Serial No. 141

TECHNICAL MANUAL

5-2000

PHILCO CORPORATION
COMPUTER AND AUTOMATION DEPARTMENT
4700 WISSAHICKON AVENUE
PHILADELPHIA 44, PENNSYLVANIA

PREFACE

The S-2000 Technical Manual is primarily intended for training and
reference use by TRANSAC Field Engineers. It can be used as well by
other groups desiring a detailed description of the system.

The material is arranged to facilitate study and will serve as
a comprehensive technical introduction to TRANSAC S-2000. The scope
of this manual excludes those areas covered by other S-2000 publications,

as the Programming Manual.,

Inquiries concerning this manual should be directed to

Jerome Stone

Computer and Automation Department

2.

TRANSAC S-2000 TECHNICAL MANUAL
PART 1 COMPUTER LOGICAL DESCRIPTION
TABLE OF CONTENTS
Page
ORGANIZA TION OF THE COMPUT,ER... 1.1-1

1.1 Block Diagram, Information Storage and Control..1.1-1

1.2 Control Organization........ et et ecsecnasnanas 1.2-1
1.3 Control Registers....... et et ceoeasli3-1
1.4 Commands.......... DRI R ..1.4-1
1.5 Numbers - Control Signals. A
INTRODUCTION TO TRANSAC LOGIC.......ccou.n. veea2.1-1
2.1 S-2000 Symbolism, Logical Circuits............. 2.1-1
2.2 Notation for Schematic LogiC.....vvtviorivencnns 2.2-1
INSTRUCTION SELECTION AND PERFORMANCE..... .3.1-1
3.1 Basic Program Cycle.............. e tee e 3.1-1
COMPUTER CONSOLE AND OPERATING..... e oeon .4.1-1
4.1 Console and Operating Controls..... e e 4.1-1
4.2 Operational Modes. ... vvocvivicnneeiosnsseanans 4.2-1
LOGIC SECTIONS OF COMPUTER..... - TR
5.1 Adder Networks.......... Gt et e e e 5.1-1
5.2 Registers......c.ceeeeue... e e ceeees 5.2-1

ii

Table of Contents (continued)

Page
DETAILED LOGIC OF INSTRUCTIONS........cv ... 6.1-1
6.1 Organization of Instruction Control 6.1-1
6.2 Address Modification by Index Registers...... 6.2-1
6.3 Mgmory Controland Use........... ceveeeees 6.3.1-1
6 3; 1 Memory Cycle.......... ce et . 6.3.1-1
6.3.2 Computer Use of Memory.c.o..... 6,3.2-1
6.3.3 Memory Assignment.............. e+ 6.3.3-1
6.4 Transfers.....ccviervieneeienennes B - o |
6.5 Shifts............ et o coeeeses 6,.5-1
6.6 ArithmetiC. . v ie i vieeinnennesonas G eeean . 6.6-1
6.6.1 Add InstructionS........c.oceuvuuen. 6.6,1-..
6.6.2 Subtract Instructions......eeeeeceoss 6.6,2-1
6.6.3 Multiply Instructions.oveuueennnn. 6.6.3-1
6.6.4 Divide Instructions.covveevon. 6.6.4-1
6.6.5 Floating Point Numbers.............. 6.6.5-1
6.6.6 Add, Subtract, Floating Point..... eee. 6.6.6-1
6.6.7 Multiply, Floating Point.......... oo 6.6,7-1
6.6.8 Divide, Floating Point. .. v.veuuruaon.. 6.6.8-1

6.6.9 Inhibit Clear of Overflow: ceovoscveeeane 6.6.9-1

Table of Contents (continued)

Page
6.7 B 50« - 6.7.1-1
6.7.1 Jump Instructionsccocvu... 6.7.1-1
6.7.2 Comparison Logic for Conditional
LG 5'os o X S 6.7.2-1
6.8 Repeat ittt ittt iiiinannn. 6.8.1-1
6.8.1 Repeat Instruction 6.8.1-1
6.8.2 Repeat Modec.uvieurennnnnnn 6.8.2-1
6.8.3 Index Register Modification, Repeat
Countercioiiiieennnnennn 6.8.3-1
6.8.4 No Op(Filler).....ocvvviinienunnennn. 6.8.4-1
6.9 Index Register Instructions 6.9-1
6.10 Address Substitution and Increase,
TIM, TIJ, INCA ... it iiinnn. 6.10-1
6.11 Reference Change, LWD, SWD 6.11-1
6.12 Bit-by-bit Boolean
Extract, Insert, Word Merge 6.12-1
6.13 Computer Stop
Halt Instruction, Command Fault 6.13-1
6.14 Console Transfers,
Toggle Register, Typewriter 6.14-1

Appendix I - Table of Powers of 2

Appendix II - Alphanumeric Coding
Appendix III - S-2000 Instructions

Appendix IV - Control Register States
Appendix V - Definitions of Numbers
Appendix VI - 1/O Commands

Appendix VII - TRANSAC S-2000 Symbolism

iv

Figure
1.1-1
1.3-1
1.3-2
1.4-1
2.1-1
2.1-2
2.1-3
2.1-4
2.1-5
2.1-6
2.1-7
2.1-8
2.1-9
2.1-10
4.1-1
4.1-2
4.2-1
5.1-1
5.2-1
5.2-2
6.2-1
6.3.2-1
6.3.3-1
6.5-1
6.5-2
6.6.6-1
6.7.2-1
6.7.2-2
6.8.3-1
6.8.3-2

LIST OF ILLUSTRATIONS
Title

Block Diagram Central Computer «.covevuenernonn.
Flow Diagram ¢f Computer Timing
Timing Chainoeuvieorerestocorasceaoonnnonses
Command Decoding .o.cevovecesconoesocnansonens

Inverterc.iueiovoooocococencooncosas
Parallel RC Gate v cooeoeeoceceoesecncooeosansess
Parallel Emitter Follower Gate v oo cecoeeoocoeson
Parallel Emitter Follower OR Gate ...cevvovon..
Series Gate coocececana e eecracossecacaos e e
Exclusive OR ..c.0eeoeronn e seoescecesaen ceoa
Exclusive OR ..cccceoveoceencacsns
Exclusive ORcc0ceconcocons eescoescacec e
Standard Flip-flop .cccvveocnen. cteccesaons
Single Shot Timing Chain Ceescecroansans
S<2000 Console ccvoeeeoeoeennas cesoacecaean
Console Controls Partial ...veveeeon..
Front Panel Controls o.oeveoveecennesosoosconoss .
AN1, Adder Network 1 ..c.ceeuceoesn cecececcssons
Schematic Logic A, A* Registerseevsecnosons
Tree (Partial) for D—>Accctiiuonann
Address Fields . ..0.0o00. s e ececaes ciecnano co0eco

Computer Use of MemMOTY .ooeoeececesceoncanens.
Memory Assignment Control vovoeeeeneneeonconeas
S=-2000 Shiftsovoooecooaccas Ceeecsescatonsane
Shift Counter ...covovucvoococacnnns cececosrecann
Shift Counter SeleCtOr .u.ovuvenanencncenroroocons
Ranges of Sums, Algebraic Comparison
Floating Point Numbers etoecerassanonsons .o
Normal Program Control Sequencingo.000..
Indéx/Repeat Program Control Sequencing .o..0.0. .

Page

1.1-2
1.3-8
1.3-1
1.4-6
2.1-1
2.1-1
2.1-2
2,.1-2
2.1-3
2.1-3
2.1-4
2.1-4
2.1-6
2.1-6
4.1-2
4,1-7
4.2-2
5.1-2
5.2-2
5.2-4
6.2-1
6.3.2
6.3.3
6.5-2
6.5-6
6.6.6
6.7.2
6.7.2
6.8.3
6.8.3

[

1
W

K|

'
W NSO b,

]

Ll

Table
1.1-1
1,3-1
5.2-1
6.5-1
6.6.4-1
6.6.6-1
6.6.6-2
6.6.7-1
6.6.8-1
6.7.1-1
6.7.2-1
6.7.2-2
6.7.2-3
6.7.2-4
6.8.3-1
6.12-1

LIST OF TABLES

Title

Location of Arithmetic Operands «...ceveceocacan.

Triggers for the Timings
Tree Tables v...vvvonceecnnnan e ceroeees cens
Shift Logic of Shift Instructionsc.vveioeeesnns
Overflow for Fixed Point Division seeeeeeosoon o oo

Exponent Comparison for Add, Subtract
Arranging Smaller Floating.ccioceveeceeansao
Cases of Floating Point Products ceeeen
Division Faults e rsccersciecscessesneasenss
Organization of Jump Instruction «...ccevoeuoaoacs
Algebraic Comparison, Key Bit Values
F.P. Algebraic Comparison, Key Bit Values.......
JAQF Exponent Comparison ceeenas cieens
JAQF Mantissa Comparison ¢...ccceceeeeess ceroan
PIStates tenoacoceeeasesenenenen s -
Logic of Bit-by-Bit Booleanc..0cvevecoococoass

i)
)
¢4

[¢]

.
]

w

o Ul =

1V W
1

o

.
.

°
§

i

)
4

°
]

.
.

i
W

W INDNNDNME®-NOO
|
R =~ IO NN~ W

:@qqqqﬂo\mo«@o
]
(o0

vi

1. ORGANIZATION OF THE COMPUTER
1.1 Block Diagram, Information Storage and Control

Figure 1. 1-1 is a block diagram of the computer showing
the major information storage registers, control and paths of information
flow. The notes define some symbols which may be unfamiliar. This
section describes the various units shown to give an overall view of the
functions of the computer.

Control Information Storage

The organization of the control section of the central com-
puter requires the following registers for storage of control information.
The abbreviation follows the name of the register.

Program Register (PR)

The instruction about to be, or currently being, performed
is located in the Program Register. PR is a 48-bit register, storing an
instruction word (two instructions). The input to PR is usually from the
internally stored program in memory. Direct access into PR is also
available from the console with the "PR Keyboard'" manually operated
switches. The left instruction location of PR (bits 2O through 2 _53)1is
identified as PR,. It contains the I0 instruction. The other location,
PRl’ contains the I1 instruction.

Switch 2 (SW2)

The selection of which of the pair of instructions in PR is
to be operative is made by SW2. SW2 contains a flip-flop, with that name.
When SW2 = 0, IO is the operative instruction. Through SW2, the parts of
the selected instruction are distributed among the various controls.

Switches

Functionally a switch as discussed here has two parts. The
switch is a means of controlling a multitude of information signal lines that
exist in a parallel computer. The control signal indicating the direction is
a single line and it is usually desired to maintain the connection over a
period of time.

O-»I04

I-O0 DISPLAY

M (D1sPLAY) Mme
[Jo 0wmr oazod »
1 5 2 1
COINCIDENCE A= (MP) 2 :
NETWORK -
=M e Oyes1-0
sC >35 .
sc saTispiegp——> 25 2! =0
1t —P»sce3s 4
(Mny >R PRY—>MA (AgtOp¥ SC °
Y
Re swal, MA | . . (A+)N
l——-——-{r."_j ; 0‘Mﬂ-—4
Ry 2“ 1] 1 1 2° ’ Q_* .
" .
Q,
Ra anz) = via T - T M Qi)
l‘{_,-a
K3 .
- e @
Re
I
Rs
R
Re B s a @) &Q “
r—[—t: @ =a (AS) > Qe
Ry
Iy " A % o Q A o il 1
2 27 t oan
COUNTER l - = T Q| Qe]
" ' > 1 1
} o-a
l DA @g)~Ac O)-»a
|
1 0
FNL S OVF
(MAY ‘
ANZ Caray l
(1R BR ; 1R comPLeTE . AN { o R .
AW | omeanac
P NS G e | ANL‘I AN!:E“““"‘" ang
: o T 1-+ANIC
PR—>SWG (SWb =!) =% [D"]-—o«-o" (Q-)'_»D
M 3
IR C D SWo [:[1 o 1 1 5
DECODE DECODE *
N (V0 (oY—13
1| SWZ2 i \
I,~SW2 SWi 1 (JA)—» D,
’ R l < I:I swz |z, 2% 7 e 1
- . - I: N o L AN
1 1 ftfeo] T Y (swia1) (W=D |6AsD (anohD @D = le2 o 2202
. : “PR”_KEYBOARD ®7%D — ‘
i xn L 240 9] P % D o D" KEYBOARD
0-PR T Y o g ey o Ao 7 T -
PR~A—{H1%, | Yo W G |3 v, W< &z T 1 1] > T 5: T . ."{iﬁﬂ,“_ -#-z’hzl[i‘i""«z“z‘"| =
2424 1 + 1 . 2'“’2_41 B0 B T) T 1} £y e
I—L?“EL LA doer CONSOLE
(TR) | (F) > D [fONVERTER TYPEWRITER.
2o - dl.s LEVEL
w8 ﬁTPR [1-0 - T |convermer
1 1
© = w8
MR 26D W10 —E:_v;:;:g M TR 3 I
SWT L 7 0 o =58, L TOSSLE] 1-O CONTROL
MA= SW 7 —d] CECODE ot ie INFORMATION
T-oma w7 —| METWORK MAGNET core STORAGE]
sw3 il — - I-0 BUFFER 1;
- cesw 3 o %o
(re)>v v eV %:‘g::l's r . n _
I CE PR 1

Figure 1.1-1 Block Diagram Central Computer

1.1-2

The switch usually has one or more flip-flops which are set
to the required state by the control signal. The flip-flop output(s) go to a
large number of AND gates where they permit or inhibit the transfer of
information. The selected source or destination of the information will
thus be determined by the state of the flip-flops. Some switches do not use
flip-flops for selection control. In this case a decode network serves as
selection control.

SW2, for example, is a single flip-flop as its order of
selection is twofold. The flip-flop inputs are two. Each side of the SW2
flip-flop goes to 24 gates by which means IO or 11 is transferred from PR.

Distribution of the Parts of the Current Instruction

The command part of the instruction, C, is routed to the
command decoding network. The memory address part of the instruction,
I,> is routed to the Memory Address Register (MA) through the adder
network, ANZ (a general purpose routing for this part of any instruction
from PR to elsewhere in the control section). The index register address
part of the instruction, IA, is routed to its decoding when an index
register is involved in the instruction.

For the repeat instruction, the four leftmost bits, a Byo
(which indicate the type of repeat) are sent to the Repeat Register (RR) for
control use. The I_ field of the repeat instruction, which indicates the
number of times an instruction (or pair of instructions) is to be repeated,
is sent to the Repeat Counter (N) by an indirect route via MA.

Adder Network for Control Information (AN2)

ANZ2 serves two basic functions. It is an adder network, one
of the two in the central computer. The term, adder network, is used to
signify a logical adder which has no registers, no storage capabilities.
AN2 is used for addition or subtraction involving I, and IA parts of the
instruction. (IA, in this case, is part of a memory address, rather than
an index register address.

This function of ANZ requires it to be connected to many
registers of the control section. These existing information transfer
paths can therefore be used for transfers involving these registers without
arithmetic operations with a resulting saving in circuitry. Arithmetic
is avoided during such a transfer by simply gating only one, instead of two

1.1-3

register inputs to AN2. AN2 acts, for transfers, as a junction, Zeros
are gated to the unused input.

AN2 Inputs

The inputs to AN2 are controlled by SW4 (Switch 4) and PM
(Plus-Minus). SW4 is the means of selecting one of three sources as one
input to AN2. They are N, MA, and X (selected index register). A
fourth state of SW4 selects none of these; instead it gates zeros to AN2.
SW4 contains two flip-flops.

PM also contains two flip-flops. It controls the other input
to ANZ2 and can select either the number or its ones complement (for
subtraction) as the quantity to be sent to AN2. If PMis " - " (one of
the four states of the two flip-flops) the ones complement of the number
is sent to AN2. If PM is "+ ", the number, uncomplemented, is trans-
ferred. If PM is "0", zeros are sent to this input

Address Register Size

In any individual S-2000 system the size of AN2, MA, PA,
and X will be in accordance with the size of the memory in that system.
As mentioned previously, X and JA each have an additional bit --Xc is
the counter bit of an index register; ja_j is the half-word identification
in JA.

Index Registers (X = the selected index register)

The index registers store information which may be used
to determine an effective address, in conjunction with the address part
of the instruction. The effective address would be the actual one used
in that particular performance of an instruction. At other times X,
itself, can furnish the effective address. The index register can be
incremented by 1, following each use, by means of the counter bit. When
x. =1 (counter bit =1) the register contents will be so incremented.

Under the repeat mode, in addition to the above use, the
index register can be ''repeat modified". The index register alone
furnishes the address, in this case, and following each instruction
performance the register is either incremented or decremented by the
contents of the "address' part of the instruction being repeated.

1.1-4

An S-2000 system may contain up to 32 index registers, in
groups of four. Information is transferred by means of SW5. SW5 has
no flip-flops bearing that name. Selection is made by the Index Register
Decode network to gate information to or from X. The input is always
through MA; X's output goes only to AN2 via SW4.

Incrementing or decrementing the register contents is
achieved by a pass through AN2. The register has no separate counting
ability.

The number into the PM gating is either from PR or the D
register. SW6 controls this selection. SW6= 1 selects PR; SW6= 0
selects D. SW2 selects one of the two halves of PR; Iy or I1 as the input
to the SW6 gating. SW1 performs a similar function for the D register.
SW1= 0 selects the D(; half; SW1 =1 selects D;. The D register has a
connection to AN2 as it is used to handle control information (memory
addresses) as well as its more common function of handling data.

Aside from the index registers, there are four other
registers that store address information. MA contains the address
currently used, or last used for memory access when the address was
supplied by the central computer. Memory address can also be supplied
by an input-output unit. In this case the I-O MA contains the current or
last used address. The selection between MA and I-O MA is made at
SW7.

PA (Program Address Register) stores the address of the
next instruction word to be used. In the normal sequence this address
is increased by one each time a new instruction word is transferred
from memory. Jumps break this sequence; the address to which the
program jumps is placed in PA during the execution of the jump instruction.

JA (Jump Address Register) might also be termed the ''return
address register'. It is used to store the address of the next instruction
in normal sequence that was not performed due to the program jump.

This is required,as a common characteristic of programs is to leave the
main part of the program, by means of a jump, to perform a sub-routine.
Following the sub-routine, a return to the main program is desired.

The contents of JA are the reference for the return. As JA refers to an
instruction location, rather than a word location, the register contains

in addition to the address, one more bit to indicate which half of the word
contains the next instruction. (PA does not require this as there is a

1.1-5

normal sequence of performance within the instruction word, IO” Ile)

An address is transferred to JA from either MA or PA. If
the jump instruction is I the instruction word containing it was just
transferred to PR from memory. Its address is still in MA where it
was used to access the memory. This address is transferred to JA as
well as an indication that the next instruction in normal sequence is L of
that address.

(MA) —— JA

1 ——»ja

1

If the jump instruction were Il’ the address of the next instruction in
normal sequence is stored in PA.

(PA) — JA
0 ———ja.:l

JA is connected to D so that the address may be transferred
to memory. The customary procedure in a sub-routine, immediately upon
entering it, is to transfer the address in JA to the address part of a jump
instruction at the end of the sub-routine. Thereupon, the exit from the
sub-routine will be back to the point of departure from the main program.

Normal Sequencing of Address

The incrementing of the program address for normal sequence
is done as follows:

(PA) — MA address of next instruction
word

(MA) —— SW7 —»Decode access memory to trans-
fer next instruction word

(MA) —= AN2)

) add 1 to (MA)
1 —= AN2)

AN2 —— PA store new address of next
instruction word

1.1-6

In a shift operation, for example, the register cannot simultaneously
store two different things, the original number and the shifted number.
The A register is one of the adder network inputs. The sum is stored
in A, A cannot simultaneously store both numbers. (The adder network,
AN1, is inherently incapable of storage.,)

Each of these data registers is therefore double ranked.

- Each consists of a pair of one word registers, A and A¥, D and D*,

Q and Q*. Addition (A) + (D) — A is performed by transferring

D to D¥*. (A)+ (D*) are the inputs to AN1l. ANI output to A¥, A is cleared;
and the sum in A* is transferred to A. Shifting of A is performed by
transferring A to A¥, clearing A, transferring A¥ to A through the shift
gates, right or left.

Table 1.1-1 lists the functions of these registers in arithmetic
operations.

Repeat Register (RR)

The repeat register is a 6-bit register storing control
information for operation in the repeat mode. Its contents are:

R | a B Y § I
where:

R=1 indicates repeat mode operation.

I indicates whether one or a pair of instructions
is being repeated. (I= 0 signifies that both
instructions in the word should be performed).

aBy b specify the type of repeat {modification or not

of X, and manner of modification).
Repeat Counter (N)

N is a 12-bit register, enabling the repetitive pe-rformanée
of an instruction up tg 4095 times., N dees net possess gounging ability.

1.1-7

TABLE 1.1-1

Operation A D Q
Additién
Before operation Augend Addend
After operation Sum Addend
Subtraction
Before operation Minuend Subtrahend
After operation Difference | Subtrahend
Multiplication
Rounded Product
Before operation Multiplicand | Multiplier
After operation Product Multiplicand | Multiplier
Multiplication
Double-length Product
Before operation Multiplicand | Multiplier
After operation Major Multiplicand | Minor
Product Product
Division, Single-length
dividend - Before operation Dividend Divisior
Division, Double-length
dividend -Before operation Major Divisor Minorl
dividend dividend
Division, Both size
dividends - After operation Remainder | Divisor Quotient

1.1-8

It stores a number (in twos complement form) which indicates how many
times an instruction, or pair of‘instructions, is to be performed. The
number is incremented by use of AN2 and returned to N via MA.

Memory Preset (MP)

Memory Preset consists of a bank of double throw toggle
switches on the console provided primarily as a programming facility.
The MP switch levels are continuously compared with the contents of MA
and coincidence will be recognized to stop the computer, if desired.

Data Registers

Three registers are used to handle the data word in the
computer, A, D and Q. (D is also used to handle an instruction word if
part of the word is to be changed.) The nature of a parallel computer
requires an additional storage media for these registers. During a
shift operation, for example, a register cannot simultaneously store the
original and shifted word.

Each of these registers has another 48-bit register
associated with it, A*, D" and Q", to provide the required additional
storage. These are spoken of as the "'star" registers ("A Star", etc.)

CMA

The Core Memory Address register stores addresses for
paper tape, magnetic drum and printer access to computer memory. The
separate register is required as the input-output operation time-shares
the computer with many internal instructions, the latter having other
addresses.

The magnetic tape control also requires an individual
memory address register. This is located in its control unit, outside
the computer.

Switch 3 and Switch 8

These switches route information to and from memory.
Switch 8 (SW8) routes the read-out from memory to the desired destination,
PR, D, or IOB (Input-Output Buffer). Switch 3 (SW3) connects a register
for writing-in from memony, PR, D, or IOB. The M register is for
display only.

1.1-9

Other Controls

Several other controls are not illustrated. One group consists
of the Fault flip-flops. When any of these are set to one, they will stop
computer operation.

Command Fault (CF) Command coding in PR which is not
assigned to any instruction.

Memory Fault (MF) Temperature of memory unit is not
in operating range and operation is
unreliable.

- Exponent Fault (EF) The result of an algorithm with
floating point numbers has resulted
in a quantity that cannot be repre-
sented by the computer.

The STOP flip-flop, when set, will halt the computer. The
flip-flop is set either by the HALT instruction (HLT) or operator inter-
vention (STOP switch in lower center of console)

The OVERFLOW (OVF) flip-flop is set by overflow conditions.
The JOF instruction requires the computer to jump if overflow. The
OVERFLOW console switch in the ON position will stop the computer,
otherwise.

The JUMP f{lip-flop (JFF) is set when a jump is to be
executed. It controls the details of the execution.

1.1-10

1.2 Control Organization

The performance of an instruction, or a series of instructions
forming a program, consists of a larger sequence of what may be termed
as "'operations.''. The basic program cycle operations would consist of
selecting an instruction and performing it. The instructions themselves
are a sequence of operations, perhaps involving transfer of data, followed
by arithmetic or non-arithmetic manipulation of the data and possibly
concluding with a transfer of the result from a register to memory or
another register.

Among the operations of the instructions and the program
cycle there are many identities and similarities. The complexity of the
computer control logic can be minimized by an organization wherein the
control specifies operations. An operation can be defined as some part
of an instruction or part of the program cycle. The instruction calls for
the proper sequence and number of operations. Some of the operations
possible within an instruction have been previously mentioned. The
operations control signal lines which cause groups of tasks to be
performed.

The smallest piece of logical work performed by the computer
can be termed a ''task''. The task is a change or transfer of information.
The transfer changes the condition of some information storage unit.

There are two types of information, data and control.

A criterion for determining the scope of a task, in the
logical design of the computer, is similar to that of determining the least
common denominator in arithmetic. The scope of a task should be
chosen so that it can be used for operations in many instructions.

An instruction is performed as a group of operations
subdivided into groups of tasks for two basic reasons. First, the
instruction usually requires several operations that cannot be simultaneously
performed. These operations must be sequenced in a pre-determined
fashion. The program itself, is a sequence of instructions and timing
therefore enters into program control.

Secondly, due to the similarities among many instructions,
the sub-division into tasks can be organized so that tasks will be identical
for similar instructions, The operation is then a group of performed tasks,
some simultaneously, others in a predetermined sequence.

1.2-1

In the broadest sense there are six groups of operations.
Listing them by their control names:

Program Control
Instruction Control
Algorithm Control
Floating Point Control
Memory Cycle Control
Input-Output Control
Program Control
This is the group name for the operations involved in
maintaining the desired sequence of instructions. These include transfer
of the instruction word from memory to the program register (where
it is stored for execution), selection of the proper one of the two
instructions within the instruction word, establishing the location of
the next instruction, index register modification,
Instruction Control
This group of operations consists of those preparatory
to the performance of any instruction as well as those necessary prior
to specific instructions. In the case of non-arithmetic instructions,
this control may cover the performance of the entire instruction.
Algorithm Control
The group of operations for performing arithmetic.

Floating Point Control

The manipulation of the operands prior to, and the result
subsequent to, the arithmetic operations.

Memory Cycle Control
The transfer of information to and/or from core storage.

1.2-2

1.3 Control Registers

The computer is functionally divided into the first four groups
of operations mentioned before. Only one control register of the four is
active at a time. The last two, memory and inpiuit-output control, operate
asynchronously and can be active simultaneously with the first four.

Each of the four groups of operations has a control register,
consisting of the required number of flip-flops, to enable establishing
the control for the activity within each operation. The control registers
are identified as:

PI Program Control Register

I1I Instruction Control Register

Al Algorithm Control Register

FI Floating Point Control Register

Each setting of a control register controls the execution
of a specific variety of that species of operation.

Control Register Functions

PI
PI = 0 do next instruction
PI =1 transfer next instruction word to PR
PI = 2 modify index register
PI = 3 count down repeat counter
Al

Al = 0 force add in multiplication (multiplier is minus one)
Al =1 add or subtract

Al = 2 double-length multiplication

1.3-1

FI

II

Al

Al

Al

Al

Al

FI

FI

FI

FI

FI

FI

FI

FI

I1I

I1

single-length multiplication, rounded
fixed point division, first cycle

fixed point division, other than first cycle, or floating
point division

Shift

Q Jump

arrange first cycle (beginning of add or subtract)

exponent addition or subtraction (beginning of multiply
or divide)

shift D (arrangement of D since D < A)
shift A {arrangement of A since Dp >AE)
normalize (following arithmetic operation)

correction (before algorithm if division, following
if add, subtract or multiply)

Clear D (DE << AE)

clear A (AE << DE)

control state used for most instructions

multiply cycle of multiply then add or subtract
instructions

1.3-2

MI Memory Control
MI = 0 memory not being used by computer
MIi=1 (M) —» PR ——> M (read and write PR)
MI=2 (M) —D (read D)
MI=3 (D) — M (write D)
MI=4 (M) —>D —M (read and write D)
MI = 5 clear M, (D) —a M (read 0 write D)
MI = 6 clear M, leave cleared (read and write 0)
MI =17 clear M (read 0)

Note: Due to the nature of magnetic core use, the read-out from
memory (sensing of information in the cores) is destructive.
When the information must be maintained it is written back
following the read, as in MI = 1 above.

The required sequence of operations is effected by having
the instruction select the proper sequence of the control registers.
Program control activity to select the next instruction to be performed,
the PI operation, comes first. It is followed by the I I operation.

At the start of the I I operation, the next instruction is
decoded and the sequence of operations arranged. Many instructions
are completely performed in the I I operation. Arithmetic requires
Al and possibly FI operations. The sequencing was predetermined by
the logical design of the computer. The decoding of the command
selects the control lines.

The various phases, or sequences within the operations
are called '"timings'". The timings are the sequencing control for groups
of tasks within the operation. These are consecutively numbered.

PTI1 through PT4
ITI through ITS8
ATI through AT4
FTI through FT4

1.3-3

The progression of control through the timings for an operation is a
function of the operation being performed. Some instructions require
activity in all timings of a control, others do not. However,many
similar sequences can be established. Generally, an operation is a
sequence of four timings or a multiple thereof.

This can be illustrated by the general case. The purpose
of the operation is to obtain new information (data or control) that is
the resultant of the combination, or effect, of existing information.
The operation can be symbolized as:

(X) and (Y) — Z

where registers X and Y are the inputs to the processing network and
Z is the register receiving the output of the network. This could
represent an addition, for example. Usually the storage of the result
in Z is temporary. It is transferred to another register for further
use (in this case, back to X).

In the S-2000, information transfers are done in two
steps. The receiving register is first cleared so that all the bits
(binary digits) have the same value. The register may be cleared to
all zeros or all ones dependent upon the operation. Then all bits
having the opposite binary value are transferred to the register. By
initially clearing the register to a known condition, the following transfer
of information is a direct, simple process involving a minimum of
logic.

The required tasks of this illustration would be as follows
(where tasks listed horizontally can be simultaneously performed):

clear X clear Y
1. X —_— Y clear Z
2. [(X)and (V)] — z
3. clear X
4. (2z) — X

1.3-4

Usually one of the existing pieces of information has been
transferred to X in some prior operation and Y is automatically cleared
by program control at, say, the beginning of an instruction. This reduces
the process to a four-step sequence, as numbered above, and is a reason
for a module of four timings being used in the computer.

The timings are performed by using a group of flip-flops,
one for each timing. For each control register, the timing flip-flops
are interrelated to form a timing chain so that each is active only in its
turn. The timing flip-flop outputs activate the gates to perform the
selected tasks in proper sequence.

The performance of a simple, fixed point add instruction,
(A) + (V) —— A, can illustrate the sequence of control registers and
their timings. The instruction is in the Program Register (PR) and has
been selected as we start by entering the II operation at IT1.

In IT1, the following occurs (simultaneously):

1. A general clearing of controls preparatory to each
instruction.
2. Prepare for transfer of the address of the operand

in memory from PR, where the current instruction
is stored, to the Memory Address Register (MA)
where the address will be stored for decoding to
select the desired memory location.

3. Clear MA

4. Clear the D register as it will receive the operand
transferred from memory.

5. Go to IT2.

In IT2:
1. Transfer the address from PR to MA.
2. Set the algorithm control register to the state

required for add, 1 — Al. (AI = 1 indicates
the operation is add or subtract). This is a preparatory

1.3-5

task, solely. AI will not take control until its
timings have been initiated.

3. Set the memory control register to the state
required for the transfer of the operand, 4 —» MI.
The destructive nature of the memory read-out
requires the information to be rewritten, following
the transfer to D. The transfer to D will start at
this time.

4. IT2 will remain on until the transfer, (V) — D
is completed, at which time the computer goes to
IT3.

5. The memory timings continue, in parallel with the

computer timings, to transfer (D) ——= V.

In IT3:

1. Clear the D* register which is the input to the
adder for one operand. (D and D* are separate
one-word registers).

2. Go to IT4.

In IT4:

1. Transfer (D) —s D*

2. Go to ATI.

In AT1:

1. Clear the A* register which will receive the
output of the adder.

2. A and D* registers are always connected to the
adder inputs. The addition occurs during this timing.

3. Upon completion of the addition go to AT2,

1.3-6

In AT2:
1, Store knowledge of overflow if it occurred.

2. Connect the adder output to A* (in effect transfer
the sum to A%),

3. Go to AT3.
In AT3:
1. Clear A.

2. Go to AT4.

In AT4:
1. Transfer the sum, (A%) —= A
2. Go to "End''. The instruction is completed

and a program control decision is necessary
to determine what follows this instruction.

Other instructions will go through a difference sequence
of controls and timings due to the differences in operations. Floating
point addition would require activity performed during FT's under FI
control, in addition to the above described operations for fixed point
addition. Transfer instructions are completely performed under II
control from IT1 to IT4. It will be noted that during the add instruction
the transfer of the operand from memory to D was done during an IT,.
A jump instruction would also be performed under II control, IT1 through
1T8.

Figure 1.3-1 surveys the flow of control for the instructions.
Program Activity for Repeat and Index Register
An interesting use of control is that done with certain
operations relating to index register modification (counting or repeat
modification of the index register) or relating to the repeat mode

control. These operations will be the last ones to be performed in an
instruction and will therefore be followed by program control activity.

1.3-7

PERFORM PREVIOUSLY

SELECTED

INSTRUCTION
O

GO TO SELECT INSTRUCTION

TRANSFER NEW INSTRUCTION WORD FROM MEMORY,
MODIFY INDEX REGISTER, AND/OR COUNT REPEAT COUNTER

INTERRUPTER

4 P77 oy

P12 .

P73

P74

RECYCLE
PROGRAM
CONTROL

HALT

CORRECT AND/OR
NORMALIZE IN
FLOATING POINT

PERFORM INSTRUCTION
SELECT NEXT INSTRUCTION
INPUT-UT
INSTRUCTION PERFORMED (TRANSFERS, SHIFTS, EXTRACTS)
JUMPS, INDEX
\ /':vLsL'r RUCTIONS g‘ INSTRUCTIONS
$ AT 71 (e Oge 172 /73 T4 175 /76 - 177 Y /78
O
STORE RESULT IN MEMORY
FLOATING
POINT .
FIXED INITIAL OPERATION
POINT RECYCLE FLOATING POINT CONTROL
ARITHMETIC END HALT
DO ALGORITHM
MULTIFLICATION

DIVISION QR
SHIFT IN

PROGRESS

Y
ATL ATZ AT3 AT4 | b FT1 FT2 F73 FT4 £ o
A POINT

INSTRUCTION

X PART OF MAD, MSU INSTRUCTIONS

FIXED POINT ALGORITHM COMPLETED
OR FLOATING POINT NORMALIZING OR
CORRECTION NOT REQUIRED

Figure 1.3-1 Flow Diagram of Computer Timing

1.3-8

In some cases the result of these operations will determine what type

of program control action shall follow. For example, the result of one

of these operations will determine whether or not the final performance

of a repeated instruction was just done. If not, it is performed again.

If its final performance was done, repeat is terminated and the succeeding
instruction word must be obtained.

The nature of these operations lend themselves to
performance under the program control. This also falls in with the
general scheme of starting the basic program cycle with PI operations.
At the end of the instruction performance, control is returned to PI. If
further operations are required, they will be performed under control
of PI, during the timings of PT. Following this the PT'smay be
reinitiated, and this time sequence will be for the program control of the
next instruction.

Double Rank Control Registers

As PI may possibly be set to a different state during a set
of PT's to control the next set of PT's immediately following, it is nec-
essary to make PI a double rank register (PI and PI*). PI controls
during PT1 and PT2, PI* controls during PT3 and PT4. PI can be
changed to its new setting while PI* controls. The setting of PI is
transferred to PI* in PTI1.

Every control register with a recycling control in the
sense that one set of its timings may immediately succeed another of its
sets is double ranked. These registers are AI, FI and PI.

The characteristics of the activities during a timing should
be noted. All are done in parallel. Most are accomplished simultaneously.
The completion of addition is an example of one task that may take a
longer time. The time required to complete an addition is variable and
a function of the data. The computer does not allot a fixed time interval
for a timing but proceeds from one timing to the next as soon as all
tasks of a timing that are necessary for the next timing have been
completed. Where the time required for a task is variable, it waits for
a signal to indicate completion. If all task completion times of a timing
never vary, the computer proceeds as rapidly as possible (the limiting
factor is the switching time of the circuits) from one timing to the next.
In this manner, the computer is operating as fast as data and circuitry
permit, for each operation, rather than at a constant rate for all
operations determined by the slowest possible variable case.

1.3-9

Timing Chain

The requirements for the organization of the timing chain
are fourfold:

1. The proper sequence should be established.

2. No more than one timing should be active in any
interval.
3. If the computer has been operating in parallel with

memory it must wait, if necessary, before
activating a timing requiring the memory contents.

4, A timing whkich acts upon a register that has been
subject to a change of contents should not become
active until the situation has stabilized.

To achieve these purposes requires a system of interlocks.
A timing is active only under two types of conditions. Its associated
timing flip-flop is set to one and several additional signals are permissive.
These signals comprise the interlocks.

For example, one of the requirements for any timing to
be active is the existence of the zero state of the previously active timing
flip-flop (See Figure 1.3-2).

The proper sequence is assured by not turning a timing
flip-flop off until the next timing flip-flop has turned on {set to one). Thus
the set-to-one signal will continue until the flip-flop is set,

The third and fourth requirements are met by the third
input of the three-input AND gate that activates the timing. This third
input has been named the "trigger'. Table 1.3-1 shows which timings
require a trigger. MO, the PTI! trigger, signifies the completion of
the memory operation of the previous instruction. MO = MI = 000;
the memory control register has been reset to zero (or no memory
operation was started at the end of the previous instruction), AN2CC
(AN2 Carry Complete) indicates the stabilization of that adder network
following a change of contents of a register that is an input to AN2.
The D numbers that are used as triggers also incorporate the carry
complete signal and note the exceptions, the instructions that need not

1.3-10

.2}
[
x >
% - WO
- Z
> =
w =
Oor
- §
! N\
1 ' - D
¥v3103ud i !
|
_
> 340 21X - “ -7
I _
v I e
L1X 1831 » O “2
| Rwu
Szix @ll — 1<
I _ _
| hd |
| L
| RN A

e T e e s et

4399141

5
440 L1X «—
!
A

ACTIVITY
OF THE
TIMING

'

N
Vs

Figure 1.3-2 Timing Chain

¥Yv3anoi3ud u@ﬁ

| —©
1X _1s3l 10
— 11X 7 wm wm 1

—

]
|

¢]
r_.______.____.__l
XTl
234

Mawxw_ﬂu.

await the carry complete signal. D67 is AN2CC or a jump instruction.
D103 is ANICC or instructions that need not await it. D117 is AN2CC
or certain index register instructions. ANIECC is the carry complete
signal for the exponent part of AN1 in floating point number usage.

Referring to Figure 1.3-2, the "TEST XT" signal is
usually negative and is changed only for engineering tests of the computer.
"Preclear' is part of a manual console control to restore program
control to its starting point,

In Table 1.3-1, the AT4 off signal seems to present the
paradox of the flip-flop attempting to set and reset simultaneously.
This is not the case as the Off signal originates after the passage of the
AT4 signal through several transistors with the attendant circuit delay.
IT4, IT8, AT4, FT4, and PT4 are the possible end of the timing chain
for their respective control registers. It is for this reason they are
turned off in the manner indicated by Table 1.3-1.

1.3-12

Table 1.3-1

Signal to

Trigger Turn Timing
Timing (if any) Off
PT1 MO PTZ2 =1
PT2 AN2CC PT3 =1
PT3 PT4 =1
PT4 AN2CC PT4 : MO
IT1 IT2 =1
IT2 D67 IT3 =1
IT3 IT4 =1
IT4 AN2CC nIT4
IT5 D103 IT6 =1
IT6 IT7 =1
1T7 D103 IT8 =1
IT8 D117 niT8n
ATl AT2 =1
AT2 D48 AT3 =1
AT3 AT4 =1
AT4 ""AT4"
FTl1 D49 FT2 =1
FT2 AN1ECC FT3=1
FT3 FT4 =1
FT4 — END

1.3-13

1.4 Commands

The rightmost eight bits of the instruction are assigned to the
coding of the command part of the instruction. They are identified as:
2

2 2 2

2 16%.17%.18%.192%_20%.21%.22%23

Bit Position

2 2 2 2 2

-40%.41%.422%_43%_44%452% 46 %_47

Identification J Cq¢ C5 C4 C3 CZ Cl CO

The scheme for command coding follows that of the computer
control organization. Since many operations are the same in instructions,
as far as is feasible specific meanings are given to each bit of the command
coding. A binary bit will tend to specify whether or not a possible oper-
ation shall be performed. Two bits may be grouped to select one of four
possible variations in an operation. This scheme cannot be used for every
command coding duetothedifferences among the wide variety of TRANSAC
instructions. However. it is used extensively.

For example, C¢ is used to indicate whether or not an arith-
metic instruction is involved:

Ce

1 arithmetic instruction

C6 =0 non-arithmetic instruction

The coding for arithmetic instructions follows. 'X'" is used to indicate
that the value of the bit position is not significant. This is termed '"bar
coding'. The value of bar coding is that it serves to indicate how to
decode the command into individual control signal lines.

X 1 X X X X X X Arithmetic with Cg and Cy4
indicating type of arithmetic

operation.
X 1 0 0 X X X X Add
X 1 0 1 X X X X Subtract
X 1 1 0 X X X X Multiply
X 1 1 1 X X X X Divide (also some special

instructions)

1.4-1

X 1 X
X 1 X
X 1 X
X 1 X
X 1 0
X 1 0
X 1 1
X 1 1
X 1 X
X 1 X
0 1 X

(=]

oI
>

MWW MM RN

X

>
>

X

Mo X MM
SEEEEEY

MM

MW XX

X

-~ o+ o
MM MM

X

X

<X

»

o

X

1 1 X X X X X X

Shift Instructions

C3C,
0 0
0 1
1 0
1 1

1

001

C, indicates location of second
operand (location of other operand
not variable)

operand in memory

operand in register

Use algebraic value of second

operand

Use absolute value of second
operand (in add, subtract or multiply).

Do not preclear A

Preclear A

Double length product or dividend

Result rounded (single length)

(except special arithmetic)

Do not store result in M) except
) special

Store result in M) arithmetic

Fixed point arithmetic

Floating point arithmetic

XXXX

code the register involved:

A and Q registers

A register

Q register

D register

'C; codes thetype of information in the word that is to be shifted.

1.4-2

Q
H

means treat the leftmost bit (2 g) as the sign
bit and the remainder as an admissible number.
Shifting right is equivalent to dividing this
number by 2; shifting left is equivalent to
multiplying by 2.

C; = 0 means treat the word as some quantity..
No sign is involved and all bits are treated alike.

GO codes the direction of the shift.
Co= 0 means shift left.

Cop = 1 means shift right.

(The D register can only shift right. Cgy= 0
causes a circular right shift in D.)

Jump Instructions X 010 XXXX

G C, broadly defines the areas involved or types
of jump instructions.

00XX defines a special group of jumps. (C3 through Cg incl.)
0000 unconditional jump
0001 jump if (A)=0
0010 jump if OVF = 0 (overflow flip-flop is zero)
0011 ~ jump if OVF = 1

01XX defines the A jumps

0100 jump if A is positive (A > 0)
0101 jump if A is negative (A < 0)
0110 jump if (A) = (Q)
0111 jump if (A) = (D)

10XxX defines the Q jumps

1000 jump if Q is positive (Q is also circular
shifted left one place whether or not the
control jumps.)

1.4-3

11XX

1001

1010

1011

jump if Q is negative. (Q is circular shifted
left one place, as well)

jump if Q is even (2 7=0)

(Q is also circularly shifted right one place

whether or not the control jumps).

jump if Q is odd (Q is circular shifted right,
one place, as well

refers to D and magnitude jumps

1100
1101
1110
1111

jump if D is positive
jump if (A) = (Q) in floating point sense
jump if' (A) (Q) in the algebraic sense

>
jump if (A) = (D) in the alphanumeric sense

In addition there is a group of six miscellaneous or special

arithmetic instructions.

X 111 1XXX.

where Co =

C

o

Non-Arithmetic Instructions

The groups can be identified by the bar coding:

00X Multiply and add or subtract
01X Logical product and add or subtract
10X Add or subtract D

0 means add
1 means subract

The non-arithmetic instructions are divided into five groups by
the use of C4 Cg and J.

X 000
0 001
1 001
X 010
X 011

Transfers of Data

XXXX
XXXX
XXXX
XXXX
XXXX

special instructions
transfers of data

shifts

jumps

index register instructions

0 001 XXXX

Transfers of data are among four possible ldcations, indicating

1.4-4

a two-bit coding to indentify the location.

00 location is memory

01 location is A register
10 location is Q register
11 location is D register

C3 C; identify the sending location; Cj; Cg identify the receiving location.
If C3 C; is the same as C] C(the register is cleared to zero. Other-
wise the sending location is unaltered by the transfer.

The varieties of index register and special instructions are
not suited for description by means of bar coding.

Command Decoding

When the command bits of the instruction are decoded the bar
codes are used, to a large extent, to determine the meaning of the decode
outputs.. The outputs are control signal lines and are called "I' numbers.
Each is identified by the letter 'I" followed by a number. The following
is representative of the types of I numbers.

11 010 0001 jump if A =0 (a specific instruction)

I15 010 jump instructions (a type)

139 IXX 0XXO0 arithmetic instruction with (V) as one operand
and result not stored (one variety of a type of
instruction).

Decoding is done by sub-dividing the 8-bit command code into
three groups as shown in Figure 1,4-1. Generally, the 3-bit and 4-bit decode
results in bar codes which are combined to produce the "I number" control
signal lines.

Translations

As an aid in translating between the machine command coding
and English or the mnemonic code, the 8-bit code is converted to a
quaternary type of code (quaternary number system having the numbers,
0 through 3). Reading from left to right, each pair of binary digits is
converted to one quaternary number. Tables give the instruction and
mnemonic code for each 4-digit quaternary number thus obtained. (See
Appendix).

1.4-5

9-¥°1

sw2

3 BIT DECODE

4 BIT DECODE

TO BAR CODE TO BAR CODE
(CC 51) (CC 52, 53)
DECODE F OR I NUMBERS

(cC 55 -60)

Figure 1.4-1 Command Decoding

1.5 Numbers - Control Signals

The problem of naming the hundreds of control signals in the
computer is an appreciable one. The command part of the instruction,
for example, is decoded to derive 138 control signals as the resultants of
many combinations of the eight bit coding. If these signals were given
descriptive names, the language on the schematic would tend to obscure
the circuitry.

Abbreviations are used, instead. The signals are classified
functionally. Each function is assigned a representative letter and the
signals within the group are numbered consecutively. These abbreviated
names are called ""numbers''.

The groups are decribed below. The numbers are listed in
the appendix.

A Numbers - Al amd AI* signals. These will define the
various choices of activity during algorithm
operations. Other signals used to derive A
numbers are some FI settings, SC = Sat.,
SC # Sat. (Shift Counter not Satisfied).

¥ Numbers - Control signals for floating point operations
derived from FI settings, the instructions and
the data words being manipulated.

I Numbers - Signals derived from the command and occasion-
ally data. Some I numbers represent the common
tasks of several instructions to control their

performance.

J Numbers - Jump activities derived from the command coding,
the data words and their comparison.

M and DM Numbers - Signals derived from MI settings and other
memory control signals.,

P Numbers - Program Control signals from PI, PI* settings,
RR, and other operating controls.

R Numbers - Repeat mode control signals.

1.5-1

S Numbers - Skip control signals.

V Numbers - Variables is the name given to activities
dependent upon the data word, such as the sign
of the word, overflow; or the settings of other
program controls which vary periodically.

D Numbers - When combinations of the above numbers are OR
gated together, the resultant is called a "decision"
and given a D Number. The D Number control
signal will cause the specific tasks to be executed.

In effect then, the size and complexity of the computer requires
three levels of control signals to instigate activities. There are activities
done on the basis of the instruction, those that require several additional
conditions to be done and those requiring many conditions to be performed.

2. INTRODUCTION TO TRANSAC LOGIC
2.1 5-2000 Symbolism, Logical Circuits

A description of the symbolism used in the notation of the
$-2000 logic and standard logical elements is attached as an Appendix for
convenient reference. A familiarity with this material is assumed for
the remainder of this section. '

S-2000 Logical Circuits

‘ The basic logic circuits are formed by use of the standard
transistor configurations.

Inversion (negation) is achieved with the common emitter
(usually followed by an emitter follower for design reasons). See Figure
2.1-1.

Inverter
Figure 2.1-1

AND and OR circuits are formed by the use of either series
(high) gates or parallel (wide) gates. Either gate can serve either the
AND or the OR function.

_ns _ —_ S e D
S - R D43 —us____ _bes _
117 Iz 4 -
T
(A) (B)

Parallel RC Gate
Figure 2.1-2

The 3-wide gate of Figure2.1-2 can be used as an AND gate
(A): I15 - I16 - 117 => D43 (The overscore denotes the inverse
" value, spoken of as NOT I17)

The gate can also be used for an OR function (B):

Il v 116 v 117 => D89
(In our usage the term, OR, impliesdinclirsive OR unless qualified.)

The logical function of the parallel gate can usually be
determined by the polarity of the active output as shown in the schematic
logic adjacent to the output signal name. An active negative polarity
(solid line) for the parallel gate output indicates the AND function. All
input lines must be positive to result in a negative output.

A positive active output polarity (dashed line) of the parallel
gate indicates the OR function. Any combination of negative inputs will
produce a positive output.

Figure 2.1-3 shows a parallel emitter follower configuration.

AND . OR

Parallel Emitter Follower Gate
Figure 2.1-3

This configuration is customarily used for the OR function
as illustrated in Figure 2.1-4,

Parallel Emitter Follower OR Gate
'~ Figure 2.1-4 2.1-2

For the OR function the active output polarity is negative.
The parallel emitter follower is occasionally used as an AND gate, active
output polarity positive.

The series (high) gate can also serve either logical function.
See Figure 2.1-5.

AND OR

Series Gate
Figure 2.1-5

The series gate usually serves as an AND gate.

The Exclusive OR logical circuit may be better visualized
by redefining Exclusive OR. It signifies inequality between two binary
quantities:

A AB = A#B

The logical circuit is devised upon this basis, See Figure 2,1-6.

—————— +r————- A-B

AAB
; A#£8

Exclusive OR
Figure 2.1-6

The right half of Figure 2.1-6 may also be drawn as in Figure
2.1-7. The junction of the emitter follower bases is sometimes called a

"mode''.
A
B
——————— AAB
A .\NODE
B

— —— —— vo—— —— —

Exclusive OR
Figure 2.1-7

The customary use of the Exclusive OR is as part of a
network for the comparison of two binary quantities. Figure 2.1-8 can be
used to determine inequality or equality,

— — —— — i t— . c— — St— o— —— ——— —— oot oottt Sttt sttt

Figure 2.1-8

1t

0
(<]
M.
0O
1
et
[l

=(C, =0-C_| =1)v(C, =1-C_; =0)

(o]

The v symbol is customarily used, rather than A, when the
two terms are mutually exclusive, as the "V!' in this example:

Co =C_y 2(Cu =0 + C_j; =0)v(Cy, =1 - C_y =1)

Both outputs are not necessarily derived from the same
logical circuit. Figure 2.1-8 is an illustration of a method.

The standard RC Flip-flop is shown in Figure 2.1-9, logical
circuit and symbol. The logical circuit is drawn here to emphasize the
similarity to the crossover network of vacuum tube flip-flops.

The active input polarity is positive. The desired polarity
of an active output line will determine from which of the two output sides
the output signal is taken.

The Single Shot logical circuit is shown in Figure 2.1-10
The single shot can be triggered (changed to its unstable state) only by
a negative-going signal at line A, The polarities shown for lines B and
C indicate the polarities during the unstable state. The schematic logic
shows a single shot timing chain in this manner,

The single shot is put to two uses, activity during its unstable
state (usually the B line) and activity at the end of the unstable state
(usually the C line). The A line determines when B starts to be active.
The active period of B (unstable state) is of course determined by the
circuit design of the single shot. C can trigger the next of a chain of
single shots at the end of the unstable period. While the single shot is
in its unstable state, the A line has no influence upon it. And the input
that goes negative and remains negative can only trigger the single shot
once. The A line must return to positive to be capable of retriggering
the single shot.

The "C'" output line of a single shot is normally negative.
When connected as in Figure 2,1-10, the three single shots can and will
operate only in sequence, each being activated by the deactivation of its
predecessor. The length of the active period of the single shot is
determined by the time constant of an RC network,

2. 1-5

[oF}
Q
—t
s
a5
s S
Mz
n O
o M
= 2
g2
pigch
w0

$83

c

§ss2

fits e ot oy —— —— o

SS|!

Single Shot Timing Chain

Figure 2.1-10

2.1-6

2.2 Notation for Schematic Logic

This section describes the notation used in the schematic
logic drawings of the S-2000 and this manual. The abbreviations,
or symbols, used to name the registers and control devices are listed
in the Glossary of Terms. An explanation of the notation method for
signals follows here:

(A) The parenthesis is used to indicate '"the
contents of'' a storage device; in this case
the contents of the A register. This
distinguishes between the storage device
itself, A, and its contents, (A).

D The upper case letter is used to refer to the
entire register or a major portion thereof;
in this case the subscript number ''1'" indicates
the right hand half of D.

d 1 The lower case letter indicates one bit of a
data register; the subscript indicates which
bit position. The positions are numbered
from left to right, 0 to -47, corresponding
to the negative exponent values for the binary
fraction.

ANZ"~ In the control information registers the binary
numbers stored are integers such as a memory
address, number of times an instruction is to
be repeated, or number of places the word is
to be shifted. The bit positions of the control
information registers (and their adder, AN2)
are therefore numbered right to left with a
superscript corresponding to the positive
exponent of the binary integer. The least
significant bit position of AN2 is named AN2°

as compared to the naming of the least significant
bit of the A register, a_yq- (It was apparently
considered confusing to apply the lower case letter
notation to a mixture of alphabetic and numeric
characters — an2° as against AN2° .

(SW2)! The prime symbol indicates the inverse, or for
a binary quantity the ones complement. In this
case, the ones complement of the contents of
Sw2.

I67 : V32 Logical AND symbol; when I67 and V32 are both
active.

I67 v V32 Logical inclusive OR symbol; either 167 OR V32
OR both are active.

I67 AV32 Logical exclusive OR symbol, one OR the other
but not both are active.

Control Two types of names are used. One type is an
Signal arbitrary or a mnemonic name such as 167, V32,
Names The other type is a functional name, such as

1 — OVF (set the Overflow Flip-flop to its
one state).

—_— The action specified at the tail of the arrow is
to be performed upon the device indicated by
the head of the arrow. 0 — MA, Clear the
Memory Address register to zeros.
(V) — PR, transfer the contents of the selected
word in memory to the Program Register.

% Logical equations. When the signals shown at the arrow
tail are active, the action listed at the arrowhead is to
be performed.

D8l « D79 + D52 => 2 — PI

When D81 and NOT D79 and NOT D52 are active, set the
Program Control register to its ''2'' state. NOT D79
active is identical to D79 normal, logically.

—s ATI1

(A) —-—— D

Sometime the action can only be one thing and may
be therefore implied. '"Go to ATI timing" is a
signal named as shown. The circumstances under
which the signal is active is shown by the schematic
logic drawing for the signal's origin.

When only a certain value of information is to be
transferred, it is indicated by the superscript
above the arrow. This control signal permits
only the binary 1's in A to be transferred to
corresponding bit positions in D. When prior

to this action D is cleared (0. —— D), the two
result in the transf&r of a word. The converse
control signal is — .

Transfer, shifting left one place.

Transfer, shifting right one place.

Data Transfer Control Signals

(D) — Q

d_z3 =1

The distinction on the drawings between the
data transfer signal lines and the control
signals which permit the transfers is made
in the following manner. The control signal
will have a functional name describing the
transfer of a register contents, or portion
thereof.

The signal lines transferring the contents

will be named by bit position, due to the parallel
nature of the computer. The control signal will
go to 48 AND gates. In this instance the action
is:

o] [-] = [

Representé.tive Register Schematics

The computer is parallel in operation and registers
contain many bits. Since the logic is identical
for many of these bits, the drawing can be

2.2-3

representative and show the logic circuit for just
one of the bits. A table accompanies the logic
circuit drawing to list the connections to all of
the circuits. The information signal line names
will bear a subscript or superscript "x'" instead
of the specific bit position, for example,

MA* =0or PA* =1. When a circuit for a
specific bit is different from the rest, the logic
circuit for the bit is included in the drawing.

Its signal lines will, of course, bear specific
identification, e.g., ja_j = 0.

Data Registers - Subdivision of Control Signals
The data registers are subdivided into the
mantissa and exponent sections to store
floating point numbers. Furthermore, the end
bits of each section have different logic circuits
from the rest of the bits. The logic schematic

shows 6 bits of the register (4 specific and 2
representative) and tables:

ap a) a_35 a2 _47

a_pm(bits a_j through a _34 of the mantissa)
a_, (bits a _34 through a_ of the exponent)
e 36 g 46

Examples of control signals for the register are:

Qg) L.oa Transfer the ones in the exponent
section of Q to A.

q._] ‘;La_47 Transfer q_; bit 1:oam‘47 if it is a one:

(@) —=ay) ca =1 = l—=a 4.

The parentheses is used here to simplify
reading the terms of this logic.

0 —s A Clear the mantissa section of the A

register to zero. This control signal will
clear bits ay through a _35.

2.2-4

3. INSTRUCTION SELECTION AND PERFORMANCE
3.1 Basic Program Cycle

The basic program cycle consists of the actions in selecting
and performing an instruction. Unless altered by a jump instruction, the
sequence of instructions performed is consecutively through the memory
(by address). Each word contains two instructions, the instruction in the
left half of the word (20 to 2=23 bits) is performed first.

Normally, therefore, in this sequence, every other basic
program cycle starts with a transfer from (V) PR for a new
instruction word. A control is required to specify on alternate cycles
that a new instruction word is required. Another control is required to
specify which half of the instruction word contains the instructions to be
performed. Lastly, a control is required to alternate the first two
controls between their two possible states. Flip-flops are used for
these controls.

PI = 01 transfer an instruction word to PR from memory
PI = 00 no instruction word transfer required
Sw2= 0 perform IO the instruction in PRO
SwW2= 1 perform Il, the instruction in PRl
MOD 2 = 0 the next instruction to be performed will be
in PR
0
MOD2 = 1 the next instruction to be performed will be
in PR1

SW2 as the control of the location in PR of the instruction
currently being performed causes Mod 2 to alternates

(Sw2)! Mod 2

The complement of SW 2 is used since the next location is the alternate:

Mod 2's condition determines the ensuing state of PI.
(Mod2 = 0) —/— (1 — PI)
1) —/ (0 —— PI)

And, at the proper time, Mod 2 will cause SW2 to alternate:

(Mod 2

Mod 2 ——» SW2

Mod 2 and PI which indicate actions to be performed following the
performance of the current instruction can be switched during the
performance of an instruction. SW2 must remain unchanged during
the performance of an instruction as it is gating the command part of
the instruction word to the command decoding network. SW2 is there-
fore switched between instructions.

The basic program includes timings of two control registers,
PI and II. Program timings (PT§) can be considered as program cycle
activities between instructions. This is the time SW2 is changed. PT2
is used as it is a timing common to both cases, transfer necessary or
unnecessary from memory to PR.

All instructions go through the eatlier timings of IT so it
can be considered part of the basic program cycle. The complement of
SW2 is transferred to Mod 2 in IT2. Following this, Mod 2's new state
is transferred to PI in IT2 or IT3. The setting of PI in IT3 determines
whether or not to get a new instruction word during the next set of PTs.

PI Time PI= 00

If the next instruction is already in PR, very little requires
to be done during the PTs. To save time the computer in this case goes
from "END'" (a gating decision at the end of timings for AT, IT and FT)
to PT2. In PT2, (Mod 2) SW2, to prepare to select the next
instruction from PR. Then, unless the computer pauses due to a break-
point or overflow or fault or operator intervention, it proceeds from
PT4 to IT1 and the next instruction.

PI Time PI = 01

Three operations occur during these timings. A new instruction
word is transferred from memory to PR (its address was stored in the PA
register). Secondly, this address is increased by one and restored in PA
to provide the next address of a normal sequence of instructions. Lastly,
(Mod 2 —— SW2) to select the PR location. The activity during the four
timings (PR1 toPT4) is:

PT1
| 1. Clear MA to receive address from PA 0 — MA
2. Connect AN2 inputs for incrementing
the address
MA —— SW4 address will enter adder via MA
I —— AN2C increment of one
0 — PM no input from SW6
3. Clear PR for new word 0 — PR
PT2
1. Transfer address to MA to decode for
memory access and for input to AN2 (PA) — MA
2. Start memory cycle 1 — MI
3. Prepare to select next instruction (Mod 2) —= SW2
PT3.
1. Clear PA for incremented address 0 —PA
PT4
1. Transfer incremented address to PA (ANZ)u—e PA
2. Proceed to next instruction unless
control signals a pause — IT1

3.1-3

Computer Pause

The term '"pause'' is used to identify the cause of the stopping
of computer operation. Pause indicates the computer stopped for a reason
other than a programmed stop (the Halt instruction) or machine malfunction
(usually termed "hanging up'). The pause can be due to a Fault, Overflow,
MA = MP, Breakpoint, operating in the STEP or TEST modes, or operator
intervention by depressing the STOP switch.

It is normally desirable to have the computer pause just after
completing the instruction during which a pause was signalled. When a
Fault develops (Command, Memory or Exponent Fault) it is convenient
to learn by the console display what instruction and what part of the
program was being performed. If it were the I} instruction, it is
necessary to preserve (PR) by not reading in the next instruction word.
The fault condition will therefore inhibit two signals, 1 ——= PT1
(avoid read-in new instruction word) and 1 — IT1 (do not go ahead
to next instruction).

However, in the case of overflow, a unique situation exists
due to the two jump instructions which are conditional upon overflow
(JNO, JOF). In the case of JOF following an instruction whose performance
generated an overflow, the computer should not pause, but proceed to
jump.

This requires that program control must be always aware
of the next instruction before a pause due to overflow. Therefore overflow
will never stop the program cycle before PT1. The next instruction
is an overflow jump. The timing logic of PT4 insures that the new word
is in PR before the decision is made whether or not to pause. This
situation also exists in the case of breakpoint, the JBT instruction.

STEP mode, MA = MP or operator intervention will cause
the computer to pause in the same manner as a Fault, before PTI or
ITl. TEST will be discussed in detail in the section on Operating
Modes.

3.1-4

First Basic Program Cycle

This first cycle must be manually selected. Console
switches offer three choices:

I0 Do the left instruction already in PR.
I1 Do the right instruction already in PR.
I Read next instruction word,

v

g —» 0——=SW2, 0-—=PI PI*
I —/ 1—*SW2, 0 ——PI PI*

I —_—>» O0—=Mod2 1 — PI

4. COMPUTER CONSOLE AND OPERATING

4.1 ‘Console and Operating Controls

Figure 4.1-1 shows the 5-2000 console. ‘A brief description of
each operating control and visual display is noted alongside each part of
the console in this drawing.

4.1-1

DISPLAY OF INPUT OUTPUT INSTRUCTION BEING PERFORMED

1-0 OQOO0OOOLO0LOOLOOOOLOOOOOLOOOOOOCOOOOOOLOO0OOOLOOLO00 10

PROGRAM TIME DISPLAY OF CONTENTS

orsrLay oF contents INDE

010]0)0]0]00]00)

wanUAL JAOOOOOOO000000000 O UA W29 8 T e
O I 2 3 4 8% 6 1 &8 % 1GN 1213 4.5;cnwnmuzzu4n:¢nzausosaazssnssusru»«u-a««cnn RESET EEEEE M 13 12 n v 9 8 T 6 5 4 3 2 1 0 F X, OOO.OOO.OOO.
M OOOO’OOO’OOO M e PA OO OO0 O0OO0O0O000O00 PA
T ENaccESSED By Coupirer " T o e WoBomWB s T 45 48t X, ©00000000
789 2 o MAOOOQOODOODODOOOOOOOO MA W3z 009 8 T e
@@@@@@@@@@@@@@@@@@@@@@@ X, OOCOO0O00
TR SETTINGS OF THESE TOGGLE REGISTER SWITCHES WILL BE TRANSFERRED T0 D BY THE TTD /MJ'"A’UCﬂoN\SW/ﬁHES SHOWN INO ;m‘/no/v) T ror wen ke mp
@ -~ 46 L4 OFF FAST Mp I3 12 11 10’ 9 8 7 @ @@@@@ é%ﬁé@%{“‘e X‘ OO0.000QOQ
PP 000000 PIOO0OIOIGPPO D POFOOTDOFH
SWITCHES SHOWN IN 0" PosiTION NORE =
i R T S RS S e e s — X, OOCDOCOO0
A [@=41 OOOCOOOOOOOO000OO00O00C00000000000O00O00000000000 [w=7] A B4 N L N e
fTRANerR € 1 2 3 4 5 7 8 9 0l 121314 151617 18 %20 2 22 nlea 2526 27 2829 30 31 32 33 34 35 36 37 38 39 40 Al 42 43 44 45 46 41 TRANSFER @ O ? O WHEN OVERFLOW X‘ OO0.000.000.
o1spay (Lir wHEN WHEN M 13 2111w 9 8 7 6
Q [2=9 COCOOCOOTOOTOOCOOTOOTOOTOOTOOCTOOCOOTOOOOT000000 =2 Q oFF 0 war puute R i TS oYnl OFF Jowoke owRrLow x. 000000000
/ Y BRI ST B B = :
A T A R E G I 8§ T E R P R O 6 R A M 6 | 8§ T & R
aear> o ' 2 s) s 6 b4 2 s o __n_ 2 13 4 5 ue) <—¢um
F n[olo O o0 o0 oJo © oJo o0I0 0 oJo oo 0lo OT6 SIC O !:Ilolo o0 oo © oJo o 0Jo © oJo o oloTo[o o[
JUMP CLEAR—b s Ny No Va Vio Vs Vs vy Ve Vi Vaq Vi \A vy Vo Ce Cs Ca
cLean’ 4 2 27 28 29 30 8 32 33 34 35 36 ST 38 W= 40 46 47 @—CLEAR
/ 9010 0 910 0 00 O 010 0 010 o o6 oRNol [D;,“;:;;U,-lom o 0o]Jo © 0]c o ofJo o oJo © o[ololo o]
CHANGING JA
° [2 3 - L] 6 4] s 0 " iz 3 . 1] 16 4 T 9 20 n 22 23 PALSE AT
ICFJE DR ng lN((5&2 [’C;i; [" /1\50ch 603/;5:;55‘,'[Y /ﬂ?%c%/v SroP
Ry 18 pepREsIED RUN | sTEP | sToP IL
24 25 26 2r F-] zo‘ 20 3 3z ss 4 35 36 37 38 29 40 - a2 4 - 45 2" 47 v %Z%g’g’:’;’NG s Ng Ny No Vi Vie Ve Ve] Ve Vs Va4 Vs Ve A\ Yo F Ce Cs Cy
| [o] Ie

CTION BEING PERFORMED

PROGRAM TIME

DISPLAY OF CONTENTS

orseray oF conTents INDEX

Xo

00000000 0LOO00O00L0

DISPLAY

OCO000000000OCO0000000000 0 JA000000.000000000 O UA DT P s o TINING CYOLE
Mrmum e ey nnmmn e ane s E A X, OO00OTOOTO00000D X, |+ dhrirte™ e e
COOOCOOCOOCOOCOOOOOOCOC0O0 M PA OO O:OOOOOO00OO00000 PA R e PO OO O
CY LOCATION SELECTED By MP SWITCHES N TIME
D8y codpuﬁm’ o Mmoo s 8 T 6 5 4 (; é X, ©000000000000000 X, ~ f e s
7. 18 ”.a & = MA OO QOO0 0OOO000O0O0 MA 4B 21098 T 65 48 21 0C 0-7 1 OO O O
ZEQ @ ®D@ 9 %? 20099 X, ©O0VO0DOCOOTOOTO X, x) . TS
TRANSFERRED To B8Y THE TTD (4 N\SW/ HES SHOWN IN POSITION TR P O o O O OF EACH TIMING
a3 - L] 44 7 OFF FAST 4 13 1z n o0] ON %ngciongffzaﬁ X TURN ALL
)00 006 PP6PD 6O » 66 FOETEOTEEIIOE @ W % 0000000000000000 X, = N
SWITCHES SHOWN IN ‘O POSITION OFF /GNORE MA=MP 413 @ e s 4 X resT Mot o
ey ge g e P BULATR seax o N X, ©OC00000OCOOTO0C0 X, Lo s
0O00000000000000000000000 frs) A Hti? o s o b N g FOOOO
n' 24 2526 27 28 29 3031 32 3 34 35 36 37 30 39 40 4l 42 43 44 45 4 41 'rnm;rn* O , WHEN OVERFLOW Xs oooooo 0.0 O0.000.000.0 xs
o, ¢ O 0 0 0 0 O o> OFF 00 NOT PAUSE puspAr (Lir worew NEL OFF sewore overrLow 413 1211109 8 7‘6 5 43 210c¢C
00000000000 00000060 006000) :5;”5535&”35" X, 00000 0000000000 X,
€ G T R P R 0O 6 R A M G | S T E R

OlO OTO OIO o) | I | @)

Clelo

%

37

oo

ojo

oJo

o]Jo O

ololoTo oo o|o'<ﬂl‘_'|

JUMP CLEAR~® S Ng

Ol |Of

Ol |0}a

O [|Of

No

Vu

Ve

)

Vs

Ve

F Ce Cs Cy4 C € Co @ocLEAR

47 <« CLEAR
o0T0 oT10 610 ol] C i Cd[e]0

oo

ojo

ofo

0jJo O

olojoJo oo o]o o1l]

ALL VOLTAGES ON

CHANGING JA

Ny

No

Vie

Vs

\{)

Ve

Vs

Vs

Ve

Vi

Vo

] 2] 3 L} 16 4 7.} 9 0 n 2z zs PAUSE AT
OPERATE START OF
CONTINVOUSLY INSTRULTION STOP
RUN || STEP | sTOP I
OPERATIONAL INSERT A | IN
- 8IT PLSITICN
CCRRESPONOING 3 N,
d 36 37 38 3 0 ¢\ -2 - 44 45 % 47 T KEY 2
i " !
\ ADVANCE
L_comce | le
GO AHEAD

I INSTRUCTIGN
L O NEXT CF WCRD

I

00 LEFT HAND

ALREADY N AR NstarT| [l sTOP

READ NEW
O %‘Ig?ze‘/j‘;rc/l\on)\l START — CLEAR ALL CONIRCLS

MEMCRY RETURN TO START POINT OF
BASIC PROGRAM CYCLE

— ALSO 0N SwiTCH FOR

GHT HAND
O Dwsrku.‘f/(u COMPUTER

NEXT RD
ATy M STep - De_orF ¢ miTATE

ALTOMAT 1€ TURN - CFF

cyéee

IN TURN -~ ON
OR TURN -OFF CYCLE
STAND] ., JTURN
i

PRE-
CLEAR

TEST

NEON

OFF

0

Figure 4.1-1

S-2000 Console

4.1-2

Computer ON or OFF

A single switch initiates the automatic turn-on cycle of the
computer. This is the START switch at the extreme right of the console.
At the end of the turn-on cycle, the READY indication will light.

The STOP switch at the extreme right of the console will turn
D. C. off and initiate the automatic turn-off cycle.

‘Power for the Magnetic Core Stack Heaters is independent of
the computer on-off switches and can be discontinued only at the main
circuit breaker.

This START switch also is used to establish the initial
settings of the control registers and other control elements, effectively,
clearing the controls to return the computer to the starting point of the
basic program cycle.

Program Register

An instruction word can be manually entered directly into the
Program Register by means of the key switches, numbered correspond-
ing to bit positions.

PR is cleared to zero by the CLEAR switches alongside the
display neons. Four switches enable changing information in only part
of the register. The color of a switch and panel indicates the part of the
register controlled by it.

D Register

Manual entry directly into the D Register is provided by
CLEAR and key switches similar to those for PR,

A and Q Registers
The A and QQ registers are manually accessible by trans-
fers from D. Manual transfer switches (to the left of the display neons

for the A and Q registers) control the transfer from D.

Manual transfers from A or Q to D are controlled by the
switches to the right of the register display neons.

4.1-3

Toggle Re gister

This register, whose contents are manually selected, can be
transferred to the D register under control of the program, namely
the TTD instruction. With a suitably designed program, (TR) can be
used to manually indicate which sections of a program are to be performed
during the run. This method will be used in performing the maintenance
routines. TR consists of 48 two-position toggle switches having a
binary value of '"0'" in the down position.

M Register

The M register is used solely for display to monitor the
contents of any single memory location. The location is manually
selected by the MP toggle switches on the right side of the console.

I-O Register

This register also only has a display function. Its contents
are the input-output instruction currently being performed. Or, the
last I-O instruction if none is current.

JA, PA, MA, X Displays

These console neons are connected to the registers indicated
and display their contents. The JA register has an F bit to indicate
with which half of the instruction word the normal sequence of program
control is to be resumed. The Index Registers each have a counter bit,
C. When a system has more than eight Index Registers, they will be
manually selected for display, in groups of eight, by the INDEX SELECTOR
switches to the right of the neons.

MP Switches

These select a memory location for display in the M register.
The down position of these two-position toggle switches is the binary "0
position. When the address selected by the MP switches coincides with
the address used by the program, or program control, an option of
stopping the computer is available. The coincidence produces an active
MA = MP signal.

4.1-4

MA = MP

The switch immediately to the right of the MP(switch
and labelled ON, OFF will cause the computer te halt if in the ON position,
and MA = MP. The computer halts at the end of the memory cycle.

Overflow

The neon is lit when the Overflow flip-flop is in the one
state, indicating overflow, If the switch is ON, the computer will stop
at the end of the instruction during which overflow occurred, unless the
following instruction is an overflow jump instruction.,

Faults

The development of any of four faults (Command Fault,
Input/Output Fault, Memory Fault, Exponent Fault) will be indicated by
a lighted neon.

Command Fault is the result of an illegitimate command
coding in the instruction. The eight-bit command code provides 256
possible coding combinations. Some of these are presently unused. If
for some reason the combination appears in PR, the computer cannot
proceed until the command coding is manually changed to that of an
existing instruction.

Memory Fault exists when the core stack temperature is
outside its operating range (104°F +1-1/2°F). Memory operation is
unreliable unless in range. The computer will cease to operate until the
temperature is restored within range.

Exponent Fault represents the development of a quantity too
large to represent in the computer as the result of floating point arithmetic.

Input/Output Fault is a type due to a control failure in any
of the I-O equipment that prevents it from completing its operation.
Generally, computer operation is not stopped. The faulty I-O sector
cannot do succeeding operations having failed to complete one. However,
other types of I-O equipment can be operated. Uniquely, an I-O Fault
from a magnetic drum operation causes the computer to cease operating
as the computer can be doing nothing else during a drum instruction
performance.

4,1-5

Breakpoint Switch

When the BREAK switch is in the ON .position, the com-
puter will pause before performing the JBT instruction.

Stop Switch

When STOP is depressed, it latches itself and releases
the RUN switch to deactivate P20. The computer will stop before per-
forming the next instruction.

Advance

The ADVANCE switch signals the computer to ""go ahead,
The switch itself is merely used to set a flip-flop which provides a
steady Advance signal. Otherwise switch contact bounce would result
in a group of pulses. (This type of logic is called a "filter flip-flop'.)

Jump

The JUMP switch will cause execution of a jump instruc-
tion that has been entered into PR without changing the contents of the
JA register. This enables manual departure from a program without
losing the point in the Program run at which the intervention occurred.

This jump is executed by entering the address, to which
to jump, in the I_ field of either half of PR by means of the manual
switches. The PR . bit is made the Proper value to indicate whether to
jump to the left or right. Either the IL or the I, manual switch is used .
to make this entered information the operative half of PR. Lastly the
JUMP switch is depressed and released.

NOTE: 1If the R bit of the operative half of PR is equal
1, (X) will be added to (Iy) toform the effective
address for the jump.

Preclear

The PRECLEAR switch, located in the upper right of the
console, restores all controls which begin the basic program cycle in a
fixed condition. Its action parallels that of the START switch except
that it does not turn on the computer.

4.1-6

(Terjaed) syjoajuon ajosuo) 7Z-1°'% 2anl31 g

L-1"%

YY-HE0E £

B G
@@@@ iR Precreae PT1 —~ PT4—@_@
@@@@ o FrecLear IT1 > 174@_@

|
@@@@ w (ececear ITS — IT8 @_@_ | S ———\ o——rr _
@@@@ > Prsesenr ATL— »97'4—@_@; I % =
" e g
N
R

EEDE L =22 ity (UG-
| (T o=t
e TS S | S

I TIROGE- & MS* M N
ot s s & x———(vseust)~
O = N i
00 (3ot s)
O — JFF | z

9 CPrrréd-—Geend

|

O —> INTERRUPT 1) o—7 CoF [V
[y 4 @ TV E v
s ——e— - | JS
| 3 (Gaz o)A TN
Ol Jpeeessaes=pece G o --Cimed) - T :

2-sLon e
V2-P502 1L

4.2 Operational Modes

The mode selection switches, on the lower center of the con-
sole, determine the operating rate of the basic program cycle. In the
RUN mode, the computer operates continuously, from one program cycle
to the next in the absence of a fault. In the STEP mode, the computer
pauses each cycle. The STOP switch is used to manually intervene in the
operation. The computer is stopped at the completion of the current pro-
gram cycle, when the stop switch is depressed, and cannot operate
further.

The three switches are mechanically latching and interlocking
so that only one can be kept closed at any time. Depressing one releases
the other two. The ADVANCE switch, when depressed, will initiate the
RUN mode of operation, if the RUN was previously depressed. The
ADVANCE switch is a momentary switch. If the STEP is depressed, the
ADVANCE is used to start the computer off on each program cycle.

The ADVANCE switch is ineffective when STOP is depressed, In the STEP
mode, the STEP OSCILLATOR can be substituted for the ADVANCE switch
to make the program cycle repetition rate that of an oscillator whose
frequency can be varied between one and ten pulses per second.

The point of the program cycle where the computer pauses
before each instruction is the exit from PT4 to ITl. In addition the com-
puter will pause before exiting to PTl., To summarize, in the STEP mode
the computer pauses before every instruction and before transferring a
new instruction word from memory. The pause is due to the lack of a
permissive RUN signal, P20.

Referring to Figure 4.2-1, P20 = RUN mode + MEM FAULT *
(EF=0) + (CF=0) + (StopFF =0). EF and CF are the Exponent
Fault and Command Fault flip-flops respectively. When set, they indicate
the named error. Mem Fault indicates the core storage unit temperature
is outside its operating range. The Stop FF is unrelated to the STOP
mode switch. The Stop FF is set by a programmed halt, either the Halt
instruction or when a selected memory address has been reached in the
program.

P20 is one of the conditions required for timing to proceed
from PT4 —— IT1. If it is inhibitory during PT4, PT4 will be turned
off without producing a signal to start the next timing (IT1 in this case).
The ADVANCE switch will reset the three flip-flops (EF, CF, STOP) and
cause the computer to proceed to IT1.

402"1

s22907 s2390f

522908

|
s
O
S i]
RS LT
o —_—
a b~ ,
|
|
Y |
$ |
RO
i2)
ZOF
o L.
wn = -

|
|
[
_
[

Y

&

L

2t

JI13022-

Ge-

o

J13022-N

H— -9

NaLGTTI08; QN&M
i QIS)

(SLpogyl }

Id

>
“a
M

\

Iewl-y

||||||| ———————— e
-

| (S -zeogy,r)
ey

I
I I

-
|
| S—

Lt

I

STEP (OSCiLLATOR

/
/

1

(Z-zcogir)

A-970z//,)

o
3
3
S

Loronsyzzy

3
-Q
N
N
X

|

|

!

|

[

|

| S-0902.8
|

|

|

|

| 17-09 027
|

|

02020

1
| L N __! @ MI& £-o202
T

L

2
<

Q
N
N

TIY

s

-Teog - — .w.l“.lt 2\

O TII=Y

750 € 1p Yy

\ JUI - T1H ZLH
{(HSA0E}

Ji3047 18;

oy Iy TIg
(7 - \
Dy o s e 073
\\\| \
2 w21y

8/-2%0¢ (0 LT T 135] TVawy

D

4

1N118

1000

—
(ki ===~ .

-
|
|
|
_

| Ebs i~ F
— — “ — e —— e e — - ——

L (V7% A _

|

1k

_'mﬂIUT _
—d

2TM

2%

Too34

ReLay Driver

v7Ig MY -Nowxy oL

(% <hoep

s

—4
e T L
! =~
" oY

— —_— e)

=
L 1 OJ

-4
QA% s

»2 M8,

T4y g7 gy —

) EMs<T

2 |LI{19|20

o) (27

3
&
=&

)
SEO

CYSajcc 7
I NZ2

-6

\’I/
7
N
[
[
//n.v\
3
&
E
5]
W

Front Panel Controls

Figure 4.2-1

4.2-2

ADVANCE : PO—> ITI (PO= (PI 0), do the next
instruction). In PT3, before the pause, Mod 2—=SW2 prepared the latter
to indicate whether the next instruction was located in IO or Il.

Test Mode

The Test mode of operation causes the computer to pause at
the end of each timing. This is achieved by the following method of turning
on a timing. "Turning on'" can be defined as causing a permissive
(active) signal on all lines carrying the timing signal to the gates involving
actions to be performed during the timing,

The method requires two conditions to turn on a timing --
that the associated timing flip-flop be set to one and the subsequent
removal of the setting signal.

XTn — (XTn = 1) * (1 —— XTn)
where "xT '"" represents any control timing and its number. (1— xT)
generally Comes from the flip-flop of the preceding timing. The signal
becomes inhibitory when the preceding timing flip-flop is reset to zero.
If the resetting of the preceding flip-flop is prevented, the computer will
pause as xTn timing cannot be turned on. Two flip-flops will be set,
xT, and XTn=1°

A two-high AND gate is at the reset input of each of the
timing flip-flops. One of the signals to the gate is the signal that also
goes to set the next timing flip-flop. The other signal at the reset gate
is Release Test Inhibit. When the TEST mode is OFF, this signal is con-
stantly active (permissive). In the TEST mode, this signal is inactive
and prevents the resetting of the flip-flop. The Release Test Inhibit
signal can be momentarily made active by either the manual ADVANCE
switch or the STEP OSCILLATOR.

When the computer is paused in this fashion, both timing
flip-flops are set, but only the earlier timing is on.

The computer is placed in the Test Mode by depressing the
TEST switch in the upper right part of the console. TEST is removed by
depressing the OFF switch. (The NEON switch turns on all neons in the
computer, with the one exception of the neon on the card containing the
Step Oscillator circuit, to enable a check of the visual indicators.)

4,2-3

The TIMING CYCLE display will indicate, during TEST mode
which timing is on. Generally, two neons are lit as two timing flip-flops
will be set. However only the earlier of the two timings is active.

Inhibit Release Pulse Generator

A method is required to insure that when the computer is
released to perform the next timing, in the TEST mode, the release
signal will be a single pulse that ends before the next timing is completed.
Otherwise the computer might perform several timings per release. The
pulse is provided by the Inhibit Release Pulse Generator (IRPG).

The signal which, when active, permits the timing flip-flops
to be reset, is labelled '"Release Test Inhibit" (RTI) on Figure 4.2-1.

The usual two-step logic is employed for an interlock:

RTI = Test OFF v (IRPG =1 . 1 — IRPQG)

1 — IRPG = TEST . (ADVANCE v Step Oscillator)

(TEST v ADVANCE v Step Osc.) . IRPG=1==) RTI, 0 —IRPG

It is also necessary during TEST to inhibit the ADVANCE or
Step Osc. active signals from sending 1 ——> PT1 or 1 ——1IT1 in the

presence of Pl or PO. The logic "ORs' all of the other timings together
to inhibit the above set signals if any other timing flip-flop is set.

4;2"4

5. LOGIC SECTIONS OF COMPUTER
5.1 Adder Networks

Both adder networks of the computer, ANl and AN2, use the
same principles of logical organization. The adder logic will be explained
using AN1 as the illustration, see Figure 5.1-1,

ANI1 Inputs

The data inputs to AN1 (A and D%*) are always connected to
the adder network. That is, no switching or gating is involved. The sum
output of AN1 (A + D*) goes to A* through gates and a permissive control
signal is required to transfer the adder sum to A%,

The Adder

The adder is a logical network and its output is always avail-
able with one exception. The exception is the time required to respond to
a change of information in one of its inputs, A or D%,

The result of the addition of two multi-order numbers
(numbers having more than one digit) cannot be instantaneously determined.
The determination of one of the three values, the carry-in, to be added
per column has an unavoidable, finite time delay due to the adder circuitry
of the adjacent lower order.

The carry-in will influence the sum of the column and may
influence the carry-out from that column. The adder must be organized
s0 that the sum for an order is not indicated until the carry-in exists to
that order.

As the carry-in to an order is the carry-out from the ad-
jacent lower order, the existence of a carry-out from every order of the
number, can be used to indicate the presence of the sum for each order
and the completion of the addition. For the binary adder this requires
two carry-out signal lines, CO =1 and CO = 0.

With the stipluation that the sum will not be determined until

the three inputs to a column exist, the sum output can be obtained with
just one signal line for each order. In ANIl, the Sum = 0 line is the one

5.1-1

Jirozt .. Jlio2s
Jir0st ... J130 35 cc

Jizoo®.. Jiso1?

2-’5 AZ-“’

cC=2

P
S
13007y

i
|
i
yull
|
-+

- 3 fPxt _

AR s
I

- /3007y . - -
Slaznd P S—
l 413032 -10 [g13008 21| i1300#31}i 13 010 -
-t -M]t 2430 13373 1
~L Juiscia ufgisois -2]i 38 -tj

A (38017 -ulir3om@ 1431308 -

TN T AN M
413033-‘72(‘ 3102 | 44 Iis32-algiia23 -

cal Taieae -ayiozs wfyi2oer 4

=30 |iro0r A|l12558 -w}in00e. u]
12006 -2 1] J12007 -3
-ufdiiced ailyizere i)
Su}jiso mlgasy -9
T 1inom 3o o5 -1 |4 1361611

JNOIT -3414120!8 -21],1301% -3

A I CET YR 1302z 3]
- K Jdnon-ulinma-u lizeas -2
TR P TEY) SRR Y I FIEE Y
413604-20 1113 30421 [j:3 396 21

BN CILY 6 2

A

B]
@ ANJE C.iwn © '
M]

R e

T

r!x&_
R
i

ks

T

(£ AT
113083 D

-
'
]

—

.
T
'
i

R I)

L@}
1

= Jijo24-19lur 0154102505 -12
-Mpoiscos-Al 326 -8l 00700
FEEIIRC] RO) (E TR
33017 —alyi3¢id - fimaid =4
12623 -ayid924 2 izeas -y
13204 -R[Jr336£ -19 1113006 ~H|
0 Al 1§01 -9]a130i% A}y 1851349
o -NlJ 13017 -RLis 0B gfs 39 19

i ro0d R
AK finotd -19])13 018 -9
1130336 huezo-Alusci 41
-Elinosi-m|ii3asn
- 51113008 -1 1113009 9,
Juois -Alyi3ors |

J3oo7 -5

_——————
h
1

52

1n*mvnuf>
h,
i

———— ——

I

(J13007-8)
|

Iyl

I I| (3007 -46)

O~—2ANICE

|—»ANiCe

{1
“/}SZ _______ .

A

e S
bttt tts S S

AAD®-sD,

[—(JBD?S— 8)

A A

1
©
LR
1115

AAD D .

b

Iy L i303-)

(Jl?,ao?)

I ANIC

(J/Jn_o{/ﬁ)

O-»AN1C

(Jizoor-m)

ANte =/

JI3020

JI13020 (CEDASE

NgE = O

—— e e - A T T T TS

SOOI I S

4

o

J13020

®

S

|

!

i

|

®
9
i
g
B
) ®
&)

Q
Q 0 hh ™~
i 3 -1 _Lr - " < ! g
A N o H
i P19 ® - T 3
[s, -1 A - ~N)
B SEebeded y 3 Y
28) (27) 26 [[30a m @ 2z) (2
OO0 &E)
fecvt
DE

Figure 5.1-1 ANI1, Adder Network 1

5.1-2

used. The only other possible output is implied by the absence of an active
S= 0 line. For example, the A* register is set to all ones before addition
and the S =0 lines from ANl (Adder Network 1) will enter the sum in A%,

The inputs to each bit adder in AN1 consist of six lines, A}
Ao D) Dy from the registers and C; C from the adjacent lower order
bit adder, where the subscripts indicate the binary value of the active
signal lines.

The S-2000 adder logic for a bit is as follows:

1. If A= D, the carry-out is immediately determined as
it will not be influenced by the carry-in.

A1 D¥§ => CO

1

where CO is the carry-out

A D¥ .—.% CO =0

2. Otherwise carry-out awaits the carry-in.

A|;D; - CI=0=>CO=0

where CI is the carry-in

£ 3 . = =
A D% .+ CI=1=»CO=1

3. The sum also awaits the carry-in. The conditions for
a sum of zero are then acted upon.

(A;D¥* v A D% . CI=0=>5=0

(A; D} v A Dg) ¢« CI=1=28=0

4. The completion of the adder network operation for the
addition is signaled by an active ANCC line (Adder Net-
work Carry Complete). An active carry-out line from
each bit adder is required for this signal:

(COg=1 v COg=0) . (CO_1=1 v CO.1=0) ,
(CO_ 1 v CO_2=0) *(CO_g47=1 v CO _4q=0)
—> ANIGG
5.1-3

for the case of fixed point addition in AN1, where the
subscripts for "CO'" indicate the bit position.

5. Thislogic requires carry-in lines to the least significant.
bit, 2_47, (or bits in the case of floating point, 2 .35 and
2_47). These lines are energized by the flip-flops ANC
(Adder Network Carry) and ANCE (Adder Network
Exponent Carry). These are established in the required
condition prior to the addition.

Inhibiting the Adder

As the adder inputs are always connected to the adder, it is
desirable to prevent the adder from being active whenever the contents of
a register providing an adder input is being changed. One method of
achieving this is to prevent the indication that a sum is available in the
adder. This would mean preventing the existence of an active Carry
Complete signal.

Whenever a transfer is made to a register providing an adder
input one of the carry inhibit signals is activated. These signals prevent
the carry-in to each bit position, thereby forestalling the carry-out and a

-Carry Complete signal, unless the two inputs are identical.

The carry inhibits are activated by two sources:
1 — ANII a flip-flop
AN1I=1=> ANl C. Inh.
and
Inh. AN1=> ANl C. Inh.
The Inh. ANl signal (Inhibit AN1) is used to inhibit the adder
for the brief intervals while a transfer to A or D¥* is being made. The
ANII flip-flop is used to enable the adder network to be used for comparison

of A and D* instead of addition. A flip-flop is used as the carry inhibit

signal is required to be active over a large part of the comparision in-
struction performance time.

5.1-4

Subtraction

Subtraction is done by adding the two's complement of D to
A. For addition, D* is cleared to zeros and the ones in D are transferred
to D*. For subtraction, the one's complement of D is transferred to D%
by inversion. D#%* is clearedtoones and then the ones in D will be used to
change the corresponding bits of D* to zeros. Furthermore, the carry-in
to the least significant bit of AN1 is made a ''one'" to effectively provide
the two's complement.

Floating Point

For floating point, ANI1 is divided into two independent
sections to handle the mantissa and exponent. This requires carry-in
lines to each least significant digit of the two parts of the floating point
number. ANIC flip-flop provides the carry-in to bit -35 and ANICE
flip-flop to bit -47. (In fixed point arithmetic ANIC provides the carry-in
to bit -47. The use of these flip-flops is controlled by the FP = 0, Float-
ing Point= 0, and FP =1 signals).

ANI1CC still represents carry complete for all 48 bits, but
a separate signal line also exists, AN1IECC, to indicate carry completed
for bits -36 through -47. The carry-outs from the sign and most significant
bits of the exponent are required. These are four lines, two each from

[o _36 and c .;37 .

AN2

ANZ operates similarly to AN1. Its differences are the
following. The inputs to AN2 are selected among several sources. One
input comes from SW4, the other from SW6. Only the ones from the
register flip-flops are brought to SW4 and SW6. The outputs of the
switches are inverted to derive the zeros input to AN2 for the bit, as well
as the ones input. The SWé outputs are gated with PM to control whether
the information or its inverse (one's complement) is sent to AN2.

The logic of the adder network, AN2, is almost the same as
for ANl. The sum outputs however are the ones bits (AN2™ =1). The AN2
sum is transferred to MA through gates controlled by the "AN2 —» MA"
signal.

The AN2I and AN2C flip-flops perform the carry inhibit and
carry-in functions. The AN2CC signal is active when all bits have a carry-
out,

5.1-5

5.2 Registers

Register Sectors for Control

As previously mentioned, the logic diagram for a register, where
parallel transfers occur, may be a condensed version of the actual situation.
The schematic logic diagram of the A and A* registers can be illustrative of
the notation method.

The 48 bits of the register have to be divided into groups. Circuit
design considerations set a maximum number of bit circuits that may be
driven by one driver circuit. In conforming to this requirement, the
grouping is chosen so as to also meet the floating point word format re-
quirement. This first division of the registers' bits forms three groups.
M1 and M2 are the more and lesser significant parts, respectively, of the
mantissa, (bits ZOthrough 2_35). Eisthe exponentpart, bits 2_3¢ through
2_47- The clear register signal is made a trio of signal lines, each
controlling 18 or 12 bits of the register.

For register transfers, shifts, arithmetic, etc., these parts must
be further sub-divided in groups whose bit position treatment is similar or
whose bit position treatment follows special, or additional considerations.
The '"special' bit positions are the sign, least and most significant bit
positions. ‘

The schematic logic 6f the A register shows it divided in six groups:
a a a)
a0 -1 -m -35 - %e - a-=-47

2 2 2 to2 2 2
0 -1 -2 =34 -35 -3
5

to 2 2

6 0 “ 46 -47

2, a-17 2 g a‘=3 a_ -

— A A ——l.— A ‘—l
Ml M2 E

Schematic Logic Diagrams

"Figure 5.2-1 is the schematic logic drawing of A and A*. The
card located in position J11021 contains the flip-flops storing the signs of
A and A*, The a] bit is stored in card location J11022. The 33 bits of

5.2-1

|

E CC1ib For

REE TAgLES

[z
€

EEF-w=r 1}

@Bt

&)
6
b
|
3

T11023...TJ88025

TL1001 .. J12025

Ji3001. 713005,|,
¥

o (5757

T=ro

L
7= .mlﬂ.nw. @%4

=" w @

1 |
el DSt 123

>
RSO

|
_
T
=
1
I\
,
[

.2-2

5

A Register Logical Diagram

Figure 5.2-1

a are located in J11023 through J11025, J12001 through J12035, and
J13001 through J13005. The remaining locations are as indicated. The
locations were chosen so the register neons form a horizontal row in
bit-positional order. The card locations are noted on the schematic logic
at the top of the areas outlined by the heavy lines.

All physical terminal information is given either within the flattened
ovals () or adjacent to a heavy, black dot, .O All
other terminals are drawing reference symbols and refer to other drawings
or tables.

Trees

Trees are shown in symbolic form. The actual wire routing is
given in the tree tables associated with the schematic logic. Tabte 5.2-1
contains two of the 19 tree tables associated with Figure 5.2-1. The
arrangement of the information within a table is in consecutive order; ag
being on card 11021 and a on card 13019.

-47
Each of the three Clear A control signal lines, 0—> AMf s 0y
A , 0—» A_, drives tree circuitry. The development of O« A_,
M2 E Ml

for example, is through three emitter followers. Each emitter follower
is connected to six inverters, each of which signals '"Set 0" to a flip-flop
of the register.

Figure5.2-2 shows the circuitry symbolized by the first two
illustrations. It is a composite drawing of elements from schematic logic,
tree tables, and card schematics.

One of the control signals which clear A to zero is formed by the
logic, IT3 * D84, on the card in position 13084. The numérals within the
semicircles representing the transistor configuration give the physical
location (on the card) of the transistor. The transistor forming the IT3
leg of the AND gate is transistor number 2 of module number 10. The
type of module used is the COl configuration. (Not shown is the logic
that cl A d A_ .
hat clears M2 2D E)

The transfers between A and A* are clearly indicated on the
schematic logic. The table for (A)* —= A is given in Table 5.2-1.

5.2-3

1
!
i
|
IT3 |
|
|
I
i

v-2°¢a

0O—+AMI

J12075-5

Ji2075-N

Y

Figure 5.2-2

Tree {Partial) For 0 —— A

i J1102i-AA

Ji1022-AA

)

J11023—AA

J11024-AA

JHO25-AA

J12001-AA
/

DEVELOP
AS
ABOVE

DEVELOP

> as

ABOVE

g-g to a—yy

0'(2 to 0'l7

a0

a-3

L’y

g

6-2°9

O —A

A | J12075-N J11021-AA| J11022-AA| J11023-AA | J11024-AA| J11025-AA | J12001-AA
B | J12075-12 | J12002-AA| J12003-AA| J12004-AA | J12005-AA| J12006-AA | J12007-AA
C | J12075-11 | J12008-AA| J12009-AA| J12010-AA| J12011-AA| J12012-AA J12013-AA
D | J12075-10 | J12014-AA| J12015-AA| J12016-AA | J12017-AA| J12018-AA | J12019-AA
E | J12075-M J12020-AA| J12021-AA| J12022-AA| J12023-AA| J12024-AA | J12025-AA
F | J12075-L J13001-AA| J13002-AA| J13003-AA | J13004-AA| J13005-AA | J13006-AA
G | J12075-C J13008-AA| J13009-AA| J13010-AA | J13011-AA| J13012-AA | J13013-AA
H | J12075-B J13014-AA| J13015-AA |J13016-AA |J13017-AA |J13018-AA 1J13019-AA
(A*)—A
A | J12071-N J11021-J J11022-7J J11023-J J11024-J J11025-J J12001-J
B | J12071-12 J12002~-J J12003-J J12004-J J12005-J J12006-J J12007-J
C | J12071-11 J12008-7J J12009-J Ji12010-J |J12011-J J12012-J J12013-7
D | J12071-10 | J12014-J J12015-J J12016-J |J12017-7J J12018-J J12019-J
E [J12071-M J12020-J J12021-J J12022-J |J12023-J J12024-J J12025-J
F |J12071-L J13001-J J13002-J |J13003-J {J13004-J J13005-J J13006-J
G |J12071-C J13008-J |.J13009-J |J13010-J J13011-J Jr3orz-J J13013-J
H |J12071-B J13014-J J13015-J |J13016-7J J13017-J J13018-J J13019-J

TABLE 5.2-1

Two-Step Transfer Method

Most inter-register transfers are performed by a two-step method
to minimize logic. The receiving register is first cleared and then bits of
opposite value to the clear condition are transferred. The register may be
cleared to all zeros and ones transferred. Or it may be cleared to all ones
and zeros transferred{see Figure 1.1-1):

0—» D#; (D) ~l-» D=

0

Ak

1 A%; (A)
The numeral above the arrow indicates the bit value transferred.
_Anillustration of the transfer of a complement is:

] —+ D#; (D)' -2 D% : 1 —» ANIC

Where d is equal to one, the corresponding bit position of d* is

made zero. This transfer effects a ones complement and the carry-in
flip-flopis sette 1 for the twos complement.

Jam Transfers

In some cases of transfer a one-step procedure is required.
This is primarily due to time requirements, or transfers to only part of
a register. Jam transfers will transfer the value of the bit position, either
0 or 1, to the corresponding position of the receiving register without
prior clearing:

(SC) ——» SC=*
MA) — X
One example of a jam transfer to part of a regisfer is:
(JAy — D
This transfer involves only the address field, and possibly the J bit position,

of half of the word in the D register. The remainder of the contents is not
altered.

5.2-6

6. DETAILED LOGIC OF INSTRUCTIONS
6.1 Organization of Instruction Control

The initial activities of any instruction, as defined by the
command coding are performed in the ITs. Therefore the ITs also perform
general activities. All instructions start with the first four timings of IT,
Some instructions are completed by IT4, others continue through IT8 and
a third group goes from IT4 to the timings of another control register.

The following description of generalized activity - of the ITs

will indicate the manner of instruction performance control. The specific
tasks for any instruction will be described under its family grouping.

IT1

Clear all storage units that need start the instruction in an
initial condition:

0 —— ANZ2I

0 — ANICE
0 — SC
0 —— OVF (many instructions)
0 — ANI1I (except for equality jumps)
0 — AN2C (most instructions)
Connect the inputs to AN2 so the effective address, when
the instruction requires memory access, will be available in the adder

network. -Dependent upon the instruction coding and repeat control, the
following are set to the desired states:

PR — SW6

0 —> AN2C
Inh. AN2
; ifR=1
ifR=0 anday =0 if repeat a y =1
0 — SW4 X —= SW4 0 —PM
+ —>PM + —=PM X —>SW4

Clear MA (except for jumps, Halt and CF)
0 ——= MA
Clear D

Clear JA (for jumps, and transfers through JA)

I1T2
Program Control (SW2)! — Mod 2
Transfer effective address to MA ANZ2 — MA

Set control registers to states required for the operations
for the instruction (MI, AI , FI).

Set SC when involved.
IT3

Set PI for program operation to follow this instruction.

6.1-2

Clear receiving register for transfer instructions.
- Clear D* for arithmetic and comparison operations.

Set JFF, if jump, for jump instructions not requiring a
comparison as the jump condition.

IT4
Complete transfer for transfer instructions.
Transfer operand to D* for arithmetic or comparison exits:
IT4 —END for completed instructions as transfers,
some special instructions, conditional
jump instructions when not jumping, CF
IT4 —ATI1 fixed point arithmetic, shifts, Q jumps
IT4—FTI1 arrangement of operands for floating
point arithmetic
IT5 and IT6

Used by a few instructions only (certain index register,
certain special and conditional jump instructions). No general activity
is performed, only tasks specific to the above instructions.

IT7

Clear D for instructions which store result. Jump
decision for jumps with comparison condition.

IT8
Transfer to D for store and access memory.
Set up address if jump, and program control.

All instructions go from IT8 —s END except MAD and MSU,

6.1-3

6.2 Address Modification of the Index Registers

The effective address used in the performance of the
instruction will be a choice of one of three numbers. They are addresses
in the instruction, the contents of the selected index register, or the
sum of the two. If the R bit of the instruction, Prg Oor pr_,4, (termed
the ''S bit" by programmers) is zero, the instruction alone furnishes the
effective address. If the R bit is one, the effective address is the sum
of the I, field of the instruction and the contents of the selected index
register, (X). In the repeat mode with repeat modification of the index
register (ay = 1), (X) alone is the effective address.

Instruction Word Address Field

The 16 leftmost bits of the instruction is divided into three
fields, as indicated in Figure 6.2-1.

R
<

P,
PT 24

Address Fields
Figure 6.2-1

The size of the R field is fixed, one bit. The sizes of the
other two are a function of the number of index registers in a specific
S-2000 computer. For each computer the size of the IA and I, fields
are fixed by the wiring of the computer.

The size of the IA field is determined by the number of bits
necessary to encode the selection of a particular index register. The
number of index registers in a computer will generally be a power of two.
The leftmost bit of the IA field will always be pr_; or pr_,.. The field
will extend to PT_p OT PT_s for 32 index registers.

The L, field size will be the remainder of the 16 bits. A
computer with eight index registers, for example, will have a 3-bit IA
field and a 12-bit I, field. A 32 index register machine will have a 5-bit
IA field and a 10-bit I, field. ‘

6.2-1

IA and I fields are known to programmers as the N and V
fields, respectively, the R bit is also known as the S bit.

The transfer of these fields is determined by the R bit:
R=0= (IA and I) —= MA via AN2
R=1= (X)+ I — MA via AN2

The logic of the transfer to MA is performed in IT1 and IT2.

IT1
Connect PR —> SW6
Not Subtract 0 — AN2C
Inh. AN2
and
If R bit= 1
IfR bit=10 anday =0 Ifay =1
+ —PM X —=SW4 X —Sw4
0 —=sw4 + —=PM 0 —PM
and
Clear MA 0 — MA
IT2
AN2 — MA

Address or Parameter Modification

It can be seen that this logic permits modification of an
address or the parameter of the shift instruction where the I, field is
the parameter or part of the parameter.

6.2-3

6.3 Memory Control and Use
6.3.1 Memory Cycle

The memory cycle consists of the operations necessary to
transfer information to or from memory. The operations, in sequence,
are read, write and post write disturb. The read operation is used to
transfer from memory. Since the nature of the read-out process destroys
the information in magnetic core storage, the read operation is also used
to clear a memory location before transferring to memory. If it is desired
not to lose the memory content due to a transfer from memory, the infor-
mation is then transferred back {restored).

The write operation is used for restoring and transferring to
memory. The post write disturb is required as part of the write operation

due to the design of the memory. It has no logical significance.

Memory Timings

The sequence of tasks for memory operations are activated
by the MTs. Unlike the rest of the computer control timings, these are
generated by single shots. The single shots are connected to form a
timing chain. With the exception of the interval between the end of the
read and start of the write, timing proceeds uninterrupted through the
sequence. As each single shot resets, it triggers the next in sequence.

Read Operation

The timings for the read are MT1 through MT5, in con-
secutive order. The read operation is initiated by:

[(M10 © MI =3) v Begin JOMemory Cycle |
© Write Complete =2 MT]1

MI= 3 is the write only operation for computer use of memory. The
input-output use is always a full memory cycle. The Write Complete
signal is normal only during a brief interval at the end of the write oper-
ation. It prevents the start of a new cycle before the memory drive
currents of the previous cycle have ended. During MT4, the contents of
V are transferred to D, PR or IOB. MTS5 indicates the completion of the
read.

6.3.1-1

Write Operation

Logic is required to initiate the write operation. There is an
MT5 —»MT6 signal to immediately proceed to write, or the —= MT6
signal when an interval is required between read and write. During MT7's
active period (D), (PR) or (IOB) are transferred to V. The method of
writing requires zeros to be transferred to the inhibit drivers. Ones will
be written in all cores of the word location except where inhibited by these
drivers. The transfer is symbolically written as:

0
(D) — V Inh.

If all zeros are being written (clear V) the signal is 0 —=V Inh.

6.3.1-2

6.3.2 Computer Use of Memory

Memory Control Register

Memory use by the central computer is organized by the
Memory Control Register, MI. MI consists of three flip-flops. The
decoded outputs of these in conjunction with the MTs (Memory Timings)
result in the desired memory operations.

Memory Operations Classification

The required functions of memory use by the central com-
puter can be collected into seven groups. Each group is represented by
one state of the MI register and is given an MI number. The MI number
corresponds to the binary value of the three flip-flops (MI=1 =MI= 001,
etc.).

MI=1 (V) — PR — V Read a new instruction word to
PR and restore in memory.

MI=2 (V) — D Instructions with (V) as operand
and storing result, or altering
part of an instruction word in V.
Memory will be cleared to 0 by
this transfer and will be later
written into with another state
of MI.

MI=3 (D) —V Replace in V. The results of
- the instruction replace the
original contents of V by this
write. The original contents
were cleared out by the read
during MI =2.

MI=4 (V) —=D —— V Instructions involving (V)
but causing no change in (V).
V is restored by a write immedi-
ately following the read..

6.3.2-1

MI=5 (register) ——V Instructions that change (V)
without use of the original con-
tents. Read is used to clear V,
immediately followed by the write
to transfer (D)—>V.

MI=6 CM Clear Memory instruction only.
Read and write 0.

MI= 7 Instructions not requiring (V)
as an operand but storing result
in V. The MI = 7 operation reads
V to clear it. The subsequent
write is under the control of
MI=3

It will be noted that only one of the seven groups does not
include a read operation, MI = 3.

MO

An eighth state of the Memory Control register, MI= 0 is
used to signify whether or not the computer is using the memory. The
MO number is active when the three flip-flops are reset to 0' and this
situation occurs only when the computer is not using memory. The final
timing, MTI13, sends 0 =MI, which indicates the completion of the memory
operation for the computer. This is a common use of MO.

When possible, the computer operates in parallel with the
memory operation. This is feasible for the MI =7 state where a read
operation is necessary preliminary to clear V prior to storing a new word.
After sending 7—MI in IT2 the computer continues to operate. However,
before attempting to initiate the write, a test is made to insure the previous
memory operation has ended, and MO is again active.

MO is strategically used in certain timings for this purpose.
An example of the above-mentioned use would be the AQS instruction.
The write memory operation to store the sum is initiated in IT8. How-
ever, IT7 - MQ = IT8 prevents a conflict.

6.3.2-2

The locations of MO are:

PT4 = MO -+ D122 +« DI23 « PO * P20 — ITI
PT4 « MO => PT4 off.

Wait until read completed, when transferring a new word to
PR, before initiating the ITs.

IT7 « MO =» IT8
MO is the trigger for PTI to prevent starting the read for a
new instruction until the store operation of the previous in-

struction is completed.

Coordinating Memory and Computer Operations

In most instances the computer requires a transfer from
memory before proceeding. This is arranged as shown in Figure 6,3.2-I. IT2
is used by most instructions to initiate the read operations. If (V) are
required before proceeding, the signal to activate IT3 will come from
MT5 (Read Transfer Complete). If a write is required prior to proceeding,
the signal will be MT11 => IT3. MTI11 denotes the point in the write
operation when the computer can be released.

If the memory is not involved in the instruction, or not
required at this time, IT2 — IT3 directly.

The EI and EIS instructions are not prepared for the memory
operations until IT4, unlike other instructions. Their memory action in
IT4 is similar to the ones of IT2.

The replace operation, (D) —=V, is initiated in IT8. The
computer proceeds without waiting to the end of the instruction. It will
await the completion of the write operation at either PT1 or PT4.

The read-new-instruction-word operation (V) —=PR —>V
is initiated in PT2 (unless the computer is to be interrupted by an input-
output memory demand). The computer will await the completion of the
transfer in P T4.

6.3.2-3

ENC

MEMORY NOT INVOLVED,
OR OPERANDS IN REG- JumMPsS . j
IT 2] FANE T SEEN S O 1 S-Lu T el IT B
ISTERS, OR EXTRACT, MAD, MSU "s
INSERT INSTRUCTIONS
vE > o m m
- i Ed
382 gz o 4 [P - | m
e =i 3 e Y 3 (MTHITS fmmerd 2
©w T - > pifiert 2 - 2 -
ogz o= z >z =z « z
M cs ® zxz = MT5-1T3 e 2 o
pm > = - om m o c
ZO0 o = = m - E-3 c o -
g (=] B © 3 =3 (3]] z
nZAE PO o =~ <5 o2 = 3 =
1323 s, 7 bol . = s
2 E °z) 23 F MTLI-+IT3 -
2 CH~ 2 n< z -~ Tox T
-0 < - x5 - @ ~ 30 - ~ >
-0~ > r - mc El * .
3% » z < m - c ‘ [
=z, @ o = b = o < ‘
» mZ ~ mz ju 1 =
£0Q i) w =< s 1o -~ z
%!_'l'f“ 2~ ? » = ' -
o232 -~ < < - ® o : ;
sZz =~ z L
Z2op - |
vy < 9 2 ¥
READ
MT I CLEAR CLEAR CLEAR
MT 2 (V1 (V) (v)
(viwp| MT3 BY BY BY A
MT 4 (V)-D READ READ READ (V1 (V)->D
MT S
MT5—4MT i3 4—L>(MTS-+IT3)4-9 L}MTS-&MTIS Mrs—bnsq—J
L4
WRITE
o
(D)=»VInh | MT 6 o
€ MT 7 (D}5VInh. p<evinh. o0—+VInh (p)2»vinh (D) =»VInh
MT8
NT 9
MT IO
MT MTH—»IT3 MTI—>LT3 MT1i—>IT5
o—wm1 | MTI2
MT 3

¥-2°¢°9

Computer Use of Memory

Figure 6.3,2-1

6.3.3 Memory Assignment

The usual amount of information transferred between mag-
netic tape and memory, or paper tape and memory, is a group of words.
The tape word has a serial arrangement of eight characters within the
word (or is treated as such) while a bit paraliel storage of the word
exists in the memory. The conversion is performed in a buffer register.
In a transfer from tape tc memory, for exampie, the characters are
transferred serially from tape to a buffer storage. When a complete
word is assembled it is transferred, bit parallel, to the memory. The
tape control requests memory access for this purpose.

Memory access is required only for brief intervals during
the transfer of a group of words. The transfer rate of characters between
tape and buffer is much slower than the transfer rate of words between a
tape unit and its buffer storage; it is feasible to allow the memory to be
used by some other part of the system. Paper tape, magnetic tape and
the central compater share memory access in this fashion during the
execution of a tape transfer order. A transfer between memory and mag-
netic drum requires a continuous access to memcry which will be described
later.

The first three memory users operate asynchronously and
require a memory assignment control system. The control assigns
memory, as soon as it is available, to one requesting user in an established
order of priorities. Simultaneous requests are responded to in this order:

lst - magnetic tape
Znd - paper tape
3rd - central computer

The control system is a series of intericcks to prevent access
by more than one user at a time and establish the order of access. As the
process of assignment takes a finite period of time (for switching) it is
crucial to prevent the situation wherein the arrival of a higher-priority
request during assignment to a lower-pricrity use resulis in assignment
to two users simultaneously.

Input/Output Memory Assignment

To cope with this, the assignment precess is performed in

6.3, 3-1

two steps. First, whenever memory is unused and available for access,
all existing requests are noted. Secondly, while assignment is actually
being made, no new requests are recognized. This two-part sequence is
initiated by a request if memory is unused at that time, or at the end of
each memory cycle.

The Assign Flip-flop recognizes requests only when it is in
a reset condition (AFF= 0) and permits assignment of one recognized
request when it is set. The logic is shown in Figure 6,3.3-1.

The requests, when recognized, are stored in flip-flops.
The flip-flops remain set to one until the assignment has been made and
memory access completed. The priorities are established by a group of
AND gates. The signal from the 1l's output of the Magnetic Tape FF will
inhibit (when the flip-flop is set) the assign gates for paper tape and
computer. The paper tape FF can inhibit the ""Assign to C'' gate.

The Magnetic Tape Request is a signal originating in mag-
netic tape control. With a multiplexing control for the magnetic tape
units, the request signal exists as long as any of the tape units still
require the memory.

The Paper Tape Request signal originates in paper tape
control. It sets the MS* FF to 1, and must become inactive before
action is taken on the request. This is required as the request signal
is also used to perform some other logical function in paper tape that
must be completed prior to the memory cycle.

, The Computer Request signal is active while the MI
Register is in any condition other than 0.

Logic of Memory Assignment

The Assign Flip-flop (AFF) tends to revert to the 1 state as:

AFF=0 + 0 —> AFF —>» 1| —> AFF

The customary practice is used of preventing the application of the out-
put of a flip-flop until the switching signal has become normal.

Any request will initiate an assignment sequence, provided
no current assignment exists (indicated by MTFF, PTFF, or CFF being

6,3.3-2

6.3.3-3

0 ¢
MT 13

®
Q CILWEe— I1 LW

Q elINe— S1N ?

¢ |

lo._usw_WT Twe—o]

|
|
I
|
|
|
|
l
|
|
|
|
)
|
5
)¢ ——

ASSIGN FF

I_L@Yl@rr! _
00

Lo —— |

P
|&I|| |||||.I“._||-W.JI Z.W_wOm.rd @

Figure 6.3.3-1 Memory Assignment Control

0o

Mio

| [
0 $
C.FF |

0<>—| [—ol
|

1530034 H3LNAWOD @7

T — — — — “1l'd OL NOISSV 8

&
o

%
o
=

_
_
_
_

P

(-

?

T
|
.

1s3n03y ‘L'd

i w _
u.
X _
. s |
Olr 153n038 L'W JQ - _

L
—— — @Y ‘L'W Ol ze_mmqﬁ_

0
|
|

I—ol
|

Rev. A

in the 0 state) nor an assignment sequence is in progress (AFF = 1),
[MT Req. v (MS* =1 *+ 1 —=MS*) v C. Re<£|
* MTFF = 0 +- PTFF = 0 « CFF =0 - AFF = 1 - 1—AFF

—> 0— AFF

While AFF= 0 the requests are recognized and stored in the corres-
ponding flip-flops:

AFF =0 - 0—= AFF - MT Req. ——> 1—> MTFF
AFF= 0 » 0—>AFF » MS* = 1 + 1— MS* ——> 1-—=PTFF
AFF 0 + 0— AFF - C.Req. > l1— CFF
and the second part of the assignment sequence initiated.
AFF =0 + 0—= AFF —» 11— AFF
When AFF =1 - 1— AFF the assignment will be based upon the order
of priority as indicated as the three AND gates below the three flip-flops.
The assign signals for tape are returned to input-output control for the
generation of a signal to begin a memory cycle. MI10 serves that purpose
for the computer. M1l is used elsewhere to determine that the memory
cycle in progress is not for the computer.

An assignment sequence is performed at the end of each
memory cycle to clear the controls and recognize any requests that may
have arisen. MT5 and MT11 are single shots that indicate the completion
of read and write, respectively. In their active period they will set
MT13 to 1.

MTI13= 1 - 1— MTI3 —> 0— AFF, 0— MT!13

The MI register is cleared to 0 at this time, as well.

Magnetic Drum Access to Memory

The magnetic drum requires continuous access to memory

6.3,3-4

during its transfers. Its consecutive word locations are available at the
heads every 16 microseconds, less than two memory cycle periods,
Insufficient time is available for another user to take memory between
drum words. The drum is therefore given the lowest order of priority.
It is not assigned the memory until all existing requests, from the other
three users at the time of the drum request have been satisfied and
their transfers completed. The computer is not released to perform
other instructions in parallel with the drum transfer instruction. Thus
no other requests can occur during the drum transfer period.,

6.3.3-5

6.4

Transfers

This group of instructions provides for a transfer between
any two data registers or between any data register and memory.
process of the transfer results in the transferred information existing
in D as it is a junction for A, Q, and Memory transfers.

The

Due to the organizational similarities, the ''clear register"
instructions are made part of the transfer group. These clear the
specified register or memory location to zero.

The instruction is performed in four timings, IT1 through

IT4., The activities are listed below.
TRANSFER INSTRUCTIONS 001 J=0
IT1

Start, Address —= MA PR —— SW6

0 —— ANZ2C

Inh. AN2:
and
if R=0 IfR=1 ifay =1
0 —=SW4 X —=SW4 0 —PM
+ —PM + —PM X —>SW4
Clear D unless instruction is a 0orl—eD

(D) ——» elsewhere, or CA, CQ, CM
Clear MA 0 — MA

—IT2

6.4-1

IT2

IT3

IT4

trigger AN2CC (D67)

Program Control activity. (SW2)! —— Mod 2
Complete, Address — MA. ANZ2 — MA

Unless instruction is a ({A) —= D

(D) —> elsewhere, transfer or

from source to D (the junction Q 2.pD

point). This does not include or

CA, CQ and CM instructions. 4 — M1 E for (V)—-»]

If transfer is—V, start
memory cycle to clear V then
(D) —V. 5 —s MI

(Note: for CM instruction only
use 6 —> MI for clearing.)

If memory is involved, memory
control will provide the signal. —1IT3

Otherwise the computer proceeds

without waiting. —1IT3

Clear the receiving register 0 —=Aor0 —=Q

Select next program control

activity. 0,1, 2 or 3 — PI
— IT4

(Trigger AN2CC)

Transfer to receiving register. (D)——=A or (D) —Q
Inh. ANl
End of instruction. — END

6.4-2

6.5 The Shift Instructions

This group of instructions enables A, D, or Q to be shifted
right, A or Q to be shifted left, D to be circular right shifted, A and Q
treated as a one register of double length to be shifted right or left.

The register contents can be treated as two types. In the
numeric shift the sign position value is not changed. In the ordinary
shift the 2 3 bit position is treated as any other bit. The D register
can only be shifted to the right. The circular shift of D (SCD) is an
ordinary shift with the additional feature of d _47 being transferredto dg.
Figure 6.5-1 shows the changes effected by a one-place shift of the various types.

The logic of the shift instructions permits a shift of from
none to 63 places per instruction. However, shifts of more than 48 places
are meaningless. The clear register instructions are preferable to a
48 place shift.

Organization of the Shift

The registers can be divided into two parts for the control
of the shift. One part consists of those bits whose behavior for that
direction of shift is standard. These are the bit positions not immediately
adjacent to the sign position; 2 to 2 for a left shift and 2 to
. . -2 -47 0
2 -46 for a right shift.

The other part consists of the variables. These are the bit
position that is to be shifted into the 2 0 Position; the use of 2 _; in left
shift; the use of 2_47in right shift. The variations are caused by the two
treatments of the word, as ordinary or numeric; the choice of treating
A and Q as one, double-length register; and the circular shift of D.

The logical details are developed in a straightforward
manner from these considerations. The only exception is 2 minimizing
of logic in the use of a; for a right shift. A moment's thought will
reveal that the bit value of 2 _; after the shift is the same value as
that of 2(; before the shift regardless the type of shift.

The numeric right shift of a negative word in A should
result in a bit value of 1 being placed in a _; . For all right shifts of AR,
ap is shifted toa _; as a standard part.

Ordinary

Numeric

Double-
Length

Ordinary

Numeric

Circular

2-9°9

LEFT SHIFT

2o [3-11%-2 28 2 46 |® 47 |%0 |91 |92 2 a6 |%-47
o . & . a s o~ v— 0

2, (a2 Y [2oas |2 e lqo 4 !q-zT?(Jq 46 q-47j

o %172 22 TS e e R et 22 -46 Iq-47

¥ Pl = s 4 o~ 0

o %1% ze a6 |®oar [%12 ZZ 46 q-47l

2o %a]%2 n 46 |% a7

‘r, I,I,I II L 4

S-2000 Shifts

Figure 6.5-1

RIGHT SHIF T

Po 12-112-2|z<l2;46\lz;47 }
-2 ((% 46 2-4ﬂ

-1 |2 46 |*-a7 |90 (%21 |92 -46 |G -47
e e e e S T~
o 171 la-z ® 46 |%-a7 |9 lq~1 -2 R -46 l 947

a [a |a a a q q q q

o | -1| -2 R 46 | .47 | o 1| -2 JF -46 -4ﬂ
Ve A A ~a ; Y

o |%1 |72 R 246 |* a1 [%o L1] Y2 H 46 | La7

The shift, per place, is performed by transferring the word
to the star rank register, clearing the register to zero and then performing
a shift transfer of ones from the star rank back to the register.

Using AR as an illustration of left shift, the standard part
of the register is shifted left one place by the control signal {(A%) = _—» A,
bit positions a* _, to a* _47. For the ordinary left shift,
ax_ _— a*o; a*o is not transferred; a -4 having been cleared
to zero will so remain. For the numeric left shift, a*o — ag;
a* -1 is not transferred. For the left shift of A, Q, either q*o or q*al
is transferred to a -47 depending upon the type of shift. In the numeric
shift, q*~l —=2a 47 q*0 ~— qgp-

Table 6.5-1 lists the shift logic of the shift instructions.
Most of this logic is used for the shifts during the arithmetic instructions
as the desired activity in these cases is identical. The algorithm control
setting for a shift operation is AI = 110. The activities listed in this
table occur during AT4.

Shift Parameter

Shifting the desired number of places is performed by a
series of one place shifts until the parameter has been attained. The
parameter, stored in the Shift Counter is counted down, subtracted
by one each shift until it reaches zero.

A Subtracting-one Binary Counter

When a subtracting binary counter has a fixed subtrahend
of one, the logic of its operation can be based upon a few rules. The
least significant bit is always complemented. If the least significant
bit is one, before the subtraction, no other change is required. When
the least significant bit is zero, before subtraction, then '""one must be
borrowed' from the next higher order. This borrowing complements
the order. If it, itself, were zero before being complemented, a one
must be borrowed from the next higher order, etc. Effectively, then,
the rule becomes - if the least significant bit is zero, complement the
least significant bit. And complement all consecutively higher orders
up to and including the first order having a bit value of one prior to
the subtraction.

6.5-3

SRAN
SLQN
SRQN
SRAQ

SLQ
SRQ

® |SLA
SRA
» |SLAN

(A*) A
(A%*) A
) L . 9
(Q%*) Q

[a*_p through a¥ 477
[a*y through a* _,.7 X
[a*_, through q* 4.7

[q*_l through q* _46] X X X

bﬂlt"
>
X ™MW |SLAQN

"
X MW |SLAQ

"
s

Jw

a*_l i a.o

q*—l e
*o —= 9o
‘1*0 —

Q*¥g —— a_47
Q*] — 2_47
a*_ 47— 9

a¥_ 47 — d_]

SRAQN

SCD
SRD
SRDN

"

R
(D*¥) —- D [d*o through d"f_/ié:] X X

d*_,o —»d, X

E3
d 0 ___._do X

Shift Liogic of Shift Instructions
Table 6.5-1

6.5-4

If the counter has a star rank register associated with it, it
is capable of extremely fast operation. The subtraction (in the sense of
value changes in the bit positions) can be performed simultaneously. No
"borrow propagation time'! is required. The number is transferred to
the star rank. The counter is not cleared. Then, only when a bit value
changes, is the change transferred back to the counter. The subtraction
can be performed in two timings: (the values of the numbers in the
counter 2 zero).

1. (SC) —= SC=*
2. (sC* - 1)=> [(sc*o)“ — SC,]

(SC* - 1) . (sCx =o>=)[(sc*l) ——5C,]

(SC* - 1) . (SC*, =0) . (SC*, =0
=>({sC*,) —=SC,

and so on for each order of the shift counter.

The Shift Counter

The shift counter is a 6-bit counter, the smallest number
of binary bits required to represent the value, 48. Figure 6.5-2 is the
logic schematic of SC. This discussion is concerned with the features
required for the shift instructions, the upper half of the diagram.

The Shift Counter has two ranks, SC and SC*. The value
representing the number of places to be shifted is initially transferred
from PR to SC. SC is counted down one, each shift of one place. The
shift, per place, is done in the set of four ATs. In ATIl, (SC) — SC#*,
In AT3, (SC* -1) —= SC. In AT4, the value of SC represents the
number of places remaining to be shifted. In AT4 SC* contains SC's
value plus one. When SC = 000000, SC* = 000001. The actual shift,
per place, is of course completed in AT4.

The decision whether to shift again or end the instruction
(AT4 —— ATI1, AT4 — END, respectively) is determined by whether
SC = 000000. As a transfer into SC occurs during AT4, it is not feasible
to sense SC at that time. SC* is sensed; does SC* = 000001 ? As SC*

i3

190
2
BN

S
[N
3@
o
o
- « | 5|3 8
J b4 o vy 3
< {42 ;
- 9 ‘
..P7 vl &l 2 9 9 a \
e " ol e 3
)r« w
4M_ % <|=] - —)m g
2N s s S e
~y -3 o
¢ < SRR
N
513

!

|
|
|
“ L g0t
|
[
|

@[eF—
ro

|

i

|

|

]
b
Ji2053 ® |
© 42055 R
} }
Q—l | |
! !
oo
“ {
o |
- i
» o !
iy ol
b w|
YN
g
g

!
T
!
!
i
1
f
I
I
!

[
!
;
)

-
+
J
i
d
a
1

|
|
|
|
t
|

G}

1
i
!
|
|

G}~
G}~

———— e 4 — - —

J11055-R

—d
™

.
T

@B}

G -G -
11205% ¢

T m S $08 « (17, N:;ﬂg

6.5-6

Figure 6.5-2 Shift Counter

is being counted down by a known decrement, the logic can be

(2 5 , 24, 23, 22, 2 1, = 0). The value of 2 is insignificant as the
first instance the above condition is realized during the count down is
when the contents of SC* are 000001. The condition is named SC = SAT.
(SC Satisified).

The SC = SAT. and SC # SAT. signals control whether
the computer proceeds to END or AT1, from AT4. There is another
similar control signal that should not be confused with SC = SAT.

This is the SC = 0 signal, the output of an AND gate that is active only
when all six bits of SC are zero.

Shift Instructions, Sequence of Activity

IT1
clearings 0 —— ANI1I
Prepare transfer to MA 0 —— OVF

0 —— MA (not required

for this
instruction)
Prepare transfer of (L)
and/or (X) —— SC Inh. AN2
0 — AN2C
s=0 s=1 RPT = 1
0 — SW4 X —= SW4 X — SW4
PR —= SW6 PR —-SW6 PR — SWé6
+ —PM + — PM ay =0 ay =0

+ —PM 0 —PM

6.5-7

IT2

I1T3

1T4

ATl

AT2

AT3

Program control

Set Al to shift operation
Transfer shift parameter
to counter.

Transfer to MA (not
required)

Program Control

If shift parameter is zero
end instruction.
Otherwise begin shift
operation.

Operational control.
Prepare to count down SC
Clear star rank (s) of
involved register (s).

Transfer word to involved
star rank (s).

Count down SC.
Clear involved register (s)

trigger AN2CC

(SW2)! ——» Mod 2
6 —a Al

AN2 —— SC

ANZ — MA

Set PI state

Trigger AN2CC

— END

— ATI

Al —— AI*
SC —> SC*

(1 —=A¥)v(l — Q%) v
(0 —= D*)

trigger D48

Al axvia O 0%y
(D1, D%)

(SC* - 1) ——SC
(0 —> A)v (0 —Q)v
(0 —/ D)

6.5-8

AT4 Perform Shift see Table 6,5-1

If Shift Overflow is detected. 1 — OVF
Shift incomplete, recycle. — ATI1
Shift complete. —— END

Shift Overflow

During a numeric shift of (A), or a numeric shift of (Q),
it is important to detect a loss of a significant value bit in the highest
order of the number. This value would be a one for positive numbers
and a zero for negative numbers in the 2 _| bit position. In effect, the
capacity of the register has been exceeded. This loss is termed Shift
Overflow and can be predicted by the condition 2 # 2_ 4 in the star
register.

The logic for Shift overflow is:
D46 = AI= 110 - [(0XX0 . a%g# a*_j) v (10X0 . q*g #a*_;]]
where the bar code is from the command bits C3 through Cg.

The existence of Shift Overflow will cause OVF to be
set to 1 during the shift instruction.

The loss of bits from the 2 _4; position during a right
shift is inconsequential.

6.5-9

Q Jump - Circular Shift of Q

The Q jumps contain a one-place circular shift of that register,
either left or right depending upon the instruction.

The shift is performed under the control of AI = 111 (7 Al
in IT2 of the instruction). The control is straightforward and only one
set of ATs is required.

From AT4 control passes to IT7, if jumping. Otherwise, control
is returned to PI for the next instruction, index register modification or
repeat register count-down.

ATI
Clear Q* for transfer Al =111 1 — Q*M
Al =111 « FP=0 1 — #*
P Q M
AT2 Trigger D48
Transfer Al =111 (Q M) (; Q* 1
Al =111 - FP =20 (QE)——.»Q*E
AT3
Clear Q AI* = 1X1 0 —— Qy
Al* = 1X1 » FP =0 0 QE
AT4
o o o R
Circular shift right Al* = 111 - XX1X (Q*M) —-—-QM
R
Al* = . . = % -
Al 111 XX1X FP =20 {Q ‘E) QE
X = . % —
Al* = 111 - XXI1X Q* o —=a
Al* = 111 » XX1X q*o —q_,

6.5-10

AT4 (Continued)

Circular shift left

Exit
If jumping

If not jumping

Al* =111 -
Al* = 111
Al* =111 - XX0X
Al* = 111 - XXO0X
AIlI=111 - FI= 000 -
(Q jump) -« JFF =1
(Q jump) - JFF =0

XX0X - FP=0

XX0X

Ir=0

AT4 —- END

END — IT7

END —— PTI1 or PT2

6.5-11

6.6.1 The Add Instructions

With the A register as the augend, the add instructions offer a
variety of options.

The A register always contains the augend. To it may be added
the contents of a memory location or the Q register. The addition can be
algebraic or the absolute value of (V) or (Q) may be used instead. The
A register can be cleared to zero before the addition. The sum is always
developed in A and may or may not be stored. Fixed or floating point
addition can be performed.

The D register can also be added algebraically to A, but the only
option is a choice of either fixed or floating point addition. The compound
arithmetic instructions augment A by the product of (M) x (Q). (This
instruction is described at the end of the multiply section, 6.6.3).

The above comprises a total of thirty-six instructions.

The logic of the basic, fixed point add, (A) + (V) —— A, will
be detailed first. Following this, the logic variations for the various
options will be described.

The operations of the basic add instruction are twofold. The

memory contents are transferred to D* during the ITs and then added
to A during the ATs.

6.6.1-1

Logic of the Basic Add Instruction

IT1
Clear controls
SW4 input
SW6 input

PM input
Clear D
Clear MA

I1T2

Set algorithm control
for add.

Clear SC*,

Transfer address.
Start Memory Cycle.

(timing alone)

Not equality jump
nor JAZ.

ICOF =0

Not repeat nor skip
nor certain index
instructions.

Arithmetic instruc-
tion and R bit = 0.

R bit = 1 and neither
repeat nor skip in-
structions.

———

120

Arithmetic instruc-
tion and neither repeat

nor skip instructions and:

ay
ay

H
— O

Memory operand and

not CF (command fault).

Arithmetic instruction.

Addition

Addition

Arithmetic instruction
Memory operand

and result not stored.

(A) + (V) —— A

0—-EO0, UF, 8C, FI, AN2I, ANICE

0 —— ANI1I
0 ——OF

0 —— AN2C

0 — Sw4

X — SW4

PR— SW6

+ —PM
0 — PM

0 ——D

0 —» MA
Inh. AN2

Trigger AN2CC

1 —— AI
SC — SC*
AN2 —= MA

6.6.1-2

IT3

1T4

ATI1

AT2

Program control

Program control

Clear D* for transfer

Transfer

Fixed point

Floating point

Clear A* for sum

Control

Transfer sum

If overflow

I bit = 0 and not CF

and not repeat instruc-

tion.

Algebraic add:
and fixed point

and floating point

Algebraic add:
and fixed point

and floating point

Al = 1XX

AI=1XX » FP =0

AI = 001

Al = 00X
Al=00X - FP =0

(SW2)! —+ Mod 2
MT1l — IT3

0,1,20r3 — PI

0 — D* ANI1C

M’
— b3
0 D E

1 — D*

Trigger AN2CC

(DM) —-—>D*NI

(D) — D* o

(D) —s D¥r , 1 — ANICE
E E

—> ATI

—= FTI1

—_ Ak
1 A M

1l — Ax*

(AI) — AI*
Trigger ANICC

(A +D*E)—-—>A*

E E

Al = 00X « ANIC_ # ANIC_;

- FP=0

1 —— OF

6.6.1-3

IT8
Transfer Sum.

Start Write.

Clear Add

Trigger D 117
0

(A) —» D

3 — Ml

—s END

This requires the A register to be cleared to zero before the

algorithm,

Absolute Value Add

IT3 + D84 —>

—__).A

The absolute value of the addend is used to increase the augend for
a sum. This is done by arranging to have a positive number as the quantity
transferred to D*, complementing if necessary.

IT3

Clear D*

IT4

Transfer

Absolute value add and

d, =0

and fixed point.

Absolute value add and

d, =1

and fixed point.

D89
D89 - 169
D85
D85 ¢ 169

0 —~ D*py, 0 — ANIC

0—-—D*E

1 — D* 1 —— ANIC

M’

— *
1 D E

(D)) —= D¥*¥
(D) —> D¥*yg
(Dg)! — D#p,

The balance of the logic is the same as the basic add instruction. It may be
noted that when Q contains the addend for absolute add, the (Q) — D transfer

is completed by IT3.

Floating point add and subtract is described in sub-section 6.6.6.

6.6.1-5

6.6.2 The Subtract Instructions

The subtract instructions are identical in type to the add instructions.
They also total thirty-six in number.

The essential difference between add and subtract is that in the
latter case the twos complement of the subtrahend is transferred to D*.
Subtraction is performed as complementary addition.

The difference in the subtract logic lies in IT3 and IT4 where
1 — D*, ANIC and (D)! — D%,

An exception is absolute value subtract. Here a negative number
must be transferred to D* in order to decrease the number in A.

D89 controls the transfer of the number unchanged; D85 causes

the twos complement to be transferred to D¥. The D and I number
definitions in the Appendix explain this logic.

6.6.2-1

6.6,3 The Multiply Instructions

For multiplication, the multiplier must be located in the Q
register prior to any multiply instruction. The various multiply in-
structions afford these options:

1.

2.

Fixed or floating point number multiplication.

The multiplicand may be located in either memory
or the A register. It is transferred by the instruction
to D.

Either the algebraic or the absolute value of the
multiplicand may be used.

The product may be single-length, rounded or double
length with the major half in A and the minor half in Q.
The multiplier is presered in rounded multiplication and
necessarily replace in double length.

The product may or may not be stored in memory. In
the memory store, only (A) - .~ V.

Two arithmetic operations may be combined in one in-
struction:

MAD: (V) X (Q (A) A
MSU: (V) X (Q) (A) A
Both of these instructions perform single length,

rounded multiplication. Their logic is described
in the section on special arithmetic.

Multiplication Method

Multiplication is achieved by the right shifting and accumu-
lation of partial products.

6.6.3-1

. 101 . 101

x .01 is equivalent to x.010
101 000
000 \
.00101 : 000
1010
1010
\
1010
000
01010
. 00101

With binary numbers the decision for obtaining a partial product is whether
or not to add the multiplicand to the esisting partial product (at the start
the partial product is zero). For each order of a positive multiplier, 47
in the S-2000, the multiplican in D* is added to the partial product in A if
the value of the bit of the multiplier (in Q) is 1. If the bit value is 0,

(A)+ 0 ——A*., The new partial product is shifted right one place, each
time: (A% -B_,4

To facilitate sensing the value of the multiplier bit, the Q
register is also shifted right one place, each time. The bit of the order
used will then always be in the q_47 position. The shifting of Q also
provides storage space for the minor part of the product in double length
multiplication. In rounded multiplication, (Q) are circular shifted right.

Negative Multiplier:

Due to the twos complement method of representing negative
numbers, this multiplication process would not result in meaningful repre-
sentation of the product if a negative multiplier were used. A positive
multiplier is always used, deriving it, if necessary, by complementing:

(+D) X (-Q) = (D) X (+0Q)

The twos complement of D is readily obtained by (D)'—=D%, 1—=ANIC.
The effective complementing of Q is done bit by bit, however, during multi-
plication to eliminate the time that would be required to add 1 to the ones
complement of Q.

6. 6. 3-2
Rev, A

One rule for determining the bit by bit relationship between
a number and its twos complement is:

Beginning at the least significant bit and proceeding con-
secutively to the higher orders, the bit values of a number
and its twos complement are the same up to and including
the first bit with a value of 1. Thereafter, the bit values
are opposite:

0.10101010000
1.01010110000

The bit by bit complementing of a negative multiplier is used
to determine whether or not add (D*) to (A). This determination can be
done by comparing q.47 (Q is shifted right one place each time) with a
flipflop (named "QC'"). Until the first "1'" has been reached, the value of
q_47 sbould be "1" for (A)+ (D*) —~A*, Thereafter, the value of q.47
should be "0" for that addition. The outline of the method (for a negative
multiplier) is:

(a) Initially set QC to 1

(b) (d_47 = QC) => (A) + (D*) — A *

() (a_y47=1) = (0—=QC)

(The twos complement of (D) is added to (A) if the multiplier
is originally negative).

The actual logic used for this process in fixed point multipli-
cation produces the " |q|=1" signal which will cause D* to be added to A.

{(|lal = n= [(qo::O v QC=1) ¢ (FP=0 *q_g47 =1)],
v [FP:O-qO.—.lcq_47=O-QC=0]
(Note: FP =0 indicates fixed point arithmetic,)

If the multiplier. is negative, (D)'—» D¥ during IT2 and IT3.

6.6.3-3
Rev, A

Shift Counter Use

The 47 addition cycles for fixed point multiplication are established
by the use of SC which is set to 47 in IT2 and counted down each AT3. The
sets of AT timings will be repeated until SC SAT. SC SAT is active when
SC* reaches 000001, but is not used until (SC* -1} SC and theréfore SC
000000,

Product Sign

There are two exceptions in the $-2000 to the customary rule that the
product sign is determined by the signs of the operands.

One exception is when the multiplier is zeroand the multiplicand
negative. The rule that unlike operand signs cause a negative product does
not apply. Zero is defired in the 5S-2000 as a positive number. This case
of unlike signs { -N) x { +0) results in a positive product, namely zero.

The other exception develops from rounding in single length
multiplication. If the negative product is sufficiently large (close to zero),
iounding will make it zero. Here again the sign changes. For example:

_2-24 < 2—24= _2-=48

The largest, representable, fixed-point negative number is —2_4:'7 (forty-eight
oues). If rounding, -2748 ig increased to the next larger, representable
number. This is zero, which of course is positive by definition.

The 5-2000 rule for product sign can be summarized by stating that
the product is positive unless the effective multiplicand is negative AND the
effective multiplier is not zero AND rounding does not make the product
zero,

The effective multiplier is always positive, as previously explained.
The effective multiplicand is (D#*),(+ D) x (-Q) is changed to effectively
become (-D*) x (+Q). (-D) x (-Q) is likewise changed to effectively be-
come (+ D¥) x (+ Q). A negative (D¥*) therefore implies a negative
product, unless either of the two exceptions, described above, exists.

The logic for forming the positive sign is:

AT2 * a =0 - ;fq = 1 » d*o= 1 = ¢ = CT =—=» positive sign

6.6.3-4

If the effective multiplier is negative (d*O =1), AND not zero
(| a| =1) AND rounding does not make the product zero (c, = 0), the
sign is negative.

If the multiplicand is negative and the multiplier not zero, ANIC j =1
indicates the rounded product has become zero instead of a negative number.

The quantity, -2'48 , would be represented by the binary number:
2 1 -2 . To this the round factor is added, effectively 2-48 . The sum
is 21 , indicated by ANIC, = 1.

The positive sign, where the multiplier is zero, would be indicated
by the absence of an active |q| =1 signal during the algorithm.

The a* flipflop is used to prepare the sign bit for aj. In every

. %
AT1: 1 — a¥,

In AT2, 0—a*, ;, by the logic previously cited. And in AT4, (@%y) —= a.
During the last AT4, also(a*+ 1) — d, during double-length multiplication.

Multiplier is Zero

The exception is when the multiplier is zero, which by definition
is a positive number in the S-2000. The logic for the usual sign transfer
in rmultiplication is:

AT4 + QC=0 — (a%_; ——ag)

Qwill not be reset unless one of the bits of the multiplier has a value of one.
The product will be zero, and a, = 0 if {Q) =0, as A is initially cleared
and no additions of (A + D*) subsequently occur.

Multiplier is Minus One

Here, similarly to (Q) =0, the 47 add cycles will leave (A) = 0.
One additional add cycle is required, known as 'force add", which effectively
will transfer (D)'' — A.

The definition of (Q) = -1 is that in the 47th add cycle (SC = SAT), the
sign is negative (qy = 1), all previous multiplier bits have been zero
(QC = 1), and the most significant bit, which has been shifted to d_4q
now, is also zero (q_47 = 0):

by

6.6.3-5

AT3 « A2b » V8 V17 - FP =0 —> (0 — Al)
The exit from AT4 — END is prevented when (Q)= -1.
Instead the force add cycle, AI =000, is performed before the instruction

ends.

Both Operands are -1

During the force add cycle, (D%¥)= 0.1111 and
AN1C=1. This results in overflow as ANICy # ANIC_} . The only time
multiplication in the S-2000 can result in overflow is for (-1) ‘X (-1) =1.

AT2 - AI=00X - ANICy # ANIC_; => (1 —> OVF)
Al Control

The states of Al used for multiplication are AI= 010 for
double length and Al =011 for single length multiplication. Al is changed
to AI= 000 for the force add cycle.

Double Length Multiplication

The A register is initially cleared to zero; then L :
(D) X (Q) — A, Q with the major or more significant half of the product
appearing in A. The multiplier is of course lost. The sign of the product
is stored in both ap and qq .

Single Length Multiplication

This arithmetic produces a 47-bit, rounded product, with
sign in the A register. The multiplier in Q is circular shifted right, in
the numeric sense, during multiplication and is not lost.

Rounding off is a process used when the accuracy of the
result is limited by reducing the number of digits allotted to represent the
answer. The product is available as a 94-bit number. In single length,
only 47 place accuracy is maintained. The rule for rounding is that the -
least significant bit of the shortened number should be a value closest to
the unreduced size number. The choice is between two consecutive values
of the L.S.D. of the shortened number {0 and 1 in the binary system). If
the difference between the lower value and the actual number is greater
than the difference between the higher value and the actual value, the

6.6,3-6

higher value is used. If not, the lower value is used. To demonstrate
with 3 and 6 digit binary numbers:

‘Difference between ., 100 and .101 is . 001000
. 100100 is rounded to . 101
. 100011 is rounded to . 100

Rounding is achieved by adding a one to the part of the full
length number that is subsequently dropped. The one is added to the most
significant digit of the dropped part, in the S-2000, the 2 _4g bit of the
product.

If a one is added to the proper bit position prior to, rather
than after, the multiplication, there is no necessity to temporarily store
the double length product in A and Q. The minor half of the product can
be dropped out of A as it is shifted right. The miultiplier in Q can be
preserved.

Prior to the multipication, the bit position that will event-
ually contain the 2 -48 blt of the product is the a _j position. In single
length, rounded multiplication:

IT2 = (0 —=A)
IT3 = (1 —Fa_l)

The register contains 0.1 rather than zero as the multiplication algorithm
starts.

Absolute Value (of Multiplicand)

The sign of the product is the sign of the multiplier. It may
be necessary to complement D to obtain the required representation of the
product.

If (+Q) and (-D), or (-Q) and (+ D) it is necessary to com-

plement by (D)' — D and 1 — ANIC. This will result in a product of
the same sign as Q, with the number in the proper form.

6.6.3-7

If the signs of (Q) and (D) are alike, the multiplicand already
has the proper form and is transferred, unaltered, to D%,

If (-Q), the multiplier is effectively bit-by-bit complemented
during the multiplication.

Logic for Fixed Point Multiply Instructions

IT1
General clearing of controls: 0—ANI1I, AN2I, EO, UF, SC
0—»OVF (if ICOF not effective)
0—MA, AN2C, FI, ANICE
Address modification, if any,
and connect inputs to AN2.
Clear D, if memory operand: 0 —=D
if (A) operand: l1—=D
I1T2

(SW2)' —=Mod 2
AN2 —=MA

Memory access, if required,

if product stored: 7 — MI
if product not stored: 4 —e MI
If operand in A: A =»D

Set Algorithm Control,

double length product: 2—=Al

rounded product: 3 —= Al
Set SC,

fixed point: 47 —=SC
Set QC 1 —QC

6.6.3-8

IT3

T4

ATI1

AT2

Set PI for program activity

following instruction:

Clear A to zero for initial

partial product:

l, 2, or 3 =PI

0 —sA

Clear D* for transfer from D

for (D) =—*D*
for (D)’ == D

Transfer to D%

not complementing:
complementing:

If rounding, enter factor:

Fixed point
(Floating point

Control

Prepare count-down
Clear A%

Clear Q%

Add on this cycle,

(AI - 01X . 'q' = 1)
or force add, Al=00X:

0 —pD%* and 0 —~ ANIC
l] ~—»D% and 1 =< ANIC

Inh. AN1

(D) —=D*

(D)’ —D*
1 —'»aal

—=AT1
—FT1)

(AI) —~= AT*

(SC) —= SC*
1l —e= Ak a3k
1 —--Q*) +1

Trigger D48

(A D%*) —Cp Ax

6.6.3-9

Do not add this cycle,
(AI=01X - |qf = 0) (A) =2 o Ax
Prepare Shift (Q) LW Qx

If overflow during force

add, (-1) X (-1) : 1 —=OVF
P . - - Py 5k e 9 - ‘, %
Positive sign a =0 s Bll ax_ =1 <, (')]éo —» a o
AT3
Change QC when reaching first
multiplier bit equal to 1;
* = =
(q 47 1+ FP =0) v
(q*_35 =1+ FP =) 0 —=QC
Count down SC (SC* -1) —=SC
Clear for shift 0 —»A, 0 —=Q
Last normal cycle, set controls for further operations, if
necessary:
Force add next, multiplier is minus one; 0 —AI
[SC = SAT » QC =1 oqo==1]
FP =0 ¢ g% =0 FP=19¢ g% = 0
E T4y =0 v 435)]
AT4
Shift A right (AI*= 01X), (A%) R g A
Double length, fixed point ax 47 ™4]

Force add cycle (Al* = 00X),
do not shift A% — A

6.6.3-10

R

Shift Q right (Q¥*) ——e Q
Rounded, or double length

- and SC# SAT. Q¥ —w g
Rounded (circular shift
of Q) if gk yq =1 l—sq_;
Transfer product sign to ,
A, a¥ —p a

‘ ' ' +1 o

Double length, last cycle,

transfer product signto Q. a* 4 q
+1 o

Perfq;i’n another add cycle,
(SCESAT or Q = -1) ~—AT1

Recycling (SC # SA T) —=ATIl
Last cycle (SC = SAT) and

multiplier is neither 0 nor 1
(QC =1 » q,=1) —+END

Force add (QC=1 - qy = 1) —=ATI1
(It may be noted that the force add logic can be redundantly

active before the 47th cycle with the other " — AT1 "
signal.)

6.6.3-11

Multiply and Add, Subtract Instructions

These two instructions, MAD and MSU are a combination of MMR
E(V) x Q —»A, rounded] followed either by AD or SD, BA) * (D) «--A]
The logic is essentially the same. However, the MAD, MSU instructions
require additional logic in IT4 through IT8 for control purposes and the
extra operation that is required.

The extra operation is necessary as the number that will be added
to, or subtracted from, the product in the A register at the start of the
instruction. It must be relocated before the multiply algorithm as the A
register is required for the product.

The procedure used is to store this number in D. This can be done
after the multiplicand has been transferred from memory, through D to D%,
IT4-8 timings are used for the (A) —sD transfer.

Identification is necessary to distinguish the two instructions fram
the other individual multiply, add, or subtract instructions. The various
phases within the instruction must also be distinguished, primarily the
ITs.

The II register is used for this purpose:

I = 0 ITs for activity prior to multiplication.
Go from IT4 to IT5, 1 —II in IT5.

II=1 Go from AT4 or FT4 (end of mutliplication) to IT1 for activities
prior to add, subtract.
Go from IT4 to ATl or FTI.

ATI1 When in add, subtract algorithm (AI=001), 0 —eII. This will
cause exit from AT4 or FT4 to END.

Logic of MAD, MSU

The logic listed here is that which is used in addition to the
existing logic for the rounded multiplication and the add, subtract A to
D instructions. Aside from the additions and exceptions noted belowy
the logic is identical. The listing below should be read in conjunction
with the logic for multiply previously given in this sub-section, and the
logic for add, subtract in sub-sections 6. 6.1 and 6. 6. 2.

6.6.3-12

IT1 II=0 Same as MMR.
1T2 Same as MMR except (SW2)! —s Mod 2 is NOT done at this time.
IT3 Same as MMR except A is not cleared at this time,

1T4 Same as MMR except the rounding factor (1 —.a_l) is not transferred
: at this time.
(MAD v MSU) « II =0 IT4 —»IT5
IT5 Trigger ANICC
Clear D for transfer. 19] —=D
Control I9 I — 11

(Note: MAD, MSU are the only arithmetic instructions using
IT5-6. Therefore I9, which is the 3-bit command coding for
arithmetic instructions IXX, identifies them in these ITs.)

I1Té6
Transfer operand for
. second part of instruction. 19 (A) —=D
IT7 '
-Clear A as initial
partial product. D108 «V32 0 —= A
IT8 Trigger D117
Rounding factor. 160 | —=a 1
Transfer multiplier
exponent for addition., 160 170 (QE) -——b-AE
Fixed point, algorithm 160 « 169 —ATI1
Floating point,
exponent addition. 160 = 170 —-FTI1
AT4
Fixed point algorithm is completed:
AT¥=01X » SC=SAT + VI7 s FI =000+ [I=]1 => AT4 —mITI
FT4

Floating point is completed as:
Product is normalized. FI* =100 » a*o¢ a¥*

o IT =1 —>FT4—=IT1
Product is zero FI* =100 « SC=SAT
o II=1 —>FT4 —=IT1

Product overflow

corrected. FI* =10le II=1 =D FT4—ITI

Product is effectively zero

as exponent underflows.

Do not do multiply algorithm. FI*=00l . UF=1

e II=1 == FT4 —IT1

Note: An exponent fault will nat be acted-upon by the computer until

the end of the instruction, subsequent to the add or subtract.

The IT, AT and FT operations with II - 1 use the same logic as

that of the AD and SD instructions.

6.6.3-13

6.6.4 Divide Instructions

Transac S-2000 can perform eight divide instructions, four each
with fixed and floating point numbers. The four types are single or double
length dividends; the quotient resulting from either may or may not be
stored in memory. The dividend must be located in A or A, Q prior to
the divide instruction. The divide instruction always transfers the divisor
from memory to D. I the quotient is stored, it replaces the divisor in the
memory location. The remainder is located in A.

The results of divisionare cogently explained by a Note from the
Programming R and D Department which follows.

TRANSAC S-2000 DIVISION ALGORITHM

The TRANSAC S-2000 division algorithm divides a number x
in A or in A and Q by 2 number y in memory and produces a quotient
in Q and a remainder in A. The sign of the remainder is always the same
as the sign of x. For reasons of speed and consistency of computer
logic, the quotient when negative is a 1's complement rather than a 2's
complement number. In most calculations this is simply equivalent to
stating that the number in the Q register is always the quotient rounded
down by truncation of the remainder. In some cases it is necessary to
know exactly what is in Q and what is i A after a division and this Note
attempts to clarify this point.

Consider the division x = ¥ We can write
[35’__ qQ+ r x 2'4
y

y
This equation defines g and r as positive numbers. Let us assume

that r = 0, i.e., the division is not exact. After the division is complete
the contents of Q and A will be as follows:

1 = (Q))
+ + q r
- - q 2-r
-47
-|»— 7 (2“2)-q r
-47
- + (2-2)-q | 2-r

6.6.4-1

' -4
The number (2-2 7)aq is the one's complement of q and can
be obtained by simply changing all 0's to 1 's and 21l 1's to 0's in the binary
representation.of q.

The case r=0 is special because 2-0, i.e., negative zero, is
not a valid negative number. When r = 0 we therefore write

x| = q if x is positive

Iyl 47 -

x| = a-2 + dx 2* it % is negative(where d = - [y Y
|v] d-

Thus when division is exact and the remainder is 0, the Q and A
registers will appear after division as follows:

x |y Q) A
| + + q 0
_) g2 47 ,
+ - (2-2"%"y-q 0
S (2-24T)-(q-27*7) | -y
= 2-q

The above statements are also true in floating £€int division.
The constant 2-47 must, of course, be replaced by 2°°~. However, in
case of floating point division the quotient is normalized by continuing the
division process and adjusting the exponent. When floating point division
is completed the exponent bits of A will contain the same exponent as the
12 exponent bits of Q.

Examples
Consider the division 1 .3 _ 1 Here
4" 4 3

lx]=0.0100. ..
ly|=0.1100. ..
q =0.010101.,.010
r =0.1000. ..

6.6.4-2

x y Q) (4)
1 3 0.0101...010 0.1000...
i
4 4
; 1 3 0.0101...010 0.1000. ..
4 4
1 3 1.1010...101 0.1000. ..
A Ry
L, 3 1.1010...101 1.1000. ..
4 4
Now consider the exact division _1___1_ i
4 ° 2
|x| = 0.0100...
Iyl = 0.1000...
q = 0.1000...
x y Q) 8)
1 1 0.1000...000 0
4 2
11 0.0111...111 1.100...000
4 2
1 1 1.0111,..111 0
T |72
1 1 1.1000...000 1.100...000
"7 |tz

6.6.4-3

Division Method

Division is achieved by a series of subtractions of the divisor from
the dividend accompanied by left shifts of the difference. The quotient is
developed bit-by-bit, as the following example demonstrates. Positive
four-bit numbers and sign are used for simplicity.

If the dividend is smaller than the divisor, the subtraction,is not
done, and the quotient bit is zero. Otherwise the quotient bit is 1; the
differ ence (which is actually the remainder to this point) is shifted Teft

one place.
9/16 — 12/16 = 3/4

quotient bit 0.1100
0.1100) 0.1001
- 0.1100 0

1.0010

0.1100 1 (The computer will subtract
0.0110 by addition of twos complement)

0.1100
0.1100 1
. 0000

ojo

0. 0000
- 0.1100 0

_ 0. 0000
0.1100 0

Remainder 0. 0000

The quotient bit is transferred to q_47 80 Q is also shifted left as division
progresses. This neatly fits the scheme for a double length dividend with

the minor half initially in Q.

It will be noted that three types of operations are required ---
comparison: is A< D?; subtraction: if A2D; and shift, in all cases.

A familiar comparison-by-addition technique is used. The form of
the numbers is arranged so that if equal the sum. is a fixed value (27). If
unequal, the sum is greater or less than this value depending upon which
number is greater. To achieve this, one number should be in positive form

6.6.4-4

and the other in negative form:

Iny| + 10.0 [NZI
Initially, 1f the signs of A and D are ahke, the twos complement of D is
used, (DY) -3 D*¥, 1 —% ANIC.
The sum will have this range.

0 = [N, < 1.0

1.0=10.0-|N[<10.0

1.0 £ SUM < 11.0

IfA =D (la] +10.0 - IDl) = 10.0

When |A| < ,DI these will be the sums for the various cases of signs.
+A+D | (|l + 10.0-ID|) < 10,02, = 0 d %=1 s =
+A-D | (]Al +10.0 -[D|]) < 10.0/2, =0 d_* =1 s,
—A-D | (10.0 = JAl +1ID]) > 10.0l25 =1 d * =0 5,
—A+D | (10.0 - (Al +[D]) > 10.0{a, =1 dg*:o 5.=

Therefore the active signal d #so* indicates (A) = (D) and that the
subtraction can be performed.

Absolute value subtraction is the operation required by this method
of performing division. This will be achieved if one input to AN1 is in

positive form. (A) and (D*) have opposite signs and the AN1 output is the
result of a subtraction. -

If the subtraction can occur the quotient bit will be given a signifi-
cant value (1 for a positive quotient, 0O for a negative quotient). This is

the procedure for the last 47 cycles of the division algorithm which are
done under the control of AI =101,

QD Quotient Digit

Two timings intervene between the comparison of the numbers, each
cycle, and the storing of the quotient bit (digit) in the Q register. The bit
is therefore temporarily stored in the QD flipflop.

It is necessary to provide for the development of the quotient as
either a positive or negative number. If the signs of the dividend and
divisor are the same, the quotient is of course positive. In this case the
significant value of the quotient bit is ''1'" when subtraction can occur.

6.6.4-5

O O

With unlike signs, when subtraction occurs the significant value of the
quotient bit is '"O0'.

The state of AN1IC can indicate whether the quotient is to be positive
or negative. With like signs, thetwos complement of (D) is required:

ANIC =1 Indicates positive quotient

AN1C= 0 Indicates negative quotient
The method used to develop the quotient bit is as follows: the signal that
clears Q%, (1—Q%) also sets 1—=QD. The quotient bit should be zero
under two conditions - positive quotient, not subtracting; negative quotient,
subtracting.

[ANIC =1 . (A) ——CL-»A*:] v [ANIC =0 ¢ (AdD*) —*A%[

QD

This is done during AT2. The least significant bit of Q is cleared to zero
and if QD= 1, it is transferred to d_47 OF 9_3g5 as the case may be.

Quotient Magnitude

The quotient, as developed by the algorithm, must be capable of
being stored in a 48-bit register. This requires that the dividend be
smaller than the divisor, generally, as the quotient must be in the range
-1 2 Q> 4 l'to be stored.

Quotient overflow can be detected without performing the division
since the relative magnitudes of the divisior and dividend can be compared
in the first cycle of the division algorithm. This first cycle seeks a
different result of the comparison than do the succeeding 47 cycles. In the
first cycle of division, unless [|A| <]D[the division cannot be per-
formed and the overflow iwill be set instead. The algorithm control is Al =
100 and the logic used isag # s, ?

Referring to the table listing a_, d *, and S for the four cases of
signs, it will be noted that a_# s, when |A| < |D| . If |A| > |D],
a,= 8- In the first case, division can proceed and this is effected by
changing AI* from 100 to 101, under whose control the algorithm can
recycle. In the case of overflow, "OF" is set to 1 and the division is not
attempted. Instead the contents of A and Q are shifted right one place
and the instruction is ended.

The limits of acceptable quotients, i.e., conditions that do not pro-
duce overflow are set out in the table below (Table 6. 6.4-1). Note that
positive operands with equal absolute magnitudes cause overflow as the
quotient developed would be +1. However, the quotient developed for
negative operands with equal absolute magnitudes is 1-2-47, This number
is representable in the S-2000. The quotient of -1 can be achieved by the
computer only when A is negative and D positive.

6.6.4-6

L-%¥°9°9

Signs Magnitude Sum a d* s Result

o) (o} (o]
A D
+ o+ lal = Ipl =10.0 0 1 0 OF
+ + | = |D| >10.0 0 1 0 OF
- - |al = ID] =10.0 1 0 0 1-27% (q- 2
- - | Al > |D] <10.0 1 0 1 OF
+ - lal = |D] =10.0 0 1 0 OF
+ - |A| > |D] >10.0 0 0 OF
-+ lal = |D] =10.0 1 0o o0 2-1@2-q)
- + |a] > |D| <10.0 1 0 1 OF

Overflow for Fixed Point Division

Table 6.6.4-1

The dividend is always treated as double-length by the algorithm
logic for simplicity of organization. The Q register is always shifted
left along with the A register. However, in single-length division, Q is
cleared to zero prior to the algorithm.

The following lists the logic and activity for the instruction and
algorithm timings. Floating point will be subsequently discussed.

IT1

The usual control clearings and preparation to transfer the address
to MA.
IT2 Trigger AN2CC

Transfer address. AN2 —s> MA

Transfer divisor

storing quotient 2 —=x MI
not storing quotient 4 —» MI
Set algorithm control for fixed point 4 —» AI

Set controls for floating point 5 —» AI, 1 — FI

Set SC: fixed point 48 —ww= SC
floating point 36 —> SC
Program control (SW2)! —— Mod 2
Read transfer complete MT5 —s IT3
iT3
Unlike signs, prepare transfer (D) 0 —= D*M, 0 —~ ANIC
fixed point 0 —s D*E
Like signs, preparetransfer (D)" l s D*M, 1 —> ANIC
fixed point 1l c— D>z<E

6.6.4-8

IT3(continued)

Single-length dividend, clear Q 0 — QM
fixed point 0 —» QE
Floating point, prepare transfer (DE)' 1 —> D*E
Program control 0, 1, 2, or 3 —a» PI
IT4 AN2CC trigger
Inhibit ANI
Unlike signs (DM) —» D%*
fixed point (DE) — D*E
Like signs Dy — D*M
fixed point (DE)I — Di¥g
Floating point (D) — D* g, 1 — ANICE
Fixed point — ATI
Floating point ~a FTI1
ATI
Clear A*, %, QD AI=10X 1 —p- A*M, 1l Q*)p QD
Al =10X - FP=0 oo A¥p, Q%
Prepare SC count down AI =10X (SC) —» SC*
Control timing alone (AI) — AIx
Floating point, clear FI FP =1 0 w—p FI

6.6.4-9

AT2 Trigger ANICC
l1st cycle:
Proceed with division,
o

|lal < D] AI=100"a_#s_ 5 s Al%

Do not proceed,

|al >Ipl AI =100 - a=s 1 —> OVF
. . _ o
Prepare shift remainder AI =100 (AM) — A%y,
- . - o
AI =100« FP =0 (AE) — A*E
Al =10X Q) SV
4 ° = ——‘a~0
Al =10X - FP =0 (QE) Q¢
Positive quotient (Apm) — A*M’ ANI1C 0 —>QD
=1
After 1st cycle: 5
> — < d
Subtract AM=D*M AI=101- d*oi s, (AM-l-D*M) —» A%y
= . - 0
Al = 101 » d* ¥ s, FP=0 (Ap+ D*E) —— A%
(Apg+D¥y) —> A% +ANIC=0 0 -2 QD
- _ o
Transfer unaltered AI =101 d*g = s (AM)«——» A*M
remainder, AM<DM Al =101 ~d*o= So *

s - - 3
FP=0 (AE_)--Q—o-A'ﬁE
(AM) ~— A*M +ANIC =1 0 — QD
Prepare shift quotient
-)
(and double-length AI =10X (QM)_———» Q¥ 1

dividend) Al =10X « FP =0 (@) 2. Q¥

6.6.4-10

AT3

k= ——— ’
Clear A, Q, Al 10X 0 AM QM
APx=10X « FP=0 0 — AE, QE
Count down SC Ak = 10X (SC* - 1) — SC
Continue divison Al* =101 5 s Al
Floating point, FP=1 -+ g% 1= q*_,
Normalizing [(AI* = 101 «» SC=SAT) v
Required (AI* = 101 ¢ FI*=100-
FP= 1)] 4 seee FI
AT4
L
Shift remainder AI* =101 + SC£SAT + (FI¥=4 - FP =1) (A% — Ay
L
left for next ax] T 2
- o
cycle of algorithm
‘ps L
(above conditions) « FP =0 (A%) ~~—= A_,
E E
% ————n
<~ 347
(above conditions) » FP =1 q* 1 —a
L
Shift quotient (and Al* =101 (Q*M) — Opm
L
double-length dividend) Al*=101: FP=0 (Q*E) e QE
left
Transfer QD —a» Q Al*¥=101+ FP=0 (QD) — q 47
AI* =101 - FP =1 (QD) —> q 5
Last cycle, do not (AI*=101°+ SC =SAT) v
shift remainder (AI* = 101 *» FI* =100 - FP = 1) (A¥pf == Apgs
3k
4 -laqo
(AT =101 SC=SAT*» FP =0) (A%) —= A

6.6.4-11

Fixed point division AI* = 100 (A*M) —— A

not possible, shift

dividend right ¢ R ;
ividend rig (Q M) —_— QM

Q¥ —— q;
o

a¥ — a

Al# = 100 « FP = 0 (A*) R, A ;
E E
a* q .
-47 —/> % 4
E E
* = e FP = L
Al 100 1 a _35 .---—--:.q_‘1

Recycle AI* = 101 » SC # SAT * (Fi*=100+ FP=1)—AT1
Exit, fixed point Al* = 101 « SC =SAT ¢ FI=000-1I=0 —END
Exit, floating point AI* = 101 « FI* =100 « FP= 1 —FT1
Exit, overflow AI* = 100 » FI1 =000+ II= O —END
Store Quotient END —— 1IT7
IT7

Clear D 1—D
IT8 Trigger D117

Transfer quotient (Q)—=2=D

Start write operation 3 — Ml

— END

(If overflow during the divide-and-store instructions, zero or the minor
half of the dividend, shifted right, will be written into memory.)

6.6.4-12

6.6.5 Floating Point Numbers

To briefly review, the floating point number in the S-2000
is composed of two parts, (2 -M x 2*E) mantissa and exponent. The
mantissa contains the sign of the number (bit 2 0) and a binary fraction
of 35 place accuracy. The positive mantissa has a range of:

0< +M<20

The negative mantissa is represented by the range:

0 1

2 < -M<2

The negative value is represented as (2 1 |M| } and (2 12 _ ’E I).
As in fixed point numbers, the larger (more positive) negative number is
represented by a larger value binary number than a smaller negative
number.

The exponent part of the floating point number consists of
a sign (bit 2 _3¢) and an 11-bit binary integer. The positive integer has
a range:

0< +E <211
000 000 000 000 < + E <100 000 000 000

The negative exponent is represented in the usual complementary method
by: -E= [214 . |E| 7] with the range:

212 o g < 2 11
1 000 000 000 000 < -E < 100 060 000 000
The greater the negative exponent, the smaller its absolute value.
The range of exponent number values is -2048 < E > 2047

Normalizing

To facilitate floating point arithmetic, the numbers are
"normalized''. The exponent is reduced to the smallest value that can be
used to represent the number. The mantissa is accordingly shifted left

6.6.5-1

during this process. The exponent is reduced by one and the mantissa
shifted left one place until a significant bit appears in the 2_j1 position
(detected as 20F 2_1) or 36 shifts have been performed. 36 shifts will
result in a mantissa of zero. The purpose of normalizing is to allow the
maximum degree of accuracy in representing a quantity within the capacity
of the 35-bit part of the register. This is achieved when the most signi-
ficant bit position has a significant value. For example, a quantity in

the form (2'35 +2-37) X 210 could only be contained in the register to
the accuracy of 2-35x 210 | Normalizing will permit greater accuracy:
-1 +2-3yx2-24,

The general practice is to normalize numbers as they are
entered into the computer. Most conversion routines, as TAC, provide
this feature.

Most results of floating point arithmetic are normalized
as part of the arithmetic instruction. The exception is when normaliza -
tion would require the exponent to be smaller than - 2048 (exponent
underflow). Since it is considered best to Preserve the accuracy, normali-
zation is stopped at this lower exponent limit and the number is left non-
normalized. The accuracy may or may not be reduced in subsequent
arithmetic operations. The possibility of preserving this extended
accuracy is maintained as long as is permissible.

If unnormalized numbers are used, the sole potential loss
is in the accuracy of the result. When two non-normalized quantities are
entered into the computer and used, this may occur. When (2"‘30 X 2~ 5) +
2720 x 2-45) is performed, the sum will be (2-30 X 2-5) which will be
normalized to (2“1 X 2-34). The addend was made zero as its exponent
was smaller than the augend exponent by more than 35. The same values
normalized (2-1 X 2-34) + (2730 x 2-64), would result in the sum
(-1 x 2-34) 4 (2-30x 2-34) o '[(2'1 +2730) x 234 | The sum is more
accurate.

It is the responsibility of the programmer to scale the
numbers to achieve the desired accuracy of the result.

6, 6,5-2

A non-normalized number that has been entered into the
computer can usually be normalized by addition to zero (Clear Add).

Zero could be represented by a mantissa value of zero and
any of the 4095 possible exponent values. Normalizing, however, results
in one representation which is considered the standard form of zero.

A =0.00....0 A =1.00. ... 0

M E

This conforms with the rule of making the exponent as small as possible.

Normalizing Procedure

The control state is FI = 100. This basic illustration of
normalizing would be for add or subtract. At the end of the preceding
algorithm, 36 SC to set the shift limit,

Preparation is also made to subtract one from the
exponent (AE) by 1—D*n, 0 —= ANICE.

FT1 trigger D49
Control activity (FI) —— FI*
Prepare count down SC (SC) —— SC=x
Clear A%y, I —— A¥xy,
Clear A*p I —— Axqg
I (Ag - 1) <-2048, underflow 1 —— UF

(this simplification will be
later qualified)

FT2 trigger ANIECC
Prepare to shift mantissa (A M) — A% g
Transfer difference (AE - 1) (A g T D*E) —_— A*E

FT3
Count down SC (SC* - 1) —— SC
Control activity (FI¥*) —— FI

Clear AM, AE is no underflow 0— AM s AE

6, 6. 5-3

FT4
If no underflow:

Transfer new exponent value (A*g) —= A E
And if SC #£SAT, shift mantissa L
left (A* M)y —— AM

a*o — 2,

And if number now normalized —— END
And if number not normalized — FTI
If underflow, end instruction —— END

If 36th shift (SC = SAT) generate
standard form of zero (Ay); was
cleared in FT3). 1 —— a_3¢

" And end. —— END

Normalization is detected by a*y # a* -2+ The bit a*_»
is the same as bit a] of the shifted number.

Underflow will leave the non-normalized number in A M
with (A g) = -2048 as A was not altered in this event.

Overflow and Underflow

Each of the two parts of the floating point number that
is the result of an arithmetic operation can independently exceed the
capacity of the part of the register allotted to store it.

The mantissa exceeds the storage capacity when:

-1

27 lemz 2°

Excess in either direction is a mantissa overflow. The
exponent exceeds its storage capacity when:

-2048 > E > +2047

— [A—

- Exponent underflow Exponent overflow

6.6,5-4

Several control flip-flops are set to note these out-of-
bounds developments in the exponents.

UF =1 The exponent is now smaller than -2048.

E0=1 Exponent now out-of bounds, either exponent
underflow or overflow.

EF =1 Exponent Fault. The entire number is now
too large to be represented if this condition
exists or will exist at the end of the instruc-

tion.

In some cases it is possible to adjust for the excess in
one part of the number by changing the other part of the number.

Correction

If addition or subtraction results in mantissa overflow
(ANIC _p # ANIC _j), it can be accommodated thusly:

#20 x 2 -1021y . (4p-1 x , -1020,

(2] x22046) - (20 x 2047

The exponent is increased by one and the mantissa shifted right one
place (in effect, divided by two). This can be done as long as the
increased exponent does not cause exponent overflow. The upper limit
is always E = 2 as the exponent is being increased.

This process is known as '"correction'' and the state
of FI that controls the process is FI = 101.

When correction is not possible, due to the exponent already being
equal to +2047, the entire number has overflowed, or the mantissa is
too small to be corrected without exponent overflow. Because the
exponent limits the correction, this condition is termed '"Exponent
Fault" (EF) and the associated flip-flop will be set (1 EF).

6.6.5-5

Another point should be noted about mantissa overflow.
The capacity of the register is never exceeded by more than one (20)
when the mantissa overflows in add, subtract or multiply. The maximum
sum is with the positive mantissas, '

(20 -273%) , (20 -2-35) o (21 . 2-34)
The difference between this sum and the register is less than one,

The minimum mantissa sum occurs when adding (-1) + {-1),
represented as 204 20 - 21 This exceeds the capacity by 20,

An increase of one in the exponent is equivalent to a
decrease of 20 in the mantissa, which is equal to or greater than the
potential overflow excess. Correction can be done by a change of one
mantissa place and an exponent increase of one.

Correction, Floating Point

In AT2 if overflow exists, 5 — FI. This illustration
is for add or subtract. Under these conditions, in AT4:

AT4
Add one to AE 1 — ANICE
0 — D=x*
— FTI
FT1
(FI) — FI*
b3 e ¥
Clear A*M , A & 1 A*M . A*.E

If exponent increase
caused overflow l — EF

6.6.5-6

FT2

Prepare shift of (AM) (Ayg) — A%
Transfer exponent sum (AE + DE) —~—>A*E
FT3
Clear A O — A , A
M E
FT4
Shift mantissa ‘ (A*)—B—» A
M M
d*o———— ao
Transfer new exponent (A*_) - AE

END

End instruction

As mantissa overflow is produced only when numbers have
the same sign, d*o is used to provide the sign of the corrected number.

When correction resutls in exponent overflow, the fault
is indicated. The register will contain a mantissa of either 0.1 or 1.0.
The exponent of +2048 will have a ''negative-appearance', 1.00 000 000
000, as +2048 is beyond its capacity.

When exponent fault exists at the end of the instruction
performance, the computer control will jump to the Iyhalf of location
00000. From this point corrective action may be programmed.

Before jumping, (PA) are stored in JA to indicate the
approximate program location of the instruction that developed the
exponent fault. PA at this time does not contain the address of the fault-
causing instruction, but rather, that-address-plus-one. The correction
routine must reduce (JA) by 1 to learn the actual memory location involved.

Setting up this jump requires two timings. In the first 0 — JA,
(PA) —=JA, and 1—ja _, if SW2 =1. Then 0 — PA, 0 — Mod2,
l— PI. And then proceed to PT1. EF will be cleared to 0 during PT3
of PI= 0l. ‘

6.6.5-7

6.6.6 Floating Point Addition, Subtraction

Prior to addition or subtraction of floating point numbers,
their exponents have to be made equal so the mantissas bear the proper
relation to each other.

274 x 26 2% x 28
Yo ~ t 4 6
27%*x 23 2°%x 2
273 x 26

The general method of arrangement used is to change
the smaller, (less positive) exponent to the value of the larger exponent.
Then the mantissa of the number with the changed exponent is shifted
right the number of places equal to the difference between the exponents,
for example:

IfA_ <D D — A and shift right (A

E E’ “E E M

(D - AE) places.

E

Actually the exponent transfer need only occur if the
exponent in A is the smaller. During addition of the numbers, only the
mantissas are sent through AN1. A is not disturbed during the ATs
for floating point numbers. Therefore with the sum to be in A, there is
no need to transfer (AE) —— DE , if the latter were the smaller
number.

As the mantissa can only be represented to an accuracy
of 35 places, when the difference between exponents is greater than 35,
the mantissa of the smaller number is made equal to zero. For the closest
the machine can represent the sum of (2 -1 x2 100) + (2 -1 x 250) is
(2 -1 x 2100). The increase is (2 -51 x 2 100) and cannot be represented
with the 35 place accuracy of the mantissa.

The logic simultaneously tests to detect if AE < (DE + 35),
if AE > (35 + DE) or if A < (DE - 35). If the first condition is detected,
DM is shifted right. If the second condition is detected, DM is cleared
to zero. If the third condition is detected, AM is cleared to zero. If none
is detected, AM is shifted right.

6.6.6, -1

The exponents are compared by adding the twos complement
of Dp toA . Table 6.6.6-1 lists the logic used. The initial state of FI
for this arrangement is FI = 000. During the ITs (Dg)' — D*
and 1 —> ANICE. The result is examined in FT1.

Comparison of Exponents with Like Signs

0<+E < 2 1 decimal
000 000 000 000 < +E < 100 000 000 000 binary
0 < +E £+2047 number range
-2048 £ -E £ -1 number range
2115__ -E > 212 decimal
100 000 000 000 < -E < I11 111111 111 binary

The two exponents are compared by subtraction which
is performed as: Ap + (2 - ID EI). Like signs will be indicated
by.rC_3(i = C_:,’.7 . IfAE gDE , S-=36 will be 0; LfAE <DE’ S -36
will be 1.

+AE 2 +DE

If they are both positive and A 2 Dp, the range of
the sum, S, is:

212 4211)55 5 212
1011111 111 111 > S > 1000 000 000 000

This range is characterized by S _3¢ (sum bit for AN1 bit position _3¢)
being 0, like signs is indicated by C -36 =GC .37 . (Since a_3 =0,
d* 3¢ =1and S>212 , C_3¢and C_37; will equal 1.

If the difference between these exponents permits
arrangement of the mantissa of the smaller (difference is equal to or less
than 35) the range of the sum for positive exponents is:

12 12

2 S 2 + 35

[IA
HA

6.6.6. -2

€"9°979

Relative Exponent Values Logic of Determination Action
FI = 000
. *
- =0 . =1 D
+AE 2(DE + 2048) C-36 C_’37 Clear M
- < - =1, =0 Cl A,
AE (+DE _ 2048) C=-36 C 37 (Dea;_}g
E E
tDp £ tAp 2(xDg +35 - C 3, =C 3, . S_ 3, =0
'S|< 35 Shift (D*) Right
(iDE + 35) < A < (-DE + 2048) C-—36 =C .37 S_36 =0 Clear D*
S’> 35
(:I:AE + 35) <iDE é(-,AE + 2048) C_36 = C_37 . S-36 =1 - Clear AM ,
(DE) AE

Method

— FIx*

— FI*

— FI*

—> FI*

—> FI*

If None of the Above Conditions Existed During FTI Timing, The Remaining Possibility is Acted Upon in FT3.

+A < D <(j;AE + 35)

* =
E E = FI 000

Note C = ANIC _

-36

C_37 = ANIC .37

S = Sum Bit ANl
-36 -36
,Sl Absolute Value of Difference

Between A E and DE

36

Table 6.6.6-1 Exponent Comparison for Add or Subtract

Shift (AM) Right, (DE) — A

E

If the difference is greater than 35, the range of the sum is:
1 100 000 000 000> S > 100 000 100 011

The symbols of the following table are used to indicate a sum bit value
of 1 for the twelve ANIE bit positions:

S_345.375_33 S_39 S

_38 S_39 s S 4, S s

425 43 S

44 S_45 S _46 S .47

A B C D E F G H I J K L

The positive number, 35 would be symbolized by:

000 000 100 O11

ABC DEF GHI JKL

And the logic for determining a difference greater than 35 for this
case is:

N>35=A [(BVCVDVEVF)VG(HVIVJ):I

If these conditions do not exist, the N £ 35 signal line will be active.
(On some logic schematics the term " lSl '""is used instead of the term
"N'',) See Figure 6.6.6-1.

With N or |S' < 35, the value of the six least significant
bits of the sum is the number of places D* M must be shifted right.
These six bits are transferred to the shift counter as the shift parameter.

+AE < +DE

When +AE < +DE, the range of the sum
PE r@l2 . IDEl)] is[Z 12 Pg - IAE”

212>S >211

1 000 000 000 000 > S > 100 000 000 000

6.6.6-4

= - Gy
33 «(T-42 T7%) - ety —
14 % ” ~
- e (HEU Y —— — —— = — — e — — — + -+ ¥610313S 5 « (0 =, ¢ :ﬁd@
R e CB
o
% mr E0E)— — = —— - — e — e T_Fl.*ﬁ |||||||||| @) o
25 ~(1+,C 24nS) AR m s s 100 _ | !
N RW@
x > bbb dpo i L) B m@.
: Y S S A O)
cns SRS 4= Gt ispsupubuiegt i S o S B}
Tl 2 ;Ww - - o IRERRERE (
- N T I T T o b
_u 1@vr| sty —— — —— 4 _ h " b A _ L_’ o~
- I _~ | _14. o103 D5 e = g
A EERRRENE 1 Ny TR T &
GHz G-ggg i A .
28 < (V=8 2u88) i e - L " ! H IIIII | | [
Ch [- + 4 €
" = LT _."L_- (A _LAw ¢
o - g T T 44—
> -@ ||||||||||||||||||||| St N
g IR ey
— P t | 1N g
B i e i e e e +T|'!
@3 26— (1742 *H8S)] [T O A
[T T T R T B O
- Lol _4_;_ J_f_f_
n A_.! _—
: _L_Z_r_g_ﬁ__J_r __;_n_ _
. IR Rt T R OE
i =
[] I | !
B e e e L e T o e)
62 (s - oY)~ — ST T T A O A T O A A [
L D o
| I Lty || 9250
- - - - === == .“..“.*_l.T.T “lT;_l.“.-_Tﬂl L_.;_l“:"..ﬁn*ﬂ IIIIIIIIII 0173138 "YSe«(0= .- C ;Sg
— A SoU Y — — ——— — — s —————— 1 { 24-
— J________:_L.Jrh+f_r+

T T O R T O B A
T T T O T R R O O A O
I T O O I O B [S B
T O T A I N Lyt
I N I R A L
. . [B AR RN
W T TN TN N R T I 0 Sy S R
4404 [I O A PElad
& 1T tH 1D e 14 “"“___“_ ._ “_“_“
Zuwgcp->u © 5] A uw u. (| | ! !
W > > > 5 > "_“““__“_ _»I|||w.1_r+L_..ﬁu
PO =t —>uw x - - x | | |
' Loz e i i N Cy'C
! |1 | | | [o=
'3 2! I R I A R 44—
> Froe Prbra P! ['
= 'S - [T I O O P | +
ol A | s e3 T B Pyl [
_ =z ws o3 I T A S B I S T 44 ——q e
E T T Lgiee 5
k3 < WWﬁw _“) _“.”__ (1 N0133188 V'S (0% 2 WNY) -
«2 Z T . T N ++I|~g
Tl e P (A 1 _
_ L [Pl I+ H
T T A ___““l _____L_. [-
= lr 1! b ——— ++++++———— 4+ ——
ilo| 3 13 13 iR RERRR T
o > > A Lol FEo g 4 e R Zég
- 22 e R T T I -
T > > < [______ | 'i\«\u«\\, 9e-
ol z _m > “_ Lo mm o - b —— =T
F lw T} ® -~ o Pl | i
97— _WR.\M z “_ |) __“_IIA wylnn_.lr‘
T 1A o > > | | [L
o w Qe oz L + Gy
o] 5 o2 ¢ : T 0
= S 2 '3 L bl _*___l@ylx_rl - zoh.on._mm.o_wiaou K 25@@
S 2 [| [R T I [
~ - 1= v | ¢z5oer)
s [B Ve " | N IR N R
7L< < < > _F~ __.nr__ by !
T L O@)
w H m _ N A i1 o Loty T
S £ A | R R R
3 o< b S O T T
s 2 N rllilllllllulll‘.
N B o IR R Qi.:ui@@
u sy T BN
“ O e d g
2 S s S e S
z 2 0y e e e e — = - — 4
||||||||||| J 0t
B v TR £ FA RN 1Y - S iy N
1 = I TR 5 PR -4 - S 1
uw W 9 (&
._..._..m @Mm ol
| AR
| >,

|
gz ————— &= !
3

Foal
v

3 o

>. vi

2 oz

2]
@

— =
m w
— > —_ H

jw
Y .W > \W >
L) - 1a 2)
A | > > 2 2
T K3} x g
-4 (4 — > ~ o
e (RC; ol & z
< < < i< j<

Figure 6.6.6-1 Shift Counter Selector

6.6.6-5

—

This sum is characterized by S _3¢4 =1, and C_3¢ = C_37 = 0.
(a_3g =0, d*_34 =1, C_34 =0andC_37 mustequal 0 to have a sum

in this range.)

If (+AE + 35) <+D the range of the sum becomes:

E’

@2 _35> 5 > 21!

111111011 101 > S > 100 000 000 000
12

A value in this range is identified as being smaller than (2 -35) by
this logic:
(212 35y 1 1 1 1 1 1 0 1 1 1 0 1

(Logic) A[(E vC v DvEvF, v G Hviv J)vG K E]

In this case N > 35 becomes active and A M will be cleared.

If N € 35, then the ones complement of the value of
the six least significant bits is one less than the number of places A)q
is to be shifted. For example, inverting the six bits of the number above
(212 _35) will result in 100 010 or 34. This is transferred to the
shift counter as the shift parameter. The logic compensates by not
counting down SC the first time Aj); 1is shifted. (A)) will be shifted
in this instance, 34 + 1 places.

-Ap 2z-Dg

When both exponents are negative they are compared
by:

12 [12 2 _ | ‘I 12
@12 - [agl)+ 212 -e@l? - D)| or2tto jag Ipg|
If equal the sum is 2 12 i Ag 2Dg, the absolute value of Ap is
2—

smaller than that of Dp (e.g. 2-4>2-8) and the range of the sum is:

12

(212+2“)>S 2

v

1011111 111111 2 S 1 000 000 000 000

v

w1thS_36 =0 and C —36 =C -37 °
6.6.6-6

If the difference is greater than 35, ISI >
000 000 100 O11.

-AE < ‘DE

The sum in this instance will be:

212 5 g 511

111 111 111 111 2 S 100 000 000 001

v

with S 3¢ =land C _3¢ =C .37 - 7The right hand binary number is the
sum when A =-2048 and D, = -1. If the difference is more than 35,
the range is:

(212 _35)> 5 >21!
111 111 011 101 > S > 100 000 000 000
If Ap < Dyx the value transferred to the shift counter
is always one less than the actual number of places to be shifted. This

is compensated for as previously mentioned.

Exponents with Unlike Signs

Additional logic is required for these cases as some
of the sums lie outside the ranges covered by the logic for exponents with
like signs.

In negative numbers the smaller absolute value is the
greater quantity. When -Ap > -Dg, |Ag| < |Dg| . Adding Ap
and the twos complement of D resulted in a sum that exceeded 2*“.

The closest any two exponent numbers of unlike
signs can approach each other are difference of -1 and 0. The greatest
difference is for -2048 and +2047. In looking at the absolute values of
numbers with unlike signs, as either or both absolute values increase in
magnitude the difference between the numbers becomes greater.

If the values of two numbers with unlike signs are
close to each other, the sum of their absolute values will be small. This

6.6.6-7

sum (of absolute values) will increase as the difference between the
numbers increases. The range is:

lo] + 1]
12

2°<s§_2~1

s 2 |eoar] + |2048|

HA

This sum of absolute values actually is the difference between the numbers
when dealing with numbers of unlike signs.

tAg -D o

Obviously A is greater. The operation is A
+ [(2 12 12 _ IDEM or 'A E‘ + lDE‘ . The sum ranges:

0< s < 212

000 000 000 001 £ S < 111111111111

which can be divided into two parts:

1 11 12

(1) 0 <s < 2! am 2''<s <2
PartlThas S _34=0and C_34=C -37 This is as

a_34 =0, d*_34=0and C_3g = 0 since the sum is less than 2 .

Therefore C -37must also be 0. The existing logic will shift or clear D,

depending upon the magnitude of the difference. D can be shifted if

[AE| + tDE! < 000 000 100 O11.

If the sum is in part II the difference is equal to or
greater than 2 This means the difference between these exponents
is equal to or greater than 2048, a difference completely beyond the
adjustment capacity of the mantissa (35 places). D is effectively zero
in relation to the number in A and the D register should be cleared to
zZero.:

11

This range, 211 £ S < 212 can be distinguished by
C -36 =0.» C -37 =1 as a_36 = 0 and d=* =0, C_37 must equal 1

-36
to make the sum equal or exceed 211 | If the sum is to be less than
2 12 » C _3¢ must equal zero.

6.6.6-8

-AE and +DE

If the difference is 35 or less, A can be shifted. If
greater than 35, A is cleared to zero. The logic detects the latter
condition:

12 12 _ 13
@12 . Jagl) + @12 - |pgl) =23 - ag| + ’DEl)
@23 -1n2s>@2+1)
1111111111 111 >S>1 000000000 001
While the computer cannot store 212 » C_34 = 1 indicates that value.,
Here again if the absolute values are small in mnagnitude the exponents
are close to each other and the sum is near 2°~. The range of the sum
for which the number in A is sufficiently close to the number in D is
when the sum of the exponent is
111 111 111 111 > S > 111 111 011 101
If the sum is less, A is cleared to zero.
The logic covers the sum in two parts.
(Part I) @13 1)z sp2 212 4211
1111111 111111> S >1 100000 000 000

This part I is covered by the same logic that serves (-AE + 35) < -DE

S34=1 9 C 5, =C 5 |s| > 35

(Part II) (212 4211 _1)> s > (212 +1)
1011 111111 111> S > 1 000 000 000 001

For this range the minimum difference between exponents is 2049,
The A register should be cleared to zero. This range is identified by:

C-36 =1 e C=37 =0

6.6,6-9

This will be since a 5, = 1, d*¥ 3, =1. For S_34 tobe0, C 3, must
be zero.

FT Action
Table 6.6,6-2 lists the activities during the FTs to
shift or clear the smaller number. The "C' and '""S'' bits refer to ANI1.

The SC and SC* signals must be precisely understood to follow the action.

SC = SAT means SC* = 000 001 or 000 000. It will,
of course, reach 1 first when counting down.

SC 4 SAT means SC* > 000 001,

SC* = 0 means SC = SAT » SC*2° =0
or SC* = 000 000,

" SC = 0 means SC = 000 000.
(See Figure 6.5-1)

Shifting D*M

As the original mantissa value has been transferred
to D*,, during IT4, the shift cycle starts with the number in D*,, .
The process for each set of FTs except the last is: clear D, , (D*M)
to Dy, shifted right, clear D*y, , (DM) to D*,, . The shift counter
is decremented and examined. During the last cycle (D ;) are not
transferred to D* g . This is to cover the eventuality of the numbers
originally being equal. If equal, D#*34 should not be shifted. By
inhibiting the (Dy);) —D%*); transfer when SC* = 0, the activity for
equal numbers will result in one FT cycle with the contents of D%),
remaining unaltered.

During the first cycle, FI = 000 and FI* = 010 control;
durinng any succeeding cycles FI, FI* = 010 control.

Shifting Ay,

When (A), as the smaller number, is to be shifted,
it is necessary to compensate for the existing sifuation that the number
in SC, SC* is one less than the actual number of places to be shifted.

6.6,6-10

Shift D, Clear D Shift A Clear Ay,
First tAp > (£Dg +35) £Dp > (*Ap +35)
+DE > (-AE +2048)
Cycle tDp £ *Ap < @Dg +35) +Ap <(-D +2048)| +Ag 2(-Dp +2048)| A, < #Dp L(Ap ¢+ 35) | tDg S (=Ap t2048)
F1=000 » C_4=C 370 5_35=0 oIS/ $35=>(2 —FI¥) FI=000.C_4=C_5,| FI=000. C _5,=0 FI=000, C_3=C 3| FI=000
. S_3,=0.15]>35 «C _37=1 eS8 3= 1481>35[.C 3,=1.C 3,70
= (6 — FI%) = (6 —= FI¥) —= (7 — FI¥) = (7 —= FI¥)
- = - - 000 - = . =1 1— A%)
FTI FIz000 o € 30 =C _37 « S_3 =0 == (0 —>Dy) FI=000-C ,=C 5,5 3¢ = M
(Trigger
D49) =000 - = - =1 (F1) — FI*
F1=000 - C __ =C =S =[d
FI = 000 = (ls{ — sc, sC*)
FT2
Trig. R
ANIECC | FI=000 o C g0 =C 37 + 8 35 =0 =>[D*y Zepy]. [er, — 4] FI= 000 « C _,o=C_,7+S 36 =1 =2 [(Ay) — A%y
Fi* = 01X ::}[(sc* - 1) — sc:] Fl* = 000 —>» (3 —= FI)
FT3 FI+ # 000 =>[(F1¥) —> FI] (F1#) —= FI
Fl*= 010 . SC*#0 —> (0 ——oD*M) FI*= 110 => 0— D%, Fi* = 000 = (0 —>AM) Fl¥ = 1X1 = (0 —= A Ag)
FI* =110=>0 —= ANIC
= FIx =000 => (0 —=A_)
FI* =010 o+ SC*#0 "—_>[(DM)—> Dy | F1x = 000 =>[(Dg) —= Ag] [FI* = 111 => EDE) _ AE]
FT4 FIx = 000 =>[(axy) R o Ay
FI* = 000 =2 (a%, —=a,)
FI* = 01X . SC § SAT —= FTI FI* = 110 —> ATl FI* = 000 . SC#0 — FTl|FI*¥ = 111 == ATI
FI* = 01X . SC = SAT —s ATI FI* = 000 . SC=0 —= ATI
Other FI=X0X —> [(FI) — FI*] FIexox — [(F) — FI1x]
Cycles FI=01X —= [(sC) —> sC]] FI=01X — [(SC)—» sC*]
FT1 FI=0i10 =—3 (0—= D) FI=011 == (I —=A%)
R
FT2 Fi=o010 —[(D%,) — Dy - [a*,— 4] FI=0l11 —> [(AM)—>A*M]
FI* = 01x —>[(sC* = 1) —= sC] FI* = 01X —> [(sc* - 1) —5C]
FT3 FI* 4 000 —>[(FI¥) —e FI FI* £ 000 —> [(FI¥) —= FI]
FI*£ 010 . SC¥#0 —> (0 — D¥y) FI*= 011 —> (0— Ay ,AE)
FI* =010 , SC*+$0 :[()-—-»D*] FI# = 011 —>[(A%)_-)A]
FT4 B M FI* = 011 [(a{“—»a)
FI* = 011 :}[(DE)——’- AE:I

11-9°9°9

FI* = 01X .

SC = SAT ——> FT1
FI* = 01X , SC = SAT —> ATl

Table 6.6.6-2 Arranging Smaller Floating Point Number for Add or Subtract

SC is not decremented during the first FT cycle, only during the succeeding
ones.

(A M) require to be shifted at least once under this
control. If the numbers were equal, the control would be FI = 2; (A M)
is shifted only when smaller.

AE is cleared and (D

— A

E) E

Clearing A M °F DM

In either case only one set of FTs is required. The
logic is straightforward as is shown in Table 6.6.6-2.

If Dp, >> A, the A register is cleared and
information must be transferred to A from D as the resulting sum or
difference. (DL) — Ap in FT4 and then control is passed to

the algorithm timings for the proper transfer of the mantissa to Ay,
through AN2.

If Ap >> D ., the result is already in A.
However, to cope with the eventuality that the augend, or minuend,

may not be in normalized form, the control also proceeds from
FT4 — ATI.

During the algorithm timings, no change of
(A,) is effected as (D*,,.) was cleared to zero in FT3. However, the
test for a normalized number will be made during the algorithm timings.
And if necessary (A) will be normalized.

6.6,6-12

Algorithms, F.P. Addition, Subtraction

These are similar to fixed point add or subtract with
two exceptions. Only the mantissas are added. If overflow occurs, it
may be corrected by changing the exponent of the sum.

2—1 < 210
* 1 10
2 X 2
20 X Zlocorrecttoz-1 XZ11
2% x 210
+
_20 X 210
-21 X 210 correct to -20 x 2 11

The correction can be performed only if it does not cause the capacity

of the 11-bit exponent to be exceeded. If correction develops an exponent
greater than 2047, the exponent overflow will send 1 — EF

(Exponent Fault Flipflop) and the computer will jump to a correction routine.

ANI1 is separated by floating point control into two
parts, ANl , and AN1 E ° ANIC = 1 will carry-in a one to bit .35
ANICE =1 to bit 47 ° There are two carry-complete signals, ANICC
and ANIECC.

6.6.6-13

6.6.7 Floating Point Multiplication

The algorithm of these instructions is generally
the same as fixed point multiplication. Floating point control covers
the three additional types of operations required for floating point
multiplication: addition of exponents, normalizing the product, and
dealing with the various cases of unrepresentable products. The se-
quence of operations for the instruction is add exponents, multiply
mantissas, normalize or correct product if necessary.

Table 6.6.7-1 lists the various possible cases of
products. (In double-length multiplication, the comments for A apply
to Q.) Case 1l is the type of product resulting from most instructions.
The product is representable by the register capacity.

Case 2 is the product whose value is too small
to be represented by the computer as a normalized number, P <2"" X
272048 The quantity is close enough to be considered as zero. The
A register is made zero, the instruction ends immediately after the
exponent addition with the (A) = 0 and UF = 1 and EO = 1. The computer
does not halt, the two flip-flops are reset to zero in IT1 of the next
instruction. This product is not a fault, merely small enough to be
made equal to zero.

In Case 3, addition of exponents resulted in
exponent overflow. The product may, however, still be representable
in the computer after normalizing, for example:

2-1 x 21024 x (2-1 x 21024). ;-1 x 2047

The fact that exponent overflow occurred is stored by 1 —— EO,

1 —— EF; the mantissas are multiplied and normalization is
attempted. To successfully normalize, the exponent must be reduced
below +2048. This can be detected by the ''underflow'' indication

C-36= 1 4 C=37 = 0.

6.6.7-1

2-L79°9

Case

Logic of Detection

Procedure

Product Value

Indications at End

1. Sum of exponents is within
capacity of computer
-2048 <Sp £ +2047

2. Sum of exponents produces
exponent underflow
SE < -2048

3. Sum of exponents produces
exponent overflow
Sg > +2047

4. Multiplication where
multiplier = =1

SA. N x -1 where N # -1

5B. -1x-1

C3=0.C3p =1

QC =0 At End

In 35th add cycle
QC=1 . g, =1 . g% 35=0

During force add
Co #C

Do multiplication, possibly followed by
normalizing or correction.

Product too small, make it zero.
(AM=0.00...0 A =1.00....0)
Do not multiply, end instruction, no halt.

May be compensated during normalizing
or correction. Store knowledge of
OVF, 1 ~—>EOQO, EF and proceed to multiply.

Normalize if necessary, otherwise
end instruction. If ending here
and previous exponent overflow, jump*
If normalizing does not reduce exponent
below +2048, jump¥*
If normalizing results in zero
mantissa and still A E > +2047,
If no previous fault but normalizing
produces underflow, end instruction
at this point with unnormalized
number,
If normalizing, previous exponent over-
flow and now underflow, remove
fault. Number normalized and in range.

Do force add cycle, then normalize
if necessary. Possible results
as in 4 above.

Do correction (FI = 101). If exponent
overflow now or previously, jump¥

Ay FO Ap 22
Ay O Ap>2
Ay =0 Ap>2

-1/2 <A< +1/2
E

Anm

=2

11

=+1/2 AE >+2047

UF_:l EO =
EO=1
EO=1
E0=1

UF =1 EO =0
EO=1
EO=0or1l

EF

EF

* Jump to memory location 00000 to permit entering a programmed correction routine.

Cases of Floating Point Products

Table 6.6, 7-1

The process of subtracting one from Ap is:

A +2048 = 100 000 000 000
+ E +

D* = -1 =111111111.111
E

with the underflow type of carries from ANlC_36 and ANIC-ST
If this occurs during the 36 shifts of normalizing,
the exponent fault is cancelled, 0 —— EF. Otherwise the instruction

ends with an indicated fault, a zero mantissa, and a ''negative -
appearance'' exponent. ‘ o

Case 4 is the algorithm for all mantissas except
when the multiplier is -1. After 35 add cycles, control goes to FI = 100
for normalizing. A previous exponent overflow may or may not be
compensated. Exponent underflow may result during normalizing.

In case 5A a multiplier of -1 requires the force
add cycle. This ends the instruction if normalized operands were used.
A previous exponent overflow would still be indicated by the exponent
fault.

The floating point logic accommodates the
possibility that non-normalized numbers may be used as arithmetic
operands. After the force add cycle control will go to FI = 100,
if the product is not in normalized form (a*o = a¥_;).

Case 5B is -1 X -1. The mantissa overflow can
be corrected (FI = 101), if there was no previous exponent overflow
and correction does not produce exponent overflow. Otherwise the in-
struction ends with EF = 1, a mantissa of 0.100 0 and the
""negative-appearing' exponent.

Logic of Exponent Addition (FI = 001)

During the ITs the two exponents are transferred
to Ap and D*p for their addition. To simplify SC inputs the
36 —— SC signal is used both for normalizing and algorithm recycling.

6.6.7-3

The floating point multiplication algorithm only requires 35 cycles, so
SC is counted down one during these FTs and the algorithm is begun
with SC= 35.

FT1 trigger D49

Clear A% 1 —s A%
E E

If exponent sum underflows,
prepare to end 1 — UF, EO

If exponent sum overflows,
may be compensated, note

overflow 1 — EF, EO
Control activity (FI) —— FI*
Control activity (SC) —— SCx*
FT2 trigger ANIECC
Transfer exponent sum (AE + D*E) —— A
FT3
If underflow, clear A 0 AM, AE
Control activity (FI*) — = FI
Count down SC to 35 (SC* - 1} —— SC
FT4

If no underflow, transfer
exponent sum (A*E) — A

If no underflow, and
double-length (A*E) —_— QE

If no underflow, go to
algorithm — ATI1

If underflow, set exponent

to zero l] — a 36
If underflow, end
instruction — END

6.6.7-4

Logic of Multiply Algorithm (AI = 01X)

The operations are very similar to fixed point
multiplication. Only the mantissas of A and D* are connected to AN1.
The other differences are noted below:

ATl
reset FI (FP = 1) 0 ——FI1
AT2
If overflow during force add, do correction
AI=00X + FP=1 : C_ #C_, => 5—=FI
AT3

If force add required after 35th cycle:

SC=SAT : QC=1 1 q, =1 - q35=0 s FP =1

_—%, 0 —AI
Algorithm completed, normalization required:
SC =S8AT : QC=0 : d* = a* ¢ FP=1
4 ——FI
(a*o at this time is the MSD of the product;
d*o is equal to the prp_duct sign.

Normalization required next, multiplier is 0, or + 1/2:

SC = SAT : d*o = a* . (q*o =0Vq*_35= 1)

: FP =1 :;4——»1?1

6.6.7-5

(This extra logic is required for (Q) = + 1/2
as QC still is 1 in this timing.

0 —— QC occurs during this AT3 timing.
When (Q) = 0, an operation under normalization
control is required to develop the standard form
of zero.)

Multiplier bit is 1, reset QC
ATE=01X : FP=1 ¢ g , =1 —> 0 — QC
AT4

Do force add next, (QC =1 +» q, =1) @ — ATI1

Do normalization or correction next.

FI # 000 —> —=FTI

*Add 1to Ay for correction. 0 — D% , 1 —> ANICE

*Subtract 1 from Ay for normalizing.

1l —— D%* 0 — ANICE

E)

*(No timing signal at these gates. The earliest
they can be done is AT4.)

Shift limit for normalizing which follows

(AI* = 00X v SC = SAT) . FI =100 Q(QC=19q*o = 0)
N
_7736 SC

Product already in normalized form,
end instruction (FI = 000) —— END

Logic of Normalizing after Multiply

The logic is the same as for normalizing after add
or subtract with the additional logic for previous exponent overflow (during
addition of the exponents). This additional logic is:

6.6.7-6

FT1

FI

FI

FT2

FT3

FT4

Reducing exponent now (Ar - 1) causes exponent
to pass below +2048 which compensates for
previous overflow:

100 + EO=1 4 ¢ _34=1 ¢ ¢ 3, =0 =—> 0 —> EF

Exponent underflow without previous overflow. Stop
normalizing and end instruction:

100 » EO=0 + ¢ _34=1 1+ c_3, =0 =1 —= UF
(No additional logic.)

If no underflow now, clear A

FI*= 100 » UF =0 :>0-—-——~>AM, AR

If no underflow now and less than 36 cycles

(FI* = 100 + UF =0 ¢ SC # SAT)

1. Transfer decreased exponent (A*p) — AE
2. Shift A (A%y,) s A
. M M/ T/ M
a¥ ——» a
o)
If 36th cycle, standard zero
* = = ———
FI* = 100 ¢ SC = SAT —> 1 2 4
If number now normalized (a’ﬁ‘io # a*_z) —— END

(a.”»<_2 will be MSD of the shifted mantissa)

6.6.7-7

Logic for Correction,

If number still not normalized, no underilow
and less than 36 shifts, recycle

Al =01X . FI* = 100 .a*o =a*_2 « UF =0.5C # SAT

If 36th shift, end instruction
FI* = 100 , SC =SAT », II=0 — — END

(II = 0 is used to distinguish this from
the MAD, MSU instructions)

If underflow, end instruction
FI*=100 + UF=1 +1I=0 —> —> END

Multiply

The logic is the same as for add, subtract.

Correction can be accomplished in one cycle. If exponent overflow
occurs, EF is set to 1. In the overflow case, the corrected mantissa
and overflowed exponent will be in the register. '

6.6.7-8

6.6.8 Divide, Floating Point

The algorithm logic of floating point division is almost identical
to that of fixed point division. The floating Point control for division
is separated into its various parts for the introductory description below.
This is followed by a line-by-line explanation of the floating point logic.

Floating point control initially causes subtraction of the exponents.
The FI1 = 001 state is used. Then, if the mantissas have the proper
magnitude relationship:

i.e. lAMl < |DM | , the division algorithm is performed.

Normalizing is not required in these instances as the quotient lies in the
range of 1/2 to 1. With normalized operands used for the algorithm,

k4

the smallest quotient would be produced by 1/2 + 1.
FI =001

The set of FTs prior to the algorithm, during which the exponents
are subtracted, is also used to perform the magnitude comparison similar
to the first cycle of fixed point division., During the FTs the mantissas are
compared and if IA M I < | DM | , the former is shifted left (as is the

Q register) and the first quotient digit transferred to q 35°

The control state is FI = 001 (addition or subtraction of exponents).
There is no need for AI = 100 action. During IT2, Al is set to 5 instead.

In addition to the above activity, the SC is counted down one,
to 35, and the control passes from FT4 to ATI1 for the 35 cycles of the

algorithm.

Dividend Correction

When operating with normalized numbers there is as great a
probability the dividend will be larger than the divisor as the probability
it will be smaller. This is also the case if the operands are not
normalized.

6.6.8-1

Unlike fixed point division, the instances of a floating point
dividend being the larger may be corrected prior to the algorithm and
then division can be performed. The dividend mantissa is shifted right
one place at a time, and compared, until it is smaller than the divisor.
The quotient exponent (subtraction of exponents having already occurred)
is increased in a corresponding manner.

With normalized numbers, one right shift will make the dividend
smaller than the divisor. Unnormalized numbers may require a greater
number of shifts.

A limit of 36 shifts is set for correction. If the dividend must
be shifted clear to zero to have it ""smaller' than the divisor, the divisor
itself is zero. The instruction can be ended without the algorithm.

The quotient resulting from the algorithm using a corrected
dividend will be in normalized form.

FI=101

The FI control used for correction is, of course, FI = 101 as the
action is similar to correction for overflow in other arithmetic. Involved
is the right shifting of a mantissa and adding 1 to an exponent.

FI = 001 in the first FT1 after the ITs. If d*o # So the
dividend is the larger and 5 —— FI*. The dividend mantissa will be
shifted right during the remainder of this set of FTs.

The ANI1 exponent inputs, at this time, are those for subtraction
of the operand exponents. This is done and the difference transferred
to A*p . Thereafter the contents of D* and ANICE may be changed to
provide for the addition of 1 to the quotient exponent.

To recapitulate, if correction is necessary, during the first FT
cycle, FT1l and FT2 are under the control of FI = 001. Then FT3 and
FT4 are under the control of FI¥* = 101,

In all succeeding FT1l's, FI= 101 controls. One is added to
(A*g). If the dividend is now smaller, 1 —= FI* and during FT3 and
FT4 preparations are completed to proceed to the algorithm . These
are the same as is done for a dividend that did not require correction
(see FI = 001). Otherwise another right shift is performed and SC
counted down and recycle.

6.6.8-2

As the number of correction shifts is not predetermined, the logic
of FI = 101 resets SC to 35 prior to the algorithm.

When the divisor is zero, the active SC = SAT signal sets the
EF flip-flop to 1 and provides the exit to END.

Normalizing

A normalizing procedure does exist to permit manipulation of
quotients resulting from the division of unnormalized numbers that may
be stored in the computer and some special cases of quotients in a ones
complement form.

Normalizing subsequent to division is unique as both a quotient
and a remainder must be treated. A method which will preserve the
accuracy of both parts of the answer is to continue the division process
until the quotient assumes a normalized form. For this method of
normalizing, after 35 cycles of ATs for the standard length of division,

a sequence of both FTs and ATs are used until the number is normalized.
During each set of the FTs the quotient exponent is decreased by 1 and
the remainder is shifted left. This is followed by a set of ATs, where
division is extended one place and the quotient again judged. Normalizing
is controlled by FI = 100. The signal (FI* = 100 + AI = 101) identifies
division for normalizing during the algorithm. (D*) is changed to

1's and ANICE to 0 for decreasing the quotient exponent.

Overflow and Underflow

When the difference of the operand exponents exceeds +2047,
the algorithm is performed with the assumption that normalizing may
subsequently reduce the quotient exponent to a representable quantity.
Under FI =001 or FI1= 101, 1 ——» EF if overflow. This can be
removed (0 —— EF) if during FI = 100 operation, the exponent again
passes +2048 (c _3¢ =1 « ¢ -37 = 0) in a decreasing direction.

A corrected dividend will produce a normalized quotient.
Overflow in this case cannot be compensated. The algorithm is however
performed to produce the quotient. EF remains set to 1 at the end of
the instruction to indicate the fault.

6.6.8-3

When the quotient exponent is smaller than -2048, the quotient
is considered effectively zero. The division algorithm is not necessary
as this is determined in FI = 001 or FI = 101 operations prior to the
AI = 101 algorithm. The increase of the quotient exponent during
correction may bring it in range again.

Underflow is not considered a fault, merely a quantity close
enough to zero to be actually made zero.

Table 6.6.8-1 summarizes the register contents and visual
indications resulting from division faults.

6.6.8-4

§-8°9°9

Case Result Registers at End Visual Indications

Fixed Point DD > DV Do not divide. Shift DD right. Set OVF (A) = DD x 2-1 OF =1
For divide & store instructions, (Q) = 0 or minor half of DD x 2-1
(Q) — V and DV is lost.
Floating Point
(QT..) < -2048 Do not divide. Make QT & R zero. (A,,)=0 (A) = -1 UF =1
E) M E
after any correction Set UF (QM) =0 (QE) = -1
if necessary.
DV =20 Do not divide. End instruction and (AM) = all bits have same value EF =1
jump to memory location zero. as original value of a .
(AE) = DDE - DVE + 35
(Qpp) = all bits have same value
as original value of q
Q) =0
(QTE) > + 2047 Do division. After End, jump to (A)= R EF =1
when QT is in memory location zero. (Q) = QT

normalized form

DD = Dividend

DV = Divisor
QT = Quotient
R = Remainder

Division Faults

Table 6.6.8-1

'8°9°9

9—

Logic of Floating Point Division

In addition to the logic for all division instructions, the following occurs for floating point during the

ITs. (See fixed point division logic for remaining activity.)
IT1 Clear FI

IT2 Set algorithm control for division and floating point
control for exponent subtraction.

1T4 Twos complement of DE to D*E for subtraction

FT1 Trigger: ANICC -+ AlOQa

Prepare shift of remainder. FI= 001 - AI= 001
Prepare shift of remainder. FI1=X01 - AI=00l1
Prepare to transfer exponent
difference. FI =001
Prepare to count down SC. FI =001
IAMl < IDMl do division. FI1=001 . AI=101 - d¥_ =5,
IAMI > |DM| correct (A,M)
before dividing. FI=001 + AI=101 - d*, # s,
FT2 Trigger: ANIECC
Prepare to shift remainder (FI =001 +« AI =101) v FI= 10X

Prepare to shift remainder FI=X01 « AI =101

0 — FI

5 —= Al
1 — FI

(Dg)' —D#*p, | —>ANICE

IT4 — FTI1

- A%
1 AM

1 —= Q%

—_— - A%
1 A E

(SC) —= SC=*
(FI) — FI*
5 — FI*

A —_— A
(a,) —= A%

(QM) —= Q% M

L=8°9°9

FT2 (Continued)

FT3

Transfer quotient exponent.
Exponent subtraction produces
underflow. If dividend is not
to be corrected, make quotient
zero and end instruction.

Exponent subtraction produces
overflow. Note fault and con-
tinue with division., (If normal-
izing later brings exponent into
range, remove fault).

Prepare to shift remainder.

Prepare to shift remainder.

Prepare for quotient exponent.
Prepare for quotient exponent.
Correcting A ,,, count down SC.
Division algorithm next, prepare

to set SC to 35,

Floating Point Control

FIi-=

FI=

FIl=

(FI*
(FIx

001 v FI= 10X

001 + c_34 =0 ¢ c_37=1

00X - AI=101)v FI* = 1Xl1
= 00X - AI=101)v (FI*= 101"

AI =101)
FI* = 001 v FI* = 1X1

FI* = 001 v FI* = 101

FI* = 101 « AI = 101

FI* = 00X - AI= 101
FI* # 000

— A%

(Ap +D*.)

1 —EO, UF

1 —EO, EF

0 — A

0 —=Q
(SC*_l) — SC
0 — SC

(FI%) —= F1I

8-8°9°9

FT4

Note 1.

Division algorithm next;

1st cycle shift of remainder.\

Transfer quotient exponent

Transfer first quotient bit.

—

Set SC for algorithm.
Proceed to algorithm

Transfer quotient exponent.
Correct (decrease) dividend

Correct (decrease) dividend

Prepare to increase quotient
exponent,

Prepare to add 1 to exponent.

Recycle to increase exponent
and test corrected dividend.

L L
(A*M) _"'AM’ (Q*M) _— QM’

a¥_ = a,, @f, —= 4y F_ T2 35

- (o]
* = . = . = % —
FI 001 Al = 101 UF =0 (A E) QE
QD — 4q_3;
35 — SC
FI* =001 « UF =0 — ATl
(FI* = 001 ¢« UF = 0) v FI* = 101 (A*E) ——>-AE
R

FIx = 101
FI* =101 - AI= 101

FI* = 101 (A*p) —= Ap
FI=101 * Cgz =1 (see Note 1) 0 —=D*g, 1 —= ANICE
FI* = 101 + AI=101 + SC # SAT —=FTI

No timing on these gates. As soon as FI* = 101 has been transferred to FI (see FT3), D*g and ANICE
will start to change. Its trigger will prevent the turn-on of the following FT1 timing until the register
has changed. C . is the command bit coding for arithmetic. Similarly for 4 — FIl in AT3.

6-8°9°9

FT4 (Continued)

When the dividend is being corrected, another set

FT1

FT2

Quotient too small (exponent
underflow) and not (or no longer)
correcting dividend.

Form standard zero for quotient
and remainder and end instruc-
tion.

Prepare to shift dividend.

Prepare to increase quotient
exponent.

Prepare to count down SC.

IfnowlAM| < lDMl Treat
(A)p) as just prior to algorithm.

Increasing quotient exponent
now brings exponent that under-
flowed on subtraction into range
again, remove fault.

FI*
FIx*
FIx

FI
FI

FI

FI

FI

FI

001
001

10X
X01

10X

101

101

101

00X -

o

AI =101
UF =1
UF =1

of FTs follow:

Al = 101
Al = 101
AI = 101
C _36 = 0

-

1

1 —q_3¢

l] — a

— END

1 — Ax*

<

1 — Q%

l—*'A*E

(SC) — SCx

1l —= FI*

0 —UF

01-879°9

FT2 (Continued)

Increasing quotient exponent
causes overflow, note fault. FI=101 - G_36 =0 o C_37 =1 UF=0] = EF

The remaining activity of FT2, FT3 and FT4 is the same as the logic listed for the first set of FT's. If the
dividend can be made smaller than the divisor, the algorithm is then performed. Note that SC is set to 35
in the FT4 just prior to AT1. If the divisor is zero, 36 FT cycles will occur and at FT4:

FI* = 101 - AI=101 +* ©SC =SAT l — EF

FI* =101 +« AI=101 - SC = SAT — END

1

Normalizing the Quotient

I1-8°9°9

AT3
Set normalizing control |ZAI’5< = 101 « SC = SAT) v (Al* =101 - FI*=100 « FP = lﬂ
so9k_ =a¥ , 4 —=FI
AT4
Set SC for normalizing. FI=100 « SC=SAT » (QC=1 + g%, =0) 36 — SC
Proceed to FT's. AI* = 101 » SC =SAT + FI# 000 AT4 — FTI1
Prepare to decrease
quotient exponent. FI=100 - Cé =1 (see Note 1) 1 — D*E , 0 —= ANICE
FTIl Trigger ANICC -« AI = 101
Prepare to shift remainder. . FI = 10X 1 —=Ax*
Prepare to decrease quotient FI = 10X 1—’A*E
exponent (which was left in A
prior to algorithm).
Prepare count down of SC. F1=100 - AI =101 (SC) —= SCx*
Control FI =100 (FI) — FI*
FT2
Transfer reduced quotient exponent. FI = 10X (AE + D*E) ———’-A*E
Transfer remainder. FI=10X (Ang) — A*g

If decreasing exponent will

cause underflow, note and prevent

subsequent changes of quotient and

remainder. FI=100 - C _3,=1+ C 5,

H]

0 -EO0=0 1l — UF

Normalizing eliminates previous
exponent overflow, remove fault. FI=100 « C .36 " 1 « C _37 0 «EO =1 0 —m™ EF

i

ZI-8°9°9

FT3

FT4

Prepare shift of remainder
and transfer of exponent.

If quotient too small, make
it zero.

Control

Transfer quotient exponent

Transfer quotient exponent

Shift remainder.

Shift remainder.

Do another cycle of division.
Quotient mantissa too small at

end of normalizing, make it zero.

Quotient exponent underflow
during normalizing, leave as is.

FIx*
FI*
FIx*

FI*

FIx*

FI*
FIx*

FIx
FI*

FIx*

FIx*

100
100
100

100

000

[{]

FI* =

FI* =

FIx*

100

L

100 -

100
100

100
100

100
100

100

UF =0

UF =0

Al =101 - UF =0
Al = 101 - SC = SAT

UF =0 + SC # SAT
AI =101 « UF =0 - SC # SAT

UF =0 - SC # SAT

"AI =101 UF =0 * SC # SAT

Al =101 » UF =0 + SC # SAT

SC = SAT
Al = 101 - SC = SAT
SC =SAT - II=0

0 —A
0—>AE
0 —*QE

O—PQM

(FI*) — FI

— END

6.6.9 Inhibit Clear of Overflow

The design of the S-2000 includes several facilities to provide
methods of handling the occasions when the register capacity is exceeded.
This overflow (ANICy # ANIC_;) can develop as a result of both arithmetic,
and non-arithmetic instructions. It may be of significance in arithmetic,
shift and certain index register instructions. To permit direction of
overflow for these instructions, OF is cleared to zero before these
instructions.

The optional procedures in the event of overflow are:

1. Ignore overflow and proceed to the next instruction.
(OVERFLOW switch in OFF position.)

2. Halt computer unless the succeeding instruction is a
jump conditional upon the state of the Overflow flip-flop.
(OVERFLOW switch is ON.) ‘

This clearing of OF at the start of these instructions can be in-
hibited to enable sensing of the development of overflow as a result of
any of a group of instructions, such as a sub-routine, and postpone
action thereon until the end of the sub-routine. The action will be done
by the JNO or JOF instructions. The ICO instruction will inhibit the
normal clearing of OF . (While using this method, the OVERFLOW
switch is set to the OFF position.)

The ICO instruction sets the ICOF f{lip-flop to the ''one'' state.
While ICOF = 1, it prevents an active 0 — OF signal from resetting
the Overflow flip-flop. ICOF will be reset to zero during the JNO and
JOF instructions, as will OF.

The logic of the ICO instruction is performed in four timings,
IT1-1T4. The 1 —= ICOF signal is active in IT2. The logic enables
counting of an index register if a count of the performances of the
instruction is desired. The J-bit coding of this instruction is not
significant. InIT1 of ICO, itself, 0—~OF. This enables a program to
test for overflow as specifically occuring at some time subsequent to the
performance of the ICO instruction.

6.6,9-1

6.7.1 Jump Instructions

A jump is effected by transferring to PA the address to
which the program should jump for the next instruction, and then calling
for a new instruction word immediately following the jump instruction by
sending 1 to PI. The location of the next instruction in the new word is
determined by the J bit of the jump instruction, which is sent to Mod 2.

As an aid in returning to the point of the program from which
the jump was made, the adress of that point is stored in JA. It is the
address of the instruction following in normal, consecutive sequence the
address in which the jump instruction is located. A typical program
method when jumping to a sub-routine would be to transfer the return
address in JA to a jump instruction which is the exit from the sub-routine.
The TJM instruction could be used. This is done at the start of the sub-
routine.

During a conditional jump instruction, the return address is
stored in JA regardless of whether the jump is executed. Therefore it
cannot be said that the contents of JA are the return address for the last
jump made. They are the return address for the last jump instruction.

The intent of the unconditional jump instruction, JMP,
requires no explanation. The JBT instruction is also unconditional in
nature. However, if the BREAKPOINT console switch is in the ON position,
the computer will pause at the JBT instruction until the ADVANCE bar is
depressed. If the BREAKPOINT switch is OFF, action of JBT and JMP
is identical.

The conditional jump instructions base a decision to jump
on either the value of one binary bit (sign of the number, odd or even,
overflow) or on the result of a comparison of two numbers or words
{equal to, equal to or greater than).

Classification of Jump Instructions

To illustrate how the logic of the jump instructions is
organized, they can be divided into four groups, functionally. The three
bit code, (C4 C 5C ¢) is 010. The four bit code (Cg C 1 C, C3) is listed
below. If J=0, jump to I, and conversely.

Group 1 Unconditional Jumps

JIMP 0000 y, ,
6.7, 1-1

Group 2.

Group 3.

Group 4.

JBT 000 0001 if BREAKPOINT switch is ON,
wait until ADVANCE bar de-
pressed before jumping.

Conditional jumps requiring no register change
operation.

JNO 0010 jump if no overflow
JOF 0011 jump if overflow

JAP 0100 jump if (A) are positive
JAN 0101 jump if (A) are negative
JDP 1100 jump if (D) are positive

Conditional jumps requiring a register change
operation,

JAZ 0001 jump if (A) = 0

JAEQ 0110 jump if (A) = (Q)

JAED 0111 jump if (A) = (D)

JAGD 1111 jump if (A)Z (D) alphanumeric sense

JAGQ 1110 jump if (A)i (Q) algebraic sense J;
JAGQF 1101 jump if (A): (Q) floating point sense |

Conditional jumps including a circular shift of

(Q).

JQP 1000 jump if (Q) are positive,
unconditionally circular shift (Q)
left one place.

JON 1001 Jump if (Q) are negative,

unconditionally circular shift (Q)
left one place.

6.7.1=2

JQE 1010 jump if (Q) are even, unconditionally
circular shift (Q) right one place.

JQO 1011 jump if (Q) are odd, unconditionally
circular shift (QQ) right one place.

Group 3 requires a transfer operation prior to the comparison
for the jump decision as one of the numbers being compared must be placed
in D%, Group 4 requires an algorithm operation after the jump decision and
prior to jumping. Control during these instructions must include an Al
operation for the circular shift,

Groups 1 and 2 require no transfers prior to the jump decision.
The decision for the conditional jumps is based upon the value of one binary
bit. The required activities could be accomplished within four timings of
IT. If a jump is not to be executed these instructions end after 1T4.

Groups 3 and 4 require more than four ITs due to the transfers
or shifts. Therefore the general organization is to have all jump in-
structions proceed through IT8 when a jump is to be executed. During IT1
through IT4, the return address is placed in JA; groups 1, 2 and 4 jump
decisions are made; group 3 performs its prior transfers of the word.
During IT5 through IT7, group 3 makes its comparison for the jump de-
cision; groups 1 and 2 perform no tasks. Group 4 proceeds from IT4 to
a set of ATs for the circular shift and, if a jump is to be executed, returns,
from AT4 to IT7. In IT8 final preparations are made to execute the jump.

It is apparent that the jump decision must be stored for an
interval during the instruction. JFF (Jump Flip Flop) is used for this

purpose; JFF = 1 indicates that a jump is to be executed.

Table 6.7.1-1, "Organization of Jump Instructions' provides
a survey of the activities for all of these instructions.

Breakpoint Jump

The BREAKPOINT switch, at the present time, is a two-
position switch, ON and OFF. With the switch ON the computer will pause
before entering IT1 of the JBT instruction. This is the sole unique part
of the JBT logic.

6.7.1-3

JMP
Tasks Common to All Jumps JBT JNO JOF JAP JAN JDP JAZ JAED JAEQ JAGD JAGQ JAGQF JQP JON JQE JQO
Prepare to place address Inh. AN2
to which to jump in PA 0 — AN2C Prepare
Clear ICOF Transfer
If (I} alone 0 —ICOF to D Prepare Transfer
supplies address PR ——= SWé6 to D
+ — PM i —D
0 —> SW4 1— D
IT1
If address is Inhibit AN1 for
modified by (X) X —— SW4 Clear ANII entire instruction Clear ANI1I
0 —ANI1I 1 — AN 0 —= ANII
If in repeat mode and
(X) alone is address 0 —PM
Clear JA for return address 0 —>JA
Transfer to JA I |
If SW2 = 0, an instruction word with
the jump instruction as Ig was just Transfer Transfer 7 . Al
transferred (unless in repeat). There- 0 0
IT2 fore address of the I, instruction Q) —=D (Q) — (D)
is still in MA as it
was not cleared in IT1 (MA) —> JA
1 — ja_,
If SW2=1 PA —= JA
(ja_; was cleared
to 0 in IT1)
Program control (SWZ)'——. Mod 2
Prepare end-of-instruction
operations If OVF = 0 I OVF =1 i a; = 0 If aO =1 H do =0 Clear l?* for Clear D*f for Clear D* for | Clear D* for a Clear D* for a |Clear D* for a| 1f q = 0 3 =1 It =0
C‘.’:;‘Pa:)‘m“ comparison comparison | complement complement complement o 9 * 477 Ifq _a7 1
wi
1 — JFF 1 ——— JFF | 1 — JFF 1> JFF 1 —» JFF 0 — D] —» Dx 1 —s D¥ 1—=D* ! ——=JFF 1 —=JFF 1 — JFF 1 —=JFF
If X modification involved 2 —» PI 0 — D* 0 —— D* 0 ANIC | —~ANIC 1—aNiC |1 ANIC
IT3 0 —= ANIC 0 — ANIC
Otherwise the existing logic
will send 0, 1 or 3 to PI.
This sets up program 1 ——— JFF
control if the conditional
jump instruction does not
jump. If a jump, in
IT8a 1—PI will be
generated
Where a transfer was not required Decision m‘ade, clear OVF Transfer to Transfer to : :
T A i i
before the jump decision, the 0 —a OVF AN inpat AND tnpat ransfer complement to AN1 input Proceed to Al control for circular shift of Q
instruction can now be ended if IT4 ATIL
no jump will occur. Inh. ANl Inh. ANl Inh. AN1
Will Jump IT4 —= IT5 (D) ~—— D¥ D) ———e D# D)t > D* ifti 5
If a jump will occur or prior —1IT5 —IT5 o) @ D After shifting - AT4 END
1T4 transfers necessary, the Will not jump IT4 —» END e
instruction continues to ITS Will jump END IT7
Will not jump END — PTI
(Action in JAGQF only) :Z;’t‘fa:e)
ssa only
IT5 Inh. AN1E
and compensate
exponents if
necessary
1——= ANICE
IT6 No Action
IT7 If jumping, Clear PA 0 —PA If A=Dx* 1 —» JFF If A = D¥ l=eJFF IfA>D 1 IFF
Jumping. Identify which instruction of
new word is to be performed next J— Mod 2
IT8 Transfer address of jump (AN2) — PA
. Transfer new word next 1 —PI
—END

Table 6. 7.1-1

Organization of Jump Instructions

6.7.1-4

P21 is a signal active when the switch is OFF, If the current
instruction is JBT, P21 active is required for the gating, PT4 —IT1.

P21 v I81 = DI122

—

181 = 23 ¢« JBT

The P23 signal was provided for the eventuality of a three-
position Breakpoint switch. At the present time it is constantly normal.
Therefore 181 is active during the JBT instruction.

If the ADVANCE bar is depressed when the computer pauses,
the computer will proceed to perform the unconditional jump. However
while the computer is paused, an option exists of either skipping over or
changing the instruction.

Jump Instructions in Repeat Mode

These instructions follow the rules of operation in the repeat
mode that apply to all instructions. In addition, however, one circumstance
will result in the contents of JA being something other than the return
address.

When the jump instruction is IO :
IT2 - D76 - V43 = [(MA) —>JA]

to transfer the return address for I; to JA. The presumption is that the
word containing the jump instruction was just transferred to PR and its
address is still in MA. The action in the PTs preceeding these ITs was
(V) —PR.

However, when in the repeat mode, the second and all succed-
ing times the jump instruction is performed, the action in the PTs pre-
ceeding the ITs was the counting of N. MA will contain the Repeat Counter
information in IT2 as MA is the transfer route from AN2 to N. Therefore
in IT2, effectively {(MA)= (N) — JA.

The programmer may use the conditional jump as the left hand
instruction of a repeated pair if the desired procedure is to test (con-
ditional jump) before changing (right hand instruction). In this situation,

a return to this point of the program will not be possible following the jump
as the return address has been lost. These situations will be used when a
return is not necessary.

6.7.1-5

6.7.2 Comparison Logic for Conditional Jumps

The S-2000 can perform two types of comparison of quantities
for conditional jump instructions.

1. Equality, for example (A) = (D)
>
2. Equal to or greater than, for example (A) = (D)

In the second type of comparison the quantities can be viewed in either of
three senses.

1. Alphanumeric sense where the numbers or quantities
representing characters are always considered as
positive binary numbers, in the range:

<
0.0= N <10.0
No sign consideration is therefore necessary. A quantity
greater than 1.0 is greater than any quantity smaller
than 1. 0.

2. Algebraic sense where the sign must be considered.

The number range is:
>
-1.0= N<+1.0

3. Floating point sense where the represented number is

algebraic, consisting of a mantissa and exponent

(N x 21y,

Equality Comparison

The nature of AN1 readily permits a determination whether
the contents of A and D* are identical. One rule of the adder logic is that
from each bit position a carry-out exists only under two conditions. Either
the bits are equal, or if the bits are unequal then only when there is a
carry-in to that bit. Another rule is that ANICC exists only if there is a
carry-out from each bit.

If the existence of the carry-in to each bit is prevented, by
some means, then ANICC can exist only if a = d, for every bit. If the
carry-in is inhibited, the existence of ANICC is proof that (A)= (D). This

is the method of comparison for equality. 6.7. 21

The carry-in signal to a bit must pass through an ''and gate"
where it is gated with the "Carry Inhibit" (AN1C. Inh.) signal. If AN1 C.
Inh. is active, no active gate output will exist and there will be no carry-in
to the bit.

For equality comparisons, the ANl C. Inh. signal is provided
byaflip-flop called AN1I (AN1 Inhibit FF)

(AN1I =1) =—> ANI1 C. Inh.

Comparison of A Register with Zero

The JAZ instruction (jump if (A) = 0) is an equality comparison.
The customary method of equality comparison is used. In this case,
0 —D* and 1—= ANI1I. With the carry-in inhibited, an active AN1CC
indicates equality with zero.

The JAP instruction may sometimes be referred to as '"jump
if (A) Z 0". The more literal meaning of JAP is '"jump if (A) are positive'',

This test is based upon the value of aj .

Comparison for '""Equal to or Greater than'

""Greater than'' is defined as being more positive. For two
positive quantities, the larger is the greater. A positive quantity is
greater than any negative quantity, with zero being considered as positive.
When comparing negative numbers, the one closer to zero is the greater.

Alphanumeric Sense

The operation used to compare quantities in this sense is to
add (A) and the two's complement of (D).

A+ (10.0 - {Dl) where 10.0 represents binary two
Since (10.0 -|D|) +D= 10.0 by definitio)n of a two's complement, then if
AZD, A+ (10.0 - [D|)210.0. A sum Z10.0 will be evidenced by cg = 1,

as against a sum < 10.0. The carry-out of AN1C_ id called e

Algebraic Sense

The same operation is used as above, adding (A) to the two's com-

6.7.2-2

plement of (D). The number in Q is always transferred to D for the
comparison. A review of some of the characteristics of the addition of
binary numbers may aid in understanding the rules for deciding the
results of the comparison. Based upon these characteristics, a determi-
nation can be made of whether (A)= (D) by the examination of only S5, C,,
and C_j. Some of these characteristics are (although specific bits of ANl
are used in these illustrations, the cases are general}:

ifaO: d*o s thenSO:C“=1

ifaof ag !;henSof’I:= C_1

if ag*= d%-‘-l, then Co =1
In the S-2000, gositive quantities are represented as a range

of binary numbers: 1.0> NZ 0.0. Negative numbers are represented

as (10.0 -|NJ|) and lie in the range of the binary numbers: 10.0> -NZ1.0.

When quantities of oposite sign and equal magnitude are added, the sum

is: N+ (10.0 -|N|) =10.0.

However the 21 bit is not stored and the result is the actual sum deducted
by 10.0 or 0.0, This is a customary method of subtraction by mechanical
or electronic devices.

When comparison is made, in the algebraic sense, the sums
for the various possible combinations of numbers have the ranges shown
in Figure 6.7.2-1. "A" and "D'" are positive quantities of the range
1.0>NZ20.0; a negative quantity in the register is shown as (10.0 ~ |A|) or
(10.0 -[Dl).

Contents of Both Registers Positive

When the operation A+ (10.0 -|D|) is performed, the sum
will be greater than 1.0 and be in the range:

1.0 > A = 0.0

4 10.0 2 (10.0 -|D|)>1.0

11.0 > Sum > 1.0

6.7.2-3

100.0

¥-2°L°9

e+ —
11.0 10.0 1.0 0.
A+ [10.0 - (10.0 - D)] —
10,0 > (A + D) > 1.0—1.0> (4 + D) > 0.0
A>D A>D

(10.0 - A)+ [10.0 - (10.0 - D)) —

A>D s« A<D ——

(10.0 - A) + (10.0 - D) ———|

Ranges of Sums Algebraic Comparison

Figure 6.7.2-1

If AZ D the range of the sum is 11.0> Sum 2 10.0

If A< D the range of the sum is 10.0 >Sum = 1.0
Now, aj = 0 and dg = 1 as the two's complement of (D) is being sent
to ANl. Since ag 4 d>6'-< , the So ¢ C -1

If Az D, to have a number in the range shown above, S, = 0, which means
C.1 =1. This distinguishes it from A<D where S; = 1 and C_1=0. The
logic used for this comparison by the computer is (S, = 0) - (C_p =1).

The computer uses three logical conditions to decide that
(A) 2 (D) in the algebraic sense. Table 6.7.2-1 shows the eight possible
combinations of a, d% S, C, and C_j and the logical condition
satified when (A)2 (D). The conditions existing when (A) < (D) are also
listed to demonstrate the validity of the logical conditions used.
Table 6. 7.2-2 shows the values of the bits involved for the ranges of sums.

A Register Positive, D Register Negative

(A) is greater than (D) regardless of absolute magnitudes.
This operation is: A + E0,0 - (10.0 - lD]ﬂ or A+D

The range of the sum: 10.0> Sum

0.0

i

When the sum <1.0, then (S, =0) . (C, = 0).

>
When the sum = 1.0 then (C ,=0) - (C_y=1) is satisfied.

Contents of Both Registers Negative

The operation is: (10.0 -|A|) + [10,0 - (10.0 —|D|)j or
10.0 + [(10.0 -|A]) - (10.0 -|D|)]. The range of the sum is: 11.0> SumZ 1.0,

The two's complement method of representing negative
numbers adheres to the general rule whereby a more positive (a larger)
number is represented by larger binary value. This is shown on the
scale. l l

| —— -

0.0 1.0 10.0
6,7.2-5

(A) (D) (A) : (D) a d* C 0 C_l Logical Condition Satisfied

20 o S c.
4 + > 0 1 0 11 (Sg =0) * (C_j=1)
+ + < 0o 1 1 0 0
+ - 0 0 0 0 0 (SO =0) o (CO = 0)
+ - o 0 1 0 1 (Co =0) » (C_; =1)
- - > 1 0 0 1 1 (Sg =0) - (C_;=1)
- - < 1 0 1 0 0
- + 1 1 1 1 1
- + 1 1 0 1 0

Table 6.7.2-1

6.7.2-6

Ranges of Sums for A + D¥*

1.0>Sl __>_0.0 a.o =d*0 =So =C-l =C0

10,.0>S, >1.0 Cop =0, Sy =1 and only one

of the remaining three
(ao do C—l) is equal to 1

0 1 0 1

0 1 0

0 1 1 0
11.0> S5 2 10,0 Cop =1 Sg =0

Co Sp 2o d%

1 0 1

1 0 1

1 0 1

. > > . = d%* = = =

100.0 S4 2 11.0 ao d 0 C-l SO CO

>D"

At <pt
At >D"
AT <D”

1
+

> B

WViv A

>
A
)

Note: Subscripts '""0'" and ""-1'" Mean bit positions 0 and -1, or bit

positions -36 and -37, respectively.

Table 6.7.2-2

6.7.2-7

where the arrows indicate the direction of representing larger numbers.
Minus one is the smallest negative number.

When comparing two negative numbers, if (A) z (D), in the
sense that (A) is more positive, the sum is in the range: 11.0 >Sum Z 10.0
as indicated by the formula in the first paragraph. Otherwise the sum
range willbe 10.0> Sum 21.0.
> >
When (A)Z (D) 11.0 > Sum= 10.0
So = 0 and sinceag=1, df = 0 C.1#S, and C_; =1
If (A) is more negative than (D) the sum is in the range:
10.0> Sum < 1.0

Sozl, Ci1=0 andco=0

(A) Negative and (D) Positive

For the logic to be valid it must decide that (A) is not equal
to nor greater than (D) for this condition. The operation is (10.0 -|Al) +
(10.0 -|D]) or 100.0 - (JA|+[D}).

The range of the sum: 100.0 2 Sum> 10.0

i

a = d*o =1, therefore Coz 1 andSo= C_1 .

This will not satisfy any of the three logical conditions used for comparison.

Floating Point Numbers

The ranges of floating point numbers in S-2000 are shown in
Figure 6.7.2-2. Floating point numbers have the following characteristics
of change in mantissa (M) and exponent (E) as the numbers (N) grow larger
(become more positive).

+M +E as N increases, + M or + E or both increase
+M -E as N increases, + M or - E or both increase
-M - E as N increases, = M increases or - E decreases or both

-M + E as N increases, - M increases or + E decreases or both

6.7.2-8

50 o 52047

X
D
@ 271 x 20
()
£
¥ -1 -2048
o) 2 2
p
2
2 0
PRy
8
6| 271y 2-2048
13
o
Q
A ZOXZO
ey
[e]
1]
Q
o11]
=]
i}
~

/

N 20 5 2047

S-2000 Floating Point Numbers

)
\ C

2\

-1 -1000
X

[MiE]

/N

0 _ ,-1000

2-35 50

X

20 4 1000

_535 , 52000

0 2000

(DN

27" x 2

Figure 6.7.2-2

M - mantissa

E - exponent

BT

6.7.2-9

To summarize, as the mantissa becomes larger, the number
becomes larger. The effort of the exponent, as it becomes larger, is to
increase the distance of the number from zero. A larger exponent of a
positive number makes the number larger. A larger exponent for a
negative exponent makes the number smaller (less positive).

Table 6. 7.2-2, summarizes the 16 possible cases of man-
tissas and exponents for the comparison of the two floating point numbers.
In ten cases A2 D. The logic for the decision listed does not decide if
Ap 2 Dy,. This is decided separately.

Table 6. 7.2-3, shows that in the case where both floating
point numbers are negative, the decision for the comparison of the
exponents is: 'A_S$D_ ? This decision requires some adjustment of the
exponent values before the comparison because the comparison logic cannot
make such a decision directly. The comparison logic can make one of two
decisions: A_Z D ? AE < D_ ? The adjustment is to increase Dp
by one for comparison purposes. El‘hen the decision for the exponents of
two negative numbers becomes: AE < (DE +1)? This is feasible for the
comparison logic.

As the comparison is based upon the result of an arithmetic
process, Ap + (10. 0 -lDEl), where 10.0 is a binary two, it is possible
to combine the addition of D and 1 with the subtraction of Ag and Dg.

It will be noted, for example, that the subtraction of 10.0 and D was
combined with the addition of AE and (10.0 ~=|D }. The combination is
achieved by sending DE‘ and ANICE =1 to the a%der, ANI1.

: DE +1 can also be writtenas D_ + 1.0 . The latter form
indicates we are representing the value of one with the binary number of
one, 1.0.

When comparing AE and DE +1. 0, the computer does so by
the addition of A + [10, 0 - (|DE|+1., 05_]

With factoring this becomes: AE +E10. 0 —'DEl + 1, 0)]

or: AE +(1.0 - lDEl)
(1.0 - |DEI) is the one's complement of DE by definition. The effect of

sending the one's complement of D alone to the adder is the same as
sending the two's complement of Dg *+1 : Dg' - (ANICE= 0)z (DE + 1) .
(ANICE =1). Therefore the usual case for comparison of negative numbers
is to send 0— ANICE in order to have the one's complement of D alone
connected to AN1,

6.7.2-10

SIGN

RELATIVE MAGNITUDES FOR A > D

LOGIC FOR DECISION

J21

J18

J21

J20

J22

J22
J19

J22

11-2°L°9

+

A<D

A<D

A<D

Q
i
—
Q
i
o
L J
wn
H
o
©
1
o
o
i
(=

(C3=0°C 3,7 36 0

Pt
.
)}
"
—
»

»
1
[
[N
1
o

Same as Line Above or

JAQF Exponent Comparison

Table 6.7.2-3

C-36=1‘C_37=0'a0=1'd0=1

(C_34=0°C 37=1)+ S 34=1c35=1dj =1

Mantissas

When comparing two floating point numbers, the decision
that AZ D cannot be made solely by separate comparison of the respective
parts of the compound numbers to determine the relations of Ay : Dy
and A : Dpg (where the subscripts indicate the mantissa and exponent).
The difference between mantissas has to be considered when comparing
exponents as that difference may outweigh the difference between the
exponents. For example, if A = .1 x 2 andD = .0001 x 26 then A
is greater than D.

Normalizing the floating point numbers enables the computer
to avoid this situation. The mantissas of normalized numbers with like
signs are in the range from .1000....0to .11l....1, inclusive. The
difference between the two mantissas will therefore be less than a binary
.1 or less than 27",

With normalized numbers the comparison of magnitudes
can be based, with one exception, solely upon the exponents. The minimum
differnce between exponents is greater than the maximum difference
between mantissas. With positive numbers, for example, Agr >D_, alone
will determine that A> D. The exception is when Ag = Dg . Inthis
case the determination that A 2 D is also based upon a comparison of

Ay and D pg . In this case AM must be equal to or greater than
D for A2 D.

M

The method used to handle the case of Ap = D g was

chosen to enable a decision at the time the exponents are compared. The
mantissas are compared first and one exponent adjusted, as a result if
necessary. The reasoning is: if A y\;<Djy,sthen A2 D only if A > DE‘
The comparison logic can only judge EAE 2 DE‘?:\ So for the case of
A< Dys - the exponent of D is adjusted (increased by one). In this
case, whenAp and Dy are equal, the decision that A Z Dis pre-
vented as the actual comp?;rison is be§>ng made between AE and (DE + 1.0).
IfA <D pp, thenfor A = D, Arp = Dy + 1.0

Dy + 1.0 is derived by sending the one's complement,
instead of the two's complement, to ANl for the arithmetic:

(D)t—= D= and
. o >
only if AM = DM s 1 —ANICE
Table 6.7.2-4 summarizes the logic for the various cases.

6.7.2-12

€1-2°L°9

If Result of Exponent

Magnitude Comparison Thus Logic for Mantissa Decision
Comparison is Should be
+ + = » = L[] = .
Ay 2 Dy Ap 2Dg 1 — ANICE (CO =1+C_; = 0) ag = 0 Sy
*ay < by Ap 2Dp +1.0 0 —=ANICE Note: ANICE was precleared
to zero. No action

- - necessary at this time.
Ay 2 Dy Ap <Dp + 1.0 0 —ANICE

AM< DM AE<DE 1—— ANICE (C0=0-C_1=l)-a0=1' So
y > D S 1 = = =

AM M ee Note 1l —ANICE C; =0+C_; =1l-a5 =0
Ay < Dy See Note 1 1 —=ANICE Cy =1+C_;=0-ag =1

Note 1. Redundant activity as later comparison is based upon signs of numbers.

JAQF Mantissa Comparison

Table 6.7.2-4

V. Numbers

V47 - V63 ¢« V61

V60 - V48 « V62

V60 - V47

V48 - V6l

6.8 Repeat

6.8.1 Repeat Instruction

The Repeat Instruction causes repetitive performance
of the next instruction (if the Repeat Instruction is in PR o) or the next
pair of instructions (if the Repeat Instruction is in PR}). The Repeat
Instruction establishes the parameters of the repetitive performance

with this format:

Address Modification

ap

v§

apBoryd

aporys

aBoryd

afyd Iy C
4 bits —— 12 bits 8 bits —
Address Number of times the Command
modification following instruction/s coding of
of repeated is/are to be performed repeat
instructions

00

10

11

refer toI, being repeated.

refer to I1 being repeated.

Address modification (and any index register
counting) are as if instruction were not being
repeated.

Effective address of repeated instruction is

the contents of the selected index register,
(selected by the S and I bits of the instruction
being repeated). After each performance of

the repeated instruction (X) is increased by

(IV) of the repeated instruction.

Same as for 10 except (X) - (IV) —s X

In 10 and 11, the value of X. does not affect (X),

6.8.1-1

a P yd are stored in the Repeat Register (RR). SW2 selects the proper
pair of bits for control during the performance of the instruction in the
repeat mode. (a= 0 . SW2 = 0O)v{y=0 +» SW2 = 1) is referred to as
ay = 0. ay = 1is devised in similar fashion,

Repeat Register

RR

RPT a B Y 8 I

RR is cleared to zero at the end of the repeat mode and
so remains until the next repeat mode. The command coding of the Repeat
Instruction (000 1011) sets the RPT bit of RR to 1. If the Repeat
instruction is I j then only I ; of that instruction word is to be performed
in the repeat mode. In this case, SW2= 0 will set the I bit of RR to 1.
The other four bits of RR store the information in the four most significant
bits of the Repeat Instruction for address and index register modification.
The output signals of RR are designated as '"R' numbers.

Amount of Performance

The 12-bit field, Iy, , indicates the number of times
the following instruction (or pair) is to be performed. The range of 1
is from O to 4095, inclusive. If it is 0, the following instruction
(or pair) is skipped, not performed at all,

The number in this I field is transferred, in two's
complement form, to the Repeat Counter, N. Following each performance
of the I } instruction in the repeat mode, one is added to N. N is
connected to the 2, through 2 11 bits of AN2 and ANZC is set to 1.

The sum is returned to N through MA.

When N has been incremented after the desired number
of instruction performances, it will be equal to zero. N = 0 is sensed
as the first time a carry-out of one exists from bit 2;; (AN2c 11 = 1o
This ends the repeat mode by clearing RR to zero and calling for a new
instruction word.

6.8.1-2

Repeat Mode Termination by Jump

A jump (usually a conditional jump instruction) provides
another exit from the repeat mode. If JFF is set to 1 during the
instruction, regardless of the Repeat Counter setting, the program
jump is executed and the repeat mode is terminated.

Skip

To allow skipping the instruction performance when I
of the Repeat instruction is zero, the quantity in I is sensed by sending
it to the adder in complementary form. If AN2cy; = 0 the repeat mode
operational controls are then set up and (Iy) is transferred to N.
If AN2e¢ ;7 =1 arrangements to skip are made.

To skip, if the Repeat instruction were I, a new
instruction word is called for by sending 1 —> PI. If the repeat
instruction were Il , (PA) are incremented by one and then a new
instruction word is called for by sending 1 — PI.

Repeat Instruction Performance

The sequence of tasks for this instruction follows. The
instruction either sets up RR to control the repeat mode of operation
or adjusts the program control to effect a skip.

Repeat Instruction

Purpose Activity Logic
IT1

Clear RR 0 — PR I12

(I)"+0—=AN2 PR — SWb 120

to transfer

I, — N - — PM D59

and sense if

I, =0. 1 —s AN2C D59
0 — SW4 D55
Inh. AN2 timing alone

6.8.1-3

IT2

IT3

Purpose
Prepare transfer

route IV —= N.

Prepare to locate next
instruction. If RPT
instruction is I] , next
instruction will be I
(régardless of skip).

If RPT is I‘O next in-
struction will be I}

if I, # 0 (carry

ANZ2c ;7 = 0)

the next instruction
will be I, and Mod 2
already 1s 0.

Transfer 1 ——» RR
if AN2c;; = 0. The

1 —— RR signal will
set RPT bitto 1, and
transfer afy§ from’
PR to RR. '

Start Transfer

(AN) ~—— N

Clear N for new number

Establish whether in-
struction to be repeat-
ed is already in PR or

has to be transferred
from memory

Activity

0 — MA

IT] — IT2

(SW2)! —= Mod 2

(SW2)! — Mod 2

1 — RR

ANZ2 —= MA

IT2 — IT3

0 — N

0 —> PI, PI*
1 — PI

Logic

D65 « 141 - 181+ D52

184

trigger D67

I12 «» V42

112 . V41

112 « V41

D65 + 141 ¢« 181 « D52

D73 . 144 « 1128 o 117

112

112 « V 43 , V41
D 79 « V42

608. 1"'4 »

Purpose Activity Logic
If skip (AN2c;; = 1) 1 — PI 112 « V56

IT3 — IT4
IT4 trigger AN2CC

Complete transfer

(AN2) —m™ N

if not skipping

(AN2c 11 = 0). MA —> N 112 . V41

If no skip end
instruction IT4 — END 112 ¢ V41

If skip and RPT

was I 4 end instruc-

tion as PI and Mod 2

have been previously

set to the proper states. IT4 —~ END 112 » V43 « V56

If skip and RPT was I;
continue IT to incre-
ment PA. PI and Mod
2 have been previously
set to the proper

states. IT4 — IT5 112 « V42 , V56
IT5 trigger D103
Connect AN2 inputs
for adding 1 to PA. MA —— SW4 ‘112
(MA = 0 due to logic) 0 —PM 112
(AN2c was set to 1
in IT1)
ITS ——IT6
IT6
Transfer (PA) — PA — MA I12
AN2.
Inh. AN2 I12

IT6 — IT7
6.8.1-5

Purpose Activity Logic

IT7
Clear PA for new 0 — PA D113
address.
IT7 —s IT8
IT8 trigger V66 (AN2CC)
Transfer new address. AN2 —»= PA D113
End instruction. IT8 «—— END

6.8.1-6

6.8.2 Repeat Mode of Operation

As indicated previously, the performance of an
instruction in the repeat mode differs in only two ways from performance
in the non-repeat mode. The instruction may be either skipped or
repeated, and the effective address may be different from that in the
non-repeat mode of performance.

The controls for repeat mode operation are described in

the following section to show the relations between counting the index
register and repeat modification of the index register.

6,8.2-1

6.8.3 Index Register Modification
The controls for the counting of an index register and
operating in the repeat mode are organized in similar fashion. For this

reason they are described in one section.

Non-routine Program Control Activity

During index register modification and repeat mode
operations a departure must be made from the routine sequence of
program control activity, The routine activity is the case when
instructions follow each other in consecutive memory address sequence
and the action of SW2, Mod 2 and PI is shown in Figure 6.8.3-1.

These activities are inserted between the end of an
instruction performance and the routine program control activity.
PI = 10 is used for the modification of X and PI = 11 is used to count N
and test N = 0? If a new instruction word is not required for the next
instruction, the activities usually performed during the PTs with PI= 00
are incorporated with these end-of-instruction tasks. However, if a
new word is required, a separate set of PTs with PI = 0l is necessary.
This will follow the timings under PI = 10 and/or PI = 11.

For example, if the counter bit of the selected index
register were 1, at the end of the instruction, the contents of X are to
be incremented by 1. The counting is done during a set of PTs with
PI = 10. The sequence of controls are shown in Figure 6.8.3-2

During the timings under PI = 01, 10 or 1l the
program control register must be capable of two different settings
simultaneously to indicate the current and succeeding program control
states. For this reason two program control registers exist, PI and
PI*., The setting of PI is transferred to PI* in PT1 by timing alone.
PI controls activity during PT1 and PT2. PI* controls activity during
PT3 and PT4. During PT3, PI is set to its new state in preparation
for the next set of PTs. With PI equal to 01 or 11 the PTs are
reinitiated:

PT4 . PI = 10 —=—>» PTI
During the last set of PTs, PI is set to 00 in PT3,
This state of PI will provide the condition for exiting from PT4 to

ITL.

Program Control for Repeat Mode

Following each performance of the I} instruction
in the repeat mode of operation, (N) are incremented and the N = 07
test is made. In this case during IT3 of the repeated instruction,

4.8, %=1

SW2 Iy orIj is currently being performed or about to start.
PI=0 Next instruction is in PR.
PI=1 Get new instruction word for next instruction.
Mod 2 Next instruction willbe I or Ij .
Normal Sequencing Controls
— PTI1 through 4 <
SW2 selecting instruction in PR r PI=0orl SW2 selecting instruction
JJ
IT2 IT3 PT3
(timing alone)
(SW2)! —> Mod 2
U F—
H =
establish location of — PI ~Mod 2 — SW2 |~
next instruction. normally set PI to 0 set SW2 to state

or 1 depending upon

state of Mod 2

of Mod 2 to select

instruction in PR.

2-¢°8°9

Figure 6.8.3-1 Normal Program Control Sequencing

INSTRUCTION

PERFORMANCE

IT3

2 — PI

¢€-€°8°9

s

PTI1 PT2 PT3 PT4

le—— PI = 10 —‘—— PI* = 10 ——~

Add 1 to X

Depending upon state of Mod 2

set 1 >~ PI

<~ PI=01 Pl%* = 01 -

program control

activity for new word

<——— NEXT

INSTRUCTION

IT1

PI

or set 0

Figure 6.8.3-2 Index/Repeat Program

3 —= PI. During this set of PTs the above-mentioned tasks are
performed and PI is set to 00 or 01 dependent upon the N = 0? test.

If N# 0, then PI = 00 will cause control to pass to II after the one set
of PTs.

If a repeat modification of (X) is also involved,
it is done prior to the incrementing of (N). Two and possibly three
sets of PTs occur:

during IT3 2 — PI prepare for modifying X
1, during PT3 3 — PI prepare for incrementing N
2. during PT3 Oor 1 — PI depending upon N = 07 test
3. if ending repeat

mode, last of PTs program control action for

with PI = 01 0 —PI new word

When a repeated jump instruction causes a jump there
is no need to increment N. The PTs under PI = 11 are bypassed., Follow-
ing the instruction, if no X modification is involved, control passes
directly to PI = 01 for the new word. If X is to be modified, following
the instruction control will pass to PI = 10 and then to PI = 0l. N'and
RR are cleared to zero in PT1 of PI = 01,

Repeat mode operation requires one or two depart,ixres
from the usual sequencing of instruction -- no new instruction word and
possibly perform I} only. The first is achieved by avoiding 1 —> PI
until the exit from repeat is reached. If, in addition, ‘only I, istobe
performed it is necessary to prevent the alternation of SW2 and Mod 2.
This chain is broken by inhibiting the routine action during ITZ2;

IT2 « R6 o D52 o 1122 . I12 —> (SW2)! — Mod 2

where R6 means I = 0. The I bit of the Repeat Register (RR) will be
I=1onlyif I alone is to be repeated. Note that I = 0 when not in
the repeat mode as RR is cleared to zero at the exit from the repeat
mode.

Logic of Routine Program Control Activity

Mod 2

IT2 « R6 . D62 . 1122 . 112 == (S§W2)! —— Mod 2

6.8.3-4

D52 = not a CF (Command Fault)

D122 =not Mx Q A —> A rounded and II=0

I12 = not the RPT instruction

PI
IT3 +« R6 ¢« R2 « D79 « P6 o V55 —> 0 —> PI, PI*
IT3 . RO « V54 « P6 . D79 . D52 ——> 1 —> PI
R6=1=0 performing both instructions in word.
R2 =ay =0 notin repeat mode or no repeat
modification of X.
D79 = I12 v 117 neither Repeat nor IOC instructions.
P6 = (X. = 0) no counting modification of X.
V55 = (Mod 2 = 1) next instruction is I ;.
RO = (RPT = 0) not in repeat mode
V54 = (Mod 2 = 0)
D52 = not CF
SW2

PT3 > (Mod 2) —— SW2 (timing alone)

Logic for Counting Modification of X

During the instruction using an index register with
counter bit of 1, IT3 « D81 . I123 , D52 . D79 —/—> (2 ~—> PI)

D81 = R2v P7 X modification involved
R2 = (ay = 1)
P7 = X, = 1)

I123 = not an index register instruction

6.8.3-5

D5

N
t

not CF

D79 neither RPT nor IOC instruction

]

At the end of the instruction control is returned to the program control
register with PI = 10,

Count Modification of Index Register

PTI1 PI=10

connect operands to AN2 Inh. ANZ2

for counting of X X —— SW4
1 —— AN2C
0 — PM

Prepare transfer route back to X, 0 — MA
PR —> SW6
PI — PI*

PT2

begin transfer of sum to X ANZ — MA

PT3

complete transfer AN2 —-»> X MA — X

arrange control of selection of next instruction Mod 2 — SW2

Select next program control operation
next instruction is to be Il (Mod 2 = 1} 0 — PI
new instruction word required as:

next instruction is to be 1[0 in normal

1 —— PI
sequence (Mod 2 = 0) or a jump is to be

S W S St S

executed.

6.8.3-6

PT4
If new word required — PTI1
If last instruction was I, andno new
word required — ITI

Repeat Modification of Index Register

In IT3 of the instruction being repeated, 2 —— PI,
with the identical logic used if the index register were to be counted.
Then in the first set of PT timings that follow the instruction,

PTI1 PI=10
Connect inputs to AN2 X — S5W4
PR ——= SW6
Inh. AN2
if (X)+ (Iy) + —PM
0 — AN2C
if (X) - (Iy) - —— PM
1 ——= AN2C
Prepare (AN2) —— X 0 —= MA
Program Control Pl — PIx*
PT2
Start (AN2) —— X (AN2) —— MA
Prepare to select next instruction (Mod 2) —= SW2
PT3
Complete (AN2) —> X (MA) — X

6.8.3-7

Select next control activity

Do Il next 0 — PI
No jump, last instruction was Il”
count X 3 — PI
Jump 1 — PI
0 — RR
PT4
Reinitiate PTs for new word program
control activity or for counting N —>> PT1
Do next instruction, last instruction
wa s Io -_—> ITI
Counting N

The method of incrementing N is similar to counting
X. PI=11is the control of counting N. AN2Z2 is used for the addition.
N=0 is sensed by AN2C11= 1. The details are listed in the ""PI States
Table'.

An interesting development exists as a by-product of
the incrementing of N. This may be used by programmers, see Program-
ming R & D Note No. 11, The incremented number is returned to the
Repeat Counter via MA. If the Iy instruction of a repeated pair is a
conditional jump, the computer will return to the Iy instruction each time
with the new N number in MA. The logic of conditional jump does not
recognize the existence of the repeat mode. If the jump instruction is
IO’ it operates on the assumption the instruction word was just transferred
to PR from memory and its address is still in MA. This is transferred to
JA as the return address.

In the repeat mode the Repeat Counter setting is placed
in JA by the (MA) — JA transfer. If repeat is terminated by the jump

(in IO) the contents of JA can be used to determine the number of times the
instruction pair was performed.

The jump as the I} instruction will not produce this

6.8.3-8

action since (PA) —= JA for the return address. If repeat is terminated
the first time the jump in Iyis performed, (JA) will not refer to (N), as
the counter is incremented after the performance of the I, instruction.

PI States Table

Table 6.8.3-1 is a compilation of all the logic of PI
activity. It contains listing of purpose, action and logic for each of the
four states of the PI registers. The table indicates how the logic is
minimized for the various functions.

6.8.3-9

01-¢°8°9

PI=00 Pl=o01 PI=10 PI=11
do pext instruction get next instruction word modify index register increment Repeat Counter
Pl PI* timing Pl —» PI* PI — PI*
Incrementing PA & —= PM P8 Counting X, prepare 0 — PM P2+ R2 Incrementing N 0 —=PM P8
Prepare ANZ inputs 1 —= AN2C P8 ANZ inputs 1—» AN2C PZ « R9 Prepare AN2 inputs 1 —= AN2C P8
MA —» SW4 Pl X —= SW4 P2 N —5SW4 P3
Inh. AN2 P2 Inh. AN2 P3
Prepare MA for
PT1 new address 00— MA timing Repeat modify X PR ~— SW6 P2 Prepare AN2 — N 0 — Ma timing
Prepare PR for Prepare AN2 inputs Inh. ANZ P2
new word 0—— PR Pl if adding + —ePM P2.R3.R4
0 ~—=AN2C P2.R3.R4
Ending repeat
mode by a jump 0—=RR Pl.Vé7 if subtracting - —=PM PZ.R3.,R5
0 —=N Pl . Vé7 1 —= AN2C P2.R9
Prepare AN2 —* X 0 —=MA timing
Address of next Start AN2 — X AN2 —= MA P9 Start AN2—= N AN2 —= MA P9
word for decoding {PA) — MA P25
and incrementing Inh. AN2 Pl
PT 2 (V)—=PR 1 —=MI P25
Prepare to Prepare to Prepare to select Prepare to select
select next select next next instruction (Mod 2) —» SW2 next instruction (Mod 2) —+SW2 timing
instruction (Mod 2) instruction (Mod 2) —= SW2
— SW2 timing| timing
PI* = 00 PI*= 01 PI*=10 PI*x=11
Prepare AN2 — PA 0—=PA Pll Complete AN2 —=X {MA) —=X Pl2 Clear N for
pew count 0 —= N F13
Do instruction After counting X Continue repeat
next 0 —>PI D120 get new instruction mode N 0O 0 —=PI1 D120
word for normal
sequence 1——= PI Dizl
PT 3 End repeat mode 1—=PI Dizl
After counting X N = 0, next 0—= Mod 2 P13.,V56
do I, which is instruction is I, 0 —= RR Pi3.V56
already in PR 00— PI D120
Jump after 1—PI D121
modifying X 0 —=RR P12,Vé7
No jump; after 3—~PI P12+ V5
modifying X oEUv(m.vsu
count N
{SWZ)—>=SW2=
0~—=1 Transfer next Reinitiate PT for new Complete transfer
addrees of sequence ANZ —=PA P11 | word program control of new count to N {MA) —™ N P13
Proceed to next activity or for
instruction as If new word was counting N ~——=PT1l D124 Reinijtiate PT for
PT 4{memory not in read due to jump next instruction
use, no pause clear JFF 0 —» JFF P11 | Do next instruction word —PTl D124
Hor BLPT or OVF if just counted X or
—-IT1 DI122.DI122 Do next instruction -—+IT1 DI122.D123 | if modified X and Do next instruction
«PO.MO. P20 +«PO.MO,P20 | last instruction continuing repeat —=IT1 D122.Dl123
was Iy —>IT1 Dl22.Di123 «PO«MO.P20
+POyMO, P20

PI States Table

T

able 6.8,.3-1

6.8.4 No Op Instruction NOP 000 0011

It is not always possible, when coding for repeated performance
of a single instruction, to arrange the Repeat instruction and the one to
be repeated in the same word. The NOP instruction is available, as a
filler, for these cases. The RPT instruction is the right hand instruction
of the preceding word. The instruction to be repeated and the NOP
instruction form the next word.

The logic of NOP is devised to enable it to be used as the left or
right hand instruction of the repeated pair. This requires the ability to
increment and test the Repeat Counter.

NOP proceeds through the first four timings of IT and goes to

END from IT4. The only activities performed are the standard control
clearings in IT1, transfer (SW2)! in IT2 and set PI in IT3.

6.8.4-1

6.9 Index Register Instructions

Scope of Instructions

The index register instructions are those involving a transfer from
an index register or some change in the contents of an index register other
than counting. These instructions can be classified in three groups:

1. Transfers to or from index register.

2. Add to or subtract from index register.

3. Add to or subtract from index register, then perform some
additional operation conditional upon the comparison of the
new quantity in the index register.

The following subscripts will be used to describe the index register
instructions.

0 left half of an instruction word

1 right half of an instruction word

C counter bit of the index register

J J bit of an instruction

R R bit of an instruction

I, memory address field of an instruction

-1 bit of JA corresponding to X and Ip and Dp bits

Transfers

This group of instructions concerns transfers between a selected
index register and either the D register or PR.

In transfers between X and D, the contentsof the latter is usually
an instruction word. The transfer involves the memory address, and possi-
bly the J bit, of one of the two instructions of the word in D. When
transferred, the J bit of the instruction in D goes to the counter bit of the
index register, or vice versa.

6.9-1

The memory address size is variable and dependent upon whether
or not the instruction in D contains an index register address. The R bit
of the instruction in D can dencte the number of bits to be transferred
between X and D,

The transfer instruction itself will specify which of the two halves
in D is to be referenced. If the J bit of the transfer command is 0, DO is
involved. If IJ =1, Dy is the reference.

011 0000 TDX (DV) —a X
1 J selects either Dg or Dy
DOR or D IR determines number of bits
transferred.

011 0001 TDXC (Dy) — X, (DJ) — X

011 0010 TXD X) — Dy

011 0011 TXDC (X) —= Dy, X¢g) — Dy

011 1001 TIX (X V) — X, (IJ) — Xc

000 0111 TCX (IJ)y — Xc

The transfer of (Dy) ——> X is via SW1, SW6, PM, AN2 and MA
to the index register. (See figure 1.1-1.} MA is cleared to zero for the
transfer. When DR = 1, zeros will be transferred to the higher order bit
positions of the index register. For example, with an eight index register
computer, when D = 1 the twelve least significant bits of Dy will be
transferred (d_4 to d _15 ©°f d_28 to d ~39). These would be transferred

11
to bit positions 2 to 2 _of the index register. If the memory size were
8096 words, bit position 2 12 of X would be made zero.

The TDXC instructions transfer (DJ) to XC as the new counter bit,
as well as transferring (DV). With the one exception to be described later,
none of the index register instructions cause counting action of the index
register when they are performed. The only logic that sets 2 to PI is:

D81 + D79 - D52 - 123 —> 2 — PI
and 123 = 011, of the 3-bit command coding, which identifies all but one
type of the index register instruction.

The transfer logic is straightforward. In IT1 the controls are
cleared and the proper inputs corrected to AN2.

6.9-2

0 — ANIlI, AN2I, EO, UF, SC, FI, ANICE

Inhibit AN2

0 — SW4, + —> PM, 0 ——= AN2C, D —= SW6, 0 —— MA
Either 0 or 1 —— SW1, dependent upon the J bit of transfer
instruction.

In ITZ2 the number is transferred to MA. In IT5, it is transferred from
MA to X, If the counter bit is to be transferred, it is done in this timing.
This completes the significant part of the instruction which will go to
END through ITS.

The transfers into the index registers are "jam transfers', the
registers do not require a prior clearing.

TXD, TXDC

The transfer from an index register to D is via the JA register.
The route is X, AN2, MA, JA to D. The counter bit, if transferred, goes
(XC) ——>~ja__1 andthentod_lé or d_40.

The route utilizes the existing transfer paths. The transfer from
JA to D was required to enable storing the return address in memory
after a jump. (JA) —— D is a jam transfer as only part of D is to be
changed.

The setting of SW1 is used to control into which half of D the
transfer is to be made. The value of the J bit of the TXD or TXDC
instruction is transferred to SW1.

The outline of the logic of these transfers is as follows. In ITl
the controls are cleared, the MA and JA registers are cleared and AN2
inputs connected (X —— SW4, 6 —PM, 0 —— AN2C). PR is
connected to SW6 but is of no significance. SW1 is set by the Iy bit.

In IT2, AN2 is connected to MA. In IT7, {(MA) are transferred
to JA and in IT8, (JA) are transferred to D. For the TXDC instruction,
(Xc) —— ja_; inIT5andja_; is transferred with the rest of JA
in IT8.

The number of bits transferred from JA to D is determined by this
logic (for an eight index register system):

011+« 001X - SW1 =0 Gagp; -ocvjag) —d_y ...

011+ 001X - SW1=0.do=0 —] (ja;b) —-d _;

011 - 001X » SW1 =1 — (jallﬁ) jao) —>d_5g---

011 + 001X . SW1=1-d ,70 —)> (jajp) —=d_5q

l

[

6.9-3

d

d

-15

-39

The instructions involving D and X can be used to handle
information other than the address field of an instruction. The information,
such as a test quantity or a counter number, is kept in the suitable part
of the word for such transfers. This is, of course, the bit positions equivalent
to those comprising the address field of an instruction.

Transfer Counter Bit - TCX

These two instructions {TCXS, TCXZ) will transfer the value of
the J bit in their command coding to the specified index register. TCXS
means ''"Set counter to one!'; TCXZ means ""Make counter bit Zero'. The
D register is not involved. The 3-bit command coding, 000, is different
from the other index register instructions.

The instruction is performed in four ITs (IT1 - IT4). In IT2,
(IJ- }—> XC for the transfer of the new counter bit.

If TCXS is performed, and the R bit of the TCXS instruction is
equal to 1, the index register will count the performance of the TCXS
instruction as one of the times the specified index register was referenced.

IT3 » X =1+ Rbit=1+ SKIP - REPEAT- CF ﬁ 2 —> PI
This occurs after IT2, when XC was set to 1.

Add, Subtract Index

011 0100 ADX (X} + (Dy) — X
011 0101 SDX (X} - (Dy) — X

The outline of these four instructions should be apparent. It is
similar to TDX, but for the addition or subtraction the index register is
connected to AN2. The I bit determines which half of D is used as an
operand. The DR bit of that determines the number of bits used for
D y . AN2 is used for the addition. The sum is returned to X via MA.

If the counter bit were one, the register would not be counted (after the
add or subtract) as the 3-bit command coding, 011, prevents 2 —> PI action.

-The instruction is performed during IT1 to IT8.
Index Arithmetic - Conditional Jump {AIXJ, SIXJ)
These two instructions are used in a program to change the contents
of an index register, by a fixed amount each time, until a specified limit

is reached.

6.9-4

011 1100 AIXJ (X)+ (L) — X; then jump if X#D
V. . ov
to the address given by DIV and D5

011 1101 SIXJ Same except (X) - (IV) — X,

The increment, or decrement, is I__. The instruction has to
specify the index register and Iy will be less than 15 bits. The specified
limit is the address of the left half of D, and dy will determine whether
15 bits of D or less, are compared with the contents of the index register.
The jump address is given by the right half of the D register.

ANZ2 is used for two purposes. First to add or subtract, then for
the equality comparison. The return address is transferred to JA
regardless of whether the jump occurs.

Logic of AIXJ

IT1
Clear controls timing alone 0 —s. EF, UF, SC, AN2I, FI,
ANICE
" " D51 0 —= ANII
Set ANZ2 inputs I18 X — SWwW4
120 PR —». SW6
T26 - 129 + —= PM
(I12 v I17 v I27 v 128) 0 —= AN2C
timing alone Inh. AN2
Clear register 0 — JA
I1T2
Program control R6 +D52-112 (SW2)' —~ Mod 2
Transfer return
address I53- SW2 =1 (PA) — JA
Transfer return
address 153 - SW2 =0 (MA) — JA, 1 —s ja 1
IT3
Clear MA for sum 153 0 — MA

Program control R2 - R6°¢ (P6 vIl23)+ V55+:D79 0 —s PI
" " RO - (P6 v I123) - V54 + D79+ D52 1 —a PI
" " R10- (P6 v I123). V42. D79+« D52 3 —» PI

6.9-5

IT4

IT5

(Note:

ITé6

IT7

IT8

(IV) is sent to AN2 in IT1 by:

Transfer sum to MA I53

Transfer sum to X I130

Prepare AN2 for
equality comparison 1129

AN2 inputs for -%29
comparison 153
129

‘X is already connected to SW4)

No activity

(X) # (D), jump
Preparations for jump " "
address to PA " "

Program control

for jump " "

If jumping JFF =1
1"

End 163

I53 - AN2CC

Trigger AN2CC

ANZ —» MA

Trigger AN2CC

X

(MA)

-— AN2I
—> SW6
— SW1
— PM

e

— JFF
— SWI
Swé
— AN2I

O O O - =

1l —» PI
Trigger AN2CC
AN2 —s PA

J —= Mod 2
IT8 —» END

The SIXJ instruction is the same except the twos complement of

AIXO, SIXO

(Add or subtract, then compare) will setthe Overflbw flip-flop if (X)= (D

- ——= PM,

1 —s AN2C

The remainder of the third group of index register instructions

v)-
6.9-6

011 1110 AIXO X)+{Iy) — X; thenl——)—OFif(X):(DV)
where IJ specifies which half of D and DR
specifies the size of Dy, .

011 1111 SIXO Same except (X) - (Iy) — X.

In IT1, the controls are cleared, the AN2 inputs connected (X —> SW4,
PR —> SW6, + or - ——= PM, O or 1 —> AN2C), MA is cleared and
Iy —= SWI.

In ITZ2, the sum is transferred to MA and in IT5 to X. In IT5,

preparations are made for the comparison (D —> SW6, + —= PM, | —>
AN2I). If (X) = (D) then in IT7, the Overflow flip-flop will be set

IT7 + 011 111X * AN2CC = 1 —s OF

The instruction goes to END through ITS8.

6.9-7

6.10 Address Substitution and Increase

Address Substitution TJIM

000 1000

The purpose of the TJM instruction is to replace the address field
of an instruction, stored in memory, with the contents of JA. I, of the
TJM instruction, possibly modified by an index register, and the J bit of
TJIM give the memory location of the instruction to be altered.

The sequence of operations is to transfer memory to D, transfer
(JA) to the appropriate Dy;, then transfer (D) back to the same memory
location. The ja_; bit is transferredtoD;.

Logic of TIM

0 — AN21, EO, UF, SC, FI, ANICE

IT1
Clear controls
Inh. AN2
Connect AN2 inputs for
memory address: 0 — AN2C
Iy alone 0 — SW4, PR—
Index modified address X —3» SW4, PR~
In repeat mode, a7y =1 X — SW4, PR—
Clear for transfers 0 ~— MA, D
Select half of D for
(JA) —= D 0 orl — SWI
IT2
Program control (SW2)' —» Mod 2
Transfer address AN2 — MA
Read Memory 2 —»> MI
MT5 —» IT3
IT3
Program Control 0,1, 2or 3 —» PI
IT4 - IT7 no significant activity

SWé6, + —s PM
SW6,+ —» PM
SW6,0 — PM

Trigger AN2CC

6.10-1

1T8

(Illustration for 32 index registers)

(JA) —D I35-SW1l=0
I35+ SW1l=0-d =0
I35 SWi1= 1
I35 - SWl=1-d_,, =0
I137-SW1= 0
I137-SW1=1

End

(jag... jao)——od_é d
(Ja.14 e...jalo) -—-—bd_l o 00 d_5
(_!a9 Jafo) —-=-+-d_30 e da39
(qal? Jalo) — d_j5 ... d_29
(Jap) — d_j1¢6

(ja_1) —= d_y4p

IT8 --- END

6.10-2

Transfer Instruction Operand Address TI1J 000 1010

The T1J instruction is usually used in conjunction with the TJM
instruction as one type of address substitution procedure.

TIJ cause the contents of Iy to be transferred to JA. The contents
of Iy may be increased by (X) with the standard "effective address" logic of
ITl. The ja_; bit is given the value of the J bit of the instruction.

The essential logic details are that in IT1 and IT2 the substitute
address is transferred to MA, via AN2, from PR, X or a combination of
the two.

JA is cleared to 0 in IT1 and in IT2; if 183 is active (1 000 1010),
1 — ja_l. (MA) — JA inIT7 and the instruction goes to End from
ITS.

6.10-3

Increase Address Instruction INCA 000 1001

INCA will increase, by one, the address field of an instruction stored
in memory. The instruction word that will undergo the increase is read
from memory. Then the selected DV is connected to AN2 where a one is
added to it (1 — AN2C). The increased address is returned to memo=ry via
MA, JA, and D.

The usual considerations of the I_and DR bits apply, wherein the
J bit of INCA specifies the half-word to be referenced at the D register
and the R bit of that half-word indicates the size of the address field.

In IT1 and IT2 the effective address is placed in MA to access the
memory for the operand word. D and JA are cleared to zero and a read
memory operation is initiated.

In IT3, D is connected as the sole register input to AN2. An incre-
ment is formed by 1 —» AN2C. The sum is transferred to MA in IT4
and on to JA in IT7. The address for memory access is again transferred
to MA in IT7 and IT8. The (JA) — D transfer occurs in IT8 using the
same logic as the TJM instruction, (the ja,_1 bit is, of course, not
transferred). Lastly a write memory operation is called for by 3 —s» MI.
The instruction goes to End from IT8.

The method of increasing the address means it can pass through

zero without overflowing into the bits on the left (the R bit or index register
address, as the case may be).

6.10-4

6.11 Reference Change LWD SWD
Larger Word 1 000 1111 LWD If (V)> (A), alphanumeric sense,
(V) —= A, address of V —s JA,
Smaller Word 1 000 1111 SWD If (V)<(A), alphanumeric sense,
(V) — A, address of V — JA.
These two instructions enable the sorting and merging of records. |
The comparison method is similar to that used for some of the
conditional jump instructions. The LWD instruction makes the test (D)> (A)?
This is so if (D) are neither equal to nor smaller than (A).
The procedure:
@) >(a) it [(A)+r2 - @ | <2

The absence of a carry from the most significant sum bit position
(ANIC0 = 0) indicates a sum smaller than 2.

However, the test for the SWD instruction must exclude the case of
equality of the two words. The method is revised in this fashion:

H

If (D)= (A), E(AH- 2- ()] =2

If (D)= (A), [@)+z- o]

v

2

To eliminate the case of equality, the addend is initially decreased by the

smallest possible amount. If the sum then is equal to or greater than 2,
(D) < (A).

D<) i [+ z-27%)] 22

-47
2-2 - (D) is the ones complement, derived by (D)! —s D, 0—>
ANIC.

A sum equal to or greater than 2 (10.0 in binary form) is indicated by a

carry from the most significant sum bit position (ANICO = 1).

If the tests for either instruction indicate (A) are to be replaced,
Il is set to 1 for the subsequent activity.

6.11-1

Logic Summary

In IT1 the usual control clearings and preparations to transfer the
effective address to MA are performed. D is cleared for the read-out

from memory.

The read and restore operation (4 —» MI) is begin in IT2. Upon
completion, MTIl — IT3.

During IT3, PI is set to the required state and D* is cleared for
transfer of the complement of (D). ANIC is set to 1 for the LWD instruction

or set to 0 for SWD.

IT3 - D87 - 1118 1 — ANIC

p—
IT3 - D93 :? 0 —s ANIC

The complement is transferred to D¥* in IT4 and the test made in

ITS.

IT5 Trigger ANICC
(LWD) 137 - 169+ V64 l — 1II
(SWD) 137 « 170 ¢ V65 1 — 1II
137 = LWD v SWD
169 = Jbit=0 I70 = J bit =
V64 = ANIC =0 V 65 = ANIG =1

The above active conditions will clear JA in IT6.

In IT7 with II = 1 (for these instructions), A is cleared and (MA)
transferred to JA. MA, undisturbed since IT2, cohtains the address of
the word compared with (A). In IT8, (D) is transferred to A and the
instruction goes to END.

6.11-2

6.12 Bit-by-Bit Boolean

The following instructions are grouped by a close functional
relationship. For while they may be only loosely related from a
programming viewpoint, their methods of performance are very similar.
The word contents are processed, bit-by-bit, in accordance with some of
the rules of Boolean algebra.

The register symbols used in this subsection will be lower case
letters to indicate the reference to any corresponding single bit positions
of registers or memory. The letter, "m' shall be used to denote memory
bit positions to avoid confusion with the inclusive OR symbol.

The instructions will be first described from the viewpoint of the
results they produce. Following this, logic will be discussed.

Extract Instructions

The extract instructions enable the isolation of any desired portion
or portions (fields) of a word and their transfer into a pre-cleared register.
The selection is controlled by the bit pattern of a word in another register.
The word is often termed the "mask'. As the extract instruction is usually
applied, field(s) of a word in memory are transferred to D under control
of the bit pattern of a word in Q.

when q =0, 0 — d

i i

whenq = 1, m, — d,
1 1 1
The ETD instruction accomplishes this extraction. The process
is a bit-by-bit binary multiplication, which is also termed 'logical multiply'.
(m) - (q) — d, (1°0)=(0-1)=(0-0)=0; (1-1)=1
i

(The. algebraic¢ symbol for multiply, ' - ', is undoubtedly the source of the
AND symbol.)

It might be noted that as far as Q and M are concerned, the roles
of the mask word and extracted word are interchangeable.

6.12-1

Variations of the extract instructions are listed below:

0 000 1100 ETD m,«q. — d,
1 1 1
1 000 1100 ETA m .q —= d., a,
i i - 1 i
111 1010 EA m .q — d; (A)+ (D) — A
1
111 1011 ES m .q — d; (A)- (D) — A
1 1

The latter two, EA and ES, are two-part instructions. Following
the extract operation, numerical arithmetic is performed with the contents
of A and D. This can be fixed or floating point arithmetic.

Insert Instructions

The insert instructions are a further variation of extract. The
extracted field(s) are used as a replacement for corresponding bit positions
of an uncleared register. The extracted bits are inserted into a word in
the A register. This is not a general logical multiply. The location of the
mask is fixed, the Q register, and the extraction is from memory:

whenq =1, m —s a
i i i
when q = 0, a, is left unaltered
i i
The S-2000 has two insert instructions.
0 000 1110 EI Extract M per Q and insert in A.
1 000 1110 EIS Do above and store (A).

Word Merging

The inclusive OR merging instruction is DORMS, which combines
all the 1 bits of the word in D and in memory. This word replaces the
original contents of the memory location.

0 000 1101 DORMS d, v m —= m,

1 1 1

6.12-2

~ The exclusive OR merging instruction is:

1 000 1101 AWCS a, N m — m,

It combines the words in A and D, bit-by-bit, by the exclusive
OR rule. Effectively this is "add without carry', hence the mnemonic
title of the instruction. The formed word is stored in memory.

=]1led =0 = 0e+d =1 S 1 -
(a, i) vy i) —=—> ™y

a =d_ 0O — m
=Y = ;

Methods

The Boolean algebra can be simply accomplished by means of
transfers between registers. The sequence of the standard method used

for extract is:

1. 0 —- D

1 :
2. M-—+ D m =1 - =0 —— l —» d,
: . == i
3. Q- D

First the 1 bits in memory are transferred to the cleared D register.
All other bit positions will be 0. If any bit postion of Q is 0, the
corresponding bit position of D should be zero. Secondly, therefore, the
0 bitsof Q are transferred to D to change back to 0 any of these bits that
the memory read had changed to 1.

The above is the essence of the ETD instruction. ETA willperform
the extract and then transfer (D) to the pre-clearcd A register. EA and
ES do the extract and then add or subtract (D) from (A).

Table 6, 12-1 compiles the logic details of these instructions.

Insert performs the operation:

6.12-3
Rev. A

The process may be reasoned thus

The information in a; is to be changed only when q; is 1. Where q =1,
delete the existing information by 0 — a;- Then extract all the m;

bits with the mask of q; = 1. And lastly transfer all the extracted m; bits
to a;. The m.,= 0 bits need not be transferred as the corresponding a; were
previously cleared to 0.

The sequence becomes the following:

1. 1 — D
0
2. (A)—=> D Transfer (A) — D
3. (Q)! 9»-* D Where q, =1, send a 0 —» di
1

4. 0 ~—= A
1 Transfer back to A with deletes
5. (D) —— A

6. (M) —» D
0 Standard extract process
7. (Q) — D
8. (D)——= A

(To utilize existing circuitry, the transfer of the Q complement to A
is via Q% .)

The logic details are listed in Table 6.12-1. The preparations
for the subsequent numerical arithmetic can be performed during the
same timings as the extract. (SC) —e SC* is done in IT2 to clear the
latter, as ITI ——=> 0 SC.)

Word Merge

The DORMS instruction is the simplest of the group:
(d,= 1) v (m=1) — 1 —m;

The ones of the selected memory location are transferred to D by a

read. The restore (part of 4 —a MI) will then transfer the merged
word to memory. The instruction has been achieved.

6.12-4

AWCS

AWCS could be accomplished solely by means of transfers, as the
other instructions. However, this would require more than eight timings.
An alternate method was chosen to perform it more quickly.

The adder network permits the logical operation:
a. A d*, ——
1 1

This is part of the development of the sum bit. The inverse of a, /\ a*,
is a; = d*i . The latter is developed for each bit in AN1, and is titled

"Aj Dy v Ag D.". See Figure 5.1-1. For addition, this signal is used
for further logic with the carry-in.

The process for AWCS is to transfer (M) —s D¥*; clear D to
ones: and then set d; to 0 where a; = d*l.

(A AD* —=pD) . a, = a* —> 0—= 4

1

Using AN1, the instruction requires six timings, however IT1 through
IT8 is taken for its performance.

6.12-5

9-21°9

ETD ETA EA ES EL EIS DORMS AWCS
o 000 1100 1 000 1100 111 1010 111 1011 6 000 1100 1 ooo 1100 0 000 1101 1 000 1101
IT1 0—D 0—D 0 —D 0—D] —eD l—=D 0—=D
’ 1 ——Q* 1~ Q%
IT2 AN2 — MA AN2 —> MA ANZ —=MA ANZ ——eMA AN2 —=MA AN2 —= MA AN2 —=MA AN2—= MA
4 —MI 4 — M1 4 —MI 4 —MI, 4 ———MI 2 —=—MI
1 —=AI 1 —=aAl
(SC) —=SC* (SC) —= SC* o o
! (A) —= D (A) —= D
J @ - o+ @) L ax
(SW2)! > Mod 2 (SW2)! > Mod 2 (SW2)'—= Mod 2 {SW2)' — Mod 2 (SW2)' —> Mod 2 | (SW2)' — Mod 2 (SW2)' —=Mod 2 (SW2)' —> Mod 2
T3 |® @ D Q) ~2—=D @ L=p @ LD ® ©92-> @) -2 p
0 — D% 1 —— D= 0 — D%
M M
0 —= ANIC 1 —— ANIC 0 —= ANIC
® 0 —= D% 1 e Dxp
. ‘
@ 1 — D £
0 —= D 0 ————a A 0~ A
IT4 (Dyy) 1 pry @ (o) L De (D) D*
1
@ (g) —0- D#g
® (og) LD+
® 11— ANICE L .
(D) A ; (D) ——=A (D) =4- A
4 ——>MI 2 == MI
— END — END —> ATl or FTI1 —>AT1 or FTI1 ———END —1T5
- T 0
ITS ® w—0>D @ 2=p
ITé @ o) 2= a oy Lea
1T7 1 —D 1 D
(a) L=bp ® (A AD¥ D
T8 3 —=— MI 3 MI
~—— END ——=END ——~ END
Notes
@ Also control clearings, effective address to AN2 @ [(D) L . A] . d; =1 == 1—ea
@ Fixed Point [(A AD¥) == D] & a; =d%; =5 0~ q;

Floating Point

ED)I —-.-D*j edy =1 = 0 ——amd¥;
®]:(Q?‘)‘LD:[. ogF = 10— g
® [(Q)—O—“DJ - g =00 —=d;

Figure 6.12-1 Logic of Bit-by-Bit Boolean

6.13 Computer Stop HLT CF

Halt Instruction HLT 000 0000

The computer response is asthe instruction title indicates. The
stop is achieved by setting the Stop FF to 1 during the performance of
HLT. This, in turn, causes the P20 signal to become normal. P20 active
is required for either exit from PT4, PT4 —ITl or PT4~— > PT1.

Precisely defined, the computer will stop after the first set of PTs
following the halt instruction unless PI= 0l. Either of several activities can
occur during the PTs dependent upon the coding of the Halt Instruction.

If the R bit is 0 and HLT is the IO instruction, the standard PI=

00 activity will occur. The stop will be before IT1 of the I1 instruction.

IfR =1and X_, = 1, the index register will be counted and then the
computer will stop.

If, for no discernible program purpose, HLT is performed as the
I instruction in the repeat mode, the computer will stop after the index
register is being counted or repeat modified. If X is not being changed,
the stop will be after the Repeat counter is counted down.

If PI =01, the computer will stop before transferring the next
instruction word.

Logic of Halt

IT1

Standard control clearings and AN2 input connections, but MA is
not cleared:

D65 - D52 - 141 + 181 =—==> 0 — MA
where 141 = 000 0000.
Set Stop FF 141 1 — Stop

6.13-1

IT2
Program control 141 (SW2)! —— Mod 2

The "address'" is not transferred to MA.

D 65 141 - 181 D52 —— AN2 —» MA
IT3
Mod2=1-D79+1I=0-ay =0 - l:(R=1'XC= 0)vuzz|u o
—> 0 — PI, PI*
Mod 2= 0« D79+ D52 - RPT= 0 [:(R=1»xc=0)v1123]-0
—>1 —» PI
ERzl-Xczl)va::l e D79 « D52 ¢ 1123 —> z-—>PI
RPT= leay =0+SW2=1¢ D79 « D52 * l—_(—R: 1-XC=0 v 1123_—]
:j 3 ——= PI
IT4
End (I41 v 113 v I125 v I126) * JFF=0 —— END
END El+ PI= 1X —= PTI
El- PO —» PT3

Visual Indication

The stop due to HL.T can readily be identified by the Stop FF neon
on the console. Only two conditions setthe flipflop to 1.

IT 2141 :j 1 — Stop

MA = MP . MA Stop » M10 - MT10 ——> 1 —» Stop

6.13-2

Command Fault CF

A command fault is a command coding pattern which has not been
assigned to any instruction. Of the 256 possible codings, 22 are unassigned.
If, regardless of the cause, any of these appear in the operative half of PR,
the computer is stopped and the CF flip-flop is set to 1.

These illegitimate codings are called "Command Faults' when they
are decoded.

- Coding Decoded As
111 01XX I3
111 111X I4
011 011X I6
011 1000 I7
011 101X I8

The above I numbers are combined in an OR gate to form the D52
signal.

D52, when active, causes certain logical activity. Its purpose is to
return the computer to the point in program control just prior to the
"instruction'', namely PT4. Here the computer is stopped to permit
examination and manual intervention to correct the command coding in PR.

With D52 active, the computer goes through IT1 to IT4, End and
PT2 through PT4. The only activity is to set the CF flipflop (which makes
P20 normal); and the control clearings performed by IT1 for all instructions.

D52, when active, prevents any other changes in data or control
information. The nature of these changes is determined by the instruction

replacement coding for CF, which is not known to the computer.

The computer stops after PT4 since P20 is normal.

6.13-3

Logic of CF

IT1

0 — EO, UF, SC, AN1I, AN2I
Inh AN2
D52 1 —» CF
The following are inhibited by D52 active:
0 —» OF
0 — D, D

M1 M2’ TM3
0-— D

El, DEZ
0w MA
IT2 D52 —— IT3
The following are inhibited by D52 active:
ANZ2 —>» MA
(SW2)! — Mod2
2 ~—s> MI
4 ——» Ml
IT3 D52 0 —=~ PI, PI*
The following are inhibited by D52 active:
l e— PI

2-— Pl

6.13-4

IT4

D52 —e END

The following are inhibited by D52 active:

— ATI
— IT5
— FTI
END
PI= 00+ E] = —» PT2
[Note: EI = (1T4 vIT8) —» END]
PT4

Computer stops as P20 active is required for exit to IT1 or PTI1.

6.13-5

6.14 Console Transfer Instructions TTD TCM TDC

In addition to the manual console switches, three instructions
provide means of transfers between computer and console.

1 000 0100 TTD (IR) — D
0 000 0101 TCM Console Typewriter —e V

1 000 0101 TDC (D) —— Console Typewriter

Toggle Register

The bank of 48 miniature, bat-handled toggle switches is manually
preset for the desired word. The "up' position of the handle produces a
bit value of 1.

The instruction is performed during IT1 to IT4. The D register is
cleared to zero in IT1; the transfer is done in IT2; the instruction goes
to End from IT4.

The instruction incorporates the standard index register activity
which may be used as a performance counter.

6.14-1

368
737

® A N o=

16

32

65
131
262
524
048
097
194
388
777
554
108
217
435
870
741
483
967
934
869
738
476
953
906
813
627
255
511
022
044
088
177
355

0 W N -

16

64
128
256
512
024
048
096
192
384
768
536
072
144
288
576
152
304
608
216
432
864
728
456
912
824
648
296
592
184
368
736
472
944
888
776
552
104
208
416
832
664
328

=]

OOV LN ~O

W R R R R DR W W W W W W W W WD VNN NN e e e e e
N E O RO RN —OVRICTR PN ~OVO®ICUR WD OO ® U W~ O

TABLE OF POWERS OF 2

™~
1
B

COO0CC0O0O0O0O0OOO0OOOO0O

.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

—~ N OO
N0
v

062
031
015
007

.003
.001

000
000
000

.000
. 000

000
000
000
000

.000

000
000
000
000

.000
. 000
.000

000
000

.000

000

. 000

000
000
000

.000
. 000
. 000

000
000
000
000

. 000

000
000
000

. 000
.000

25

625
812
906
953
976
488
244
122
061
030
015
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
Doo
000

25

125
562
281
140
070
035
517
258
629
814
907
953
476
238
119
059
029
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

25

625
312
156
578
789
394
697
348
674
837
418
209
604
802
901
450
725
862
931
465
232
116
058
029
014
007
003
001
000
000
000
000
000
000
000
000

25

125
062
531
265
632
316
158
579
289
644
322
161
580
290
645
322
661
830
415
207
103
551
275
637
818
909
454
227
113
056
028
014
007

25

625
812
406
203
101
550
775
387
193
596
298
149
574
287
643
321
660
830
915
957
978
989
494
747
373
686
843
421
210
105

25

125
562
781
390
695
847
923
461
230
615
307
653
826
913
456
228
614
807
403
701
350
675
837
418
709
854
427

25

625
312
656
828
914
957
478
739
869
934
467
733
366
183
091
545
772
886
443
721
860
430
715
357

25

125
062
031
515
257
628
814
407
703
851
425
712
856
928
464
232
616
808
404
202
601

25

625
812
906
453
226
613
806
903
951
475
237
118
059
029
014
007
003
001

25

125
562
281
640
320
660
830
915
957
478
739
869
434
717
858

25

625
312
156
078
039
519
759
379
689
844
422
711

25

125
062
531
765
882
941
970
485
242

25
625
812
406
703
351
675

25
125
562 5
781 25

ALPHANUMERIC CODING

00 0l 10 11
Line Console Line Console Line Console Line Console
Printer Typewriter Printer Typewriter Printer Typewriter Printer Typewriter
Upper Lower Upper Lower Upper Lower Upper Lower
Case Case Case Case Case Case Case Case
0000 0 0) & & * - - / 2 (Space) Space Space
0001 1 1 " A A A J J J / None None
0010 2 2 Q@ B B B K K K S S S
0011 3 3 z c c c L L L T T T
0100 4 4 $ D D D M M M U U U
0101 5 5 € E E E N N N A\ v \4
0110 6 6 % F F F o (o) o w w w
0111 7 7 > G G G P P P X X X
1000 8 8 ; H H H Q Q Q Y Y v
1001 9 9 (I I 1 R R R Z z Z
1010 [None None r ("ignore" carriage t (cond. stop) Tab TAB i (abs. Stop Stop
char.) return stop)
1011 # # ? . . - $ None None 5 N H
1100 @ None None «’ None None x None None % None None
1101 = None None ' ' " None None > None None
1110 + + =) None None (None None —_— None None
1111 H None None ? Upper Case H Lower Case 3 (line Code Delete
Shift Shift marker)

NOTES: 1. The symbols r, A , and 2 are printed only in "memory dump' mode. Otherwise the corresponding codes are used for control characters.

2. An editing program is normally used to convert between the console typewriter code and the line printer code.

3. The paper tape control recognizes the Code 111010 as a stop instruction.

SYMBOLS

() Contents of
‘ ’ Absolute value of quantity.
A A register.
D D register.
Dy, D, Left and right halves, respectively of D.
Dy, Iy Most significant bit of 8-bit command code, bit 2 _16 °F 2 40

; Indicates a sequence. Operation at left of semicolon first,
followed by operation to right of semicolon.

I Part of Program Register currently operative. (I) will be
the instruction currently being performed.

I v’ DOV"’ DlV The '""V'" indicates address field of the 24 bit instruction

' (or half-word).
JA Jump Address register.
ja,__1 The bit in JA corresponding to DOJ or Dl.]’ of D, IJ of I,

and X of X.
C

Q Q register.
A% Selected memory location.
X Selected index register.
Xe Counter bit of selected index register.

Quaternary

00

Code

00

01

02

03

10

11

12

13

20

21

22

23

30

Mnemonic
Code

HLTL

JBTL

ICOoL
NOPL

TIO

TCM

SKC

TCXZ

TIML

INCAL
TIJL

RPT

ETD

Special
Halt, Stop computer

Stop if BREAKPOINT switch ON. If ADVANCE
then given, jump to instruction in location given
by (I V) and (I J). If BREAKPOINT switch
originally OFF, jump without stopping.

Inhibit clearing of Overflow flipflop.
No operation (filler). Continue to next instruction.

Skip next instruction if I-0 order in D is accepted
by I-0 control.

Transfer one alphanumeric character from
console typewriter to rightmost part of D
(d_49 .--d -47). Remainder of D unchanged.
Then (D) V.

Skip next instruction if specified I-0
transmission is completed.

0 XC

(V) D; (JA) Dov} (ja_l) DOJ ;
(D) V.

(V) D; (D OV) + 1 D; (D) V.
(1) JA, 0 ja_|

Establish repeat mode where Iy 1is number of
times instruction(s) are to be performed. If
RPT is Iy, repeat I 1- I RPTisI;, repeat
the two instructions of the next word.

Extract to D; bit-by-bit logical multiply:
(V) Q) D
where 0 0=0 1=1 0=031 1=1

-2-

Quaternary
Code

31

00 32

33

Mnemonic
Code

Special

DORMS

EI

LWD

Word merge, bit-by-bit combining of ones:
(v) - (D) — D,V
whereQ-+1=1°0=1 1=1,00=20

Insert in A; where any bit positions of Q
have a value of 1, insert the value of the
corresponding bit positions of V in A.
Leave the balance of A unchanged.

If (V) > (A), Alphanumeric sense, (V) —= A
and address of V —/= JA,

20

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

HLTR

JBTR

ICOR

NOPR

TTD

TDC

SKF

TCXS

TIMR

INCAR

TIJR

RPT

ETA

AWCS

EIS

SWD

Special

Same as HLTL

Same as JBTL, except jump to right.
Same as ICOL

Same as NOPL

(TR) — D

(d

(One alphanumeric character).

o +++d_5) —= console typewriter

Skip next instruction if specified I-0 Faults
have not occurred.

——
1 X C

Same as TIJML, except transfer to D .
Same as INCAL, except increase D jv.

Same as TIJL, except 1 —— ja o1

Same as ETD, followed by (D) —= A.
Add without carry and store; bit-by-bit
logical add of (V) + (A) — D, V.
where 0+1=1+0=1; 0+0=1+1=20
Same as EI, followed by (A) — D, V.

If (V) < (A), alphanumeric sense, (V) — A
and address of V —=> JA,

01

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

CM

TMA

TMQ

TMD

TAM

CA

TAQ

TAD

TQM

TQA

CQ

TQD

TDM

TDA

TDQ

CD

Transfers

(V) — Q
(v —= D
(A) — Vv

(D) — Q

0 —D

21

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

SLAQ

SRAQ

SLAQN

SRAQN

SLA

SRA

SRAN

SRAN

SLQ

SRQ

SLON

SRQN

SCD

SRD

SCD

SRDN

Shifts

Shift left, treating A, Q as one double-
length word.

Shift right, treating A, Q as one double-
length word.

Shift left, treating A, Q as one double-length
number and sign.

Shift right, treating A, Q as one double-length
number and sign.

Circular right shift (D).

Note: See Figure 6.5-1 for illustration of shifts.

(Note:

Jump to instruction whose address is given by (I

Jumps - Left

v Ip)e 1y =0,

instruction is left half-word of (V).)

02

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

JMPL

JAZL

JNOL

JOF L

JAPL

JANL

JAEQL

JAEDL

JQPL

JONL

JQEL

JQOL

JDPL

JAGQF L

JAGQL

JAGDL

Unconditional jump

Jump if (A) =0
Jump if OF = 0
Jump if OF =1

Jump if positive, (A) >0
Jump if negative, (A) <0
Jump if (A) = (Q)
Jump if (A) = (D)

Jump if (Q) > 0, unconditionally circular
shift (Q) left one place.

Jump if (Q) < 0, unconditionally circular
shift (Q) left one place.

Jump if Q is even, unconditionally circular
shift (Q) right one place.

Jump if Q is odd, unconditionally circular
shift (Q) right one place.

Jump if (D) 2 0
Jump if (A) 2 (Q), floating point sense.
Jump if (A) > (Q), algebraic sense.

Jump if (A) 2 (D), alphanumeric sense.

22

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

Jumps - Right

JMPR

JAZR

JNOR

JOFR

JAPR ;
JANR

JAEQR

JAEDR

JQPR conditions same as for left jumps
JQNR

JQER

JQOR

JDPR

JAGQFR

JAGQR

JAGDR

03

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

TDXL

TDXLC

TXDL

TXDLC

ADXL

SDXL,

TIXZ

AIXJ

SIXJ

AIXOL

SIXOL

Index - Left

Doy) — X

) — X

0J C
(X) —= Dgy
x) — Dov’ (Xc) —'-DOJ
(X) + (Dov) — X

CF
CF
CF

(Iy) — X, 0 — X

CF
CF
(x) + (IV) —> X; jump to address in D

D,y X +(Dy,)

ov’
ov

(X) - (IV) —> X; jump to address in DOV ,
Dy3 if(X)rJ:(DOV)
(X)+(Iv) —= X; 1 ——*0Fif(X)=(D0V)

(X) - (IV) — X; 1 — OF if (X) = (DIV)

-9.

23

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

TDXR

TDXRC

. TXDR

TXDRC

ADXR

SDXR

TIXS

AIXJ

SIXJ

AIXOR

SIXOR

Index - Right

Same

Same

Same

Same

Same

Same

CF

CF

CF

Same

CF

CF

as TDXL, except use D

as TDXLC, except use D

as TXDL,

as TXDLC,

as ADX]1,,

as SDXL,,

as TIXZ, exceptl — X

1"

1

1

C

Same as AIXOL, except use D;

Same

-10-

as SIXOL,

]

10

00

0l

02

03

10

11

12

13

20

21

22

23

30

31

32

33

AM

AMS

CAM

CAMS

AMA

AMAS

CAMA

CAMAS

AQ

AQS

CAQ

CAQS

AQA

AQAS

CAQA

CAQAS

Addition

(A) + (V) — A

(A) + (V) — A, D, V

0 —= A; (A) + (V) — A

0 —=A;(A) + (V) — A, D, V
(A) + V —= A

(A) + V —= A, D,V

0 — A; (A) + |V| —=A

0 —= A;(a) + |[v| —a, D, v
(A) + (Q) —= A

(A) + (Q) —> A, D, V

0 —=A; (A) + (Q) —= A

0 —A;(A) + (Q) —= A, D, V
(A) + lQ[— A

(4) + |@] — A, D,V

0 — A;(a) + | —=a

0 —> A; (A) + lo] —=a, D, V.

-11-

11

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

SM

SMS

CSM

CSMS

SMA

SMAS

CSMA

CSMAS

SQ

SQS

CsQ

CSQS

SQA

SQAS

CSQA

CSQAS

Subtraction

(A) - (V) — A

(A) - (V) —= A, D, V

0 —= A; (A) - (V) —= A

0 —=A; (A) - (V) —=A, D, V
@) - |v| —a

(A)- |v| —a, D, v

0 —A; (4) - |v|] —= A

0 — A; (4) - ‘v[——= A, D, V
(A) - (Q) —=A

(A)-(Q) —™ A, D, V

0 — A; (A) - (Q) —=A

0 —= A; (A) - (Q) —=A, D, V
() - |of — &

(Aa) - |Q| —= A, D, V

0 — A;(A) - |@f —= &

0 — A; (A) - ,Q‘ —>A, D, V

-12-

Multiplication

00 MM (V) x (Q) —= A,Q

01 MMS (V) x (Q) — A, Q; (A) — D, V

02 MMR (Vix(Q) —=A

03 MMRS (V) x (Q) —= A; (A) — D, V

10 MMA V] x(@ — 4,0

11 MMAS lv| x(@ — A, Q; (A) —= D, V

12 MMAR V| x(@ —a

13 MMARS V] x@ — 4 (4) —=D, Vv
12 20 MA (A)x(Q) — A, Q

21 MAS (A)x (Q) —=Q, Q; (A) —=D, V

22 MAR (A)x(Q) —= A

23 MARS (A)x (Q) —= A; (A) —=D, V

30 MAA Al x(Q) — a4, Q

3] MAAS lA] x(Q) — A, Q (A) —D, V

32 MAAR |A| x (Q) — A

33 MAARS [A] x(Q) —4A; (o) —=D, V
Note: ' —= A, Q" implies double-length product with the more

significant half in A. Signs of both (A) and (Q) will be product sign,

noo—— AN implies single-length, worded product. Multiplier
remains in Q after instruction.

-13-

Division and Special

00 DAQ (A, Q) + (V) —= Q, remainder —= A
01 DAQS (A, Q) = (V) — Q,(Q) —= D, V
02 DA (A) = (V) — Q, remainder ——= A
03 DAS (A) = (V) — Q, (Q) — D, V
10 CF
11 CF
12 CF
13 CF
20 MAD (V) x(Q) —= D; (A) + (D) — A
11 21 MSU (V) x(Q) — D; (A) - (D) — A
22 EA Extract and add: (V) ¢ (Q) — D;
(A) + (D) —= A
23 ES Extract and subtract: (V) » (Q) —> D;
(A) - (D) —A
30 AD (A) + (D) — A
31 SD (A) - (D) — A
32 CF
33 CF
Note: "(A,Q) = ' - implies double-length dividend with the more

significant half in A,

"(A) -~ " - implies single-length dividend.

Remainder of division is always in A,
Remainder of division is always in A.

-14-

Al

FI

MI

PI

000
001
010
011
100
101
110
111

000
001
010

011

100
101

110
111

000
001
010
011
100
101
110
111

00
01
10
11

CONTROL REGISTER STATES

Force add in multiplication.

Add or subtract.

Multiply, double length product.
Multiply, single length product.
Fixed point division, first cycle.
Division, all other than above.
Shift

Q jump

Exponent comparison for add or subtract.
Exponent addition or subtraction (for multiply or divide).
Shift (DM); arrangement of (DM) as (DE) < (AE).

Shift (AM); arrangement of (AM) as (DE) > (AE).

Normalize, following arithmetic operation.

Correction, following add, subtract, or multiply,
before divide.

Clear D, (D) << (Ag).

Clear A, (D) >> (Ag).

Memory not being used by computer.

(V) — PR — V

(V) — D

(D) — V

(V) —— D —V

Clear V, (D) — V

Clear V, leave cleared (read and write 0).
Clear V (read 0).

Do next instruction.

Transfer next instruction word from memory to PR.
Modify index register.

Count down repeat counter.

SYMBOLS USED IN DEFINITIONS OF NUMBERS

"Address field" portion of half-word in D.

Subscript. Exponent part of floating point number.

Memory Address field of the instruction.

Subscript. Mantissa part of floating point number.
The selected memory location

The selected index register.

Al-27

A NUMBERS

Note: The lower case '"a' of an A number refers to an Al setting. This
""a'' listing also implies the existence of a lower case '"b'" number
which refers to a setting of AI*, (These are not listed here to
conserve space.

Number Conditions Definition

Al Al = 001 Add or subtract

A2a Al = 01X Multiplication

A3a Al - 10X Division

A4 Al =110 Shift

Aba AT=1XX Not division, shift or Q jump

Ab Al = 110 ¢ 0XXX Shift A or A, Q

A7 Al =110 ¢ 11XX Shift D

A8a AI =100 Fixed point division, first cycle

A9a Al = 00X Add, subtract or force add

AlOa Al =101 Floating point division, or fixed point
division not first cycle

All Al = 01X =+ |Iq] =1 Multiplication, multiplier bit is 1

Al2 Al=01X ° [q =0 " , " oo

Al3 Al = 110 ¢ XO0XX Shift Q or A,Q

Al4 Al =111 Q jump

Alb AI* = 000 Force add

Alé Al* = 1X1 Q jump, or floating point division or
fixed point division after first cycle

Al7 Al* = 110 « 0XXl1 Involves SRA - (SRAQ, SRAQN, SRA, SRAN)

AlS8 Al* = 110 « 0XXO0 Involves SLA ~

Al9 Al* = 110 « X0X1 Involves SR - Q

A20 Al* = 111 ¢ XX1X Q jump right

A2l AI* = 110 ¢« X0X0 Involves SL. - Q

A22 Al* =111 ¢ XX0X Q jump left

A23 Al* = 110 ¢ 0XIX Involves S -~ A - N

A24 AT* = 010 Double length multiplication

A25 Al* = 011 Rounded multiplication

A26 Al* = 110 « X01X Involves S < Q - N

A27 AI* = 110 # 0010 SLAQN

Number

A28
A29
A30
A3l
A32
A33

A34

A35
A36

A37
A38

A39
A40
A4l

Conditions
ATl* = 110 ¢« 0011
Al* =110 ¢ 1111
Al* =110 * 11X0
Al* = 110 ® 0000

AI* = 110 * 0001
(AI* = 101 « FI* = 100
FP = 1)
V (AI* = 101 +SC = SAT)
Al* = 101 o FI* = 100+
FP =1+ SC = SAT
AI* = 010 » SC # SAT
(AI* = 01X 2 SC # SAT)
V (AD* = 110 « SC # SAT)
AI* = 110 + SC = SAT
Al* = 01X+ SC = SAT
s V17
AI* = 110 * 0X00
AI* = 110 - X000
Al* = 110 + 10Xl

Definition

SRAQN
SRDN
SCD
SLAQ
SRAQ

Last cycle of division

Division, not last cycle

Double length multiplication, recycling
Multiplication, recycling or

shift recycling

Shift, last cycle

Multiplication, last cycle, Q 5 -1
Involves SLA

Involves SL - Q

Involves SRQ ~

A28-41

D Number
DlA

DI1B

D2A

D2B

D3

D4

D5A

D5B

D7

D8

D9

D10
D11
Dl2
D13
Dl4
D15
D16
D17

D18

D NUMBERS

Conditions
AZ2a v A3a
A2b v A3b
A3a v Aba
A3b v A5b
A2a v A3a
v Al4
A9a v All
A6 v AS8a

A34 v A39

A2b v A3b
v Alé6

A9a v V8

A9b v A33
A2b v AS8b
Al8 v A34
AZ2b v A8b

vA 20

AlOb v A21
A8b v A23
A8b v A25
A27 v A34

A8b v A24

A22 v A33

v Al3 |

v Al9

v A22

v A26
vA35

v A28

A40

D Number

D19

D20

D21

D22

D23

D24

D25

D26

D28

D29

D30

D31

D32

D33

D34

D35

D36

D37

D38

D39

D1A-39

Conditions
A34 v A36
A8b v A9 v Al4
vA33 v A37 v A38
F4a v F8 v F9
F10 v Fl1 v F1l12
F13
F3a v Fl14 vF1l5
FlI1A v FI15
Flé6 vE17
F18 vF19 vF 20
vkF21
Fé6b vE24
FOb vF 3b vF 22
v F25 vE 26 vF 27
FOb vEF 1B vF3b
vF25 vF27
F19 v F22 vF29
vF30 vF32
Flb vF5b vEF 25
F4b vF19
FOb vF3b vFT7b
FOb vF3b vF5b
F5b vF34
F30 vF31
F22 vF33
FOb vF3b +vF19

D Number

D40

D41

D43

D44

D45

D46

D47

D48

D49

D51

D52

D53

D54

D55

D56

D57

D58

D59

D60

D61

Conditions

Fl9

F21

A2a

F4a

F29

SHIFT OVF

A20

vF21

vEF36

vA9a

vF5a

vF32

vA32

vF 38

vA4l

AN1CC vA4 vA1l2
vAl4
vF40 vF41
vF 42

F39

I1

13

19

19

112

118

111

123

I12

147

vI50

vI2

vi4

vi6

vIi7 vI8
vIl0 +vIll

vil4d vIl5

vilé vI17

vIl9
viz21l
vi24
vi2é6
vI1?7
vI28

vIi48

143 v 144

vi35

vI25

vi27

vI49

vi51
vi45

v172

D Number
D2
D63
D64
D65
D66
D67
D69
D70
D71
D72
D73
D74
D75
D76
D77
D78
D79
D80
D81
D82

D83

D40-83

Conditions

125 vIl42

I31 vI32 vI36

vI37 +vI39 vIé2

I33 vi34 vi35
vI40 vI46 vIi122

19 vIl4 vIl9

vi21l vi25

I115 vI29 vI42

vI5h2 vI53 vI81

AN2CC vIl15 vI8l

134 vI35 vI40

158 v159

161 vi62 vI63

166-1 vi68

174 vI7?75 vI76

vi?7? vI78 vI79

110 vi43 +vI50

v163 vI72 +vI80

143 vi44 vI45
vIi72

I15 vI53 vIi81

J2 vJ3 vJ4 vJI5 vJ10
J6 vJ7 vJI8 vJ9
vi81 +vI85

112 vil?

S1 vS8S2 vS3 v S4
vS5 v S6

R2#1 v P7

152 v I53

186 v 187

D Number
D84

D85

D86
D87
D88
D89
D90
D91
D92
D93
D94
D95
D96
D97
D98
D99
D100
D101
D102
D103

D104

Conditions
143 v 168 vI8S
189 v I90
191 v 192
vI99 v I100

vI95 vI96

193 v 194 vI97 vI98

137 v 148 wvIiOl
vIi02 vI103

161 v 166 v 1104

162 v 163

1105 v 1106 v 1107
vIl08 v Il113

1109 vI110vIl1lvIll2

12 v I34 v1ll4vills

168 v 198 v 1Ill2

I2 v I34 vIli4
vIll5vIilé vI11S

136 v 162

143 v 190

v 1143
1120 v 1Il21

v I1l19

165 v 1122

I1 vI2 v I48 v I85
1101 v1122

134 v I35 v 137 v 142
181 v 1Il123
113 v 141
vIl2é6

136 v 146 v I54
184 v I127 v 1139
I11 #1 v I130

v I125

ANICC v D51 vD126

Jill v J12 v J13 v J14
v J15

D Number

D105

D106

D107

D108

D109

D110

D111

Dil2

D113

D114

D115

D117

D118

D119

D120

D121

D122

D123

D124

D125

D126

D84-12¢€

Conditions
J18 v J19 v J20 v J21
v J22

129 v 142

I34 v I134 v I135

137 v 160

19 v 134 v 135
v . I135

161 v 1135 v I136

129 v 135

1137 v 1138

112 v V67

154 v I122

144 v I56 v I57

AN2CC v 111 vI2l
v I16

S7 v S8
J4 v J5 v J10

P11l vPl4 P15

P16 vP17 vP1l8

181 vP21

V45 vII3 vP22

P9 vP24

1132 vil40 vI10
vil5
134 v I35 v 181

vI60 v 1123 v I79

Fl1-27

F NUMBERS

Note Numbers with suffix "a' refer to FI settings, those with suffix '""b'' to
FI* settings.

Number Conditions Definition

FO FI=000 Compare numbers for add, subtract.

Fl FI= 001 Exponent addition, subtraction for

multiplication, division.

F2 FI=010 Shift Dyy (D g <Ag)

F3 FI=011 Shift A,/ (DE >AE)

F4 FI=100 Normalize result

F5 FI=101 Correct result for overflow.

Fé6 Fi1=110 Clear DM (DE <<AE)

F7 FI= lliu Clear AM (DE >> AE)

F8 FI=X01 * AlOa Exponent addition or correction for
) multiplication.

F9 FI= X(le Shift or clear AM or D,

F10 FI=100 ¢ AlOa Normalize for multiplication,

Fll FI=101 ¢« AlQa Correction for division.

Fl2 FI=1001

F13 FI=01X Shift AM or DM

Fl4 FI=001 - AlOa Division, subtract exponents

F15 FI= 10X Normalize or correction

Flé6 FI=X0l1 -~ AlOa Division, subtract exponents or

correction

F17 FI=100 - A24 Double length multiplication, normalize

F18 FI* = 100 « AlQa Multiplication, normalize

F1l9 FI* =101 + AlQa Division, correction

F20 FI* =001 ¢« A2a Multiplication, add exponents,

F21 FI* = 01X Shift Dy, or A\,

F22 FI* = 00X - AlOa Division, subtract exponents

F24 FI* = 010 =+ SC* =0 Shifting D y4, recycling.

F25 FI* =100 « UF =0 Normalizing, no underflow.

F26 FI* = 001 - A2a s V30 Underflow when exponents added

F27 FI* = 1X1 Correction or clear A

M

F28-42

Definition

Not exponent comparison
Double length multiplication, exponent
addition underflows,

FI* = 100 164 « UF = 0 Double length multiplication, normalizing

does not cause underflow.

FI* = 100 - Al10a°UF =0 Division, normalizing does not cause

underflow,

FI* =100 - Al0a « SC = SAT Division, normalizing completed,

number is zero.

Add exponents, double length
multiplication.

Addition or subtraction of exponents
did not underflow,

Division, normalizing

Shifting of A,, completed

Shifting Ao recycling

Double length multiplication,
normalizing, number is zero.

Number Conditions

F28 FI* = 000

F29 FI* = 001 s 164 - V30
F30 =

F31

F32

F33 FI* = 001 - 164
F34 FIi*x =001 - UF = 0
F35 FIi* =100 - AlQa

F36 FI*=000-SC=0
F37 FI* = 000 - SC # 0
F38 FI* = 100 - 164 - SC = SAT
F39 AN1ECC« V19 « V23

F40 ANIECC » V18

F41 MO - AT0a « ANIECC
F42 (FOa + Al0a) v (ANLECC * Al0a)

I1-32

I NUMBERS
Number Coding Definition

I1 010 0001 Jump if A is zero

12 010 011X Jump if A=Q, A=D

13 111 01XX

14 111 111X \

16 011 011X CF (Command Fault)

17 011 1000 /}f

18 011 101X .«

19 1XX Arithmetic instruction

110 1 001 Shift instruction

111 011 111X AIXO, SIXO X)+ 1 v ~% X; then

1l =3 OVEF if (X) = (DV).

112 000 1011 RPT

113 010 001X JNO, JOF

114 00X Special, transfer or shift instructions.

115 010 Jump instruction

116 011 Xo00X Transfer to X

117 000 0110 Skip instructions SKC, SKF

118 011 XI1XX Instructions which add or subtract
(X) and Iy, then compare with Dg-
AIXJ, SIXJ, AIXO, SIXO; or add or
subtract (X) and (D). ADX, SDX

119 011 XX1X (not readily definable)

120 011 0X0oX Index instructions where D affects X.

121 011 OXXX Index instructions involving D and not PR.

123 011 00XX Transfers between D and X.

124 011 0100 ADX (X)# (Dy) -—» X

125 011 1001 TIX Iy, J) — X, X_

126 011 11X0 AIXJ, AIXO

127 011 0101 SDX (X)'(DV) —» X

128 011 11X1 SIXJ, SIXO

129 011 001X TXD, TXDC transfers of X to D

130 000 o010 ICO Inhibit clearing of overflow

131 0 001 0001 TMA (V) —>» A

132 0 001 001X TMQ, TMD (V) =» Qor D

133-66

Number Coding Definition

133 0 001 1111 CD 0 «~—3>D

134 1 000 1101 AWCS

135 000 100X TIJM, INCA change in address field of V.

136 000 1100 ETA, ETD

137 000 1111 SWD, LWD

139 1XX 0XX0 Arithmetic instruction with (V) operand
and result not stored.

140 IXX 0XXl1 Arithmetic instruction with (V) operand
and stored result.

141 000 0000 HLT

142 000 1010 T1J

143 000 1110 EI, EIS

144 0 001 o0l00 TAM (A) — V

145 0 001 011X TAQ, TAD (A) — Q, (A) — D

146 1 000 0100 TTM (TR) —»V

147 0 001 1011 TQD (Q) —D

148 010 1101 JAGQF jump if (A) > (D) floating point

149 010 X110 JAEQ, JAGQ jump based on A & Q comparison

I50 10X 1XXX Add, subtract with Q operand

151 0 001 100X TQM, TQA

152 000 1001 INCA

153 011 110X AIXJ, SIXJ

154 0 000 1101 DORMS

155 0 001 0000 CM

156 0 001 1000 TQM

157 0 001 1100 TDM

158 10X 1XX1 Add, subtract with Q operand and store
result :

159 1IX0 1XX1 Add, multiply, both operands in registers,
store result.

160 111 100X MAD, MSU

161 10X Add,; subtract

162 111 101X EA, ES

163 111 110X AD, SD

164 110 XX0X Double length multiplication.

165 110 XX1X Rounded multiplication

166 111 00XX Division

10

167-106

Number Coding Definition

167 010 10XX Jump conditional upon Q.

168 110 Multiplication

169 0 J=0

170 1 J=1

172 110 1XXX Multiplication, operand in A

174 0 001 IXIX Y

175 0 001 1IXX1

176 0 001 XIX1 |

177 0 001 Xl11X r Does not involve memory

178 000 OXXX (used in IT2 ——>IT3 gating)

179 000 101X

180 01X .J

181 000 0001 P23: JBT

183 1 000 1010 TIJR

184 000 0101 TCM, TDC

185 010 0000 JMP

186 111 001X Division, single length

187 0 001 XXI10 Transfer to Q

188 10X XXIX Add, subtract, preclear A

189 0 001 XXol1 Transfer to A

190 1 000 1100 ETA

191 100 XI1XX- V57 Add, absolute value, andd, =1

192 101 XI1XX . V53 Subtract, absolute value, and d, =0

193 110 XI1XX -V53. V50 Multiply, absolute valie, d, = 0 and
Qo =1

194 110 XI1XX - V57 V49 Multiply absolute value, d, =1 and
4o =0

195 111 00XX - V53 V47 Divide, dy, =0anda, =0

196 111 00XX . V57-V48 Divide, d, = 1 and a, =1

197 110 X0XX V50 Multiply, algebraic value, q, =1

198 111 100X V50 - V33 Multiply cycle of MAD, MSU and gy =1

199 111 1001 - V32 Subtract cycle of MSU

1100 101 XO0XX Subtract algebraic value

I101 010 111X JAGQ, JAGD

1102 111 1011 ES

1103 111 1101 SD

1104 111 100X V32 Add, subtract cycle of MAD, MSU

1105 - 100 XI1XX V53 Add, absolute value, d =0

1106 101 XIXX - V57 Subtract, absolute value, d, =1

11

Number

1107
1108
1109
1110
I111
1112

I113
1114
I115
1116
1118
1119
1120
1121
1122
I123
1124
1125
1126
1127
1128
1129

1130

I131
1132
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

OO O =

o o

111
111
110
110
110
111

100
111
111
111
000
001
001
001
111
011
001
010
010
000
000
011

011

011
111
IXX
000
1X0
000
011
000

111
000
001
000
000

Coding
i a———

00XX
00XX
X0XX
X1XX
X1XX
100X

X0XX
1000
1010
1100
1111
X001
1110
0X10
10XX

010X
1100
0X1X
0100
11XX

XX0X

0001
1XXX
XXX1
1110

1000
0011
0001
XXXO0
1001
0111
1101
0110
0110

+ V53
¢ V57
* V49
» V49
- V57
* V33

- V32

* V33

P23
19

© V48
< V47

- V53
* V50

© V49

12

1107-145

Definition

Divide, d, =0 and ay =1

Divide, d, =1 and a o = 0

Multiply, algebraic value, q45 =0
Multiply, algebraic value, q, =0 and d, =
Multiply, algebraic value, q, =1 énd d,=

Multiply cycle of MAD, MSU and do =0

Add, algebraic value

Add cycle of MAD

EA

AD

SWD

TMA, TQA

TDQ

TMQ, TAQ

Multiply cycle of MAD

Index register instruction
Transfer or shift instructions
Jump conditional upon sign of A
JDP

Not readily definable used for IT4 —%» END

TIO

Index register instructions with
conditional jump or overflow test
Index register instructions that do
not change (X).

TDXC

Special arithmetic instructions
Arithmetic instruction, store result
EIS

Add or Multiply

TIM

TXDC

JBT and Breakpoint switch to Ignore.

Arithmetic instructions not storing result.

MSU
TCX
TDA
SKC
SKF

0
1

J NUMBERS
Number Conditions Definitions

J2 010 0010 - V45 JNO « OVF =0

J3 010 0011 - V46 JOF ¢« OVF =1

J4 010 0100 =+ V47 JAP - a, =0

J5 010 0101 - V48 JAN - a, =1

J6 010 1000 - V49 JOQP - q, = 0

J7 010 1001 - V50 JON - q, = 1

J8 010 1010 -+« V5l JQE -+ ¢ 47= 0

J9 010 1011 - V52 JQO - qd_47°

J10 010 1100 -« V53 JDP - d, =0

J11 010 0001 -+« ANICC JAZ - (A)=20

J12 010 011X - ANICC Jump, A is equalto Q or D

J13 010 1111 +« V65 JAGD + A 2D alphanumeric sense

Jl4 010 1110 -~ V60 > JAGQ * A2 Q algebraic sense

J15 010 1110 - V61 - V63 f

Ji8 010 1101 ¢ V19 -V47 « V53 JAGQF « A >Q +AM +AE +QM +QE

J19 010 1101 - V18 ~V48 - V57 JAGQF ¢« A>Q -AM -AE -Q M +QE

J20 010 1101 + V47 - V57 JAGQF - A>Q +AM -QM

J21 010 1101 -V18-:-V22-:-V47-V53 " *A>2Q +AM +AE +QM +QE
or +Ap =Ap Q)N -Qp

J22 010 1101 -V23 V48 V57 " " —AM +AE -Q M +QE
or -AM —AE -QM +QE
or -AM -AE =QM -QE

13

Number

DM1
DM2
DM3
DM4
DM5
DMé6

MO

Ml
M2
M3
M4
Mé
M8
MIl10
M1l
M1z
M13

Ml4

M & DM

M AND DM NUMBERS

Conditions

MI = 010 v 100
(MI=001v100v 101 v 110)v M1l
MI=010v M13
MI=011v 100 v 101
MI=100v 101 v 110
MI=010v 111

MI = 000

MI = 001 * MI0
MI = 010 * MI10
MI = 011 * M10
MI = 100 * MI10
MI = 110 . MI10
IOMI = 0 (Fron~ Core)
M1
MA = MP
M4 ¢ 19

IOMI =0 ¢ Drum Action

14

Definition

(V) —» D

Write immediately after read
Involves (V) -—> D operation
Involves write with (D) ==V

Read only operation

Memory not in use or requested
by computer.
Computer assigned memory for (V) >PR=2V
3] " " " (V) D
" " " & (D) A
1" 1 " 1" (V) ->D —*V
" 1" " " 0 9 V

Memory is assigned to computer
V = Memory Preset

Arithmetic instruction, memory operand
and result not stored

Number

PO
Pl
P2
P3
P4
P5
P6

P7

P8

P9

Pll
Pl2
P13
Pl4
P15
Pl6
P17

P18
P20
P21
P22
P23
P24
P25
P26

P27
P28
P29
P30

P31
P32

P NUMBERS

Conditions

PI =00
PI=0l1
PI =10
PI=11

o
L)
*
i

[
(]

PI* =11
PI* = 10 - R6 = V59 « V55
P13 - V4l
Pl* = 10 - V67
PI* =10 - RO - V54

1l

H

P13 - V56

MF + STOP - EF » CF + RUN MODE

Pl ¢ P20 |
PI :[R1v(JFF=1)v (INT FF = 0)]
PI » RO « (JFF = 0) « (INT FF = 1)

0 0 1 0 0
0 0 0 0 1
0 O 0 1 0
0 0 0 1 1

Skip INT FF = 1
P1ll - RO + (JFF = 0) - (INT FF = 1)

15

Definition

Perform the next instruction.
Read a new instruction word.
Modify an index register,
Count down repeat counter.
Rbit=20

Counter bit = 0 and R bit = 1

After modifying X, do Ij,already in PR.
Continue repeat mode, N % 0.

Jump after modifying X

Modifying X, then get next instruction
word in normal sequence.

End repeat mode, N = 0.

Run

Breakpoint switch OFF

OVF switch OFF

Breakpoint switch to IGNORE

(bit positions for 8-index register system)

Number

RO
Rl
R2
R3

R4
R5
R6
R7
R8
R9

R NUMBERS

Conditions

RPT bit
RPT bit
R3

i

1

(a=1-SW2=0)v(y=1°SW2=1)

(B=0+SW2
(B=1+SW2

=0)v(d =0 :SW2
=0)v(d=1°+5W2
I'bit = 0
I bit = 1
Rl - R2
R3 « R4

16

1)
1)

Definitions

ay=0

Instruction being repeated is to be
repeat modified.

Repeat modification is add.

Repeat modification is subtract.

Perform I j after I} in repeat mode.

Perform I after I} in repeat mode.

In repeat mode, no repeat modification,

apBp v y§ =10

Number

Vi
va
V3
V4
V5
Vé
v7

V8
V9

V10
V1l

Via

V13
V14

V15
Vié

V17

V18
V19
Va0

val
vaz

vas3

V24
V25
V26
vav
vasg
V29
V30
V3l
V32
V33

V NUMBERS

Conditions
ag 18,
agy =8,
ANIC, %ANIC_I
ANIC , = ANIC
5S¢ =951
ax, #5,
d* =8
o o
SC = SAT
% =
A*_ 47 =0
%k =0
1" _35
E 3 = q¥*
q* a*
o % - a‘*o
QC =0
3k =1
% 35
a*o = a*_l
%k =1
T _47

(QC = 1) ¢ (q*_ = 1)

{AN1C 36 = 1) « (ANlC_37
(AN1C .36 = 0) o (AN1C3_37

ANlC_36 = ANIC -37
S_36 = 0
S_36 =1
sl <35
Is|] > 35
EO=0
EO =1
SC = SAT
UF =0
UF =1
a*o = g% -2
I1=1
II1=20

17

0)
1)

now tied to ground

V1-33

V40-76

Number Conditions
V40 ICOF =0
V4l AN2C 11 =0
V42 Swz2 =1
V43 sSwz2=0
V45 OVF =0
V46 OVF =1
V47 a, =0
V48 a, =1
V49 do = 0
V50 9, =1
V51 q _47 = 0
V52 'q _47* 1
V53 d, =0
V54 MOD 2=0
V55 MOD 2 =1
V56 AN2C 11 = 1
V57 d, =1
V58 SC=0
V59 JFF =
V60 (ANIC, =0) - (ANIC _; =1)
V6l (ANIC, =1) ¢« (ANIC_; =0)
V62 S, =1
V63 So =0
V64 ANIC, =0
V65 ANIC , =1
V66 AN2CC
V67 JFF =
V69 d_24 =
V70 AN2C 10 =0
vl AN2C 10 = 1

V72 PT Interlock FF = 0
V73 PT Counter FF =0
V74 Card Interlock FF = 0
V75 PT Fault FF = 1

V76 Card Fault FF =1

18

1/0 COMMANDS

UNIT BUFFER |AMOUNT OF INFORMATION COMMAND
STARTING ADDRESS ADDRESS CHANNEL| TO BE TRANSMITTED [FROM T0

oj1|2|3{4ais|e|7]|8f9fw]una]3fia|isfie] 7] 18f19|20|21 |22}23)24|25 [26{27|28|29| 3031 | 32]33 (34|35 |36 |37 |38 |39]|40 |41 | 42|43| 44| 45|46 |47
l I [V'S | [o000 fooo . |

- DRUM STARTING ADDRESS G NO. 0F WORDS 0001 001 O

- DRUM STARTING ADDRESS W NO. OF WORDS 010 [0001

NO. OF WORDS o001 |[0100

NO. OF WORDS 0100 [0001
| | | No. ofF worDs [ooo1 [or10 |

ghpleH WHICH INO.OF CARD S 3|, WOFRPS3s (o001 o011

GWHICH T WHITH [} 0F CARDS 3] p e Of%83]01 1 1 |00

LN 001! [0D00OI
[NO. OF BLOCKS l WHICH | INO. OF |° 00 || 00! J

TO BE SPACED TA BLOCKS

I [Y8 8 Shaces [" | [800%%s [1too1 Jooor |
{ Y9 8% Shaced [Wt | Boocks (0001 [roio |
L Yo 8F Saces [wrage | Wocks 1010 fooo |
l 70 BE SPAGED P Yase | B0oks 0001 [1ort |
L V8 9F 36Re85 | %aeet | N0o%s [rori Jooor |
C [¥3 % 3% [e] [8%08 [rio1 Jooor |
l To Bt SPACED I “ase l]gfbcotfs I| 10 l° oo! l
| 70 8 seaced A Blocks |!!t1 Jooo |

wHiGH 1000 (1000

" TaBE 111 |[1000

vHISH 1000 [I 001
B 1 e] [[oo0 Tioio]
| | [Wi] [1too00 [1o011 |
| | R [[1o0 [iioo |
l | e] [io0 Jiior]
[| | "o | [1t1o00 [iriro |
| I ["ued | [t voo []

D REGISTER

REAL TIME DEVICE ——» CORE

CORE —» DRUM
DRUM —» CORE

CORE —» PAPERTAPE PUNCH *
PAPER TAPE READER —— CORE?

CORE — HIGH SPEED PRINTER !

CORE— 1/0 DEVICE 2
1/0 DEVICE ——»BUFFER 2
BUFFER — CORE

CORE —» MAG. TAPE

MAG. TAPE —» CORE

CORE —» MAG. TAPE

MAG. TAPE —#» CORE

CORE —» MAG. TAPE

MAG. TAPE —» CORE

MAG. TAPE —» CORE -

MAG. TAPE — CORE -

MAG. TAPE —&» CORE -

CONTINUE

sTOP

RESUME

REWIND

REWIND

RELEASE

— 1 READ

ERASE

EDIT

™

W/ LOCKOUT

MODE |

MODE 2

MODE

MODE

MODE 2

MODE

7 MAG. TAPE

> FOWARD

>~ REVERSE

FUNDAMENTAL CODES

0000 REAL TIME DEVICES 0100 PAPER TAPE!

0001 MAGNETIC CORE ol0l

0010 MAGNETIC DRUM 0110 HIGH SPEED PRINTER?

001! BUFFER -CONTROLLER Olil 1/0 DEVICE 2
1000 THRU 11l INCLUSIVE ARE USED FOR MAG. TAPE

NOTES

| - CODES 0100 AND OlIO ARE USED IN INSTALLATIONS
WHERE THESE DEVICES DO NOT OPERATE THROUGH
A BUFFER - CONTROLLER.

2 - CODE Olil IS USED FOR ANY DEVICE OPERATING

THROUGH A BUFFER - CONTROLLER.
3- THESE BITS ARE USED ONLY WHEN THE 1/0 DEVICE
SPECIFIED IS A PUNCHED CARD SYSTEM
UNUSED FIELDS ARE INDICATED BY A LINE IN

PLACE OF A LEGEND.

CHAPTER 1
Sec. 1.1
Sec. 1.2
Sec. 1.3
Sec. 1.4
Sec. 1.5
‘Sec. 1.6

CHAPTER 2
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Figo 2'6
Fig. 2.7
Figo 2.8
‘Fig. 2.9

CHAPTER 3
Art. 3.1
Art, 3.2
Art, 3.3
Art, 3.4
Art. 3.5
Art. 3.6
Art. 3.7
Art. 3.8
Art. 3.9
Art, 3.10
Art. 3.11
Art. 3.12
Art. 3.13
Art. 3.1h4

CHAPTER &
Art. 4.1
Art. 4.2

TABLE OF CONTENTS

INTRODUCTION

Logical Operations
Lines

Logical Elements
De Morgan's Rules
Storage Element
Wires

GENERAL

Symbols for Transistors
Direct Coupling Examples
Resistance Coupling Examples
Capacitance Coupling Example
Cascade Combination
Front-to-Back Combination
Parellel Combinations
Series Combination

Tree Cofibinatitn

PNP TRANSISTOR LOGIC

PNP Ungrounded Configuration

PNP Common Emitter Configuration

PNP Emitter Follower Configuration

PNP Emitter PFollower - Capacitance
Coupled

PNP Two High Gate

PNP Parallel Gate - Caommon Emitter
Configuration

PNP Parallel Gate - Common Emitter

. and Ungrounded Configurations

PNP Parallel Gate - Emitter Follower
Configuration

Single Shot

Flip-Flop

Counter Flip-Flop

Shift Flip-Flop

Neon-Indicator Circuit

Terminal

Terminal Reference

Wiring Point

NPN TRANSISTOR LOGIC

NPN Parallel Gate
NPN Ungrounded Configuration

PAGE

PRB & KERGES

nn
-] O\

W
l&]

PHILCO TRANSAC S-2000 SYMBOLISM

PREFACE

This report has been written to enable debuggers, field engineers,
technicians, and others who use Transac S-2000 logical diagrams to under-
stand the functions and operations performed by the circuits represented
on such dlagrams.

One aim in its preparation has been to present sufficient illus-
trative examples to provide the reader with an understanding of the logic
and at the same time to avoid superfluity. Hence, no attempt has been
made to present every conceivable combination and application. On the
other hand, the rules have been stated in general terms and a limited
number of examples of more complicated combinations have been provided.
Neither logic design rules nor values of circuit parameters have been

specified, since tbese data are given in the epplicable engineering draw-

ings and specifications.

i1

PHILCO TRANSA¢ S-2000 SYMBOLISM

CHAPTER 1. INTRODUCTION

1.0

1.1

l.2

A logical diagram comprises symbols for logical and storage ele-
ments and interconnecting lines and their labels. A line may be thought

of as carrying a signal from the output of one logical element to the

input of another.

Logical Operations

The simplest logical operation is that of negation or contradic-
tion. For example, consider the sentence "Today is Wednesday." Its
negation or contradiction is "Today is not Wednesday" or "It is false
that today is Wednesday." If we let the letter "W" stand for "Today
is Wednesday," and use the prime symbol (') stand for "It is false
that", then W' is the negation of W. W' means "Today is not Wednes-
day." W' is read "not W". For any statement P, P' is true if and only
if-P is false.

A second useful operation called "inclusive or" is symbolized "v".
If W mesns "Todey is Wednesday," and R means "It is raining," then WVR
means "Today is Wednesday or it is raining (or both)". For any two
statements P and Q, PvQ is true if (1) P is true or (2) Q 1s true or
(3) P is true and Q is true. This operation is called "inclusive-
or" because tne case when P is true and Q is true is included in the
cases when Pvg is true.

The third common logical operation is called "AND". Defining "R"
and "W" as before, the sentence "It is reining and today is Wednesday"
mey be abbreviated RW or ReW (read "R and W"). For any 2 statements
P and Q, PQ (or P«Q) is true if and only if P is true and Q 1s true.

We can now see that PvQ is true if PQ or PQ' or P'Q is true. If
the term PQ were omitted from the above expression, the remainder (PQ'
or P'Q) would express an exclusive OR. (PQ is excluded.) The symbol
for en exclusive OR is "A" and PAQ = PQ'vP'Q. Defining "R" and '"W"
as before, RAW means “"either it is raining or todsy is Wednesday (but
not both)."

Lines

If the logical design requires an indication that x = 1, then a
line is used with the label "x = 1". The line has two possible logical
states 2act1ve and normel) associated with the two possible truth
velues (true and false) of the label.

The active state (of the line) prevails if and only if the label

is true (or the condition denoted by the label exists.) The normal
state prevails at all other times.

Page 1

1.3

PHILCO TRANSAC S-2000 SYMBOLISM

0- x =1 0

Fig. 1.1 Logical line and lsbel

Loglcal Elements

When we desire to express loglcal relations by the use of diagrams
instead of equations, we employ graphic symbols for the loglcal opera-
tions and connect these symbols by logical lines. In functional dia-
grams (which indicate what operations are performed rather than the
means by which they are performed) the basic logical element symbol is
a trisngle. The symbols used are those for NOT, AND, and INCLUSIVE-
CR.

R= P’

(a) NoOT

)] kae)
\

(b) INCLUSIVE-OR

R=P:Q

iH

R

Q \
__._..—_._..._..__.._—._/
(c¢) AND

Fig. 1.2 Symbols and Equations for Logical Elements

Page 2

1.

1.5

PHILCO TRANSAC S-2000 SYMBOLISM

De Morgen's Rules

In logic as in English two negatives make a positive, i.e., (X')'
= X. Furthermore, it is possible to express OR functions in terms of
AND and NOT and to express AND functions in terms of OR and NCT.

For example:

XvY = (Xtex')’
or
(XvY)' = X'oX'

and Peq = (P'vQ')’
or

(PQ)' = P'WQ'

These equations are known as De Morgen's rules and are much used in
logical design. For example, if a signal representing P'vQ is avail-
sble and PeQ' is desired, it may be obtained by negation as follows:

P'vQ ™ PeQ!
l/

Explenation: The output of the NOT element is (P'vQ)'s (P'vQ)' =
P"Q' = PeQ’'.

Storage Element

The logicel elements shown thus far have no power to store infor-
metion; their outputs at any instent are determined solely by their
inputs et that instant. It is possible however to combine OR and NOT
elements in a way which will provide a storage operation.

i R .
T>—T>
N P
& o
2
,/’/1 Q < S
. “~.
- <
N= Q'
P=T
Q = Pvb
T = NvR
Fig. 1.3 Storage Element comprising Logical Elements.

Page 3

PHILCO TRANSAC S-2000 SYMBOLISM

The Theory of Operation for the storage element:
I. Assume line R active & S normal:

If R is active, then T is active

If T is active, then P is normal

If P is normel and S is normal, then Q is normal.

If Q ie normsl, then N is active. Therefore, when R is active
end S 1s normal, N is active and P is normal. By similar reasoning,
i1f R 18 normel and S is active, then N is normal end P is active.

II. Assume both R and S are active.

Since R ig active, T is active end P is normal. BSince 8 is active,
Q is active and N is normal. Therefore, if R and S are both active,
then N and P are both normal.

III. We have found that R active with S normal makes N active. However,
once N becomes active the active state of R is no longer necessary to
maintain T ective. Therefore, if R and S are normal and N is active,
then N will remain active until S becomes active. Conversely, 1f 'R and 8
sre normal and P is active, then P will remein active until R becomes
active.

The storage element is so useful that it has been assigned a parti-
cular symbol.

F’

Fig. 1.4t Symbol for storage Element F.

The storage element symbol includes the digits for zero and one.
They designate the state of the storage elemeht. If N is active, we
sey the storage element contains a zero or (F) = 0., If P ie active,
we say the storage element contains a ong, or (F) = 1, If R is active,
we say that a zero is being stored or 0—F., If S is active we say a
one is being stored or 1L—> F.

Page 4

1.6

PHILCO TRANSAC S-2000 SYMBOLISM
Wires

In S-2000 the logical elements are trensistors and their intercon-
nections are electrically conductive paths. For convenience we shall
consider "wire" a synonym for "electrically tonductive path."

The state of a wire is determined by its electrical potentisl
(voltage). The S-2000 transistors discrimidate between two potentials
which are separated by a band of ambiguity. If the potential of a wire
is more positive then the band of ambiguity, we say the state of the
wire is relatively positive, or simply positive. If the potential of a
vire is more negative than the band of ambiglity, we epy that the wire
is relatively negative or simply negative.

POTENTIALS

SO NN NN\ A\
\ BAND OF AMBIGUITY
\ \\\\\\\\ ‘

NEGATIVE
POTENTIALS

T POSITIVE

Fig. 1.5 Positive, Negative and. Ambiguous Potentials

Since & wire may have two states (potentials), it may be used to
convey information sbout the existence of a condition or the happening
of some event. For example, a wire might be negative if and only if a
specified register contained a negative number and positive otherwise,

However, given a specified condition (say x = 1), it is insuffi-
cient to say that the electricsl state of the aBsociated wire affirms
or denies the existence of thé condition x = 1l.. It is also necessary
to know if the positive state indicates x = 1; or vice versa.

This ie accomplished by employing a separate form of line to rep-
resent the wire in each case.

Page 5

PHILCO TRANSAC S5-2000 SYMBOLISM

x = 1
(a) Solid line

0-

O = = == B2 o0 - ==0
(b) Dotted line

Fig. 1.6 Logical lines representing wires

To specify the relation between states of lines and states of the
corresponding wires, we have the following convention:

I. The wire corresponding to a solid line is -

iA.g negative if and only if the line is active, and
B.) positive if end only if the line is normal.

II. The wire corresponding to a dotted line is -

&A.) positive if and only if the line is active, and
B.) negative if and only if the line is normal.

In summery, a wire may be positive or negative; a line may be
active or normal; a label may be true or false or a label may denote a
condition which is existent or non-existent; and a line may be solid or
dotted. The form of line determines the relation between the state of
the line and the state of the corresponding wire.

If we let "X" stand for "Condition x exists,' and say X' means it
is false that X, we can use X or X' as the label of a line.

For example:

() ()
Fig. 1.7 Lines and Labels

Either (a) or (b) may be used to represent a wire which is negative
when condition x exists.

Page 6

PHILCO TRANSAC S-2000 SYMBOLISM
The explanation is:

The solid line is aétive if X, and represents a wire which is
then negative. It is normal when X', and its wire is then positive.
The dotted line is active when X', and its wire is then positive. It
is normal when X, and its wire is then negative. Hence either line

(properly labeled) represents a wire which is negative when condition
X exists.

Therefore the same wire may be represented by two line segments
which differ in form and label; thus

X

|
mmecmemmmm——— D . —eeecemem—————

Fig. 1.8 Biform line

Where biform lines are used, the label applies only to the segment
on which it eppesrs. If the dotted segment bears no label, the proper
label is the logical negative (contradiction) of the label born by the
solid segment and vice versa. It must be understood that this rule
applies only to biform lines. It does not apply to distinct lines
separated by a logical element.

Page 7

PHILCO TRANSAC S-2000 SYMBOLISM

CHAPTER 2. GENERAL

A logical diegram serves as a functional and material specification
of a circuit. A schematic diagram (employing conventional symbolism) serves
well as a material specification for the circuit which it represents. However,
the host of symbols uged in such diagrams tends to obscure the functional
relations between the circult elements. Therefore, logical symbolism is used
to reduce the number of symbols used and to emphasize the functional properties

of the circuit.
Where no logical symbol has been adopted, a conventional symbol is used.

The majority of the logical symbols represent transistors and trans-
istor circuits.

Transistor logic may be classifled as:

DCTL - Direct Coupled Transistor Logic
EFTL - Emitter Follower Transistor Logic
RCTL. - Resistance Coupled Transistor Logic

Composite Transistor Logic (A combination of 2 or more
of the preceding)

Figures 1 thru 9 illustrate conventional and logical symbols for
various types of tramsistors and transistor circuits. No attempt is made at
this point to explain the operation or application of these circuits. They
will be explained in the chapters on transistor logic.

Transistor circuits may be variously classified.
sification to be used here are:

The bases of clas-

(1) Characteristic

a
b

PNP
NPN

(2) Configuration

a

8

Ungrounded
Common Emitter
Emitter Follower

(3) Coupling

a) Direct

b) Reeistance

¢) Capacitance

d) Composite (Resistance Coupled Configuration in

cascade combination with a direct coupled emitter
follower.)

Page 8

PHILCO TRANSAC S-2000 SYMBOLISH

(4) Combination

(a) Cascade

b) Front-to-bachk

¢) Parallel

d) Series (Cascode)
(e) Tree

Conventional and logical symbols for PNP and NPN transistors are shown
in Fig. 2.1. The semi-circle is the basic loglical symbol for a transistor.
It is used with modifications to represent various characteristics, config-
urations, combinations, and forms of coupling.

COLLECTOR

BASE /P BASE l\ COLLECTOR
kﬂ‘ EMITTER U

EMITTER
(a) PNP
EMITTER EMITTER
BASE i BASE COLLECTOR
COLLECTOR
(b) NPN

Fig. 2.1 Symbols for Transistors

Page 9

FHILCO TRANSAL S-2000 SYMBOLLS

The ungrounded configuration may be recognized by the presence of a
dot and interconnecting line for the emitter. An emitter follower configura-
tion is distinguished by adding 1 or more small circles to the basic symbol.
Direct coupled transistors are represented by the symbol appropriate to the
configuration without any distinguighing marks for the form of coupling.

Conventional and logical representations for direct coupled transistors appear
in Fig. 2.2

v...

2 4

V+
T TUT
Vi Ve Vb Ve J e
PR AN I T NN T
(a) UNGROUNDED (v) coMMoN (c) EMITTER
CONFIGURATION EMITTER FOLLOWER

CONFIGURATION CONF IGURATION

Fig. 2.2 Direct Coupling Examples

Page 10

PHIT.CO TRANSAC S-2000 SYMBOLISH

Resistance coupling is indicated by addition of one or more oblique
crosses to the basic symbol as illustrated in Fig. 2.3. The capacitors em-
ployed in the ungrounded and common emitter configurations serve a subsidiary
function and their presence is not considered in determining the form of
coupling.

2=y

v+

DU D

(a) UNGROUNDED (v) COMMON (c) EMITTER
CONFIGURATION EMITTER FOLLOWER
CONFIGURATION CONFIGURATION

Fig. 2.3 Resistance Coupling Fxamples

Page 11

PHILCO TRANSAC S-2000 SYMBOLISHM

Capacitance Coupling to an emitter follower configuration is 1llus-
trated in Fig. 2.k.

vV +

E ’
EMITTER FOLLOWER CONFIGURATION

Fig. 2.4 Capacitance Coupling Example

Page 12

PHILCO TRANSAC S-2000 SYMBOLISM

. The simplest combination of 2 tramsistors is the cascade combination
shown in Fig. 2.5. The diagram shows an RC (Resistance Coupled, Common
Emitter) transistor feeding its output to an emitter follower. Fig. 5 also
illustrates the use of condensed logical symbolism,

The cross-and-circle symbol is an abbreviation for the cascade combi-
nation of the double-cross and double-circle symbols used in expanded logical
symbolism.

OR

Pig. 2.5 Cascade Combipation

Page 13

PEILCO TRANSAC S-2000 SYMBOLISM

. Fig. 2.6 shows an example of the front-to-back combination of two DC
(direct -coupled, common emitter) transistors. This particular combination
forms a flip-flop, which in condensed logical symbolism is represented by the

double squere symbol.

\/_
—p-
‘,
A—D
B' < > A
OR
v oY
T
| I
] |
B < A

Fig. 2.6 Front-to-back Combination

Page 1h4

FHILCO TRANSAC S5-2000 SYMBOLISM

Fig. 2.7 illustrates the parallel comhination of DC and emitter follow-
er transistors. Note that the condensed symbols for parallel combinations are
distinguished by carrying the input lines thru the diameter of the semi-circle.
The combinations shown are called 3-wide gates.

V- @

»>—

T Y Y

11y
B

(a) COMMON EMITTER CONFIGURATION (v) EMITTER FOLLOWER CONFIGURATION

Fig. 2.7 Parallel Combinations

Page 15

PHILCO TRANSAC $5-2000 SYMBOLISM

Fig. 2.8 depicts a series combination of 2 direct coupled transistors.
The common emitter transistor is called the bottom transistor, while the un-
grounded transistor is called the top tranaistor. The condensed symbol for a
series combination is distinguished by termination of the input lines at the
diameter of the semi-circle. This combination is a two high gate. Where it

is necessary to distinguish between top and bottom transistors, expanded
logical symbols should be used.

V...

.||—

> N
—D-
e— R

Fig. 2.8 Series Combination

Page 16

PHTICO TRANSAC S-2000 SYMEOLISM

A tree combination of four resistance coupled emitter followers is
given in Fig. 2.9. This particular combination performs no logical function
in a circuit, but is used when many transistors must be coupled to the same
signal.

V-

» ! r T

o— >
s <
*’
<
V+ %
>
>
| g
oRrR
r— - - - = I

Fig. 2.9 Tree Combination

Page 17

PHILCO TRANSAC 8-2000 SYMBOLISM

Having now become familiar with several classes of transistor circuits,
we can proceed to consideration of the application of these (and other) circuits.

Page 18

PHILCO TRANSAC S-2000 SYMBOLISH

CHAPTER 3. PNP TRANSISTOR LOGIC

300

This chapter presents the most commonly encountered circuits and
includes their conventional and logical symbols, their rules of oper-
ation end examples of their application.

Under "Symbels" conventional symbolism is employed on the left
and logical symbolism on the right. Where two logical symbols are
shown with the word "OR" between them, the two symbols are equivalent.
If "OR" does not appear, the different symbols stand for varieties of
the circuit shown which are not physically interchbangeable. Under
"Logic" the most common symbol is used to illustrate the logic of the
circuit type.

This chapter also includes some non-logical symbols of partic-
ulary frequent occurrence. '

Page 19

301.

e

e —»

FHILCO TRANSAC S-2000 SYMBOLISEKH

PNP UNGROUNDED CONFIGURATION

1. Symbols
A. Direct Coupled

ﬁg__u.

B, Resistance Coupled

.ﬂi@%* D

C. Composite

=t anl
P

Page 20

PHILCC TRANSAC 5-2000 SYMBOLISM

2. Overation
The output is negative if b is positive or e is negative.

The output 1s positive if b is negative and e is positive.

3. Logic

The logic of the direct and resistance coupled versions of
this configuration is the same as that of the composite
version shown above.

Page 21

PHILOO TRARSAT S5-2000 SYMBOLI:

3.2 PNP COMMON EMITTER CONFIGURATION

1. Symbols

A, Direct Coupled
\/_...

B. Resistance Coupled
\ —

C. Composite
V..

TS

e
—{
Y

P

T~

PHTLCO TRANSAU $-2000 SYMBOLISM

Operation

The output is negative if the input is positive.

The output is positive if the input is negative.

Logic

A,,B>__A_ ﬁ_ﬁD}__fi

The logic of the direct and resistence coupled verasions
of this configuration is the same as that of the composite

version shown above.

Page 23

PHILCO TRANSAC S-2000 SYMBOLISH

3.3 PNP EMITTER FOLLOWER CONFIGURATION

A. Direct Coupled

\

v

Y
o

\/._
>

v |

TTY

B. Resistance Coupled
v._
V4 g

Page 24

1

v

PHILCO TRANSAC S-2000 SYMBOLISM

2. QOperation
The output is positive if the input is positive.

The sutput is negative if the input is negative.

3. Logic

A %}'A A %}_5_
ﬁ_qgk_i A_ﬁBb_i

The logic of the resistance coupled version of this
configuration is the same as that of the direct coupled
version shown abaqve.

Page 25

PHILCO TRANSAC S-2000 SYMBOLIS:

3.4 PNP EMITTER FOLLOWER, CAPACITANCE COUPLED

1. Symbols

AV

?’

% &)

2. Operation

The output is positive except when the input is changing
from positive to negative.

—»

o

—

The output 1s negative when the input is changing from
positive to negative.

3. Logic

This circuit is used in combination with a counter Flip-
Flop.

Page 26

PHILCO TRANSAC S-2000 SYMBOLISI

3.5 PNP TWO HIGH GATE
1. Symbols
A. Direct Counled
V-

B. Resistance Coupled
V__

Page 27

PHILOCO TRANSAC 8-2000 SHBOLIE

C. Composite

— V+
2. Operation

The output is negative if either input is positive.

The output is positive if both inputs are negative.

3. Logic

Page 28

PHILCO TRANSAC S-2000 SYMBOLISH

AVB A A'.B'

The logic of the direct and resistance coupled versions of

this configuration is the same as that of the composite
version shown above.

Remarks

Note that for this combination a solid output line bears an
OR Ffurctin and e dotted output line bears arn AND Function.

Page 29

PHILCO TRANSAC S-2000 SYMBOLISM

3.6 PNP PARALLEL GATE-COMMON EMITTER CONFIGURATION
1. Symbols
A. Direct Coupled

V...

——
>
]
OR

B. Resistance Coupled
V...

I'%
|

Page 30

PHILCO TRANSAC S-2000 SYMBOLIGi:

C. Composite
V- i
OR
OR
v+ : i:
2. Operation

The output is negative 1f all inputs are positive.
" The output is positive if any input is negative.

3. Llogic

A - AVB A A.QBO

- B
A A

A.B AVB'

B_ _ B_ -
A
= ——F\ A.B
B _ _

Page 31

PHILCO TRAWSAG S$5-2000 SYMBOLIGM

The logic of the direct and resistance coupled versions of
this combination is the seme as that of the composite
version shown above.

L. Fkemarks

(a) The logic of this combination may be extended to cover
cases involving more than two inputs. For example:

A

(b) Note that for this combination a solid output line bears
an AND function and a dotted line bears an OR function.

Page 32

PHILCO TRANSAC S-2000 SYMBOLISM

3.7 PNP PARALLEL GATE~-COMMON EMITTER AND UNGROUNDED CONFIGURATIONS

1. Symbols

A. Direct Coupled
v...

B. Resistance Coupled& /—

2

2. Operation

The output is megative if all common-emitter inputs are
positive and each ungrounded transistor has either a positive
base or a negative emitter or both.

The output is positive if any common emitter input is nega-

tive or any ungrounded transistor has a negative base and a
poaitive emitter,

Page 33

PHILCO TRANSAC S-2000 SYMBOLISH

Page 3L

PHILCO TRANSAG §-2000 SYMBOLIS

D
A.(BvC)

B_
C

A
E l_l}'v_(_B'.C'_)_

B__ 1

C

The logic of the direct coupled version of this combination
is the seme as that of the resistance coupled version shown

above.

k. Remsrks

The logic of this combination may be extended to cover cases
involving more than two inputs. For example:

A I > A.B.(C'vD"). (EvF’') R

S

E

F

Page 35

AvB'v(c.D)v (E'.F)

PHILCO TRAKSAC S-2000 SLIBOLIN

3.8 PNP PARALLEL GATE - EMITTER FOLLOWER CONFIGURATION

1. Symbols
.

-

_>
-
OoR
V+

- -

2. ration

The output is positive if all inputs are positive.

The output is negative if any input is negative.

3. Logte

A A
FED G I € Lo
B B
_B___ = B_

- B

Page 36

PHILCO TRANSAC S-2000 SYMBOLISM

4, Remarks

(a) The logic of this combination may be extended to cover
cases of more than two inputs. For example:

(b) Note that for this combination a solid output line
bears an OR function and a dotted output line, an AND
function.

Page 37

PHILCO TRANSAC S-2000 STMBOL.CT

3.9 . SINGLE SHOT

1. Symbols

A. Direct Coupled
V-

oy

B. Resistance Coupled

V+ Gk

Page 38

3.

PHILCO TRANSAC 8-2000 SYMBOLISM

A single shot has a stable state and an unstable state.

If tbe single shot is in its stable state, output B is posi-
tive and output C is negative. If it is in its unstable
state, output B is negative and output C is positive.

The single shot goes from its stable state to its unstable-
state if and only if input A changes from positive to negative.
The single shot remains in its unstable state for a predeter-
mined interval then returns to its stable state.

Logic
2 WLSEC
—b~f3—~——*~— S S %}—-——— —_—

The single shot output lines will become active when line A
becomes active, remain active for 2 u sec and then becoma
normal.

The single shot output lines will remain normal even though
line A become active. If line A become active and then
becomz normal, the output lines will become active when line
A becomes normal, remain active for 2 u sec, and then become
normal.

Page 39

310 FLIP-FLOP

1. Symbols
A. Direct Coupled

A\VES

A B
A «B ||
C4— | O +—¥»D
C 4 p D
B. Resistance Coupled
' '
A B

|)
(D i)

V+ C‘_¢,

Page L0

PHILCO TRANSAC £-2000 SYMBOL.Y. -

2. Operation
The flip-flop bas 2 stable state~ cairled "O" and "1".

When it is in state O, A and D »»e negative and B and
C are positive. When it is in s ' i, A and D are
positive and B and C are negative .-

If the flip-flop is in state O en1 A is made positive
by an external condition, it will #o to state 1 and
remain in state 1 even though the condition which made
A positive cease to exist.

If the flip-flop is in state 1 and B 1s made positive
by en external condition, it will go to state O and

remain in state O even though the condition which made
B positive cease to exist.

3. Logic | |
NE
b4
~ 9

4_(_5_:__):1_%; | 0 (F)=0

The logic of the direct coupled flip-flop is the same
as that of the resistance coupled version shown above.

Page L1

PHILCO TRANSAC S-2000 SYMBOLISM
3.10a COUNTER FLIP-FLOP

v4 1+ Bmbols

B V-
- v
TF"‘
0———/\/V\/--Q
Sy-L o]
| S AVAVAV. r L n B
C D
= *
A E
&
n ¢
L ¥
r "
v A v
C E D

Page 42

PHILCO TRANSAC S-2000 SYMBOLISHM

2. Operation

The operation of the counter flip-flop is like that of the resistance
coupled flip-flop with the following exceptions:

(A; C becomes negative (and D positive) when A is made negative.
(B) The counter flip-flop changes state (OA.]. or 1 to 0) when a
negative pulse appears at E. L

3. Application

Counter flip-flops are used in conjunction with capacitence-
coupled emitter followers to form multi-sta,gg binary counters.

Page 43

PRILCO TRANSAC S-2000 SYMBOLISM

3.10b SHIFT FLIP-FLOP

1. Symbols
V+ A B V-
\ v
L4 VAN—9
? V\AN—8
— NN @ .
1 T
?
I I % 4
OIS G VI
v A
C E F D

Pags Lb4

PHILCO TRANSAC S-2000 SYMBOLISM

2. Operation

The operation of a shift flip-flop is like that af a resistance-
coupled flip-flop with the following exceptions:

(A) At such time as D changes from negative to positive, a
positive pulse appears at F.
- (B) At such time as D changes from positive to megative, a
negative pulse appears at F,
ic; At other times, F is negative.
D) If a negative pulse be imposed on E, then]) becomes (and
remains?anegative and becomes (and remains) positive.

3. Application

Shift flip-flops are used with NPN ungrounded transistors to
form single-rank shift registers

Page LS

PHILCO TRANSAC S-2000 SYMBOLISM

3.11 NEON-INDICATOR CIRCUIT
1. Symbols
V—

A %
NEONL AMP
B :
.y
< °
T
= Vie > A
2, Operation
The lamp is 1it if the input is positive or point C is un-
grounded.

The lamp is extingulshed if the input is negative and point
C is grounded.

3. logic
This circuit has no logical function,
4. Remarks

An 'N' in the triangle means that the lamp is in the same

Page 46

PHILCO TRANSAC S-2000 SYMBOLISM

assembly =~ the transistor and resistors.

An 'I' in the triangle means that the lamp is remote from the
transistor and resistors.

The switch is remote from the tramsistor and resistors.

Page L7

PHILCO TRANSAC S-2000 SYMBOLISH

3.12 TERMINAL

1.

Symbols
A. Input

(o)

B. Output

.X_

C. Intraconnecting

)

* The asterisk is not a part of the symbol. It is replaced
by the terminal designation.

Rule

A. Termiual symbols are placed at the ends of lines. On
schematic logic diagrams they bear numerical designations.
On chassis logic diagrams they bear the designations of
the electrical terminals to which they correspond.

B, Intraconnecting Terminal symbols are used to indicate a
connection between two points on the same diagram. An
intraconnecting terminal may correspond to an input ter-
minal, an output terminal, or another intraconnecting
terminal. In any case, an intraconnecting terminal bears
the same designation as the other terminals to which it
refers.

Page 48

PHILCO TRANSAC S-2000 SYMBOLISM

means that the
two dotted lines
A.B are equivalent.
() (2)
g I
Q ol
</
I
l—_ ;
Q) Q
qﬁ <
3 4

Page L9

PHILCO TRANSAC S-2000 SYMBOLISM

3.13 TERMINAL REFERENCE

1. Bymbols

A. Interconnecting

()

B. Intraconnecting

O

The asterisk is not a part of the symbol. It is
replaced by the diagram and terminal designations.

2. Rule

A. Interconnecting terminal reference symbols are used
with input snd output terminel symbols to facilitate
the tracing of a line from one logical diagram to
another. At an output, references are to inputs to
which the signal goes. At an input, references are
to the outputs from which the signal comes.

B. Intraconnecting terminel reference symbols indicate

that there is an intraconnecting terminal to be
considered in tracing the signal.

Page 50

PHILCO TRANSAC S-2000 SYMBOLISM

3. Examples
TERMINAL
REFERENCES
TERMINALS @
o]
<!
|
K
<
TERMINALS | 3 4 @
TERMINAL _/ @ DIAGRAM
REFERENCES @ NUMBER

Page 51

@O0 A0 ©®

PHILCO TRANSAC 5-2000 SYMBOLISM

meane that imput @ is equivalent to output no. 3 of

diagrem no. 2.

means that input @ is equivalent to output no. 9 of

diagram 2 and output no. 4 of diagrem no. 3.

means that output | 3 is equivalent to input @ on

this diagram and input no. 1 on diagram no. k&,

means that output | U4 is equivalent to input no. 3 on

diegram no. 8 and input no. 7 on diagram no. 5.

Page 52

PHILCO TRANSAC S-2000 SYMBOLISM

3.1h4 WIRING POINT
1., S ols
() L o+)

$ % —(_*)

The asterisk is not a part of the symbol. It is replaced
by the wiring point designation or key to the wiring
point table.

'
Y
0

I
|
!
|

For this example, the
normally positive wire
may be found at terminal
14 and the normally
negative wire at terminal
K of receptacle J11025.

Jlloz5 |

Page 53

PHILCO TRANSAC S-2000 SYMBOLISH

I For this example
signal A may be
611025"@ found at terminal

O

aV

S} H of receptacle

~ J11026; signal B

™ (normally positive),
at terminal 1k of
receptacle J11025;

signal B (normally

negative), at ter-
minal K of receptacle
| J11025 and terminal
Q T of receptacle
(JHOZS—KD J11026; and signal

| AvB, at terminal 10
of receptacle J11026.
®J11026-7)
I

AvB

g//o 26-10

Page 5u

PHILCO TRANWSAC S-2000 SYMBOLISM

Where the typical bit representation is used , one diagram
may stand for several distinct but similar units of equip-
ment. In such cases wiring point references are tabulated
and a key letter is placed adjacent to the line.

>

oc
<
e

B
- *
e |
O Y Ya
n |
< |
<
Q)
i*D
<
0 1 2 3

J11025-14 J11025-15 J11027-14 J11027-15
J11025-K J11025-L J11027-K J11029-L
J11026-7 J11026-8 J11028-7 J11028-8
J11026-10° J11026-11 J11028-10 J11028-11
J11026-H J11026-J J11028-H J11028-J

sHTQT >

The ﬁring points for n = O are the same as those for
the preceding example. The remainder of the table
illustrates the method.

Page 55

PEELCG TRANSAC S-2000 SYMBOLISM
CHAPTER L4, NPN TRANSISTOR LOGIC
L.1 NPW PARALLEL GATE

1. Symbols
v,..

1

N S
T~

-

5

V+

2. Operation
The output is positive if all inmputs are negative.

The output is negative 1f any input is positive.

3. Logie

Page 56

FEILECD TRANSAC 5-2000 SY¥MAOLISM

4. Remarks

s s s .

The logic of this circuit is the same as that of the PNF two-
high gate.

Paga 57

h.2

PHILCO TRANSAC S-2000 SYMBOLISM
NPN UNGROUNDED CONFIGURATION

1. Symbols

e

b

S

V+

2. Operation
The output is negative if b is positive and e is negative.

The output is positive if b is negative or e is positive.

3. Logic A
2 T
» B__|\A:B > B_|)AVE
A A
> L T B
.B
> B [Naw , B DA R
A
> , T ,
> B YA , .)AYE,
I A > A ,
S B [aB', B TAVE
|/ /

