEL [<exp>] [;comment]

Unlike the ABS directive, the label field is not required when there is only one
REL PAB in a program. When the label field is omitted the PAB will be assigned the
name of the program. When the label field is specified it is used by the USING
directive to specify which PAB to use for assembling code. The <exp> field, when
used, specifies an address relative to the load address of the program that the PAB
is to start on for listing purposes only. Obviously, since this defines a
relocatable PAB, the actual addresses used during execution time may be different.

A PAB definition, such as the REL directive, implies a USING directive following.
It is not necessary for you to specify a USING directive immediately following a
REL directive.

REPT Directive

The REPT directive allows you to duplicate a line of source code several times
without coding several times. The general format of the directive is:

REPT [<exp>] [;comment]

When the REPT directive is encountered by the Assembler the next sequential line of
code will be duplicated the number of times specified by <exp>. <exp> must be in
the range of 1 - 65535. No forward referencing is allowed.

The line that follows the REPT directive cannot have a label in the label field as
that label would be duplicated along with the rest of the code. This, of course,
would cause a duplicate label error.

The listing of the duplicated lines of code is controlled by the DATA/NODATA option
of the LIST directive.

SC Pseudo-op

The SC allows the assembly language programmer to utilize various portions of the
operating system. The general format of a System Call is:

[<label>] SC <exp> [; comment]

The <exp> specifies which system routine control is to be transferred to. Although
<exp> may have a value between 0 and 255 the actual number of system routines
implemented is less. Reference to a system call number not implemented will cause
system call number 0 to be executed. SC 0 will cause control to return to the
OASIS operating system.

When assembled the SC occupies two bytes of storage.

The system routines implemented and the requirements for usage are discussed in the
chapter on System Calls.

MACRO - 25 -

HACRO RD'EBENCE HAImAL

SUBT Df.rectf.ve

The SUBT directive allows the programmer to specify a sub-heading to be printed on
each page. The general format of the directive is:

SUBT <quoted string> [;comaent]

The <quoted string> replaces the second heading line message at the top of each
subsequent page of the listing.

TITLE Df.rectf.ve

The TITLE directive allows the programmer to specify the heading to be printed at
the top of each page in the listing. The general format of the directive is:

TITLE <quoted string> [;co-.ent]

The TITLE directive is only effective when a listing is being generated. When the
TITLE directive is encountered by the assembler the heading for the next page of
the listing is changed to be the <quoted string> (exlusive of the delimiting
quotes) and a page eject is generated in the listing. The TITLE directive itself
is not listed in the listing, however the line number is incremented.

USING Df.rectf.ve

The USING directive is used in conjuntion with the ABS, COM or REL directives to
specify the PAB that instructions following belong to. The general format of the
directive is:

USIBG [<label>] [;coaaent]

The USING directive can not have a label. The label specified in the operand
portion of the directive must be of a previously defined PAB (no forward
references). When label is used in the operand position the current "USING PAB" is
pushed onto an 8 level USING stack. When <label> is omitted the last "USING PAB"
is popped from this USING stack.

When a PAB is defined by the ABS, COM, or REL directive a USING directive is
implied. There is no need for you to follow a PAB definition with a USING
directive unless you wish to specify some code "using" a different PAB than the one
just defined. This implied USING performs a push onto the USING stack just as if
you had specified the USING directive yourself. In fact, when you specify the
USING directive following a PAB definition there will be two pushes onto the USING
stack.

VALUE Df.rectf.ve

The VALUE directive is similar to the EQU directive
redefining a previously defined label in the program.
directive is:

<labe1> VALUE <exp> [;c~nt]

with the added ability of
The general format of the

The VALUE directive must have a label. All terms in <exp> must have been
previously defined - no forward references are allowed.

- 26 - HACRO

CHAPTER 6

MACROS

Macros are predefined sections of source code which may be used to facilitate the
coding of commonly used procedures. Macro source code is modified by the MACRO
Assembler to include labels and expressions passed as arguments by the main body of
source statements. Macro definitions are called ''Macro Prototypes" and are saved
for later access by the MACRO Assembler.

The OASIS MACRO Assembler allows macro prototypes to be defined either within a
source file (must be defined before referenced), in an external macro source file
(file type of MACRO, one per file), in an external macro library file (file type

MACLIB, one or more per file), or in a COpy file that was copied before the macro
was referenced.

6.1 Preparing Macro Prototypes

Macro prototypes must be defined in the following format:

MACRO [;comment]
[&<label>] name [&<symbol> [(<default»]] [, &<symbol> [(<default»]] •••

one or more assembly language statements and macro directives
ENDM

Each prototype must start with the MACRO directive and end with the ENDM directive.

The second statement of each prototype is called a "Macro Prototype Header" and
defines the name of the macro and any labels and symbols that may be replaced
during assembly. The name may be any 1 to 8 character symbol that is not already
predefined by the MACRO Assembler (Z80 op-codes and MACRO directives). All
arguments shown in brackets are optional and may be omitted if not needed.

Notice that the label and symbols are preceded by the ampersand character. This is
also true of the assembly statements within a macro. The ampersand character
always precedes a substitution label or symbol.

Labels and symbols shown in the prototype header define items in the statements
that follow that may be replaced at assembly time. Following each symbol in the
header a default expression may be defined. The default will be used if a macro
reference in the source program fails to supply a replacement expression for the
preceding symbol. Spaces or commas may be used to separate the times in the list.

More than one macro may be defined in a program.

6.2 Macro Calls

Code from a macro prototype is included in assemblies by the means of "macro
calls". The general form of macro calls is:

[<label>] name [<exp> [,<exp>] •••] [;co..ent]

The name used in the instruction field will be assumed to be a macro name if it is
not a recognizable MACRO Assembler instruction mnemonic or directive. The label
and expression arguments in brackets are optional. Arguments defined in the
expression field are positional and must be defined in the same order as related
symbols in the macro's prototype header (except keywords).

MACRO - 27 -

MACRO REFERENCE HANUAL

Notice that a macro call does not use the ampersand character.

There is a purposeful similarity between the format of a macro call and macro
prototype header. They are closely related and determine the final code that will
be included in the assembly.

Header: [&<label>] name [&<sym> [«def»] [,&<sym>[«def»] •••]]
Call: [<label>] name [<expression> [,<expression>] •••]

The label for the call will replace the occurrences of the header label in
prototype code during expansion. The first expression in the call will replace the
first header symbol in the prototype code, the second expression will replace the
second symbol, and so forth.

Arguments may be omitted in each list of macro call expressions by coding only the
trailing comma to indicate the missing expression. Trailing commas after the last
expression included in a list are not required.

The rules for substitution are:

Macro Call Prototype Header Action
===
Label No label

Label Label

No label No label
No label Label
Symbol No symbol
Symbol Symbol

No symbol Symbol-no default

No symbol Symbol-default

Label is defined normally before
expanded macro code is processed.

Call label substituted in
expanded macro code.

No change.
Prototype label is omitted.
Call symbol ignored.
Call symbol substituted for

occurrences in macro code.
Header symbol disappears in

expanded code.
Default substituted for

occurrences in macro code.

Expansion example:

Macro prototype:

MACRO
&LABEL: CLEAR

&LABEL: LD
LD

LOOP: LD
INC
DJNZ
ENDM

Macro Call:

LOOP: CLEAR

&FIELD,&SIZE(80)
; Clear &FIELD to
B,&SIZE
HL,&FIELD
(HL),O
HL
LOOP

BUFFER

zeros for length &SIZE
Get field length
Point to &FIELD
Set byte to zero
Point next
Repeat till done

- 28 - MACRO

CHAPTER. 6: 1IACR.OS

Expansion:

; Clear BUFFER to zeros for length 80
LOOP: LD B,80 Get field length

LD RL,BUFFER Point to BUFFER
LOOP: LD (RL) ,0 Set byte to zero

INC RL Point next
DJNZ LOOP Repeat till done

In the above
replaced by
not have a
substituted.

example the symbols &LABEL and &FIELD in the prototype have been
"LOOP" and "BUFFER" provided by the macro call. The symbol "SIZE" did
replacement expression in the macro call so the default "80" was

6.3 Macro Keywords

The MACRO Assembler provides an alternate format for prototype headers and macro
calls to allow easier implementation of macros with long symbol lists. This
alternate format uses the keyword feature.

As described above the symbols in a prototype header and a macro call are
positional, meaning that a one to one match is made between the first symbol
defined in the header and the first position of the call, the second symbol defined
in the header and the second position of the call, etc.

When the keyword feature is used the symbols are no longer positionally defined and
called. This is important when a long list of symbols and defaults are defined in
a header but only a few are used in the call.

A symbol is defined as a keyword in a macro call by using the symbol with an equal
sign (=) followed by the value.

Example:

Macro Prototype:

MACRO
&LABEL: TEST
&LABEL: DC

Macro Call:

VALUE:

Expansion:

VALUE:

MACRO

DC
DS
DC
ENDM

TEST

DC
DC
DS
DC

&A(I),&B(2),&C,&D(256),&E(0),&F(5),&G(I)
&A,&B
&C
&D
&E,&F,&G

,5,5,G=128

1,5
5
256
0,5,128

- 29 -

HACllO REFERENCE HAlRJAL

6.4 Labels

Labels within a macro are of three types: global, local, and macro local. The
global label within a macro functions the same as it does outside of a macro: it
can be referenced from anywhere in a program. A global label defined within a
macro is different from a global label defined outside of a macro in that the
definition of the global label does not affect local labels.

The local label defined within a macro functions the same as it does outside of a
macro: it can only be referenced from locations between two global labels (global
labels defined outside of the macro.

The macro local label is a label that has a value only when reference from within
the macro defining it. A macro local label is a label whose first character is a
@.

6.5 Concatenation

The concatenation character, vertical bar (I) is used in inner macro calls and
macro prototype expressions to separate a macro symbol from a literal that is to be
concatenated to the replaced value of the symbol. Macro symbols may be
concatenated by merely concatenating the symbol references in the prototype.

Example:

Macro prototype:

MACRO
MSG

MSG&AAA: DC
DC
DC
ENDM

Macro Call and Expansion

&AAA,&BBB
&BBBILOC,&BBBISIZE
'ERROR IN PHASE DCT&AAA'
(&BBB&AAA)

MSG 024,PHS4

MSG024: DC
DC
DC

PHS4LOC,PHS4SIZE
'ERROR IN PHASE DCT024'
(PHS4024)

In order to include the vertical bar character as part of a macro or macro call you
must duplicate it: II

6.6 Macro Substrings

Substrings of macro variables can be used by specifying the starting and ending
character positions of the variable, within parenthesis, immediately following the
variable name. For example: &NAME(3,5) indicates the substring of the value of the
variable &NAME from position three through position five (three characters). Any
time a variable name is used followed by a left parenthesis character the assembler
will try to substing the variable. When the left parenthesis character is used and
substringing is not desired you must use the concatenation character described
above.

- 30 -

CHAPTER. 6: HACROS

6.7 Macro Besting

The OASIS MACRO Assembler allows the nesting of macro calls within macro calls up
to eight levels deep. Macro Local labels cannot be passed as arguments to inner
macros. Local labels may be passed as arguments to inner macros but this usage may
be restricted by the definition of global labels (same as non-macro code). The
passage of global labels and other arguments is unrestricted.

6.8 Macro Reserved Variables

Within a macro prototype or macro call there are four reserved variables available
to the user. These variables allow you to access the current date and time, the
program name, and the current macro index value. If these variables are to be used
as labels then they should be concatenated with other characters to generate unique
labels. The variables are as follows:

&DATE
&TIME
&PROG
&INDEX

6.9 Macro Comments

current date in mm/dd/yy format
current time in hh:mm:ss format
current source program name
current macro call index number

Comments may be included in a macro prototype in the same manner as comments in the
main program. Macro symbols may be included as part of a comment and these will be
expanded.

A comment may be included in a macro prototype that is not to be expanded or even
listed in any listing file created. This type of comment (macro comment) is
indicated by pairing the comment delimiter (;;).

MACRO - 31 -

MCRO REFERENCE IWWAL

6.10 Macro Exa.ple

&LABEL:

&LABEL:

@BUFF:

MACRO
FCB
IF
ERR
EXITM
ENDIF
IF
ERR
EXITM
ENDIF
DC

; Create FCB
&CHANNNEL,&MODE,&BUFFER
.NUL.&LABEL ; Asm only if &LABEL is empty
'Label field required for FCB'

&CHANNEL.LT.O.OR.&CHANNEL.GT.16
'ACB channel number out of range'

&CHANNEL
IF .NUL. &MODE
ERR 'Access mode required'
EXITM
ELSE
IF
DC
ELSEIF
DC
ELSEIF
DC
ELSEIF
DC
ELSE

;; Test
'&MODE(1,3)'.EQ.'INP'
gOH
'&MODE(l,l)'.EQ.'O'
88H
'&MODE(l,l)'.EQ.'D'
40H
'&MODE(1,3)'.EQ.'IND'
20H

ERR 'Access mode undefined'
EXITM
ENDIF
ENDIF
IF '&BUFFER'.EQ."
DC (@BUFF)
DS 255
ELSE
DC (&BUFFER)
END IF
ENDM

the access mode specified

- 32 -

CHAPTER 7

SYSTEM CALLS

This chapter describes all of the system calls implemented in this version of the
MACRO Assembler. They are described because they do exist and are available for
use, not because they should be used by the programmer. In fact, some of these
system calls should not be used: 10, 11, 27, 28, 50, and 51. These system calls
are related to physical disk I/O and, if used indiscreetly, may destroy the
resident operating system or the contents of a disk or disks. Any consequential
damages caused by the use of these specific system calls are the responsibility of
the user.

7.1 Documentation Conventions

This chapter describes the syntax and operation of the system calls available to
the programmer using the OASIS MACRO Assembler. Each system call is presented in
the same format:

1. System call heading, centered on the page.

2. Function of the system call.

3. Input parameters. This area defines all of the parameters that are
required to be defined before the system call is invoked.

4. Output parameters. This area defines any parameters that are
returned to the calling program.

5. Description.
system call.

A general descriptive text of the function of the

6. Other system calls used. This area specifies if any other system
calls are used to perform the function and what they are.

7. Other registers altered.
system call, excluding
listed in this area.

Any
those

registers that may be changed by the
specified as output parameters, are

8. Example. A specific example of the calling sequence and result of
the system call is given. An example is not given i.E the system call
is obvious or trivial.

System control blocks are referenced frequently through this chapter. Refer to the
appendix on System Control Blocks for information regarding the content and format
of each of the control blocks.

MACRO - 33 -

HACRO REFERERCE HARUAL

===
SC 0 QUIT

===

Function: Reload the Command String Interpreter - restart.

Input parameters:

Reg A - Return Code

Output parameters: none

Description:

The Command String Interpreter is reloaded, the system stack is reset and
control is passed to the CSI. This system call is generally used when an
assembly program is finished its execution and control is to return to the
operating system.

The value in the A register is the return code. This return code is
displayed if RDYMSG is set ON and is accessible by the EXEC language.

Other system calls used: MOUNT (9), RDI (10), CRLF (18), LOOKUP (20), FETPRG (30)

Other registers altered: all (control returns to operating system)

Example Calling Sequence:

LD
SC
END

A,16
o

Return code
; Re-load CSI & exit

===
SC 1 KEYIR

===

Function: Accept a line of input from the console keyboard.

Input parameters:

Reg B - Max line length to accept
Reg DE - Address of buffer to store line

Output parameters:

Reg A - Actual line length accepted

Description:

Up to B characters are accepted from the console input device (CONIN).
All characters will be echoed to the console output device, dependent upon
the controls set in the console control byte. Entry is terminated by
entry of B characters or a carriage return. (The console control byte may
specify that any control character terminates input.) When the input is
terminated a carriage return, line feed is echoed to the console output
device.

SC 1 DYIlI - 34-

Other

Other

CHAPTER 7: SYSDH CALLS

If the input is not terminated by a carriage return (B characters entered)
then a carriage return is appended to the end of the character string in
the buffer. For this reason the buffer length should be B+l.

system calls used: CONIN (4), CONOUT (5)

registers altered: C, D, E, H, L

Example Calling Sequence:

LD B,64 Length
LD DE ,AREA Input buffer
SC 1 Get line from console

AREA: DS 65 ; Buffer

===
SC 2 DISPLAY

===

Function: Display characters on console output device.

Input parameters:

Reg DE - Address of first character to output

Output parameters:

Reg DE - Address of last char output plus one

Description:

Other

Other

Characters from the buffer addressed by register pair DE are displayed on
the console output device. A null character (00) terminates output to the
console and returns from the system call.

A carriage return will be displayed as a carriage return, line feed and
the system call will be exited. A line feed will be displayed as a
carriage return, line feed, output continues. An HT character (09H) will
be displayed as the proper number of spaces according to the Tab Set Block
(TSB) •

system calls used: CONOUT (5), CRLF (18)

registers altered: A

Example Calling Sequence:

LD DE,MSG Point to message string
SC 2 Display on console

MSG: DC 'Any old thing',ODH

MACRO - 3S- SC 2 DISPLAY

MACRO REFERERCE HANUAL

===
SC 3 CORSt'

===

Function: Get status of console input device.

Input parameters: none

Output parameters:

Flag Z - set if no character ready; reset otherwise

Description:

The console input device is queried: the zero flag (Z) is reset if at
least one character is available for input, the zero flag is set if no
characters are available.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

SC
JR

3
Z,NOTRDY

Test console ready
Jump if no char ready

===

SC 4 CORIR
===

Function: Accept one character from the console input device.

Input parameters: none

Output parameters:

Reg A - contains character input

Description:

One character is accepted from the console input device. Return from this
system call is performed only after a character is accepted. The
character will be echoed to the console output device with editing
performed according to the switches set for upper/lower case, rubout,
graphic display, etc. This system call never echos control characters
(values <32 or > 128).

Note: When there is information available from the EXEC stack this system
call will retrieve a character from that stack and echo it to the console
if the stack display switch is in effect.

Other system calls used: CONOUT (5)

Other registers altered: none

SC 4 CORD - 36 - MACRO

CHAPTER 7: SYSTEH CALLS

Example Calling Sequence:

SC 4 ; Read & echo char from console

===
SC 5 CONOUT

====~===========:==

Functlon: Display one character on console output device.

Input parameters:

Reg C - character to be displayed

Output parameters: none

Description:

Other

Other

The character contained in register C is displayed on the console output
device (CONOUT) with editing performed according to the console control
byte: graphics, printer echo, etc.

Note: When there is information available from the EXEC stack this system
call will retrieve a character from that stack and echo it to the console
if the stack display switch is in effect.

system calls used: PRTOUT (8)

registers altered: A

Example Calling Sequence:

LD
SC

C '?' , .
5

Load a question mark
Display on console

===
SC 6 SYSIB

===

Function: Accept one character from console.

Input parameters: none

Output parameters:

Reg A - contains character input

Description:

MACRO

One character is accepted from the console input device. Return from this
cystem call is performed only after a character is accepted. The
character will always be echoed to the console output device (status of
Console Echo-key ignored) with editing performed according to the switches
set for upper/lower case, rubout, graphic display, etc. The character
will never be echoed to the printer device (status of Printer Echo-key
ignored). This system call never echos control characters (values < 32 or

- 37 - SC 6 SYSIII

MACRO REFERENCE MANUAL

> 128).

The status of the EXEC stack and the stack display switch is ignored by
this system call (character is always accepted from CONIN and displayed on
CONOUT) •

Other system calls used: SYSOUT (7)

Other registers altered: none

Example Calling Sequence:

SC 6 ; Get char from CONIN

===
SC 7 SYSOUT

===

Function: Display one character on console output device.

Input parameters:

Reg C - character to be output

Output parameters: none

Description:

The character contained in register C is diaplayed on the console output
device (CONOUT) with editing performed according to the console control
byte: graphics, etc. The status of the Console Echo-key and the Printer
Echo-key is ignored.

The status of the EXEC stack and the stack display switch is ignored
(character is always displayed on the CONDUT).

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

LD
SC

C,12H
7

Load DC2 char
Output to console

===
SC 8 PRmur

===

Function: Output one character to Printer 1.

Input parameters:

Reg C - character to be output

Output parameters: none

SC 8 n.TOUT - 38 -

CHAPTER. 7: SYSTKH CALLS

Description:

Other

Other

If Printer 1 is not attached then this system call is exited. If the
printer is attached then the character in the C register is output to that
device along with any editing or options specified in the attachment of
that device.

system calls used: none

registers altered: A

Example Calling Sequence:

LD C,OCH Form feed
SC 8 Output to PRINTERl

==;============================

SC 9 lIOUNT
===;===================================

Function: Allow change of diskette on a specified drive.

Input parameters:

Reg B - logical drive code (0 - 7) (S - G)

Output parameters: none

Description:

Internal switches are set to indicate that the next read or write to this
disk must first read the diskette ID. If the drive code in the B register
specifies a drive that is not attached or is invalid then nothing is done
by this system call.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

MACRO

LD
SC

B,l
9

Drive code for A
Perform mount on A

- 39 - SC 9 IKlUIIT

MACRO REFERENCE MANUAL

===

SC 10 RDI
===

Function: Read one sector from a diskette.

Input parameters:

Reg B - logical drive code (0 - 7) = (S - G)
Reg DE - sector address, relative to a
Reg HL - buffer address

Output parameters: none

Description:

Specified drive is selected, if legal, and the indicated sector is read
into the location specified by the HL register pair. If the drive or
sector is illegal or an error is detected during the read no error status
is returned--disk errors are reported to the operator for handling (see SC
74).

This system call, when used in a multi-user environment, checks the Sector
Lock Table (SLT) and waits if the requested sector is locked by another
partition.

Caution: Use of this system call is not advised.

Other system calls used: RD (50)

Other registers altered: A, C

Example Calling Sequence:

LD
LD
LD
SC

B,O
DE,1
HL,BUFFER
10

BUFFER: DS 256

Drive S
Sector 1
Memory address
Read a sector

===
se II WIll

========================~==

Function: Write one sector to a disk.

Input parameters:

Reg B - logical drive code (0 - 7) = (S - G)
Reg DE - sector number, relative to a
Reg HL - buffer address

Output parameters: none

se II WK.l - 40 -

CBAPTEIl 7: SYSTItK CALLS

Description:

The specified drive, if legal, is selected and the data at the location
indicated by register pair HL is written to the specified sector. If the
drive or sector number is illegal or an error is detected during the write
operation no error status is returned--disk errors are reporated to the
operator for handling (see SC 74).

This system call, when used in a multi-user environment, checks the Sector
Lock Table (SLT) and waits if the requested sector is locked by another
partition.

Caution: Use of this system call is not advised.

Other system calls used: WR (51)

Other registers altered: A, C

Example Calling Sequence:

SECT:
DMA:

LD
LD
LD
SC

DC
DS

B,1
DE, (SECT)
HL,DMA
11

(112)
256

Drive A
Sector address
Memory address
Write a sector

Must be 16 bit word

===
SC 12 IPL

===

Function: Perform initial program load.

Input parameters:

Reg B - Physical drive number
Reg DE - Logical sector number of NUCLEUS

Output parameters: none

Description:

HACRO

This system call performs the transfer of control from the boot-loader
process to the operating system. In effect, it loads all of the device
drivers that are sysgened, initializes any interrupt structure, asks the
operator for the date and time, performs system call 75 (NEWSYS), then
sets a switch indicating that no account is logged onto and exits with
system call 0 (QUIT)

The contents of the registers A, H, and L are passed to the internal
routine INITINT.

After this system call has been used for the initial program load it

- 41 SC 12 IPL

MACRO llEPEBERCE MANUAL

disables itself by inserting a branch to system call O.

Other system calls used: 0 (QUIT), 1 (KEYIN), 2 (DISPLAY), 53 (TIMER), 61
(DEVINIT), 75 (NEWSYS)

Other register altered: all

===
SC 13 WD'DIR

===

Function: Write file directory entry.

Input parameters:

Reg B - Logical drive code (0 - 7) = (S - G)
Reg DE - Address of DEB

Output parameters:

Description:

Flag C - Set if error; reset otherwise
Flag Z - Reset if error; set otherwise

The directory entry addressed by the DE register pair is written to the
directory of the drive addressed by the B register. The directory entry
block (DEB) must be completely filled in (all 32 bytes). If the directory
is full or if the directory entry is a duplicate of an entry already on
file the carry flag is set and the zero flag is reset; otherwise the carry
flag is reset and the zero flag is set.

The user is advised to not use this system call to create directory
entries. When files are created using the other appropriate system calls
the directory entry is automatically created.

Other system calls used: WR (11), LOOKUP (20)

Other registers altered: A

===
SC 14 HEXI

===

Function: Convert hexadecimal number to 16 bit binary.

Input parameters:

Reg DE - Address of hex string

Output parameters:

SC 14 BEXI

Reg DE - Address of byte following string
Reg HL - Binary result
Flag C - Set if overflow; reset otherwise

- 42- MACRO

CIIAP"lER 7: SYSTEH CALLS

Description:

The string of characters addressed by the DE register pair is converted to
a binary value, conversion stopping on the first non-hexadecimal digit.
The resultant value is placed in the HL register pair, the DE register
pair is adjusted to point to the character following the last hexadecimal
digit or trailing 'H'. The system call is exited.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

AREAH:

LD
SC

DC

DE,AREAH
14

, ABCDH'

Point ASCII hex
Convert to binary

; Hex value

===

SC 15 DECI
==~======.========:===

Function: Convert decimal number to 16 bit binary.

Input parameters:

Reg DE - Address of decimal string

Output parameters:

Reg DE - Address of byte following
Reg HL - Result
Flag C - Set if overflow; reset otherwise

Description:

The decimal string of characters addressed by the DE register pair is
converted to an unsigned binary integer value and placed in the HL
register pair. Conversion stops when a non-numeric character is
encountered. The DE register pair is adjusted to point to the first
character following the digits or trailing 'D' character. The system call
is exited.

Other system calls used: none

Other registers altered: A

MACRO - 43 - SC 15 DECI

HACRO REFERENCE HARUAL

Example Calling Sequence:

AREAD:

LD
SC

DC

DE,AREAD
15

'12345'

Point ASCII Decimal
Convert to binary

; Decimal value

===

SC 16 BEXO
===

Function: Convert 8 bit value to hexadecimal characters.

Input parameters:

Reg B - Byte to be converted
Reg DE - Address of storage area

Output parameters:

Reg DE - Address of next location following

Description:

The 8 bit value in the B register is converted to the two hexadecimal
character equivalent. These two characters are placed in the storage area
addressed by the DE register pair. The DE register pair is adjusted to
point to the location following the second character. The system call is
exited.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

AREAH:

LD
LD
SC

DS

B, (HL)
DE,AREAH
16

2

Get byte to convert
Conversion area
Convert binary to hex

; Conversion area

===
SC 17 DECO

===

Function: Convert 16 bit unsigned value to decimal string.

Input parameters:

SC 17 DEm

Reg DE - Address of storage area
Reg HL - Value to be converted

- 44- MACRO

CHAPTER. 7: SYSTFJI CALLS

Output parameters:

Reg DE - Address of location following

Description:

The 16 bit value in the HL register pair is converted to the ASCII
character decimal equivalent (leading zeros are suppressed). The
resultant string is placed in the storage area addressed by the register
pair DE and the register pair DE is adjusted to point to the following
location. The system call is exited.

Other system calls used: none

Other registers altered: A, H, L

Example Calling Sequence:

LD DE ,AREA Work area
LD HL, (NUMBER) Get number
SC 17 Convert to decimal
LD A,ODH Get a CR
LD (DE) ,A Mark end

AREA: DS 6
NUMBER: DC 256

===
SC 18 CRLF

===

Function: Display carriage return, line feed on console.

Input parameters: none

Output parameters: none

Description:

A carriage return and a line feed character are displayed on the console
output device-

Other system calls used: CONOUT (5)

Other registers altered: A

Example Calling Sequence:

SC 18 Display CR/LF

MACRO - 45 - SC 18 CIlLF

MACRO BEFEKBBCE HARUAL

==:======================

SC 19 HSEC
===

Function: Wait specified number of milliseconds

Input parameters:

Reg A - Number of milliseconds

Output parameters: none

Description:

Other

Other

The number of milliseconds indicated by the contents of the A register are
"waited". An instruction sequence is performed that requires exactly one
millisecond to execute. The content of the A register is then
decremented. If the A register is not zero then the loop is executed
again. If the A register is zero then control is returned to the
instruction following the system call.

Note: If the A register contains a zero upon entry then 256 msec will
elapse before control is returned. Any interrupts that occur while this
routine is executing will cause minor inaccuracies in the actual elapsed
time.

system calls used: TIMER (53)

registers altered: A

Example Calling Sequence:

LD A,10 Get count
SC 19 Wait for 10 msec

Wait for 1 second
LD A,232 Initial value
SC 19 Wait 232 msec
SC 19 Wait 256 msec
SC 19 Wait 256 msec
SC 19 Wait 256 msec

===~===========

SC 20 LOOKUP
==~================================~=========

Function: Locate directory entry of specified file.

Input parameters:

Reg DE - Address of DCB
Reg HL - Address of 256 byte work area

SC 20 LOOJWP - 46 - MACRO

CBAPTEIl 7: SYSTFJI CALLS

Output parameters:

If found- Flag Z - Set
Reg B - Logical drive number (0 - 7) = (S - G)
Reg DE - Sector address of directory block.
Reg HL - Address within work area of entry

If not found- Flag Z - Reset
Flag C - Reset if directory not full

Set if directory full

Description:

The specified file description is searched for in the directory of the
drive indicated. If the directory entry for the file is found then the
relevant information is placed in the indicated registers and the system
call is exited.

If the directory entry for the file is not found then the relevant
information is placed in the indicated registers and the system call is
exited. In this situation the calling program should create a directory
entry for the file at the location within the work area and write the work
area to disk at the indicated disk address.

This method of creating file entries is not intended to be used for
general purpose file creation - the system utilities provide this ability
with proven safety. Be very careful I if you do use this system call!

Other system calls used: RD1 (10), DIV (38), TSTDEV (58)

Other registers altered: C

Example Calling sequence:

WORK:

LD
LD
SC
JP

DS
FDFTFD: DC

DE,FNFTFD
HL,WORK
20
NZ,NOFND

256
1,'TEST

Point DCB
Point work area
Directory lookup
Branch if not found

, , 'FILE , ; TEST.FILE:A

===
SC 21 GETUCB

===

Function: Get address of UCB (Unit Control Block).

Input parameters:

Reg B - Logical device number

MACRO - 47- SC 21 GEroCB

MACRO REFERENCE KARUAL

Output parameters:

Description:

Reg HL - Address of UCB for physical device
Reg C - Physical device number
Flag C - set if no attachment

The logica1 device indicated is tested for an attachment to a physical
device. If no attachment then the carry flag is set and the system call
is exited. If the device is attached then the address of the Unit Control
Block is placed in the HL register and the physical device number that the
logical device is attached to is placed in the C register.

Other system calls used: TSTDEV (58)

Other registers altered: A

Example Calling sequence:

LD B,9 Log device number
SC 21 Point UCB of CONOUT
LD DE,10 Displacement to delay
ADD HL,DE Point delay value
LD (HL),O Reset to zero

===
se 22 LOAD

===

Function: Load a program.

Input parameters:

Reg HL - Load address
Reg DE - Address of DCB

Output parameters: none

Description:

The program specified by the directory control block pointed to by the DE
register pair is loaded into memory at the load address referenced by the
HL register pair.

Other system calls used: RD (50)

Other registers altered: A, B, C

se 22 LOAD - 48 - MACRO

CHAPTER 7: SYSTEH CALLS

Example Calling sequence:

LD
LD
SC
CALL

SUBRNAME:DC
SUBR: EQU

DE,SUBRNAME
HL,SUBR
22
SUBR

0, 'USER
$

Point to name
Memory address
Load it
Execute the program

','PROGRAM' ; USER.PROGRAM:S
; Load here

===
SC 23 PRINT

===

Function: Output a line to printer 1

Input parameters:

Reg DE - Address of line to print

Output parameters: none

Description:

The characters in the buffer addressed by the register pair DE are
transmitted to printer 1 until a carriage return or null is encountered.
Carriage returns and line feed characters are printed as a carriage
return, line feed sequence. Other editing is performed according to the
options associated with the attached printer.

Other system calls used: PRTOUT (8)

Other registers altered: A, C

Example Calling sequence:

LD
SC

DE,LINE
23

Point to message
Output to PRINTER1

LINE: DC 'Now is the time',10,'for all etc.',13

===
SC 24 ASSIGN

===

Function: Store ACB (Assign Control Block)

Input parameters:

Reg B - ACB number (0 - 16)
Reg DE - Address of formatted ACB

MACRO - 49 - SC 24 ASSIGB

HACB.O REFERENCE HARUAL

Output paramters:

Reg A - Set to 255 if error
Flag C - Set if error; reset otherwise

Description:

The ACB number is verified to be in the range 0-16, if not the value 255
is placed in the A register and the system call is exited. The formatted
ACB referenced by the DE register pair is placed in the specified ACB.
The A register is set to zero and the system call is exited.

Other system calls used: none

Other registers altered: C, H, L

Example Calling sequence:

ACB:

LD
LD
SC

DC

B,6
DE,ACB
24

; Channel 6
Point to my copy of ACB
Store assign control block

1,'FILENAME','FILETYPE' ,1

===
SC 25 ADIlV

===

Function: Convert logical drive code to logical drive number.

Input paramters:

Reg B - Logical drive code (S - G, *)

Output parameters:

Description:

Reg A - Logical drive number (0 - 7, 255)
Flag C - Set if error.

The drive code (alphabetic) is converted into a number in the range of 0
thru 7. If the drive code is an asterisk (*) the number is 255.

Other system calls used: TSTDEV (58)

Other registers altered: none

Example Calling sequence:

LD B,' A' Load drive code
SC 25 Convert to number

SC 25 ADIlV - SO -

CHAPTER. 1: SYSTEH CALLS

==:======================

SC 26 BDRV
===~===================

Function: Convert logical drive number to logical drive code.

Input parameters:

Reg B - Logical drive number (0 - 7, 255)

Output parameters:

Reg A - Logical drive code (S - G, *)

Description:

The logical drive number is converted to the external logical drive code
(alphabetic) •

Other system calls used: none

Other registers altered: none

Example Calling sequence:

FD:

LD
LD
SC

DC

A, (FD)
B,A
26

1

Get logical drive number
Move to B
Convert to drive code

===
SC 21 ALLeC

==~==============

Function: Allocate disk space.

Input paramters:
Reg B - Logical drive number (0 - 7) = (S - G)
Reg DE - Number of lK disk blocks to allocate

Output parameters:

Reg HL - Sector address of first block.
Flag Z - Status:

set - okay
reset - error

Description:

MACRO

The specified disk allocation map is searched for a contiguous block of
unallocated disk space equal to the number of disk blocks desired. If
insufficient space is available the Z flag is reset. If space is
available the Z flag is set, the allocation map is updated and written to

- 51 - SC 21 ALLOC

HACRO llEPEREBCE HABUAL

the disk, and the first sector address of the allocated disk space is
loaded into the HL register pair.

Caution: Use of this system call is not advised.

Other system calls used: RDI (10), WR1 (11)

Other registers altered: none

Example Calling sequence:

LD B,O Drive S
LD DE,l One block
SC 27 Allocate
JP NZ,FULL Branch if full
LD (SECT) ,HL Else save sector address

===
SC 28 DEALL

===

Function: Deallocate disk space

Input parameters:

Reg B - Logical disk drive number (0 - 7) = (S - G)
Reg DE - Number of 1K blocks to deallocate
Reg HL - Starting sector number

Output parameters:

Description:

Flag Z - Status:
set - okay
reset - error

The specified disk allocation map is searched for the indicated allocated
space. If the indicated space is not already allocated the Z flag is
reset and the system call is exited. Otherwise the allocation map is
updated and written to disk; the Z flag is set and the system call is
exited.

Caution: Use of this system call is not advised.

Other system calls used: RD1 (10), WR1 (11)

Other registers altered: H, L

Example Calling sequence:

SC 28 DEALL

LD
LD
LD
SC

B,O
DE,1
HL, (SECT)
28

Drive S
IK bytes
Sector address
Return to avail status

- 52 - MACRO

CHAPTER. 7: SYSTEK CALLS

===

SC 29 ERASE
===

Function: Erase logical file from a disk.

Input parameters:

Reg DE - Address of DCB

Output parameters:

Description:

Reg A - Return Code:
00 Successful
FF File protected

Flag Z - Status:
set - okay
reset - error

The directory for the specified disk drive is searched for a match with
the file description. When a match is found the file disk space is
deallocated, the directory entry is placed in a delete status and the
directory block is updated on disk.

Other system calls used: RDI (10), WRI (11), LOOKUP (20), DEALL (28)

Other registers altered: none

Example Calling sequence:

LD DE,FN Point to DCB
SC. 29 Erase file if it exists

FN: DC I,'TEST , , 'FILE

===

SC 30 FETCH
===

Function: Load program into memory, execute and return to CSI.

Input parameters:

Reg B - Logical drive code
Reg DE - Directory entry pointer

Output parameters: none

Description:

HACRO

The eventual return
loader; system call

address
22 is

is replaced with the
executed with control

- S3 -

address of the boot
returned to the boot

SC 30 FETCH

HACR.O 1lD'ERERCE IfANUAL

loader upon completion of the program execution.

Other system calls used: LOAD (22)

Other registers altered: B, C

Example Calling Sequence:

LD DE,DCB Point to DCB
LD HL,WORK Point work space
SC 20 Get directory entry
EX DE,HL DE points directory
LD A, (DCB) Point to drive
LD B,A
SC 30 Load & execute

DCB: DC 1, 'MYPROG ','COMMAND'
WORK: DS 256

===
SC 31 RENAME

===

Function: Rename a logical disk file.

Input parameters:

Reg DE - Address of DCB
Reg HL - Address of new DCB

Output parameters:

Description:

Reg A - Variable:
00 if okay
04 if old not found
08 if new exists
OA Protected file

The new drive code is set equal to the old drive code. The directory for
the specified disk is searched for the old file description. If the
directory entry cannot be found then the A register is set to 04 and the
system call is exited. If the file is found then the directory is
searched for the new file description. If the directory entry is found
then the A register is set to 08 and the system call is exited.

If the old file description does exist and the new file description
doesn't exist then the old file entry is placed in delete status, the
directory block is updated, the new file entry is created (duplicating the
attributes of the old file), and the directory block is updated. The
system call is exited.

Other system calls used: WRI (11), LOOKUP (20)

SC 31 RENAME - 54 -

CHAPTER 7: SYSTEII CALLS

Other registers altered: H, L

Example Calling Sequence:

LD
LD
SC
JR

ERROR:

OLD: DC
NEW: DC

DE,OLD
HL,NEW
31
Z,OKAY

1,'OLD
1, 'NEW

Point to old name
Point to new name
Rename it
Error?

, , 'FILE
','DESCRIPT'

===
SC 32 OPEN

===

Function: Open a logical file.

Input parameters:

Reg DE - Address of FCB

Output parameters:

Reg A - Return code:
00 Successful
01 Already open
04 Invalid file definition
08 Invalid file number
OA File protected
10 Disk full
20 Directory full
40 File not found

Reg B - Device assigned to file
Flag Z - Status:

set - okay (Reg A = 0)
reset - error (Reg A <> 0)

Description:

The file specified by the FCB is opened in the mode indicated with the
appropriate return code set if the open is unable to be accomplished.
Register B is set to the logical drive code that a new sequential file was
opened to if the drive was not specified explicitly in the ACB.

This system call checks the File Lock Table (FLT) and waits if the file is
locked by another partition. When the file is not locked by another
partition or is released by that partition this system call will lock the
file if specified by the FCB.

Other system calls used: RD1 (10), WR1 (11), WRFDIR (13), LOOKUP (20), ALLOC (27),
DEALL (28), ERASE (29), DPACK (46), TSTDEV (58)

Other registers altered: C, H, L

MACRO - 55 - SC 320PEB

MACRO REFERENCE HANUAL

Example Calling Sequence:

FCB1 :

BUFF1 :
ACB16:

LD
LD
SC
LD
SC
JR

DC
DC
DC
DS
DC
DC

B,16
DE,ACB16
24
DE,FCB1
32
NZ,ERROR

16
10001100B
(BUFF1)
256
1,'REPORT
1

Assign I/O ch 16

Point to FCB
Open the file
BRIF error

ACB = 16
Seq, append
I/O buffer

','LISTING'

===
SC 33 CLOSE

===

Function: Close a logical file.

Input parameters:

Reg DE - Address of FCB

Output parameters:

Description:

Reg A - Return code
00 Successful
08 Invalid file number
10 Disk full

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

The specified file is logically and physically closed with the appropriate
return code set. Closing a file involves the updating of the disk file
with the data in the I/O buffer; updating the directory entry for the
file; flagging the ACB as closed.

This system call unlocks the file and all related sectors from the FLT and
SLT.

Other system calls used: WR1 (11), LOOKUP (20), DPACK (46)

Other registers altered: B, C, H, L

SC 33 CLOSE - S6-

CHAPTEIl 7: SYSTEK CALLS

Example Calling Sequence:

FCB1:

BUFF1:

LD
SC
JR

DC
DC
DC
DS

DE,FCBl
33
NZ,ERROR

16
10001000B
(BUFF1)
256

Using current assign
Open FCBl

BRIF error

Seq, output
I/O buffer

===
SC 34 RDSEQ

====;==

Function: Get a logical record from a sequential file.

Input parameters:

Reg DE - Address of FCB
Reg HL - Address of record area

Output parameters:

Reg AF - Return code
00 Successful
01 End of File
08 Invalid file number
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

Description:

The ACB is validated for: open, sequential, and input. The A register is
set to 255 if ACB invalid. The ACB is tested for an EOF condition and the
appropriate return code is set if true and the system call is exited. If
everything is okay the next record is passed to the record buffer
addressed by the HL register pair with file input performed as required.
ASCII sequential file records are always terminated with a carriage return
character (ODR).

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Other system calls used: INPUT (1), RDl (10), DEVIN (63)

Other registers altered: B, C

MACRO - 57 - SC 34 JU)SEQ

MACRO REFERENCE MANUAL

Example Calling Sequence:

LD
LD
SC
JR

DE,FCBl
HL,BUFF
34
NZ,CHKERR

Get record from file
Put in BUFF buffer
Do it
Analyze error routine

FCBl : DC 10 I/O ch 10
DC 10010000B Seq input
DC (BUFFI) I/O buffer

BUFF 1: DS 256
BUFF: DS 128 Max rec length = 128

===
SC 35 VRSEQ

===

Function: Write a logical record to a sequential file.

Input parameters:

Reg DE - Address of FCB
Reg HL - Address of record

Output parameters:

Description:

Reg AF - Return code
00 Successful
08 Invalid file number
10 Disk full
FF File not open, etc.

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

The ACB is validated: open, sequential, and output or append. The
appropriate return code is set when invalid and the sysem call is exited.
The record is transferred to the file buffer and physical output is
performed as required. When the file is a disk file and the file requires
more allocation to perform the physical output then the file is expanded.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Note: Be sure that the record addressed by the HL register pair contains a
carriage return character (ODH) as the terminating character.

Other system calls used: DISPLAY (2), WRI (11), ALLOC (27), DEVOUT (64)

Other registers altered: B, C

SC 35 WRSEQ - 58 -

CHAPTER. 7: SYSTEH CALLS

Example Calling

OKAY:

FCB2:

BUFF2:
BUFF:

Sequence:

J.jD
LD
SC
JR
CP
JR

DC
DC
DC
DS
DS

DE,FCB2
HL,BUFF
35
Z,OKAY
lOR
Z,DFULL

2
10001000B
(BUFF2)
256
128

Write seq record
From BUFF buffer

Skip if okay
Check for disk full
BRIF full
else ignore error

I/O channel 2
Seq output
I/O buffer

==~============

SC 36 GETDAU
===~=============================

Function: Get formatted date.

Input parameters:

Reg DE - Address for storage

Output parameters: none

Description:

The packed
addressed
string is
COMMAND" ,
register
character

system date is unpacked and placed in the storage location
by the DE register pair. The format of the resulting date
determined by the currently set date format (see the "SET

DATEFORM option in the OASIS System Reference Manual). The DE
pair is adjusted to point to the byte following the last
of the date string.

Other system calls used: HEXO (16), DATEOUT (106)

Other registers altered: A

Example Calling Sequence:

MSG:
WORK:

MACRO

LD
SC
LD
LD
LD
SC

DC
DS

DE,WORK Point to work area
36 Get system date
A,13 Get CR
(DE) ,A Mark end
DE,MSG Point to beginning
2 Display on console

'The current date is '
9

- 59 -

of message

SC 36 GEmAD

MACRO REFERENCE HAlIUAL

=======:===

SC 37 GEl"TIHE
===

Function: Get formatted time.

Input parameters:

Reg DE - Address of storage

Output parameters: none

Description:

Other

Other

The current packed system time is unpacked and
location addressed by the DE register pair. The
to separate the hours, minutes, and seconds.
adjusted and the system call is exited.

system calls used: HEXO (16)

registers altered: A

Example Calling Sequence:

placed in the storage
colon character is used

The DE register pair is

LD DE ,WORK Point to work area

MSG:
WORK:

SC
LD
LD
LD
SC

DC
DS

37 Get system time
A,13 Get CR
(DE) ,A Mark end
DE,MSG Point to message
2 Display on console

'The current time is '
9

===

SC 38 DIY
===

Function: 16 Bit, binary, unsigned divide.

Input parameters:

Reg DE - Divisor
Reg HL - Dividend

Output parameters:

SC 38 DIY

Reg DE - Remainder
Reg HL - Quotient
Flag C - Set if divide by zero; reset otherwise

- 60 -

CHAPTER. 1: SYSrEK CALLS

Description:

Other

Other

The divisor is tested. If zero the HL register pair is set to zero, the
carry flag is set and the system call is exited. The value in the HL
register pair is divided by the value in the DE register pair. The result
is placed in the HL register pair and any remainder is placed in the DE
register pair.

system calls used: none

registers altered: A

Example Calling Sequence:

LD DE, (VALUE 1) Divide value1
LD HL, (VALUE2) into value2
SC 38
JR C,DIVZERO Divide by zero err?

VALUE1: DS 2
VALUE2: DS 2

===
SC 39 HDL

===

Function: 16 bit, unsigned, integer multiply.

Input parameters:

Reg DE - Multiplier
Reg HL - Multiplicand

Output parameters:

Reg HL - Product
Flag C - Set if overflow; reset otherwise

Description:

The value in the HL register pair is multiplied by the value in the DE
register pair. The result is placed in the HL register pair. If overflow
occurs (more than 16 bits of product) the carry flag is set. The sytem
call is exited.

Other system calls used: none

Other registers altered: A

HAeRO - 61 - SC 39 HDL

HACRO REFERERCE IfARUAL

Example Calling Sequence:

LD
LD
SC
JR

VALUE 1 : DC
VALUE2: DC

DE, (VALUEl)
HL, (VALUE2)
39
C,OVERFLO

(3)
(12345)

Multiply va1uel
by va1ue2

BRIF error

===

SC 40 RDDIR.
=====;===;=============================

Function: Read logical record from a direct disk file.

Input parameters:

Reg BC - Record number
Reg DE - Address of FCB
Reg HL - Address of record storage area

Output parameters:

Description:

Reg A - Return code
00 Successful
08 Invalid ACB number
80 Invalid record number
FF File not open, etc.

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

The required I/O overlay is loaded, if necessary. The ACB is tested for
an open, direct file and the appropriate return code is set if invalid.
The record number and the file's fi1esize are compared. If the record is
outside of the fi1esize the appropriate return code is set. The record is
transferred from the file buffer with physical input performed as
required.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Other system calls used: RDI (10), DIV (38), MUL (39)

Other registers altered: none

SC 40 RDDIR. - 62- MACRO

CHAPTER. 7: SYSDH CALLS

Example Calling Sequence:

LD HL t (RECNUM) Get record number
LD BtH Copy to BC reg
LD CtL
LD HLtBUFF Point to record buffer
LD DEtFCBl Point to FCB, ch 1
SC 40 Get the record
JR NZ tRDERR Jump on error

RECNUM: DS 2 Current record number
FCBl: DC l,OlOIIOOOB Direct I/O with record lock

DW IOBUFFl I/O buffer addr
BUFF: DS 32 Record buffer
BUFFl: DS 256 I/O Buffer

===
SC 41 WRDIR

==========c==

Function: Write a logical record to a direct disk file.

Input parameters:

Reg BC - Record number
Reg DE - Address of FCB
Reg HL - Address of record to be written

Output parameters:

Reg A - Return code
00 Successful
08 Invalid ACB number
OA Protected file
80 Invalid record number
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

Description:

The required I/O overlay is loaded, if necessary. The ACB is tested for
an open, direct file and the appropriate return code is set if invalid.
The file's filesize is compared to the record number specified and the
appropriate return code is set if the record number is invalid. The
record is transferred to the file buffer with physical output performed as
required.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FeB.

Other system calls used: RDI (10), WRI (11), MUL (39), DIV (38)

Other registers altered: none

MACRO - 63 - SC 41 WRDIR

MACRO REFERENCE MANUAL

Example Calling Sequence:

LD HL, (RECNUM) Get record number
LD B,H Copy to BC reg
LD C,L
LD HL,BUFF Point to record storage
LD DE,FCB1 Point to FCB, ch 1
SC 41 Write it
JR NZ,WRERR Jump on error

RECNUM: DS 2 Record to be accessed
FCB1 : DC 1,01011000B Ch 1, direct I/O with record lock

DW BUFF1 I/O buffer address
BUFF1 : DS 256 I/O buffer
BUFF: DS 32 Record buffer

===
SC 42 BOHBER

===

Function: Convert numeric string (hex or dec) to 16 bit value.

Input parameters:

Reg DE - Address of character string

Output parameters:

Reg DE - Address of character following
Reg HL - Result
Flag C - Set if overflow; reset otherwise

Description:

Other

Other

The string of characters is examined and the number base
The appropriate conversion routine is used to produce the
bit value in the HL register pair.

system calls used: DECI (15), HEXI (14)

registers altered: A

Example Calling Sequence:

LD DE,INPUT Point to number string
SC 42 Convert it
JR C,CONERR Jump on overflow
LD (NUMB) ,HL Save value

INPUT: DC '12345D' Number to convert
NUMB: DS 2 Value

SC 42 NUHBEIl. - 64 -

is determined.
equivalent 16

CHAPTER 7: SYSTEK CALLS

===

SC 43 RDIX
===~==========~================

Function: Read a logical record from an indexed disk file.

Input parameters:

Reg BC - Address of key
Reg DE - Address of FCB
Reg HL - Address of record storage area

Output parameters:

Reg A - Return code
00 Successful
01 Record not found
08 Invalid ACB number
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

Description:

The required I/O overlay is loaded, if necessary. The ACB is tested for
an open, indexed file and the appropriate return code is set. The record
key is searched for in the file. If the record key is found the record is
transferred to the record address specified in the HL register pair and
the return code is set. If the record key is not found the return code is
set and the relative record number of the next record that would logically
collate after the specified key is saved in the ACB.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Other system calls used: RD1 (10), DIV (38), MUL (39), (system subroutines)

Other registers altered: none

Example Calling Sequence:

LD HL,KEY
LD B,H
LD C,L
LD HL,BUFF
LD DE,FCB1
SC 43
JR NZ,NOFIND

FCB1 : DC 1,00111000B
DW BUFF1

BUFF1 : DS 256
KEY: DS 10
BUFF: DS 122

MACRO

Point to key string
Copy to BC reg

Point to input buffer
FCB for ch 1
Read the record
Jump if record not found

Ch 1, Indexed I/O with record lock
I/O buffer address
I/O buffer
Key of 10 characters
Rec of 122 characters

- 65 - SC 43 RDIX

MACR.O REFERENCE HANUAL

===

SC 44 RDNIX
===

Function: Read the next logically sequential record of indexed file.

Input parameters:

Reg BC - Address of key storage area
Reg DE - Address of FCB
Reg HL - Address of record storage area

Output parameters:

Description:

Reg A - Return code
00 Successful
01 End of file
08 Invalid ACB number
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

The required I/O overlay is loaded) if necessary. The ACB is tested for
an open) indexed file and the appropriate return code is set. Using the
relative record number in the ACB indicating the disk address of the next
logically sequential record in the file) the record and key are read into
the file buffer and transferred to the key and record storage areas
specified by the BC and HL register pairs. The following logically
sequential record is located and the relative record number is saved in
the ACB. The return code is cleared and the system call is exited.

This system call) like all logical record input/output system calls)
maintains the Sector Lock Table (SLT) according to the FCB.

Other system calls used: RDI (10») RDIX (43)

Other registers altered: none

SC 44 RDRIX - 66 -

CHAPTER. 7: SYSTEM CALLS

Example Calling Sequence:

LD lIT., ,KEY Point to key string
LD B,H Copy to BC reg
LD C,L
LD HL,BUFF Point to input buffer
LD DE,FCBl FCB for ch 1
SC 44 Read the next record
JR NZ,NOFIND Jump if record not found

FCBl: DC 1,00110000B Ch 1, Indexed Input
DW BUFFI I/O buffer address

BUFFI : DS 256 I/O buffer
KEY: DS 10 Key of 10 characters
BUFF: DS 122 Rec of 122 characters

===
SC 45 VRIX

===

Function: Write a logical record to an indexed disk file.

Input parameters:

Reg BC - Address of key
Reg DE - Address of FCB
Reg lIT., - Address of record

Output parameters:

Reg A - Return code
00 Successful
OA Protected file
10 File full - record not written
FF File not open

Flag Z -,Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

Description:

MACRO

The required I/O overlay is loaded, if necessary. The ACB is tested for
an open, indexed file and the appropriate return code is set. The file is
searched for a current record with the same key. If a record does exist
the record is overwritten with the new record the return code is cleared
and the system call is exited. If a record does not exist a location for
the new record is found and the record is written to the file. The return
code is cleared and the system call is exited. If no space is available
for the new record the return code is set to 10H and the system call is
exited. No attempt is made to write the record to the file in this
situation.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

- 67 - SC 45 WJUX

MACRO REFERENCE HANUAL

Other system calls used: RD1 (10), WR1 (11)

Other registers altered: none

Example Calling Sequence:

LD HL,KEY Point to key string
LD B,H Copy to BC reg
LD C,L
LD HL,BUFF Point to input buffer
LD DE,FCB1 FCB for ch 1
SC 45 Write the record
JR NZ,ERR Jump if error

FCB1 : DC 1,00101000B Ch 1, Indexed output
DW BUFF1 I/O buffer address

BUFF1 : DS 256 I/O buffer
KEY: DS 10 Key of 10 characters
BUFF: DS 122 Rec of 122 characters

===
SC 46 DATEPACK

===

Function: Pack system date and time into 24 bit value.

Input parameters:

Reg DE - Address of storage area

Output parameters:

Reg DE - Address of location following

Description:

The system date and system time are converted, formatted, and packed into
a 24 bit (3 byte) format. The result is placed in the location addressed
by the DE register pair and the DE register pair is adjusted. The system
call is exited.

This system call is normally only used for converting the date and time
for use in a file's directory entry, although it can be used for other
purposes. There is no corresponding unpack system call.

Other system calls used: none

Other registers altered: A, B, C

SC 46 DATEPACK - 68 - MACRO

CHAPTER 7: SYSTDI CALLS

Example Calling Sequence:

DIR:

LD
SC

DS

DE,DIR+25
46

32

Point to storage
Get date and time

; Directory entry buffer

===

SC 47 LABEL
===

Function: Find disk with specific label.

Input parameters:

Reg DE - Address of 8 character label

Output parameters:

Description:

Reg A - Logical drive number (0 - 7) = (S - G)
Flag C - Set if not mounted; reset otherwise

The disks mounted in the attached disk drives are interrogated for a match
with the specified disk label. The drive code of the first match found is
placed in the A register. If no match is found the carry flag is set.

Other system calls used: RDI (10), ADRV (25), TSTDEV (58)

Other registers altered: B, C

Example Calling Sequence:

LABEL:
DRIVE:

LD
SC
JR
LD

DC
DS

DE ,LABEL
47
C,ERR
(DRIVE) ,A

'WORK
1

Point to desired label
Find disk with label
Check if found
Save drive number

===

SC 48 GETSCR
===

Function: Get base address of your System Communication Region.

Input parameters: none

Output parameters:

Reg IY - SCR address

MACRO - 69 - SC 48 GJrlSCR.

HACRO REl'ERENCE IlABUAL

Description:

The first address of your SCR is placed in the IY index register and the
system call is exited.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC 48 Get SCR base
LD (BASE),IY Save base address

===
SC 49 VAIT

===

Function: Wait for operator to release current console page.

Input parameters: none

Output parameters: none

Description:

The Console Screen Wait-key status is tested and, if disabled, the system
call is exited. When the Console Screen Wait-key is enabled the page
pause prompt character (~) is displayed at the lower left hand corner of
the console output device (CONOUT) (unless console terminal class is 0)
and processing is suspended until the operator types a key to indicate
that the page may be released. At this time a CR is displayed on the
console and control is returned to the calling program.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

SC 49

Code to output 'page'
of information

Wait at bottom if
enabled

===
SC SO RD

===

Function: Read mUltiple sectors of a disk.

SC SO RD - 70-

CHAPTER. 7: SYSTEH CALLS

Input parameters:

Reg B Logical drive number (0 - 7)
Reg C - Number of sectors to read
Reg DE - First sector address
Reg HL - Storage address

(S - G)

Output parameters: none

Description:

The specified drive is selected, if legal, and the sector specified by the
contents of the DE register pair are read into the location indicated by
the HL register pair. The sector count is decremented, the DE register
pair is incremented, the HL register pair is adjusted, and, if the count
is greater than zero the next sector is read.

This system call, when used in a multi-user environment, checks the Sector
Lock Table (SLT) and waits if the requested sector is locked by another
partition.

Caution: Use of this system call is not advised.

Other system calls used: SYSIN (6), SYSOUT (7), DECO (17), ADRV (25), DIV (38),
SYSDISP (52)

Other registers altered: A, C

Example Calling Sequence:

LD B,O
LD DE,256
LD C,16
LD HL,BUFFER
SC 50

BUFFER:
REPT 16
DS 256

Drive S
Starting at sector 256
For 16 sectors
Read into buffer
Read the sectors

Buffer for 16 sectors

===
SC 51 WIl.

===

Function: Write multiple sectors to disk.

Input parameters:

Reg B - Logical drive number (0 - 7) = (S - G)
Reg C - Sector count
Reg DE - First sector address
Reg HL - Address of data to be written

Output parameters: none

MACRO 71 - SC SI lIR

MACRO REFERERCE HANUAL

Description:

The specified drive is selected, if legal. The data stored at the
location referenced by the HL register pair is written to the sector
specified by the DE register pair. The DE register pair is incremented,
the HL register pair is adjusted, and the sector count in decremented. If
the sector count is not zero then the next sector is written.

This system call, when used in a multi-user environment, checks the Sector
Lock Table (SLT) and waits if the requested sector is locked by another
partition.

Caution: Use of this system call is not advised.

Other system calls used: SYSIN (6), SYSOUT (7), DECO (17), ADRV (25), DIV (38),
SYSDISP (52)

Other registers altered: A, C

Example Calling Sequence:

BUFFER:

LD
LD
LD
LD
SC

REPT
DS

B,O
DE,256
C,16
HL,BUFFER
51

16
256

Drive S
Starting at sector 256
For 16 sectors
Write from buffer
Write the sectors

Buffer for 16 sectors

===
SC 52 SYSDISP

===

Function: Display character on console output device.

Input parameters:

Reg DE - Address of first character to output

Output parameters:

Reg DE - Address of last character output plus one

Description:

Characters from the buffer addressed by register pair DE are displayed on
the console output device. A null character (00) terminates output to the
console and returns from the system call.

A carriage return will be displayed as a carriage return, line feed and
the system call will be exited. A line feed will be displayed as a
carriage return, line feed, output continues. An HT character (09H) will
be displayed as the proper number of spaces according to the Tab Set Block

SC 52 SYSDISP - 72 -

Other

Other

CHAPTER. 7: SYSTEK CALLS

(TSB) •

This system call, unlike SC 2 (DISPLAY) will always display the characters
on the console and never echo them to the printer (the status of Console
Echo-key and Printer Echo-key is ignored).

system calls used: SYSOUT (7)

registers altered: A

Example Calling Sequence:

LD
SC

MSG: DC

DE,MSG
52

Point to message string
Display on console

'This is a message', 13

===

SC 53 TIHER.
===

Function: Set up for a clocked interrupt (event)

Input parameters:

Reg DE - Number of "ticks"
Reg HL - Address of TEB

Output parameters: none

Description:

MACRO

This system call initiates a Timer Event. The contents of the DE register
pair are stored in the TEB (Timer Event Block) specified by the contents
of the HL register pair. The required links are made to other TEBs and
control is returned to the instruction following the system call.

When the number of "ticks" specified by the DE register pair have elapsed
the interrupt service routine is executed. The service routine must
physically follow and be continguous to the TEB. Upon entry interrupts
are enabled.

It is the responsibility of the interrupt service routine to save any and
all registers used and to execute a RET when service is complete (not a
RETI).

The TEB should in no way be modified by the user until the interrupt
service routine has been entered. Any changes to this TEB or any other
TEB still in process will cause the operating system to act erratically,
at best.

The length of time for a "tick" is dependent upon the system. Refer to
the Supplemental documentation supplied with the OASIS System Reference
Manual for the specific length of time for a "tick" on your machine.

- 73 - SC 53 TIHER

MACRO REFERENCE MANUAL

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
LD
SC

LABELl: DS

RET

DE,60
HL,LABELI
53

6

;Set up for timed interrupt

;Start the clock

; TEB for above-must be 6 bytes
;Code for interrupt service
;must follow the TEB

;Resume normal processing

===

SC 54 EXCMD
===

Function: Execute a command.

Input parameters:

Reg DE - Address of CSI command text

Output parameters: none

Description:

The Command String Interpreter is loaded and the command, with options,
specified by the DE register is executed. The command is translated to
upper case before interpretation. Upon completion of the command the
system call is exited back to the CSI level.

When the first character of the string of characters addressed by the DE
register pair is a '>' the string will be displayed on the user's console
before it is executed.

Other system calls used: ?????

Other registers altered: all (No Return)

Example Calling Sequence:

LD
SC

COMMAND: DC
END

SC 54 EXCHD

DE, COMMAND ; Point to command string
54 ; Transfer control
'ERASE *.BACKUP:A (NOQUERY NOTYPE)',13

- 14 -

CHAPTER. 7: SYSTEH CALLS

===
SC 55 GE"lHEH

===

Function: Get stored memory size.

Input parameters: none

Output parameters:

Reg HL - Address of 'end of memory'

Description:

The currently stored value of the address of the end of memory is placed
in the HL register pair and the system call is exited. This value may not
he the actual address of the physical end of memory determined when the
system was first IPL'd. The value is the currently saved address. This
address can be changed by system call 56.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC 55 Get current EOM
LD (EOM) ,HL Save current EOM
LD DE,-lOOO
ADD HL,DE Compute new EOM
SC 56 Protect it

===
SC 56 PIJl1fEH

===

Function: Store memory size.

Input parameters:

Reg HL - Address of end of memory

Output parameters: none

Description:

The value in the HL register pair updates the currently stored value of
the address of the end of memory. This system call is the logical inverse
of system call 55.

Other system calls used: none

Other registers altered: none

Example Calling Sequence: see SC 55 (GETMEM)

MACRO - 75 - SC 56 PODIEH

MACRO REFERENCE MARUAL

===

SC 57 POTQET
===

Function: Set quit error trap (System Cancel-key).

Input parameters:

Reg HL - Address of break routine

Output parameters: none

Description:

The value in the HL register is loaded into the quit error trap vector and
the system call is exited. This routine addressed by HL will be given
control whenever the System Cancel-key is typed. An address of zero
(0000) in the HL register pair indicates that the user QET is to be
disabled.

An example of the use of this system call is the BASIC interpreter. The
BASIC interpreter sets the quit error trap to execute a routine that
closes all open files before exiting.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

QETSERVC:

LD
SC

HL,QETSERVC
57

Point to service routine
Set trap

Routine to handle
System Cancel-key entry

===

SC 58 TsmEV
===

Function: Test device attachment.

Input parameters:

Reg B - Logical device number

Output parameters:

SC 58 TSTDEV

Reg A - Physical device number
'Flag Z - Set if not attached; reset otherwise
Flag C - Set if not attached; reset otherwise

- 76 - MACRO

CHAPTER. 7: SYSTEM CALLS

Description:

Other

Other

The specified device is tested for attachment. If the device is attached
the physical device number that it is attached to is placed in the A
register, the Z flag is reset and the system call is exited. If the
device is not attached to anything then the A register is set to FF, the Z
flag is set and the system call is exited.

system calls used: none

registers altered: none

Example Calling Sequence:

LD
SC
JR

B,16
58
Z,NOCONM

Point to COMM1 device
Test if attached
Jump if not

===
SC 59 GETPL

===

Function: Get console/printer page and line parameters.

Input parameters:

Reg B - Logical device number

Output parameters:

Reg B - Line length
Reg C - Page length
Reg A - Class code

Description:

The device number specified in the B register is validated to determine if
it is the console or one of the printer devices. If the device number is
invalid the system call is exited. If the device number is valid then the
ATTACHed line and page size parameters are loaded into the Band C
register, respectively and the class code is loaded into the A register.
If the specified device is not attached then zero values are returned in
the registers.

Other system calls used: GETUCB (21), TSTDEV (58)

Other registers altered: none

MACRO - 71 - SC 59 GETPL

MACRO REFERENCE MANUAL

Example Calling Sequence:

LD
SC
LD
LD
LD
LD
LD

Bt 9
59
(CLASS) tA
AtB
(LINE) tA
AtC
(PAGE) tA

Point to CONOUT device
Get parameters
Save class code

Save line length

Save page length

===
SC 60 DELIX

===

Function: Delete record from indexed file.

Input parameters:

Reg BC - Address of key
Reg DE - Address of FCB
Reg HL - Address of record storage area

Output parameters:

Description:

Reg A - Return code
00 Successful
08 Invalid ACB number
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

The required I/O overlay is loaded t if necessary. The ACB is tested for
an open t indexed file and the appropriate return code is set. The record
key is searched for in the file. If the record key is found the record is
transferred to the record address specified in the HL register pair, the
record key buffer is modified to indicate that the record is deleted
(first character changed to OFFH value) and the record is written back.
The record linkages are updated to reflect the deleted record.

If the record key is not found the relative record number of the next
record that would logically collate after the specified key is saved in
the ACB.

This system call, like all logical record input/output system calls t
maintains the Sector Lock Table (SLT) according to the FCB. If any of the
sectors needed for the search and deletion of the record are locked by
another partition this system call will wait for the sector to be
released.

Other system calls used: RDI (10), WRI (11), RDIX (43)

Other registers altered: none

SC 60 DELIX - 18 -)fACIO

Example Calling Sequence:

LD
LD
LD
LD
LD
SC
JR

FCB1: DC
DC

BUFFER: DS
KEY: DS
REC: DS

HL,KEY
B,H
C,L
HL,REC
DE,FCB1
60
NZ,DELERR

1,00111000B
BUFFER
256
32
32

CBAPTKR. 7: SYSrEH CALLS

Point to record key
Copy to BC reg

Point to record buffer
Point to channel 1 file
Delete the record
Jump on error

Indexed, ch 1 with record lock
I/O buffet address

Key is 32 character long
Record is 32 character long

===
SC 61 DEVINIT

===

Function: Initialize a device driver.

Input parameters:

Reg B - Logical device number

Output parameters: none

Description:

The physical device driver attached to the logical device specified in the
B register is entered at its initialization entry point. The actual
process of initialization is device dependent.

The address of the UCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

Note: This system call is used by the ATTACH command when a device is
first attached and should not be used by user programs.

Other system calls used: GETUCB (21), LOAD (22), TSTDEV (58)

Other registers altered: all

Example Calling Sequence:

LD
SC

B,17
61

Point to COMM2 device
Init driver

- 79 - SC 61 DEVIRIT

MACRO REFERENCE MABlJAL

===

SC 62 DEVST
===

Function: Get status of device driver.

Input parameters:

Reg B - Logical device number

Output parameters:

Flag Z - Set if input character not ready; reset otherwise
Flag C - Set if ready for output; reset otherwise

Description:

Other

Other

The attachment of the specified device is tested. If the device is not
attached the system call is exited. If the device is attached the status
of the physical device attached to the logical device specified in the B
register is returned in the Z flag.

The address of the UCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

If the device driver is user written (see chapter on Interfacing to OASIS)
the status of the device is dependent upon the device driver subroutine
accessed by entry point 1.

system calls used: GETUCB (21), TSTDEV (58)

registers altered: A

Example Calling Sequence:

LD B,17 Point to COMM2 device
SC 62 Get driver status

===
SC 63 DEVIN

===

Function: Get input of device driver.

Input parameters:

Reg B - Logical device number

Output parameters:

Reg A - Character input

SC 63 DEVIB - 80- MACRO

CHAPTER. 7: SYSTEM CALLS

Description:

Other

Other

The attachment of the specified device is tested. If no device is
attached the system call is exited. If a device is attached the physical
device driver attached to the logical device specified in the B register
is entered at the input entry point. OASIS physical device drivers will
not return to the caller until a character is ready. Use system call 62
to test if a character is ready.

The address of the DCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

system calls used: GETDCB (21), TSTDEV (58)

registers altered: none

Example Calling Sequence:

LD B,17 Point to COMM2 device
SC 63 Get device input

===
SC 64 DEVOUT

===

Function: Put output to device driver.

Input parameters:

Reg B - Logical device number
Reg C - Character to be output

Output parameters: none

Description:

The attachment of the specified device is tested. If not attached the
system call is exited. If attached the physical device driver attached to
the logical device specified in the B register is given the character in
the C register. OASIS device drivers will save the character and return
immediatly. The communication of the character to the device is dependent
upon the specific device driver.

The address of the DCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

This system call handles the logic related to printer and console line
feed and form feed delays, page parity and listing device closure.

Other system calls used: GETDCB (21), TSTDEV (58)

Other registers altered: A

MACRO - 81 - SC 64 DEVOUT

MACRO R.EFERENCE MANUAL

Example Calling Sequence:

LD
LD
SC

B,17
C,A
64

Point to COMM2 device
Get character to output
Output char to device

===
SC 66 GETLAB

===

Function: Get disk label of a drive.

Input parameters:

Reg B - Logical drive number (0 - 7) = (S - G)
Reg DE - Address of storage area (8 bytes)

Output parameters: none

Description:

The drive code is tested for validity: if greater than 7 then the system
call is exited. The specified drive's UCB is tested to determine if the
disk label must be read from the disk - if so then the label is read. The
disk label is transferred to the storage area addressed by the DE register
pair and the system call is exited.

Other system calls used: RD1 (10)

Other registers altered: A

Example Calling Sequence:

LABEL:

LD
LD
SC

DC

B,O
DE ,LABEL
66

,

Point to system disk

Get disk label

, ,0

===

SC 67 PUTnEV
===

Function: Store device driver address.

Input parameters:

Reg B - Physical device number
Reg HL - Address of device driver

Output parameters: none

SC 67.PUTDEV - 82 - MACRO

CBAPTKIl 7: SYSTHH CALLS

Description:

The device number is verified to be in the range 8-32, if not the system
call is exited. The address specified is loaded into the device table,
overlaying any current device address in that location of the table. An
address of zero (0000) in the HL register pair indicates that the
specified device has been unloaded.

This system call is normally only used by the ATTACH command. It will be
a lot easier for the user to allow that command to set the driver address
as all of the other related house-keeping is performed by the command at
that time. This system call might be used by the user for a program that
uses a device in a manner different from all other programs and has its
own driver for the device embedded in its code.

Other system calls used: GETUCB (21), TSTDEV (58)

Other registers altered: A, D, E, H, L

Example Calling Sequence:

LD
LD
SC

B,17
HL,ENTRY
67

Point to COMM2
Point to device driver
Set driver address

===
SC 68 DEVDRIBI"l

===

Function: De-initialize a device driver.

Input parameters:

Reg B - Logical device number

Output parameters: none

Description:

The attachment of the specified device is tested. If not attached the
system call is exited. If attached the physical device driver attached to
the logical device specifed in the B register is entered at the
de-initialize entry point.

The address of the UCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

Note: This system call is used by the ATTACH command when a device is
detached and should not be used by user programs.

Other system calls used: GETUCB (21), TSTDEV (58)

Other registers altered: can be all

MACRO - 83 - SC 68 DEVOBIRIT

MACRO REFERENCE MANUAL

Example Calling Sequence:

LD
SC

B,17
68

Point to COMM2 device
Un-init driver

===
SC 69 TSTESCC

===

Function: Test if Program Cancel-key entered.

Input parameters: none

Output parameters:

Flag Z - Status
Set = Not entered
Reset = Entered

Description:

Other

Other

The system control flag is tested to determine if the Program Cancel-key
has been entered. The Program Cancel-key is defined in the System
Reference Manual. If the Program Cancel-key has been entered then the Z
flag is set and the A register contains a non-zero value. The control
flag is cleared by this test process. If the key has not been entered
then the Z flag is reset and the A register is set to zero.

The status of the control flag is also cleared by System Call 30 and by
the CSI.

The Program Cancel-key is only used by OASIS language products such as the
BASIC interpreter, Text Editor, and the Debugger. It would be consistent
to use it in user programs that are iterative and/or interactive in
function.

system calls used: none

registers altered: none

Example Calling Sequence:

SC 69 Test program cancel
JR NZ,NOCAN Jump if not

===
SC 70 EXCHDR

===

Function: Execute a program and return.

SC 70 ExamR - 84- MACRO

CHAPTER. 7: SYSTEM CALLS

Input parameters:

Reg HL - Return address
Reg DE - Address of command string buffer

Output parameters: none

Description:

This is the system call used by the system programs BASIC and EDIT when a
CSI sub-command is executed. The DE register contains the address of a
work area which is the CSI command string along with any options desired,
terminated by a CR (13).

When this system call is executed high memory is set to the address in the
HL register, the CSI is loaded and it interprets the command in the work
area specified by the DE register pair. This command may be any valid
command (including an EXEC) that can fit in the memory available with the
exceptions of: DEBUG and ATTACH when the device being ATTACHed is not
currently attached to a logical device. These exceptions are due to the
fact that those commands would normally cause a program to be loaded into
high memory and "protected" at that location.

After the command has completed its execution control returns to the
current high memory location.

Execution of this system call will disable any and all timer tasks whose
TEB location is not included in the "protected" memory area, and a disk
error trap set up by SETDET (SC 74).

Other system calls used: EXCMD (54)

Other registers altered: all (unknown)

Example Calling Sequence: not recommended for use by end user.

===

SC 71 BUFFI
===

Function: Get character from buffer.

Input parameters:

Reg HL - Address of buffer prefix
Prefix: Byte 0 buffer length

1 = current
2 = current

Prefix followed by buffer

Output parameters:

MACltO

Reg A - Next character from buffer
Flag C - Set if buffer empty

- 85 -

size
location
storage.

SC 71 BUHI

MACRO REFERENCE MANUAL

Description:

This system call gets the next character ready for output from a FIFO
buffer, probably loaded by system call 72 (BUFFO). The two system calls
should be used in conjunction with each other to assist you in maintaining
a FIFO stack of up to 256 byte length.

This routine and
interrupt service
processing.

the BUFFO
routines

routine
although

are
they

designed to be operated by
could be used for normal

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD HL,BUFFER Point to buffer
SC 71 Get a byte

BUFFER: DC 128 Buffer length
DC 0 Currently used
DC 0 Current byte
DS 128

===
SC 72 BlJI'FO

===

Function: Add character to buffer.

Input parameters:

Reg A - character to be added to buffer
Reg HL - address of buffer prefix

Prefix: Byte 0 buffer length
1 = current size
2 = current location

Prefix followed by buffer storage.

Output parameters: none

Description:

This system call adds one character to a FIFO buffer maintaining the
buffer pointers, etc. This routine should be used in conjunction with the
BUFFI system call and is designed to be the buffer management for an
interrupt service routine, although it could be used for normal
programming.

When there is no room in the buffer for the character to be added the
routine "hangs" until space becomes available. If the characters are not
being removed by an interrupt routine the routine will continue in a
two-instruction loop.

SC 72 BUFFO - 86- MACRO

CHAPTER. 7: SYSTEH CALLS

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD HL,BUFFER Point to buffer
SC 72 Put a byte

BUFFER: DC 128 Buffer length
DC 0 Currently used
DC 0 Current byte
DS 128

===
se 73 PUTCON

===

Function: Get/set console control byte.

Input parameters:

Reg B - Enable mask
Reg C - Disable mask

Output parameters:

Reg A - Result

Description:

MACRO

The console control byte is a bit-mapped byte controlling the console
display and keyboard. The byte in the B register is logically ORed with
the control byte and the byte in the C register is logically l's
complemented and ANDed with the control byte. The resulting control byte
status is returned in the A register. If the Band C registers contain
zero then the control byte is not changed and the system call merely
returns the status of the control byte.

The bit-mapping of the control byte is as follows:

Bit Function

7 Echo, on/off. When this bit set then all non-control characters
typed on CONIN are displayed on CONOUT, after conversion due to
the status of the other bits in this control byte.

6 Fold to upper. When this bit is set then all lowercase
characters typed on CONIN are converted to uppercase.

5 Fold to lower. When this bit is set and bit 6 is off then all
characters typed on CONIN are converted to their inverse
casemode (only letter characters are affected).

- 87 - se 73 P1I'rCOB

MACRO REFERENCE MANUAL

Bits 5 and 6 function as a unit:

6 5 Function

OFF OFF No translation
ON X Translate to upper
OFF ON Translate to inverse

4 CTRL stop. When this bit is set then entry of any control
character (value less than 32) will terminate the input.

3 CTRL delete. When this bit is set then all control characters
typed on CONIN are ignored (except BS (8), TAB (9), CR (13), and
CAN (24)).

2 CTRL graphic. When this bit is set and bit 7 is set then all
control characters typed on CONIN are displayed on CON OUT in
their graphic equivalent (an up arror (~) followed by the
character equal to the control character + 64).

1 Not used.

° Stack. Indicates EXEC stacked data available. This bit is not
changeable by the system call.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
LD
SC

The following instructions will set the console
control byte to perform the following:

set echo on
no case translation
accept and display CTRL char in graphics

B,10000100B
C,01111010B
73

Enable mask
Disable mask
Set console control

===
SC 14 POTDET

===

Function: Trap disk errors before message displayed.

Input parameters:

Reg HL - address of user error routine

Output parameters: none (see description)

SC 14 PUTDET - 88- HACRO

CHAPTER. 7: SYSTEH CALLS

Description:

This system call does not
calling program; however,
do have defined values:

have any output parameters upon return to the
when a disk error does occur certain registers

Reg B - disk drive number
Reg DE - relative sector number
Reg HL - memory location of disk buffer
Reg A - disk error code

1 = Disk not ready
2 Disk write protected
3 = Disk not initialized
4 Data CRC error
5 Invalid parameters
6 Disk label changed
7 Sector not found
8 Track not found
9 Address (sector/track header) CRC error

When the disk error occurs control is transferred to the address specified
in the HL register pair. After your routine has done its processing and
is ready to return control to OASIS the A register should be set to one of
the following values:

To disable your disk
register containing
the CSI is loaded.)

00 Ignore error
01 - FE Retry operation (no change)

FF Quit - return to CSI

error routine then use this system call with the HL
O. (Your routine will automatically be disabled when

An example of the use of this system call is the VERIFY command. That
command performs disk readability diagnostics and therefore needs to gain
control when a disk error occurs.

Other system calls used: none

Other registers altered: none (see description)

Example Calling Sequence:

LD
SC

HL,DISKERR
74

Point to error routine
Inform as

===

SC 75 IiEVSYS
===

Function: Change system disk.

MACRO - 89 SC 75 JlEWSYS

MACRO REFERERCE MANUAL

Input parameters:

Reg B - new physical drive number (0 - 7)

Output parameters: none

Description:

This system call performs the same operation as the ATTACH command when
the system disk is to be changed. Register B is loaded with the new
physical drive number of the system disk. When the system call is
executed the current system disk is accessed to read in any necessary
overlays, a message is displayed to the operator asking for the new system
disk to be mounted in the specified drive. After the operator loads the
disk and responds to the message the new system disk is accessed, the
necessary SYSTEM files are located and control returns to the CSI.

The new system disk must contain a SYSTEM. NUCLEUS of the same version as
the current system disk. The results will be unpredictable if the version
is different.

Other system calls used: BOOT (0)

Other registers altered: none

Example Calling Sequence:

LD
SC

B,O
75

Point to drive 0
Change system disk

===
SC 76 DELAY

===

Function: Delay processing for specified period of time.

Input parameters:

Reg A - forma ted delay time.

Output parameters: none

Description:

Bit 7,6 - Unit of measure
00 1/1000 (millisecond)
01 1/100 second
10 1/10 second
11 = 1 second

Bit 5-0 - count (1 - 63)

This is a general purpose processing delay routine. It was developed for
the timing delay required by serial I/O devices but can be used for any
purpose. When the system call is executed the formated delay factor in
the A register is decoded into milliseconds and a TEB is initiated for the

SC 76 DELAY - 90 - MACRO

Other

Other

CIlAPTER. 7: SYSTEH CALLS

specified time. Then the system call waits for the TEB to be exhausted
before returning control to the calling program.

Although you have access to the TEB syscall and MSEC this is a much easier
and straight-forward method of long delays (up to a minute).

Processing of your program is suspended for the specified length of time
but all interrupt service routines are still enabled.

system calls used: MSEC (53)

registers altered: none

Example Calling Sequence:

LD A, (DELAY) Set up for delay
SC 76 Delay processing

DELAY: DC 11000101B ; 5 second interval

===
SC 77 GETACB

===

Function: Point to Assign Control Block entry.

Input parameters:

Reg B - ACB number (0 - 16)

Output parameters:

Reg HL - Address of ACB

Description:

The address of any assigned Assign Control Block for the number specified
by the contents of the B register is returned in the HL register pair.
This ACB is not the ACB address used in system call 24 but the internal
copy of that ACB.

Other system calls used: none

Other registers altered: A

Example Calling Sequence: not recommended for use by end user.

===
SC 78 COBESC

===

Function: Analyze escape sequence and execute if system defined.

MACRO - 91 - se 78 couse

MACRO REFERENCE MANUAL

Input parameters:

Reg A - Second character of escape sequence

Output parameters:

Description:

Reg A - Status:
00 System handled

unchanged = undefined

This system call is used by the SYSTEM.CLASSnn files to cause the system
to act on a system defined escape sequence. When an escape character is
detected the next character received is loaded into the A register and
this system call is executed. If the system recognizes the character as a
command then the appropriate action is taken, the A register is cleared
and the Z flag is set. If the character is not recognized then the A
register is left unchanged and the Z flag is reset.

This system call could be used by a program to force a system defined
function such as toggling the printer echo feature, etc. Merely load the
A register with the character corresponding to the second character of the
escape sequence that would be used to invoke the function from the
keyboard. For a listing of these functions and character see the OASIS
System Reference Manual, "System Control Keys".

Other system calls used: none

Other registers altered: none (may not return if A reg contains 'Q')

Example Calling Sequence:

LD
SC

A, 'P' Toggle the PRT echo
78

===
se 79 SNU

===

Function: Select next user.

Input parameters: none

Output parameters: none

Description:

The next active user partition is selected and control of the system
transfers to it.

Although this system call is used by all other system calls that are
waiting for action (input/output operations) you should use it in any code
that is performing a wait without a system call. (The next user will be

se 79 SBU - 92 MACRO

CHAPTER 7: SYSTEM CALLS

selected automatically when your time slice elapses but the performance of
the system will be enhanced if you can give up control instead of just
looping.)

When your user partition is activated again your program will continue
execution at the instruction after this system call.

Note: On single user system this system call returns immediately.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC 79 ; Select next user

===
SC 80 GETBASE

===

Function: Get monitor (NUCLEUS) location.

Input parameters: none

Output parameters:

Reg IY - Monitor address

Description:

The first address of the SYSTEM.NUCLEUS is placed in the IY index register
and the system call is exited.

Other system ells used: none

Other registers altered: none

Example Calling Sequence:

SC
LD

80
(BASE),IY

Get NUCLEUS base
Save

===
SC 81 GETHFG

===

Function: Get manufacturer number of system.

Input parameters: none

Output parameters:

Reg A - Manufacturer number

MACRO - 93 - SC 81 GEDIFG

MACRO REFERENCE HANUAL

Description:

Each computer manufacturer that supports the OASIS operating system is
assigned a unique value. This value can be accessed with this system call
and used to determine if the manufacturer is the same as required by the
program requesting it (some programs may use hardware dependant code). By
using this system call a program can determine what type of computer it is
running on.

Other system calls used: none

Other registers altered: A

Example Calling Sequence:

SC
LD

81
(MFG) ,A

Get MFG number
Save

===
SC 82 GETPIR

===

Function: Get your user partition number.

Input parameters: none

Output parameters:

Reg A - Your user partition identification number (PIN)

Description:

Your user partition identification number is return in the A register.

Note: On single user systems this system call will always return a 1.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC 82 ; Get PIN

===
SC 83 1JBLOCK

===

Function: Release a file record for another partition's use.

Input parameters:

SC 83 UNLOCK

Reg BC - Address of key, indexed files or
Record number, direct files

Reg DE - Address of FCB

- 94 -

CHAPTER 7: SYSTEH CALLS

Output parameters: none

Description:

The sectors of the record currently locked in the file referenced by the
FCB are unlocked, allowing other users to access it. If the record is not
currently locked or the system is a single-user system then nothing is
performed except the return from the system call.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
LD
SC

RECNUM: DS
FCBl: DC

DW

BC, (RECNUM)
DE,FCBl)
83

2
l,OlOllOOOB
IOBUFFI

Get record number
Point to FCB, ch 1
Unlock the record

Current record number
Direct I/O
I/O buffer address

===

SC 84 OREONLY
===

Function: To indicate that your partition has exclusive use of a function/resource.

Input parameters:

Reg HL - Address of semaphore

Output parameters: none

Description:

The byte addressed by the HL registers is tested to determine if another
user has exclusive control of it. If no other user has control then the
byte is flagged to indicate that you have control and the system call is
exited. If another user does have control then the next user is selected;
upon return to your partition the byte is tested again, etc.

The byte addressed by the HL registers should be in, a system area, such as
a loaded re-entrant program.

Note: On a single user system this system call returns immediately.

Other system calls used: SNU (79)

Other registers altered: none

MACRO - 95 - SC 84 OUOBLY

MACRO REFERERCE HARUAL

Example Calling Sequence:

LD
SC

LD
SC

HL,USERFLAG
84

HL,USERFLAG
85

Point to your user communication flag
Get exclusive use of flag

Point to your user communication flag
Release exclusive use of flag

===
SC 85 XO"l'ONLY

===

Function: To release exclusive use of a function/resource.

Input parameters:

Reg HL - Address of semaphore

Output parameter: none

Description:

The byte addressed by the HL registers is tested to determine if another
user has exclusive control of it. If your partition has exclusive control
of the byte then that control is released. If your partition does not
have exclusive control of the byte then the system call is exited with no
action taken.

The byte addressed by the HL registers should be in a system area, such as
a loaded re-entrant program.

Note: On a single user system this system call returns immediately.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
SC

LD
SC

HL,USERFLAG
84

HL,USERFLAG
85

Point to your user communication flag
Get exclusive use of flag

Point to your user communication flag
; Release exclusive use of flag

===
SC 86 SETPIB

===

Function: To activate another, specific partition to execute some code.

SC 86 ACTIVATE - 96-

CHAPTER. 7: SYSTEM: CALLS

Input parameters:

Reg A
Reg HL

Output parameters: none

Description:

Partition number to activate
Address to start execution at

This system call
STOP, FORCE, and
execute some code.

is used by the system and the multi-user commands START,
MSG to cause another partition to become active and

It is advised that the end user does not use this system call.

Other system calls used: none

Other registers altered: none

===
SC 87 GETLUB

===

Function: Get base address of LUB table.

Input parameters: none

Output parameters:

Reg IY - Base address of LUB table

Description:

This system call is used in some system commands. The user should not use
it.

Other system calls used: none

Other registers altered: A

===
SC 88 HSG

===

Function: Send a message to another user's console.

Input parameters:

Reg A
Reg DE

Output parameters: none

MACRO

Partition number to send message to
Address of message to send

- 97 - SC 88 HSG

IfACRO B.DERERCE HARUAL

Description:

This system call is not intended for general usage.

The message addressed by the ~E register pair is displayed on the user's
console owned by the partition specified in the A register. If the
partition is invalid, or inactive the system call will return immediately.
If the destination's message switch is set off the message will still be
sent.

Note: On a single user system this system call returns immediately.

Other system calls used: SETPIN (86)

Other registers altered: none

===
SC 89 EXCLUSIVE

===

Function: To gain exclusive control of key system tables, etc.

Input parameters: none

Output parameters: none

Description:

Certain critical system tables are locked so that other partitions cannot
access them, thus allowing your program to alter them in some way without
damage to other user's processes.

The system tables locked by this system call include: PCB table, schedule
table, mailbox file, etc.

Note: On a single user system this system call returns immediately.

Other system calls used: ONEONLY (84)

Other registers altered: none

Example Calling Sequence:

SC 89 Get exclusive use of system tables

SC 90 ; Release exclusive use of system tables

===
SC 90 1JlIEXCLUSIVE

===

Function: Release exclusive control of system tables.

Input parameters: none

SC 90 lJDXCLUSIVE - 98- IlACRO

CHAPTER. 1: SYSTEH CALLS

Output parameters: none

Description:

The critical system tables locked by SC 89 are released for other user's
use.

The system tables released by this system call include: PCB table,
schedule table, mailbox file, etc.

Note: On single user systems this system call returns immediately.

Other system calls used: NOTONLY (85)

Other registers altered: none

Example Calling Sequence:

SC 89 Get exclusive use of system tables

SC 90 ; Release exclusive use of system tables

===
SC 91 GErWOBK

===

Function: Get base address of your SCR work area.

Input parameters: none

Output parameters:

Reg HL - Address of 256 byte SCR work area

Description:

The first address of the start of the 256 byte work buffer used by your
partition's System Communication Region is return in the HL register pair.

Other system calls used: GETSCR (48)

Other registers altered: none

===
SC 92 GErPIlIV

===

Function: Get the current privilege level of user.

Input parameters: none

Output parameters:

Reg A - Privilege level of user

MACRO - 99- SC 92 GErPIlIV

MACRO REFERENCE MANUAL

Description:

The current privilege level of the user is returned in the A register.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC
CP
JR
SC

92
3
NC,OKAY
o

Get privilege level
Compare with 3
BRIF less
Else exit

===
SC 93 COMPARE

===

Function: Perform string comparison.

Input parameters:

Reg BC - Length
Reg DE - Address of string 1
Reg HL - Address of string 2

Output parameters:

When string 1 = string 2:

When string 1 <>

Description:

Reg BC - 00
Reg DE - Address of byte following string 1
Reg HL - Address of byte following string 2
Flag Z - Set
Flag C - Reset

string 2:

Reg BC - Count of bytes remaining
Reg DE - Address of string 1 byte not equal
Reg HL - Address of string 2 byte not equal
Flag Z - Reset
Flag C - Set if string 2 > string 1; reset otherwise

The string
string of
characters
characters
is reset.
reset and
the first

of characters addressed by the DE register is compared with the
characters addressed by the HL register for the number of
specified by the BC register. If the two sequences of

exactly equal each other then the Z flag is set and the C flag
If the two strings do not equal each other then the Z flag is
the C flag is set if the second string is greater in value than

string.

Other system calls used: none

SC 93 COMPARE - 100 - MACRO

Other registers altered: A

Example Calling Sequence:

LD
LD
LD
LD
LD
SC
JR

STRING 1 : DC
STRING2: DC

A, (STRINGl)
C,A
B,O

Get length
Copy to C reg

DE,(STRINGl+l) ; Point to string
HL,(STRING2+1) ; Point to string
93 Compare strings
Z,.MATCH ; BRIF equal

5, , ABCDE'
5,'ABCde'

CHAPTER 7: SYSTEH CALLS

===
SC 94 BDBIN

===

Function: Get binary data stream from sequential file.

Input parameters:

Reg B - Byte count to get
Reg HL - Storage area
Reg DE - Address of FCB

Output parameters:

Reg A - Return code
00 Successful
01 End of file
08 Invalid file number
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

Description:

The required I/O overlay is loaded, if necessary. The ACB is validated:
open, sequential, and input. The A register is set to 255 if ACB invalid.
The ACB is tested for an EOF condition and the appropriate return code is
set if true and the system call is exited. If everything is okay the
number of bytes indicated is read in from the file and transferred to the
buffer designated by the HL register pair.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Other system calls used: KEYIN (1), RDI (10), DEVIN (63)

Other registers altered: B, C

MACRO. - 101 - SC 94 RDBIN

MACRO BEFERENCE HANUAL

Example Calling Sequence:

LD B,25 Get next 25 bytes from file
LD DE,FCBl Point to file on ch 1
LD HL,BUFF Put in BUFF buffer
SC 94
JR NZ,CHKERR Jump if read error

FCBl: DC 1,10010000B Sequential input, ch 1
DW BUFFI I/O buffer

BUFF 1 : DS 256
BUFF: DS 25 Input buffer

===
SC 95 WRBIH

===

Function: Put binary data stream to sequential file.

Input parameters:

Reg B - Byte count to write
Reg DE - Address of FCB
Reg HL - Address of data to write

Output parameters:

Description:

Reg A - Return code
00 Successful
08 Invalid file number
10 Disk full
FF File not open

Flag Z - Status:
set - okay (Reg A = 0)
reset - error (Reg A <> 0)

The required I/O overlay is loaded, if necessary. The ACB is validated:
open, sequential, and output or append. The appropriate return code is
set when invalid and the system call is exited. The number of bytes
specified in the B register are writen to the file buffer and physical
output is performed as required. When the file is a disk file and the
file requires more allocation to perform the physical output then the file
is expanded.

This system call, like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Other system calls used: DISPLAY (2), WRl (11), ALLOC (27), DEVOUT (64)

Other registers altered: B, C

SC 95 WRBIlI - 102 -

CHAPTER 1: SYSTEH CALLS

Example Calling Sequence:

LD B,25 Write 25 bytes to file
LD DE,FCBl On ch 1
LD HL,BUFF From buffer BUFF
SC 95
JR NZ,CHKERR Jump on error

FCM1: DC 1,10001000B Ch 1, seq
DW BUFFl

BUFF1: DS 256 I/O buffer
BUFF: DS 25 Data buffer

===
SC 96 ERBDIS

===

Function: Display error message on console

Input parameters:

Reg DE - Tokenized parameter list
Reg HL - Error number

Output parameters: none

Description:

This system call is used by
standard information messages
Reference Manual).

all system program to display error and
kept in the SYSTEM.ERRMSG file (see System

The DE register pair need only be loaded with the address of the tokenized
parameter list if the message conta~ns parameter replacement codes. The
tokenized parameter list is a list of parameters in ASCII, each parmeter
eight (8) bytes in length with no delimiting characters. Use trailing
spaces if the parameter is not eight characters.

Other system calls used: DISPLAY (2)

Other registers altered: none

Example Calling Sequence:

PARAM:

KACB.O

LD
LD
SC

DC

DE,PARAM
HL,47
96

'123 HELLO

Point to parameters
Display message # 47

,

- 103 - SC 96 ERBDIS

MACRO REFERENCE MANUAL

===
SC 97 ERRQUIT

===

Function: Display error message and re-boot.

Input parameters:

Reg DE - Address of parameter list
Reg HL - Message number
Reg A - Return code

Output parameters: none

Description:

This system call is identical to system call 96 (ERRDIS) except that
control does not return to the calling program. After the message is
displayed control will return to the CSI with the return code set to the
value in the A register.

Other system calls used: ERRDIS (96), DISPLAY (2), QUIT (0)

Other registers altered: all (no return)

Example Calling Sequence:

LD
LD
SC

HL,23
A,4
97

Message /I 23
Return code = 4

===
SC 98 OVERLAY

===

Function: Program overlay load (for system use only).

Input parameters:

Reg A
Reg B
Reg DE
Reg HL

Output parameters: none

Description:

- Directory type (1 = relocatable, 2 = absolute)
- Drive code
- Starting disk address of program
- Address of overlay list:

0-1 Memory address to load into
1-3 Length to load, in bytes
4 Number of sectors to load
5-6 Sector number, relative to program start

The overlay segment of
loaded into memory at

your program indicated by the input parameters is
the address indicated. This system call always

SC 98 OVERLAY - 104 -

Other

Other

CHAPTER. 7: SYSTEM CALLS

performs the overlay, even if it is the same overlay as is already in
memory. Therefore, it is the responsibility of your program to test
whether the overlay is needed.

The drive code and starting sector number of your program used in the
input registers B and DE respectively are available when your program is
first invoked by the CSI. For more information refer to the chapter
"Interfacing to OASIS" in this manual.

When the overlay is relocatable the sector count of the overlay must
include the relocation table.

system calls used: RD (50)

registers altered: none

Example Calling Sequence:

LD A, (OVERLAY) Get current overlay number
CP 1 Test if already loaded
JR Z,OVERLAY+l BRIF is
LD A,l Segment is relocatable
LD B, (PRGDRIVE) Drive code of program
LD DE, (PRDSECT) Starting sector of program
LD HL,SEGITABLE Overlay table 1
SC 98 Get overlay
JR OVERLAY+l Continue in overlay

(OVERLAY) ; Address of overlay region
(OVEREND-OVERLAY+l) ; Overlay region length

SEGITAB: DC
DC
DC
DC

4 ; Sector count, including reI table
23 ; Relative sector # of segment

===
SC 99 CALLOC

===

Function: Conditional allocation.

Input parameters:

Reg B - Logical drive code (0 - 7) = (S - G)
Reg DE - Maximum desired blocks of allocation
Reg HL - Minimum desired blocks of allocation

Output parameters:

Reg DE - Actual number of blocks allocated
Reg HL - Sector number of first block allocated
Flag Z - Set if able to allocate minimum; reset otherwise

MACRO - 105 - SC 99 CALLOC

MACRO REFERENCE HABUAL

Description:

The disk is tested for its largest contiguous area available. If this
area is smaller in size than that requested for the minimum allocation the
Z flag will be reset and the system call exited. If this area is at least
the size of the minimum allocation requested space will be allocated, up
to the maximum space requested. The return registers are set to reflect
the amount and location of the space actually allocated.

Other system calls used: RDI (10), WRI (11), ALLOC (27)

Other registers altered: A

Example Calling Sequence:

LD B,I Point to A drive
LD DE,20 Maximum of 20 blocks
LD HL,4 Minimum of 4 blocks
SC 99 Allocate space
JR NZ,NOSPACE Insufficient space
LD (SIZE) ,DE Save actual alloc size
LD (SECT), HL Save first sect number

===
SC 100 DISPATCH

===

Function: Perform table lookup.

Input parameters:

Reg DE - Address of string to lookup
Reg HL - Address of start of table

Table: Minimum spelling
Match string
Related address

Output parameters:

Description:

Reg HL - Related address if match found
Flag Z - Set if match found

reset otherwise

The table designated by the HL register pair is searched for a match with
the string addressed by the DE register pair. If a match is found the Z
flag is set and the HL register pair is loaded with the third field in the
matching table entry. If no match is found the Z flag is reset and the HL
register pair is undefined.

The string addressed by the DE register pair and the strings in the table
are of variable length. The string to look up is terminated by a

100 DISPATCH 106 -

CHAPTER. 7: SYSDK CALLS

non-alphanumeric non dollar sign character. The last character of the
strings in the table is marked with the parity bit (bit 7 on). This is
automatically performed by the assembler when the double quote mark is
used (see DC directive).

The end of the table is marked with a binary zero entry.

Other system calls used: none

Other registers altered: A, B, C

Example Calling Sequence:

LD DE, STRING Point to string
LD HL,TABLE Point to table
SC 100 Lookup
JR NZ,NOTFOUND BRIF not found
JP (HL) Else branch to related address

STRING: DC
TABLE: DC

DC
DC
DC
DC
DC
DC

'THIS IS A STRING' ,0
1 Minimum spelling
"FILELIST" ; Match string
(FILELIST) ; Related routine
4, "FILT8080", (FILT8080)
2, "FORCE", (FORCE)
10,"THIS IS A STRING", (EXIT)
o ; End of table

==;====

SC 101 GETOSKIl
===

Function: Get the current user account number.

Input parameters: none

Output parameters:

Reg A - User account number id

Description:

The user id number currently logged onto this partition is returned in the
A register. The user id number is the number used by the system to
distinguish different owning accounts. The system accounts have an id
number of zero; user accounts have an id number in the range 1 - 254.

Other system calls used: none

Other Registers altered: none

Example Calling Sequence:

SC 101 ; Get user id

MACRO - 107 - SC 101 GE"lUSBIl

MACRO REFERENCE MANUAL

LD (CUR$USER) ,A Save it

===
SC 102 CHARD

===

Function: Perform console input character translate and escape sequence actions.

Input parameters:

Reg A - Character input
Reg IY - Address of UCB

Output parameters:

Description:

Reg A - Character to be used
Flag C - Set if character to be ignored by driver

reset otherwise

This system call provides a simple and consistent method for a device
driver to make sure that the OASIS system console escape sequences are
handled properly. It is advised that all user written device drivers that
accept input from a device and that might be attached as a console device
use this system call for each character that is input. (The driver should
check to see if it is the console first to improve performance.)

This system call tests to see if the device is the conole input device.
If not then the system call is exited with the carry flag reset. When the
device is the console the system call checks to see if there is a
SYSTEM.CLASSnn file loaded--if so then the character is passed to that
routine. If not then the character is checked to see if it is part of an
escape sequence. When the character is part of an escape sequence from
the console input device the appropriate action is taken and the carry
flag is set before the system call is exited.

Other system calls used: CONESC (78)

Other registers altered: A

===
SC 103 PUTVECT

========~==

Function: To insert an interrupt vector address into the system table.

Input parameters:

Reg A - Relative vector number
Reg DE - Vector transfer address

Output parameters: none

SC 103PUTVECT - 108 - MACRO

CHAPTER 7: SYSTEM CALLS

Description:

Other

Other

This system call is used to inform the operating system where an interrupt
service routine is located at. It is mandatory that this system call be
used for this purpose in a multiuser, multi-memory bank system and it
should be used in all other types of systems for convenience and
consistency.

The relative vector number in the A register is a number in the range of 2
- 6 (mode 0), 0 - 7 (mode 1) or 0 - 127 (mode 2), corresponding to the
desired priority of the interrupt (mode 1) or the vector number that the
interrupting device will give to the system when it interrupts (mode 0 or
2). The interrupt service routines for the three modes of interrupts are
similar except the mode 1 service routine must first poll its device to
determine if it was the device causing the interrupt; if not then the
routine performs a return without enabling interrupts (the system will
call the next routine in the vector table). The relative vector number
for mode 1 determines the "priority" or sequence that the service routine
will be called when an interrupt occurs.

The vector transfer address in the DE register pair is the address of the
interrupt service routine for the vector number in the A register. When
the system has mUltiple memory banks available to it the operating system
will keep track of which bank that particular address is in.

system calls used: none

registers altered: none

Example Calling Sequence:

LD A,2 Vector number 2
LD DE,INT Input interrupt
SC 103 Put vector

===
SC 104 GETBYTE

===

Function: Transfer byte(s) from another partition space.

Input parameters:

Reg A - Partition identification number of partition to get from
Reg BC - Count of bytes to get
Reg DE - Address of buffer to transfer bytes to (your partition)
Reg HL - Address of buffer to transfer bytes from (his partition)

Output parameters:

MACRO

Reg BC - 0
Reg DE - Address following bytes transferred (your partition)
Reg HL - Address following bytes transferred (his partition)

Interrupts are disabled

- 109 - 104 GETBYTE

MACRO RD'ER.ENCE HANlJAL

Description:

This system call functions similar to an LDIR instruction in a single user
system.

In a multi-user system this system call allows you to transfer a character
or string of characters from another partition to your partition, even
though that other partition may be in different bank of memory.

Note: Upon return from this system call interrupts have been disabled. It
is your responsibility to re-enable them if they should be on.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD A,2 From partition two
LD HL,SOOO From his location 5000
LD DE,4FOO To my location 4000
LD BC,20 For 32 bytes
SC 104 Transfer
EI Enable interrupts

===
SC 105 PDTBYTE

===

Function: Transfer byte(s) to another partition space.

Input parameters:

Reg A - Partition identification number of p'artition to put to
Reg BC - Count of bytes to put
Reg DE - Address of buffer to transfer bytes to (his partition)
Reg HL - Address of buffer to transfer bytes from (your partition)

Output parameters:

Description:

Reg BC - 0
Reg DE - Address following bytes transferred (his partition)
Reg HL - Address following bytes transferred (your partition)

Interrupts are disabled

This system call functions similar to an LDIR instruction in a single user
system.

In a multi-user system this system call allows you to transfer a character
or string of characters to another partition from your partition, even
though that other partition may be in different bank of memory.

Note: Upon return from this system call interrupts have been disabled. It
is your responsibility to re-enable them if they should be on.

105 PUTBYTE - 110

CHAPTER. 7: SYSTEK CALLS

Other system calls used:

Other registers altered:

Example Calling Sequence:

LD
LD
LD
LD
SC
EI

none

none

A,2
HL,5000
DE,4FOO
BC,20
105

To partition two
From my location 5000
To his location 4000
For 32 bytes
Transfer
Enable interrupts

===

SC 106 DATEOlIT
===

Function: Translate a packed BCD date to string format.

Input parameters:

Reg C - Month number (BCD)
Reg H - Day number (BCD)
Reg L - Year number (BCD)
Reg DE - Storage area

Output parameters:

Reg DE - End of formatted date plus one

Description:

The date specified by the C, H, and L registers is converted and formatted
according to the currently set DATEFORM.

Note: This system call does not validate the date input.

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD
LD
LD
LD
SC

C,03
H,22
L,93
DE,BUFFR
106

Month 3 - March
Day 22
Year 1993
Storage area
Convert to string form

===

SC 107 VAITIlfr
===

Function: Deactivate current partition until interrupt occurs.

Input parameters: none

MACRO - III - 107 IlA1TINT

HACRO REFERENCE HANUAL

Output parameters: none

Description:

This system call is similar to system call 79 (SNU) in that the next user
partition is activated. Unlike SC 79 this system call informs the
operating system that the current partition is not to be activated again
until an interrupt occurs that needs this partition to be serviced.

This system call allows greater throughput for a multi-user system in that
any partition using it that is waiting for an event to happen (i.e.,
waiting for the operator to type another key) will not waste a lot of CPU
time merely determining that it is still waiting.

When this system call is used (as it is in all OASIS supplied device
drivers) control will return to the instruction following the call when
any interrupt occurs from a device attached to this partition. However,
the interrupting device may not be the event that was required by your
partition. Therefore upon return to your program you should re-check the
status of the device that you were waiting for.

Other system call used: none

Other registers altered: none

Example Calling Sequence:

IN:

INl:

CALL
JR
SC
JR

STATUS
NZ,IN1
107
IN

Check status of device
Skip if ready
Else deactivate
Re-check status

===
SC 108 FnmPGK

===

Function: Return address of a loaded, re-entrant program.

Input parameters:

Reg DE - Address of program name desired (8 characters)

Output parameters:

Description:

Flag Z - Set if found
Reset otherwise

Reg HL - Address of program if found

This system call searches the Re-entrant Program Table (RPB) for a match
with the program name specified by the DE register pair. If the program
is found in the table the starting address is loaded into the HL register
pair, the Z flag is set and the system call exited.

108 FIlIDPGH - 112 - HACIO

Other

Other

CHAPTER. 7: SYSTEK CALLS

When the program name specified by the DE register pair is not found in
the RPB the Z flag is reset and the system call is exited.

system calls used: none

registers altered: none

Example Calling Sequence:

LD DE ,NAME Point to program name
SC 108 Find program
JR NZ,LOADIT BRIF not found
JP (HL) Else branch to loaded program

NAME: DC 'BASIC ,

HACB.O - 113 - 108 I'IBDPGH

- 114 -

CBAPTElt 7: SYSTEH CALLS

MACRO - lIS -

MACRO REFERENCE MANUAL

- 116 - MACRO

CHAPTER 7: SYSTEH CALLS

MACRO - 117 -

MACRO 1lEFERENCE MABUAL

- 118 - MACRO

CHAPTER. 8

Z80 CPU OVERVIEW

8.1 Addressing modes

Most of the Z80 instructions operate on data stored in internal CPU registers,
external memory or in the I/O ports. Addressing refers to how the address of this
data is generated in each instruction. This section gives a brief summary of the
types of addressing used in the Z80.

Immediate - In this mode of addressing the byte following the op-code in memory
contains the actual operand. Examples of this type of instruction would be to
load the accumulator with a constant, where the constant is the byte
immediatlely following the op-code.

LD A,25

Immediate Extended - This mode is merely an extension of immediate addressing in
that the two bytes following the OP code are the operand. Examples of this
type of instruction would be to load the HL register pair with 16 bits of
data.

LD HL,LABEL

Modified Page Zero Addressing - The Z80 has a special single byte call instruction
to any of 8 locations in page zero of memory. This instruction (referred to
as a restart) sets the Program Counter (PC) to an effective address in page
zero. The value of this instruction is that it allows a single byte to
specify a complete 16 bit address where commonly called subroutines are
located, thus saving memory space.

RST 38

Relative Addressing - Relative addressing uses one byte of data following the
op-code to specify a displacement from the existing program to which a program
jump can occur. This displacement is a signed two's complement number that is
added to the address of the op-code of the following instruction.

JR LABEL

The value of relative addressing is that it allows jumps to nearby locations
while only requiring two bytes of memory space. For most progams, relative
jumps are by far the most prevalent type of jump due to the proximity of
related program segments. The signed displacement can range between +127 and
-128. Another advantage is that it allows for relocatable code.

Extended Addressing - Extended addressing provides for two bytes (16 bits) of
address to be included in the instruction. This data can be an address to
which a program can jump or it can be an address where an operand is located.
Extended addressing is required for jumps with a displacement greater than
127.

LD HL, (LABEL)

When extended addressing is used to specify the source or destination address
of an operand, the notation (nn) is used to indicate the content of memory at
nn, where nn is the 16 bit address specified in the instruction. This means

HACRO 119 -

MACRO REFERENCE HANDA!.

that the two bytes of address nn are used as a pointer to a memory location.
The use of the parentheses always means that the value enclosed within them is
used as a pointer to a memory location. For example, (1200) refers to the
contents of memory at location 1200.

Indexed Addressing - In this type of addressing the byte of data following the
op-code contains a displacement which is added to one of the two index
registers (the op-code specifies which index register is used) to form a
pointer to memory. The contents of the index register are not altered by this
operation. An example of an indexed instruction would be to load the contents
of the memory location (Index Register + displacement) into the accumulator.
The displacement is a signed two's complement number. Indexed addressing
greatly simplifies programs using tables of data since the index register can
point to the start of any table. Two index registers are provided since very
often operations require two or more tables. Indexed addressing also allows
for relocatable code.

LD HL, (IX+3)

To indicate indexed addressing the notation: (IX+d) or (IY+d) is used. Here d
is the displacement specified after the OP code. The parentheses indicate
that this value is used as a pointer to external memory.

Register Addressing - Many of the Z80 op-codes contain bits of information that
specify which CPU register is to be used for an operation. An example of
register addressing would be to load the data from register B into register C.

LD A,B

I~lied Addressing - Implied addressing refers to operations where the op-code
automatically implies one or more CPU reigisters as containing the operands •.
An example is the set of arithmetic operations where the accumulator is always
implied to be the destination of the results.

ADD C

Register Indirect Addressing - This type of addressing specifies a 16 bit CPU
register pair (such as HL) to be used as a pointer to any location in memory.
This type of instruction is very powerful and it is used in a wide range of
applications. The symbol (HL) specifies that the contents of the HL register
are to be used as a pointer to a memory location.

LD A, (HL)

Bit Addressing - The Z80 contains a large number of bit set, reset and test
instructions. These instructions allow any memory location or CPU register to
be specified for a bit operation through one of three previous addressing
modes (register, register indirect and indexed) while three bits in the
op-code specify which of the eight bits is to be manipulated.

SET J,D

Many instructions include more than one operand (such as arithmetic instructions or
loads). In these cases, two types of addressing modes may be employed.

BIT 7,(IX)

120 - HACRO

CHAPTER. 8: Z80 CPU OVERVIEW

8.2 Registers

The Z80 CPU contains 208 bits of Read/Write static memory that are accesible to the
programmer. This memory is configured into eighteen 8 bit registers and four 16
bit registers.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8
bit registers that may be used individually as 8 bit registers (B, C, D, E, H, L)
or as 16 bit register pairs by the programmer. One set is called BC, DE, and HL
while the complementary set is called BC', DE', and HL'. At anyone time the
programmer can select only one set of registers to work with, althrough a single
exchange command exchanges the contents of the entire set. In systems where fast
interrupt response is reguired, one set of general purpose registers and an
accumlator/flag register may be reserved for handling this very fast routine. Only
a simple exchange command need be executed to go between the routines.

Accumulator and Flag Registers

The CPU includes two independent 8 bit accumulators (A and A') and associated 8 bit
flag registers (F and F'). The accumulator holds the results of 8 bit arithmetic
or logical operations while the flag register indicates specific conditions for 8
or 16 bit operations, such as indicating whether or not the result of an operation
is equal to zero. The programmer selects the accumulator and flag pair that he
wishes to use with a single exchange instruction so that he may easily work with
the contents of either pair.

Special Purpose Registers

1. Program Counter (PC). The Program Counter
current instruction being fetched from
incremented after its contents have been
When a program jump occurs the new value is

holds the 16 bit address of the
memory. The PC is automatically
transferred to the address lines.

placed in the PC, overriding the
incrementer.

2. StaCk Pointer (SP). The stack pointer holds the 16 bit address of the current
top of a stack located anywhere in external system RAM memory. The external
stack memory is organized as a last-in, first-out (LIFO) file. Data can be
pushed onto the stack from specific CPU registers or popped off of the stack
into specific CPU registers through the execution of PUSH and POP instructions.
The data popped from the stack is always the last data pushed onto it. The
stack allows simple implementation of multiple level interrupts, unlimited
subroutine nesting and simplification of many types of data manipulation.

3. Two Index Registers (IX and IY). The two independent index registers hold a 16
bit base address that is used in indexed addressing modes. In this mode, an
index register is used as a base to point to a region in memory from which data
is to be stored or retrieved. An additional byte is included in indexed
instructions to specify a displacement from this base. This displacement is
specified as a two's complement signed integer. This mode of addressing
greatly simplifies many types of programs, especially where tables of data are
used.

4. Interrupt Page Address Register (I). The Z80 CPU can be operated in a mode
where an indirect call to any memory location can be achieved in response to an

MACRO 121 -

MACRO REFERENCE HAImAL

interrupt. The I Register is used for this purpose to store the high order 8
bits of the indirect address while the interrupting device provides the lower 8
bits of the address. This feature allows interrupt routines to be dynamically
located anywhere in memory with absolute minimal access time to the routine.

Caution: The Interrupt Page Address Register is used extensively by the OASIS
Operating System. Any change to this register will cause unpredictable and
probably disastrous results.

5. Memory Refresh Register (R). The Z80 CPU contains a memory refresh counter to
enable dynamic memories to be used with the same ease as static memories. This
7 bit register is automatically incremented after each instruction fetch. The
data in the refresh counter is sent out on the lower portion of the address bus
along with a refresh control signal while the CPU is decoding and executing the
fetched instruction. This mode of refresh is totally transparent to the
programmer and does not slow down the CPU operation. The programmer can load
the R register for testing purposes, but this register is normally not used by
the programmer.

8.3 Flags

The flag register (F and F') supplies information to the user regarding the status
of the CPU at any given time. The bit positions for each flag is shown below:

7 6 5 4 321 o

S Z x H x P/V N C

Where:
S Sign flag
Z = Zero flag
H = Half-Carry flag

P/V = Parity /Overflow flag
N = Add/Subract flag
C = Carry flag
X = Not used

Each of the two CPU flag registers contains 6 bits of status information which are
set or reset by CPU operations. Four of these bits are testable (C,p/V,Z and S)
for use with conditional jump, call or return instructions. Two flags are not
testable (H,N) and are used for BCD arithmetic.

Carry Flag (e)

The carry flag is sometimes referred to by the symbol CY.

The carry bit is set or reset depending on the operation being performed. For ADD
instructions that generate a carry and SUBTRACT instructions that generate no
borrow, the carry flag will be set. The carry flag is reset by an ADD that does
not generate a carry and a SUBTRACT that generates a borrow. Also the DAA
instruction will set the carry flag if the conditions for making the decimal
adjustment are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is used as a link between the
LSB and MSB for any register or memory location. During instrucitons RLCA, RLC s
and SLA s, the carry contains the last value shifted out of bit 7 of any register

- 122 - HACRO

CHAPTER. 8: Z80 CPU OVERVIEW

or memory location. During instructions RRCA, RRC s, SRA sand SRL s the carry
contains the last value shifted out of bit 0 of any register or memory location.

For the logical instructions AND s, OR sand XOR s, the carry will be reset.

The carry flag can also be set (SCF) and complemented (CCF).

Add/Subtract Flag (N)

This flag is used by the decimal adjust accumulator instruction (DAA) to
distinguish between ADD and SUBTRACT instructions. For all add instructions, N
will be set to O. For all subtract instructions N will be set to 1.

Parity/Overflow Flag (p/V)

This flag is set to a particular state depending on the operation being performed.

For arithmetic operations, this flag indicates an overflow condition when the
result in the Accumulator is greater than the maximum possible number (+127) or is
less than the minimum possible number (-128). This overflow condition can be
determined by examining the sign bits of the operands.

This flag is also used with logical operations and rotate instructions to indicate
the parity of the result. The number of '1' bits in a byte are counted. If the
total is odd, then P is set to O. If the total is even then P is set to 1.

When inputting a byte from an I/O device, the flag will be adjusted to indicate the
parity of the data.

Zero Flag (Z)

The zero flag is set or reset if the result generated by the execution of certain
instructions is a zero.

For 8 bit arithmetic and logical operations, the Z flag will be set to a 1 if the
resulting byte in the Accumulator is zero. If the byte is not zero, the Z flag is
reset to O.

For compare and search instructions, the Z flag will be set to a 1 if a comparison
is found between the value in the accumulator and the memory location pointed to by
the contents of the register pair HL.

When testing a bit in a register or memory location, the Z flag will contain the
complemented state of the indicated bit.

Sign Flag (S)

The sign flag stores the state of the most significant bit of the accumulator.
When the CPU performs arithmetic operations on signed numbers, binary two's
complement notation is used to represent and process numeric information.
Therefore bit 7 of the accumulator indicates the sign of the result.

When inputting a byte from an I/O device to a register, the S flag will indicate
either positive (S=O) or negative (S=1) data.

MACRO. - 123 -

MACRO REFERENCE MANUAL

- 124 - MACRO

CBAPTKR 9

INTERFACING TO OASIS

9.1 General Information

All programs to be accessed by the Command String Interpreter should be written as
a "large" subroutine using a RET instruction when finished or, preferably, SC 0
(QUIT) •

When a program is executed by the CSI the HL register pair will contain the address
of the first character of the tokenized command string (the program name is
excluded); the IX index register will contain the address of the list of delimiters
used in the command string; the B register will contain the drive code that the
program came from; the DE register pair will contain the starting sector number of
the program on disk.

The tokenized command string is a list of the words used in the command, each word
translated to upper case and filled out (or truncated) to eight characters
(trailing spaces are added when necessary). The open parentheses at the beginning
of an option list is considered to be a word by itself and the list is terminated
by a token of a carriage return (ODH).

The list of delimiters used is merely a list of the characters that were used to
separate the words in the command string. This list matches in a one-to-one
relation to the tokenized command string starting with the delimiter between the
program name and the first word following. When multiple characters (spaces) are
used to separate two words only the first character is placed in the list of
delimiters. An open parentheses is assumed to be followed by a space character
even when no delimiter is actually used. The list is always terminated by a CR
charcter.

For example:

>PROG NAME.TYPE:LABEL (OPT1 OPT2,OPT3

When control is passed to the program named PROG the HL and IX registers will be
addressing the following character strings:

(HL): 4E414D45 20202020 54595045 20202020 'NAME
4C414245 4C202020 28202020 20202020 'LABEL
4F505431 20202020 4F50S432 20202020 'OPT1
4FSOS433 20202020 OD202020 20202020 'OPT3

(IX): 202E3A20 20202COD . . . , .

TYPE
(
OPT2

,

,
,
,
,

The quotes used in the tokenized list are only for documenting the trailing spaces
and are not actually in the list.

Note: The list of tokens is always terminated by a CR token.

The information provided by these two registers allows the program to access all of
the data and options specified in the command.

The information provided in the B and DE registers allows the program to get any
program overlay segments, if used.

MACRO - 125 -

MACRO REFERENCE· HANUAL

9.2 Peripheral Dev1ce Drivers

The OASIS operating system contains many of the device drivers that are normally
needed. For special peripherals or applications it might be desirable for you to
write your own device driver.

A user written device driver should be written using the same format and protocalls
as the OASIS device drivers, even when you don't plan to interface OASIS to your
driver--you may want to in the future.

OASIS device drivers are written as relocatable subroutines. Each device driver
has five entry point vectors, one for each major function of the driver. The
sequence of these entry point vectors is as follows:

JP ST
JP IN
JP OUT
JP INIT
JP UNINIT

ST is entry point of device status subroutine
IN is entry point of input byte routine
OUT is entry point of output byte routine
INIT is entry point of device initialization
UNINIT is entry point of device de-intialization

It is not necessary to actually use the jump instructions at these entry points but
~ach entry point vector must be three bytes in length.

Each of the five routines in a device driver is a subroutine that is called by
certain system calls. These subroutine functions, requirements, and system calls
are described below.

ST Accessed by system call 62. Input to this routine is the physical
device number in the B register, and the ueB address in the IY
register. The responsibility of this routine is to return the status
of the device in the Z and e flags. This routine should not actually
read the byte of data. If it is necessary to read the byte to
determine the status then the byte should be saved in an input buffer
area.

Z Set = no input available
Z Reset = input available
e Set = output ready
e Reset = output not ready

If the device is an output only device then this routine should always
set the Z flag, indicating that there is no data to be read in.from the
device.

IN Accessed by system call 63. Input to this routine is the physical
device number in the B register, and the UCB address in the IY
register. The responsibility of this routine is to return one byte of
input from the device in the A register. If no byte is available from
the device this routine should wait (use SC 107 for interrupt driven
device or SC 79 for non-interrupt driven devices). It should be the
responsibility of the calling program to test if a byte was available
or not. When register A is set to zero it means that a data byte of
zero was input, not that there was no byte available.

If the device driver is for an output only device then this entry point
should return immediately.

- 126 - MACRO

OUT

IRIT

CHAPTER. 9: INTEIlFACIHG TO OASIS

This routine (non-interrupt system) or the interrupt input routine
should use system call 102 (CHARIN) for every character input to trap
any escape sequence entered and to perform character translations.

Accessed by system call 64. Input to this routine is the physical
device number in the B register, the UCB address in the IY register,
and the character to be output in register C. This routine accepts a
byte of output from register C and outputs the byte to the device. An
interrupt driven device might just store the byte in its buffer and
return control to the caller, allowing an interrupt service routine to
actually output the byte. However, this routine should handle all
error conditions relating to output to the device.

Accessed by system call 61. Input to this routine is the physical
device number in the B register, and the UCB address in the IY
register. The responsibility of this routine is to initialize the
device driver and the device. The OASIS ATTACH command calls this
entry point once when the device is attached to a logical name.

If the device is an interrupt driven device this routine would
establish the interrupt vector using SC 103, initialize the I/O buffer,
etc.

UNINIT Accessed by system call 68. Input to this routine is the physical
device number in the B register, and the UCB address in the IY
register. The responsibility of this routine is to un-intiialize the
device. The OASIS ATTACH command calls this entry point once when the
device is detached from a logical name.

If the device is an interrupt driven device this routine would probably
make sure that the I/O buffer was empty, disable the interrupt for this
routine using SC 103, etc.

When an interrupt service routine is entered the interrupts are
disabled. The routine must enable the interrupts before an RETI
instruction is executed. The interrupts may be enabled any time after
entry to the routine but make sure that the routine is prepared for
another interrupt to itself when the interrupts are enabled.

All routines, interrupt
registers used and not
parameters.

or otherwise, should restore the status of any
specified as part of the input or output

Multi-user note: an interrupt driven device driver must take into
account the fact that the owning partition may not be the active
partition when the calling interrupt occurs. It may be necessary to
activate the owning partition in order to service the interrupt. The
system calls 84 (ONEONLY), 85 (NOTONLY), and 86 (SETPIN) may assist you
in this task.

Interfacing user written device drivers to OASIS

To interface a user written device driver to the OASIS operating system
you must follow these steps:

1. Decide upon a device number. OASIS references physical device

MACRO 127 -

MACRO REFERENCE IWWAL

drivers by their
drivers supplied
If your device
operating system
may want to save

number. The numbers used by OASIS for the device
may be found by listing the file SYSTEM.DEVNAMES.
driver is to replace the one provided with the

then you should use the same number as that (you
the OASIS driver by renaming it).

2. After you have decided upon a number for your device driver then
you must give it a name that OASIS will recognize as a device
driver. All device drivers have a file name of SYSTEM and a file
type of DEVnn where nn is the device number. The OASIS LINK
command has an option (SYSTEM) that will cause the load image
program generated to have a name of SYSTEM and a file type equal
to the file name of the object file being processed.

The device number that you use to give a name to your device
driver also determines the UCB number that it uses. Keep in mind
that external device numbers (device names, attach numbers, etc.)
are base 1 and the internal device numbers are base O.

3. If you are not replacing an existing device driver you will
probably have to add an entry to the SYSTEM.DEVNAMES file so that
the driver can be loaded by the ATTACH command by specifying a
name rather than a number. The format of this file is discussed
in the OASIS System Reference Manual in the appendix "System
Files".

4. Attach your device to a logical device name using the ATTACH
command. Your device driver is now available for other programs
to use by referencing the logical name or number attached to the
device. If the system is re-booted the driver will not be
reloaded automatically unless a SYSGEN was performed while your
device was ATTACHed. To reload your driver all that is necessary
is that it be re-ATTACHed.

For an example listing of a peripheral device driver refer to the appendix on
"Program Examples".

- 128 -

CHAPTER 9: INTERFACING TO OASIS

9.3 Disk Device Drivers

The OASIS operating system contains at least one disk device driver to handle the
disk(s) that the operating system resides on. Disk drivers to handle other types
of disk drives and controllers can be written by the end user or distibutor and can
be loaded with the ATTACH command to make multiple disk drivers on-line at one
time.

A user written disk device driver should be written using the same format and
protocalls as the OASIS disk device driver.

OASIS disk drivers are written as relocatable subroutines. Each disk driver has
four entry point vectors, one for each major function of the driver. The sequence
of these entry point vectors is as follows:

JP SELECT
JP RESTORE
JP READ

SELECT is entry point of disk select subroutine
RESTORE is entry point of disk restore subroutine
READ is entry point of disk read subroutine

JP WRITE WRITE is entry point of disk write subroutine

It is not necessary to actually use the jump instructions at these entry points but
each entry point vector must be three bytes in length.

Each of the four routines in a disk device driver is a subroutine that is called by
certain system calls. These subroutine functions, requirements, and system calls
are described below.

SELECT Accessed by system calls 50 and 51. Index register IY contains the
address of the UCB of the disk to be selected; register A contains the
physical drive number (0 7) of the drive to be selected. This
physical drive number may have to be adjusted to properly address the
drive(s) associated with this device driver. This routine doesn't
perform any function with the disk drive or controller--it merely
specifies which drive subsequent operations are to be performed on.

RESTORE Accessed by system calls 50 and 51. Index register IY contains the
address of the UCB of the disk to be restored. This routine's function
is to "recalibrate" the drive--position the heads on track 0 with the
assumption that it is unknown where the heads are currently located at.·

READ

MACRO

It is probable that this routine would perform no direct function other
than setting a switch indicating that the next read or write operation
to this drive is to first perform the restore operation.

Accessed by system call 50. Index register IY contains the address of
the UCB of the disk to be read from; register A contains the number of
consecutive sectors to be read; register B contains the head number;
register C contains the sector number; register pair DE contains the
cylinder number; register pair HL contains the address in memory that
the information is to be read into. All values are base zero.

This routine should perform the physical I/O required to read the
specified sectors into the memory area indicated. Sectors are always
considered 256 bytes long, independant of the actual sector size of the
disk. It is the responsibility of this routine to adjust the number
and location of the sectors desired to correspond with the physical

- 129 -

MACRO REFERENCE HANUAL

sector size of the disk, if different.

This routine should not perform any error recovery procedures. If an
error occurs the operation should be stopped, the pertinent registers
adjusted to reflect the location of the error, the A register should be
set to reflect the type of error, and the Z flag should be reset to
indicate that an error occured. Any retry or recovery operations will
be handled by system software outside of this device driver.

When the disk read is succesfull the pertinent registers should be
adjusted to point to the sector following that which was just read, the
A register should be set to zero and the Z flag should be set.

This routine, as called by the OASIS system call, never asks to read
consecutive sectors that cross a cylinder or head boundary.

WRITE Accessed by system call 51. Index register IY contains the address of
the UCB of the disk to be written to; register A contains the number of
consecutive sectors to be written; register B contains the head number;
register C contains the sector number; register pair DE contains the
cylinder number; register pair HL contains the address in memory that
the information is to be written from. All values are base zero.

This routine should perform the physical I/O required to write the
specified sectors from the memory area indicated. Sectors are always
considered 256 bytes long, independant of the actual sector size of the
disk. It is the responsibility of this routine to adjust the number
and location of the sectors desired to correspond with the physical
sector size of the disk, if different.

This routine should not perform any error recovery procedures. If an
error occurs the operation should be stopped, the pertinent registers
adjusted to reflect the location of the error, the A register should be
set to reflect the type of error, and the Z flag should be reset to
indicate that an error occured. Any retry or recovery operations will
be handled by system software outside of this device driver.

When the disk write is succesfull the pertinent registers should be
adjusted to point to the sector following that which was just written,
the A register should be set to zero and the Z flag should be set.

This routine, as called by the OASIS system call, never asks to write
consecutive sectors that cross a cylinder or head boundary.

Note that there is no initialization entry point. It is the responsibility of the
select routine to check if the device needs initialization (maybe a DC of zero is
coded--when routine is first loaded that location will still be zero--that the
select routine sets to a one after the device is initialized).

Disk error codes

The following standard error codes should be returned by a disk device driver when
an error occurs:

1 - Disk not ready
2 - Disk write protected

- 130 - MACRO

CHAPTER. 9: IBTERI'ACING TO OASIS

3 - Disk not initialized -- possibly a time out or wrong density dete
4 - Data CRC error
5 - Invalid parameters
6 - Disk label changed
7 - Sector not found
8 - Track not found
9 - Address CRC error

can't happen
or disk changed or door opened

Interfacing user written disk device drivers to OASIS

To interface a user written disk device driver to the OASIS operating system you
must follow these steps:

1. Decide upon a device number--OASIS references the disk drivers by their
number. The numbers used by OASIS for disk devices are in the range of
1 through 8. however, do not use a number associated with the disk
driver included in the OASIS NUCLEUS (generally 1 thru 4).

2. After you have decided upon a number for your driver then you must give
it a name that OASIS will recognize as a device driver. All device
drivers have a file name of SYSTEM and a file type of DEVnn where nn is
the device number. The OASIS LINK command has an option (SYSTEM) that
will cause the load image program generated to have a name of SYSTEM
and a file type equal to the file name of the object file being linked.

3. Add the device name of your driver to the SYSTEM.DEVNAMES file. A disk
driver may have multiple entries in this file to reflect the multiple
disks that it controls. A record in this file for a disk device driver
has the following format:

MACRO

<logical name> <device number> D <other numbers shared>

The <logical name> is a two to eight character name that you will use
when you ATTACH a drive code to a disk. It is best if the name also
identifies the disk drive in some meaningful manner. For example, a
disk driver for a XYZ hard disk drive should probably be named XYZI or
XYZ2, etc.

The <device number> is the number that you decided upon in step 1.

<Other numbers shared> is a list of device numbers that are controlled
by this one disk driver. This is best explained by an example. Say
that you have written a disk driver for a disk controller that
interfaces to four drives, numbered 5, 6, 7, and 8. You would probably
use the number 5 for the disk driver number and the name XYZ5 for its
logical name. The entries in the SYSTEM.DEVNAMES file would then look
like this:

XYZ5 5 D 5 6 7 8
XYZ6 6 D 5 6 7 8
XYZ7 7 D 5 6 7 8
XYZ8 8 D 5 6 7 8

The above example indicates that device numbers 5, 6, 7, and 8 are all
controlled by device driver number 5. There will only be one copy of
the driver loaded into memory for all four drives that may be attached

- 131 -

MACRO REFERENCE HANUAL

to it.

4. Attach your device to a logical name using the ATTACH command, similar
to the way you attach logical names to the OASIS supplied disk
driver--A, B, etc.

Note that there is no un-initialize entry point in a disk device driver. This
means that the device driver will not be unloaded from memory when all disks are
detached from it. Once this auxilIary disk driver is loaded into memory the only
way to recover the memory used by the driver is to re-boot the system (assuming
that it was not sysgened).

For an example listing of a disk device driver refer to the appendix on "Program
Examples".

- 132 -

CHAPTER 9: INTERFACING TO OASIS

9.4 Terminal Class Code Drivers

The OASIS operating system provides a uniform interface to the console terminal
cursor controls. Because most terminal manufacturers use a slightly different and
unique coding sequence to control the actions of the terminal it is cumbersome for
an application program to be coded such that it is capable of communicating with
different types of terminals. In OASIS an application program is coded using an
internally defined standard (another, unique standard) for cursor control. The
characters used in the standard are described in the OASIS System Reference Manual,
appendix "Terminal Class Codes".

The translation between the OASIS internal standard and the control codes used by
the actual terminal is performed in a small subroutine that interfaces between the
operating system and the device driver. Several different terminal class code
subroutines are supplied with the operating system.

If your terminal uses a set of cursor control codes that is not handled by one of
the class code subroutines supplied you will have to write your own or not use
cursor control. However it is very easy to write your own subroutine to handle
your particular terminal due to the macro definitions supplied in the file
CLASS.MACLIB.

To write your own terminal class code subroutine create an assembly program with
the name CLASSnn where the nn is the class code number you wish to use. Use the
MACLIB pseudo op-code to get the macro definitions in CLASS.MACLIB file into your
program. The three macros you will be using are described below:

INIT

DEFINE

MACRO

Performs the subroutine initialization required of a class code
subroutine. This macro reference must be the first code in your program.
This macro routine has all the code in it to handle any character
translations undefined with the following macro (DEFINE) and handles all
of ~he standard, OASIS input escape sequences (see OASIS System Reference
Manual, chapter "System Control Keys").

This macro also allows you to specify up to eight characters that are to
be translated and the values that they are translated to. To use this
feature merely specify the translation list in the operand field (see
example six in the ap'pendix of program examples in this manual).

Defines the relationship between the internal codes and the codes used by
the terminal. The first argument to this macro is the name of the
internal code such as CLEAR, HOME, EOL, etc. Subsequent arguments to this
macro are the characters to be sent to the terminal to perform the desired
function. All of the ASCII control characters are defined with the
appropriate value so that you may use names such as ESC, DCI, etc.

The DEFINE macro reference is used as many times as is necessary to define
the functions of the terminal. No special sequence is required and any
undefined functions may be omitted.

Any function that your terminal is not capable of performing (i.e., BON)
should be defined with no output list (see example six again).

Any function that your terminal is not capable of performing but can be
simulated by the operating system (EOL and EOS only) should not be defined
in your program. When this is done the operating system will simulate the

- 133

MACRO REFERENCE HARUAL

function by outputting spaces and repostioning the cursor to the orginal
location.

Any function that should be followed with the ATTACHed form feed delay
should have its definition end with the argument 8CH which will be
interpreted by the macro as indicating the form feed delay is to be added
after the output of the function.

DCA Indicates the start of the cursor address coding routine. The DCA macro
name may be followed by a numeric operand specifying the pre-defined class
code number that uses the exact same cursor control algorithm.

The DCA macro call is followed by the routine that will output to the
terminal the proper codes to perform the addressini of the cursor. Upon
entry to the routine the following registers will be defined:

A Control character to translate (not used by your cursor address
routine)

B Device number of the console terminal (always a 9)
C Same as register A
H Column number to position to, base 0
L Line number to position to, base 0

When your routine outputs the codes to the terminal you must use system
call 64. (Using system call 2, 5, 7, or 52 might cause an infinite loop.)

After you have output the proper codes to the terminal clear the carry
flag and perform a return. If the carry flag is set when you return it
will indicate to OASIS that the function could not be performed and that
OASIS is to try to simulate it with software. This may be done by
performing a HOME followed by line feeds and non-destructive cursor
advances.

Example six in the appendix of program examples lists a terminal class code
subroutine for the SOROC IQ 120 terminal.

- 134 -

CHAPTER. 9: INTERFACING TO OASIS

9.5 System Start-up Program

The OASIS operating system provides the capability of loading and executing a
program (machine language) automatically whenever the operating system is "booted".
The program that is loaded must be named SYSTEM. STARTUP, must reside on the system
disk, be owned by the system (public) account, and be relocatable.

The SYSTEM. STARTUP program may do "anything" that you may require a this type of
program to do (i.e., automatically interface to calendar circuitry). This program
is loaded after memory is sized by the operating system but before any device
drivers are loaded. The program is loaded into current high memory and is called
by the operating system. The program should do whatever is necessary at this time
and exit by executing a RET instruction. Before exiting the carry flag should be
set if the program is to remain in memory or reset if the program is to be overlaid
by the system.

MACRO - 135 -

MACRO REFERENCE MANUAL

9.6 USR Programs

A USR program is an assembler language subroutine accessed by a BASIC language
program through a special function call. Only one parameter is passed to the
subroutine and only one parameter may be returned to the BASIC program. The input
and output parameter types must be the same: 16 bit numeric or a character string.

The USR routine must be a relocatable program

A USR subroutine may have an unlimited number of entry points but each entry point
may only perform processing on one type of parameter. This is due to the fact that
there is no way of detecting what the parameter type is. A USR routine may perform
processing independent of the input and/or output parameter.

The BASIC program accesses the various entry points of a USR routine by specifying
the address of the entry point relative to the load address of the subroutine. It
is best to make the entry points simple, such as: 0, 3, 6, etc. To do this jump
vectors should be used, similar to the device drivers discussed above. This not
only makes the entry point addressing simple but also allows for modifications to
the program without requiring changes to the entry point addressing in the BASIC
program.

A USR routine may use, without restoring, any and all of the registers. BASIC
makes no assumptions regarding the integrity of the registers (with the exception
of the HL register pair and the SP!). The USR routine, in turn, should make no
assumptions about the integrity of the registers (except the HL register pair and
the SP!) as BASIC may use any and all of the registers between calls to your USR.

A numeric parameter is passed to a USR routine via the HL register pair. If a
parameter is to be returned to the BASIC program it must be placed in the HL
register pair. This implies a limit of 16 bit numbers.

A string parameter is passed to a USR routine via the BASIC string accumulator.
The string accumulator start address is in the HL register. The string accumulator
is a 256 byte buffer used by BASIC for all string manipulations. The first byte of
this buffer is a count of the number of characters following. The string parameter
returned to the BASIC program may be in the string accumulator or in an internal
buffer (up to 256 bytes). In either case the HL register pair must address the
first byte of the buffer used when the return is made to BASIC and this first byte
must be the count of the characters in the buffer. If the string accumulator is
used care must be taken to insure that the 256 byte limit is not exceeded because
volatile information precedes and follows this buffer.

When LINKing your USR routine be sure to use the
file type of your load module to be BASICUSR,
interpreter.

USR option as it will cause the
a requirement of the BASIC

For example listings of USR routines refer to the appendix on Program Examples.

- 136 - MACRO

CHAPTER. 9: INTERFACING TO OASIS

9.7 BASIC Fields

It is not advised that you write programs that access the variables in a BASIC
program directly. This is primarily due to the fact that the variable storage area
of BASIC is dynamic, even its base address. You should use the USR feature of
BASIC to pass the field to your assembly program. However, it may be necessary for
you to know the format of variables maintained by BASIC, internally to BASIC and/or
externally in a file.

Format of BASIC Variables

BASIC variables are formatted the same whether maintained internally or on a disk
file. However, file fields have an extra byte of information preceding the content
of the field. This extra byte is a code indicating that the field is a string,
integer, or floating point field.

String Fields

String fields
length of the
the string.

are simplistic in format: the code is a binary 6 followed by the
string (range of 0 to 255) followed by the individual characters of

Integer Fields

An integer field has a code of a binary 4 followed by the 16 bit signed binary
number, most significant byte first.

Floating Point Fields

A floating point field has a code of a binary 3 followed ~y a one byte
characteristic in excess 128 format (characteristic in two's complement plus 128),
followed by a nibble (four bits) specifying the sign of the mantissa, followed by
52 bits of the normalized mantissa in BCD.

A code field of 0 indicates the end of record.

Examples:

MACRO

Field

06055061676520
041234
04FEA7
038202345678000000
037E81234567890123

Type

S
I
I
F
F

- 131 -

Contents

Page
+4660
-345
+.2345678E+2
-.1234567890123E-2

MACRO REFERENCE MANUAL

- 138 - MACRO

o QUIT
1 KEY IN
2 DISPLAY
3 CONST
4 CONIN
5 CONOUT
6 SYSIN
7 SYSOUT
8 PRTOUT
9 MOUNT

10 RDI
11 WRI
12 IPL
13 WRFDIR
14 HEXI
15 DECI
16 HEXO
17 DECO
18 CRLF
19 MSEC
20 LOOKUP
21 GETUCB
22 LOAD
23 PRINT
24 ASSIGN
25 ADRV
26 BDRV
27 ALLOC
28 DEALL
29 ERASE
30 FETCH
31 RENAME
32 OPEN
33 CLOSE
34 RDSEQ
35 WRSEQ
36 GETDATE
37 GETTlME
38 DIV
39 MUL
40 RDDIR
41 WRDIR
42 NUMBER
43 RDIX
44 RDNIX
45 WRIX
46 DATEPACK
47 LABEL
48 GETSCR
49 WAIT
50 RD
51 WR
52 SYSDISP
53 TIMER

MACRO

APPENDIX A

SYSTEH CALL SUHHAB.Y

Reload the Command String Interpreter - restart
Accept a line of input from the console keyboard
Display characters on console output device
Get status of console input device
Accept one character from the console input device
Display one character on console output device
Accept one character from console, ignoring ESC,O and ESC,P
Display one character on console, ignoring ESC,O and ESC,P
Output one character to PRINTERI device
Allow change of diskette on a specified drive
Read one sector from disk
Write one sector to disk
Perform initial program load
Create new file directory entry
Convert hexadecimal number to 16 bit binary
Convert decimal number to 16 bit binary
Convert 8 bit value to hexadecimal characters
Convert 16 bit unsigned value to decimal string
Display carriage return, line feed on console
Wait specified number of milliseconds
Locate directory entry of file
Get address of UCB
Load a program
Output a line to PRINTER 1 device
Store ACB
Convert logical drive code to drive number
Convert drive number to logical drive code
Allocate space for file on disk
Deallocate space for file on disk
Erase logical file from a disk
Load program in memory, execute, restart
Rename a logical disk file
Open a logical file
Close a logical file
Read a logical record from a sequential file
Write a logical record to a sequential file
Get formatted date
Get formatted time
16 bit, binary, unsigned divide
16 bit, binary, unsigned, integer multiply
Read logical record from a direct disk file
Write a logical record to a direct disk file
Convert numeric string to 16 bit value
Read a logical record from an indexed disk file
Read the next logical record from an indexed disk file
Write a logical record to an indexed disk file
Pack system date and time into 24 bits
Find disk with specified label
Get base address of user System Communication Region
Wait for operator to release current console page
Read multiple sectors of a disk
Write multiple sectors to a disk
Display characters on console, ignoring ESC,O and ESC,P
Set up for a clocked interrupt

- 139 -

MACRO B.EFERENCE MANUAL

54 EXCMD
55 GETMEM
56 PUTMEM
57 PUTQET
58 TSTDEV
59 GETPL
60 DELIX
61 DEVINIT
62 DEVST
63 DEVIN
64 DEVOUT
66 GETLAB
67 PUTDEV
68 DEVUNINIT
69 TSTESCC
70 EXCMDR
71 BUFFI
72 BUFFO
73 PUTCON
74 PUTDET
75 NEWSYS
76 DELAY
77 GETACB
78 CONESC
79 SNU
80 GETBASE
81 GETMFG
82 GETPIN
83 UNLOCK
84 ONEONLY
85 NOTONLY
86 SETPIN
87 GETLUB
88 MSG
89 EXCLUSIVE
90 UNEXCLUSIVE
91 GETWORK
92 GETPRIVLEV
93 COMPARE
94 RDBIN
95 WRBIN
96 ERRDIS
97 ERRQUI
98 OVERLAY
99 CONDALL

100 DISPATCH
101 GETUSER
102 CHARIN
103 PUTVECT
104 GETBYTE
105 PUTBYTE
106 DATEOUT
107 WAITINT
108 FINDPGM

Execute a command
Get current high memory
Set new high memory
Change routine for service of System Cancel-key
Test device attachment
Get console/printer page and line parameters
Delete a record from an indexed file
Initialize a device driver
Get status of device driver
Get input from device driver
Put output to device driver
Get label of specified disk drive
Store device driver address
Uninitialize a device driver
Test if Program Cancel-key entered
Execute a program and return
Get character from buffer
Put character to buffer
Get/set console control byte
Set address of disk error trap
Change system disk
Delay processing for specified period of time
Point to Assign Control Block
Perform System Control-key function
Select next user
Get base address of NUCLEUS
Get system manufacturer number
Get your user partition id number
Unlock record of file
Set flag for exclusive use of resource
Release exclusive use of resource
Activate specific partition
Get Logical Unit Block table base address
Send message to another user's console
Get exclusive control of key resources
Release exclusive control of key resources
Get user System Communication work area address
Get current privilege level
Perform string comparison
Get binary data stream from file
Put binary data stream to file
Display error message
Display error message and quit
Load overlay of program
Conditional allocation
Perform table lookup
Get current user account number
Console input character analysis
Point vector to interrupt service routine
Get bytes from another partition
Put bytes to another partition
Convert BCD date to standard format
Deactivate partition until interrupt occurs
Get address of re-entrant program

- 140 - HACRO

APPENDIX A: SYSTEH CALL SlJIBARY

SC Inputs Outputs
===

o QUIT
1 KEYIN
2 DISPLAY
3 CONST
4 CON IN
5 CONOUT
6 SYSIN
7 SYSOUT
8 PRTOUT
9 MOUNT

10 RDI
11 WRI
12 IPL
13 WRFDIR
14 HEXI
15 DECI
16 HEXO
17 DECO
18 CRLF
19 MSEC
20 LOOKUP
21 GETUCB
22 LOAD
23 PRINT
24 ASSIGN
25 ADRV
26 BDRV
27 ALLOC
28 DEALL
29 ERASE
30 FETCH
31 RENAME
32 OPEN
33 CLOSE
34 RDSEQ
35 WRSEQ
36 GETDATE
37 GETTIME
38 DIV
39 MUL
40 RDDIR
41 WRDIR
42 NUMBER
43 RDIX
44 RDNIX
45 WRIX
46 DATEPACK
47 LABEL
48 GETSCR
49 WAIT
50 RD
51 WR
52 SYSDISP
53 TIMER

MACRO

DE=addr,B=len
DE=addr

C=char

C=char
C=char
B=drive
B=drive,DE=sect,HL=addr
B=drive,DE=sect,HL=addr
B=drive,DE=sect
B=drive,DE=DEB
DE=addr
DE=addr
B=number,DE=addr
DE=addr,HL=number

A=msec count
DE=DCB,HL=buffer addr
B=device
DE=DCB,HL=addr
DE=addr
B=ACB II, DE=ACB
B=ASCII drive II
B=bin drive II
B=drive,DE=block count
B=drive,DE=block count,HL=sect
DE=DCB
B=drive,DE=DEB
DE=old DCB,HL=new DCB
DE=FCB
DE=FCB
DE=FCB,HL=addr
DE=FCB,HL=addr
DE=addr
DE=addr
DE=divisor,HL=dividend
DE=multiplier,HL=muliplicand
BC=key,DE=FCB,HL=addr
BC=key,DE=FCB,HL=addr
DE=addr
BC=key addr,DE=FCB,HL=addr
BC=key addr,DE=FCB,HL=addr
BC=key addr,DE=FCB,HL=addr
DE=addr
DE=label addr

B=drive,C=count,DE=sect,HL=addr
B=drive,C=count,DE=sect,HL=addr
DE=addr
DE=count,HL=TEB

- 141 -

no return
A=len,DE=next
DE=next

A=char

A=char

HL=num,DE=next
HL=num,DE=next
DE=next
DE=next

Z,DE=sec,HL=addr
HL=UCB

DE=next

A=bin drive
A=ASCII drive
HL=sect

no return

DE=next
DE=next
HL=quotient
HL=product

DE=next,HL=number

DE=next
A=drive
IY=SCR

DE=next

MACRO REFERENCE HANDAL

SC Inputs Outputs
===

54 EXCMD
55 GETMEM
56 PUTMEM
57 PUTQET
58 TSTDEV
59 GETPL
60 DELIX
61 DEVINIT
62 DEVST
63 DEVIN
64 DEVOUT
66 GETLAB
67 PUTDEV
68 DEVUNINIT
69 TSTESCC
70 EXCMDR
71 BUFFI
72 BUFFO
73 PUTCON
74 PUTDET
75 NEWSYS
76 DELAY
77 GETACB
78 CONESC
79 SNU
80 GETBASE
81 GETHFG
82 GETPIN
83 UNLOCK
84 ONEONLY
85 NOTONLY
86 SETPIN
87 GETLUB
88 MSG
89 EXCLUSIVE
90 UNEXCLUSIVE
91 GETWORK
92 GETPRIVLEV
93 COMPARE
94 RDBIN
95 WRBIN
96 ERRDIS
97 ERRQUI
98 OVERLAY
99 CONDALL

100 DISPATCH
101 GETUSER
102 CHARIN
103 PUTVECT
104 GETBYTE
105 PUTBYTE
106 DATEOUT
107 WAITINT
108 FINDPGM

DE=addr

HL=addr
HL=addr
B=device /I
B=dev
BC=key,DE=FCB,HL=rec
B=dev
B=dev
B=dev
B=dev,C=char
B=dev,DE=addr
B=phy dev,DE=addr
B=dev

DE=cmd,HL=ret addr
HL=buffer
A=char,HL=buffer addr
B=sets,C=clears
HL=addr
B=new phy S
A=time code
B=ACB II
A=2nd esc char

DE=FCB
HL=resource
HL=resource
A=PIN,HL=addr

A=PIN,DE=addr

BC=len,DE=lst,HL=2nd
B=len,DE=FCB,HL=addr
B=len,DE=FCB,HL=addr
DE=parms,HL=msg /I
A=RC,DE=parm,HL=msg /I
B=drive,DE=base,HL=addr
B=drive,DE=min,HL=max
DE=string,HL=table

A=char
A=num,DE=addr
BC=len,DE=my,HL=his
BC=len,DE=his,HL=my
C=mm,H=dd,L=yy,DE=addr

DE=name

- 142 -

no return
HL=addr

NZ,A=code
B=line,C=page

NZ=in rdy,CF=out rdy
A=char

Z=no ESC,C
All regs modified
A=char

A=new mask

A=O
HL=ACB addr

IY=base
A=MFG
A=PIN

IY=LUB
DE=next

HL=addr
A=priv

no return

DE=actual,HL=addr
Z,HL=arg from table
A=user
NC ,A=new char

DI, like LDIR
DI, like LDIR
DE=next

Z,HL=addr

APPENDIX B

ERROR MESSAGES

Operator Cancelled

*** Duplicate Label -or- Phase Error ***

Indicates that the address of the instruction has a different value between
pass one and pass two. Usually indicates that the label is defined more than
once.

nn errors in program

Indicates the total number of detected errors in the program.

*** Invalid Expression ***

*** Label Error ***

Indicates that an invalid character was used in a label. Labels must use only
the alphabetic characters and the dollar sign character. Local labels must
start with a period character. Macro local labels must start with the at (@)
character.

*** Label Required ***

The label field is blank on a directive that requires a label.
directives include: ABS, COM, ENTER, EQU, REL, and VALUE.

*** Macro Definition Error ***

These

Indicates a construction or syntax error in a macro definition. Usually
results from a missing ENDM directive or an attempt to define a macro within a
macro definition.

*** Rested too Deep ***

Indicates that an attempt was made to push more than eight IF, ORG, USING,
LIST, or macro calls onto their respective nesting stacks or an attempt was
made to pop one of the above from their stack when no argument was on their
stack.

*** Overflow ***

Indicates that more bits are required to contain value than are permitted in
expression type. For example a relative jump of more than +127 or -128.

*** Relocation Error ***

Indicates that an expression containing relocatable symbols is in error.
Usually the error is one of the following: a difference between two relocatable
symbols of different PABs; the sum of two relocatable symbols; the product of
two relocatable symbols; the quotient of two relocatable symbols; the product
or quotient of a relocatable symbol and an absolute symbol; a valid relocatable
expression used in an operand that may only have eight or seven bits of
precision.

MACRO - 143 -

HACRO REFERENCE MANUAL

*** Segment not Found ***

Indicates that the file description of a COpy or LINK directive can not be
found in any of the attached directories.

*** Statement Syntax Error ***

Indicates that the operand is invalid for the op-code or that there is a
missing delimiter in the operand.

Symbol Table Overflow

The size of the symbol table is determined by the amount of available memory
during the assembly process. There are several things that can be done to
remove this error: add more memory; unload the system Debugger if loaded;
unload unused device drivers; remove unreferenced symbols from the program;
reduce the use of local labels; use shorter symbol names; segment the program
to allow for smaller assemblies (make the LINK program join them together).

*** Undefined Operation ***

Indicates an invalid op-code or directive was used or a reference is made to an
undefined macro. Specifically the Assembler searches its op-code table, its
directive table, internally defined macros, external macro files. When the
op-code field does not match any of these it is determined to be an undefined
operation.

*** Undef-ffted Symbol ***

Indicates a reference was made to a symbol not defined.

- 144 -

APPENDIX C

CONTROL BLOCK DEFINITIONS

The following short diagram illustrates the bidirectional communication linkages
that are followed when a program (user or system) requests input or output to a
logical file. Non file input or output is similar except that the program links
directly to the Logical Unit Block.

MACRO

Program
11\
I

\11
File Control BloCk (FCB)

11\
I

\11
Assign Control Block (ACB)

11\
I

\11
Logical Unit Block (LUB)

11\
I

\11
Unit Control Block (UCB)

11\
I

\11
Pysical Device Driver

11\
I

\11
110 Port

11\
I

\11
Peripheral Device

- 145 -

MACRO REl'ERENCE MANUAL

Unit Control Block (UCB)

Devices (8 - 31)

==
Byte Description

00 Driver address
02 Line length
03 Page length
04 Class code
05 Code Baud Code Baud

1 75 8 2400
2 110 9 4800
3 134.5 10 7200
4 150 11 9600
5 300 12 19200
6 600 13 38400
7 1200

05 Bit 7 on indicates CONIN device
Bit 6 on indicates ESC lead in received (used by class cod

06 CR/LF delay
07 FF/EOS/EOL delay
08 Bit On Off

-------------- --------------------
7 Parity enable No parity
6 Odd parity Even parity
5 8 bit data 7 bit data
4 Syncronous Asyncronous
3 Page parity No page parity
2 Auto LF No auto LF
1 No FF FF ability
0 SDLC

09 Overflow count
OA Current line
OB Reserved
OC Reserved
OD Speed delay
OE Device driver length
10 Translate routine length
12 Input buffer address
14 Output buffer address
16 Translate routine address
18 Video base address/ i-o address base
1A Video cursor address
1C Bit Output-busy Input-busy

----------- ----------
0 -CTS -DTR
1 XOFF/XON XOFF/XON
2 ETX/ACK ETX/ACK
3 -DTR

1D Work area (2 bytes)
IF Owner pin

- 146 - MACRO

APPENDIX C: CONTROL BLOCK DEF.IRI.TIOBS

Uni.t Control Block (DCB)

Disk Devices (0 - 7)

==
Byte Description

00 Driver address
02 Volume id label
OA Number of heads
OB Number of cylinders
OD Number of sectors
OE Directory size
10 Clusters available (blocks)
12 Reserved
13 WP/IBM/Additional -

Bit Meaning

7 Write protected
6 Track 0 single density
5-0 Number additional map sectors

14 Current cylinder
16 Head load delay
17 Step time delay
18 Settle time delay
19 Work area (6 bytes)
IF Owner (OFFH=public)

Timer Event Block (rEB)

==
Byte Description

00-01 Number of ticks remaining
02 Reserved
03 Partition id number of owner
04-05 Forward link to TEB (0 = node)

HACB.O - 147 -

MACRO REFERENCE MABUAL

F~le Control BloCk (FCB)

==
Byte Description

00 ACB number (0 - 20)
01 File format and I/O mode

Bit On

7 Sequential
6 Direct
5 Indexed
4 Input
3 Output
2 Append - (sequential format only)
1 Reserved
o File lock

Both bits 3 and 4 on means update with record lock.

02-03 Address of I/O buffer
(same length as sector size)

Assign Control BloCk (ACH)

==
Byte Description

00 Drive code (0-7, 255=all)
01-08 File name (trailing blanks, if necessary)
09-10 File type (trailing blanks, if necessary)
11 Logical device number, base 0

o = not assigned
1 = any disk
8 = console

255 = dummy

12-1F System defined

Directory Control BloCk ODCB)

==
Byte Description

00 Drive code (0-7, 255=all)
01-08 File name (trailing blanks, if necessary)
09-10 File type (trailing blanks, if necessary)

- 148 - MACRO

MACRO

APPENDIX C: CONTROL BLOCK DEFIRITIOBS

Directory Entry BloCk (DEB)

==
Byte Contents

00 File
FF
00
xl
x2
x4
x8
10

format:
= Deleted
= Empty - never used

Relocatable
Absolute
Sequential
Direct
Indexed

01-08 File name.
09-10 File type.
11-12 Record count.
13-14 Block count.
15-16 Address of 1st sector.
17-18 Variable by file format:

I = Key length - 1 and record length - 1
S Record length of longest record
D = Allocated record length
A,R = Record length (sector length)

19-1B Date and time of update.
1C Owner Id.
1D Shared from owner Id.
IE-IF Variable by file format:

I Allocated file size
S Disk address of last sector in file
D,R = Zero
A Origin address

Partition Control BloCk (PCB)

==
Byte Description

00-01 SCR address
02 Bank and activity flags:

Bit On

7 Not active
6 Waiting for disk
5 Waiting for interrupt
4 Waiting for resource

3-0 Bank number

- 149 -

MACRO REl'ERERCE HANUAL

Bank Control Block (BCD)

==
Byte Contents

00-01 Nucleus origin (global bank)
02-03 Nucleus end + 1
04-05 Bank o low address
06-07 Bank o high address + 1
08-09 Bank 1 low address
OA-OB Bank 1 high address + 1

40-41 Bank 15 low address
42-43 Bank 15 high address + 1

Re-entrant Prograa Block (llPB)

==
Byte Contents
--
00-07 Program 1 name, eight character, padded if necessary
08-09 Program 1 start address
OA-ll Program 2 name, eight character, padded if necessary
12-13 Program 2 start address

46-4D Program 8 name, eight character, padded if necessary
4E-4F Program 8 start address

Sector Lock Table (SLT)

==
Byte Contents

The following six byte entry is repeated as often as
necessary.

00 Drive and ACB number (OFF indicates end of table)

Bit Meaning

7-3 ACB number
2-0 Drive number

01-02 Sector start address
03-04 Sector end address
05 Owner Partition id number (PIN)

- ISO -

APPENDIX C: COBTROL BLOCK DEFIBITIOBS

File LoCk Table (FLT)

==
Byte Contents

The following four byte entry is repeated as often as nece

00 Drive number (OFF indicates end of table)
01-02 Sector number (from DEB)
03 Owner Partition id number (PIN))

MACRO - lSI -

MACRO REFERERCE MANUAL

- 152 - MACRO

APPENDIX D

PROGRAIOfTNG EXAHPLES

This appendix contains a listing of several working programs. The first example is
the listing of the program VERIFY, which is an early version of the VERIFY program
included with the operating system.

The second example is a USR subroutine to be used by a BASIC program. This routine
is not provided as part of the operating system but you might wish to add it as it
is a useful routine to have available. The basic function of the routine is to
translate a string of characters to uppercase.

Example three is a sophisticated serial device driver (SIO). This driver is
probably more lengthy than the serial driver on your system (although it may
actually be the driver on your system) because it is designed to interface to a
complex, programmable, serial I/O integrated circuit. Included in the driver is
all the code necessary to analyze and support the various options that may be
specified with the ATTACH command and the various primary devices that a serial
device may be used as (CONSOLE, PRINTER, other).

The forth example is a simple, parallel printer device driver. This driver
performs the minimum tasks necessary to drive a parallel printer output port.

The fifth example is a disk driver for a hard disk drive. The particular drive and
controller that this driver was programmed for is relatively intelligent (performed
a lot of the detail work itself), and included direct memory access (DMA)
capability.

Example six is a terminal class code control character translator (SYSTEM.CLASS4:S
file). The example given is for a SOROC IQ 120 terminal.

Please note the abundant use of comments in the examples. It is a good practice to
use a lot of comments, especially in assembly language coding--no speed or memory
usage degradation occurs and you, or another programmer, will appreciate them at a
later date.

Also note that most of the labels are coded on separate lines.
facilitates program maintenance.

MACRO - IS3 -

This also

MACRO REFEBENCE MANUAL

Example 1 - VERIFY CODIII8Dd

Addr Obj-Code Line *** Source Statement ***
1 CODE: REL

0000 2 VERIFY:
0000 E5 3 PUSH HL Save token loc
0001 113F01 4 LD DE , HELPL Point literal
0004 0609 5 LD B,9 Len
0006 6 TESTH:
0006 1A 7 LD A, (DE) Get mask byte
0007 BE 8 CP (HI..) Compare
0008 200C 9 JR NZ,NOHELP BRIF not HELP
OOOA 13 10 INC DE Bump
OOOB 23 11 INC HL
OOOC 10F8 12 DJNZ TESTH Loop
OOOE 114801 13 LD DE,HELPM Message
0011 CF02 14 SC 2 Display
0013 AF 15 XOR A RC = 0
0014 CFOO 16 SC 0 Quit
0016 17 NOHELP:
0016 E1 18 POP HL Get loc back
0017 7E 19 LD A, (RL) Get drive
0018 47 20 LD B,A Move
0019 CF19 21 SC 25
001B 320501 22 LD (DRIVE) ,A Save drive
OOlE 3009 23 JR NC,OKFD BRIF ok
0020 11E600 24 LD DE,MSG1 Else display err msg
0023 CF02 25 SC 2 And quit - RC = 16
0025 3E10 26 LD A,16
0027 CFOO 27 SC 0
0029 28 OKFD:
0029 21B800 29 LD RL,QUIT Set System cancel-key
002C CF39 30 SC 57 clean up
002E 21C100 31 LD RL,ERR Set disk error routine
0031 CF4A 32 SC 74
0033 3A0501 33 LD A, (DRIVE) Get drive code
0036 47 34 LD B,A Move
0037 CF09 35 SC 9 Mount drive
0039 CF15 36 SC 21 Get UCB
003B E5 37 PUSH HL Save it
003C DDE1 38 POP IX Into IX
003E DD7E08 39 LD A, (IX+8) Get msb
0041 07 40 RLCA Exchange bits 7-4
0042 07 41 RLCA with bits 3-0
0043 07 42 RLCA
0044 07 43 RLCA
0045 E60F 44 AND OFH Number surfaces
0047 32FDOO 45 LD (SURF) ,A Save
004A DD6E09 46 LD L, (IX+9) Get tracks/surface
004D DD7E08 47 LD A, (IX+8) 12 bit value
0050 E60F 48 AND OFH Mask
0052 67 49 LD H,A
0053 220101 50 LD (TRACKS) ,In.. Save number of track
0056 DD7EOA 51 LD A, (IX+10) Number sectors/track
0059 6F 52 LD L,A Move to HL

- 154 - MACRO

HACRO

005A 2600
005C 3AFDOO
005F 5F
0060 1600
0062 CF27
0064 22FFOO
0067 ED5B0101
006B CF27
006D 22F900
0070 210000
0073 220301
0076 22FBOO
0079 CF12
007B
007B OEOD
007D CF05
007F 2A0301
0082 113501
0085 CF11
0087 AF
0088 12
0089 112E01
008C CF02
008E 2A0301
0091 23
0092 220301
0095 3A0501
0098 47
0099 3AFFOO
009C 4F
009D ED5BFBOO
00A1 2lC601
00A4 CF32
00A6 2AFFOO
00A9 19
OOAA 22FBOO
OOAD EB
OOAE 2AF900
00B1 B7
00B2 ED52
00B4 20C5
00B6 CFl2
00B8
00B8 3A0501
OOBB 47
OOBC CF09
OOBE AF
OOBF CFOO
OOCl
OOCl F5
00C2 C5
00C3 D5
00C4 E5
00C5 F630
OOC] 321801
OOCA EB

53
54
55
56
57
58
59
60
61
62
63
64
65
66 LOOP:
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95 QUIT:
96
97
98
99

100
101 ERR:
102
103
104
105
106
107
108

APPENDIX D: PROGRAMKIBG EXAMPLES

LD
LD
LD
LD
SC
LD
LD
SC
LD
LD
LD
LD
SC

LD
SC
LD
LD
SC

H,O
A, (SURF)
E,A
D,O
39
(CYL) ,HL
DE, (TRACKS)
39
(TOTLEN) ,HL
HL,O
(TRACK) ,HL
(SECT), HL
18

C,13
5
HL, (TRACK)
DE ,WORK
17

XOR A
LD (DE) ,A
LD DE,MSG3
SC 2
LD HL, (TRACK)
INC HL
LD (TRACK) , HL
LD A, (DRIVE)
LD B,A
LD A, (CYL)
LD C,A
LD DE, (SECT)
LD HL,BUFF
SC 50
LD HL, (CYL)
ADD HL,DE.
LD (SECT) ,HL
EX DE,HL
LD HL,(TOTLEN)
OR A
SBC HL,DE
JR NZ,LOOP
SC 18

LD A, (DRIVE)
LD B,A
SC 9
XOR A
SC 0

PUSH AF
PUSH BC
PUSH DE
PUSH HL
OR
LD
EX

'0'
(ERRCD) ,A
DE,HL

- ISS -

Get number of surfac
Move to DE

Multiply
Store total sect/cyl
Get tracks/cyl
Compute sect/drive
Total length

Clear track/cyl
and sect/track

CR/LF on console

Display CR only
on console

Get current track #
Convert to ASCII str

Mark end of string
Display current track

Point to current track
Add one
Save as next track #
Drive code

Cyl length

Sector number

Read
Get cyl len
Compute next sect addr
Store
Put to DE
Get total size
Clear CY
Test if done
Loop if not
Else CR/LF

Get drive code

Mount it
RC = 0
Quit

Save all registers

Save error code in msg
Convert track, sect

MACRO BEl"ERERCE HARUAL

OOCB 112401
OOCE 44
OOCF CF10
00D1 45
00D2 CF10
00D4 3E48
00D6 12
00D7 13
00D8 3EOD
OODA 12
OODB 110601
OODE CF02
OOEO E1
00E1 D1
00E2 C1
00E3 F1
00E4 AF
00E5 C9
00E6 44726976
OOEA 6520436F
OOEE 6465204D
00F2 69737369
00F6 6E670D
00F9
OOFB
OOFD
OOFF
0101
0103
0105
0106 4469736B
010A 20457272
010E 6F722043
0112 6F646520
0116 3D20
0118
0119 2C205365
011D 63746F72
0121 203D20
0124
012E 54726163
0132 6B3A20
0135
OOOD
OOOA
013F 48454C50
0143 20202020
0147 OD
0148 46756E63
014C 74696F6E
0150 3A204675
0154 6C6C2064
0158 69736B20
015C 72656164
0160 20746F20
0164 63686563

109 LD
110 LD
111 SC
112 LD
113 SC
114 LD
115 LD
116 INC
117 LD
118 LD
119 LD
120 SC
121 POP
122 POP
123 POP
124 POP
125 XOR
126 RET
127 MSGl: DC

128 TOTLEN: DS
129 SECT: DS
130 SURF: DS
131 CYL: DS
132 TRACKS: DS
133 TRACK: DS
134 DRIVE: DS
135 MSG2: DC

136 ERRCD: DS
137 DC

138 ERRSECT: DS
139 MSG3: DC

140 WORK: DS
141 CR: EQU
142 LF: EQU
143 HELPL: DC

144 HELPM: DC

DE,ERRSECT
B,H
16
B,L
16
A, 'H'
(DE) ,A
DE
A,13
(DE) ,A
DE,MSG2
2
HL
DE
BC
AF

for display

Mark end of message

Display error msg

Restore all register

A ; Ignore
; Continue

'Drive Code Missing', 13

2
2
2
2
2
2
1
'Disk Error Code = '

1 ,
Sector = '

10
'Track: '

10
13
10
'HELP ',CR

'Function: Full disk read to check'

- 156 - MACRO

APPENDIX D: PROGRAMMING EXAIIPLES

0168 6B
0169 20202020 145 DC

,
disk errors.',LF

016D 20202020
0171 20206469
0175 736B2065
0179 72726F72
017D 732EOA
0180 OA 146 DC LF
0181 53796E74 147 DC 'Syntax: VERIFY drive',LF
0185 61783A20
0189 20205645
018D 52494659
0191 20647269
0195 76650A
0198 OA 148 DC LF
0199 57686572 149 DC 'Where: ' ,LF
019D 653AOA
01AO 20206472 150 DC

,
drive is the drive to be verified'

01A4 69766520
01A8 20206973
01AC 20746865
01BO 20647269
01B4 76652074
01B8 6F206265
01BC 20766572
01CO 69666965
01C4 64
01C5 00 151 DC 0
01C6 152 BUFF:
01C6 153 END

No assembly errors.

Cross Reference List

Symbol--- Value Type Line *** References ***
BUFF 01C6 R 00 152 84
CR OOOD A 00 141 143
CYL OOFF R 00 131 58 81 86
DRIVE 0105 R 00 134 22 33 79 96
ERR 00C1 R 00 101 31
ERRCD 0118 R 00 136 107
ERRSECT 0124 R 00 138 109
HELPL 013F R 00 143 4
HELPM 0148 R 00 144 13
LF OOOA A 00 142 145 146 147 148 149
LOOP 007B R 00 66 93
MSG1 00E6 R 00 127 24
MSG2 0106 R 00 135 119
MSG3 012E R 00 139 74
NOHELP 0016 R 00 17 9
OKFD 0029 R 00 28 23
QUIT 00B8 R 00 95 29
SECT OOFB R 00 129 64 83 88
SURF OOFD R 00 130 45 54

MACRO - 157 -

MACRO REFERENCE HANUAL

TESTH 0006 R 00 6 12
TOTLEN 00F9 R 00 128 61 90
TRACK 0103 R 00 133 63 69 76 78
TRACKS 0101 R 00 132 50 59
VERIFY 0000 R 00 2
WORK 0135 R 00 140 70

- IS8 - MACRO

MACRO

APPENDIX D: PROGRAMMING EXAHPLES

Example 2 - BASIC USR Subroutine

Addr Obj-Code Line *** Source Statement ***

0000 C30300
0003
0003 E5
0004 7E
0005 47
0006
0006 23
0007 7E
0008 FE61
OOOA 3807
OOOC FE7B
OOOE 3003
0010 D620
0012 77
0013
0013 10F1
0015 E1
0016
0016 E5

0017 7E
0018 47
0019 85
001A 3001
001C 24
001D
001D 6F
001E
001E 7E
001F FE20
0021 2003
0023 2B
0024 10F8
0026
0026 78
0027 E1
0028 77
0029 C9
0000

2 UPPER:
3
4 ENTRYO:
5
6
7
8 .LOOP:
9

10
11
12
13
14
15
16
17 .NOTLOW:
18
19
20 STRIP:
21
22
23
24
25
26
27
28
29 .NOC:
30
31 .LOOP:
32
33
34
35
36
37 .RET:
38
39
40
41
42

No errors in program

REL
JP

PUSH
LD
LD

INC
LD
CP
JR
CP
JR
SUB
LD

DJNZ
POP

ENTRYO

HL
A, (HL)
B,A

HL
A, (HL)
'a'
C, .NOTLOW
'{'
NC, .NOTLOW
32
(HL) ,A

.LOOP
HL

PUSH HL

LD A, (HL)
LD B,A
ADD L
JR NC, .NOC
INC H

LD

LD
CP
JR
DEC
DJNZ

LD
POP
LD
RET
END

L,A

A, (HL) , ,

NZ, .RET
HL
.LOOP

A,B
HL
(HL) ,A

- 159 -

Convert to upper case only

Save current HL
Get string length
Copy to B reg

Point next character
Get character
Test lowercase a
Ignore if not lowercase
Test lowercase z
Ignore if not lowercase
Translate to uppercase
Restore to string

Repeat
Restore HL register

Restore
The following code will str
trailing blanks from the st
Get string length
Copy to B reg
Compute end address

Get ending character
Test if space

Point prior

Store adjusted count
Return to caller

MACRO REFERENCE MABUAL

Example 3 - Serial Device Driver

Addr Obj-Code Line *** Source Statement ***
1
2 DEV17: REL relocatable
3

0000 C30FOO 4 JP ST get status
0003 C35DOO 5 JP IN get byte
0006 C37FOO 6 JP OUT put byte
0009 C39COO 7 JP INIT initialize
OOOC C35401 8 JP UNIN un-initialize

9
OOOF 10 ST:

11
12 get SIO status
13

OOOF 3A5C01 14 LD A, (BUFI) get count
0012 B7 15 OR A test if any
0013 F5 16 PUSH AF save
0014 DB13 17 IN A, (DA+2) get port status
0016 CB57 18 BIT 2,A test txrdy
0018 2841 19 JR Z, .NOTRDY brif not ready
001A FD7EIC 20 LD A, (IY+28) get enab type
001D CB47 21 BIT O,A CTS/DTR
001F 202D 22 JR NZ, .ENAB1
0021 CB4F 23 BIT 1,A
0023 2021 24 JR NZ, .ENAB2 brif DC1/DC3
0025 CB57 25 BIT 2,A test
0027 282F 26 JR Z, .RDY brif not ETX/ACK
0029 27 .ENAB3:
0029 F1 28 POP AF get in flags
002A F5 29 PUSH AF re-save
002B 2810 30 JR Z,.TEST3 brif no char rdy
002D F1 31 POP AF else, throwaway
002E CD6600 32 CALL INCH get char
0031 E67F 33 AND 7FH mask
0033 FE06 34 CP ACK test ACK
0035 20D8 35 JR NZ,ST brif not
0037 FD361DOO 36 LD (IY+29),0 store
003B 18D2 37 JR ST go around
003D 38 .TEST3:
003D FD7E1D 39 LD A, (IY+29) get busy
0040 FE80 40 CP 128 wait for ACK?
0042 2014 41 JR NZ, .RDY brif ready
0044 1815 42 JR • NOTRDY else, busy
0046 43 .ENAB2 :
0046 FD7E1D 44 LD A, (IY+29) get busy flag
0049 B7 45 OR A test
004A 200F 46 JR NZ, .NOTRDY brif busy
004C 180A 47 JR .RDY
004E 48 • ENAB 1 :
004E 3E10 49 LD A,10H
0050 D313 50 OUT (DA+2) ,A reset ext/status int
0052 DB13 51 IN A, (DA+2) get reg 0
0054 CB5F 52 BIT 3,A test DTR

- 160 - MACRO

MACRO

0056 2803
0058
0058 F1
0059 37
005A C9
005B
005B F1
005C C9

005D

005D CDOFOO
0060 2004
0062 CF6B
0064 18F7
0066
0066 C5
0067 D5
0068 E5
0069 215C01
006C F3
006D 35
006E 4E
006F 0600
0071 23
0072 7E
0073 2805
0075 545D
0077 23
0078 EDBO
007A
007A FB
007B E1
007C D1
007D C1
007E C9

007F

007F CDOFOO
0082 3804
0084 CF4F
0086 18F7
0088
0088 FD341D
008B FD7E1D
008E FE80
0090 2006
0092 3E03
0094 D311
0096 18E7
0098

APPENDIX D: PROGRAMMING EXAHPLES

53 JR Z, • NOTRDY
54 .RDY:
55
56
57
58
59
60
61
62
63

.NOTRDY:

IN:

POP
SCF
RET

POP
RET

AF

AF

64
65
66

get byte from SID

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

INCH:

85 .MT:
86
87
88
89
90
91
92 OUT:
93

CALL
JR
SC
JR

ST
NZ,INCH
107
IN

PUSH BC
PUSH DE
PUSH HL
LD HL,BUFI
DI
DEC
LD
LD
INC
LD
JR
LD
INC
LDIR

EI
POP
POP
POP
RET

(HL)
C, (HL)
B,O
HL
A, (HL)
Z, .MT
DE,HL
HL

HL
DE
BC

94 put byte to device
95
96
97
98
99

100 OUT1:
101
102
103
104
105
106
107
108 OUT2:

CALL
JR
SC
JR

INC
LD
CP
JR
LD
OUT
JR

ST
C,OUT1
79
OUT

(IY+29)
A, (IY+29)
128
NZ,OUT2
A,ETX
(DA) ,A
OUT

- 161 -

get input status
turn on cy
return

get input status
return

get status
brif some char
deactivate until interrupt
loop

save regs

point buffer

decr length
get length
zero msb
point first char
load it
brif buffer now empty
copy register

compress the buffer

turn on ints
restore regs

return

get status
brif output ready
snu (non interrupt output)
loop

bump count
load
max?
no
else, send ETX
write
wait for ACK

MCIlO REFERENCE HABUAL

0098 79 109 LD A,C get char
0099 D311 110 OUT (DA) ,A write
009B C9 III RET return
009C 112 INIT:
009C FD229D01 113 LD (UCB),IY save ucb address
OOAO 3E18 114 LD A,18H
00A2 D313 lIS OUT (DA+2) ,A reset device
00A4 FD7EOS 116 LD A, (IY+S) get baud rate
00A7 E6FO 117 AND OFOH mask
OOA9 47 118 LD B,A save enab
OOAA FD7EOS 119 LD A, (IY+S) load again
OOAD E60F 120 AND OFH mask
OOAF 2006 121 JR NZ,.SOMEB brif some
OOB1 3EOB 122 LD A,ll default to 9600
OOB3 BO 123 OR B merge
00B4 FD770S 124 LD (IY+S) ,A
00B7 12S .SOMEB:
00B7 E60F 126 AND OFH mask
OOB9 FEOE 127 CP 14 too big?
OOBB 3806 128 JR C, .OKB brif ok
OOBD 3EOB 129 LD A,ll else, 9600
OOBF BO 130 OR B merge
OOCO FD770S 131 LD (IY+S) ,A
OOC3 132 .OKE:
00C3 E60F 133 AND OFH mask
OOCS 3D 134 DEC A less one
00C6 SF 13S LD E,A save
00C7 87 136 ADD A times two
00C8 83 137 ADD E times three
00C9 SF 138 LD E,A
OOCA 1600 139 LD D,O zero high
OOCC 219F01 140 LD HL,BAUD point table
OOCF 19 141 ADD HL,DE offset
OODO OE2S 142 LD C,CTC
00D2 0602 143 LD B,2 two bytes
00D4 EDB3 144 OTIR program it
00D6 ES 145 PUSH HL save pointer
00D7 F3 146 DI turn off ints
00D8 3E08 147 LD A,8 vector/2
OODA 11CA01 148 LD DE,RETI dummy addr
OODD CF67 149 SC 103 put vect
OODF 3C ISO INC A
OOEO CF67 151 SC 103 put vect
00E2 11CD01 152 LD DE,INTI input interrupt
00E5 3C 153 INC A
00E6 CF67 154 SC 103 put vect
00E8 3C ISS INC A
00E9 CF67 156 SC 103
OOEB 3E02 157 LD A,2 reg 2
OOED D313 158 OUT (DA+2) ,A
OOEF 3EI0 159 LD A,010H int vector
OOFI D313 160 OUT (DA+2) ,A
00F3 El 161 POP HL get pointer
00F4 3E04 162 LD A,4 wr 4
00F6 D313 163 OUT (DA+2) ,A
00F8 FDCB087E 164 BIT 7, (IY+8) parity enable?

- 162 -

MACRO

OOFC 280C
OOFE FDCB0876
0102 3EOD
0104 2006
0106 3EOF
0108 1802
010A
010A 3EOC
010C
OlOC B6
010D D313
010F 3E03
0111 D313
0113 FDCB087E
0117 3EC1
0119 2802
011B 3E41
011D
OllD FDCBIC66
0121 2802
0123 CBEF
0125
0125 D313
0127 3EOl
0129 D313
012B 3E1C
012D D313
012F 3E05
0131 D313
0133 FDCB087E
0137 3EEA
0139 2802
013B 3EAA
013D
013DD313
013F FB
0140 AF
0141 D313
0143 FD771D
0146 FD771E
0149 FDCB1C6E
014D C8
014E 3EFF
0150 FD771E
0153 C9

0154
0154 AF
0155 D313
0157 3E18
0159 D313
015B C9

015C 00
015D

165 JR
166 BIT
167 LD
168 JR
169 LD
170 JR
171 .NOPAR:
172 LD
173 .OUT:
174 OR
175 OUT
176 LD
177 OUT
178 BIT
179 LD
180 JR
181 LD
182 .NP:
183 BIT
184 JR
185 SET
186 .NOEN:
187 OUT
188 LD
189 OUT
190 LD
191 OUT
192 LD
193 OUT
194 BIT
195 LD
196 JR
197 LD
198 .NTP:
199 OUT
200 EI
201 XOR
202 OUT
203 LD
204 LD
205 BIT
206 RET
207 LD
208 LD
209 RET
210
211 UNIN:
212 XOR
213 OUT
214 LD
215 OUT
216 RET
217
218 BUFI: DC
219 DS
220

APPENDIX D: PROGRAMHIBG EXAHPLES

Z, .NOPAR
6, (IY+8)
A,00001101B
NZ, .OUT
A,OOOOllllB
.OUT

A,00001100B

(HL)
(DA+2) ,A
A,3
(DA+2) ,A
7, (IY+8)
A,11000001B
Z, .NP
A,01000001B

4, (IY+28)
Z, .NOEN
5,A

(DA+2) ,A
A,l
(DA+2) ,A
A,00011100B
(DA+2) ,A
A,5
(DA+2) ,A
7, (IY+8)
A,11101010B
Z, .NTP
A,10101010B

(DA+2) ,A

A
(DA+2) ,A
(IY+29) ,A
(IY+30) ,A
5, (IY+28)
Z
A,OFFH
(IY+30) ,A

A
(DA+2) ,A
A,00011000B
(DA+2) ,A

o
64

- 163 -

brif none
test even/odd
even

odd

noparity

merge clocks

wr 3 (rcv logic)

parity?
default
brif ok
else, 7 bits

auto enable?
no
else, turn on

wr 1 (control)

int mask

wr 5 (trns)

test parity
default
brif ok
else parity 7 bits

allow ints now
leave pointing to 0

test enable 2

set sw
return

reset channel

return

buffer length
the buffer itself

HACRO KEFERERCE IIANOAL

0011
0025
019D
0011
0013
0003
0006

019F
019F 076680
01A2 074680
OlAs 073980
01A8 4780CO
OlAB 4740CO
OlAE 4720CO
01Bl 47l0CO
01B4 4708CO
01B7 4704CO
OlBA 470580
OlBD 4702CO
OlCO 470lCO
01C3 470240

01C6
01C6 C1
01C7 FDEI
01C9 Fl
OlCA
OlCA FB
01CB ED4D

OlCD

OlCD FB
OlCE F5
OlCF FDE5
OlDl FD2A9DOl
01D5 C5
01D6 3EOl
01D8 D3l3
OlDA DB13
OlDC 47
OlDD DBII
OlDF FDCB086E
01E3 2002
01E5 CBBF
01E7
01E7 4F

01E8 CB60
OlEA 2806

221 DA:
222 CTC:
223 UCB:
224 DCl:
225 DC3:
226 ETX:
227 ACK:
228
229 BAUD:
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245 SIORET:
246
247
248
249 RETI:
250
251
252
253 INTI:
254

EQU
EQU
DS
EQU
EQU
EQU
EQU

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

POP
POP
POP

EI
RETI

llH
25H
2
llH
l3H
03H
06H

port address

7,102,80H 75 = 32x16xl02.4 timer
7,70,80H 110 = 32x16x699.8181 timer
7,57,80H ; 134.5 = 32x16x57.1003 timer
47H,128,OCOH ; 150 = 64x128
47H,64,OCOH 300 = 64x64
47H,32,OCOH 600 = 64x32
47H,16,OCOH 1200 = 64x16
47H,8,OCOH 2400 = 64x8
47H,4,OCOH 4800 64x4
47H,5,80H 7200 32x5.3333
47H,2,OCOH 9600 64x2
47H,1,OCOH 19200 64x1
47H,2,40H 38400 = 16x2

BC
IY
AF

restore regs

restore a,flag

turn on ints
return

255 service receiver interrupt
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270 .EIGHT:
271
272

EI
PUSH AF
PUSH IY
LD IY, (UCB)
PUSH BC
LD
OUT
IN
LD
IN
BIT
JR
RES

LD

A,l
(DA+2) ,A
A, (DA+2)
B,A
A, (DA)
5, (IY+8)
NZ,.EIGHT
7,A

C,A

273 test parity
274
275
276

BIT
JR

4,B
Z, .NOPE

- 164 -

turn on ints
save reg A,F

point to ucb
save B,C
read reg 1

get second status
save it
get char
8 bit char
yes
turn off parity

save char

test for parity even
brif not

MACRO

01EC OE3F
01EE 3E30
01FO D313
01F2
01F2 AF
01F3 D313
01F5 CF66
01F7 38CD
01F9 4F
01FA 3A5C01
01FD FE40
01FF 28C5
0201
0201 FD7E1E
0204 B7
0205 2814
0207 79
0208 E67F
020A FEll
020C 280A
020E FE13
0210 2009
0212
0212 FD771D
0215 C3C601
0218
0218 AF
021B 79
021C
021C D5
021D E5
021E 2l5COl
0221 F3
0222 34
0223 5E
0224 1600
0226 19
0227 FB
0228 77
0229 E1
022A D1
022B C3C601

022E

277
278
279
280 .NOPE:
281
282
283
284
285
286
287
288
289 ROC:
290
291
292
293
294
295
296
297
298
299 .CTLS:
300
301
302 .CTLQ:
303
306
307 R2:
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

No assembly errors.

APPENDIX D: PROGRAHHIBG EXAHPLES

LD
LD
OUT

XOR
OUT
SC
JR
LD
LD
CP
JR

LD
OR
JR
LD
AND
CP
JR
CP
JR

LD
JP

XOR
LD

C '?' , .
A,30H
(DA+2) ,A

A
(DA+2) ,A
102
C,SIORET
C,A
A, (BUFI)
64
Z,SIORET

A, (IY+30)
A
Z, .NOENAB
A,C
7FH
DC1
Z, .CTLQ
DC3
NZ,.NOENAB

(IY+29) ,A
SIORET

$'UK$' 021B
A,C

PUSH DE
PUSH HL
LD HL,BUFI
DI
INC (HL)
LD E, (HL)
LD D,O
ADD HL,DE
EI
LD (HL) ,A
POP HL
POP DE
JP SIORET

END

- 165 -

replace char

reset parity error

reset to zero

translate input char
ignore it?
save char
get prev count
test full
full?, ignore

see if enab2

not

set the busy sw

305 .NOENAB:
get this char

save DE and HL regs

point buffer
turn off ints
incr count
load it
zero high
point next

store the character
restore regs

return

MACRO REFERERCE 1WmAL

Example 4 - Parallel Printer Device Driver

Addr Obj-Code

0000
0000 C30FOO
0003 C31900
0006 C31AOO
0009 C31900
OOOC C32300

Line *** Source Statement ***

1
2 BEGDEV:
3
4
5
6
7
8

REL

JP
JP
JP
JP
JP

STATUS
INPUT
OUTPUT
INIT
DEINIT

Return status
Get input from device
Put output to device
Initialize driver
Deinitialize driver

9
10

Status routine - output. only device

OOOF
OOOF DB01
0011 E601
0013 2002
0015 37
0016 C9
0017
0017 AF
0018 C9

11 STATUS:
12
13
14
15
16
17 .BUSY:
18
19
20

IN
AND
JR
SCF
RET

XOR
RET

A, (STATO)
STAMSK
NZ, ~BUSY

A

Get device status byte
Test for busy
BRIF not ready
Turn on carry flag
Return with Z and C set

Set Z flag - reset C flag

21
22

Input routine - output only device

0019
0019 C9

001A
001A CDOFOO
001D 30FB
001F 79
0020 D300
0022 C9

0019

0023
0001
0000
0001

23 INPUT:
24
25

RET

26 Output routine
27
28 OUTPUT:
29
30
31
32
33
34

CALL
JR
LD
OUT
RET

STATUS
NC,OUTPUT
A,C
(DATAO) ,A

35
36

Initialization routine

37 INIT:
38 ;

EQU INPUT

39 ; Deinitialization routine
40
41 DEINIT:
42 STATO:
43 DATAO:
44 STAMSK:
45

EQU
EQU
EQU
EQU
END

INPUT
1
a
01

No assembly errors.

Cross Reference List

Symbol--- Value Type
BEGDEV 0000 C 00

.BUSY 0017 C 00

Line *** References ***
2

17 14

- 166 -

Get device status
Loop till ready
Copy character to A reg
Output the character
Return to caller

No initialization needed

No deinitialization
Printer status port
Printer data port
Mask to get status bit

MACRO

APPENDIX D: PROGRAMMING EXAHPLES

DATAO 0000 A 00 43 32
DEINIT 0019 C 00 41 7
INIT 0019 R 00 37 6
INPUT 0019 C 00 23 4 37
OUTPUT 001A C 00 28 5 30
STAMSK 0001 A 00 44 13
STATO 0001 A 00 42 12
STATUS OOOF C 00 11 3 29

HACRO - 161 -

MACRO REFERENCE HANUAL

Example 5 - Disk Device Driver

Addr Obj-Code Line *** Source Statement ***

2 N$DISKIO: REL
3
4 ENTRY DISK
5

0000 6 DISK:
7
8 transfer vector
9

0000 C30COO 10 JP SEL
0003 C31700 11 JP RES
0006 C31900 12 JP READ
0009 C32000 13 JP WRITE

14
15 select drive
16

OOOC 17 SEL:
OOOC E603 18 AND 3 mask
OOOE 327FOO 19 LD (DESC+4) ,A store
0011 3E07 20 LD A,7 force controller to select
0013 328AOO 21 LD (DESC+15) ,A
0016 C9 22 RET return

23
24 rezero
25 ;

0017 26 RES:
0017 AF 27 XOR A not implemented
0018 C9 28 RET

29
30 read
31

0019 32 READ:
0019 328300 33 LD (DESC+8) ,A store
001C 3EOO 34 LD A,O get cmd
001E 1805 35 JR COM go common

36
37 write
38

0020 39 WRITE:
0020 328300 40 LD (DESC+8) ,A store
0023 3E01 41 LD A,l cmd

42
43 common
44

0025 45 COM:
0025 DDE5 46 PUSH IX save ix
0027 DD217BOO 47 LD IX,DESC
002B DD7701 48 LD (IX+1) ,A store

49
50 store head, cyl and sector
51

002E DD7105 52 LD (IX+5) ,C sector
0031 DD7202 53 LD (IX+2) ,D msb cyl

- 168 -

MACRO

0034 DD7303

0037 DD7406
003A DD7507

003D C5
003E D5
003F E5
0040 CD7700
0043 E1
0044 D1
0045 C1

0046 DD4E05
0049 DD6606

004C DD7EOO
004F DDE1
0051 B7
0052 C8

0053 CB6F
0055 2018
0057 CB5F
0059 200C
005B CB57
005D 200C
005F CB67
0061 2010

0063 3E01
0065 180E
0067
0067 3E03
0069 180A
006B
006B 3E04
006D 1806
006F
006F 3E05
0071 1802
0073
0073 3E07
0075

APPENDIX D: PROGRAMHIBG EXAIIPLES

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

LD (IX+3),E

store mem address

LD (IX+6),H
LD (IX+7),L

perform operation

PUSH BC
PUSH DE
PUSH HL
CALL DESC-4
POP HL
POP DE
POP BC

restore regs

LD C, (IX+5)
LD H, (IX+6)

test for error

LD A, (IX)
POP IX
OR A
RET Z

83 decode the error
84

; lsb cyl

msb mem
lsb

save regs

jump to vector
restore regs

sector
mem

get status
restore ix reg
test
return no error

85 BIT 5,A test illegal
86 JR NZ,ERR5 brif is
87 BIT 3,A test format error
88 JR NZ,ERR3
89 BIT 2,A test checksum
90 JR NZ,ERR4
91 BIT 4,A test seek
92 JR NZ,ERR7
93
94 else, disk fault - overrun
95
96 LD A,l
97 JR ERR
98 ERR3:
99 LD A,3

100 JR ERR
101 ERR4:
102 LD A,4
103 JR ERR
104 ERRS:
105 LD A,S
106 JR ERR
107 ERR7:
108 LD A,7
109 ERR:

- 169 -

MACRO IlEFERERCE HANUAL

0075 B7
0076 C9

110
111
112

OR
RET

A set nz
return

113
114
115

descriptor follows

0077 CD40F4
007A C9
007B 00
007C 00
007D 00
007E 00
007F 00
OOBO 00
00B1 00
00B2.00
00B3 00
00B4 00
00B5 01
00B6 00
00B7 03
OOBB EB
00B9 40
OOBA 07
OOBB 00
OOBC 00
OOBD 00
OOBE 00
OOBF 00
0090 00
0091 00
0092 FF

0093

116
117 DESC:
lIB
119
120
121
122
123
124
125
126
127
12B
129
130
131
132
133
134
135
136
137
13B
139
140
141
142

No assembly errors.

CALL
RET
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

END

OF440H

o

prom address
return
status

o command (O=read,l=write)
o msb track
o lsb track
o head
o sector
o msb mem addr
o lsb mem addr
o sector count
o unit
1 option
o max head
1000.SHR.B max track msb
1000.AND.OFFH ; max track lsb
64 max sector
7 curr unit
o curr track msb
o curr track lsb
o error count
o err track
o err track
o err head
o err sector
OFFH bad track table

- 170 - MACRO

MACRO

APPENDIX D: PROGRAHKIRG EXAHPLES

Example 6 - Class Code Conversion

TITLE

MACLIB

INIT
DCA
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

END

>ASM CLASS4 (/ SYSTEM

>MACRO CLASS4

>LINK CLASS4 (SYSTEM

'Class Code 4 (SOROQ IQ) Terminal Conversion'

Entry parameters:

A - control character to translate
B - console device number
C - control character to translate
H - cursor address column number
L - cursor address line number

CLASS ; Get MACRO definitions

Translate value 11 to 26 (UP ARROW)
Translate value 12 to 6 (RIGHT ARROW)
Translate value 30 to 1 (HOME)

OBH,lAH,OCH,06H,lEH,01H
4 ; Use class 4 cursor controls
HOME,RS
CLEAR,ESC,'*',8CH
EOS ,ESC, 'Y' ,8CH
EOL,ESC,'T',8CH
LEFT,BS
RIGHT,FF
UP,VT
EU,ESC,+,8CH
PON,ESC,29H
POFF,ESC,28H
FON,ESC,26H
FOFF,ESC,27H
BON Function not available
BOFF Function not available
RVON Function not available
RVOFF Function not available
ULON Function not available
ULOFF Function not available

>ATTACH CONSOLE SI01 (B19200 C4 FF6

- 171 -

APPENDIX E

CIIAL\CTER SET

==
\ MSDI a 1 1 1 2 1 3 1 4 1 5 1 6 1 7

1 \ I 1 I 1 1 I I I
ILSD \ 1 000 1 001 I 010 1 all 1 100 1 101 1 110 1 111
1==
1 a 0000 1 NUL 1 DLE 1 SP 1 a 1 @ 1 pi' 1 p
1 1 0001 1 SOH 1 DC1 1 ! 1 1 1 A 1 Q 1 a 1 q
I 2 0010 1 STX I DC2 1 " I 2 1 B I Rib I r
1 3 0011 1 ETX 1 DC3 1 = 1 3 1 CIS 1 cis
1--
1 4 0100 I EOT 1 DC4 I $ 1 4 1 D 1 Tid 1 t
1 5 0101 1 ENG 1 NAK 1 % 1 5 1 E 1 U 1 e 1 u
1 6 0110 I ACK I SYN I & I 6 I F I V 1 f 1 v
1 7 0111 I BEL 1 ETB 1 ' 1 7 1 G 1 Wig 1 w
1--
1 8 1000 I BS 1 CAN 1 (1 8 1 H 1 X 1 h 1 x
1 9 100 1 1 HT 1 EM 1) 1 9 1 I I y 1 i 1 y
1 A 1010 1 LF 1 SUB 1 * 1 I J 1 z 1 j 1 z
1 B 1011 1 VT 1 ESC 1 + 1 ; 1 K 1 [1 k 1 {
1--
1 C 1100 1 FF 1 FS 1 , 1 < 1 L 1 \ 1 1 1 1
I D 1101 1 CR I GS 1 - I = I M I] I m 1 }
1 E 1110 1 SO 1 RS 1 I > 1 N 1 1 n I -
I FIlII 1 S I 1 US 1 / 1 ? 1 0 1 1 0 1 DEL
==

A more complete character set chart is available in the OASIS System Reference
Manual.

- 172 - MACRO

Reader's Comments

Name ____________________________________ Date ___ / ___ / __ _
Organization __ __

Street
City ________________________ __ State ____ Zip ________ __

Name of manual:

Did you find errors in this manual? If so, specify with page number.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of
the software described in this manual? If not, what material is missing and where
should it be placed?

Indicate the type of user/reader that you most nearly represent:

__ Assembly language programmer
__ Higher-level language programmer (BASIC, FORTRAN, etc.)
__ Occasional programmer (experienced)
__ User with little programming experience
__ Student programmer
__ Non-programmer interested in computer concepts and capabilities

Data entry operator

Mail to: OASIS Documentation
Phase One Systems, Inc.
7700 Edgewater Drive #830
Oakland, CA 94621

