212

HEFEREN

i

n
U

MANDAL

PREFACE

This manual describes the Philco 212 Electronic Data Proc-
essing System, a member of the Philco 2000 series. Included
inthe manual is a description of the organization of the Philco
212 Central Processor and its associated registers. Each of
the instructions performed by the Philco 212 Central Processor
isdescribedindetail. Detailed descriptions of the input-output
units associated with the Philco 212 are contained in the Input-
Output Systems Manual, TM-186.

This manual incorporates the changes to the previous edition

of the manual, TM-29, announced in Philco Computer Users
Memo 27-63.

iii

TABLE OF CONTENTS

Chapter Page
PREFACE et e et e e e e e e e iii
1 PHILCO 212 DATA PROCESSINGSYSTEMt 1
Introduction e e s e e e e e e e e e 1
Central ProCesSsSOr. . ..o . v v vt te vt v s oeesonsesnsooess 3
Control Section. e et 3
Magnetic Core Storage System 4
Operator’s Console and Console Typewriter. e 4
Input-Output Control Unit e r e 4
Disc FileSystem. 5
Magnetic Tape Systemsttt vneenn . 5
High Performance Magnetic Tape System N 5

90KC Magnetic Tape System 6
Accounting Clock System c et e e e 7
On-Line Paper Tape System ., ,......... e e e 7
Real-Time System. e 7
Auto-Control Unit e e e e e e e 8
Interval Timer00ttt ittt ittt nneneneenes 8
Philco 1000 Computer Series. ¢t v v vt e e . 8
High-Speed Punched-Card System . ., .. et e e e e e 9
Printers e e ettt 10
Magnetic Tapes ,...... e o & s s v e s s s s e e e h e e 10

XY PIotter . . vt ittt e e e e 10
Paper Tape System and Input Output Typewriter 11
Input-Output Buffers e et e 11

2 THE PHILCO 212 WORD ittt ittt et enenss . 13
Fixed-Point Data Words ettt e e e e e 13
Fixed-Point Zero et et e ettt e e e . 13
Significant Bits, , et et e e e e e e e e 13
Floating-Point Data Words e e e 14
Floating-Point Number Range et e e e e 14
Floating-Point Zero e et e e e e e . 15
Double Precision Floating-Point Words et e e e e e . 15

BCD or Alphanumeric Word st et e e 15
Instruction Word ettt e e e e e e e e .o 15
Command Field e e e e s e et e e . 16
F-Bit ettt e 16
Address Fleld e e e e . 16
Input-Output Order Word e et e e 17

TABLE OF CONTENTS (Continued)

Chapter Page
3 CONTROL SECTIONOFTHE PHILCO 212 v n 19
Instruction Unit. 0 v v i vt it ittt et it e e st s 19

Index Unit i i v i it e et ettt et s s e a e s a s e e 19

Index Registers . .. v v v it vttt o oot v venanessonnos 19

Effective AddressS . . v v v v v v v v v et bt s st ot 19

C-Bitsand Y-Bitst vttt ittt eetoansnseneons 19

Index Register mstructlons and Indexable Instructmns 21

Arithmetic Unit. C e e e e et e e e e e 21

D Register. . . . i vt ittt it e e e e 21

ARegister. e e e e e e et e 22

Q RegiSter. . v v ittt et e e e e e 22

JA Register e e e e ettt e e e 22

Store Unit e e e e e e e e et et e e e e e e 23

4 FIXED-POINT ARITHMETIC ., e e et e e 25
Secaling e e e e ettt e e it e 25

Overflow e e e e e e e e e e e e e 25

Overflow Indicatorttt 25

Addition and Subtraction it i e e, 25
Multiplication e e e e e e e e e e 26

DiviSION . . . i st e e e e e e e e e e e e e e e e e e 26

5 FLOATING-POINT ARITHMETIC i it ittt it et e 29
Normalization ., .. . v i i ittt i it e it sttt ee oo o annns . 29

Mantissa Overflow., ¢ i i i i i it ittt ittt e e e e e 29

Exponent Overflow and Underflow 30

Addition and Subtraction oo, 30
Multiplication it i e e 30

DivIiSION. . v v i st e e e e e e e e e e e e e 31

6 PHILCO 212 INSTRUCTIONS . . . i it i it et ettt e e e 33
Add Instructions i i i i i i e e e e s e e e e e e e e 33

Subtract Instructions i i it e . 37

Multiply Instructions, 41

Divide Instructions e e 46

Clear Instructions i i it it ittt ettt it e 47

Transfer Instructions ittt ettt eenn. 48

Jump Instructions 0t i it e e e e 53

Shift Instructions i i it it i ittt e te e 59

Index Register Instructions ., 63

Extract Instructions i i e e 8
LogicInstructionsttt ittt it ittt et . 80

Special Instructions i i i i oL, 81

vi

TABLE OF CONTENTS (Continued)

Chapter Page
7 DOUBLE PRECISION ARITHMETIC v viinnini.. 93
Operand Format0v i ivernmmnnnn. 93

Double Precision Zero. ov v i v v v enen.. 94

Double PrecisionMode v oo, 94
CorrectionCounter ,0cov ... 94

FAQSand FSQS,ttt e, 95

FAMand FSM |ttt ittt i, 96

FMAS e e e e 96

FMMR | e e 96

ENDD P | . .. it e e e e 97

Double Precision Programming 97

Addition and Subtraction ,....................... 97

Multiplication , 98

Appendix Page
A SYMBOLS USED IN LOGIC EQUATIONS AND FLOW CHARTS 101
B PHILCO 212 CODE COMBINATIONSo oo ovi .. 102
C PHILCO 212 QUATERNARY CODE, .. 103
D PARITY ERRORS AND HALT INSTRUCTIONS. 104
E PROGRAM ADDRESSABLE REGISTERS.0 110
F INSTRUCTIONRUN TIMES ien e 112

vit

INTRODUCTION

Chapter 1

PHILCO 212 DATA PROCESSING SYSTEM

The Philco 212 Data Processing System is an extremely high-
speed, large-scale electronic computer designed for business,
scientific and real-time operations.

Philco 212 System

An Input-Output Control Unit connects eight input-output channels
to the Philco 212 Central Processor, Direct input or output is made
on 240,000 or 90,000 six-bit characters per second magnetic tape,
Real-time input and program interrupt are provided by the Real-
Time System. Any computer in the Philco 1000 series can be
connected to the magnetic tape system for input-output between
the Philco 212 and one of the following units, or between any two
of the following units,

® 1000 character per second Paper Tape Reader

® 60 character per second Paper Tape Punch

® 2000 or 600 card per minute Punched-Card Reader

e 100 or 200 card per minute Card Punch

® 300 or 900 line per minute Printer

e X-Y Plotter

® 240,000, 90,000, 25,020, and 9,000 Characters Per Second

Magnetic Tape Units

The Philco 1000 relieves the Philco 212 of routine data handling
functions such as input formatting and verification, file searching,
conversion of punched card information to tape, and editing of
output for the printer,

PUNCHED-CARD
SYSTEM

PAPER TAPE
SYSTEM

INPUT -OUTPUT
TYPEWRITER

PRINTER

PAPER TAPE
SYSTEM
ACCOUNTING
CLOCK
UP TO SIX
OTHER
REAL-TIME
CONSOLE DEVICES
TYPEWRI TER HIGH-SPEED
DISC FILE
SYSTEM AUTO-
INTERVAL | CONTROL
7 TIMER UNIT
) 4
-—.[--———~ REAL-TIME
PHILCO | MEMORY SYSTEM
212 UP TO INPUT- 7
CENTRAL | 65,536 OUTPUT
PROCESSOR| WORDS CONTROL
UNIT
'I T PHILCO
1000 .
l CENTRAL INPUT
PROCESSOR
AVAILABLE,
BUT OUTPUT
UNASSIGNED ’
TAPE ¥ MEMORY SWITCH
CONTROLLER

!

y

AVAILABLE FOR
SECOND

TAPE CONTROLLER

DATA LINK

X-Y PLOTTER

UP TO 32 MAG TAPE UNITS

I

AVAILABLE FOR SECOND
PHILCO 1000 PROCESSOR
AND MEMORY

¥ AN INPUT-QUTPUT PROCESSOR CONNECTING UP TO 16 TAPES
MAY BE USED INSTEAD OF A TAPE CONTROLLER

Figure 1. Block Diagram of a 212 System

TVAONVI dIONHHAJAIY ¢1gd OD'1IHd

PHILCO 212 SYSTEM

CENTRAL PROCESSOR

Control Section

The main magnetic core storage for the Philco 212 has a memory
access time of 0.9 microseconds and a capacity of up to 65,536
words, Auxiliary storage of 5,242,880 words is provided by the
Disc File System,

The Philco 212 is compatible with other computers in the Philco
2000 series. Programs and routines used on the Philco 210 and
211 can be run on the 212 without reprogramming. Ease of pro-
gramming is assured by the availability of TAC, ALTAC and
COBOL compilers,

Instruction and operand look ahead permits as many as seven in-
structions to be processed simultaneously. The Philco 212 features
asynchronous processing between instructions, as well as within
instructions. For example, while the computer is storing or wait-
ing to store the result of an operation, it is executing the next
instruction, indexing and accessing operands for still another,
and accessing the next four instructions from memory,

Under normal conditions, memory access time becomes negligible
because access time for instructions and operands is generally
overlapped by the arithmetic execution time of the preceding
arithmetic instruction,

Using the 1.5 microsecond memory, typical rates of the arithmetic
operations, including instruction and operandaccess, expressed in
operations per second are as follows (the instructions to which
these rates apply are indicated in parentheses):

Fixed Point Floating Point
Addition and Subtraction (AD,SD) 1,680,670 (FAD,FSD) 626,950
Multiplication (MA) 151,630 (FMA) 199,400
Division (DAQ)* 60,420 (FDAQ)* 79,680

The Central Processor consists of magnetic core memory and a
Control Section. The Central Processor processes data stored in
magnetic core memory in accordance with the interpretation of
the program instructions, It is the function of the Control Section
to interpret and execute the instructions.

The Philco 212 normally executes instructions in sequential order.
Each memory location can contain two instructions which are
transferred simultaneously to the Program Register in the In-
struction Unit (see page 19).

The Control Section of the Philco 212 system executes 250 in-
structions, including 59 floating-point instructions. In addition,
input-output orders for each particular type of device are avail-
able for executing input-output orders and for checking for trans-
mission, the amount transmitted, and possible transmissio
errors.

* These instructions have a double-length dividend.

Magnetic Core
Storage System

OPERATOR’S
CONSOLE

AND CONSOLE
TYPEWRITER

INPUT-OUTPUT
CONTROL UNIT

PHILCO 212 REFERENCE MANUAL

The Magnetic Core Storage System is a random access device
capable of storing data in banks of 8192 words, 48 binary digits
(plus 8 parity bits) in length, and has an average memory access
time of 0.9 microsecond. A complete read-write cycle is
performed in 1.5 microseconds. Magnetic Core Storage Sys-
tems are available with a total storage of 32,768 (32K) or 65,536
(65K) words.

When the Central Processor has transferred information to reg-
isters of a memory unit, the Processor proceeds to other oper-
ations while memory is independently completing its read-write
cycle,

Separate banks of 8192 words can be accessed virtually simul-
taneously. Therefore, instruction access, operand access, result
storage, and input-output operations can proceed concurrently if
the values are in separate banks.

Data transferred to or from memory is checked for an odd parity
read. If a parity error is detected, the error is indicated on the
Operator’s Console and the Central Processor halts (see Appen-
dix D).

The Operator’s Console provides indicators and manual controls
for monitoring the operations of the Philco 212.

Operator’s Console and Console Typewriter

By means of the Console Typewriter, the operator has direct and
immediate access to the magnetic core storage. Input can be typed
from the keyboard and a typed copy is prepared for checking
purposes. Output can be typed at a speed of 15 characters per
second. A 16 character Console Typewriter Buffer allows the
Central Processor to proceed without waiting for the completion
of each type-out cycle.

The Input-Output Control Unit is a connecting unit between eight
input-output channels and two lines to memory. The input-output
units available for these channels are discussed below.

PHILCO 212 SYSTEM

DISC FILE SYSTEM

MAGNETIC TAPE
SYSTEMS

High Performance
Magnetic Tape
System

The Philco Disc File System provides a high-speed, rapid access,
auxiliary storage for the Philco 212, Data or programs not re-
quired immediately in memory, but which must be available in
milliseconds, are stored in the Disc File System. When the Cen-
tral Processor requests this data, it is transmitted to the mag-
netic core memory, where it can be accessed by Central Proc-
essor instructions,

The Disc File System stores 41,943,040 alphanumeric characters
(5,242,880 words).

The Disc File System transfers 960,000 alphanumeric characters
per second (120,000 words per second). Operation may be
continuous for up to 32,768 words. Parity is checked for each
character transmitted or received.

The Disc File System operates through its own section of the
Input-Output Control Unit and its own lineto memory. Data trans-
mission to and from the Disc File System proceeds simultaneously
with computation and other input-output operations.

Two magnetic tape systems are available for the Philco 212:the
High Performance 240,000 Characters Per Second Magnetic Tape
System and the 90,000 Characters Per Second Magnetic Tape
System.

The primary input-output medium of the Philco 212 is the High
Performance Magnetic Tape System. Each magnetic tape unit in
the system operates at a peak transfer rate of 240,000 six-bit
characters per second.

The Magnetic Tape System consists of one or two Tape Con-
trollers, each of which provides two or four channels (Data
Controllers) through which data can pass between memory and
associated magnetic tape units, Up to 32 magnetic tape units can
be connected to each Tape Controller. Any tape unit requested is
automatically assigned to any available Data Controller within
that Tape Controller, thus providing for up to four simultaneous
read and/or write operations per Tape Controller.

Tape stations accommodate reels with 3600 feet of one-inch
wide magnetic tape. Each reel contains up to 72.0 million 6-bit
characters or 9.0 million Philco 48-bit words when data is
recorded in a record size of 4096 words. The record size may
vary from one to 4096 words (8 to 32,768 characters).

Up to 16 records, of up to 32,768 6-bit characters each, can be
read or written by one input-output order with no start-stop time
between records. Start-stop time is 2.5 milliseconds.

90KC Magnetic
Tape System

PHILCO 212 REFERENCE MANUAL

Tapes may be written forward, and read forward or reverse.
Accuracy of reading and recording is assured by parity checks,
word counts, and the use of separate read/write heads. While
information is being recorded, it is read back and checked for
validity. When an error is detected, the block is automatically
rewritten, Similarly, when an error is detected during reading,
the automatic verification feature rereads the block. A write-
disable feature is provided to prevent the unintentional erasure

of the magnetic tape.

For Philco 212 installations that do not require the High Per-
formance Magnetic Tape System, the 90,000 Character Per
Second (90KC) Tape System is available,

Up to 16 tapes with apeaktransfer rate of 90,000 6-bit characters
per second can be used, on line, by connecting them directly to an
Input-Output Processor. Up to four read and/or write operations
can take place simultaneously.

Magnetic Tape Units

The one-inch magnetic tape used is available in lengths up to 3600
feet. Each reel contains up to 19 million 6-bit characters or 2.4
million Philco 48-bit words. Data is recorded in fixed records
of 128 words. Up to 16 records may be read or written by one
input-output order with no start-stop time between records.
Start-stop time is 2,5 milliseconds,

Tapes may be written forward, or read forward or reverse. The
90KC Tape System has the same checking features as the High
Performance Magnetic Tape System.

Input-Output transmission orders for the 90KC Tape System
are compatible with the High Performance Magnetic Tape

System.

PHILCO 212 SYSTEM

ACCOUNTING
CLOCK SYSTEM

ON-LINE PAPER
TAPE SYSTEM

REAL-TIME
SYSTEM

The Accounting Clock System is usedtotransmit the date (monthand
day) and the time of the day (hours, minutes and tenths of minutes)
to memory whenever the program calls for this information.

The Accounting Clock System contains switches for the initial
clock setting and automatically corrects for the lengths of months,
A manual switch is used to indicate the extra day in a leap year,

The Accounting Clock System shares access to the Central
Processor with the On-Line Paper Tape System. A special
interface is required to connect the Accounting Clock System to
the Input-Output Control Unit,

The On-Line Paper Tape System reads or punches paper tape as
input to or output from the Central Processor through the Paper
Tape/Accounting Clock channel. Data in the form of five- or
seven-level punched paper tape may be photoelectrically read
directly into the Philco 212 at the rate of 1000 characters per
second. With the Paper Tape Punch, data may be punched in
five or seven levels onto paper tape at the rate of 60 characters
per second, A special interface is required to connect the Paper
Tape System to the Input-Output Control Unit.

Paper Tape System

The Real-Time System of the Philco 212 Electronic Data Proc-
essing System provides a channel to the Central Processor for
high-priority data, A special interface is required to connect the
Real Time System to the Input-Output Control Unit,

A Real-Time Scanner in the Real-Time Systemtransfers informa-
tion between the Central Processor and a real-time, such as
the Interval Timer or the Auto-Control Unit,

Models of the Real-Time System are available to multiplex and
check one, four or eight real-time units,

The Scanner sequentially interrogates each real-time unit that is
connected to it, When a real-time unit is ready to transmit in-
formation, the Real-Time System generates a signal for the
Central Processor. The signal sent to the Central Processor
may cause an automatic interrupt (see Auto-Control Unit below),

Auto-Control
Unit

interval Timer

PHILCO 1000
COMPUTER SERIES

n
1

PHILLO Ziz

‘The Auto-Control Unit provides the means of interrupting a

program whenever specified conditions appear in the Central
Processor or in the input-output system.

The interrupt feature is under program control, the programmer
specifying which of up to 48 preselected system conditions shall
be allowed to interrupt the Central Processor, and what action
is to be taken when these conditions are present.

When any one of the designated signals is received, the contents
of significant registers are stored and control is automatically
transferred to a predesignated memory location. Once processing
appropriate to the interrupt signal is completed the interrupt
program may use the stored registers to return to the previously
interrupted program.,

The Interval Timer transmits through the Real-Time System and
times, in milliseconds, intervals of up to 9.32 hours.

The Timer is an electronic ‘‘alarm clock’’ which can provide an
interrupt signal through the Auto-Control Unit when a designated
period of time has elapsed. The Timer must be preset by a pro-
gram to contain the desired time lapse. The Interval Timer Unit
is program addressable at all times and may be inspected without
affecting its contents or function,

The Philco 1000 Computer Series provides for input formatting
and verification, file searching, conversion of punched card
information totape, and editing of output for the printer. The Philco
1000 may be connected to the Tape Controller or to the Input-
Output Processor, sharing Magnetic Tape Units with the Philco
212, or operated off-line independent of the Philco 212,

A basic Philco 1000 system consists of a Processor, 4096 char-
acters of Magnetic Core Memory, and an Input-Output Switch for
the connection of input-output devices. An expanded system may
have two separate Processors. Each of these Processors may
have up to 32,768 characters of Magnetic Core Memory.

Philco 1000 System

PHILCO 212 SYSTEM

High-Speed
Punched -Card
System

One or both Processors share a common Input-Output Switch.
The Input-Output Switch is available in four models. If one Cen-
tral Processor is used, an Input-Output Switch is available to
permit one transmission between the memory of that Processor
and any one of 4 or 8 input-output channels. If two Central
Processors are used, an Input-Output Switch isavailable to permit
any two concurrent transmissions, one with each Central Proc-
essor’s Memory Section, and the other with two of 4 or 8 input-
output channels, Each input-output channel may handle several
similar input-output units, the number depending on the type of
device.

The input-output units which may be connected to the Philco 1000
include the Punched-Card System, Printing System, Magnetic
Tapes, X-Y Plotter, Paper Tape System, and the Input-Output
Typewriter, Input-Output Buffers are available for selected units,

A Data Link to provide high-speed data transmission between the
Philco 212 Electronic Data Processing System and remote input-
output stations may also be connected to the Philco 1000,

Each Processor has its own coincident-current magnetic core
memory. Data is accessed serially, a character at a time, with
a full memory cycle of less than 5 microseconds. Effective mem-
ory access time is 3 microseconds. Each character consists of
six bits plus a parity bit and is checked each time the character
is accessed. Core Memory is available in models of 8192, 16,384,
and 32,768 characters.

The Punched-Card System reads 80-column cards at the rate of
2000 or 600 cards per minute and punches them at a rate of 100
or 200 cards per minute, Cards maybe read in Hollerith or binary
modes,

High-Speed Card Reader

LU

Printers

Magnetic Tapes

X-Y Plotter

PHILCO 212 REFERENCE MANUAL

The Card Readers have dual read stations for complete checking
of the data. The data read by the first read station is compared
with the data read by the second read station, The Card Punches
have a read after punch to provide for punching accuracy. Check-
ing of the system components, parity, and card alignment insures
the accuracy of the reading and punching operations.

A 300 or a 900 line per minute Printer may be connected to the
Philco 1000, Both Printers print 64 characters (see Appendix B)
in 120 positions per line on continuous single or multi-part forms
from 4 to 20 inches in width for the 300 LPM Printer and from 4
to 19 inches in width for the 900 LPM Printer,

High-Speed L.ine Printer

Magnetic tape units with transfer rates of 240,000, 90,000, 25,020
or 9,000 characters per second may be connected to the Philco
1000. Magnetic Tape units are also available to read or write
tapes prepared in IBM 729 format.

The X-Y Plotter plots, under program control, discrete points,
continuous lines, curves, letters, numerals, and symbols. The
information to be plotted is received from the Philco 1000, Two
X-Y Plotters may be coupled to one channel of the Philco 1000
Input-Output Switch for concurrent operation. Data for Plotters
on the same channel may be intermixed,

Continuous lines in both vertical (Y-axis) and horizontal (X-axis)
directions can be plotted by the Plotter, Plotting along the Y-axis
is done by vertically moving sprocketed, continuous feed paper
on a bi-directional rotating drum. Plotting along the X-axis is
performed by moving the pen horizontally across the plotting
paper. Diagonal lines are drawnby combinations of X and Y move-
ments; discrete points are made by raising, moving, and then
lowering the pen.

Plotting is performed at a rate of 300 horizontal or vertical pen
movements per second. One-hundred movements per inch are
made at a rate of three inches per second. Pen movements
up or down for points are performed at a rate of 10 per second.

PHILCO 212 SYSTEM

Paper Tape System
and Input-Output
Typewriter

Input-Output buffers

11

The plotting area is 11 inches in width, The Plotter always steps
1/100 inch in either the X or Ydirection. Points on a 45° diagonal
are made by the plotter in a single step of 0.0141 inch. A plotted
diagonal other than 45° must be made up of a series of pen car-
riage and paper drum movements.

The specifications for the Paper Tape System and Input-Output
Typewriter for the Philco 1000 are the same as the specifications
for the Paper Tape System and Console Typewriter as described
for the Philco 212, except that the Paper Tape System reads and
punches five-, six-, seven- or eight-level paper tape.

The Philco 1000 Input-Output Buffers allow the Philco 1000 Cen-
tral Processor to transfer data to or from selected input-output
units without using time needed for data processing,

The Buffers have a capacity of 320 characters. The transfer rate
between the Philco 1000 memory and a Buffer memory bank is a
minimum of 200,000 characters per second. The transfer rate
between an input-output unit and the Input-Output Buffer is de-
termined by the input-output unit,

FIXED-POINT
DATA WORDS

Fixed-Point Zero

Significant Bits

Chapter 2

THE PHILCO 212 WORD

The Philco 212 word comprises 48 data bits numbered, in this
description, left to right from O through 47. Bit 47 is the least
significant bit. For each six data bits there is an additional odd
parity bit used for checking data transferred to or from memory.
The parity bits are not shown in any diagrams in this manual,

During the execution of fixed-point operations (see Chapter 4),
a word represents a binary value. A binary point, dividing the
word into integral and fractional parts can be assumed to be
any where within or outside the register. The first bit of the word,
the sign bit, indicates whether the rest of the bits express a posi-
tive or negative value, zero indicating positive and one indicating
negative. Negative numbers are represented in two’s complement
form.* For example, +13 and -13 appear as follows) the binary
points are assumed to be between bits 23 and 24):

0 23 24 47

+13] 000 = — 01101 000 = —& 000

f

ASSUMED BINARY POINT

0 231 24 47
°

=13] 1| - —® 1001 |

000 «— — 000

The computer subtracts by taking the two’s complement of the
subtrahend and then adding that two’s complement tothe minuend,

Fixed-point zero is represented by a word of zeros.

The first significant bit of a binary word is defined as the first
bit following the sign bit which differsin setting from the sign bit,
All subsequent bits are significant. Thus, in the examples above,
the first significant bit is bit 20,

* A simple method of obtaining the two’s complement of a binary
number is to change all zeros to ones and all ones to zeros and
then add one to the rightmost bit,

14

FLOATING-POINT
DATA WORDS

Floating-Point
Number Range

PHILCO 212 REFERENCE MANUAL

During the execution of floating-point arithmetic operations (see
Chapter 5), all arithmetic registers are treated as if they were
divided into two parts: a 36-bit mantissa and a 12-bit exponent
to the base 2 as shown below.

The mantissa comprises the first 36 bits with bit zero as its
sign bit; the exponent comprises bits 36-47 with its first bit (bit
36) as its sign bit.

ot 2 3¢i{/3233 34 35 36 37 3839//43 44 45 46 47
I— BINARY POINT

MANTISSA —36 BITS EXPONENT—12 BITS

The mantissa is always fractional, with a binary point between
bits zero and one. The exponent always represents an integral
power of two. Both can be either positive or negative as indicated
by their sign bits. Negative exponents and mantissas of negative
numbers are represented in two’s complement form.

For example, +13 and -13 appear as follows (both numbers are
normalized, i.e., the first significant bit is bit one):

0 35 36 47
#12: |01 1 010w »000 00040 100
13y -4
X 2
0 35 36 47
-13: | 1001 10 000 | |0o00O®01 00
_13 454
= X2

The largest representable mantissa is a zero in the sign position
followed by 35 ones; the largest exponent is a zero followed by 11
ones. This number is equivalent to .9999999,.. x22047 which is
very close to, but less than +1 x 22047 This value is equal to
slightly more than 10616,

PHILCO 212 WORD

Floating-Point Zero

Double Precision
Floating-Point Words

BCD OR
ALPHANUMERIC
WORD

INSTRUCTION
WORD

15

/

Similarly, the algebraically smallest representable number is
equal to minus one times the largest exponent, i.e., -1 x 22047
The normalized non-zero floating-point value which is smallest
in absolute value is 0.5 x 2 -2048'(or +1 x 2-2049) which is slightly
less than 10 -617,

The range of non-zero magnitude in floating-point representation,

therelfore, is from slightly more than 10616 to slightly less than
10-617,

Floating-point zero is represented by a zero mantissa and an
exponent with one in the sign position followed by zeros.

Double precision floating-point words are formed by two single
length floating-point words with equal exponents (see Chapter 7).

A BCD (Binary Coded Decimal) or alphanumeric word is com-
posed of eight six-bit characters. Every group of six bits, be-
ginning with bit zero, represents one of the Philco characters.
(The Philco characters and their octal codes* are shown in Ap-
pendix B.) Input and output to certain peripheral equipment and
some comparison operations are made in BCD form; internal
arithmetic operations always assume fixed- or floating-point
words as described above.

A BCD word with the octal codes representing the word PHILCO
followed by two space characters (AA) is shown below,

0 5|6 112 17118 23|24 29|30 35|36 41142 47

47 30 31 43 23 46 60 6C

Two instructions, the left- and right-half instructions, comprise
an instruction word. The rormal sequence of executing instruc-
tions is first the left half and then the right half of one word,
followed by the left-half and then the right-half instruction of
the succeeding instruction word.

Each computer instruction contains 24 bits, The first 16 bits

comprise the address field; the last 8 bits comprise the com-
mand field,

* Octal code uses a single digit to represent three bits, as follows:

0 = 000 3 =011 6 = 110
1 = 001 4 = 100 7 =111
2 =010 5 =101

16

Command Field

F-Bit

Address Field

PHILCO 212 REFERENCE MANUAL

The command field indicates the function to be performed* and
the address field usually specifies the address of the operand to
be used. The address field may be a memory address or some
other value as required by the instruction, The format of an
instruction word is shown in the diagram below:

0 15116 23|24 39|40 47
ADDRESS FIELD COMMAND ADDRESS FIELD COMMAND
\ S /
Y Y
LEFT INSTRUCTION RIGHT INSTRUCTION

The first bit of the command field is called the function bit, I,
For arithmetic instructions, the F-bit specifies whether the
arithmetic is to be performed in the fixed- (F-bit = 0) or floating-
point (F-bit = 1) mode. For Jump Instructions (see page 53), the
F-bit specifies whether a transfer of control is to be made to the
left half of a location (F-bit = 0) or to the right half (F-bit = 1),

The address field is subdivided into an index register selector
bit (S), a 3-bit index register field (N) to specify a particular
index register, and a 12- to 15-bit variable field (V). If the S-bit
is zero, no index register is used in forming an effective address
field (see page 19) and the V-field is 15 bits, If the S-bit is one,
an index register is used in forming an effective address field
and the V-field is 12 bits,

on 15

S v

ADDRESS FIELD IF S-BIT IS ZERO

S N v

ADDRESS FIELD IF S~BIT IS ONE

* In some cases, defining the full function also requires use of
some bits in the address field,

PHILCO 212 WORD

INPUT-OUTPUT
ORDER WORD

17

On a 65K system, instructions having a full V-field (except Index
Register Instructions, see page 63) use the value of the first bit
of the 16-bit address of the memory location in which the instruc-
tion is stored as the value of the first bit in a 16-bit address,
unless the instruction is extended by an EXT instruction immedi-
ately preceding it (see pages 88-92) oriscontrolled by an RPT or
DR instruction (see pages 83-86), In the latter case, the values of
the first bit of the 16-bit address ofthe memory location in which
the RPT or DR instruction is stored is used as the first bit in the
16-bit address of the instruction controlled by the RPT or DR
instruction,

For an instruction immediately following an EXT instruction, the
V-field comprises up to 16 bits (enough to express the largest
computer address); the S-bit and N-field used are taken from the
address field of the EXT instruction,

The TIO instruction (see page 52) causes pertinent fields of the
word in the D Register (see page 21) to be transferred to the
appropriate input-output system. This 48-bit word is known as an
input-output order. Details on orders for specific input-output
systems are contained in the Input-Output Systems Manual TM-186.
The following is an example of an input order for the High
Performance Magnetic Tape System,

0 12 15| |iglis 23|24 35|36 39|40 a7
NRS gumr NWR NRP | 10100001

This instruction causes the Processor to space over 0 to 15 rec-
ords as specified (NRS) which are any length from 1 to 4096
words (NWR), then to read 0-15 records (NRP) of the same length
in the forward direction, If NRSand NRP are both zero, 16 records
are read; if NWR is zero, 4096 word records are read.

Tape units 0 to 31 of either Tape Controller may be addressed
by this order (UNIT); Tape Controller 0 or 1 may be designated
by bit 18,

The TIO instruction itself contains the address of the memory
location at which transmission begins.

INSTRUCTION UNIT

INDEX UNIT

Index Registers

Effective Address

C-Bits and Y-Bits

Chapter 3

CONTROL SECTION OF THE PHILCO 212

The Control Section of the Philco 212 consists of an Instruction
Unit, an Index Unit, an Arithmetic Unit, and a Store Unit,

The Instruction Unit accesses memory instructions and stores up
to four instructions until they can be accepted by the Index Unit.
The Instruction Unit contains two Program Address Registers
(PA and PA*) and two word-size Program Registers (PR and PR¥),
which allow a total of four instructions to be buffered in the unit,
Controls in the Instruction Unit sequentially select the left half or
right half of the wordin one of the Program Registers for process-
ing, The RPT and DR instructions (see pages 83 and 85) permit
from one to four of the instructions stored in the Instruction Unit
to be repeated without reaccessing memory for instructions.

The Index Unit performs that part of the instruction which can
be done prior to further execution which may be required in the
Arithmetic Unit. Its major function is to obtain operands and to
store them in the Operand Register until the Arithmetic Unit
(see below) has completed the preceding instruction; thus, this
function is performed while the Arithmetic Unit is processing
the preceding instruction. Operand access therefore is over-
lapped by previous arithmetic operation, making operand access
time a negligible factor in timing a program (see Appendix F).

Eight index registers are standard on the Philco 212, They are
addressable memory-sized registers, i.e., they contain as many
bits as are needed to express the largest computer address. They
can receive information directly from an instruction or from the
D Register of the Arithmetic Unit, and can transfer information
to the JA and to the D Registers of the Arithmetic Unit,

Index registers are used as counters or to form the effective
address of an instruction. Arithmetic performed on index reg-
isters is modulo memory size,

The effective address of an instruction is the final address of a
memory location referenced by the instruction. The effective
address may be directly specified by the V-field of the instruc-
tion or, if indexing is specified, may be formed as indicated by
the table below.

Every index register has an associated C-bit and Y-bit, Each of
these bits may be set to either one or zero, Used in conjunction
with each other, they indicate how the effective address of an
instruction is to be formed, and how much the index register is
to be incremented or decremented after forming the address.

20

INPUT -
OUTPUT #——
UNITS

PHILCO 212 REFERENCE

MANUAL

INSTRUCTION UNIT
'I
\\
INSTRUCTION ‘
ACCESS
PROGRAM PROGRAM
REGISTERS ADDRESS
G REGISTERS
INDEX UNIT
INDEX REGISTERS
‘I
\\
MEMORY
OPERAND |
ACCESS OPERAND
REGISTER
MEMORY]
ARITHMETIC UNIT
\
> D
3
A
A Q
JA <
STORE ¢ UNIT

Figure 2. Philco 212 Central Processor

CONTROL SECTION

Index Register
Instructions and
Indexable Instructions

ARITHMETIC UNIT

D Register

21

The following table shows the effect of various settings of the
C- and Y-bits,

Settings Effective Address of Contents of Index | C-Bits and

Instruction Referencing Register After Y-Bits Can
C Y Index Register X Instruction Be Set By:
0 0 | Contents of X+ V-field | Unchanged TCXZ
of instruction
1 0 Contents of X + V-field | Previous contents TCXS
of instruction +1 -
0 1 Contents of Index | Previous contents TYXZ
Register +V-field of in-
struction
1 1 Contents of Index | Previous contents TYXS
Register ~V-field of in-
struction

Instructions which alter the contents of an index register, set the
C- and Y-bits of an index register to one or zero, or transfer
information between an index register and the D Register are
termed ‘‘Index Register Instructions’’ (see page 63). Instructions
which may use the contents of an index register to form an effec-
tive address are termed ‘‘Indexable Instructions’’, (Index Regis-
ter, RPT, DR, SKC and SKF instructions cannot use an index
register to form an effective address.)

The Arithmetic Unit receives instructions and operands from the
Index Unit, executes the instructions, and transfers results to the
Store Unit, which stores them in memory while the Arithmetic
Unit is processing the next instruction. There are four major
addressable registers in the Arithmetic Unit: the Data Register
(D), the Accumulator (A), the Quotient Register (Q) and the Jump
Address Register (JA).

The D Register is a 48-bit addressable register which can receive
information from memory, the A, Q, and JA Registers, and the
index registers and their associated C- and Y-bits. The D Regis-
ter can transfer information to the A, Q, and index registers and
to the C- and Y-bits associated with the index registers.

The D Register:

e receives all data transferred between the memory and the
Arithemtic Unit,

e receives all data transferred between arithmetic registers.

e contains or transmits the addend in addition, the subtrahend
in subtraction, the multiplicand in multiplication, and the
divisor in division,

® contains one of two quantities or words being compared,

22

A Register

Q Register

JA Register

PHILCO 212 REFERENCE MANUAL

The A Register, an addressable 48-bit register, can receive in-
formation from memory and the D and Q registers. Information
can also be transferred frcm A to memory and to the D and Q
registers,

The A Register:

° contains the augend prior to addition, the minuend prior to
subtraction, and the dividend or the more significant half of
the dividend in division,

) contains the sum after an addition, the difference after a
subtraction, the product or more significant half of the prod-
uct after a multiplication, and the remainder aftera division.

) may contain one of two quantities or words being compared,

The Q Register is a 48-bit addressable register which can receive
information from memory, the A Register, the D Register, and
the Tape Controller. The Q Register canalsotransfer information
to memory and the A and D Registers.

The Q Register:

e contains the multiplier prior to multiplication, the less sig-
nificant half of a double length product after a multiplication,
the less significant half of a double length dividend prior to
division, and the quotient after a division.

. may contain one of two quantities or words being compared.
e contains a ‘‘mask’’ during an extract operation,

® receives status and fault indications from some input-output
devices,

The JA Register is an addressable memory-sized register which
can receive information from the index registers or from a T1J
instruction (see page 51). The contents of JA can be transferred
to the D Register and to a specified memory location by a TJIM
instruction (see page 50).

The purpose of the JA Register is to record the location of the
instruction following a Jump Instruction (see page 53). Thus,
if the transfer of control is made from one point in a program to
another, a return to the point immediately following the transfer
of control is possible by referencing the JA Register, Every Jump
Instruction, except JL and JR, automatically causes the location
of the next instruction to be placed in the JA Register prior to
execution of the instruction, The F-bit of JA is set to zero or one
to indicate whether the instruction that follows the Jump Instruction
is in the left or right half of a word.

CONTROL SECTION

STORE UNIT

23

If an exponent fault should occur during floating-point arithmetic
(see Chapter 5), the Exponent Fault neon is lighted; a transfer of
control to memory location 00000 is made and the address of the
next instruction word is placed in JA, The F-bit of JA is set to
zero if the fault occurred in a left-half instruction, or to one if
the fault occurred in a right-half instruction.

When the results of an operation in the Arithmetic Unit are to be
stored in memory, the information and its address are trans-
ferred to the Store Unit, which then stores the result into memory
while the next arithmetic instruction is being executed. Thus,
the time required to store results is usually overlapped by the
time required to execute the following instruction.

SCALING

OVERFLOW

Overflow Indicator

ADDITION AND
SUBTRACTION

Chapter &
FIXED—POINT ARITHMETIC

During the execution of any fixed-point arithmetic operation, the
computer regards the numbers involved as fixed-point binary
numbers (see page 13). Valuesare significant to 14 decimal digits.

A binary point, separating the integral partofa fixed-point binary
number from its fractional part, may be assumed anywhere within
a word or outside of a word by the programmer. This process of
representing any desired number by selecting an appropriate bin-
ary point is called scaling, and the number of positions between
the computer’s sign bit and the assumed point is called the
scale factor,

Overflow may indicate the loss of a significant bit (see page 13),
Overflow during a left shift occurs if abit that moves into the sign
bit is different from the bit that moves out of the sign bit. During
arithmetic operations, overflow occurs if the carry into the sign
bit of the result is different from the carry out of the sign bit,
i.e,, the result exceeds the range of the machine’s fixed-point
numbers, Overflow, as it may occur during an arithmetic opera-
tion, is included in the discussion of each operation below,

The Overflow Indicator has two states or conditions, one and zero.
Normally, the Indicator is automatically cleared to zero before
each Add, Subtract, Multiply, Divide Instruction (including floating-
point), Shift Instruction (see page 59), or four of the Index Register
Instructions (AIXOL, AIXOR, SIXOL, SIXOR) and during the execu-
tion of a JNO or JOF instruction. It is automatically set to one each
time overflow occurs,

The clearing of the Indicator by the Add, Subtract, Multiply, Divide,
Shift, and Index Register Instructions may be inhibited by the ICOS
instruction (see page 81)untila convenient time for testing occurs,
This inhibition may be removed only by the ICOZ instruction (see
page 81), Clearing of the Indicator bythe JNO or JOF instructions
is never inhibited,

Addition and subtraction may be thought of as being made bit-by-
bit, with carries as necessary into adjacent bits to the left, The
following are examples of addition assuming five-bit registers,
(The bits are numbered 0-4, and the numbers have a scale factor
of four,)

SIGN BIT SIGN BIT
v v

+5 00I0I =5 1011

+4 00100 -4 11100

+9 0100! =9 10111

25

26

MULTIPLICATION

DIVISION

PHILCO 212 REFERENCE MANUAL

Examples of overflow, assuming five bit registers:

SIGN BIT SIGN BIT
01000 10000
01000 10000

0 10000 | 00000

’ CARRY IN ‘ CARRY IN
CARRY OUT CARRY OUT

In multiplication, the scale factor of the product is equal to the
sum of the scale factors of the multiplier and the multiplicand.

Either unrounded or rounded products canbe formed as designated
by the particular instruction. If a multiplication instruction indi-
cates an unrounded product, a 94-bit product is formed in bits
1-47 of the A and Q Registers. The sign bits of A and Q are the
same, If the multiplication instruction indicates a rounded product,
a 47-bit product is formed in the A Register, It is the value
nearest the product that would have been formed if the multiplica-
tion instruction did not indicate a rounded product.

Overflow may occur during multiplication only if two words, each
with a sign bit of one which is followed by zeros, are multiplied
together, Addition or subtraction in an MAD or MSU instruction
(see page 46) may correct the overflow,

In division, the scale factor of the quotient is equal to the differ-
ence of the scale factors of the dividend and divisor.

The dividend may be in the A and Q Registers or only in the A
Register. If the dividend is in both A and Q, the sign bit of Q is
ignored.

If the absolute value of the bits (disregarding an assumed binary
point) in a dividend is greater than the absolute value of the bits
in the divisor, or if the absolute value of the bits in the dividend
is equal to the absolute value of the bits in the divisor and the sign
bits of the dividend and the divisor are alike, overflow would
occur, However, potential overflow is detected before divisionand
the division is not performed. Instead, the A and Q Registers are
altered as indicated.in the table that follows, the Overflow Indi-
cator is set to one, and the next instruction is executed.

FIXED-POINT ARITHMETIC

27

Divide Instruction

Register
DA, DAS DAQ, DAQS
A Shifted numerically * one place | Shifted numerically* one
right into Q. place right into Q.
Q Bit 0 contains the sign bit of A | Shifted numerically* one

and bit 1 contains the bit shifted
from A. The rest of the bits are
cleared to zero.

place right.

* See SRAQN on page 60

If the store option isused (i.e., the result of an operation is trans-
ferred to memory by the instruction that performedthe operation)
and potential overflow is detected, no store takes place and the
specified memory location retains the original divisor.

If potential overflow is not detected and division is performed,
the absolute value of the remainder is less than the absolute
value of the dividend. The sign of the remainder is the same as

the sign of the dividend.

NORMALIZATION

MANTISSA
OVERFLOW

Chapter S

FLOATING—POINT ARITHMETIC

With floating-point arithmetic the programmer is relieved of the
necessity of scaling, and a greater range of values can be ex-
pressed in computer words. Values are significant to ten decimal
places. For a description of a floating-point word refer to page 14,
The floating-point instructions described in Chapter 6 have an
F as the first letter of their mnemonic codes.

Double precision floating-point operationsare described in Chapter
7.

A floating-point number is in normalized form if the most sig-
nificant bit of the mantissa immediately follows the first bit. Thus,
the value of the sign bit of the mantissa and of the adjacent bit
in a normalized floating-point value are different.

Although original operands need not be in normalized form, the
computer will always attempt tonormalize the result of a floating-
point arithmetic operation. The Philco 212 will also normalize
the operands of a division before attempting the operation. Nor-
malizing permits the maximum number of significant digits in
arithmetic results.

The Philco 212 first examines the mantissa of a result or of a
division opevand, 1f the mantissa is zero, the number is set to
floating-point zero. If the mantissa is not zero and is not nor-
malized, the bits of the mantissa are numerically shifted left
until a normalized value results. The exponent is then decremented
by the number of shifts which have takenplace. If exponent under-
flow (see next page) occurs during normalization, the number being
normalized is set to floating-point zero.

Mantissa overflow occurs if the carry into the sign bit of the
mantissa is different from the carry out of the sign bit, The
Overflow Indicator is mnot set. Instead, mantissa overflow is
automatically corrected as indicated below, except in the case
of division. In division, potential overflow is detected and the
division proceeds as described below,

When mantissa overflow occurs during an addition, subtraction,
or multiplication, the mantissa of the result is shifted right one
place (decreasing it by a power of 2) and its exponent is in-
creased by one (increasing it by a power of 2).

Before floating-point division takes place, the normalized man-
tissas of the operands are tested to see if division would produce
overflow. If overflow would occur, the dividend is shifted right
one place, its exponent is increased by one, and the division is
performed,

o
\o

30

EXPONENT
OVERFLOW AND
UNDERFLOW

ADDITION AND
SUBTRACTION

MULTIPLICATION

PHILCO 212 REFERENCE MANUAL

In the Arithmetic Unit, exponent overflow occurs whenever the
carry into the exponent sign bit is one and the carry out is zero,
i.e., when an attempt is made to produce a floating-point number
which would have an exponent greater than +2047, the largest
possible exponent.

Exponent overflow may occur during multiplication or division or
during a correction cycle for mantissa overflow. If it occurs dur-
ing a multiplication or division operation, the overflow may be
corrected while the result is being normalized. If exponent over-
flow still exists after normalization or if it had occurred during
2 mantissa correction cycle, the Exponent Fault Neon is lighted,
a transfer of control to memory location 00000 is effected, and
the address of the next instruction word is placed in the JA Reg-
ister (see page 22).

Exponent underflow occurs whenever the exponent sign bitis zero
and the carry out is one, i.e., whenan attempt is made to produce
an exponent smaller than -2048, the smallest possible exponent.

Exponent underflow may occur during multiplication or division
or during any normalization cycle. If it occurs during a normal-
ization cycle, the underflow may correct a previous exponent
overflow. If there had been no previous exponent overflow and
underflow occurs during a normalization cycle, the result is set
to floating-point zero,

For floating-point addition and subtraction, the Arithmetic Unit
arranges the floating-point word with the smaller exponent so that
its exponent is effectively equal tothe larger exponent in the other
word. This is done by shifting right the mantissa of the value with
the smaller exponent the number of places equal to the difference
between the exponents if the absolute value of the difference is less
than 36 (or less than 71 when in double precision mode). If the
value with the smaller exponent is the addend or subtrahend in the
D Register, its mantissa is shifted inthe D Register. (The exponent
of the addend ov subtrahend in the D Register is not changed from
its oviginal value.) If the absolute value of the difference between
the exponents is greater than 35 (or greater than 70 when in double
precision mode), the operand with the larger exponent becomes the
sum, and no time is taken up for shifting,.

When multiplying two floating-point numbers, the Arithmetic Unit
adds the exponents and multiplies the mantissas.

Either unrounded or rounded products can be formed. If a product
is unrounded, a 70-bit mantissa is formed in bits 1-35 of the A
and Q Registers. The exponents (bits 36-47) and sign bits in A and
Q are alike, If a product is rounded, a 35-bit mantissa is formed
in the A Register, It is the value nearest the product that would
have been formed, prior to normalization, if the multiplication
had not been rounded,

FLOATING-POINT ARITHMETIC 31

DIVISION

In floating-point division, the Arithmetic Unit subtracts the ex-
ponent of the divisor from the exponent of the dividend and divides
the mantissa of the dividend by the mantissa of the divisor.

The dividend may be in the A and Q Registers or only in the A
Register. If the dividend is in both A and Q, the mantissa is 70
bits and is in bits 1-35 of A and of Q. The exponent (bits 36-47)
and the sign bit of the dividend used are in the A Register; the
exponent and the sign bit in the Q Register are ignored.

The exponent of the remainder is 35 less than the exponent of the
original normalized dividend. If the exponent of the remainder
goes out of range, the remainder is set to floating-point zero.

Division by zero is detected during the normalization process
(see page 30). If a divisor with a mantissa equal to zero is
detected, division does not proceed. However, the dividend is
normalized. The Exponent Fault Neon is lighted; a transfer of
control to memory location 00000 is made and the address of the
next instruction word is placed in the JA Register (see page 22).

If a dividend with a zero mantissais detected, and the mantissa of
the divisor is not zero, the quotient and remainder are floating-
point zero.

ADD
INSTRUCTIONS

Chapter 6

PHILCO 212 INSTRUCTIONS

The mnemonic* codes for all Philco 212 instructions are given
below together with a description of their functions. (A mnemonic
code with F as its first letter specifies floating-point arithmetic.)
The quaternaryf representation of the eight-bit machine language
command appears with each mnemonic. These codes represent
the command field of the instruction only; the entire instruction
also consists of an addressfield (see page 16). When an instruction
calls for an operand in memory, the memory location is specified
in the address field. When the address field specifies something
other than an address, it is so noted in the description.

If the Central Processor attempts to decode a command field and
finds it is not one of those listed herein, a command fault is
indicated on the Operator’s Console and the Central Processor
halts,

No bits in any addressable register are altered by an instruction,
except those specified by the description of that instruction,
(Appendix A defines the symbols in the logic equations and flow
charts that are used to define the functions of some instru~tions,)

Add Instructions add the contents (or the absolute value of the
contents) of a register or a specified memory location to the
contents of the A Register. Clear and Store options are available.

All Add instructions first clear the Overflow Indicator to zero
unless an ICOS instruction (see page 81) has been given and is
still in effect,

* The term ‘‘munemonic code’’ refers to the code which the
programmer writes for an instruction, The mnemonic code is
converted into machine language by the Translator-Assembler-
Compiler, TAC (see Philco 2000 TAC Manual, TM-11).

t Quaternary code uses a single digit to represent two bits, as
follows:

00 2
01 3

10
11

[J%)
(%)

34

AM
FAM

AMS
FAMS

CAM
FCAM

CAMS
FCAMS

AMA
FAMA

1000

3000

1001
3001

1002
3002

1003
3003

1010
3010

PHILCO 212 REFERENCE MANUAL

Add Memory

(M)— D
(A) + (M) — A

The AM/FAM instruction transfers the operandfrom the specified
memory location to the D register, then adds the operand to the
contents of the A Register. The sum replacesthe contents of A and
the operand remains in D, For FAM, the operand in D may have
been arranged to make the exponents of Aand D equal for addition
(see page 30).

Add Memory and Store

(A) + (M) — A, Dand M

The AMS/FAMS instruction performs as an AM/FAM instruction,
then transfers the sum from the A Register to the D Register and
to the original memory location, The sum replaces the contents
of A, D and the original memory location,

Clear and Add Memovry

(M) — Dand A

The CAM/FCAM instruction transfers the operand from the
specified memory location to the D Register and to the A Register,
The operand from memory replaces the contents of A and D.
For FCAM, the final contents of A are normalized.,

Cleav, Add Memory and Store

(M) — A, Dand M

The CAMS/FCAMS instruction performs as a CAM/FCAM instruc-
tion, then transfers the final contents of the A Register to the
D Register and to the original memory location. The final contents
of A remain in A, D, and the original memory location.

Add Memovry Absolute

(M —D
(A) + [(M)] — A

The AMA/FAMA instruction transfers the operand from the speci-
fied memory location to the D Register, then adds the absolute
value of the operand to the contents of the A Register. The sum
replaces A and the operand from memory remains in D. For
FAMA, the operand in D may have been arranged for addition
(see page 30).

PHILCO 212 INSTRUCTIONS 35

AMAS
FAMAS

CAMA
FCAMA

CAMAS
FCAMAS

AQ
FAQ

AQS
FAQS

01
3om

1012
3012

1013
3013

1020
3020

1021
3021

Add Memory Absolute and Store

(A) + |(M)|— A DandM

The AMAS/FAMAS instruction performs as an AMA/FAMA
instructionh, then transfers the sum from the A Register to the
D Register, and to the original memory location. The sum replaces
the contents of A, D, and the original memory location.

Clear and Add Memory Absolute

(M) — D
[(M)| — A

The CAMA/FCAMA instruction transfers the operand from the
specified memory location to the D Register, and the absolute
value of the operand to the A Register, The absolute value of the
operand from memory replaces the contents of A and the operand
from memory remains in D, For FCAMA, the final contents
of A are normalized,

Clear, Add Memory Absolute and Store
[(M)| — A, D and M

The CAMAS/FCAMAS instruction performs as a CAMA/FCAMA
instruction, then transfers the final contents of the A Register
to the D Register, and to the original memory location. The final
contents of the A Register remain in A, D, and the original
memory location,

Add @

(Q — D
(A) + (Q — A

The AQ/FAQ instruction transfers the operand in the Q Register
to the D Register, then adds the operand to the contents of the
A Register. The sum replaces the contents of A, and the operand
from Q replaces the contents of D. For FAQ, the final contents
of D may have been arranged for addition (see page 30).

Add @ and Store

(A) + (Q) — A, Dand M
The AQS/FAQS instruction performs as an AQ/FAQ instruction,
then transfers the sum to the D Register and to the original

memory location, The sum replaces the contents of A, D, and
the original memory location,

36

CAQ
FCAQ

CAQS
FCAQS

AQA
FAQA

AQAS
FAQAS

CAQA
FCAQA

1022
3022

1023
3023

1030
3030

1031
3031

1032
3032

PHILCO 212 REFERENCE MANUAL

Cleay and Add @

(Q) — Dand A

The CAQ/FACQ instruction transfers the operand inthe Q Register
to the D Register and to the A Register. The operand from Q
replaces the contents of A and D. For FCAQ, the final contents
of A are normalized.

Clear, Add @ and Store
(Q — A, Dand M

The CAQS/FCAQS instruction performs as a CAQ/FCAQinstruc-
tion, then transfers the final contents of the A Register to the
D Register and to the original memory location, The final contents
of A remain in A, D, and the original memory location,

Add @ Absolute

(Q — D
(A) + (@] — A

The AQA/FAQA instruction transfers the operand from the
Q Register to the D Register, then adds the absolute value of
the operand to the contents of the A Register. The sum replaces
the contents of A and the operand from Q remains in D, For
FAQA, the operand in D may have been arranged for addition
(see page 30).

Add @ Absolute and Store
(A) + [(Q|— A, Dand M

The AQAS/ FAQAS instruction performs as an AQA/FAQA instruc-
tion, then transfers the sum in the A Register to the D Register
and to the original memory location, The sum replaces the
contents of A, D, and the original memory location.

Clear and Add @ Absolute

(@ — D
Q)] — A

The CAQA/FCAQA instruction transfers the operand from the
Q Register to the D Register, and the absolute value of the
operand to the A Register. The operand from Q remains in D and
the absolute value of the operand is in A, For FCAQA, the final
contents of A are normalized,

PHILCO 212 INSTRUCTIONS

CAQAS 1033
FCAQAS 3033
AD 1330

FAD 3330
SUBTRACT
INSTRUCTIONS

SM 100

FSM 3100
SMS not
FSMS 3101

37

Clear, Add @ Absolute and Store
|(Q)] — A, Dand M

The CAQAS/FCAQAS instruction performs as a CAQA/FCAQA
instruction, then transfers the final contents of the A Register to
the D Register and to the original memory location. The final
contents of the A Register remain in A, D, and the original
memory location,

Add D
(A) +(D) — A

The AD/FAD instruction adds the contents of the D Register to
the contents of the A Register. The sum replaces the contents
of A, For FAD, the original contents of D may have been arranged
for addition (see page 30).

Subtract instructions subtract the contents (or the absolute value
of the contents) of a register or a specified memory location from
the contents of the A Register. Clear and store options are

available,

All Subtract Instructions first clear the Overflow Indicator to zero
unless an ICOS instruction has been given and is still in effect.

Subtract Memory

(M) — D
(A) = (M) — A

The SM/FSM instruction transfers the operand from the specified
memory location to the D Register, then subtracts the operand
from the contents of the A Register, The difference replaces the
contents of the A Register and the operand from memory remains
in D, For FSM, the operand in D may have been arranged for
subtraction (see page 30).

Subtract Memory and Store
(A) = (M)— A, DandM

The SMS/FSMS instruction performs as an SM/FSM instruction,
then transfers the difference from the A Register to the D Register
and to the original memory location. The difference replaces the
contents of A, D and the original memory location.

38

CSM
FCSM

CSMS
FCSMS

SMA
FSMA

SMAS
FSMAS

CSMA
FCSMA

no2

3102

o3

me
310

m
3am

ma2
an2

PHITCO 219 REFFRENCE MANUAL

Cleay nvd Subtract Memory

()~ &

The CSM/FCSM instruction transfers the operand from the
specified memory location to the D Register and the two’s
complement of the operand to the A Register. The operand
from memory remains in D and the two’s complement of the
operand replaces the contents of A, For FCSM, the final contents
of A are normalized,

Clear, Subtract Memory and Store
-(M) — A, Dand M

The CSMS/FCSMS instruction performs as a CSM/ FCSM instruc-
tion, then transfers the final contents of the A Register to the
D Register and to the original memory location, The final contents
of A remain in A, D and the original memory location,

Subtract Memory Absolute

(M) — D
(A) - [— A

The SMA/FSMA instruction transfers the operand from the
specified memory location to the D Register, then subtracts
the absolute value of the operand from the contents of the
A Register, The difference replaces the contents of the A
Register and the operand from memory remains inD. For FSMA,
the operand in D may have been arranged for subtraction (see
page 30).

Subtract Memovry Absolute and Stove
(A) - (M) —= A DaondM

The SMAS/ FSMAS instruction pertorms as anSMA/ FSMA instruc-
tion, then transfers the difference from the A Register to the
D Register and to the original memory location. The difference
replaces the contents of A, D and the original memory location,

Clear, Subtrvact Memory Absolute

(M) — D
-l — A

The CSMA/FCSMA instruction transfers the operand from the
specified memory location to the D Register, and the two’s
complement of the absolute value of the operandto the A Register,
The two’s complement of the absolute value of the operand from
the specified memory location replaces the contents of A and the
operand from memory remains in D, For FCSMA, the final

contents of A are normalized.

PHILCO 212 INSTRUCTIONS 39

CSMAS
FCSMAS

sQ
FSQ

SQS
FSQS

csQ
FCSQ

csQs
FCSQS

m3
313

Nn20
3120

121
31

Nn22
3122

n23
3123

Clear, Subtract Memory Absolute and Store

~|(My|— A DandM

The CSMAS/FCSMAS instruction performs as a CSMA/FCSMA
instruction, then transfers the final contents of the A Register
to the D Register and to the original memory location, The final
contents of the A Register remain in A, D, and the original
memory location,

Subtract Q

(QQ — D
(A) - (Q) — A

The SQ/FSQ instruction transfers the operand in the Q Register
to the D Register and subtracts the operand from the contents
of the A Register. The difference replaces the contents of A and
the operand from Q remains in D. For FSQ, the operand in D
may have been arranged for subtraction (see page 30).

Subtract @ and Store

(A) - (Q) — A, Dand M

The SQS/FSQS instruction performs as an SQ/FSQ instruction,
then transfers the difference fromthe A Register to the D Register
and to the original memory location, The difference replaces the
contents of A, D, and the original memory location,

Clear and Subtract @

(Q— D
-(Q) — A

The CSQ/FCSQ instruction transfers the operandinthe Q Register
to the D Register, and the two’s complement of the operand to the
A Register. The operand from the Q Register replaces the contents
of D and the two’s complement of the operand replaces the
contents of A, For FCSQ, the final contents of A are normalized.

Clear, Subtrvact @ and Store

-(Q) —= A, Dand M

The CSQS/FCSQS instruction performs as a CSQ/ FCSQinstruction,
then transfers the final contents of the A Register to the D Register
and to the original memory location. The final contents of the
A Register remain in A, D, and the original memory location,

40

SQA
FSQA

SQAS
FSQAS

CSQA
FCSQA

CSQAS
FCSQAS

SD
FSD

n30

3130

n3i
3131

n32
3132

N33
3133

1331
3331

PHILCO 212 REFERENCE MANUAL

Subtract @ Absolute
(Q— D

(A) - [(Q]— A

The SQA/FSQA instruction transfers the operand from the
Q Register to the D Register, then subtracts the absolute value
of the operand from the contents of the A Register, The difference
replaces the contents of A and the operand from Q remains in D,
For FSQA, the operand in D may have been arranged for sub-
traction (see page 30).

Subtract @ Absolute and Stove

(A) - I(Q)‘—’A,DondM

The SQAS/FSQAS instruction performs as an SQA/FSQA instruc-
tion, then transfers the difference from the A Register to the
D Register and to the original memory location. The difference
replaces the contents of A, D, and the original memory location,

Clear and Subtract @ Absolute

@— D
~l@|— A

The CSQA/FCSQA instruction transfers the operand from the
Q Register to the D Register, and the two’s complement of the
absolute value of the operand to the A Register, The two’s
complement of the absolute value of the operand from Q remains
in the A Register and the operand from Q remains in D, For
FCSQA, the final contents of A are normalized.

Clear, Subtract @ Absolute and Store

_1(0)!—'A,DcmdM

The CSQAS/FCSQAS instruction performs as a CSQA/FCSQA
instruction, then transfers the final contents of the A Register
to the D Register and to the original memory location. The final
contents of the A Register remain in A, D, and the original
memory location,

Subtract D

(A)-(D) — A

The SD/FSD instruction subtracts the contents of the D Register
from the contents of the A Register. The difference replaces the
contents of the A Register. For FSD, the original contents of
D may have been arranged for subtraction (see page 30).

PHILCO 212 INSTRUCTIONS 41

MULTIPLY
INSTRUCTIONS
MM 1200
FMM 3200
MMS 1201
FMMS 3201
MMR 1202
FMMR 3202

Multiply Instructions multiply the contents of the Q Register by
the contents (or absolute value of the contents) of the A Register
or a specified memory location. Round (see page 30) and store
options are available,

All Multiply Instructions first clear the Overflow Indicator to
zero unless an ICOS instruction has been given and is still in
effect.

Multiply Memory
M) — D
(M) x (@ — AQ

The MM/FMM instruction transfers the operand (the multiplicand)
from the specified memory location to the D Register, then multi-
plies the operand by the contents of the Q Register (the multiplier).

For fixed-point multiplication, a 94-bit product appears in the
A and Q Registers, with the major 47 bits in A and the minor
47 bits in Q. The sign bits of A and Q are the same.

For floating-point multiplication, a 70-bit product of the mantissas
appears in bits 1-35 of A and Q. The exponents (bits 36-47) and
the sign bits in the A and Q Registers are the same,

The multiplicand for an MM or an FMM instruction remains in D,
Multiply Memory and Store

(M) x (Q) — AQ, then (A) —~ Dand M

The MMS/FMMS instruction performs as an MM/FMM instruc-
tion, then transfers the major half of the product from the A
Register to the D Register and to the original memory location.
The major half of the product replaces the contents of D and the
original memory location, The minor half of the product remains
in Q.

Multiply Memory and Round

(M) — D
M x (Q — A

The MMR/FMMR instruction transfers the operand (the multi-
plicand) from the specified memory location to the D Register,
then multiplies the operand by the contents of the Q Register
(the multiplier).

For fixed-point multiplication, a 47-bit product, rounded to the
value closest to the 94-bit product that would have been formed
by an MM instruction, appears in the A Register.

A9

MMRS
FMMRS

MMA

FMMA

MMAS
FMMAS

1203
3203

1210

3210

121
Ky4}

PHILCO 212 REFERENCE MANUAL

For floating-point multiplication, a 35-bit product of the mantissas
appears in bits 1-35 of the A Register. This product is rounded
to the value nearest the 70-bit product which would have been
formed, prior to normalization, by an FMM instruction. The
exponent appears in bits 36-47 of the A Register.

For either MMR or FMMR, the multiplier appears in Q and the
multiplicand appears in D.

Multiply Memovry, Round and Store

(M) x (Q) — A, Dand M

The MMRS/FMMRS instruction performs as an MMR/FMMR
instruction, then transfers the product from the A Register to
the D Register and to the original memory location,

The product remains in A, D and the original memory location.
The multiplier appears in Q.

Multiply Memory Absolute

(M) — D
(M) | x (@ — AQ

The MMA/FMMA instruction transfers the operand from the
specified memory location to the D Register, then multiplies the
absolute value of the operand (the multiplicand) by the contents
of the Q Register (the multiplier).

For fixed-point multiplication, a 94-bit product appears in the A
and Q Registers, with the major 47-bitsin A and the minor 47 bits
in Q. The sign bits of A and Q are the same.

For floating-point multiplication, a 70-bit product of the man-
tissas of the operands appears in bits 1-35 of A and Q. The ex-
ponents (bits 36-47) and the sign bits in the A and Q Registers
are the same,

For MMA or FMMA the operand from memory remains in D.

Multiply Memory Absolute and Store

[(M)] x (Q) — AQ, then (A) — Dand M

The MMAS/FMMAS instruction performs as an MMA/FMMA
instruction, then transfers the major half of the product from the
A Register to the D Register and to the original memory loca-
tion. The major half of the product remains in A, D, and the
original memory location. The minor half of the product remains

in Q.

PHILCO 212 INSTRUCTIONS . 43

MMAR
FMMAR

MMARS
FMMARS

MA
FMA

1212 Multiply Memory Absolute and Round

3212

1213
3213

1220
3220

(M) — D
[M)] x (@ — A

The MMAR/FMMAR instruction transfers the operand from the
specified memory location to the D Register, then multiplies the
absolute value of the operand (the multiplicand) by the contents
of the Q Register (the multiplier),

For fixed-point’ multiplication, a 47-bit product, rounded to the
value closest to the 94-bit product that would have been formed
by an MMA instruction, appears in the A Register.,

For floating-point multiplication, a 35-bit product of the man-
tissas appears in bits 1-35 of the A Register. The product is
rounded to the value nearest the 70-bit product that would have
been formed, prior to normalization, by an FMMA instruction.
The exponent appears in bits 36-47 of the A Register.

For either an MMAR or an FMMAR, the multiplier appears in
Q and the multiplicand appears in D,

Multiply Memory Absolute, Round and Store

[(M)| x (@ — A, DandM

The MMARS/FMMARS instruction performs as an MMAR/ FMMAR
instruction, then transfers the product from the A Register to the
D Register and to the original memory location,

The product remains in A, D, and the original memory location.
The multiplier appears in Q,

Multiply A

(A) — D
(A) x (@ — AQ

The MA/FMA instruction transfers the operand (the multiplicand)
from the A Register to the D Register, then multiplies the operand
by the contents of the Q Register (the multiplier).

For fixed-point multiplication, a 94-bit product appears in the A
and Q Registers, with the major 47bitsin A and the minor 47 bits
in Q. The sign bits of A and Q are the same,

For floating-point multiplication, a 70-bit product of the man-
tissas appears in bits 1-35 of A and Q. The exponents (bits 36-47)
and the sign bits in the A and Q Registers are the same. '

The mulitplicand for an MA or an FMA instruction remains in D,

MAS
FMAS

MAR
FMAR

MARS
FMARS

MAA
FMAA

1221
327

1222
3222

1223
3223

1230
3230

PHILCO 212 REFERENCE MANUAL

Multiply A and Stove

(A) x (Q) — AQ, then (A) — Doaond M

The MAS/FMAS instruction performs as an MA/FMA instruction,
then transfers the major half of the product from the A Register
to the D Register and tothe specified memory location. The major
half of the product replaces the contents of D and of the original
memory location, The minor half of the product remains in Q.

Multiply A and Round

(A)— D
(A) x (@ — A

The MAR/FMAR instruction transfers the operand (the multi-
plicand) from the A Register to the D Register, then multiplies
the operand by the contents of the Q Register (the multiplier).

For fixed-point multiplication, a 47-bit product, rounded to the
value closest to the 94-bit product that would have been formed
by an MA instruction, appears in the A Register,

For floating-point multiplication, a 35-bit product of the mantissas
appears in bits 1-35 of the A Register., This product is rounded
to the value closest to the 70-bit product that would have been
formed, prior to normalization, by an FMA instruction. The

exponent appears in bits 36-47 of the A Register,

For either MAR or FMAR, the multiplier appears in Q and the
multiplicand appears in D,

Multiply A, Round and Store

(A) x (Q) — A, Dand M

The MARS/FMARS instruction performs as an MAR/FMAR in-
struction, then transfers the product from the A Register to the
D Register and to the original memory location.

The product remains in A, D, and the original memory location.
The multiplier appears in Q.

Multiply A Absolute

(A) — D
[(A)] x (Q — AQ

The MAA/FMAA instruction transfers the operand from the A
Register to the D Register, then multiplies the absolute value of
the operand in the D Register (the mulitplicand) by the contents
of the Q Register (the multiplier).

PHILCO 212 INSTRUCTIONS 45

MAAS
FMAAS

MAAR
FMAAR

MAARS
FMAARS

1231
3231

1232
3232

1233
3222

For fixed-point multiplication, a 94-bit product appears in the A
and the Q Registers, with the major 47 bits in A and the minor
47 bits in Q, The sign bits of A and Q are the same.

For floating-point multiplication, a 70-bit product of the man-
tissas appears in bits 1-35 of A and Q. The exponents (bits 36-47)
in the A and Q Registers are the same,

For MAA or FMAA, the operand from memory remains in D,

Multiply A Absolute and Store
[(A)] x (Q) — AQ, then (A) —= D and M

The MAAS/FMAAS instruction performs as an MAA/FMAA in-
struction, then transfers the major half of the product from the
A Register to the D Register and tothe original memory location,
The major half of the product remains in A, D, and the original
memory location,

Multiply A Absolute and Round

(A)— D
[(A)] x (Q — A

The MAAR/FMAAR instruction transfers the operand from the A
Register to the D Register, then multiplies the absolute value of
the operand (the multiplicand) by the contents of the Q Register
(the multiplier).

For fixed-point multiplication, a 47-bit product, rounded to the
value nearest the 94-bit product that would have been formed by
an MAA instruction, appears in the A Register.

For floating-point multiplication, a 35-bit product of the mantissas
appears in bits 1-35 of the A Register. This product is rounded
to the value nearest the 70-bit product that would have been
formed, prior to normalization, by an FMAA instruction. The
exponent appears in bits 36-47 of the A Register.

For either an MAAR or an FMAAR, the multiplier appears in Q
and the multiplicand appears in D.

Multiply A Absolute, Round and Store

[(A)] x (Q — A, Dand M

The MAARS/FMAARS instruction performs as an MAAR/FMAAR
instruction, then transfers the product from the A Register to the
D Register and to the original memory location,

The product remains in A, D, and the original memory location,
The multiplier appears in Q.

46

MAD 1320
FMAD 3320
MSU 1321
FMSU 3321
DIVIDE
INSTRUCTIONS

PHILCO 212 REFERENCE MANUAL

Multiply and Add

(A),— D

(M) x (Q) — A
(A), + (A), — A

The MAD/FMAD instruction transfers the operand (the multi-
plicand) from the specified memory location to the D Register.
The contents of A are then transferred to an unaddressable con-
trol register. The contents of the D Register are multiplied by
the contents of the Q Register (the multiplier) forming a rounded
product in A, The contents of the unaddressable control register
are then added to the contents of A. The sum replaces the con-
tents of the A Register. The original contents of A are in D.tFor
an FMAD, the contents of D may have been arranged for addition
(see page 30), The multiplier remains in Q.

Multiply and Subtract

(A),— D
(M) x (@) — A
(A), —(A),— A

The MSU/FMSU instruction is the same as the MAD/FMAD in-
struction, except that the original contents of A are subtracted
from the rounded product in A. The difference replaces the contents
of the A Register and the original contents of A are in D.tFor an
FMSU, the contents of D may have been arranged for subtraction
(see page 30).

Divide Instructions divide the contents of the A Register or of
the A and Q Registers by the contents of a specified memory
location, Store options are available,

All Divide Instructions first clear the Overflow Indicator to zero
unless an ICOS instruction has been given and is still in effect.

t Fixed-point overflow is indicated only after the addition or
subtraction have been completed. If overflow occurs during the
multiplication and is corrected after the addition or subtraction,
no overflow will be indicated.

PHILCO 212 INSTRUCTIONS 47

DAQ 1300
FDAQ 3300
DAQS 1301

FDAQS 3301
DA 1302
FDA 3302
DAS 1303
FDAS 3303

CLEAR INSTRUCTIONS

M 0100

Divide A and Q (W) —= D

(AQ) + M —Q

Remainder — A

The DAQ/FDAQ instruction transfers the operand from the speci-
fied memory locationtothe D Register and divides the operand into
the contents of the A and Q Registers, treating the contents of
the A Register as the major half of the dividend and the contents
of the Q Register as the minor half, The exponent (if FDAQ) and
the sign bit in Q are ignored. The quotient is developed in the Q
Register and the remainder appears in the A Register. The oper-
and from the specified memory location remains in D, For
FDAQ, the final contents of the D Register are normalized,

Divide A and @ and Store
(AQ) + (M) — Q, Dand M

Remainder — A

The DAQS/FDAQS instruction performs as a DAQ/FDAQ instruc-
tion, then transfers the quotient inthe Q Register to the D Register
and to the original memory location, The quotient remains in Q, D
and the original memory location. The remainder appears in the
A Register,

Divide A (M)—> D
(A) + (M)— Q

Remainder — A

The DA/FDA instruction transfers the operand from the specified
memory location to the D Register, then divides the operand into
the contents of the A Register, The quotient is developed in the
Q Register and the remainder in the A Register, The operand
from the specified memory location remains in D, For FDA, the
final contents of the D Register are normalized.

Divide A and Store
(A) + (M)—/ Q,DondM

Remainder — A

The DAS/FDAS instruction performs as a DA/FDA instruction,
then transfers the quotient in the Q Register to the D Register
and to the original memory location. The quotient remains in
Q, D, and the original memory location., The remainder appears
in the A Register.

Clear Instructions clear the contents of a register or a specified
memory location to 48 zero bits.

Clear Memory

0 — My 47

The CM instruction clears the contents of a specified memory
location to 48 zero bits.

48

CA om
cQ o122
cD 0133
TRANSFER
INSTRUCTIONS
TMA o101
T™Q 0102
TMD 0103
TAM ono
TAQ on2

PHILCO 212 REFERENCE MANUAL

Clear A
0 — Ag_y7

The CA instruction ciears the contents of the A Register to 48
zero bits.

Clear @
0 — Qg 47

The CQ instruction clears the contents of the Q Register to 48
zero bits.

Clear D
0 — Dy.y7

The CD instruction clears the contents of the D Register to 48
zero bits.

Transfer Instructions transfer information from one register to
another, from a specified memory location to a register, or from
a register to a specified memory location, The register or mem-
ory location from which a transfer is made remains unchanged
after the transfer,

Transfer Memovry to A

(M) — Dond A
The TMA instruction transfers the operand from the specified
memory location to the D Register and to the A Register.
Transfer Memory to

(M) — Dand Q

The TMQ instruction transfers the operand from the specified
memory location to the D Register and to the Q Register.

Transfer Memory to D
(M) — D

The TMD instruction transfers the operand from the specified
memory location to the D Register,

Transfer A to Memory
(A)—= Dand M

The TAM instruction transfers the contents of the A Register to
the D Register and to the specified memory location,
Transfer A to @

(A)— Dand Q

The TAQ instruction transfers the contents of the A Register to
the D Register and to the Q Register.

PHILCO 212 INSTRUCTIONS 49

TAD

TOM

TQA

TQD

DM

TDA

0Q

on3

0120

o1

0123

o130

o3

0132

Transfer A to D

(A)— D

The TAD instruction transfers the contents of the A Register to
the D Register,

Transfer @ to Memory

(Q—= Dand M

The TQM instruction transfers the contents of the Q Register to
the D Register and to the specified memory location.

Transfer @ to A

(QQ— Dand A

The TQA instruction transfers the contents of the Q Register to
the D Register and to the A Register,

Transfer @ to D
(Q—D

The TQD instruction transfers the contents of the Q Register to
the D Register,

Transfer D to Memory

(D)—= M

The TDM instruction transfers the contents of the D Register to
the specified memory location,

Transfer D to A
(D)— A

The TDA instruction transfers the contents of the D Register to
the A Register.

Transfer D to @
(D)—-Q

The TDQ instruction transfers the contents of the D Register to
the Q Register,

PHILCO 212 REFERENCE MANUAL

TIML 0020 Transfer the Contents of the JA Register to Memory

TIMR 2020
(M) —=D .¢CJML? N

YES

A =D,

32K: JA,_ D

r1 0 —D,
65K: JAy 15Dy ¢

JALis D5

AL 0 s PALisT DPaga

» O —M e

The TJM instruction transfers the operand from the specified
memory location to the D Register, then transferseither 12 or 15
bits (depending on the setting of the S-bit of the specified address
field in D) and the F-bit from the Jump Address Register to the
specified address field (TJML or TJMR for left or right) of the
D Register, unless this instruction is extended by an EXT in-
struction (see pages 88-92), Only the specified address part of the
word in D is altered. The contents of the D Register are then
transferred to the specified memory location. The altered operand
remains in D,

PHILCO 212 INSTRUCTIONS 51

TUL
TIJR

TTD

0022
2022

2010

Transfer the Instruction Address Field to JA

32K: €l —JA

—] 65K: Cly_ s—=JA, ;5
(€] g=JA,"

32K: Cly, —=JA
INDEXED?

NO lYES
32K: Cl 45+ (X)—JA YES YES| 32K: Cll.]s+-(X)—’JA

i (X)=JA Xy = 0? Xy=0? N ag
65K: Cly s+ 65K: Clg_y5* (X) JA

lNO NO

65K: c|0.1 5_.JA

(X)—=JA
YES
TL? 0—"JA,
t When Cl is controlled by an
RPT or DR instruction,
[RPT]g or [DR]j—e X, No
‘—’JAF

The TI1J instruction places its effective address in the JA Regis-
ter and sets the F-bit of the JA Register to zero (if TIJL) or to
one (if TIJR).

On a 65K system, if this instruction is not indexed and is not
extended by an EXT instruction (see pages 88-92), the first bit of
the JA Register is set equaltothe first bit of the 16-bit address of
the memory location in which the instruction is stored unless this
instruction is controlled by an RPT or DR instruction. If this
instruction is controlled by an RPT or DR instruction and is not
indexed or extended, the first bit of the JA Register is set equal
to the first bit of the 16-bit address of the memory location in
which the RPT or DR instruction is stored.

Transfer from Toggle Register to D
(Toggle Register) —= D

The TTD instruction transfers the word established ina manually
operated Toggle Register to D, The Toggle Register is a 48-bit
register composed of 48 switches on the control console. Each
switch may be placed in the on or off position to correspond to a
binary one or zero, respectively.

52

TCM

TD0C

Tio

PHILCO 212 REFERENCE MANUAL

001\ Transfer from Console Typewriter to Memory
CT — D247

(-D)Z'_'_> M

The TCM instruction transfers one character from the Console
Typewriter keyboard to the six rightmost bit positions of the D
Register without altering the remaining positions of D. The entire
contenis of the D Register are then transferred to a specified
memory location,

2011 Transfer from D to Console Typewriter
Dy s —CT
The TDC instruction transfers the character in the six leftmost

bit positions of the D Register to the Console Typewriter. The
character is then typed.

0010 Transfer Control to mput-Oulput

START

REPEAT YES
MODE?
NO

(D)-—10CU

[N1] = [C1+1] (N] = [c1+2)

ACCEPTED?

The TIO instruction transfers the word from the D Register to
the appropriate input-output system that will interpret it as an
input-output order (see page 17). If the input-output order is

PHILCO 212 INSTRUCTIONS 53

JUMP
INSTRUCTIONS
JMPL 0200
JMPR 2200
JAZL 0201
JAZR 2201

acceptable to the input-output system, the instruction following
the TIO is skipped and the instruction beyond is executed, If the
input-output order is not accepted, control is transferred to the
instruction immediately following the TIO.

The address field of the TIO instruction generally indicates the
starting address in memory of the input-output transmission. On
a 65K system, a TIO instruction that is not indexed and is not
extended by an EXT instruction (see pages 88-92) uses the value of
the first bit of the 16-bit address of the memory location in which
the instruction is stored as the first bit of its starting address.

This instruction acts as an NOP if it is under control of an RPT
or a DR instruction (see pages 83 and 85).

Jump Instructions effect a transfer of control from the Jump
Instruction to any other instruction, This transfer may be uncon-
ditional or be dependent on some condition existing in a register
or registers. Every Jump Instruction, except JL and JR, first
stores the location of the next instruction in the JA Register
(unless the Jump Instruction is in the left half of an instruction
word controlled by an RPT or DR instruction) and sets the F-bit
of the JA Register to zero or one, depending on whether the next
instruction is in the left or right half of that location.

On a 65K system, if a Jump Instruction is not indexed and is not
extended by an EXT instruction (see pages 88-92), the first bit of
JA is set equal to the first bit in the 16-bit address of the memory
location in which the instruction is stored unless the Jump In-
struction is controlled by an RPT or DR instruction, If the Jump
Instruction is controlled by an RPT or DR instruction and is not
indexed or extended, the first bit of the JA Register is set equal to
the first bit of the 16-bit address of the memory location in which
the RPT or DR instruction is stored.

Jump

The JMP instruction changes the sequence of instructionsby exe-
cuting the next instruction and any subsequent instructions start-
ing at the location specified in the address field of the JMP
instruction. The instruction in the left or right half of the speci-
fied location is executed depending on whether the instruction is
a JMPL or a JMPR.

Jump if the Contents of A ave Zero

The JAZ instruction is executed as a JMP instruction if the con-
tents of the A Register are fixed point zevo. I the contents of the
A Register are not fixed point zero, the instruction immediately
following the JAZ instruction is executed.

54

(ENTER

IN REPEAT
LOOP?

ClIN
LEFT HALF OF

INSTRUCTION
WORD?

PHILCO 212 REFERFNCFE MANIIAT

T—JA WHERE
T-U W

IS THE NUMBER OF TIMES THE IN-
STRUCTIONS FOLLOWING C! HAVE
BEEN PERFORMED.

U = 4096 IF THE REPEAT IN-
STRUCTION IS NOT EX-
TENDED. IF THE REPEAT
INSTRUCTION IS EX-
TENDED,

U 32,768 (IF 32K)

ClIN FIRST TIME OR 65,536 (IF 65K)
LEFT ““LTF|°°F 0—=JA, a W - ORIGINAL NUMBER OF
INSTRUCTION PERFORMED? TIMES SPECIFIED FOR
ORD? THE INSTRUCTIONS TO
BE PERFORMED
YES |
1—=JA (Ch« \i—JA |¢——]
YES
(s8TL, sBTR?)
/[~ 1aEQL, saEGR O\
(Q) — D JAGQFL JAGQFR
JAGQL JAGQR’
NO
BREAKPOINT JUMP
CONDITION spscmh SWITCH ON AND
FOR TRANSFER OF BREAKPOINT HALT
CONTROL BY THIS SWITCH OFF?
INSTRUCTION (SEE
OPPOSITE PAGE)
IS MET?
CENTRAL BREAKPOINT
JQPL, JQPR, Q™0 4 PROCESSOR HALTS, JUMP SWITCH ON
JGNL, JQNR? b ™ ADVANCE BAR AND BREAKPOINT
PRESSED? HALT SWiTCH ON?
NO ¥_ k___/
NO NO
JQEL, JQER, NO BREAKPOINT
JgLL JQOR? NO JUMP SWITCH OFF
) ~ AND BREAKPOINT
HALT SWITCH ON?
YES
YES
Q,,—Q \ CENTRAL
A EXIT < PROCESSOR
Q.6 Ne HALTS

Jump Instructions
Micro-Flow Chart

PHILCO 212

32K: INI] = Cly g
] 65K: (NI3 = Clg s

INSTRUCTIONS

INDEXED?

EXTENDED?

32K: (M) =€l 4
esk: N1 o =€1 o —
(N1], = [CI] ¢

32K: N =Cly 0 (0 X, = 0? [NI) = Clgpg + (X)
65k - =Clgy st (X) Y 415 —
JQPL, JQPR, Q.7 9.4
JONL, JONR? Q,—q,,
NO

JQEL, JQER, Q,—9,

t When Cl is controlled by an JQOL, JQOR? Q0-46«-—’°l.47

RPT or DR instruction,

[Ni]y = [RPT] g or [DR],

INSTRUCTION TRANSFER OF CONTROL INSTRUCTION TRANSFER OF CONTROL
JMPL, IMPR UNCONDITIONAL JQNL, JONR ' Q =1

JAZL, JATR (A =0 JQEL, JQER Q,=0

JNOL, JNOR OVF = 0 JeoL, JQOR Q=1

JOFL, JOFR OVF =1 JOPL, JOPR D, =0

JAPL, JAPR A, =0 JAGQFL, JAGQFR A > Q FLOATING-POINT

JANL, JANR Ay =1 JAGQL, JAGGR A > Q FIXED-POINT

JAEDL, JAEDR) =(@© JAGDL, JAGDR A > D ALPHANUMERIC

JAEQL, JAEQR W = JL, R UNCONDITIONAL

JQPL, JQPR Q =0 JBTL, JBTR SETTING OF BREAKPOINT SWITCHES

56

JNOL
JNOR

JOFL
JOFR

JAPL
JAPR

JANL
JANR

JAEDL
JAEDR

0202
2202

0203
2203

0210
2210

o2n
22

0213
2213

PHILCO 212 REFERENCE MANUAL

Jump if No Overflow

The JNO instruction is executed as a JMP instruction if the
Ovevflow Indicatoy equals zevo (no overflow indicated). If the In-
dicator equals one (overflow), the instruction immediately following
the JNO instruction is executed. This instruction clears the
Overflow Indicator to zero even if an ICOS instruction has been
given and is still in effect,

Jump If Overflow

The JOF instruction is executed as a JMP instruction if the
Ovevflow Indicatoy equals one (overflow indicated). If the indica-
tor equals zero (no overflow), the instruction immediately
following the JOF instruction is executed. This instruction clears
the Overflow Indicator to zeroevenifanICOS instruction has been
given and is still in effect.

Jump If the Contents of A ave Positive

The JAP instruction is executed as a JMP instruction if the left-
most bit of the A Register is zevo, If the bit is not zero, the in-
struction immediately following the JAP instruction is executed.

Jump If the Contents of A ave Negative

The JAN instruction is executed as a JMP instruction if the left-
most bit of the A Register is one. If the bit is not one, the instruc-
tion immediately following the JAN instruction is executed,

Jump If A Equals D

The JAED instruction is executed as a JMP instruction if the con-
tents of the A Register are equal to the contents of the D Regis-
ter. Otherwise, the instruction immediately following the JAED
instruction is executed.

PHILCO 212 INSTRUCTIONS 57

JAEQL
JAEQR

JQPL
JQPR

JONL
JONR

JQEL
JOER

JQOoL
JQOR

0212
2212

0220
2220

0221
2221

0222
2222

0223
2223

Jump If A Equals @

The JAEQ instruction transfers the contents of the Q Register to
the D Register and then is executed as a JAED instruction, The
word from Q remains in D,

Jump If Q is Positive

The JQP instruction is executed as a JMP instruction if the left-
most bit of the @ Register is zero. If the bit is notf zero, the in-
struction immediately following the JQP instruction is executed.
In either case, the contents of the Q Register are shifted cir-
cularly one bit to the left. (The bits in the Q Register are rotated
one bit to the left, Bit zero enters bit 47.) Overflow is ignored.

Jump If @ is Negative

The JQN instruction is executed as a JMP instruction if the left-
most bit of the @ Register is one. If the leftmost bit is zero, the
instruction immediately following the JQN instructionis executed.
In either case, the contents of the Q Register are shifted cir-
cularly one bit to the left., Overflow is ignored.

Jump If @ is Even

The JQE instruction is executed as a JMP instruction if the
rightmost bit of the @ Register is zevo. If the rightmost bit is not
zero, the instruction immediately following the JQE instructionis
executed, In either case, the contents of the Q Register are shifted
circularly one bit to the right,

Jump If Q is Odd

The JQO instruction is executed as a JMP instruction if the right-
most bit of the Q Register is one. If the rightmost bit is not one,
the instruction immediately following the JQO insiruction is exe-
cuted. In either case, the contents of the Q Register are shifted
circularly one bit to the right,

58

JOPL
JDPR

JAGQFL
JAGQFR

JAGQL
JAGQR

JAGDL
JAGDR

JL
JR

0230
2230

0231
2231

0232
2232

0233
2233

0320
2320

PHILCO 212 REFERENCE MANUAL

Jump If D is Positive

The JDP instruction is executed as a JMP instruction if the left-
most bit of the D Register is zero,If the leftmost bit is not zero,
the instruction immediately following the JDP instruction is
executed,

Jump If A is Greater than ov equal to Q, Floating Point

The JAGQF instruction transfers the word in the Q Register to
the D Register, If the word in the A Register is greater than or
equal to the word in the D Register, the JAGQF instruction is
executed as a JMP instruction, If the word in the A Register is
less than the word in the D Register, the next sequential instruc-
tion is executed. Both words are compared as floating-point
numbers. The word originally in Q remains in D,

Jump If A is Greater than ov equal to @

The JAGQ instruction is the same as JAGQFL, except that the
contents of the registers are considered to be signed, fixed point
numbers,

Jump If A is Greater than or equal to D

The JAGD instruction is executed as a JMP instruction if the con-
tents of the A Register ave greater than ov equal to the contents
of the D Register. If the contents of the A Register are not greater
than or equal to the contents of the D Register, the instruction
immediately following the JAGD instruction is executed. The
words in both registers are considered as alphanumeric words
(see page 15) and are compared bit-by-bit.

Jump

The J instruction is executed as a JMP instruction except that
the location of the next instructionis »nof stored in the JA Register,

PHILCO 212 INSTRUCTIONS 59

JBTL 0001
JBTR 2001
SHIFT
INSTRUCTIONS
SLAQ 2100

Breakpoint Jump

The JBT instruction is executed in one of four ways depending on
the setting of two adjacent, two-state pushbuttons onthe Operator’s
Console, the Breakpoint Jump and Breakpoint Halt buttons. The
setting of these buttons and the operations they effect are shown
in the following table:

Breakpoint Jump | Breakpoint Halt Operation
On On Jump after Halt
On Off Unconditional Jump
Off On Halt
Off Off Execute next instruction

The Breakpoint Jump and Halt switches cannot be operated and
their status cannot be changed while the computer is cycling.

Shift Instructions shift all or some of the bits in a register right,
left or circularly.

All Shift instructions first clear the Overflow Indicator to zero
unless an ICOS instruction has been given and is still in effect,

Shift Left A and @

A — A

1-47
Q, — A

0-46

47

- Q

Q4 0-46

0—q,

The SLAQ instruction shifts the bits of the A and Q Registers
(considered as one 96-bit word) left the number of bits, modulo
64, specified in the V-field of the instruction. The bits shifted
out of the left side of the A Register are lost and vacated bits at
the right side of the Q Register are replaced by zeros, Fixed-
point overflow will occur if the signbitis changed or a significant
bit is lost,

60

SRAQ

SLAQN

SRAQN

2101

2102

2103

PHILCO 212 REFERENCE MANUAL

Shift Right A and @

Apgs =™ A

Ay ™ Q

Q.46 ™ Q.47

The SRAQ instruction shifts the bits of the A and Q Registers
(considered as one 96-bit word) right the number of bits, modulo
64, specified in the V-field of the instruction, The bits shifted out
of the right side of the Q Register are lost, and the vacated bits
at the left side of the A Register are replaced by zeros.

Shift Left A and @ Numerical

[>]
[S

Q4 1.46
0™ Q;

The SLAQN instruction is the same as an SLAQ instruction, ex-
cept that the sign bits of the A and Q Registers are not shifted
or changed, The bits are shifted out of Q at bit one. Fixed-point
overflow will occur if a significant bit is lost,

Shift Right A and @ Numevical
AO —
Ao —_

2-47

(=]

OO
|
o © o » » »

2.47

The SRAQN instruction is the same as the SRAQ instruction, ex-
cept that the sign bits of the A and Q Registers are not shifted
or changed and the sign bit of A is propagated in the vacatedbits
to its right, i.e., if the sign bit is one, a one is inserted in all the
vacated bits. The bits shifted out of A enter Q, in order, at bit one,

PHILCO 212 INSTRUCTIONS 61

SLA

SRA

SLAN

SRAN

2no

2m

212

m3

Shift Left A

A ™ Ags

0= A,

The SLA instruction shifts the bits of the A Register left the
number of bits, modulo 64, specified in the V-field of the instruc-
tion, The bits shifted out of the lett side of the A Register are
lost, and the vacated bits at the right side are replaced by zeros.
Fixed-point overflow will occur if the sign bit is changed or a
significant bit is lost,

Shift Right A

0 — A,

A
0-46 = A,_;

The SRA instruction shifts the bits of the A Register right the
number of bits, modulo 64, specified in the V-field of the instruc-
tion, The bits shifted out of the right side of the A Register are
lost, and the vacated bits at the left side are replaced by zeros,

Shift Left A Numerically

AO —_— AO
Avsr ™ Mo
0 — A‘7

The SLAN instruction is the same as the SLA instruction except
that the sign bit of the A Register is not shifted or changed,
Fixed-point overflow will occur if a significant bit is lost.

Shift Right A Numerically

Ay — A,
Ay =™ A

Alse™ Ay

The SRAN instruction is the same as the SRA instruction, except
that the sign bit of the A Register is not shifted or changed and
is propagated in the vacated bits to its right,

SLQ

SRQ

SLQN

SRQN

2120

2121

2122

2123

PHILCO 212 REFERENCE MANUAL

Shift Left Q

- n
W47 ™ Yo.46
0— Q,

The SLQ instruction shifts the bits of the Q Register left the num-
ber of bits, modulo 64, specified in the V-field of the instruction.
The bits at the left side of the Q Register are lost, and the vacated
bits at the right side are replaced by zeros. Fixed-point overflow
will occur if the sign bit is changed or if a significant bit is lost.

Shift Right @

0— Q,

Q46 — Q147
The SRQ instruction shifts the bits of the Q Register right the
number of bits, modulo 64, specified in the V-field of the instruc-

tion. The bits at the right side of the Q Register are lost, and the
vacated bits at the left side are replaced by zeros.

Shift Left @ Numerically

Q,— Qo
Q7 Qs
0o — Q“

The SLQN instruction is the same as the SLQ instruction except
that the sign bit of the Q Register is not shifted or changed.
Fixed-point overflow will occur if a significant bit is lost,

Shift Right @ Numevically

Q1-46 Q2-47

The SRQN instruction is the same as the SRQ instruction, except
that the sign bit of the Q Register is not shifted or changed, and
is propagated in the vacated bits to its right,

PHILCO 212 INSTRUCTIONS 63

SCD 2130
SCD 2132
SRD 213
SRDN 21133

INDEX REGISTER
INSTRUCTIONS

Shift Cirvcular D

D, D

D0-46 Dl -47

The SCD instruction rotates the bits of the D Register right the
number of bits, modulo 64, specified in the V-field of the instruc-
tion, Bits shifted out of the right side of the D Register are re-
turned, in order, at the left side of D.

Shift Right D
0— D,

D0-46 D|-47

The SRD instruction shifts the bits of the D Register right the
number of bits, modulo 64, specified in the V-field of the instruc-
tion, The bits shifted out of the right side of the D Register are
lost, and the vacated bits at the left side are replaced by zeros.

Shift Right D Numevrically

D, — D,

Dy — D,

D46 Doy

The SRDN instruction is the same as SRD instruction, except
that the sign bit of the D Register is not shifted or changed and is
propagated in the bits to its right.

Index Register Instructions alter the contents of an index regis-
ter, set the C-bits and Y-bits of an index register to one or zero,
or transfer information between an index register and the D
Register.

An Index Register Instruction may operate on an address field
in the D Register or on its own address field, The number of bits
involved in such an operation depends on the size of memory and
on the setting of the S-bit of the address field operated on, unless
the instruction is extended by an EXT instruction (see pages 88-92),

64 PHILCO 212 REFERENCE MANUAL

32K: D4_]5-—'X4_‘5
0—X, 5
START EXTENDED? 65K: Dy Xy
LCl; o Xp t
lYEs 0—X;.3
32K: D, —=X 32K: Dy g — Xy 5
1-15 1-15
65K: D, =X 65K: Dy)5 — X4
0-15 0-15 () X
g Xot
l‘ v
YES D,—Xc
TDOXLY?
D, /X
17 Y t When Cl is controlled by an
RPT or DR instruction,
l"° (RPT]j or [OR];—X,
YES D, —Xc
TDXLC?
R 0—=X,
E
G luo
|
S
T 0—X, EXIT
E —
R

TDXL, TDXLC, TDXLY
Micro-Flow Chart

32K: Djg. 39 Xats

NO NO 0—X, 4
EXTENDED? D,, =0? 65K: Dog 1g—X 15
(e y=—Xgt

lYES lYES 0 x!-3

3X: D —X
32K: D X 25-39 1-15
25.39 1-18 65K: D X1

—_— 39
65K: Dyt 397 X0.15 (& —xoy
i -

YES D —X
TDXRY? 0 ¢
DXy

) YES

t When Cl is controlled by an
RPT or DR instroction,
[RPT]gor [DR]g==X,

lno

TDXRC?

Dyo—Xc

0—X,

luo

0—=Xy

TDXR, TDXRC, TDXRY
Micro-Flow Chart

PHILCO 212 INSTRUCTIONS 65

TDXL
TDXR

TOXLC
TDXRC

TOXLY
TDXRY

0300
2300

0301
2301

0322
2322

Transfer D to Index Register

The TDX instruction transfers the V-field of the specified half
(L or R for left or right) of the word in the D Register to a spec-
ified index register. The Y-bit of the specified index register is
set to zero.

On a 65K system, if this instruction is not extended by an EXT
instruction (see pages 88-92), the first bit of the specified index
register is set equal to the first bit of the 16-bit address of the
memory location in which the instruction is stored, unless this
instruction is controlled by an RPT or DR instruction and is not
extended, If this instruction is controlled by an RPT or DR
instruction and is not extended, the first bit of the index register
is set equal to the first bit of the 16-bit address of the memory
location in which the RPT or DR instruction is stored.

Transfer D to Index Register with C-Bit

The TDXLC/TDXRC instruction is the same as the TDX instruc-
tion, except that the C-bit of the index register is replaced by the
F-Dbit of the specified half of the word in the D Register (see page
16). The Y-bit of the specified index register is set to zero.

Transfer D to Index Register with C-Bit and Y-Bit

The TDXLY/TDXRY instruction is the same as the TDX instruc-
tion, except that the C-bit and the Y-bit of the index register are
replaced by bits 16 and 17 of D (if TDXLY), or by bits 40 and 41
of D (if TDXRY).

OTM—AVN—0OMA

START

PHILCO 212 REFERENCE MANUAL

2K: Xy Ay
Xc—=JAg

65K: Xg,s—JAg.1s
Xc—JAp

\ NO
EXTENDED? |- Xers— D5
YES
32K: x]-]s_‘ohls
0—=D, X5 D
65K: Xg,157Dg.15
— Y
YES X.—D
c 16
™D TXDLY? ‘
Xy—=D,
A v\\EXLF
TXDL, TXDLC, TXDLY
Micro-Flow Chart
32K3 xl¢]5 JA|_15
X —JAg
65K: Xg 15— JAgys
Xe—IA,
EXTENDED? X415 Dag.39
YES YES
32K: Xy 157Dys.59
0—D,, Xy 157 Das.39
65K: Xo.15Dyy 39
» v
\ NO YES xc-—>p
TXDRC? TXDRY? x 40
/ Y Du
YES
X0y

TXDR, TXDRC, TXDRY
Micro-Flow Chart

67

PHILCO 212 INSTRUCTIONS

TXDL
TXDR

TXDLC
TXDRC

TXDLY
TXDRY

0302
2302

0303
2303

0323
2323

Transfer from Index Register to D

The TXD instruction transfers the contents of a specified index
register to the JA Register, then transfers 12 or 15 bits from
JA to the specified half (L or R for left or right) of the D Reg-
ister depending on the setting of the S-bitin D, unless this instruc-
tion is extended by an EXT instruction (see pages 88-92), Only the
specified address field of D is affected. The entire field from the
index register remains in JA, The C-bit is transferred to the
F-bit of JA, remaining there; it is not transferred to the D
Register,

Transfer from Index Register to D with C-Bit

The TXDLC/TXDRC instruction is the same as the TXD instruc-
tion, except that the C-bit which was transferred to the F-bit of
the JA Register is also transferred to the F-bit corresponding to
the specified half (L or R for left or right) of the D Register.

Transfer from Index Register to D with C-Bit and Y-Bit

The TXDLY/TXDRY instruction is the same as the TXDL/TXDR
instruction, except that C-bit and the Y-bit are transferred to
bits 16 and 17 of D (TXDLY) or to bits 40 and 41 of D (TXDRY).

AM—AN—00MADO

AR

ADXL
ADXR

PHITCON 212 REFFRENCFE MANITAT

0310 Add D to Index Register

2310

32K: (X) + D, =X
65K: (X) + Dy s—x

EXTENDED?

NO

NO

ADXR - YES 32K: (X) + 025‘39—>X
EXTENDED? 65K: (X) + Dy yg—X

NO

(X) + Dyg 39X

NO

(X)+D X EXIT

—
28-39

The ADX instruction adds the V-field of the specified half (L or
R for left or right) of the D Register to the contents of a specified
index register. (If this instruction is extended by an EXT instruc-
tion, see pages 88-92.) The sum which replaces the original
contents of the index register is modulo memory size. No over-
flow is indicated.

PHILCO 212 INSTRLUCT!O™S 69

SDXL 031 Subtract D from Index Register
SDXR 231

i

32K: (X)-D, ;X
EXTENDED?

65K: (X)-Dy | s—X

NO NO
YEs
Dyg=0? (X)-Dy X
NO
(X)-D s X
. Y 32K: (X)-D — X
/ SDXR __ES N X0-D25.55 >
? —
\ EXTENDED? 65K: (X)-Dy, 3o—=X
NO
,.._.Jf_..\i v
(~ T />_MW_V~4’ (0-D 5 397X
NO
(X)-Dag.39—X EXIT

The SDX instruction subtracts the V-field of the left (if SDXL) or
right (SDXR) half of the D Register from the contents of a specified
index register, (If this instruction is extended by an EXT instruc-
tion, see pages 88-92,) The difference which replacesthe original
contents of the index register is modulo memory size, No over-
flow is indicated.

PHILCO 212 REFERENCE MANUAL

TIXZ 0321 Transfer Instruction Address Field to Index Register
TIXS 2321

AM—AN—0M%E

0—X¢

0—=X,

1—=X¢

0—X,

EXTENDED? 32K: Cly X5

65K: Cly X, 5

(€1 ==X, !

32K: Cly X5

65K: Clo, ;s Xo.15

t When C1 is controlled by
an RPT or DR instruction
[RPT], or [DR] Xo

The TIX instruction transfers its V-field to a specified index
register, For TIXS, the C-bit is set toone; for TIXZ, the C-bit is
set to zero. This instruction sets the Y-bit of the specified index
register to zero,

On a 65K system, if this instruction is not extended by an EXT
instruction (see pages 88-92), the first bit of the index register is
set to the value of the first bit of the 16-bit address of the memory
location in which the instruction is stored, unless this instruction
is controlled by an RPT or DR instruction. If this instruction is
controlled by an RPT or DR instruction and is not indexed, the
first bit of the index register is set to the value of the first bit of
the 16-bit address of the memory location in which the RPT or
DR instruction is stored.

PHILCO 212 INSTRUCTIONS 71

TCXZ 0013 Transfer C-Bit to Index Register
TCXS 2013
TCXSC 2013 @
0 — Xy

T
CXsS ’ YES 1 xe
TCXSC
YES
0 — X¢ CTCXSCD—-’ X)+1 — X

NO

The TCX instruction sets the C-bit of a specified index register
to one if TCXS is written or to zero if TCXZ is written. TCXSC
sets the C-bit to one and immediately increases the contents of
the index register by one. The difference between the TCXS and
TCXSC instructions is that the S-bit of the former is zero and
the S-bit of the latter is one., This instruction sets the Y-bit of
the specified index register to zero.

TYXZ 1332 Tvansfer Y-Bit to Index Register

TYXS 1333

I—OXY

(TYXS? M= x

NG

0 — Xc

The TYX instruction sets the C-bit of a specified index register
to one if TYXS is written, or to zero if TYXZ is written, In both
cases the Y-bit is set to one,

79 PHILCO 212 REFERENCE MANUAL

T—JA WHERE
T-U+W

IS THE NUMBER OF TIMES THE INSTRUC-
TIONS FOLLOWING C! HAVE BEEN PER-

FORMED.
Cl IN LEFT U = 40961F THE REPEAT INSTRUC-
IN REPEAT HALF OF 1— JA L > TION IS NOT EXTENDED. IF
LOOP? INSTRUCTION F THE REPEAT INSTRUCTION IS
WORD? EXTENDED,

U = 32,768 (IF 32K) OR
65,536 (IF 65K)

Cl IN LEFTY FIRST TIME W = ORIGINAL NUMBER OF TIMES
HALF OF 0—=JA cl SPECIFIED FOR THE INSTRUC-
INSTRUCTION F PERFORMED? TIONS TO BE PERFORMED
WORD?
1—=JAg — (Cl + 1]—=JA
YES NO) YES 32K:(X) +Cly ;X
R " $-0? EXTENDED? 65K:(X) + Cly_ X

(X) + Cl, X

RESULT 1
OF
COMP ARISON

RESULT 1
OF COMPARISON

32K: COMPAR
X5t Dy

65K: COMPARE
Xp.15 10 Douys

COMP ARE
to Dy s

COMP ARE

X Xjaste Dy g

4.15

RESULT 2
RESULT 2 OF COMPARISON
OF COMP ARISON

RESULT 2
OF COMP ARISON

32K: [NI] =Dy 5o

65K: [NI] = 02‘-39

RESULT 1

OF COMP ARISON [N1]

= Dyg.39

32K: (NI =D 5
65K: [NI] 1 ;=D 5
NI o= (€1 g 1

+ When Cl is controlled by an
RPT or DR instruction,
(NI, = [RPT] gor (DRI,

INSTRUCTION RESULT 1 OF COMPARISON | RESULT 2, OF COMPARISON l
AIX) X, . -D,., Xin 7 Dy, |
AIXJS Xken 2 Dk-n xk-n <Uk-n
AIXJEG Xk.n < Dk.n Xi.n 2 Din

AIXJ, AIXJS, AIXJEG Micro-Flow Chart

PHILCO 212 INSTRUCTIONS 73

AIXJ
AlIXJ

AIXJS

AIXJEG

0330
2330

2312

0312

Add Instruction Address Field to Index Register and Jump

The AIXJ instruction places the address of the next sequential
instruction in the JA Register (unless this instruction is in the
left half of an instruction word controlled by an RPT or DR in-
struction), then adds the V-field of this AIXJ instruction to the
contents of a specified index register. The sumis modulo memory
size. No overflow is indicated. The original contents of the index
register are replaced with the sum. The sum is then compared
to the V-field of the left half of the word in the D Register, (If
this instruction is extended by an EXT instruction, see page 88.)
Only those bits in the index register that correspond with the
V-ﬁe}qmin,D.%e used in the comparison, If the corresponding bits
are (not equal,) control is transferred to the left or right half of
the location specified by the V-field of the right half of the word
in the D Register, depending on whether bit 40 of D is set to zero
or one. If the corresponding bits are equal, the next sequential
instruction is executed.

On a 65K system, if this instruction is not extended, equality of
the first bit in the left half of D and the first bit of the specified
index register is assumed, The value of the first bit of the 168-bit
address of the memory location in which the instruction is stored
is used as the first bit in a 16-bit jump address, unless this
instruction is controlled by an RPT or DR instruction, If the
instruction is controlled by an RPT or DR instruction and is not
extended, the value of the first bit of the 16-bit address of the
memory location in which the RPT or DR instruction is stored is
used as the first bit in a 16-bit jump address.

Add Instruction Address Field to Index Registey and Jump if
Smaller than D

The AIXJS instruction is the same as an AIXJ instruction, ex-
cept that the transfer of control is made only if the contents of
the index register are smaller than the V-field of the left half
of the word in D, Otherwise, the next sequential instruction is
executed.

Add Instruction Address Field to Index Registey and Jump if
Equal to or Greater than D

The AIXJEG instruction is the same as the AIXJ instruction,
except that the transfer of control is made only if the contents
of the specified index register are equal to or greater than the
V-field of the left half of D, Otherwise, the next sequential in-
struction is executed,

AM—AN—00MAO

" PHILCO 212 REFERENCE MANUAL

T—JA WHERE
T-U:W
1S THE NUMBER OF TIMES THE INSTRUC-
TIONS FOLLOWING Ci HAVE BEEN PER-

FORMED.
Cl IN LEFT U = 40961F THE REPEAT INSTRUC-
IN REPEAT HALF OF TION IS NO
REPES L o 1— JA, > T EXTENDED. IF
? TRuCT THE REPEAT INSTRUCTION IS
? EXTENDED,

NO U = 32,768 (IF 32K) OR

65,536 (IF 65K)

CI IN LEFT FIRST TIME W = ORIGINAL NUMBER OF TIMES
HALF OF 0—JAp (] SPECIFIED FOR THE INSTRUC-
INSTRUCTION PERFORMED? TIONS TO BE PERFORMED
WORD?
1—JAg Cl + 1 —=JAg

\ YES . .
EXTENDED? 32K:(X) - Cly 5= X

65K: (X)=Cly_; o~X

(X) - Cly_ys—=X $ =0

NO

RESULT RESULT 1
» 32K: COMPARE\ OF
OF COMPARISON X toD COMP ARISON

1-15 1-15

COMP ARE YES COMP ARE 65K: COMPARE
D, 0? x EXIT Xo.15 ' Dg.15
X5t Dy s e Dy
RESULT 2
RESULT 2 RESULT 2 OF COMPARISON
OF COMP ARISON OF COMP ARISON
32K: ‘NI -D
R =Vasag
RESULT 1 NO 65K: NI rDz
OF COMP ARISON D, 07 ‘N Do L. 439
24 : = 28-39%
YES
32K: NI =D 5 39
65K: NI 15 Daggg
When Cl is controlled by an N € o
RPT or DR instruction,
Nlo"RPT oor iDR 4 J
P v\EX-W/v
INSTRUCTION RESULT 1 OF COMP ARISON RESULT 2 OF COMPARISON
SIXJ ! Xk-n Dken Xk.n * Di.n
SIXJG Xi.n = Di-n Xen > Dien
SIXJES Xk-n < Dk.n Xen = DBin

PHILCO 212 INSTRUCTIONS 75

SIXJ
SIXJ

SIXJG

SIXJES

0331
2331

0313

2313

Subtract Instruction Address Field from Index Register and Jump

The SIXJ instruction places the address of the next sequential
instruction in the JA register (unless this instruction is in the
left half of an instruction word controlled by an RPT or DR in-
struction), then subtracts the V-field of this SIXJ instruction
from the contents of a specified index register. The difference
is modulo memory size. The original contents of the index register
are replaced by the difference, and the difference is compared
with the V-field of the left half of the word in the D Register,
(If this instruction is extended by an EXT instruction, see pages
88-92,) Only those bits in the index register that correspond with
the V-field in D are used in the comparison, If the corresponding
bits are not equal, control is transferred to the left or right half
of the location specified by the V-field of the right half of the
word in the D Register, depending on whether bit 40 of D is set
to zero or one, If the corresponding bits are equal, the next
sequential instruction is executed.

On a 65K system, if this instruction is not extended, equality of
the first bit in the left half of D and the first bit of the specified
index register is assumed. The value of the first bit of the 16-bit
address of the memory location in which the instruction is stored
is used as the first bit in a 16-bit jump address, unless this
instruction is controlled by an RPT or DR instruction, If this
instruction is controlled by an RPT or DR instruction and is not
extended, the value of the first bit of the 16-bit address of the
memory location in which the RPT or DR instruction is stored is
used as the first bit in a 16-bit jump address,

Subtract Instruction Addvess Field from Index Register
and Jump if Greater than D

The SIXJG instruction is the same as the SIXJ instruction, ex-
cept that the transfer of control is made only if the contents of
the index register are greater than the V-field of the left half
of the word in D, Otherwise, the next sequential instruction is
executed,

Subtract Address Field from Index Register and Jump if
Equal to or Smaller than D

The SIXJES instruction is the same as the SIXJ instruction, ex-
cept that the transfer of control is made only if the contents of
the specified index register are equal to or smaller than the
V-field of the left half of D, Otherwise, the next sequential in-
struction is executed.

DM~ —00mM=x

32K: (X) - CI

115
65K: (X) - C1y | X

—X |YES

EXTENDED

SixoL
SIXOR?

NO

X)-Cly X

(X) - Cl

4.15

—X

v

X) - €l X

START
0—OVF
|
NO YES YES| 32K: (X) + c" ‘s—_.x
EXTENDED? :
65K: (X) + Clo_‘s—’x
lno
YES YES
‘{ S—O’) (S - 0? }’(X)+CI‘.‘5—°X
NO NO

X

4.15

=D

?
28-39°

NO

YES
32K: Xy 45 = Dps.39?
65K: Xg 15 = Dy 397

> 1—OVF 4 f

YES

32K: X
65K: X

1-15

-D

= ?
0-15 ~ DOJS"

?
1.15°

AIXOL, AIXOR, SIXOL, SIXOR
Micro-Flow Chart

PHILCO 212 INSTRUCTIONS 7

AIXOL
AIXOR

SIXOL
SIXOR

0332
2332

0333
2333

Add Instru tion Address Field to Index Register and Set Overflow

The AIXO instruction clears the Overflow Indicator to zero un-
less a previous ICOS instruction has been given and is still in
effect, The V-field of this instruction is then added to the con-
tents of a specified index register, The sum is modulo memory
size. (No overflow is indicated.) The original contents of the index
register are replaced with the sum, then the sum is compared to
the V-field of the specified half (L or R for left or right) of the
word in the D Register. (If this instruction is extended by an EXT
instruction, see pages 88-92,) Only those bits inthe index register
that correspond with the V-field in D are used in the comparison.
If the corresponding bits are equal, the Overflow Indicator
is set to one,

On a 65K system, if this instruction is not extended by an EXT
instruction, equality of the first bit in the specified half of D and
the first bit in the specified index register is assumed.

Subtract Instruction Address Field from Index Register
and Set Overflow

The SIXO instruction clears the Overflow Indicator to zero, un-
less a previous ICOS instruction has been given and is still in
effect. The V-field of this instruction is then subtracted from
the contents of a specified index register. The difference is
modulo memory size, (No overflow is indicated.) The original
contents of the index register are replaced with the difference,
and the difference is then compared to the V-field of the specified
half (L or R for left or right) of the word in the D Register, (If
this instruction is extended by an EXT instruction, see pages
88-92,) Only those bits in the index register that correspond with
the V-field in D are used in the comparison. If the corresponding
bits are equal, the Overflow Indicator is set to one.

On a 65K system, if this instruction is not extended by an EXT
instruction, equality of the first bit in the specified half of D and
the first bit in the specified index register is assumed.

EXTRACT

INSTRUCTIONS

ETD

ETA

0030

2030

PHILLU 21Z BErbnbnue MANGAL

The Extract Instructions are bit-by-bit multiplications (i.e.,there
is no carry into adjacent bits) between the contents of Q and
the corresponding bits of the designated memory location, This
is a logical AND operation. The results of this operation, for the
four possible bit configurations are:

0101 Q REGISTER BEFORE AND AFTER EXTRACTION
0011 MEMORY LOCATION BEFORE AND AFTER EXTRACTION (EXCEPT EIS)

OOOT D REGISTER AFTER EXTRACTION

In the description below, the bits in the memory location specified,
matched by one bits in the Q Register, are considered to be ex-
tracted fields.

Extract Transfer to D

Q -(M—D

The ETD instruction extracts from the contents of the specified
memory location according to the contents of the Q Register and
transfers the extracted fields to the D Register. The remaining
bits of D are set to zero.

Extract Transfevr to A

Q@ -M— D
Q - (M)— A

The ETA instruction extracts from the contents of the specified
memory location according to the contents of the Q Register and
transfers the extracted fields to the D Register and to the A
Register. The A and D Registers receive and retain the extracted
fields. The remaining bits of A and D are set to zero.

PHILCO 212 INSTRUCTIONS 79

El

Els

EA
FEA

ES
FES

0032

2032

1322
3322

1323
3323

Extract and Insert

M) -(@Q —D
(A) @'V (M) (@ — A

The EI instruction extracts from the contents of the specified
memory location according to the contents of the Q Register and
inserts the extracted fields in the A Register without disturbing
the remaining positions of the A Register. The D Register re-
ceives and retains the extracted fields. The remaining bits of
D are set to zero,

Extract and Insert and Store

(A) (Q' V(M) ‘(Q — A, DandM

The EIS instruction is the same as the EI instruction, except
that the result in the A Register is transferred to D and to the
specified memory location, The result replaces the contents of
the specified memory location and of the A and D Registers,

Extract and Add

Q - M —D
(A) + {(@ -M}—A

The EA/FEA instruction performs as an ETD instruction, then
adds the extracted fields in D to the contents of the A Register,
The sum replaces the contents of A, and the D Register retains
the extracted field(s) except in the case of an FEA where the
word in D (containing the extracted fields) had to be arranged for
addition (see page 30). (The command FEA is for a floating-
point addition.)

Extract and Subtract

(@ -(M)—D
(A) - {(Q M }— A

The ES/FES instruction performs as an ETD instruction, then
subtracts the extracted fields from the contents of the A Register,
The difference replaces the contents of A, and the D Register
retains the extracted field(s) except in the case of an FES where
the word in D (containing the extracted fields) had to be arranged
for subtraction (see page 30). (The command FES is for a float-
ing-point subtraction.)

a0

LOGIC
INSTRUCTIONS
DORMS 0031
AWCS 2031

PHILCO 212 REFERENCE MANUAL

Logic Instructions are bit-by-bit operations, including a logical
inclusive OR and a logical exclusive OR.

D Ov Memovry and Store
(M) V (D) = Dand M

The DORMS instruction forms a composite word in D in which
there are binary ones in every bit position for which there is a
one in the D Register and/or in the specified memory location,
The resulting word in D is then stored in the specified memory
location. The A Register is not changed.

This is a logical inclusive OR operation. The results of this
operation for the four possible bit configurations are:

o101 D REGISTER BEFORE EXECUTION
0011 MEMORY LOCATION BEFORE EXECUTION

oIl —I- D REGISTER AND MEMORY LOCATION AFTER EXECUTION

Add Without Carry and Store
(A) AN (M) — DandM

The AWCS instruction adds without carries the contents of the
A Register to the contents of a specified memory location. The
sum is placed in the D Register and transferred to the specified
memory location. The A Register is not changed.

This is a logical exclusive OR operation. The results of this
operation for the four possible bit configurations are:

0101 A REGISTER BEFORE AND AFTER EXECUTION
o0i 1 MEMORY LOCATION EXECUTION

0110 MEMORY LOCATION AND D REGISTER AFTER EXECUTION

PHILCO 212 INSTRUCTIONS

SPECIAL

INSTRUCTIONS

HLTL
HLTR

NOPL

NOPR

1ICOS

Icoz

0000
2000

0003

2003

2002

0002

81

Halt

The HLT instruction stops the Central Processor after modifying
an index register, if index register modification is specified.
When the Advance Bar on the Operator’s Console is pressed, the
Central Processor will proceed to the next sequential instruction.

No Operation

The NOP instruction causes the Central Processor to proceed to
the next sequential instruction after modifying an index register,
if index register modification is specified.

Inhibit Cleaving the Overflow Indicator

The ICOS instruction clears the Overflow Indicator to zero and
inhibits its future clearing by arithmetic, Shift or Index Register
instructions. (The JNO and JOF instructions clear the Overflow
Indicator at all times.) This inhibition of clearing may be re-
moved only by the ICOZ instruction. (See page 25.)

Remove Inhibition on Clearing the Ovevflow Indicatoy

The ICOZ instruction removes any inhibition on clearing the
Overflow Indicator set by the ICOS instruction. (See page 25.)

PHILCO 212 REFERENCE MANUAL

(M) —=D
YES 32K: Dy g+ 1(MOD 2'%)—=D, , AND JA L,
? »
EXTENDED? 65K: Dy yg+1(MOD 2'®)—=Dy |5 AND JA
NO
32K: D, g+ 1(MOD 2'%)—=D, , AND JA
YES
—| 65K: D, 5+ 1 (MOD 2'9)—=D, |, B
D5+ ! (MOD 2'4)—-Ja
12y,
D, 1 (MOD 2'H)—=D, o e
Dy t1—JA
INCAL
Micro-Flow Chart
(M)—=D
YES 32K: Dyg 5o+ 1(MOD 2'5)—+D, .o AND JA
EXTENDED? >
65K: D, 5o+ 1(MOD 2'%)—=D,, .o AND JA
NO
ves 32K: D, 1o+ 1(MOD 2'%)—=D,; .o AND JA
s - 07 P 65K: Dy 59+ 1 (MOD 2'3)—=Dy 5o
Dy 39 * 1 (MOD 2'8)—=JA
NO
D, .o+ ! (MOD 2'2)—D,
28-39 4-15 » (D) M
Dyg.g9 * 1= JA ¢

INCAR
Micro-Flow Chart

PHILCO 212 INSTRUCTIONS 83

INCAL
INCAR

SKC

SKF

RPT
RPT

0021
2021

0012

2012

0023
2023

Increase Address Field in Memory

The INCA instruction transfers the contents of the specified
memory location to the D Register. One is added to the left or
right V-field of the contents of D, depending on whether this
instruction is an INCAL or an INCAR, The sum is modulo
memory size and is placed in JA, However, only 12 or 15 bits are
replaced in the specified half of the D Register, depending on the
setting of the S-bit in that half of D, unless the INCA instruction is
extended by an EXT instruction (see pages 88-92).

The modified word replaces the contents of D and the specified
memory location; the correct value of the incremented V-field
remains in JA,

Skip Check

The SKC instruction checks the status registers of input-output
units, The specific units, status registers within the unit, and a
Comparison Quantity to be used in testing the registers are
specified in the address field of the instruction. (See Input-Output
Systems Manual TM-16.) If the Comparison Quantity inthe address
field of this instruction is greater than or equal to the contents
of a specified status register, the next sequential instruction is
skipped and the second instruction following the SKC is executed.
Otherwise, the next sequential instruction is executed,

This instruction acts as an NOP if it is under control of an RPT
or DR instruction.

Skip if No Fault

The SKF instruction is the same as the SKC instruction, except
that specified fault registers of the input-output unit are tested.

Repeat

The RPT instruction causes the next instruction or instruction
pair following the RPT instruction to be performed the number
of times specified in the address field of the RPT instruction.
If the RPT instruction is in the left half of an instruction word,
the right-half instruction in that word is performed the number
of times specified. If the RPT instruction is in the right half of
an instruction word, the next pair of instructions is performed
the number of times specified,

The value in the address field can be any number up to 4095. If
the RPT instruction is extended by an EXT instruction (see pages
88-92, the value in the address field can be large enough to
express the size of memory. If the value is zero, the Repeat
instruction has no effect and the otherwise repeated instructions
are ignored,

84

RPT-Controlled
Index Register
Modification

PHILCO 212 REFERENCE MANUAL

If a Jump Instructionthat is located inthe left half of an instruction
word is being performed under the RPT instruction, the number
of times the instruction following the Jump instruction has been
performed can be determined from the contents of the JA Register,
unless the transfer of control occurs the first time the instructions
controlled by the RPT are being performed. The number of times
the right-half instruction has been performed may be determined
by storing the contents of the JA Register, and then evaluating
the expression:

(JA) - U+ W
where (JA) = the contents of the JA Register
U = 4096 if the RPT instruction is not extended. If the
RPT instruction is extended, U is equal tothe num-
ber of memory locations in the system
W = the original number of times specified for the in-

structions controlled by the RPT to be performed

If an instruction in a repeat loop causes a transfer of control,
the repeat loop is negated.

If an RPT instruction has a second RPT or a DR instruction in
its loop, the second RPT or DR instruction negates the repeat
loop established by the first RPT instruction and establishes a
new loop, However, an extended RPT or DR instruction within a
repeat loop causes a command fault,

The Repeat instruction cannot be index register modified; how-
ever, the instruction(s) repeated can specify index registers and
their operation can be controlled by appending an N, A or S to the
RPT instruction. These modifiers cause the first four bits of the
address field to be set as indicated in the illustration below,

RPT

nwpZ
»Z

Bits 0-1 specify the index register modification mode for the
instruction in the left half of the instruction word being repeated.

Bits 2-3 specify the index register modification mode for the
instruction in the right half of the instruction word being repeated.

Bits 4-15 designate the number of times the instruction(s) con-
trolled by the RPT are to be repeated.

PHILCO 212 INSTRUCTIONS 85

DR

1312

A configuration of 00 or 01 in bits 0-1 or 2-3 calls for Normal
modification, 10 (specified by an A) calls for Additive modifica-
tion, 11 (specified by an S) calls for Subtractive modification.
One or two of these modification codes, depending on whether
the RPT is in the left or right half of an instruction word, must
be appended to the RPT. (Example: RPTN, RPTSN,)

Normal modification: Normal index register modification using
the C-bit and the Y-bit (see page 21).

Additive modification: The C-bit and Y-bit are ignored. The
contents of the index register are used as the effective address
of the instruction, then the index register is modified by adding
the V-field of the instruction to the contents of the index register.

Subtractive modification: The C-bit and Y-bit are ignored. The
contents of the index register are used as the effective address
of the instruction, then the index register is modified by sub-
tracting the V-field of the instruction from the contents of the
index register.

The A and S index register modification modes have no effect on
any Index Register Instruction except TCX. The TCX instructions
act as Indexable Instructions when in the repeat-controlled index
register modification mode,

Double Repeat

The DR instruction causes the next three instructions (if DR is in
the left half of an instruction word) or the next four instructions
(if DR is in the right half of an instruction word) to be performed
the number of times, from zero to 255, specified in the address
field of the DR instruction. If the DR instruction is extended
by an EXT instruction (see pages 88-92), the value in the address
field can be large enough to express the size of memory, If this
value is zero, the instructions under the DR will be skipped.

If a Jump Instruction that is located in the left half of an instruc-
tion word is being performed under the DR instruction, the num-
ber of times the instructions following the Jump Instruction have
been performed can be determined from the contents of the JA
Register, unless the transfer of control occurs the first time
the instructions controlled by the DR are being performed. The
number of times the instructions following the Jump Instruction
have been performed can be determined by storing the contents
of the JA Register, and then evaluating the expression:

(JA) - U+ W
where (JA) = the contents of the JA Register
U = 4096 if the DR instruction is not extended. If the
DR instruction is extended, U is equal to the num-
ber of memory locations in the system
W = the original number of times specified for the in-

structions controlled by the DR to be performed

86

DR-Controlled
Index Register
Modification

PHILCO 212 REFERENCE MANUAL

I an instruction in a repeat loop causes a transfer of control,
the repeat loop is negated.

If a DR instruction has an RPT or a second DR instruction in its
loop, the RPT or the second DR instruction negates the repeat
loop established by the first DR instruction and establishes a new
loop. However, an extended RPT or DR instruction (see page 88)
within a repeat loop causes a command fault.

The DR instruction cannot be index register modified; however,
the index registers designated by the instructions under a DR
instruction can be index register modified as indicated by the
Normal, Additive and Subtractive modification codes which are
described under the RPT instruction. These modifiers cause the
first eight bits of the address field to be set as indicated in the
illustration below.

O 1|12 34 56 7|6 15]i6 23
N N | NN
A Al A|A DR
S S S

Bits 0-1 specify the index register modification for the instruc-
tion in the left half of the first instruction word being repeated
if the DR is not in the left half of the instruction word.

Bits 2-3 specify the index register modification mode for the
instruction in the right half of the first instruction word being
repeated.

Bits 4-5 designate the index register modification mode for the
instruction in the left half of the second instruction word being
repeated,

Bits 6-7 designate the index register modificationfor the instruc-
tion in the right half of the second instruction word being repeated.

Bits 8-15 specify the number of times the instruction word(s)
under the DR are to be repeated.

PHILCO 212 INSTRUCTIONS 87

LWD

SWD

0033

2033

Largey Word

(M)—D

N \ (D)=——=A
(D) > (A
M) —ejA
ALPHANUMERIC? (m] 4
0~—=JA,

The LWD instruction transfers the operand from a specified
memory location to the D Register, then compares the contents
of the D Register to the contents of the A Register bit-by-bit in
the alphanumeric sense (see page 15). If the operand is larger
than the word in A, it is transferred to A and its address is
placed in the JA Register, The F-bit of the JA Register is set to
zero, and the next sequential instruction is executed, If the oper-
and from memory is smaller than or equal to the work in A, the
next sequential instruction is executed. The operand remainsin D,

(M)—=D

D) < (A
ALPHANUMERIC?

Smaller Word

(D)—=A
(M]—=JA
0—JAg

The SWD instruction transfers the operand from a specified
memory location to the D Register, then compares the contents
of the D Register to the contents of the A Register bit-by-bit in
the alphanumeric sense. If the operand from memory is smaller
than the word in A, it is transferred to A, its address is placed
in the JA Register, the F-bit of the JA Register is set to zero,
and the next sequential instruction is executed. If the operand
from memory is larger than or equal to the word in A, the next
sequential instruction is executed. The operand remains in D,

88

EXT

1313

PHILCO 212 REFERENCE MANUAL

Extend

The EXT instruction extends the address field of the next in-
struction to include all bits necessary for the largest computer
address, thus forming an extended V-field. The extended V-field,
the command field of the instruction following the EXT instruc-
tion, and parts of the address field of the EXT instruction form
an extended instruction (see illustrations below). An EXT in-
struction may be in the left or right half of an instruction word.
The formats shown below assume the EXT instruction is in the
left half of a word,

Bit 13 is a repeat indicator., It must be zero to indicate that the
extended instruction is not a DR or an RPT, otherwise a com-
mand fault results. If the repeat indicator is one, the extended
instruction must be an RPT or DR or a command fault results,

The format of an extended instruction other than an RPT or DR
is shown below, Bits 14 and 15are indirect addressing indicators.
When they are both set to zero, the S, N, and V fields of the
extended instruction define its effective address, (Bits 4-12 should
be set to zero.)

ol 3}4 12 16 23124 39|40 47

S| N OOlO EXT v COMMAND

The format of an extended RPT or DRinstruction is shown below.
The index register modification codes and the V and Repeat fields
comprise the extended instruction. The repeat index register
modification codes shown below are for a DR, The repeat index
register modification codes for an RPT occupy only the first four
bits of the address field of the EXT instruction, Bits 14 and 15
are indirect addressing indicators. When they are both set to
zero, the V-field of the extended instruction specifies the number
of times the instruction(s) in the repeat loopare to be performed,
(Bits 4-12, unless they are defined, should be set to zero.)

0 718 12 16 23|24 39/40 47

REG. I b|o EXT v REPEAT

PHILCO 212 INSTRUCTIONS . 894

Indirect Addressing

When an extended instruction replaces a V-field inthe D Register
or in memory (INCA, TXD, TJM), transfers a V-field from D to
an index register (TDX), adds or subtracts a V-field in D from
an index register (ADX, SDX), or uses the V-field(s) in D for a
comparison or a jump address (AIXJEG, AIXJS, AIXJ, SIXJ,
SIXJES, SIXJG, AIXOL and AIXOR), the S-bit(s) in D do not de-
termine the size of the V-field(s) inD. The V-field(s) are modulo
memory size,

An extended instruction that replaces a V-fieldinD or in memory
on a 65K system replaces all 16 bits of the address field in D;
on other systems the S-bit is set to zero and a full V-field is
replaced,

Instructions in a repeat loop can be extended. If an extended
instruction is under a repeat-controlled index register modifica-
tion mode, the index register modification mode of both the EXT
and the extended instruction must be identical,

If an EXT instruction is the last instruction in a repeat loop, or
an extended RPT or DR instructionisina repeat loop, a command
fault results,

Indirect addressing is the substitution of the address field(s) of
an instruction by the corresponding field(s) of a memory word
in the location specified (referenced) by that instruction. If bits
14 and 15 of an extended instruction are not both set to zero,
indirect addressing is indicated. There are three possibilities:

Bit 14 Bit 15 Indirect Addressing

1 0 The address specified by the address field(s)

of this extended instruction is referenced,

The address field(s) in the left half of the

word referenced (which are in the format as

described on page 15) are used in forming the effective address

of the command in the original extended instruction, The command

of the original extended instruction and the address field(s) used
to form its effective address form an effective instruction,

r»>—OmTgTv

90

PHILCO 212 REFERENCE MANUAL

If the extended instruction in the illustrationbelowis an Indexable
Instruction, the S-, N-, and V-fields of the extended instruction
specify the address of the referenced word in the diagram, The
Command of the original extended instruction and the S¢-, N, -,
and Vjq-fields form the effective instruction, Index registers
specified by each address are modified.

ojl 34 12 16 23[24 39|40 47

S| N 0j!1 10 EXT \ COMMAND

EXTENDED INSTRUCTION

REFERENCED WORD

The V-field of the extended RPT or DR instruction in the illustra-
tion below specifies the address of the referenced word in the
diagram. The original RPT or DR command, its index register
modification codes (IRM) and the Vj-field form the effective
instruction. (For 65K, the Vq-field includes bit zero.)

o 34 7I8 12 16 23|24 39|40 a7

IRM H O EXT v RPT

IRM {110 EXT v DR

EXTENDED INSTRUCTION

REFERENCED WORD

Bit 14 Bit 15 Indirect Addressing

1 1 Same as above, except that the address field(s)

that are used in forming the effective address

of the original extended instruction are in the right half of the
referenced word,

PHILCO 212 INSTRUCTIONS 01

Bit 14 Bit 15 Indirect Addressing

0 1 The address specified by the address field(s)
of the extended instruction is referenced. The
address field(s) of the word referenced are in the same format
as the address field(s) in an extended instruction, and are used
in forming a new address for the command in the original
extended instruction, (Bits 4-12 of the referenced word should
be set to zero.) If the indivect addvessing control bits of the
refevenced wovd ave both set to zevo, the new address formed ic
the effective address of the original extended instruction, If the
indirect addressing control bits of the referenced word are not both
set to zero, they determine the format of a second word to be
referenced for its address field(s). The second word to be
referenced is in the location specified by the new address of the
original extended command. This process may continue until an
indefinite number of words are referenced.

In the illustration below, the S-, N-, and V-fields of the Indexable
Instruction specify the address of the first referenced word in the
diagram. The new address of the Command in the extended in-
struction is formed by the Sj-, N1-, and Vj-fields. This new
address specifies the address of the second referenced word.
The effective instruction is formed by the Command in the original
extended instruction and the Sg-, N2-, and Vg-fields. Index reg-
isters specified by each address are modified.

ol 3|4 12 16 23|24 39{40 a7

S| N 0l0]1 EXT \ COMMAND

EXTENDED INSTRUCTION

ol 3|4 12 16 23]24 39|40 47

Si{ Ny 1o Vi

FIRST REFERENCED WORD

o 3| 1516 47

32I N> Vo

SECOND REFERENCED WORD

OPERAND FORMAT

Chapter 7

DOUBLE PRECISION ARITHMETIC

Double precision arithmetic permits operating on double-length
floating-point operands with mantissas of 70 bits plus a sign bit,
and exponents (of the base 2) of 11 bits plus sign bit. The operations
which are performed are addition, subtraction, and multiplication,
The mantissas of results are accurate to 70 bits for addition and
subtraction, and to 69 bits for multiplication. Results are
significant to 22 decimal places for addition and subtraction or to
21 decimal places for multiplication.

When in double precision mode, the format of a double-length
operand, or result, X, is as follows:

O]l 35|36 47 o}l 35136 47|
S Xim X1e S X2m X2e
Xy X2
where
Xy = major half of the operand

X2 = minor half of the operand
major half mantissa

x
3
I

minor half mantissa

>
n
3
"

X1g1X2¢ are equal, and each represents the exponent of the operand
to the base 2

S in the major half of the mantissa denotes the sign bit of the
double-length operand. (The S-bit in the minor half of the
mantissa is not significant,)

Double precision operands need not be in any particular memory
locations, nor need the major and minor halves be held in
consecutive memory locations,

Negative mantissas and negative exponents are represented in
the two’s complement form,

Since all arithmetic operations on the Philco 212 are performed
using 48-bit registers, the double precision operations are
performed by setting the computer in double precision mode,
operating on the major and minor halves of operands separately,
and delaying normalization until the next ENDDP is executed,

93

0

Double Precision
Zero

DOUBLE PRECISION
MODE

Correction Counter

PHILCO 212 REFERENCE MANUAL

The operations which should be performed on two double-length
operands, X and Y, when the computer is in double precision
mode are:

(1) X+Y=(X1+Y1)+(X2+Y2)
(2) X-Y=(X1-Y1)+(X2-Y2)

3) XY =(X1+X (Y1+Y

2) 2)

=X, Y, +X, Y, + X, Y. + X

1Yy + X ¥y + XYy + XX

2

Since the expression X9Yg would contribute an accuracy beyond
bit 70, it is dropped from the equation for multiplication, so that:

XY = XlYl + XIYZ + X2Y1

Double precision floating-point zero is represented by a major
and minor half operand, each with a mantissa of 36 zero bits and
an exponent with a sign bit of one followed by 11 zero bits.

The SETDP instruction sets the computer in double precision
mode. When in this mode, the following instructions are specially
modified to use in routines for obtaining double precision results:
FAQS, FSQS, FAM, FSM, FMAS, and FMMR. The operation of
these instructions, together with their specific use in forming
double precision results, is described below, No other arithmetic
instructions should be used when in double precision mode.

After a double precision operation, an ENDDP instruction, as
described below, is given, This normalizes and adjusts the halves
of the result in the A and Q Registers and causes the computer
to terminate double precision mode,

Because partial results (major half and minor half) are formed
during double precision operations, any potential effect of the
minor-half operation on the major-half operation is recorded in
a correction counter, This ‘‘spillover’’ consists of the normal
carry data from one bit- to the next most significant bit for
addition and subtraction. For multiplication the spillover consists
of the carry-out data fromthe summation of the minor-half partial
products (X1Y2 + X2Y1)and the effect of the sign bits of the
minor-half partial products on the major-half partial product
(X1Y1). If a minor-half partial product is negative, the value of
all bits preceding the most significant bit mustbe one. Therefore,
when a negative minor-half cross product is formed, a mantissa
of 36 bits, all with a value of one, must be added to the major-
half result,

DOUBLE PRECISION ARITHMETIC 95.

FAQS and FSQS

A three-bit correction counter records any spillover, After the
execution of an ENDDP instruction, the correction counter is
cleared., For multiplication it is set to -2 during the execution of
an FMAS instruction, Each time a bit is carried from the most
significant bit of a result during a minor-half addition or subtrac-
tion, or during the summation of the minor-half partial products,
the counter is incremented by one. It is also incremented by one
if a positive minor-half partial product is formed. When an ENDDP
instruction is executed, the mantissa of the major-half result
is altered according to the setting of the correction counter as
described in the table below, The result in A and Q is then
normalized.

Setting of Correction Made To
Correction Counter Major Half Mantissa
-2 A mantissa of 35 one’s preceding
a zero is added to the major-half
mantissa.
-1 A mantissa of 36 one’s is added

to the major-half mantissa,
0 No correction.

1 A one bit is added to bit 35 of
the major-half mantissa. '

2 A one bit is added to bit 34 of
the major-half mantissa,

The FAQS and FSQS instructions are used to form the major half
result (X1 + Yy or X; - Y;) in double precision addition and sub-
traction.

The FAQS and FSQS instructions transfer the contents of the
Q Register to the D Register and clear the Q Register to zero.
If there is a difference between the exponents in the A and the
D Registers, and it is less than 71, the contents of the register
with the smaller exponent are arranged for addition or subtraction
(see page 30). Any bits shifted beyond bit 35 in the A Register
are shifted, in order, into the Q Register, entering the Q Register
at bit one, If the exponent difference is out of range, the number
with the larger exponent becomes the sum or difference.

The FAQS instruction adds the contents of the D Register to the
contents of the A Register; the FSQS instruction subtracts the
contents of the D Register from the contents of the A Register,
The sum or difference is formed in A, The contents of A are then
transferred to the D Register and to the specified memory location.

QA

FAM and FSM

FMAS

FMMR

PHILCO 212 REFERENCE MANUAL

The sum or difference in A is leftunchanged. If mantissa overflow
occurs, it is not corrected, but is recorded by a special overflow
control indicator to be handled when the next ENDDP instruction
is executed,

The FAM and FSM instructions are used to form the minor-half
result (X2 + Yg or X2 - Y2) in double precision addition or sub-
traction. The FAM instruction is used to sum the minor-half
products during double precision multiplication (X1Y2 + X32Y1).

The FAM and FSM instructions transfer the contents of the speci-
fied memory location to the D Register and then force the sign
bits of the A and D Registers to zero. If there is a difference
between the exponents of the contents of the A and D Registers,
the words in the registers are arranged for addition or sub-
traction (see page 30). The FAM instruction then adds the
contents of the D Register to the contents of the A Register;
the FSM instruction subtracts the contents of the D Register
from the contents of the A Register. The sum or difference is
formed in A. The contents of the Q Register are then added to the
contents of the A Register, unless the subtrahend was arranged
during an FSQS instruction that was executed under double
precision mode since the last ENDDP instruction was executed,
If the subtrahend was arranged, the contents of Q are subtracted
from the contents of the A Register,

The result is left unchanged. If overflow occurs during any
operation, it is not corrected, and the correction counter is
incremented by one. The result is placed in both A and Q.

The FMAS instruction is used to form the major-half partial
product (X1Y;) during double precision multiplication,

The FMAS instruction operates as described in Chapter VI (see
page 44), except that the sign bit of the result in the Q Register
is forced to zero; otherwise, the result is left unchanged. If
overflow and exponent fault occur, they are not acted on during
the instruction performance, but are recorded to be handled
when the next ENDDP instruction is executed,

The FMMR instruction is used to form the minor-half cross
products (X1Y2 and X2Y1) during double precision multiplication.

The FMMR instruction transfers a word from the specified
memory location to the D Register and then forces the sign bit of
the word in D to zero. The word in D is then multiplied by the
contents of the Q Register, forming a rounded product in the
A Register,

DOUBLE PRECISION ARITHMETIC 97

The result is left unchanged and, if it is positive, the correction
counter is incremented by one; if it is negative, the sign bit is
made zero, If exponent fault or overflow occurs, it is recorded
to be handled when the next ENDDP instruction is executed.

ENDDP The ENDDP instruction transfers the contents of the specified
memory location to the D and A Registers, then adds the correc-
tion value as indicated by the correction register to the contents
of the A Register. The contents of A and Q are adjusted in the
standard manner for overflow, exponent underflow or a zero result.
If necessary, the result is then normalized (see page 29). If an
exponent fault exists after the mantissa is normalized, a transfer
of control as described on page 30 is made,

After the execution of this instruction, double precision mode has
been removed and the correction counter cleared.

DOUBLE PRECISION Sample routines to perform double precision addition, subtraction,
PROGRAMMING and multiplication are described below.

Addition and These routines for double precision addition and subtraction require
Subtraction one word of temporary storage. A routine for double precision
addition is below, Because the routine for subtraction is almost
identical to the one for addition, those commands which differ

for subtraction are indicated in parentheses.

Command Address Remarks
SETDP $ Set double precision mode
TMA X1$ Transfer the major half of X
to the A Register
T™MQ Y1$ Transfer the major half of Y

to the Q Register

FAQS (FSQS) SUMX1Y1$ | Modified instruction; add
(subtract) the major halves
of X and Y and store the sum

TMA X2$ Transfer the minor half of X
to the A Register
FAM (FSM) Y23$ Modified instruction; add

(subtract) the minor halves of
X and Y, and transfer the sum
to the Q Register

ENDDP SUMX1Y1$ | Transfer the sum (difference)
of the major halves to A;
adjust and normalize A andQ.
Clear double precision mode

98

Multiplication

The double precision multiplication routine requiresthree words

of temporary storage.

PHILCO 212 REFERENCE MANUAL

Remarks

Command Address
SETDP $
TMA X1$
TMQ Y1$
FMAS X1YIMAJS$
TQM X1Y1MINS
TMQ X1$
FMMR Y2$
TAM X1Y2$
TMQ Y1$
FMMR X2$
T™™Q X1Y2$
FAM X1Y1MINS$
ENDDP X1YIMAJS$

- specified memory

Set double precision mode

Transfer the major half of X
to the A Register

Transfer the m'ajor half of Y
to the Q Register

Modified instruction; form the
unrounded product of the
major halves. Transfer the
major half of the result to the
location

Transfer the minor half of
the result to the specified
memory Iocation

Transfer the major half of X
to the Q Register

Modified instruction; multiply
major half of X by the minor
half of Y, and round product

Transfer the product in A to
the specified memory location

Transfer the major half of Y
to the Q Register

Modified instruction; multiply
major half of Y by the minor
half of X, and round product

Transfer the rounded product
formed by the major half of X
and the minor half of Y from
memory to the Q Register

Modified instruction; add the
minor half of the product
formed by the major halves of
X and Y to the product formed
by the major half of Y and the
minor half of X; then add the
contents of the Q Register to
the sum. Transfer the final
result to the Q Register

Transfer the product of the
major halves of X and Y to
the A Register;, adjust and
normalize A and Q. Clear
double precision mode

APPENDICES

A SYMBOLS USED IN LOGIC
EQUATIONS AND FLOW CHARTS

B PHILCO 212 CODE COMBINATIONS
C PHILCO 212 QUATERNARY CODE
D PARITY ERRORS AND HALT INSTRUCTIONS

E PROGRAM ADDRESSABLE REGISTERS

F INSTRUCTION RUN TIMES

Appendix A

SYMBOLS USED IN LOGIC

EQUATIONS AND FLOW CHARTS

Symbol Definition Symbol Definition
A A Register S Bit 0 of CI
Bits numbered 0-47
JAF F-Bit of JA Register
D D Register
Bits numbered 0-47 XC C-Bit of Index Register
Q Q Register XY Y-Bit of Index Register
Bits numbered 0-47
(R) Contents of Register R
AQ A and Q Registers
(R) Complement of (R)
X Index Register
On 32K, bits numbered 1-15 |(R)] | Absolute Value of (R)
On 65K, bits numbered 0-15 (R) a Original Contents of Register R
JA JA Register (R) , Final Contents of Register R
On 32K, bits numbered 1-15 Ry _p Bits k-n of Register R
On 65K, bits numbered 0-15
CT Console Typewriter
M Word in Memory
I0CU Input-Output Control Unit
[M] Address of Location of M
. Logical AND, where
CI Current Instruction (Assumed 1.0=0
always to be in the left half of 0.1=0
an instruction word) 0.0=0
1 . =
[c1] Address of Memory Location of CI 1=1
v . .
[CI]k Bits k-n of [CI] Logical Inclusive OR, where
-n 1vo=1
NI Next Instruction (Assumed Ovi=1
always to be in the left half of oOovo=0
an instruction word) 1vi=1
[NT] gfddb;'less of Memory Location A Logical Exclusive OR, where
1A0=1
[NI] Bits k-n of [NI] =1
k-ﬂ = = O
=0

OVF

Overflow Indicator

101

Apppendix B

PHILCO 212 CODE COMBINATIONS

The following table shows the Philco 212 characters and their
corresponding octal codes:

Philco Octal Philco Octal
Character Code Character Code
0 00 - 40
1 01 J 41
2 02 K 42
3 03 L 43
4 04 M 44
5 05 N 45
6 06 O 46
1 07 P 47
8 10 Q 50
9 11 R 51
@ 12 - 52
= 13 $ 53
’ 14 * 54
= i5 < 55
j & 16 # 56
f ! 17 — 57
% + 20 A 60
E A 21 / 61
B 22 S 62
C 23 T 63
D 24 U 64
E 25 A2 65
F 26 w 66
G 27 X 67
H 30 Y 70
I 31 Z 71
n 32 | 72
. 33 , 73
) 34 (14
% 35 > - 75
? 36 . 76
" 37 e N

102

Appendix C

PHILCO 212 QUATERNARY CODE

The following table lists the Philco 212 instructions in order by their quaternary codes.

00 HLTL 00 AM 00 HLTR 00 FAM
01 JBTL 01 AMS 01 JBTR 01 FAMS
02 1C0Z 02 CAM 02 1Cos 02 FCAM
03 NOPL 03 CAMS 03 NOPR 03 FCAMS
10 TIO 10 AMA 10 TTD 10 FAMA
11 TCM 11 AMAS 11 TDC 11 FAMAS
12 SKC 12 CAMA 12 SKF 12 FCAMA
13 TCXZ 13 CAMAS 13 TCXS 13 FCAMAS
00 20 TIML 10 20 AQ 20 20 TJMR 30 20 FAQ
21 INCAL 21 AQS 21 INCAR 21 FAQS
22 TIJL 22 CAQ 22 TILJR 22 FCAQ
23 RPT 23 CAQs 23 RPT 23 FCAQS
30 ETD 30 AQA 30 ETA 30 FAQA
31 DORMS 31 AQAS 31 AWCS 31 FAQAS
32 EI 32 CAQA 32 EIS 32 FCAQA
33 LWD 33 CAQAS 33 SWD : 33 FCAQAS
00 CM 00 SM 00 SLAQ 00 FSM
01 TMA 01 SMS 01 SRAQ 01 FSMS
02 ™Q 02 CSM 02 SLAQN 02 FCSM
03 TMD 03 CSMsS 03 SRAQN 03 FCSMS
10 TAM 10 SMA 10 SLA 10 FSMA
11 CA 11 SMAS 11 SRA 11 FSMAS
12 TAQ 12 CSMA 12 SLAN 12 FCSMA
13 TAD 13 CSMAS 13 SRAN 13 FCSMAS
01 20 QM 11 20 5Q 21 20 S1IQ 31 20 FSQ
21 TQA 21 SQs 21 SRQ 21 FSQS
22 cQ 22 csQ 22 SLQN 22 FCSQ
23 TQD 23 CsQs 23 SRQON 23 FCSQS
30 TDM 30 SQA 30 SCD 30 FSQA
31 TDA 31 SQAS 31 SRD 31 FSQAS
32 TDQ 32 CSQA 32 SCD 32 FCSQA
33 CD 33 CSQAS 33 SRDN 33 FCSQAS
00 JMPL 00 MM 00 JMPR 00 FMM
01 JAZL 01 MMS 01 JAZR 01 FMMS
02 JNOL 02 MMR 02 JNOR 02 FMMR
03 JOFL 03 MMRS 03 JOFR 03 FMMRS
10 JAPL 10 MMA 10 JAPR 10 FMMA
11 JANL 11 MMAS 11 JANR 11 FMMAS
12 JAEQL 12 MMAR 12 JAEQR 12 FMMAR
13 JAEDL 13 MMARS 13 JAEDR 13 FMMARS
02 20 JQPL 12 20 MA 22 20 JQPR 32 20 FMA
21 JQNL 21 MAS 21 JQNR 21 FMAS
22 JQEL 22 MAR 22 JQER 22 FMAR
23 JQOL 23 MARS 23 JQOR 23 FMARS
30 JDPL 30 MAA 30 JDPR 30 FMAA
31 JAGQFL 31 MAAS 31 JAGQFR 31 FMAAS
32 JAGQL 32 MAAR 32 JAGQR 32 FMAAR
33 JAGDL 33 MAARS 33 JAGDR 33 FMAARS
O TDXL 00 DAQ 00 TDXR 00 FDAQ
01 TDXLC 01 DAQS 01 TDXRC 01 FDAQS
02 TXDL 02 DA 02 TXDR 02 FDA
03 TXDLC 03 DAS 03 TXDRC 03 FDAS
10 ADXL 12 DR 10 ADXR 12 SETDP
11 SDXL 13 EXT 11 SDXR 13 ENDDP
12 AIXJEG 20 MAD 12 AIXJS 20 FMAD
13 SIXJG 21 MSU 13 SIXJES 21 FMSU
03 20 JL 13 22 EA 23 20 JR 33 22 FEA
21 TIX2Z 23 ES 21 TIXS 23 FES
22 TDXLY 30 AD 22 TDXRY 30 FAD
23 TXDLY 31 SD 23 TXDRY 31 FSD
30 AIXJ 32 TYXZ 30 AIXJ
31 SIXJ 33 TYXS 31 SIXJ
32 AIXOL 32 AIXOR
33 SIXOL 33 SIXOR

103

Aprpendix D

PARITY ERRORS AND HALT INSTRUCTIONS

The following two tables describe the actions which occur upon
detection of an error condition or a halt instruction. Table I
presents the internal interrupt operation, Table II the stop
operation, For interrupt (Table I) the Auto-Control must be
in the system and not inhibited. Table II applies when Auto-
Control is not in the system or is inhibited,

Letters indicating the error condition or halt instruction are
displayed by a status indicator on the Operator’s Console. If more
than one condition described below exists at the same time, the
letters indicating each are superimposed on the status indicator.
Receipt of an interrupt signal extinguishes the status indicator,

Upon detection of any of the error conditions or halt instructions
listed in the following tables, any input-output order being per-
formed by a device is not interrupted, any type-out order to the
Console Typewriter is completed, and any data in the Console
Typewriter Buffer is typed out,

104

TABLE I - INTERRUPT CONDITIONS

Status

Status
Indicator

Central Processor
Actions Before

Permitting Interrupt®

Conditions Required
tor Notifying
Avto-Control

Normal Return
Address from
Interrupt Routine

Instruction Parity Error
(instruction about to be
performed contains a
parity error)

Operand Parity Error
(Last instruction proc-
essed by the Arithmetic
Unit had a memory oper-
and with a parity error)

IPE

OPE

Halts before executing
the faulty instruction;
awaits interrupt. Indi-
cates the error. Ends
repeat, double precision
and extend modes upon

signal.

Halts after faulty oper-
and has been processed
in Arithmetic Unit (ifan
extended instruction is
being processed in the
Index Unit, the process-
ing is completed before
the Central Processor
halts); does not store
results of operation, Ig-
nores any exponent fault,
Halts before executing
next instruction; awaits
interrupt. Indicates the
error. Ends repeat,
double precision modes
upon receipt of inter-

rupt signal.

Auto-Control isnot cyc-
ling for external reasons
and computer reaches
a point at which inter-
rupt is permitted.

Auto-Control is notified
as soon as the error is
detected, even if cycling.

Address of faulty in-
struction,

Return address cannot
be determined. It is
usually one following the
address of the instruc-
tion following the in-
struction with a faulty
operand.

* If an interrupt is requested while a previous interrupt is being processed, further interrupt is inhibited until a
TIO instruction to the Auto-Control Unit and a JL or JR instruction have been executed, in that order.

SNOILDNYULSNI LTVH AGNY SUHOHHI ALIHVd

S0T

TABLE 1 - INTERRUPT CONDITIONS (Continued)

Status

Status
Indicator

Central Processor
Actions Before
Permitting Interrupt®

Conditions Required
for Notifying
Auto-Control

Normal Return
Address from
Interrupt Routine

Store Parity Error
(Parity error in data
stored in memory by a
store instruction)

Input-Output Parity Er-
ror (Parity error indata
transferred to or from
memory by an input-
output order)

Indirect-Addressing
Parity Error (Parityer-
ror in word referenced
during indirect address-
ing process)

SPE

IOPE

OPE
IPE

Halts after detectinger-
ror; awaits interrupt.
Indicates the error.
Ends repeat double pre-
cision, and extend
modes upon receipt of
interrupt signal.

Central Processor not
notified of error. Inter-
rupt not accepted until
repeat, double precision
and extend modes are
completed.

Halts andterminates ex-
tend mode when error
is detected. Completes
indexing and/or index
register modification
for the address formed
by each word referenced
during the indirect ad-
dressing process, ex-
cept the one in whichthe
error was discovered,
Indicates zero.

Memory Control is re-
sponsible for notifying
Auto-Control.

Memory Control is re-
sponsible for notifying
Auto-Control.

Auto-Control notified as
soon as error is de-
tected.

Address of next instruc-
tion Central Processor
would have executed if
error had not occurred.

Address of next instruc-
tion Central Processor
would have executed if
interrupt had not oc-
curred,

Return address cannot
be determined. It is
usually the address of
the extended instruction
or one word higher,

*If an interrupt is requested while a previous interrupt is being processed, further interrupt is inhibited until a TIO

instruction to the Auto-Control Unit and a JL or JR instruction have been executed, in that order.

anT

1iu

TABLE I - INTERRUPT CONDITIONS (Continued)

Status

Status
Indicator

Central Processor
Actions Before
Permitting Interrupt®

Conditions Required
for Notitying
Avuto-Control

Normal Return
Address from
Interrupt Routine

Command Fault

HLT Instruction

JBT

Breakpoint Switch Set
to Halt

Instruction and .

CMD FLT

HALT

BRK PT

Halts before executing
next instruction;awaits
interrupt. Indicates er-
ror., Ends repeat, dou-
ble precision and extend
modes upon receipt of
interrupt signal,

If Auto-Control is cyc-
ling, allows interrupt
before executing Halt
instruction. If Auto-
Control is not cycling,
executes Halt instruc-
tion, notifies Auto-Con-
trol, indicates the Halt,
and awaits interrupt,
Ends repeat and double
precision modes upon
receipt of interrupt sig-
nal, Ends extend mode
if HLT instruction is
not executed.

Halts before executing
the instruction; awaits
interrupt. Indicates the
condition. Ends repeat,
double precisionand ex-
tend modes upon receipt
of interrupt signal.

Auto-Control isnot cyc-
ling for external rea-
sons and computer
reaches a point at which
interrupt is permitted,

Computer reaches a
point at which interrupt
is permitted,

Auto-Control isnot cyc-
ling for external rea-
sons and computer
reaches a point at which
interrupt is permitted.

Address of faulty in-
struction,

Address of the instruc-
tion following the HLT
instruction if the HLT
is executed; otherwise,
the address of the HLT
instruction.

Address of the JBT in-
struction.

*If an interrupt is requested while a

instruction to the Auto-Control Unit

previous interrupt is being processed, further interrupt is inhibited until a TIO

and a JL or JR instruction have been executed, in that order.

SNOILDNHLSNI LIVH ANV SHOHYA ALIHVd

L01

TABLE II - NO INTERRUPT

S Central Processor Actions®
tatus
Status Indicator
Detection of Error Advance Bar Pressed
Instruction Parity Er- IPE Halts before executing faulty instruction; No action,
ror (Instruction about awaits operator action. Indicates error,
to be performed con-
tains a parity error)
Operand Parity Error OPE Halts after processing faulty operand in Executes next instruc-
(Last instruction proc- the Arithmetic Unit; does not store results tion. Does not end
essed by the Arithme- of operation. Ignores any exponent fault. repeat, double preci-
tic Unit had a memory Indicates error. sion, or extend modes.
operand with a parity Extinguishes indica-
error) tor. !
Store Parity Error SPE Halts after detecting error; awaits opera- Executes next instruc-
(Parity error in data tor action. Indicates error. tion. Does not end
stored in memoryby a repeat, double preci-
store instruction) sion, or extend modes.
Extinguishes indica-
tor.1
Input-Output Parity IOPE Halts after detecting error; awaits opera- Executesnext instruc-
Error (Parityerror in tor intervention. tion. Does not end
data transferred to or repeat, double preci-
from memory by an sion, or extend modes.
input-output order) Extinguishes indica-
tor. '

Ul

When one of the conditions listed in this Table causes the Central Processor to halt and the Jump Switch on the
Operators Console is pressed, control is transferred to the address specified by the Console Address Register
without changing the contents of JA, and the status indicator on the console is extinguished.

All operations proceed as normal until the memory bank in which this error occurred is accessed. The Central
Processor then halts and cannot proceed until the fault is manually removed by the operator.

TVANVAN ADNIHAAAH ¢1¢ ODTIHd

TABLE II - NO INTERRUPT (Continued)

S Central Processor Actions*
‘ tatus
Status Indicator
Detection of Error Advance Bar Pressed
Indirect-Addressing OPE Halts after executing previous instruction No action,
Parity Error (Parity IPE and clears EXT controls, Completes index-
error in word refer- ing and/or index register modification for
enced during indirect the address formed by each word refer-
addressing process) enced during the indirect addressing proc-
ess, except the one in which the error was
discovered. Indicates error.
Command Fault CMD FLT Halts before executing faulty instruction; No action,
awaits operator action. Indicates error.
HLT Instruction HALT Executes HLT instructionand indicates the Executes next instruc-
halt, tion. Does not end
repeat, double preci-
sion, or extend modes,
Extinguishes indica-
tor. !
JBT Instruction and BRK PT Halts before executing instruction; awaits Executes next instruc-
Breakpoint Switch Set operator action. Indicates the condition. tion, Does not end
to Halt repeat, double preci-
sion, or extend modes.
Extinguishes indica-
tor.t

SNOILDNYLSNI LIVH ANV SHOHHA ALIMVd

When one of the conditions listed in this Table causes the Central Processor to halt and the Jump Switch on the
Operator’s Console is pressed, control is transferred to the address specified by the Console Address Register
without changing the contents of JA, and the status indicator on the console is extinguished,

All operations proceed as normal until the memory bank in which this error occurred is accessed. The Central
Processor then halts and cannot proceed until the fault is manually removed by the operator.

601

Appprendisx B

PROGRAM ADDRESSABLE REGISTERS

The instructions that alter the contents of a specific register are listed beneath that
register in the tables below.

Index Register C-Bit Y-Bit
ADXL SDXL TDXL TCXS TDXRY TCXS TDXLY
ADXR SDXR TDXLC TCXZ TIXS TCXSC TDXR
AIXJ SIXJ TDXLY TDXLC TIXZ TCXZ TDXRC
AIXJEG SIXJES TDXR TDXLY TYXS TDXL TDXRY
AIXJS SIXJEG TDXRC TDXRC TYXZ TDXLC TYXS
AIXOL SIXOL TDXRY TYXZ
ATIXOR SIXOR TIXS
TIXZ
D Register Q Register
Add instructions, except AD, FAD* Unrounded Multiply instructions
Subtract instructions, except Divide instructions
SD, FSD* Check orders for some input-output
Multiply instructions devices
Divide instructions Add and Subtract instructions in
Transfer instructions, except double precision mode
TDM, TDA, TDQ, TDC, TIO ENDDP if A and Q are not
Extract instructions normalized
AWCS JAGQ SWD cQ JQPL SRAQN
CDh JAGQFL TXDL JQEL JQPR SRQ
DORMS LWD TXDLC JQER SLAQ SRQN
INCAL SCD TXDLY JQNL SLAQN TAQ
INCAR SRD TXDR JQNR SLQ TDQ
JAEQ SRDN TXDRC JQOL SLQN TMQ
TXDRY JQOR SRAQ

* For FAD and FSD, the floating-point word in D may have been arranged for addition
or subtraction (see page 30).

110

PROGRAM ADDRESSABLE REGISTERS

A Register JA Register
Add instructions Jump instructions, except JL, JR
Subtract instructions Floating-point arithmetic instruc-
Multiply instructions tions causing exponent fault

Divide instructions
Extract instructions, except ETD

CA SLAQ SRAQN INCAL TIJL TXDLC
ENDDP SLAQN SWD INCAR TIJR TXDRC
LWD SRA TDA LWD TXDL TXDLY
SLA SRAN TMA SWD TXDR TXDRY

SLAN SRAQ TQA

Apppendix F

INSTRUCTION RUN TIMES

The following table gives average run time, in microseconds, for each Philco 212 in-
struction to be processed by the Central Processor. The run time given includes all time
required for instruction access, operand accessand execution. All run times are accurate
to within +107 and assume normal overlap of processes and no memory conflict.

Run Time {f Following lnsnudion®|s Run Time If Following lns"udion®|s
Instruction Instruction
indexed Not Indexed Indexed Not indexed
ADD and SUBTRACT EXTRACT
AD, SD 0,598 0.595 EA, ES 1.825 1.825
Fixed-Point with FEA, FES 2.505 2.505
operand in @ 0.795 0.795 El 2 095 2 005
Fixed-Point with o
operand in memory 1.345 1.345 EIS 2.305 2.305
FAD. FSD 1.595 1.595 ETA, ETD 1.495 1.495
Floating-Point with
operand in Q 1.795 1,795 INDEX REGISTER
Floating-Point with TDXL, TDXR
operand in memory 2.345 2.345 TDXLC, TDXRC
TDXLY, TDXRY 0.570 0.495
TIXZ, TIXS
MULTIPLY TCXZ, TCXS, TCXSC
MAD, MSU 7.745 7.745 TXDL, TXDR
Fixed-Point with Kg}: gggs 0765 0.765
operand in A 6.595 6.595 n |
Fixed-Point with ADXL, ADXR
operand in memory 7.145 7.145 SDXL, SDXR 0.865 0.885
FMAD, FMSU 6.945 6.945 ATXJ
Floating-Point with AIXJEG
operand in A 5.015 5.015 ATXJS 1335 1.335
Floating-Point with SIXJ 3.495 3.395
aperand i : 5.565 5.565 SIXJES
perana in memory .aha . STXJG
H ATXO1 | ATXOR H e !
| DIVIDE | soL. SXOR : 1.333 | 1.335
|
Fixed-Point 16.745 16.745
! ixe Hin @
; £1oatine - Poant 12.745 12.745 JUMP -
1 JMPL, JMPR
JL, JR
CLEAR 0.570 0.475 JNOL, JNOR
J .
OFL, JOFR 0.570 0.475
TRANSFER JAPL, JAPR 2510 ;
JANL, JANR =0 2.410
JDPL, JDPR
TTD 0.575 0.475 JAZL. JAZR
TMA., TMGQ, TMD 1.025 1.025 JBTL, JBTR
TCM Indeterminate Indeterminate
i 6.570 0.520
Toc @ ©) JAEDL, JAEDR 2.610 . 2510
TIJL, TLIR 0.570 0.515
JAEQL, JAEQR 0.725 0.725
TIO 2.000 -—19.000 2.000«—-19.000 2.805 2.705
TIML, TIMR 1.580 1.580
JAGDL, JAGDR 0.655 0655
Others 0.570 0.475 2.135 2.635

o

[8¥]

INSTRUCTION RUN TIMES 113

Run Time If Following lmtwc'ion® Is Run Time If Following Ins"uc'ion® is
Instruction Instruction
indexed Not indexed Indexed Not Indexed
JUMP (Continuved) SPECIAL
1.115 1.115 RPT, DR 0.570 0.430
JAGQL, JAGOR 3235 3.135
SETDP
JAGQFL, JAGQFR g';’gg o ICOS, 1C0Z 0.570 0.495
- - NOPL, NOPR
JQPL, JOPR
JQNL, JONR 0.570 0.495 HLTL, HLTR
JQEL, JOER 2.530 2.430 EXT 0.000 0.000
JQOL, JQOR
INCAL, INCAR 1.385 1.385
LOGIC 1.345 1.345
LWD, SWD 1.595 1.585
SHIFT
First Cycle 0.570 0.495 ENDDP 1.450 1.450
Each additional cycle @ ® SKC, SKF 1.100 =—8.500 1.100+—8.500

If an instruction is followed by an EXT instruction, the instruction extended by the
EXT instruction should be examined for indexing. The run time of an instruction
followed by an EXT instruction is then determined as follows:

For an extended instruction that does not specify indirect addressing, the run time of
the instruction that it follows should be compared with 0.810 if the extended instruction
specifies indexing or with 0.670 if the extended instruction does not specify indexing.
The larger of the two values is the run time of the instruction followed by an EXT
instruction.

For an extended instruction that specifies indirect addressing, the product obtained by
multiplying the number of words tobe referenced during the indirect addressing process
by 1.370 microseconds should be calculated. If the product is greater than the run time
given in the table for the instruction followed by the EXT, the product is the run time
of that instruction; otherwise, the run time given in the table is the run time for the
instruction.

@ The time for this instruction is 30 microseconds if the Console Typewriter Buffer is
not full. If the Console Typewriter Buffer is full, execution time for this instruction is
64.5 milliseconds.

@The first value given for an instruction that may cause a transfer of control is the time
required if control is not transferred; the second value indicates time if control is

transferred.

@A cycle is a shift of one, two or four places right or circular, or of one or two places
left. The time required for a shift of more than one cycle can be determined by
evaluating the formula:

0.495 + 0.210 (n - 1)

where n = number of cycles in the shift,

INDEX

A
ARegister 22, 111
Accounting Clock System. 7
Accumulator 21
Add Instructions
- N 37
AM, it et i e 34
N - 34
AMAS .,t ittt ettt 35
N L £ 34
. N 35
A - 36
AQAS i e i e e 36
N 35
L@+ . 34
CAMA ., it ittt i e aaas 35
CAMAS i ittt et i et e e 35
CAMS ittt i et et e 34
CAQ . .. ittt ittt e it e 36
(O N . 36
CAQAS ittt i et 37
CAQS . . it ittt 36
FAD . .. ittt it it neennn 37
FAM. ittt iinnenn 34, 96
FAMA ., ittt 34
FAMAS i ittt et e e 35
FAMS i ittt ettt it 34
) 35
FAQA . .. i i v it i et oot oon 36
FAQASt iiitnenons 36
FAQS . . . i i i ittt et ennnnnn 35
FCAM.ttt nnnnnns 34
FCAMA. it eenoon 35
FCAMAS |,ttt tennnn 35
FCAMS ¢ttt eeenas 34
FCAQttt enonns 36
FCAQAttt e 36
FCAQASt e i vnnnns 37
FCAQS vt ennoen 36
Address field 15-17
Alphanumeric word 15
Arithmeticword ., 21
Auto-controlunit 7, 8

115

B
BCDword. 15
Binary coded decimal 15
Binarypoint 13, 14, 25
Breakpoint halt switch , ., 59
Breakpoint jump switch. 59
C
C-bit................ 19, 21, 110
Central processor
Phileco212................ 3,4
Philco1000 8,9
Clear Instructions
CA . e 48
L) 5 48
) 417
CQ. .. i e e 48
Command fault 33, 107, 109
Command field 15, 16
Console typewriter. 4
Console typewriter buffer 4
Control section 3, 19-23
D
Dregister 21, 110
Datalink 9
Disc file system ., 3,5
Divide instructions
DA e e e e 47
DAQ ittt e 47
DAQS it 47
DAS i e, 47
| - 47
FDAQS0ivvu. 47
FDAS 47

INDEX (Continued)

D (Cont)
Double Precision
Correction counter 94,95
Instructions , e e e 94-97
Operand format 93, 94
Programming............ 97-98
E
Effective address. 19, 21
Extended instruction, 88, 89
Extract instructions
EA i e e 79
EI e, 79
EIS. 79
. 79
ETA e e e e e e e . 78
ETD ... ittt ittt . 78
FEA , 79
FES, 79
F
F-bit............. ..., 16
Fixed-point
Arithmetic. 25-217
Dataword 13
Overflowc.vev... 25-27
Zero,....... et e e e e e e e 13

Floating-point (see double precision)

Arithmetic, 29-31
Dataword e e e e 14-15
Normalization 29, 30
Number range 14-15
Overflow 217, 30
Zero. . v v v vt i i 15
|
Index register ., 19, 21, 110
Index register field 16

116

I (Cont)

Index register instructions

defined 21
ADX , e e 68, 89
AIXT, ... o e 72, 73, 89
AIXJEG. 72, 73, 89
AIXJS oo e 72, 73, 89
AIXO 76, 71, 89
SDX e e e 69, 89
SIXJ . . e e e 74, 75
SIXJESc.0.... 74, 75
SIXJG e 74, 75
SIXO. i i i i 25, 89
TCXS 21, 71, 92
TCXZ 21, 71, 92
TDX e it e e e 64, 65
TIXS it it e . 70
TIXZ ... i e e i e 70
TXD0o. 66, 67, 89
TYXS, 21, M
TYXZ e e e e e 21, 71
Index register modification
DR-controlled ,.,........... 86
Normal................ 19, 21
RPT-controlled 84
Index register selector bit, 16
Indexwunit ., ., 19-21
Indexable instructions., 21
Indirect addressing 89-92
Input-output buffers ., 9,11
Input-output control unit 4
Input-output order word ., 17
Input-output processor 6
Input-output switech. 8,9
Input-output typewriter 11
Instructionunit ., ,......... 19, 21
Instructionword ., 15-17
Intervaltimer............... 8

INDEX (Continued)

J
JAregister,............. 22, 111
Jump instructions

I 58
JAED i i i 56
JAEQ ittt et 57
JAGD ittt i 58
JAGQ e e 58
JAGQF 58
JAN | ... i e e 56
7 N 56
JAZ | e e 53
JBT 59, 107, 109
) 58
JMP e e e e 53
JNO ittt i i e 25, 56, 81
JOF i 25, 56, 81
JQE e e e 57
JAN L . e e e 57
JQO . .. i i e 57
JQP . . e e e 57

L

Logic instructions
AWCS i i e e 80
DORMS¢it e, 80

M

Magnetic tape

Systems0000... 5-6

Units 5,9, 10
Memory

Philco 212 (see magnetic core

storage system)

Philco1000 8,9

Mnemoniccode 33

M (Cont)

Multiply instructions
FMA 43
FMAA. 44-45
FMAAR.................. 45
FMAARS0oiv... 45
FMAAS 45
FMAD.........ciiveuun.. 46
FMAR. i ittt i i 44
FMARS.................. 44
FMAS............co... 44, 96
FMMc..... 41
FMMA 42
FMMARcc.o... 43
FMMARS. 43
FMMAS...........ccoo... 42
FMMR 41, 96
FMMRS.v0u... 42
FMMS.c.cv.... 41
FMSU........oivvvinnn.. 46
MA. ... i e e 43
MAA. it 44-45
MAAR. ittt in i e 45
MAARScciiiiin.. 45
MAAS i ittt 45
MAD.iiiiinnnns 46
MAR., 44
MARS ittt iin e 44
MAS it iiiie., 44
MM ... e e 41
MMA i, 42
MMAR 43
MMARS. .,c.u... 43
MMAS. ittt i 42
MMR 41-42
MMRS. i, 42
MMS.ciiiiiinen.. 41
MSU.......coiiiiiinen.. 46

N
N-field. 16, 17
Normalization, 29, 30

INDEX (Continued)

o)
Octalcode 15
Operand register 19
Operator’sconsole. 4
Overflow
Exponent. . v v v eoowenesaas 30
Fixed-point 25-27
Mantissa 29, 30
Overflow indicator 25
P
Paper tape system
Connected to Philco 1000 ., 11
Connected to Philco 212, 7
Parity 4,5, 6,13
Parityerror 4,104 to 106
Philco characters i5, 102
Philco1000................ 8-11
Printer00 10
Program address register. 19, 20
Program interrupt 8, 104 to 107
Program register 19
Punched-card system 10
Q
Qregister 22, 110
Quaternary code
defined 33
Instructions listed by......... 103
R
Real-time scanner 7
Real-time system 7, 8

118

R (Cont)
Registers
- 22, 105
5 21, 104
Index 19, 21, 104
- 22, 105
Program address 19, 20
Program reguster.......... 19
Qe 22, 104
S
S-bitt 16, 17
Scale factor 25, 26
Sealing.cccvvue... 25
Shift instructions
SCD, ...t e e e 63
SLA ... e 61
SLAN 61
SLAQ . . v v i it e i e e e 59
SLAQN ittt ittt 60
S 0 62
SLAN it i e . 62
SRA e e 61
SRAN i i e 61
SRAQ i i i i i e ., . 60
SRAQN ., it i e 60
SRD e e 63
SRDNc.ivi.. 63
SRQ it e e 62
SRON e 62
Signbit 13, 14
Significant bits , 13
Special Instructions
DR.............. 85-86, 90, 92
ENDDP... 92, 97
EXT ... ittt i e e 88-92
HLT 81, 107, 109
ICOS. i e 81
ICOZ i 81
INCA 82-83, 89
LWD.............. 87

INDEX (Continued)

S (Cont)
Special Instructions (Continued)
NOP i ittt eennansnas 81
RPT.....coouvuen 83-85, 90, 92
SETDPctoeeeess 92, 94
SKC ittt ittt aas oo 83
SKF . . v ittt it entnnsonan 83
SWD ., ...ttt i e 817
Storeunit .,c0c000 000 23
Subtract instructions
COM ...ttt i et e s s asnons 38
CSMA ittt oesnens 38
CSMAS ...ttt et ansoeeos 39
CSMSco000 b es e v oo 38
CSQ & vt ittt ittt 39
CSQA i i ittt s ononan 40
CSQAS v vtvevneenoas 40
CSQS ... vt eeeetsnoannsos 39
FCSMt et eesossnns 38
FCSMAot eosasoens 38
FCSMAS ¢t eeeensans 39
FCSMS ... ittt eennnnans 38
FCSQ .. it i et e eensonnas 39
FCSQAt uees 40
FCSQASt itteeesn 40
FCSQSt ensnonnns 39
1 21) 2 40
FSMt eennns 317, 92, 96
FSMA ... ittt ittt sennsens 38
FSMASt i vt eeesons 38
FSMS ¢ttt t vt enesans 37
FSQ ..ttt it it n oo 39
FSQA ¢t eesenns 40
FSQASt i i ittt ate s 40
FSQS & eeeeiineeennn 39, 92
S 5 2 40
1 37
SMA | ... it ittt it 38
SMASttt etanons 38
SMS . ittt e e e 37
SQ L. e e e e 39
SQA ...ttt 40
SQASttt i it 40
SQS ...ttt i et 39
Symbols defined. 101

119

T
Tape controller ., 5,8
Timing instructions 112, 113
Toggle register 51
Transfer instructions
TAD ., . ..ottt v it en oo 49
TAM. ittt e nnannnas 48
TAQ¢itieeennenes 48
TCM. .. ittt it nenennnns 52
TDA ittt et erosana 49
TDC . ..ttt ittt 52
TDM. vveennns . . 49
™Q....... et e e e .. 49
0 22, 51
TIO it iitntnnnns 52-53
0 1. . 50, 89
0 7 48
TMD. ¢t et t0ssssssas 48
TMQ.ttt e i e e . 48
TQA ... i ittt et nonnnas 49
TQDt eevvrnsonones 49
TQM.ttt et it onosnns 49
TTD ... v vttt vt nnnonseas 51
Transfer of control (see jump
instructions) 22, 23
Two’s complement form 13, 14
v
Vofield, 16, 17, 21
X
X-Yplotter. 10-11
Y
Y-bit...........0c... 19, 21, 111

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119

