ELECTRONIC

DATA PROCESSING
SYOTEMS

PHILCO 2000

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

ALTAC I

PHILCO 2000

ALGEBRAIC PROGRAMMING LANGUAGE

ALTACIIN

January 1963
,, ‘ /
3V/‘ /45 il addid 4//0 3

= /(, 3 onets gl

PHILCO CORPORATION
A SUBSIDIARY OF %ﬂo@%ﬁﬂ%ﬂﬁ%

Computer Division ¢ 3900 Welsh Road

Willow Grove, Pennsylvania

TM-27

This manual replaces manual TM-5C.

©Cc:opyrigh'f 1963, Philco Corporation

PREFACE

This manual is a comprehensive description of the Philco 2000
Algebraic Programming Language, ALTAC III (hereinafter re-
ferred to as ALTAC). It discusses the rules which must be
followed when writing programs in ALTAC language.

No previous programming experience is assumed for an under-

standing of the material presented herein; however, a knowledge
of the Philco 2000 TAC Language would be helpful,

—iti—

Preface

CONTENTS

58500 L 1k e) o

Chapter

I

II

II1

v

FORMAT OF THE SOURCE PROGRAM
Source Program Formats
ALTAC Formato ittt i it e

The ALTAC Coding Formc. ...,
FORTRAN Format« v v v v i i i e e aa
ALTAC Characters it eunveeeens

BASIC ELEMENTS OF THE ALTAC LANGUAGE:
CONSTANTS, VARIABLES, SUBSCRIPTS, AND
EXPRESSIONS i it ittt it ittt ieneeenn
Constants i ..
Fixed-Point Constants
Floating-Point Constants
Variables e e e e e e e e e e e
Fixed-Point Variablesc.u....
Floating-Point Variables.
Subscripts L e e e
Subscripted Variables
Storage of Arrays i
ExXpressionst i i it neeoenns
Operation Symbols
Processing of Expressions
Mixed Expressions o o i it it e i e

ARITHMETIC STATEMENTS i,
The Arithmetic Statement
Compound Statements

CONTROL STATEMENTS . . .ttt ittt ettt e e nen
Unconditional GO TO. e e e e e e e
Assigned GO TO. i ittt ittt
ASSIGN . .. e e e e e e e e e e e e e
ComputedGOTO e,
IF............ e e e e e e e e e e e e e e e
Compound IF Statements
SENSE LIGHT it it i i it e i

IFSENSE LIGHT ottt i i et et e e e e e e e

13 TV O QS S

OWWOo 0o 0 -3=-13

CONTENTS (Cont’d)

Page
Chapter
v IFSENSE SWITCHo ot ittt it innn. 19
IF SENSE BIT ittt it i et ee e e 19
IFOVERFLOW it ienn.. 20
DO . e e e e e e 20
CONTINUEt ittt i e et e e e e 23
PAUSE . . .o i e e e e e e e e e e 23
STOP . . . i e e e e e e e e 23
A% SPECIFICATION STATEMENTS 25
DIMENSION . . .t it ittt ettt it et e e e e e 25
EQUIVALENCE i ittt it et it i iea e 26
Computing Effective Addresses 26
COMMON . . ittt e et et e e e it e et e e e ea e e 27
TABLEDEF.t ittt ittt e ettt ee e 28
VI INPUT-OUTPUT STATEMENTS 29
ORDER STATEMENTS ittt ineenn. 29
Magnetic Tape References 30
Format Statement References 30
Lists . .o v v i e e e e e e e e e e e 30
Simplifying a List 31
Omission of The List Parameter. 31
READ e e e e e e e e e e 32
READINPUT TAPE, 32
READTAPE ittt i ee e 33
PRINT e e et it e 33
PUNCH. e e i e e e e 34
PUNCH OUTPUT TAPEcc0.o... 34
WRITE OUTPUT TAPE 35
WRITE TAPE e, 35
END FILE i e e e et ieenns 35
RUNOUTttt e e e e et e e e e 36
BACKSPACE et e e e e it e e e 36
REWIND. i i e e e et e eeee 37
LOCKOUT.t e e e e e e e e e e 37
FORMAT STATEMENTSt eeee., 37
Field Descriptors, 38
Numerical Field Descriptors 38
Alphanumeric Field Descriptors........... 40
Blank Field Descriptor 41

—t—

Chapter

VI

vl

VIII

Appendices

FUNCTIONS AND SUBROUTINE SUBPROGRAMS
FunctionNames,
Subroutine Names.
Arguments L i e,

ARITHMETIC STATEMENT FUNCTIONS

LIBRARY FUNCTIONS

FUNCTION SUBPROGRAMS
FUNCTION oottt e e e e e e et s e e e e
RETURN ittt ettt eieienena
Defining and Calling a Function Subprogram

SUBROUTINE SUBPROGRAMS
SUBROUTINEt iiiueeennn
CALL . .ttt i e e it e e it
Hollerith Arguments

CONTENTS (Cont’d)

Repetition of Similar Formats
Scale Factors ittt ittt
Printer Output Control Characters
Multi-Record Formats
Format Statement Processing

Format Statements Read In During Program

Execution

ADDITIONAL FEATURES OF THE ALTAC SYSTEM. . ..
TAC Coding Within An ALTAC Program

IDENTIFY. . ¢ttt it e e et e e et et et e e a e
ICard . ..o o e e e e e e
Remarks Card.
COMPLETEoOrEND.,

—Vit—

.....

.............

41

42
42
43

43

45
45
46
46
47
417
51

51
52
53
53
54
54

57
57
57

59
59

61
63

65

THE ALTAC
LANGUAGE

THE ALTAC
TRANSLATOR

INTRODUCTION

The ALTAC Language is a scientific, problem-oriented, automatic
programming language which may be used to express and solve
many different kinds of problems. ALTAC is especially suited
for solving scientific and technical problems, which usually
contain a large number of algebraic expressions.

The ALTAC language program defining the operations to be
performed by the computer is called the source program. In an
ALTAC compilation, the ALTAC Translator accepts an ALTAC
language source program and translates it into a TAC language
program, The TAC Assembler then produces a machine language
object program from the TAC language program, This object
program may then be used in a program run, to process data and
derive meaningful results,

The following diagram* shows the relation between Language and
Translator: :

ALTAC TAC 'MACHNE

LANGUAGE PHILCO PHILCO LANGUAGE
* LANGUAGE

SOURCE 2000 Ty 2000 oBJECT

I AN ALTAC COMPILATION —]

OBJECT PHILCO
PROGRAM 2000

I-O——— PROGRAM RUN _—.'

* The diagram is not intended to show all inputs and outputs
associated with the compilation and running of ALTAC programs,

—ip—

The operations performed in the compilation process are contin-
uous and require no operator intervention once the process has
started.

ALTAC provides several importantfeatures not generally included
in other algebraic compilers. Some of these features are:

Programs in FORTRAN format are acceptable without
modification,

TAC language instructions may be included in the ALTAC
souvce program,

One-, two-, three-, and four-dimensional arrays can be
represented.

Any floating-point number in the range -10600 to 10600 can
be accommodated.

Symbolic addresses as well as statement numbers may be
used,

Statements may be written in compound form.
Positive, negative, and zero subscripts are permitted, A sub-
script may be any fixed-point expression, including other

subscripted variables.

Mixed expressions (those containing both fixed- and floating-
point values) are permitted.

——

Chapter I

FORMAT OF THE SOURCE PROGRAM

SOURCE PROGRAM
FORMATS

ALTAC FORMAT

D‘é 7z K"Z’)%«_w__.—

An ALTAC source program consists of a series of ALTAC
language statements written in ALTAC format or FORTRAN
format, or TAC instructions written in TAC instruction format.*
The principal difference between ALTAC and FORTRAN formats
is the location of fields on the program cards. This difference
and other details of ALTAC and FORTRAN formats are pre-
sented below,

When written in ALTAC format, each statement of the source
program begins a new line of the ALTAC coding form (see below).
Statements too long to fit on one line are continued on succeeding
lines, starting after column 16.

After the program is written it is punched on cards, each line on
the coding form corresponding to one card. Figure 1 shows the
general appearance of an ALTAC source program as it is written
on a standard ALTAC coding form. Figure 2 illustrates how this
program appears on cards,

PHILCO ALTAC CODING FORM ol
— [Progmme [owe18-1-63
mg:&'('”égﬂ L| vLocation ALTAC STATEMENT

-------- D IR R SYX] N e T T LT T L N LYY

0. SANPLE. ,wm
,,,,, PRACRAN, TA. FERM THE. rm [38 tr THY MATRICES, | LT
DINENSIAN. A(2,47,8(4,2),5(2,2). s
5 R.E.A.D,.,,A,,,,i,,.,‘,,,,,‘__‘ ST DATA INTH ARRAYS, unnau___
3 FRNAT IS S0 8
D T AR B
0 12 2 &

EL T T S T T T T

Figure 1 — An ALTAC Program

* Refer to the Philco 2000 TAC Manual, TM-11.

2 ALTAC 111

3 T1 T T T
AMPOTIO [TP § | 1 T T] T
ORMAT C(IRIZF7, P INOEr7.20 3] 7 7

RINT T8 CCCXT, pr1= 15877 IF1v27 5 PRINT WATRIN E |
] F(I;J)=q(lyJ)+ﬂ—(|T,_I<)'B(KyJ- D $ tonpmz PRODICT FATRTY G
SRS T N T 7 : :
I L S T ; 7 7

“poxeﬂhes [i H ! 5 :

s 1 : ! I 7

NOUYEO03 ONMNY

AC2y4) BM:Z);C(::-a) s 7 f H

1 ! ;
ADONISS AWD BimMARKS *

TT - T —

] [—

] { 1 A]

panP\.E PFDGRun 1

IO G

NOUYNO40D DI UNe.

oo 7 omasm
000,00 V3000000 H000000008000000000:00000060:0000800008080000000000

Crrasvrafananuneliensnanaman AR e azlsxE ARG R Gl us AR LI NS R AR RO KRG BB AR AR AN

NO1YI04103 O3THe

NONVEO4IO0D 01N

HONYICIIO> OIUN

NOLYNOMI0) 02WNY

NOIYIOMNO3 0NN

NOWYA0IO? OINHY

NOUYI0410 OI MM

®

PHILCO - 2000 TaC CARD
-
=
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-~
-
-
-
-
-
-
-
-
-
-~

NOIYNO4I0 0INNE

[
1

10anion | commann

Wouts 5 YT |
LI) LBAGR) VORI R, B DL RS 5.0 RN SR B 2 R L IO NGO R PRS0 S L LU LA LR RS
amiry

Figure 2 — An ALTAC 'Source Deck

The program is transferred from cards to magnetic tape before
being read into the computer.

The ALTAC The following diagram shows the format of the ALTAC coding
Coding Form form and card:

IDENTITY AND|L|LOCATION ALTAC STATEMENT
j SEQUENCE ol 5110 16|17 80

An explanation of the contents of each field is presented below,
together with the coding conventions which must be followed when
writing ALTAC statements in ALTAC format.

FORMAT OF THE SOURCE PROGRAM 3

COLUMNS HEADING CONTENTS
1-8 IDENTITY Any combination of characters
AND to be used as identity and se-

SEQUENCE quence numbers.

The ALTAC Translator ignores
any information in these eclumns,

9 L A space, an asterisk (*¥), a T, or
an I,

A space signifies an ALTAC
language card; an asterisk signi-
fies a remarks card; a T signifies
a TAC insert card;an I signifies
the card containing the program
identity. (See Chapter VIIL.)

10-16 LOCATION | Statement numbers or symbolic
addresses.

A statement number may be any
unsigned integer from 0 to 99999,
A symbolic address may be any
alphanumeric symbol from one to
seven characters long, the first
character of which must be
alphabetic.

17-80 ALTAC ALTAC language statements.
STATEMENT
Because remarks are permitted
following an ALTAC statement,
a dollar sign must be used to
terminate the statement. There-
marks are written on the same
line as the statement, and may
start anywhere after the dollar

sign,

ALTAC statements may be com-
pounded and continued on suc-
ceeding cards (see page 14).
Spaces appearing in an ALTAC
statement are ignored. 1

T Except spaces in Hollerith fields, and in columns 17-32 of
the I Card. See pages 41, 54, and 59.

FORTRAN
FORMAT

ALTAC 111

FORTRAN programs, or ALTAC programs written in FORTRAN
format, are acceptable to the ALTAC Translator. The format is
communicated to the ALTAC Translator by means of an IDENTIFY
statement (see page 57).

Figure 3 is an illustration of the standard FORTRAN card format.

The contents of each column is discussed below:

—

Crostin,

[svarcweny
sty

FORTRAN

STATEMENT 1BENTITICATION

21 ey

thin
1

2222

EEE!

ﬁ‘l‘l
515555
4i556
nain
*llll

913999

M2y s

Tw e W o & = e — = olmwiie

1 98847

00
L R R R R R P Y R L A R L L L NI
(AR R R R R R AR R RN R R R R RN R R R R R R R R AR RN RN RN
22
3333333333333323333333333333233333333333333333333333333333333313333
S AA€AA4 4444444444448 4444444044444 4444440044480 008 0000000000004 0
35559955555555558555858§
SO ECUEEE00066600666668666660666666666666666666666666666666666666666
T1I1T1100 0000000000000 10000011t InnnnaininnInIg
(R RN R R R R R R R R R R R R R R RN RN N RN N R R ER N RRRRNNRNE])
999999999999999999999939999995999999999999999999999899999999999999

TEIHRNUDHBU N BRNIDNEAN AN NN NI ALRNANGNQUUCHUSUBINUNENI W UBH OO UEE MW N

Figure 3 — Standard FORTRAN Card

COLUMNS

HEADING

CONTENTS

1

1-5

772

73-80

C

STATEMENT
NUMBER

CONTINUATION

FORTRAN
STATEMENT

IDENTIFICATION

A “C’”’, a ‘““T’’, or a space,

A “C’’ indicates a comments
or remarks card; a ‘T’
indicates a TAC insert; a
space indicates a FORTRAN
statement.

Same as for columns 10-16
of an ALTAC card, except
that the first character of a
symbolic address cannot be
a ‘“C”ora “T”incolumnl,

Because remarks are not
permitted in FORTRAN
statements the dollar signis
not needed to terminate the
statement.

For a single statement: Blank
For a continuation card:
any non-blank character,

FORTRAN statements

Identity and sequence num-
bers.

00000000
nunannne
tirrrnd
22222222
33333321
44444444
5555555
66666566
IRERERERI
$ss88888

nuRRTANE

FORMAT OF THE SOURCE PROGRAM

ALTAC The characters that are allowable in ALTAC statements’ are:
CHARACTERS

e All decimal digits.
e All alphabetic characters.

e The twelve special characters + - * / ()
space (denoted by A) and $.

I .)

t Additional characters shown in Appendix A are also allowable,

provided they appear as a Hollerith field in a FORMAT state-
ment (see page 41).

Chapter II

BASIC ELEMENTS OF THE ALTAC LANGUAGE:
CONSTANTS, VARIABLES, SUBSCRIPTS,

CONSTANTS

Fixed-Point
Constants

AND EXPRESSIONS

In the ALTAC Language there are provisions for expressing
constants, subscripted and non-subscripted variables, Hollerith
fields, and arrays of up to four dimensions. When linked together
with certain ALTAC ‘‘operators’’ (see page 10) these elements
form expressions meaningful to the ALTAC Translator,

ALTAC constants are of two types - fixed point andfloating point.
These are defined as follows,

Fixed-point constants are constants which are written in the
following general form:

GENERAL FORM EXAMPLES
Any decimal integer in the range 7
~32767 to +32767. +3895
-50

If the absolute value of a constant is greater than 32767, it is
treated as a floating-point constant (see next page).

When used as a subscript, a fixed-point constant is treated
modulo the size of core storage (the number of memory locations)
in the object machine,

Unsigned fixed-point constants are regarded as positive, The
fixed-point constants +0 and -0 are the same in the object

program,

Floating-Point
Constants

VARIABLES

Fixed-Point
Variables

Floating-Point
Variables

ALTAC 111

Floating-point constants are constants which are written in the
following general form:

GENERAL FORM EXAMPLES
Any decimal number whose absolute +1.
valueis greater than 32767, or which 3.14 or .314E1
is written either witha decimal point :]8?225” -6.2E-3

or with a decimal exponentpreceded
by an E.(The letter E means ‘‘times
10 to the power’.)

98765

Themagnitude of the number thus ex-
pressed must either be zero, or must

lie in the range 107600 4, 10600,

Note that the floating-point constants +0, and -0. are the same
in the object program, while the fixed-point constant 0 and the
floating-point constant 0. are xnof the same in the object program.

The name of a variable may consist of from one to seven alpha-
numeric characters. The first character, which must be alpha-
betic, determines the mode (fixed- or floating-point) of the
variable,

Fixed-point variables are variables whose names are written in
the following general form:

GENERAL FORM EXAMPLES
Name contains 1-7 alphanumeric char- I
acters, the first of which is either I, JOB38
J. K, L, M, or N. KAPPA
NUMBERS5

Fixed-point variables can assume any integral value from
-32768 to 32767 (except -0, since, as is the case with fixed-point
constants, -0 and +0 are the same in the object program). If the
value of a fixed-point variable lies outside this range, the value
is reduced modulo 32768, or modulo the size of core storage of
the object machine when used as a subscript.

Floating-point variables are variables whose names are written
in the following general form:

GENERAL FORM EXAMPLES
Name contains 1-7 alphanumeric char- ALPHA
acters, the first of which is alphabetic E
but not 1, J, K, L, M, or N. RHO7

BASIC ELEMENTS OF THE ALTAC LANGUAGE : 9

SUBSCRIPTS

Subscripted
Variables

Storage of
Arrays

Floating-point variables can assume the value 0., or any value not
exceeding 10800 nor less than 10-600 iy magnitude. (An assumed
value of -0, is the same as +0. in the object program.)

A subscript may be any fixed-point expression (see page 10). By
subscripting a variable, it can be made to refer to any element
of a one-, two-, three-, or four-dimensional array. The number
of subscripts must always agree with the number of dimensions
of the array.

GENERAL FORM EXAMPLES
A fixed-or floating-point variable, c
followed by parentheses enclosing ALPHA(l, J)
1, 2, 3, or 4 subscripts separated BETA(I, J, K, L)
b GAMMA(2%1+3, J, K+5)
y commas.

For each variable that appears in subscripted form, the size of
the corresponding array (i.e., the subscripts of its last element)
must be stated in a DIMENSION or TABLEDEF statement (see
pages 25 and 28) preceding the first appearance of the variable.

Subscripted variables may appear in subscripts to any desired
depth. For example, the subscripted variable

MATRIX(J(1),K)

will be read as

MATRIX. .
ik

The variable J is also the name of an array and must appear in

a DIMENSION or TABLEDEF statement, ALTAC will use the

value of the ith element of array J as the first subscript of

MATRIX,

A general method for computing the effective address of a sub-~
scripted variable (i.e., the actual memory address represented
by the variable) is presented on page 26.

Arrays are stored forward in memory, in order of increasing
absolute location, with the innermost subscript varying most
rapidly. Thus, a two-dimensional array may be said to be stored
‘‘column-wise.’’ For example, the elements of the 2x3 array

233 232 233
ag1 agg agy

would be stored in the order aqq, as;, a9, 229, 213, 223.

10

EXPRESSIONS

Operation
Symbols

Processing of
Expressions

ALTAC 111

For three-dimensional arrays, elements of the first plane are
stored before elements of the second plane, ete, This same
method of storage is extended to four-dimensional arrays.

An expression is any sequence of constants, variables (subscripted
or non-subscripted), and functions, separated by operation symbols
and parentheses, so as to form a meaningful, unambiguous
mathematical expression.

There are five ‘‘operators’’ or operation symbols in ALTAC
Language. These are:

+ denoting addition (binding strength 1)
- denoting subtraction (binding strength 1)
* denoting multiplication (binding strength 2)
/ denoting division (binding strength 2)
** denoting exponentiation (binding strength 3)

Any of the above operators maybe used in an expression, to define
relationships between constants, variables, and functions. The
effect of each of their binding strengths is discussed below.

The efficiency of the instructions compiled from ALTAC expres-
sions depends to some extent on the way the expressions are
written. ALTAC processes an expression according to the
following rules:

Rule 1 - In an expression of the form A 0p; BopoC, if the binding
strengths of the operators op; and op2 differ, the
operations with the greater binding strength will be
applied first, If the binding strengths of op; and 0pp are
the same, then the operations in general will be per-
formed from left to right. For example, the expression
A*B**C will be computed as A*(B**C), and the expression
A/B*C will be computed as (A/B)*C,

Rule 2 - ALTAC assumes that the entire expression is paren-
thesized. ALTAC scans from left to right until it
encounters a right parenthesis; it then proceeds to
evaluate the expression between this right parenthesis
and its corresponding left parenthesis according to
rule 1, After replacing the parenthetic expression by
its value, ALTAC continues scanning (from left to right)
until it encounters another right parenthesis, and pro-
ceeds as above, until all parenthetic expressions are
evaluated. :

\

BASIC ELEMENTS OF THE ALTAC LANGUAGE C11

Mixed

Expressions

In an ALTAC expression there must be a corresponding right
parenthesis for each left parenthesis used, and vice versa, If
this condition is not met, the statement is illegal.

An expression of the form A2% should be written as A** (2%*4) or
as (A**2)**4 depending on whether ACYH or (A2)% is meant.
A¥*2**4 js ambiguous and is therefore not a valid ALTAC
expression.

No two operators are written consecutively. Negative exponents
and fractional exponents of the form (x/y) should always be
enclosed in parentheses, since exponentiation has the greatest
binding strength.

A special feature of the ALTAC system is that it permits the
writing of mixed expressions. A mixed expression is one con-
taining a combination of fixed- and floating-point variables or
constants,

In mixed expressions the floating-point mode has precedence in
specifying the mode of the value of the expression. For example,
the expressions A**I and I**B would be converted to floating-point
mode because of the floating-point variables ' Values resulting
Jfrom fixed-point opevations ave always truncated to an integey.

THE
ARITHMETIC
STATEMENT

Chapter III

ARITHMETIC STATEMENTS

The ALTAC Language comprises five types of statements:
e Arithmetic Statements

° Control Statements

o Specification Statements

e Input-Output Statements

° Subprogram Statements

Each type of statement performs a specific function, Arithmetic
statements are discussed in this chapter; subsequent chapters
are devoted to the discussion of the other statements.

Arithmetic statements are written as equations. The equal sign
signifies that the value of the variable onthe left side is {0 be re-
placed by the value of the expression on the right side, not that
the variable equals the expression. (See, in particular, the third
example below.) The general form of an arithmetic statement
is:

GENERAL FORM EXAMPLES
v=e Y=X
where v is a variable (subscripted or A(l) = B(D-C(1)
non-subscripted), and e is an expres- SUM = SUM + X(1)
o pied), and e P KAPPA = A« (S=3.)/L
ion.

The value of the expression (e) is always converted to the mode of
the variable (v). Thus, inthe last example above, the floating-point
value of the mixed expression would be truncated to the integer
(and reduced modulo 32768 if necessary) before being stored in
the memory location represented by KAPPA, For example, if the
value of the expression is 7,998, the value 7 will be stored, not 8.

14

COMPOUND
STATEMENTS

ALTAC 111

The following are other examples of arithmetic statements:

STATEMENT MEANING

Z=A+B Add the quantity in A to the
quantity in B and store the
result in Z,

X=KAPPA Convert the quantity in location
KAPPA to floating-point and
store the result in X,

Y=Y+X(I) Add the quantity in the 7th loca-
tion of array X to the quantity
in Y, and store the result in Y,

N(I)=BETA*7 Multiply the quantity in BETA
by floating-point 7, convert the
product to fixed-point and store
the result in the 7¢th location of
array N,

A series of arithmetic statements may be compounded (written
sequentially) by linking them with semicolons to form one or
more consecutive lines of coding. Statements continued on
succeeding lines must start after column 16, The last statement
of the series must be terminated by a dollar sign.

The following is an example of a compound statement:

LOCATION ALTAC STATEMENT

BETA=3*Y; A=K-N/7; C=A+B $

Each statement is executed in the order in which it occurs in the
program. Other examples of compound statements are presented
on page 18.

If a statement number Oc;g? symbolic address is used with a com-
pound statement, only the first statement in the compound
statement will be identified by the statement number or symbolic
address.

UNCONDITIONAL
GO 10

ASSIGNED
GO 10

Chapter IV
CONTROL STATEMENTS

This chapter discusses the sixteen ALTAC statements which
control the sequence of operations in a program. In general, these
control statements may be used to:

o provide unconditional transfer of control to other state-
ments in the program

o test variables and provide conditional transfer of control
to other statements in the program

o set or test ‘“‘program switches’’ to determine which of
several paths a program may take

o execute a particular sequence of statements repeatedly a
specified number of times

The Unconditional GO TO statement is used to unconditionally
transfer control to other statements in the program. The general
form of this statement is:

GENERAL FORM EXAMPLES
GO TO = GO TO 9
where » is either a statement number GO TO ALPHA
or a symbolic address.

This statement causes control to be transferred to the statement
with symbolic address or statement number #.

A GO TO statement that is subject to modification by an ASSIGN
statement (see next page) is called an Assigned GO TO. Assigned
GO TO statements also provide unconditional transfer of control,
and they may be written in either of two forms:

GENERAL FORMS EXAMPLES
GO TO m GO TO Z
or
GO TOm, (nymy v nn,my) GO TO Z, (7, K, 15)

where m is a non-subscripted variable
appearing in a previously executed
ASSIGN statement, andz j, 7y, + -+, 7,
are each either a statement number or
o symbolic address.

16

ASSIGN

COMPUTED
GO TO

ALTAC 111

The Assigned GO TO statement causes control to be transferred
to the statement whose symbolic address or statement number is
equal to the value last assigned to m by an ASSIGN statement,
When the second form above is used, the variable » should not
be assigned a value which does not appear in the parenthesized
part of the statement.

The ASSIGN statement is used to assign a value to a non-
subscripted variable which appears in an Assigned GO TO
statement. The general form of the ASSIGN statement is:

GENERAL FORMS EXAMPLES
ASSIGN 7 to m ASSIGN 7 to Z
or ASSIGN (K) to Z

ASSIGN (z) to m

where » represents a statement num-
ber, or a symbolic address if en-
closed in parentheses,and m is a
non-subscripted variable.

When used with a subsequent GO TO statement, the ASSIGN
statement causes the GO TO to transfer control to the statement
whose symbolic address or statement number is #,

The statement ASSIGN # to m is not the same as the arith-
metic statement m =#n, A variable which has been assigned can be
used only for an Assigned GO TO, until it is re-established as
an ordinary variable,

The Computed GO TO statement is used to transfer control to
one of several statements in the program, The general form of
this statement is:

GENERAL FORM EXAMPLES
GO TO Gy iy vy)i GO TO (10, 15, 20), J
where ny, ny « oo, n are each either GO TO (BETA, 6, DEL), K

a statement number or a symbolic ad-
dress, and i is @ non-subscripted fixed-
point variable.

This statement functions as a program switch, It causes control
to be transferred to the statement with symbolic address or

statement number #,,n,,..., or n, , depending on whether the

CONTROL STATEMENTS

17

value of ¢ at the time of executionof the statement is 1,2,...,0r i,
respectively,

Thus, if J in the first example above has the value 2 at the time
of execution of the statement, control will be transferred to the
statement with statement number 15.

IF statements provide a means of making comparisons and condi-
tionally transferring control. IF statements may be written in
either of two forms:

GENERAL FORMS EXAMPLES

IF(e)nI, ng ng IF (X-Y)3, K, 6

o IF (X)GT(Y), GO TO 6
IF (e)):ley), S
where e, e, and e, represent expres-
sions, : represents a comparison sym-
bol, s represents a statement, and g
ny and n5 areeach either a statement
number or a symbolic address.

Any of the following comparison symbols may be used in an IF
statement of the second form above:

SYMEOL MEANING
E Equal to
NE Not equal to
LT Less than
LTE Less than or equal to
GT Greater than
GTE Greater than or equal to

In the first form above, control would be transferred to the
statement with symbolic address or statement number n;, ny, or
ng,if the value of the expressiondenoted by e is less than, equal to,
or greater than zero, respectively,

In the second form, control would be transferred to the statement
represented by S, if the relationship (denoted by the comparison
symbol) between the expressions e; and ¢, is met. If the relation-
ship is not met, the next statement is executed.

18

COMPOUND IF
STATEMENTS

SENSE LIGHT

ALTAC 111

If several statements are to be executed asa result of satisfying a
single IF condition, the dependent statement S (inthe second form
above) may be written as a compound statement terminated by
another IF statement (see Compound IF statements below), or by
a dollar sign. For example, if the condition (X)E (Y) is satisfied
in the following:

IF(X)E (Y),I=J+6;Z=A+BETA-2;GO TO KAPPA $

all three statements (making up the dependent statement S) follow-
ing the IF condition would be executed. If the condition (X)E(Y) is
not satisfied, all three statements will be ignored, and control
will be transferred to the statement following the IF statement.

The expressions e; and e, in the second form need not be in the
same mode; however, more efficient coding will result if they are.

A compound IF statement is composed of several IF statements
separated by semi-colons, The following is an example of a
compound IF statement:

IF(X) E (Y),I=J+1;IF (X)GT(Y),I=J-1;GO TO K $

The object program tests the conditions in sequence until it finds
one condition that is satisfied. The dependent statement(s) following
this satisfied IF condition are then executed. The remainder of
the compound statement is ignored. The program then proceeds
to the first statement which follows the compound IF statement.

The SENSE LIGHT statement is used to set a particular bit of a
word in memory to 1, or all bits to zero, simulating an on or off
condition respectively. The lights or bits are numbered from 1 to
48, and are referred to in the following manner:

GENERAL FORM EXAMPLES

SENSE LIGHT : SENSE LIGHT 40

where 7 is any unsigned integer 0—48.

If ¢ has the value zero, all lights are turned off. If ¢ has any other

~ value 1-48, then sense light 7 is turned on.

CONTROL STATEMENTS

IF SENSE
LIGHT

IF SENSE
SWITCH

IF SENSE BIT

19

The IF SENSE LIGHT statement is used to test a sense light (set
by a previous SENSE LIGHT statement) and to turn it off. The
general form of this statement is:

GENERAL FORM EXAMPLES
IF (SENSE LIGHT 1) n, », IF (SENSE LIGHT 7)5, 10
where 7 is any unsigned integer 1-48, IF (SENSE LIGHT 40)K, 7

andz and #, are each either a state-
ment number or a symbolic address.

This statement causes control to be transferred to the statement
with symbolic address or statement number z; or g, if sense
light 7 is on or off,respectively. If the sense light is on, it is turned
off prior to transfer of control.

The IF SENSE SWITCH statement is used to test a sense switch.
A sense switch is one of the forty-eighttoggles numbered 0-47 on
the Philco 2000 Console. (Reference to sense switch 48 is inter-
preted as a reference to sense switch 0,) This statement is
written as follows:

GENERAL FORM EXAMPLES
IF (SENSE SWITCH 7) =, n, IF (SENSE SWITCH 9)15, 30
where i is any unsigned integer 0—48, IF (SENSE SWITCH 37)4, BETA

and ", and n, are each either a state-

ment number or a symbolic address.

The IF SENSE SWITCH statement causes control tobe transferred
to the statement with symbolic address or statement number » ; or
ngy, if sense switch? is on or off, respectively.

The IF SENSE BIT statement is used to test a sense bit. A sense
bit is one of forty-eight bits in a memory location* within an
operating system, The general form of this statement is:

GENERAL FORM EXAMPLES
IF (SENSE BIT i) n;, n, IF (SENSE BIT 24)9, 12
where 7 is an unsigned integer 0-48, IF (SENSE BIT 40)B, KAPPA

and » ;and 7, are each either a state-
ment number or a symbolic address.

* In the Philco Operating System SYS, the address of the memory
location is 49,

20

IF OVERFLOW

DO

ALTAC 111

This statement causes control to be transferred to the statement
with symbolic address or statement number n; or n,, if biti of
of the memory location is 1 or 0, respectively. Reference to
sense bit 48 is interpreted as reference to sense bit 0.

The IF OVERFLOW statement isusedtotestan overflow indicator
for floating-point exponent fault, The general form of this state-
ment is:

GENERAL FORM EXAMPLES
IF OVERFLOW », =, IF OVERFLOW 6, 25
where », and #, are each either a IF OVERFLOW D, LAMBDA
statement number or a symbolic ad-
dress.

If floating-point exponent fault occurred, the overflow indicator
is cleared to zero and control is transferred to the statement
with symbolic address or statement number #;. If overflow did
not occur, control is transferred to the statement with symbolic
address or statement number n,.

The FORTRAN statements IF ACCUMULATOR OVERFLOW,
IF QUOTIENT OVERFLOW, and IF DIVIDE CHECK are all
treated as IF OVERFLOW statements by ALTAC,

The DO statement is used to execute a series of instructions
repeatedly a specified number of times. This statement may be
written in either of two forms:

GENERAL FORMS EXAMPLES
DOni:ml,mz,m3 DO71=192

or DO(K)J=1, 16,3
DO (n) i =my my my DO SE_"—‘ 1, N

where » is a statement number, or a . K@/ »?

symbolic address if enclosed in
parentheses; i is a non-subscripted
fixed-point variable; and m , m ,, and
m, are each either an unsigned
fixed-point constant or a non-sub-
scripted fixed-point variable.

CONTROL STATEMENTS

The DO statement causes repeated execution of all statements
within its range. The vange of a DO statement extends from the
first statement following the DO statement up to and including
the statement whose symbolic address or statement number is#n.

The statements in the range are executed repeatedly, first for
i=mj;, and each succeeding time for i incremented by Mg, until
the value of ; exceeds m,. When the value of i exceeds m,, the
DO is said to be satisfied, and control is transferred to the first
statement following the statement with symbolic address or
statement number 7.

The fixed-point variable ¢ is called the index of the DO. m; repre-
sents the initial value of ¢, m, the limiting value, and m 4 the
incrementing quantity. If m4 is omitted, it is assumed to be 1;
if m, is omitted, it is assumed to be m .

In the special case where both m; and m, are?, the DO is auto-

matically satisfied at the end of its range and the value of¢ re-
mains as m 10

The following is an example of a DO statement:

STATEMENT MEANING

DO(ALPHA) I=1,5,2 Execute all statements immediately
following, up to and including the
statement with symbolic address
ALPHA, first for I=1, next for I=3,
and last for I=5; then transfer con-
trol to the statement following the
statement whose symbolic address
is ALPHA,

Statements in the range of a DO may themselves use the current
value of the index, but are not permitted to redefine this value.
This restriction, therefore, automatically excludes a DO in the
range of another DO with the same index name.

A GO TO statement or an IF statement of the form IF (e) ng,Mo,hg
should not be the last statement in the range of a DO,

DO Nests. The range of a DO may include other DO statements,
provided that the DO’s are properly nested. A set of DO’s is
considered to be properly nested if the following rule is observed:

. If a DO statement is inthe range of another DO, all statements
in the range of the former DO must also be in the range of

Ottt et b rrltnmed vty o
’WméL /K ~ Do A-l' U) ado Artant

Mo el M/v{f

ot o piresdad
o 4 j/w’ oy Mr’ivth/{Uw‘/\/L"&

' - . "
4’(\) tiumLW e J

n(z) &

22 i ALTAC 111

the latter. The following is an illustration of proper and
improper nesting arrangements.

PERMITTED NOT PERMITTED

DO
DO
C G
As many as 63 levels m" DO’s are permitted in a nest.

Control cannot be transferred into the range of a DO from outside
its range. The only exception to this rule is 1f control is being
retuyned into the range of the DO, a emrents
executed—e&tﬁde—tts—rangewhmh—changed‘the—va{ueef—the—mdex—
any-of-the—indexing parameters-of the-DO;~This-exception-makes
it possible-to-exit-temporarily from-the-range-of a DO-to-execute-
a-subreutines—if-desired,.

2l ‘Z his Nagl)

The following shows which transfers of control are permissible
and which are not.

]

Transfers 1, 3, and 6 are permitted. Transfer 4 is permitted only
if it adheres to the provisions stated in the exception above,
Transfers 2 and 5 are nof permitted.

If a DO has been satisfied and control transferred out of its
range, the value of the index controlled by the DO is no longer
defined, and must be redefined prior to its use again. If exit is
made before the DO is satisfied, the current value of the index
remains available for use,

In nested DO loops, the index value of one DO may be used by the
other DO’s as indexing parameters, or as subscripts or operands
in other statements. For example:

DO 15 J=1,N $
DO 13 K=J,40 $
SUM= A(J) J$

CONTROL STATEMENTS

CONTINUE

PAUSE

STOP

23

The CONTINUE statement is used primarily as the last statement
in the range of a DO, and serves as a common point to which
control is transferred. It generates no coding, other than the
assignment of a statement number or symbolic address for pur-
poses of modifying and testing the index. The general form of this
statement is:

GENERAL FORM EXAMPLE

CONTINUE CONTINUE

At the' end of the range of a DO, CONTINUE simply means ‘‘do
nothing, but proceed to modify and test the index.’”’

If the first executable statement in an ALTAC program is a
TAC insert (see page 57), then a CONTINUE statement must
precede the TAC insert (including the STARTTAC statement,
if any).

The PAUSE statement is used to provide a temporary halt in a
program, The general form of this statement is:

GENERAL FORM EXAMPLES
PAUSE » PAUSE
where # is any unsigned fixed-point PAUSE N1
octal number of up to 5 digits. If » PAUSE 77777
is omitted, zero is assumed.

Upon executing a PAUSE statement, the computer will halt dis-
playing the octal number ». Pressing ADVANCE on the console
will cause the program to resume operation, starting at the next
sequential statement.

The STOP statement is used to signal the end of a program run,
The general form of this statement is:

GENERAL FORM EXAMPLE

STOP STOP

When this statement is executed, all tapes will be run out
(see page 36), and control transferred to the operating system used.

DIMENSION

Chapter V

SPECIFICATION STATEMENTS

The ALTAC Language includes four Specification Statements:
DIMENSION, EQUIVALENCE, COMMON, and TABLEDEF. These
are non-executable statements; they provide the ALTAC Translator
with information concerning the allocation of storage, and the
arrangement of data in memory. The function of each of these
statements is discussed below.

The DIMENSION statement provides ALTAC with the information
necessary to allocate storage for an array inthe source program,
The name of each array together with its dimensions mus? appear
in a DIMENSION (or TABLEDEF) statement. The general form of
the DIMENSION statement is:

GENERAL FORM EXAMPLES
DIMENSION v, v, v, « & DIMENSION A(5), B(4, 7)
where each v is a variable, sub- DIMENSION KAPPA(3, 5,7),
scripted with 1, 2, 3, or 4 un- RHO(2, 4, 6, 8)

signed fixed-point constants,
representing the maximum dimen-
sions (last element) of the cor-
responding array.

In the second example above, KAPPA is shown to be the name of
a 3-dimensional array for which 105 (3x5x"7) locations are
reserved; RHO is the name of a four dimensional array for
which 384 (2x4x6x8) locations are reserved,

If the name of anarray appearing ina DIMENSION (or TABLEDEF)
statement also appears in an EQUIVALENCE and/or COMMON
statement, the EQUIVALENCE statement must precede the
COMMON, DIMENSION or TABLEDEF statements; the COMMON
statement, in turn, must precede the DIMENSION or TABLEDEF
statement,

There may be several DIMENSION statements in a program, each
of which must precede the first appearance* of any of its variables
in the program.

* Not considering appearances in EQUIVALENCE and COMMON
statements,

EQUIVALENCE

Computing
Effective
Addresses

ALTAC 111

A DIMENSION statement should not contain the names of functions
or subroutines,

The EQUIVALENCE statement permits the programmer to con-
serve storage by specifying that storage locations are to be
shared by two or more variables, EQUIVALENCE is also used in
conjunction with the COMMON statement, to control the allocation
of storage in the common storage area (see page 27). The general
form of the EQUIVALENCE statement is:

GENERAL FORM EXAMPLE
EQUIVALENCE (v,, vy, vy, - - -), EQUIVALENCE (A, B(5), C),
(vprvp fendens (BETA(10),
Kok RHO, X(2))

where each v represents a variable.
A single unsigned fixed-point con-
stant in parentheses may follow a
variable.

In the example shown above, arrays A, B, and C are to be
assigned storage locations in such a way that the first element of
array A, the fifth element of array B, and the first element of
array C all occupy the same location, Similarly, the tenth
element of array BETA occupies the same memory location as
the first element of array RHO, and the second element of
array X, A programmer can thus refer to the same memory
location by different names. It is his responsibility, however, to
insure that the appropriate values appear in these locations at
the time of reference,.

It may be necessary for a programmer to know the effective
address of a subscripted variable, for example, when planning to
use the EQUIVALENCE statement. By means of the following
information, he can calculate this address:

Assuming a subscripted variable of the form A(Jy,J92,J3,J4), with
corresponding DIMENSION statement

DIMENSION A (N1,N9,N3,N4)
the general equation for computing the effective address is:

The address of A(Jy,J9,J3,J4) = A+(J1-1)+N1(J2-1)+N1N2(J3-1)+

N{NoN3(Jg-1)

SPECIFICATION STATEMENTS o7

COMMON

For a variable of less than four dimensions, substitute 1 for the
unused subscripts in the general equation above, Thus, if
A(2,1,2) is a subscripted variable with dimensions A(3,3,3), the
effective address of A(2,1,2) = A+(2-1)+3(1-1)+9(2-1) = A+ 10, the
eleventh element of array A,

The COMMON statement is used to reserve areas of common
storage which are equally accessible to different object programs
in memory. The general form of this statement is:

GENERAL FORM EXAMPLE

COMMON v, vy, v3 - . . COMMON ZETA, B, TAU

where each v is the name of a variable
or is a non-subscripted array name.

The variables are placed in common storage in the order that
they appear in the COMMON statement, provided none of them
appear in an EQUIVALENCE statement. Variables which appear
in both EQUIVALENCE and COMMON statements will be placed
first in the common area, in the order that they appear in the
EQUIVALENCE statement, For example, according to the state-
ments:

EQUIVALENCE (D,H), (A,F)
COMMON A,B,C,D,E
DIMENSION B(3),C(2),E(2)

common storage would be assigned as follows:

D and H
Aand F
B (1)
B (2)
B (3)
C (1)
C (2)
E (1)
E (2)

The size of the EQUIVALENCE storage within COMMON plus the
total size of those variables which appear in COMMON and do
no! appear in EQUIVALENCE, is the size of the area of memory
reserved for common storage.

28 . ALTAC III

TABLEDEF The TABLEDEF statement is used to specify the dimensions of
an array which has been defined by means of a TAC insert
(see page 57). The general form of this statement is:

GENERAL FORM : EXAMPLE
TABLEDEF v, v,, v5, - . . TABLEDEF A(10), B(5, 8),
DELTA(S, 4, 5)

where each v is a variable, sub-
scripted with 1, 2, 3, or 4 un-—
signed fixed-point constants,
representing the maximum dimen-
sions (last element) of the cor-
responding array.

ALTAC does mnot reserve storage for an array which appears
in a TABLEDEF statement, unless the array also appears in an
EQUIVALENCE or COMMON statement, or appears as a formal
parameter of a subprogram (see page 46).

ORDER
STATEMENTS

Chapter VI

INPUT-OUTPUT STATEMENTS

There are two kinds of input-output statements in ALTAC:
ORDER statements and FORMAT statements. These statements
are used together to specify the transmission of information be-
tween core and magnetic tapes.

ORDER statements specify either an input or an output operation
to be performed, or the manipulation of magnetic tapes. These
statements may contain a tape reference, a FORMAT statement
reference, and a list of the quantities to be transmitted.

FORMAT statements provide information about the form and
arrangement of data, and the type of data conversion to be
performed.

There are thirteen ORDER statements in ALTAC. These may be
grouped as follows:

e Six statements which provide for the transfer of dinary coded
(6 bits per character) information:

READ =, List

PRINT n, List

PUNCH #n, List

READ INPUT TAPE ¢, n, List
WRITE OUTPUT TAPE ¢, n, List
PUNCH OUTPUT TAPE ¢, n, List

° Two statements which provide for the transfer of binary
information:

READ TAPE i, List
WRITE TAPE i, List

® Five statements which provide for the manipulation of mag-
netic tapes:
END FILE ¢
RUNOUT ¢
BACKSPACE ¢
REWIND ¢
LOCKOUT ¢

The parameter { represents a magnetic tape unit, » represents
the statement number or symbolic address of a FORMAT state-
ment, and List represents a list of the variables and arrays that
are to be transferred, and the order of transfer.

30

Magnetic Tape
References

Format
Statement
References

Lists

ALTAC II1

The parameter {, representing a magnetic tape unit, is a fixed-
point variable or an unsigned fixed-point constant, If Z is a fixed-
point variable, it must be defined prior to its use. If ¢ is a fixed-
point constant, the following rules apply:

e If i consists of two digits or less, the digits will be inter-
preted as the tape number.

° If ¢ consists of more than two digits, the last two digits will’
be interpreted as a data select* character, while the preced-
ing digits will be interpreted as the tape number,

Both the data select character and the tape number are treated
modulo 16. :

The parameter n is the statement number or symbolic address
of the FORMAT statement that is associated with the ORDER
statement. In a READ, PRINT, or PUNCH statement, a symbolic
address # must always be enclosed in parentheses.

ORDER statements which call for the transfer of information
ordinarily contain a Lisi of the quantities to be transmitted.
(Cases where the List parameter is omitted are discussed on
page 31.) A List refers to specific locations in memory, and is
represented by a series of subscripted or non-subscripted vari-
ables separated by commas. The following are some examples
of Lists:

A

AB

A,B,(C(D), I=1,10)

A7B7((C(I’J)’ 123,10,2),D(J,7),J=1, 5)

A List is read from left to right with repetition for variables
enclosed in parentheses.

Information is transferred item by item in the order that the
variables appear in the Lis{. When noitems remain, transmission
ceases.

* Refer to the Philco 2000 Input-Output Systems Manual (TM-186).

INPUT-OUTPUT STATEMENTS

Simplifying
a List

Omission of

The List
Parameter

31

The iterative action involved in assigning values to the elements
of a parenthesized List is the same as that for a DO loop. For

example, the order of operations for
A,C,(B(1), I=1,10),D
is the same as for the following;:

A

C

DO 7 1=1,10
7 B

D

For a List of the form
A,X(5),((D(A,J), I1,3,2),BETA(1,d),J=1,2)
the information would be processed as follows:

A
X(5)
D(1,1)

- D(@3,1)
BETA(1,1)
D(1,2)
D(3,2)
BETA(1,2)

An entire array may be transmitted by writing only the name of
the array. For example, if the names ALPHA and BETA pre-

viously appear in a DIMENSION statement, the statement

READ INPUT TAPE ¢ ,n,ALPHA,BETAS

would cause the input of all the elements of arrays ALPHA and
BETA, in the order in which they are stored in memory. When-
ever possible the programmer should use this abbreviated nota-
tion, for its use will result in a more efficient object program.

The Listparameter is omitted in the following cases:

o To space forward over an input record.

¢ To write a blank record on tape. (On binary tapes, a blank

record is interpreted as an end-of-file record.*)

o To read or write a record described by a FORMAT state-

ment that contains Hollerith specifications only.

*See also the END FILE statement, page 35.

32

READ

READ INPUT TAPE

ALTAC III

The READ statement is used to read binary coded information
from the system input tape*. The general form of this statement
is:

GENERAL FORM EXAMPLES
READ », List READ 11, A, (B(1), 1=1,5)
where » and List are as described READ(K), (BETA(l), | = 1, 10)
on page 30.

This statement causes card after card of information to be read
from the system input tape until the amount of information speci-
fied by the List is transmitted. The information that is read is
converted according to the FORMAT statement whose symbolic
address or statement number is n, and is stored in the memory
locations specified in the Lisf. If the FORMAT statement specifies
more than 80 characters to be read from a card, an error will
result and control will be transferred to the operating system.

The READ INPUT TAPE statement is used to read binary coded
information from a tape. The general form of this statement is:

GENERAL FORM EXAMPLES
READ INPUT TAPE ¢, », List READ INPUT TAPE 9, 30,
(A(), 1=1,99, 2)
1 List d i
wher: ze,;(,) and List are as described READ INPUT TAPE 6, 25,
on page 4. ALPHA, BETA

READ INPUT TAPE INAME,
KAPPA, (A(J), J=1,N)

This statement causes binary coded information to be read a
card at a time from tapei. The information is converted accord-
ing to the FORMAT statement whose symbolic address or state-
ment number is #, and stored in the memory locations specified
in the List.

If the FORMAT statement specifies more than 80 characters to
be read from a card, an error will result and control will be
transferred to the operating system.

* System input and output tapes are those input or output tapes
that are defined and/or controlled by a particular operating
system.

INPUT-OUTPUT STATEMENTS 33

READ TAPE

PRINT

The READ TAPE statement is used to read binary information
from tape. The general form of this statement is:

GENERAL FORM EXAMPLES

READ TAPE ¢, List READ TAPE 10, (A(l), 1 = 1, 20)

where 7 and List are as described READ TAPE L, (ALPHA(J), J=1, N, 2)
on page 30.

This statement causes binary information to be read from tape i
into the memory locations specified in the Lisf. No conversion
is required; consequently there is no FORMAT reference # in
this statement.

The binary information must have been writtenby a WRITE TAPE
statement (see page 35), and will contain as many words as are
specified in its List.

All or part of the record may be read by the READ TAPE state-
ment, after which the tape is positioned at the beginning of the
next record. Attempting to read more words than were written
in the record will result in an error and control will be trans-
ferred to the operating system.

The PRINT statement is used to write binary-coded information
on the system output tape, edited for the off-line High Speed
Printer. The general form of this statement is:

GENERAL FORM EXAMPLES
PRINT », List PRINT 34, A, (B()), I =1, 7)
where » and Lis¢ are as described PRINT(K), A, (BETA(I), I =1, 16, 3)
on page 30.

This statement causes information specified in the Lisf to be
written on the system output tape (defined by the installaticn),
edited for the HighSpeed Printer, The tape is then privted off-line,

As many as 120 characters may be printed on a line. haccessive
lines are printed in accordance with the FORMAT statement
whose symbolic address or statement number is #, until the com-
plete List has been satisfied, If the FORMAT statement specifies
more than 120 characters to be printed on a line an error will
result, and control will be transferred to the operating system.

34

PUNCH

PUNCH OUTPUT"
TAPE

ALTAC 111

The PUNCH statement is used to write binary-coded information
on the system output tape, edited for the off-line punch. The
general form of this statement is:

GENERAL FORM EXAMPLES

PUNCH », List PUNCH 100, (ALPHA(I), I =1, 30)

where » and List are as described PUNCH(KAPPA), A, B, (C(J), J = 1,50)
on page 30.

This statement causes information specified in the Lisf{ to be
written on the system output tape, edited for the Card Punch.
The tape is then punched off-line.

As many as 80 columns can be punched on a card. Successive
cards are punched, according to the FORMAT statement with
symbolic address or statement number #, until the Lisf has been
satisfied. If the FORMAT statement specifies more than 80 char-
acters to be punched on a card, an error will result and control
will be transferred to the operating system.

The PUNCH OUTPUT TAPE statement is used to write binary-
coded information on a tape, edited for the off-line punch. The
general form of this statement is:

GENERAL FORM EXAMPLES
PUNCH OUTPUT TAPE i, », List PUNCH OUTPUT TAPE 13, K,
h) d Li d bed (BETA(!), 1 =1, 40)
where /, n, and Lzsi are as describe PUNCH OUTPUT TAPE 1302,
on page 30.

K, ALPHA, BETA

PUNCH OUTPUT TAPE L,K,
(GAMMA(D), 1=1,10)

This statement causes binary coded information in the Lis¢ to be
written on tape ¢, edited for the Card Punch according to the
FORMAT statement with symbolic address or statement number
n. Tape ¢ is then punched off-line,

Successive cards are punched in accordance with the FORMAT
statement until the List is satisfied. If the FORMAT statement
specifies more than 80 characters to be punched on a card, an
error will result and control will be transferred to the operating
system.,

INPUT-OUT PUT STATEMENTS 35

WRITE OUTPUT The WRITE OUTPUT TAPE statement is used to write binary
TAPE coded information on a tape edited for the off-line High Speed
Printer. The general form of this statement is:
GENERAL FORM EXAMPLES

WRITE OUTPUT TAPE i, n, List WRITE OUTPUT TAPE 12, K,

bere s i L dosceribod (BETA(I), | = 1, 40)

where ¢, 37!6 an 28t are as describe WRITE OUTPUT TAPE]205’

on page 4. K, DELTA, GAMMA

WRITE OUTPUT TAPE M,
KAPPA, A, (B(I), 1 =1, 30)

This statement causes binary coded information specified in the
List to be written on magnetic tape ¢, edited for the High Speed
Printer according to the FORMAT statement with symbolic ad-
dress or statement under n. The information is printed off-line.
As many as 120 characters can be printed per line, Successive
lines are printed in accordance with the FORMAT statement,
until the [List is satisfied. If the FORMAT statement specifies
more than 120 characters to be printed on a line, an error will
result and control will be transferred to the operating system.

WRITE TAPE The WRITE TAPE statement is used to write binary information
on tape. The general form of this statement is:

GENERAL FORM EXAMPLES

WRITE TAPE 4, List WRITE TAPE 10, (A(l), | =1, 20)

where i and Lis¢ are as described on WRITE TAPE L,(ALPHA(J),
page 30. J=1, 25, 2)

This statement causes a record of binary information to be writ-
ten on tape?. The record is written in a format that is acceptable
to the READ TAPE statement and consists of all the words speci-
fied in the List.

END FILE The END FILE statement is used to write an end-of-file mark on
a tape. The general form of this statement is:
GENERAL FORM EXAMPLES
END FILE i END FILE 12
where i is an unsigned fixed-point END FILE K
constant or fixed-point variable, as
! END FILE 506
described on page 30.

36

RUNOUT

BACKSPACE

ALTAC 111

This statement causes an end-of-file indicator to be written on
tape 7. In the case where tapei was last used as an input data tape
or is a system controlled tape, no end-of-file indicator is written.

The RUNOUT statement may be used to position an input tape or
to transmit the contents of an output buffer block.* The general
form of this statement is:

GENERAL FORM EXAMPLES
RUNOUT or RUNOUT + RUNOUT
where i is an unsigned fixed-point RUNOUT 9

constant or fixed-point variable,

RUNOUT K
as described on page 30.

The RUNOUT statement is interpreted as follows:

e If the last reference to tape i was made by an input statement,
the RUNOUT { statement will position the tape at the end of
the block which contains the last processed record.

e If the last reference to tape 7 was made by an oufput state-
ment, the RUNOUT { statement will complete the editing
and transmit the contents of the output buffer blocks to that
tape, if necessary.

A RUNOUT statement without a tape reference is interpreted as
a runout of all tapes used.

The BACKSPACE statement is used to backspace a binary tape.
The general form of this statement is:

GENERAL FORM EXAMPLES
BACKSPACE BACKSPACE 10
where i is an unsigned fixed-point BACKSPACE L

constant or fixed-point variable,
referring to a binary tape.

This statement causes binary tape ¢ to be backspaced one record.

* 128 word area in memory or on magnetic tape.

INPUT-0OUTPUT STATEMENTS 37

REWIND

LOCKOUT

FORMAT
STATEMENTS

The REWIND statement is used to rewind a tape. The general
form of this statement is:

GENERAL FORM EXAMPLES
REWIND REWIND 12
where i is a fixed-point constant or REWIND K
fixed-point variable, as described
on page 30.

This statement causes tape ¢ to be rewound. If the last reference
to tape { was made by an output statement, the REWIND statement
will complete the editing and transmit the contents of the output
buffer blocks before the rewind occurs.

The LOCKOUT statement is used to rewind and lockout* a tape.
The general form of this statement is:

GENERAL FORM EXAMPLES
LOCKOUT ¢ LOCKOUT 9
where 7 is a fixed-point constant or LOCKOUT K
fixed-point variable, as described
on page 30.

This statement causes tape ¢ to be rewound with lockout. If the
last reference to tape ¢ was made by an output statement, the
LOCKOUT statement will complete the editing and transmit the
contents of the output buffer blocks before the rewind with lockout
occurs,

The FORMAT statement is used to control the conversion of data
to or from an internal form and an external form. FORMAT
statements contain field descriptors which provide information
about the external form of the data, and the type of data conversion
to be performed.

FORMAT statements are of the following general form:

GENERAL FORM EXAMPLES

FORMAT (d;,. .., d)) FORMAT (2H10, 13, F5.2, E8.3, A8/)

where each 4 is a field descriptor.

* When a tape is ““locked-out’’ it can nolonger be referenced by
the program, unless an operator intervenes and changes its
lockout status.

38

FIELD
DESCRIPTORS

Numerical Field
Descriptors

ALTAC 111

Each unmodified* field descriptor describes one field. The left-
most descriptor describes the first field, the next descriptor
describes the second field, and so on.

Each FORMAT statement must contain a statement reference in
its location field. FORMAT statements are non-executable state-
ments, and may therefore be placed anywhere in a program.**

ALTAC field descriptors comprise the w, Fw.d, Ew.d, Ow, Aw,
nH and nX descriptors. These descriptors may be used to de-
scribe numeric, alphanumeric, and blank fields.

Four forms of conversion of numerical data are available:

DESCRIPTOR EXTERNAL FORM INTERNAL FORM
Iw Decimal Integer Fixed-Point Binary
Fw.d Fixed-Point Floating-Point Binary

Decimal
Ew.d Floating-Point Floating-Point Binary
Decimal
Ow Octal Integer Binary representation
of the octal integer

° I, F, E and O are control characters specifying the type of
conversion. '

) w is an unsigned fixed-point constant representing the width

(number of characters) of the field in the external medium,

° d is an unsigned fixed-point integer representing the number

of characters in the field which appear to the right of the
decimal point.

For F and E conversions, w may represent an input field of as
many as 80 characters, corresponding to the contents of an entire
card. For I conversions, an input quantity should not be greater

* See Repetition of Similar Formats, page 41.

** If all FORMAT statements are placed before the first execut-
able statement of the source program, a more efficient object
program will result.

INPUT-OUTPUT STATEMENTS 39

than 32767 in magnitude; if it is, it is reduced modulo 32768.
For O input conversions, @ should not exceed 16; if w exceeds 16,
only the right-most 16 characters of the field are used.

An output field may contain as many as 80 characters on a card,
or as many as 121* characters to a printed line. The output field
always contains the right-most w characters of the output quantity,
with leading spaces added to make up the w count where necessary.

A numerical field may contain decimal or octal digits, decimal
point, plus and minus signs, spaces, and the letter E (in the case
of £ and F input conversions). On input, non-leading spaces are
interpreted as zeros.

The character d represents the number of characters in the field
which appear to the right of the decimal point. In the case of E
output conversions, where the output quantities are ordinarily
expressed in mantissa-exponent form (see below), d represents
the number of fractional digits of the mantissa.

If d is greater than 10, it is assumed to be 10. If the decimal
point is omitted from an Fw.d or an Ew.d descriptor, the de-
scriptor assumes the d specified (or assumed) for the previous
F or E descriptor.

A decimal point appearing in an input data field takes precedence
over the d specification for that field,

The acceptable forms of input fields for the E conversion are:

+mantissa
+mantissatexponent
+mantissaE+exponent
+mantissaEexponent

These forms may be written with or without a sign.

The mantissa may be of any magnitude; the exponent may be any
integer .n the range -600 to 600. The output form for the E con-
version with no scale factor (see page 40) is:

w

r -)
+0.xxx.... XXX +EEC
d

* 120 printable characters plus a printer control character (see
page 45).

40

Alphanumeric
Field Descriptors

ALTAC [II1

Examples of Input Conversions

If the data punched on the following card

//GE 274 -16245 703
[|
I

123 €5 6 70 M1 1506 0 1010020 2232475 27 287930 31 1293 75 36 31 38 38 €041 42 43 44 45 45 47 48 43 50 51 52 53 54 55 % 57 58 59 60 61 52 63 64 63 65 67 €1 69 00 71 1273 14 73 7% 77 24 73 o

12345 €78 9101120304056 171018202127232025 26 20 28 2930 3137 33 34 15 36 37 30 39 40 41 €2 43 44 45 45 €7 48 49 50 51 52 53 5% $5 56 57 50 59 60 61 62 61 64 5 86 67 68 69 70 11 1213 74 75 76 71 79 79 0|

NOILY¥04¥03 ONd

12345878 9001112131405 1617 1819202122 7024 25 26 27 28.29 30 01 3213 36 35 36 37 78 39 40 41 42 41 4 45 46 47 484950 31 52 50 $4 55 56 57 50 59 60 61 6263 64 65 66 67 60 69 70 71 1213 14 75 76 77 70 29)

12345878 INNRBUBHTNIRAZANBATABNNNZBUBENANQACOIUSRTBUDHIVUNSESTRNOHCOUSEORADN BN RITIN®

121488 78 S0NINMIBITININ2 23205520 20299039 3230 36 56 37 30 39 4041 4243 4445 46 47484950 51 575154 5556 57 56 39 601 $2 62 B4 65 35 6T G EI 0NN 12 I TS 6 1D 0 79 e

485 10961

is described by the statement
FORMAT(I2,F4.1,E7.2,04)$
the fields will be interpreted as 35,27.4,-1.62x109, and octal 703.

Examples of Output Conversions

If the internal quantities 417,-.329,+.538x103, and octal 627 are
described by the statement:

FORMAT (1H113,F6.2,E10.3,05)$
they will be represented externally as:
417A-0.33A0.538+003A A627

where A denotes a space, and the characters 1H1 in the FORMAT
statement are printer control characters (see page 42), which
cause the printer to skip to the top of the next page before printing
the line.

The descriptors Aw and wH are used to specify the form of alpha-
numeric fields. An alphanumeric field may contain any of the
Philco characters shown in Appendix A.

The Aw descriptor may be used to describe a field of up to eight
characters.

For A input: w should not exceed 8; if w exceeds 8, the right-

most 8 characters of the input field are used to fill the computer
word. If w is less than 8, the w characters of the field are stored
left justified with trailing blanks.

INPUT-OUTPUT STATEMENTS 41

Blank Field
Descriptor

REPETITION OF
SIMILAR FORMATS

For A output: if w is greater than 8, the 8 characters of the out-

put field are preceded by w-8 spaces. If wis less than 8, the left-
most w characters of the computer word are transmitted.

The alphanumeric field described by a wH descriptor, unlike that
described by an Aw descriptor, is notlimited to a single computer
word. The w characters of the field are written following the wH
specification in the FORMAT statement. For example,

41H ALPHANUMERIC=HOLLERITH=PHILCO CHARACTERS

Note that spaces are significant, and are included in the w count.
w may be any value not exceeding the record size (i.e., 121 char-
acters when specifying a printed line of 120 characters, or 80
characters per card).

For H inpul: w characters are extracted from the input record

and they replace the @ characters following the wH specification.

For H output : the w characters following the specification (or the
characters which replace them, see H input above) are written as
part of the output record.

The descriptor wX may be used to skip w characters of an input
record, or to insert w spaces in an output record.

If the descriptor wX (or wH) precedes another descriptor, the
comma normally used to separate the two descriptors may be
omitted. Only in the case of these two descriptors is this omis-
sion permitted.

When successive fields within a record are to be of the same
format, a single descriptor may be used to specify this common
format. The number of fields affected by this single descriptor
is indicated by a fixed-point constant, », which is prefixed to the
descriptor (I,F,E,0, or A). Thus,

FORMAT (F6.2,F6.2,F6.2)

and
FORMAT (3F6.2)

are equivalent,

If the format of a group of fields are to be repeated #n times, the
descriptors for the group may be enclosed in parentheses, pre-
ceded by the constant n. For example, the statement

FORMAT(F5.2,3XF5.2,3X)$

and
FORMAT(2(F5.2,3X))$

are equivalent,

42

SCALE FACTORS

PRINTER OUTPUT
CONTROL

CHARACTERS

MULTI-RECORD
FORMATS

ALTAC 111

To permit more general use of the F and E descriptors, a scale
factor, nP, may precede the specification.# is a fixed-point con-
stant, which may be negative or unsigned. (A plus sign is not a
legitimate character in a FORMAT statement.) P is a control
character.

For F input and output conversions, the scale factor is defined
such that:

External Number = Internal Number x 10%

When nP is used with an E oufput descriptor, the mantissa of the
output quantity is multiplied by 10" and the exponent is reduced by
n. Thus, if the quantities 536, 1624, .732x10°, were described by
the statement

FORMAT(13,-1PF7.1,2PE10.1)$
the following would result:
536 162.4 73.2+003
The E input descriptor ignores the scale factor.
Once #P is specified for an F or E descriptor, it will apply to all

succeeding F or £ descriptors within the FORMAT statement
until another #P is specified.

The first character of each record that is to be printed is treated
as a vertical format character. Vertical format characters con-
trol the vertical spacing of the paper on the High Speed Printer,
and are interpreted as follows:

CHARACTER MEANING
1 skip to top of next page
0 double space
A (space) single space
+ no space

Any other character used will be interpreted as single space.

A single FORMAT statement may be used to describe several
records. The descriptors of eachrecord are separatedby slashes.
For example, if data are to be printed according to the statement

FORMAT(1H115,F8.2/1HA E9.2)$

INPUT-OUTPUT STATEMENTS 43

FORMAT
STATEMENT
PROCESSING

FORMAT
STATEMENTS READ
IN DURING
PROGRAM
EXECUTION

the first line would be printed according to descriptors I5 and
F8.2, and the second line according to descriptor E9.2, If the
second and all succeeding lines are to be printed according to
descriptor E9,2, the specifications for these lines should be en-
closed in another pair of parentheses, as follows:

FORMAT(1H115,F8.2/(1HAE9.2))$

If the end of a formatl statement is veached befove the List is sal-
isfied, the formal vepeatls from the last open (left) parenthesis.

Both the slash and the last right parenthesis of a FORMAT state-
ment indicate the end of a record.

Consecutive slashes may be used in order to skip records; i.e.,
to skip an input card, or to produce a blank line or a blank card.
n+l consecutive slashes causes n records to be skipped. For
example,

/// would cause two records to be skipped.

FORMAT statements are translated and stored as one or more
consecutive word (W/) constants* by ALTAC during compilation.
The first word begins with the first left parenthesis that followed
the word ¢“FORMAT’’; the last word ends with the last right
parenthesis with trailing blanks if necessary. Interpretation of
the FORMAT statement is made at run time,

Although FORMAT statements are usually written in the source
program, they may also be read in during the execution of the
object program. For example, according to the statements:

LOCATION ALTAC STATEMENT

DIMENSION SPEC (20), ALPHA(20)$
1 FORMAT (20A8) $
READ 1, SPEC $

READ (SPEC), ALPHA $

* Refer to the Philco 2000 TAC Manual, TM-11,

44

ALTAC 111

the alphanumeric data that is read into array SPEC by the first
READ statement, is used as format specifications by the second
READ statement. The format specifications (alphanumeric data)
read into array SPEC must have been written as if they were
appearing in a FORMAT statement in the source program, except
that the word ‘“FORMAT’’ is omitted (see preceding section).

Chapter VII

FUNCTIONS AND SUBROUTINE SUBPROGRAMS

FUNCTION NAMES

A function or a subroutine is a pre-coded set of instructions for
performing a particular operation,

There are three distinct types of functions in ALTAC: Arithmetic
Statement Functions, Library Functions, and Function Subpro-
grams.* There are also Subroutine Subprograms.

An Arithmetic Statement Function is a function which is defined
by a single arithmetic statement in the source program. A Li-
brary Function is a function which is defined on the TAC library
tape. A Function Subprogram is a function which is defined by a
subprogram. A Subroutine Subprogram is a subroutine which is
defined by a subprogram. Subroutine Subprogramsdiffer from
Functions in their output capacity and in the method in which
they are referenced (see page 53).

Arithmetic Function Statements should precede all other state-
ments in the source program, except IDENTIFY, FUNCTION,
SUBROUTINE, or the I card.

Other details regarding Functions and Subroutine Subprograms
are presented below.

The name of a function may be composed of from one to seven
alphanumeric characters. The first character, which must be
alphabetic, determines the mode of the value of the function.

The following rules must be observed when naming functions:

Rule 1 - If the name of a function is four to seven characters
long and the last character is an F, then the value of the
function is in fixed-point mode only if the first character
is X.

Rule 2 - If the name of a function is four to seven characters
long and the last character is nof an F, or if the name of

* A subprogram is a separately written source programdesigned
to operate under the control of a main program, Subprograms
may also call other subprograms.

46

SUBROUTINE
NAMES

ARGUMENTS

ALTAC 111

the function is less than four characters long, then the
value of the function is in fixed-point mode only if the
first character is I, J, K, L, M, or N.

Rule 1 applies to Arithmetic Statement Functions and Library
Functions; rule 2 applies to Function Subprograms.

The name of a Subroutine Subprogram may be composed of from
one to seven alphanumeric characters, the first character of
which must be alphabetic. (Unlike function names, a subroutine
name does not have any mode associated with it,)

The arguments of a function or subroutine are written separated
by commas, and enclosed in parentheses following the function
or subroutine name. An argument of an Arithmetic Statement
Function may be any expression. An argument of any other func-
tion or any subroutine may be an expression, the name of an
array, or a Hollerith field.

The appearance of the name of a function in an expression, or the
name of a subroutine in a CALL statement (see page 54), serves
to call that function or subroutine. The function or subroutine is
then computed using the arguments which appear after the func-
tion name in the expression, or which appear after the subroutine
name in the CALL statement. The arguments which appear after
the function or subroutine name in the statement defining or iden-
tifying the function or subroutine, are formal pavameters. Each
formal parameter is a single non-subscripted variable. These
formal parameters are replaced by the corresponding arguments
in the calling statement prior to the calculation of the function or
subroutine.

The avguments of the function or subvoutine in the calling state-
mentl must always agvee in numbey, ovdev, and mode, with the
formal parameters in tiie statement defining ov identifying the
Junction ov subvroutine.

The number* of arguments following a function or subroutine
name can be from 1 to 31 for an 8192 word source computer, or
from 1 to 255 for a 16,384 or 32,768 word source computer,

* As shown on page 53, this number can also be zero for sub-
routines, since a subroutine can be without arguments,

FUNCTIONS AND

ARITHMETIC
STATEMENT
FUNCTIONS

LIBRARY
FUNCTIONS

SUBROUTINE SUBPROGRAMS 47

These are functions which are defined by a single arithmetic
statement, The general form of this type of function is:

GENERAL FORM EXAMPLES

fay ap..)= e RATEF (A, B) = A/60*B
XVALUEF(J, K) = J*K/N**2
where fis a function name that obeys
rule 1 on page 45, each @ is a formal
parameter, and ¢ is an expression not
involving subscripted variables.

The arithmetic statement defining the function must precede any
statement calling the function and any EQUIVALENCE, COMMON,
DIMENSION or TABLEDEF statement in the program.

The arguments which appear after a function name in the state-
ment defining the function are formal parameters, and are re-
placed by the corresponding arguments in the calling statement
prior to the calculation of the function. For example, according
to the following statements

Defining —»| RATIOF(X,Y)=X/Y
Statement

Calling —,| Z=10 * RATIOF (A+B, C**2)
Statement

the calling statement, Z, would be evaluated as if it were written

Z = 10*(A+B)/C**2

Library functions are functions that are included on the TAC li-
brary tape because of their frequent use. Each installation may
have its own set of ALTAC library functions, The following are
some of the standard functions which are supplied with the ALTAC
Translator. The appearance of the name of the function in an
expression serves to call the function.

48

ALTAC

111

Function Number of Hode of Operation Performed
Name Arguments Arguments Function
ABSF 1 Floating Floating Computes | arg|
XABS i~ 1 Fixed Fixed Computes | arg |
FCABSF 2 Floating Floating Computes |arg |, where
avg is a complex number
COSF 1 Floating Floating Computes COS (arg) in
radians
COS1F 1 Floating Floating Same as COSF
ACOSF 1 Floating Floating | Computes COS~larg
ACOS1F 1 Floating Floating Same as ACOSF
FCORF 7 One Fixed Floating Computes correlation
and Six coefficient of two
Floating variables
FCORMVE— 4 One-Fixed——Floating Computes correlation
—and-Threeg -coefficient; means;and
Eloating variances-of-two-varibles
DIMF 2 Floating Floating Produces a positive
difference:
DIMF (a'}:gl,argg) =
argq- MINF (argl,argg)
XDIMF 2 Fixed Fixed Same operation as above,
using XMINF
EXPF 1 Floating Floating Computes the value @8
FGAMMAF 1 Floating Floating Computes [(arg)
-FLECE- 3 OmeFixed Eleoating Selves—asystem-of
and-Two —linear-equations by
Floating ™ Lrout’s-method.—
PFPEETF- 3 One-Fixed Floating—1—Solvesasystem of —
and-Two— -linear-equations—
Eloating—
FLOATF 1 Fixed Floating Converts fixed-point arg
to floating point

FUNCTIONS AND SUBROUTINE SUBPROGRAMS

49

Function Number of Mode of Operation Performed
Name Arguments Arguments Function P
FMDNF 2-255 One Fixed; Floating Computes the median of
the others a set of numbers
Floating
EREFALF —5— Eleating | Fleoating——Computesrealroet-of ___
—Fx)—by-regular-fatsi
method;where ™
argyr<—x—<<argp
—ESIM-RE 5 One—Fixed——Floating——Computes—f(x)—according-
and-Four to-Simpson’s_Rule, where
Floating™ VG AN
FTENXF 1 Floating Floating Computes the value 10 "8
F2XF 1 Floating Floating Computes the value 2 %%
INTF 1 Floating Floating
Computes the integral
XINTF 1 Floating Fixed part of arg
FINTLF 3 One Fixed; Floating Interpolates within a set of
TwoFloating pointsbyLagrange’s formula
LOGF 1 Floating Floating Computes the value
logg arg
LOG10F 1 Floating Floating Computes the value
loglo arg
FLOG2XF 1 Floating Floating Computes the value
logg avg
MAXF 2-30 Floating Floating
XMAXF 2-30 Fixed Fixed
MAXOQOF 2-30 Fixed Floating Selects the argument
with the largest value
XMAXOQOF 2-30 Fixed Fixed
MAXI1F 2-30 Floating Floating
2-30 Floating Fixed

XMAXI1F

50

ALTAC 111

Function Number of Mode of .
Operation Performed
Name Arguments Arguments Function
MINF 2-30 Floating Floating
XMINF 2-30 Fixed Fixed
MINOF 2-30 Fixed Floating Selects the argument
with the smallest value
XMINOF 2-30 Fixed Fixed
MIN1F 2-30 Floating Floating
XMIN1F 2-30 Floating Fixed
MODF 2 Floating Floating Produces Integral
Remainders:
MODF (argy, arg82) =
arg;-INTF (a?’gl/argg)*
argg
XMODF 2 Fixed Fixed Same operation as above,
using XINTF
RANDIF One dummy Floating Generates positive frac-
fixed-point tional random numbers
argument
FNRANDF 2 Floafing Floating Generates a single nor-
mally-distributed number.
argy; = Mean, arg, = o
SINF 1 Floating Floating Comaputes SIN (a7g)in
radians :
SIN1F 1 Floating Floating Same as SINFE.
ASINF 1 Floating Floating | Computes SIN-larg
ASIN1F 1 Floating Floating Same as ASINF
SIGNF 2 Floating Floating Transfers sign of arg,
tolargz I
XSIGNF 2 Fixed Fixed Same operation as.above
SQRTF 1 " Floating Floating Computes [arg .
SQRTI1F 1 Floating Floating Same as SQRTF

FUNCTIONS AND SUBROUTINE SUBPROGRAMS

51

Function Number of Mode of Operation Performed
Name Arguments Arguments Function peration Ferforme
FCSQRTF 2 Floating Floating Computes {a7g, where
avg is a complex number
NROOTF 2 Floating Floating Computes “"82 {z7g,
TANF 1 Floating Floating Computes TAN (arg) in
radians
TANI1F 1 Floating Floating Same as TANF
ATANF 1 Floating Floating | Computes TAN larg
ATANI1F 1 Floating Floating Same as ATANF
TANHF 1 Floating Floating Computes TANH (arg)
XFIXF 1 Floating Fixed Converts floating-point
arg to fixed point
(Same as XINEE) XTI TF)
For additional information on any of the above functions, the re-
spective subroutine descriptions should be consulted.
FUNCTION These are functions which cannot be defined by a single ALTAC
SUBPROGRAMS statement, and are not used frequently enough to warrant inclu-
sion on a library tape. A Function Subprogram is a source pro-
gram, the first statement of which is a FUNCTION statement.
FUNCTION The FUNCTION statement is the first statement of a Function
Subprogram, and it identifies the function that is being defined.
The general form of this statement is:
GENERAL FORM EXAMPLES
FUNCTION 7(a, a5 - -) FUNCTION HMEAN (A, B, C)
where fis a function name that obeys FUNCTION FACTOR (PAR1, PAR2)
_ rule 2 on page 45, and each ais a for- FUNCTION INDEX (X, Y, Z)
mal parameter.
RETURN The RETURN statement is the last execufed statement in a sub-

program, and it returns control to the calling program. It is used
in both Function and Subroutine Subprograms, and it logically

52

Defining and
Calling a Function
Subprogram

ALTAC 111

precedes the END or COMPLETE statement which indicates the
physical end of the subprogram (see page 59). The general form of
the RETURN statement is:

GENERAL FORM ' EXAMPLE

RETURN RETURN

As is the case with Arithmetic Statement Functions and Library
Functions, a Function Subprogram may be called by any expres-
sion in the main program which contains its name.

The value of the function that is returned to the calling program
may be defined by means of an arithmetic statement or by an
input order statement. For example, if the following subprogram

LOCATION ALTAC STATEMENT
FUNCTION INDEX (X,Y,Z) $
12 FORMAT (15)$
IF (Z) 1,1,2 $
1 INDEX = 3*X+Y**2 $
RETURN $
2 READ 12, INDEX $
RETURN $
END $

is called by a program containing the statement,
IVALUE=INDEX(SUPPLY, DEMAND, CREDIT) $
the value of the function INDEX would be defined by the statement
INDEX=3*SUPPLY+DEMAND**2 $
or by the statement
READ 12, INDEX $

depending on whether the value of CREDIT is not or is greater
than zero, respectively.

FUNCTIONS AND SUBROUTINE SUBPROGRAMS 53

SUBROUTINE
SUBPROGRAMS

SUBROUTINE

When a formal parameter in a FUNCTION statement is an array
name, the corresponding argument in the calling statement must
also be an array name. Each such array name must be defined
in a DIMENSION or TABLEDEF statement in its respective
source program, and all but the last dimension must correspond.

A subroutine subprogram is a source program, the first state-
ment of which is a SUBROUTINE statement. Subroutine sub-
programs differ from functions in two basic ways:

o Unlike a function which may be called by any expression
containing its name, a subroutine subprogram can only be
called by a CALL statement (see page 54).

o A function produces only a single result; a subroutine sub-
program can produce more than one result.* Each result
corresponds to a formal parameter of the subroutine.

The SUBROUTINE statement is the first statement of a subroutine
subprogram, and it identifies the subroutine that is being called.
The general form of this statement is:

GENERAL FORM EXAMPLES
SUBROUTINE f(al, Qo o .) SUBROUTINE CALC (A, B,

' ' ANS1, ANS2)
where f is the name of a subroutine SUBROUTINE RATE (PAR],
subprogrom (see page 46), und each PARQ, RESULT)
ais a formal parameter. SUBROUTINE TREND (A,
The formal parameters, and the pa- B,C, D, E)
rentheses enclosing them, may be SUBROUTINE INPUT
omitted from the SUBROUTINE
statement.

When a formal parameter in a SUBROUTINE statement is an
array name, the corresponding argument in the CALL statement
(see below) must also be an array name. Each such array name
must be defined in a DIMENSION or TABLEDEF statement
in its respective program, and all but the last dimension must
correspond.

An example of the use of the SUBROUTINE statement is pre-
sented on page 55.

* A subroutine can also be made to perform an operation and not
produce a result, In this case the arguments following the sub-
routine name are omitted.

54

CALL

Hollerith
Arguments

ALTAC II11

The CALL statement is used to call the Subroutine Subprogram
whose name appears in the statement. The general form of the
CALL statement is:

GENERAL FORM : EXAMPLES

CALL f(a,, a,, - . .) CALL CALC(X, Y, SOL, SIG)
CALL RATE (RISK, CAPITAL, GAIN)

CALL TREND (TEMP, PRESS, WIND,
PRECIP, FORCAST)

CALL FACTOR (WEIGHT, FUEL,
THRUST)

where f is the name of a subroutine
subprogram (see page 46) and each
@ is an argument of one of the forms
indicated below.

The argumentsmay be omitted when
corresponding toa SUBROU-
TINE statement with no formal
parameters.

CALL INPUT

An argument appearing in a CALL statement may be in any of
the following forms:

o Fixed-or floating-point expressions
o Names of arrays
e Hollerith fields

The use of a Hollerith field as an argument of a subprogram is
presented below. The other types of arguments listed above were
discussed on page 46.

The arguments in the CALL statement must be presented in the
same order, number, form, and mode as the corresponding for-
mal parameters in the SUBROUTINE statement,

Hollerith arguments may be used by a program to define a Hol-
lerith field internally (i.e., without the use of an input statement).

The Hollerith argument in the calling statement must be of the
following general form:

777 (RN

where n is any unsigned decimal integer greater than zero. The »
alphanumeric characters following the H will be translated by
ALTAC into TAC word constants (W/........), eight characters
per word. If » is not a multiple of eight, the unused right-most
part of the last word will be filled with spaces. A word of 48 one
bits will follow the last word.

FUNCTIONS AND SUBROUTINE SUBPROGRAMS 55

A word containing the starting location of the Hollerith informa-
tion is the argument transmitted to the subprogram. The cor-
responding formal parameter should be the name of an array that
appears in a DIMENSION statement in the subprogram.

The following example illustrates the use of the CALL, and
SUBROUTINE statements:

Assume A and B are two single-dimensioned arrays of 100 ele-
ments each. Define a third array C, such that for »=1,2,...,100

Cn=0 If Ap=0 or Bj=0 or both

otherwise

Cp = |An-By)

The necessary coding could be of the form:

LOCATION ALTAC STATEMENT

DIMENSION A(100),B(100),C(100)$

12 CALL CALC (A,B,C)$

and the subroutine could have been written as:

LOCATION ALTAC STATEMENT

SUBROUTINE CALC (S,T,U) $
DIMENSION S(100),T(100),U(100) $
DO 51=1,100 $

U()=0. $

1F(S(1))3,5,3 $

IF(T(1))4,5,4 $
U(I)=ABSF(S(I)-T()) $

CONTINUE $

RETURN $

END $

U W

56

ALTAC 111

Statement 12 in the main program transfers control to the sub-
routine CALC. After array C is formed, statement 6 of the sub-
routine returns control to the main program at the first state-
ment following statement 12. Note that formal parameters S,T,
and U in the subprogram are dimensioned, and are of the same
mode, order, and number, as arguments A,B, and C in the main
program.

Chapter VIII

ADDITIONAL FEATURES OF THE ALTAC SYSTEM

TAC CODING
WITHIN AN
ALTAC PROGRAM

IDENTIFY

This chapter discusses TAC coding within an ALTAC program,
the IDENTIFY statement, the I Card, Remarks Cards, and the
COMPLETE and END statements.

TAC coding in the standard TAC format may be included in an
ALTAC program in either of two ways:

1.

By writing the ALTAC statement
STARTTAC $
immediately before the TAC coding, and the statement
ENDTAC $
in columns 17-22, immediately affer the TAC coding.
All TAC coding between these statements is unprocessed by
ALTAC and are passed on as part of the TAC program that
results from the ALTAC Translation,
By writing a T in column .9 (column 1 when in FORTRAN
format) of every TAC instruction inserted. ALTAC replaces

the T in the label field with a space character, and then inter-
prets columns 9-80 literally.

An instrvuction with a T in the label field must never appear
between the statements STARTTAC and ENDTAC, otherwise
a label field error will be indicated by the TAC Assembler,

If the first executable statement of an ALTAC source program

is

a TAC instruction, this instruction, and the STARTTAC state-

ment preceding it (if any), must be preceded by a CONTINUE
statement.

The IDENTIFY statement is used to:

Identify the format of the source program

58

ALTAC 111

° Indicate to the ALTAC Translator the size (amount of core
storage) of the computer on which the object program will

be run.

o Specify the least amount of COMMON storage that must be

reserved.*

The general form of the IDENTIFY statement is:

GENERAL FORM EXAMPLES

follows.

IDENTIFY Type, mK, nW IDENTIFY A, 32K, 1200W

where Type, mK, and nW are optional IDENTIFY F, 16K, 800W
parameters, which are explained as

PARAMETER

EXPLANATION

Type

mK

nW

“Type’”’ may be A or F, indicating that the source
program is in ALTAC format or in FORTAN for-
mat.¥ If statements in ALTAC format and FORTAN
format are mixed within a program, an IDENTIFY
statement with the appropriate fype parameter
must precede each change in format.

If the tybe parameter is omitted from the IDEN-
TIFY statement, ALTAC assumes thatthe program
is in ALTAC format.

This parameter defines the memory size of the
Philco 2000 computer on which the objectprogram
will be run. 7 may be 8, 16, or 32, denoting 8,192,
16,384 or 32,768 words of memory respectively.
If the same size memory is to be used in both the
compilation and run phase, this parameter may be
omitted.

A program that is compiled for a Philco 2000 with
a larger memory may run on a Philco 2000 with a
smaller memory; however, a program that is
compiled for a Philco 2000 with a smaller mem-
ory may #nof run on one with a larger memory.

This parameter specifies the least number of
words of COMMON storage which must be con-
tained in the program to be compiled.*

* This need only be specified when deviating from the standard
mode (relocatable) of compilation (see the Philco 2000 Operating
System Manual, TM-23). In this case, the first source program
must make provision for the largest amount of common storage
required for the entire program.

ADDITIONAL FEATURES OF THE ALTAC SYSTEM 59

I CARD

REMARKS CARD

COMPLETE OR
END

The I Card is the first physical card of a program, and it identi-
fies the program. The general form of this card is:

L{LOCATION ALTAC STATEMENT

I SAMPLEAPROGRAMAA

An I is written in the label column (column 9) while a name (e.g.,
SAMPLE APROGRAM AA) identifying the program is written in
columns 17-32. The name is comprised of all 16 characters
(spaces included) in these columns, and is nof terminated with a
dollar sign.

An ‘¥’ in the label field of a card indicates that all information
on that card is to be interpreted as remarks, and does not affect
the compilation. A Remarks Card must not appear between cards
of another statement.

Either the COMPLETE or the END statement is used to signal to
the ALTAC Translator the end of the program being compiled.
The COMPLETE or END statement must be the last physical
statement in the source program. The general forms of these
statements are:

GENERAL FORMS EXAMPLES

COMPLETE COMPLETE
END END

TABLE OF PHILCO CHARACTERS

Appendix A

PHILCO OCTAL HOLLERITH PHILCO OCTAL HOLLERITH
CHARACTER CODE PUNCH CHARACTER CODE PUNCH
0 00 0 - 40 1lor 8-4 @
1 01 1 J 41 11-1
2 02 2 K 42 11-2
3 03 3 L 43 11-3
4 04 4 M 44 11-4
5 05 5 N 45 11-5
6 06 6 o 46 11-6
7 07 7 P 47 11-7
8 10 8 Q 50 11-8
9 11 9 R 51 11-9
@ 12 8-2 @ 1 52 11-8-2 @
— 13 8-3 $ 53 11-8-3
; 14 8-4 * 54 11-8-4
= 15 8-5 % < 55 11-8-5
& 16 8-6 # 56 11-8-6
' 17 8-17] 57 11-8-7
+ 20 12 Blank (space) 60 Blank
A 21 12-1 / 61 0-1
B 22 12-2 S 62 0-2
c 23 12-3 T 63 0-3
D 24 12-4 U 64 0-4
E 25 12-5 \% 65 0-5
F 26 12-6 w 66 0-6
G 27 12-7 X 67 0-7
H 30 12-8 Y 70 0-8
I 31 12-9 Z 71 0-9
n @ 32 12-8-2 | 72 0-8-2
. 33 12-8-3) 73 0-8-3
) 34 12-8-4 (74 0-8-4
% 35 12-8-5 % > 75 0-8-5 %
? 36 12-8-6 : 76 0-8-6
" 37 12-8-7 @ e @ M 0-8-7 @

@ Multiple punched.

(® These two characters are not acceptable ALTAC characters, and are included here
only to show the complete character codes.

Appendix B

SUMMARY LIST OF ALTAC STATEMENTS

This appendix provides a convenient reference to all ALTAC statements

discussed in the manual.

PAGE
STATEMENT TYPE REFERENCE

v=oe Arithmetic 13
GO TO = Control 15
GO TO m or GO TO m, (ny, Ry, ..., np) Control 15 -
ASSIGN n to m or ASSIGN (n)to m Control 16
GO TO (Mg, Moy v s By)s © Control 16
IF (e) ny, ny, ng or IF (ep): (e, S Control 117
SENSE LIGHT ¢ Control 18
IF (SENSE LIGHT i) ny, np Control 19
IF (SENSE SWITCH 9) ny, ny Control 19
IF (SENSE BIT %) ny, no Control 19
IF OVERFLOW ny, By Control . 20
DO n i =my, my, mz or DO () i=my, mp, mg Control 20
CONTINUE Control 23
PAUSE »n Control 23
STOP Control 23
EQUIVALENCE (Vg U2y U3y e eu)s (Vps Vpiqs - .),... | Specification 26
COMMON vy, v, Vg, . Specification 27
DIMENSION vy, va, Ugs oo Specification 25
TABLEDEF vj, vy, vg, ... Specification 28
READ n, List Input 32
READ TAPE ¢, List Input 33
READ INPUT TAPE i, n, List Input 32
PRINT »n, List Output | 33
PUNCH #, List Output 34

64

ALTAC 111

STATEMENT TYPE CERENE
PUNCH OUTPUT TAPE ¢, n, List Output 34
WRITE TAPE ¢, List Output 35
WRITE OUTPUT TAPE ¢, n, List Output 35
END FILE ¢ Output 35
RUNOUT ; Input/Output 36
BACKSPACE ; Input/Output 36
REWIND § Input/Output 37
LOCKOUT ¢ Input/Output 37
FORMAT (dy, ..., dy) Input/ Output 37
FUNCTION f (ay, ap,...) Subprogram 51
SUBROUTINE f (ay, ao,...) Subprogram 53
CALL f(az, ay ...) Subprogram 54
RETURN Subprogram 51
IDENTIFY Type, mK, nW Compiler Control 58
COMPLETE Compiler Control 59
END Compiler Control 59

INDEX

Alphanumeric characters, 8,41,61
Alphanumeric field descriptors, 40
ALTAC

characters, 5

features of, x

format, 1-3

language, ix

translator, ix
Arguments

of a function, 46-51

of a subroutine, 46,53
Arithmetic statements, 13
Arithmetic statement functions, 47
Arrays, x, 7, 9,25-28, 31, 46, 53-56
ASSIGN statement, 16
Assigned GO TO statement, 15

BACKSPACE statement, 36
Binary tapes, 31, 33, 35, 36
Binding strength, 10

Blank field descriptor, 41
Blanks, 3-5,40-42,59,61

CALL statement, 46,53-55
Characters

alphanumeric, 8, 41,61

ALTAC, 5

blank, 3-5,40-42,59, 61
Coding form, 2
COMMON statement, 25-28, 47
Compilation, ix
COMPLETE statement, 59
Compound IF statements, 18
Compound statements, 14
Computed GO TO statement, 16
Constants

fixed-point, 7

floating-point, 8
CONTINUE statement, 23,57

Data card, 40

Data transmission and conversion, 29,
30, 40

DIMENSION statement, 9,25-27, 31, 47,
53, 55

DO statement
exit and return, 21, 22
increment, 20,21
index, 20,21
initial value parameter, 20, 21
limiting value parameter, 20,21
multiple DO loops, 21,22
nesting of DQ's, 21, 22
range of, 21
use of, 20
use of index and restrictions, 21, 22

Dummy variables (see Formal parameters)

E descriptor, 38, 39
Element of an array, 25-27
END statement, 59
ENDFILE statement, 35, 36
End of record indicators, 43
ENDTAC statement, 57
EQUIVALENCE statement, 25-28, 47
Exponent modifier (see Scale factor)
Exponentiation, 10
Exponent fault, 20
Expressions

mixed, 11

processing of, 10,11

rules for writing, 10,11

F descriptor, 38,39
Field descriptors, 38
A, 40,41
E, 38,39
F, 38,39
H, 41
I, 38,39
0O, 38,39
X, 41
Fixed-point
arithmetic, 13,14
constants, 7
range, 7
variables, 8,9
Floating-point
arithmetic, 14
constants, 8
range, 8

66

variables, 8,9
Formal parameters, 46, 47,51,53,56
FORMAT statement, 29, 37

field descriptors, 37-41

scale factors, 42
FORMAT statement references, 30
FORTRAN format, 4
Functions

arguments of, 46

names of, 45,46

types of, 45
FUNCTION statement, 51,53
Function subprograms, 51-53

GO TO statements
unconditional, 15
assigned, 15
computed, 16

H descriptor, 41
Hollerith
arguments, 54
characters, 3,5, 41,61
fields, 41,54

I card, 59
I descriptor, 38,39
IDENTIFY statement, 57-58
IF statements
IF, 17
IF OVERFLOW, 20
IF SENSE BIT, 19
IF SENSE LIGHT, 19
IF SENSE SWITCH, 19
Index of a DO, 20,21
Indexing of lists, 30,31
Input-Output statements
FORMAT statement, 29, 37
descriptors, 37-41
scale factors, 42
ORDER statements, 29-37
for the transfer of binary coded
information, 29
for the transfer of binary
information, 29
for the manipulation of mag-
netic tapes, 29

Language of ALTAC

elements of, 7-11

statements, 13,15, 25,29,51,53, 54, 57
Library functions, 47-51
Line spacing, 42

ALTAC I11

List
definition of, 29, 30
indexing of, 30,31
representing arrays, 29, 30, 31
rules of forming, 30
LOCKOUT statement, 37

Magnetic tape references, 30
Mixed expressions, 11
Multiple records, ‘42, 43

Names of variables, 8

Nest of DO's, 21,22
Non-executable statements, 25
Numerical field descriptors, 38

O descriptor, 38, 39
Object program, ix
Operation symbols, 10
Order of operations, 10,11
ORDER statements, 29-37
Overflow

IF OVERFLOW, 20

Parentheses
use of, 9,11, 16, 30, 41, 43, 46
PAUSE statement, 23
PRINT statement, 33
Program identification (see I card)
Program run, ix ‘
PUNCH statement, 34
Plus sign, 5, 42,61
Printer control characters, 42

Raising to a power, 10

Range of a DO, 21

READ statement, 32

READ INPUT TAPE statement, 32
READ TAPE statement, 33
Record, 31, 33, 35, 36, 42,43
Remarks, 3,4,59

RETURN statement, 51

REWIND statement, 37

RUNOUT statement, 36

Scale factor, 42
Scanning, 10
Sense bit

IF SENSE BIT, 19
SENSE LIGHT statement, 18
Sense switch

IF SENSE SWITCH, 19
Skipping characters, 41
Skipping records, 43

INDEX

Source program, ix
Spaces (see Blanks)
Specification statements

COMMON, 25-28, 47,58

DIMENSION, 9, 25-27,31, 47,53, 55

EQUIVALENCE, 25-28, 47

TABLEDEF, 9,25-28,47,53
Statement numbers, 3,4
STARTTAC statement, 23,57
STOP statement, 23
Subprograms

Function, 45,51

Subroutine, 45,53
SUBROUTINE statement, 53
Subscripts

rules for forming, 9

subscripting of, 9,26
Subscripted variables, 9,26
Symbolic addresses, 3

TABLEDEF statement, 9,25-28,47,53

TAC coding within an ALTAC
program, 1,23, 28,57

Translator, ix .

Truncation, L2587 (/(, /3

Unconditional GO TO, 15

Variables
dummy (see Formal parameters)
fixed-point, 8,9
floating-point, 8,9
subscripted, 9

WRITE OUTPUT TAPE statement, 35
WRITE TAPE statement, 35

X descriptor, 41

Zero, 7,8,9,42

