
ELECTRONIC
DATA PROCESSING

SYSTEMS

PHILeo

COMPUTER
DIVISION

PHILeo 2000

ALGEBRAIC PROGRAMMING LANGUAGE

ALTAC III

PHILCO CORPORATION

A SUBSIDIARY OF f)4~otorW~

Computer Division. 3900 Welsh Road

Willow Grove, Pennsylvania

TM-27

This manual replaces manual TM-5C.

@ Copyright 1963, Philco Corporation

PREFACE

This manual is a comprehensive description of the Philco 2000
Algebraic Programming Language, ALTAC III (hereinafter re­
ferred to as ALTAC). It discusses the rules which must be
followed when writing programs in ALTAC language.

No previous programming experience is assumed for an under­
standing of the material presented herein; however, a knowledge
of the Philco 2000 TAC Language would be helpful.

-iii-

Preface ...
Introduction

Chapter

I

II

III

IV

CONTENTS

FORMAT OF THE SOURCE PROGRAM
Source Program Formats

ALT AC Format
The ALT AC Coding Form

FORTRAN Format
ALT AC Characters

BASIC ELEMENTS OF THE ALTAC LANGUAGE:
CONSTANTS, VARIABLES, SUBSCRIPTS, AND
EXPRESSIONS

Constants
Fixed-Point .Constants
Floating-Point Constants

Variables
Fixed-PointVariables
Floating-Point Variables

Subscripts
Subscripted Variables
Storage of Arrays

Expressions
Operation Symbols
Processing of Expressions
Mixed Expressions

ARITHMETIC STATEMENTS
The Arithmetic Statement

Compound Statements

CONTROL STATEMENTS
Unconditional GO TO. . . ~
Assigned GO TO
ASSIGN
Computed GO TO
IF
Compound IF Statements
SENSE LIGHT
IF SENSE LIGHT

-v-

Page

iii
ix

1
1
1
2
4
5

7
7
7
8
8
8
8
9
9
9

10
10
10
11

13
13
14

15
15
15
16
16
17
18
18
19

CONTENTS (Cont'd)

Chapter

IV IF SENSE SWITCH
IF SENSE BIT
IF OVERFLOW
DO
CONTINUE
PAUSE
STOP

V SPECIFICATION STATEMENTS
DIMENSION
EQUIV ALENCE ~

Computing Effective Addresses
COMMON•................
TABLEDEF

VI INPUT-OUTPUT STATEMENTS
ORDER ST ATEM ENTS

Magnetic Tape References
Format Statement References
Lists
Simplifying a List
Omission of The List Parameter
READ
READ INPUT TAPE
READ TAPE
PRINT
PUNCH
PUNCH OUTPUT TAPE
WRITE OUTPUT TAPE
WRITE TAPE
END FILE
RUNOUT
BACKSPACE
REWIND
LOCKOUT

FORMAT STATEMENTS
Field Descriptors

Numerical Field Descriptors
Alphanumeric Field Descriptors
Blank Field Descriptor

-vi-

Page

19
19
20
20
23
23
23

25
25
26
26
27
28

29
29
30
30
30
31
31
32
32
33
33
34
34
35
35
35
36
36
37
37
37
38
38
40
41

Chapter

VI

VII

VIII

Appendices

A
B

CONTENTS (Cont'd)

Repetition of Similar Formats
Scale Factors
Printer Output Control Characters
Multi-Record Formats
Format Statement Processing
Format Statements Read In During Program
Execution

FUNCTIONS AND SUBROUTINE SUBPROGRAMS
Function Names
Subroutine Names
Arguments

ARITHMETIC ST ATEMENT FUNCTIONS
LIBRARY FUNCTIONS
FUNCTION SUBPROGRAMS

FUNCTION
RETURN
Defining and Calling a Function Subprogram

SUBROUTINE SUBPROGRAMS
SUBROUTINE
CALL
Hollerith Arguments

ADDITIONAL FEATURES OF THE ALTAC SYSTElVI
TAC Coding Within An ALTAC Program
IDENTIFY
I Card
Remarks Card
COMPLETE or END

T ABLE OF PHILCO CHARACTERS
SUMMARY LIST OF ALTAC STATEMENTS

Page

41
42
42
42
43

43

45
45
46
46
47
47
51
51
51
52
53
53
54
54

57
57
57
59
59
59

61
63

INDEX. 65

-vii-

THE ALTAC
LANGUAGE

THE ALTAC
TRANSLATOR

INTRODUCTION

The ALTAC Language is a scientific, problem-oriented, automatic
programming language which may be used to express and solve
many different kinds of problems. ALTAC is especially suited
for solving scientific and technical problems, which usually
contain a large number of algebraic expressions.

The ALTAC language program defining the operations to be
performed by the computer is called the source program. In an
ALTAC compilation, the ALTAC Translator accepts an ALTAC
language source program and translates it into a TAC language
program. The TAC Assembler then produces a machine language
object program from the TAC language program. This object
program may then be used in a program run, to process data and
derive meaningful results.

The following diagram * shows the relation between Language and
Translator:

rtflLCO
2000

PHILCO
2000

I ~--------"- AN ALTAC COMPILATION --------~II

PH/LCO
2000

... 1------ PROGRAM RUN ------.-,

* The diagram is not intended to show all inputs and outputs
associated with the compilationandrunningofALTAC programs.

-ix-

The operations performed in the compilation process are contin­
uous and require no operator intervention once the process has
started.

ALTAC provides several important features not generally included
in other algebraic compilers. Some of these features are:

• Programs· in FORTRAN format are acceptable without
modifica tion.

• TAC language instructions may be included in the ALTAC
source program.

• One-, two-, three-, and four-dimensional arrays can be
represented.

• Any floating-point number in the range _10600 to 10600 can
be accommodated.

• Symbolic addresses as well as statement numbers may be
used.

• Statements may be written in compound form.

• Positive, negative, and zero subscripts are permitted. A sub­
script may be any fixed-point expression, including other
subscripted variables.

• Mixed expressions (those containing both fixed- and floating­
point values) are permitted.

-~-

Chapter I
FORMAT OF THE SOURCE PROGRAM

SOURCE PROGRAM
FORMATS

ALTAC FORMAT

An ALTAC source program consists of a series of ALTAC
language statements written in ALTAC format or FORTRAN
format, or TAC instructions written in TAC instruction format. *
The principal difference between ALTAC and FORTRAN formats
is the location of fields on the program cards. This difference
and other details of ALTAC and FORTRAN formats are pre­
sented below.

When written in ALTAC format, each statement of the source
program begins a new line of the ALTAC coding form (see below).
Statements too long to fit on one line are continued on succeeding
lines, starting after column 16.

After the program is written it is punched on cards, each line on
the coding form corresponding to one card. Figure 1 shows the
general appearance of an ALTAC source program as it is written
on a standard ALTAC coding form. Figure 2 illustrates how this
program appears on cards.

ALTAC CODING FORMI. !

10010 18-1-63
I~~rp:;m l LOCATION Al TAC 5 TAT [M E N T

, r 1 .. ,. ,. I • .. " II II ,I ,. " I. "" " .. II nil". ~ .. " ,. ,. .. JI II ft _ , 0' " ~ ~, , ., _ ., ,. " If II ' "

· ..•... I ... , , . S,A.M.P,l,E, ,PIR ' .R.AJI. , . , , .,.,.,/ .. " ,." ..•. , ..• "., •. , ..•.....•.•
· .. , .. , ... , , , P,R.f,G,R,A,II,..IU, .FJ.U, .T,H.E •. P.RI.D.U,C.T, d . .l.I1 .. M,AT,R.I,CH , .. , , , • , . , .• ~.' ~
~ DJ.II.EJtSl.l!itL..!L2 ... H •. B.I.4 .• ,2.l .•• C.(.2,.,2.l, .$, , •.• , , " , ~ •.• -•. ~. ~ ~.~
· .. , .. , ~.",., ~:i:'~A'~"'hh'~''',')' J'-, 'I .•.. , • .D.lli . .I.MH, .A,R.RM.S •. A .. A •• Le. ~~

n",.L, \') V'r 2..) 4:f; ~::. :.: ~C~1:IHJ:)YA~(:'IJ):Jt:B:(:'~ :J:)' :$":'::': ::: . :::::::::::::::.::::::: ::.::
v'-' [,...- ~ ___ -, .. --1-..... "·.'···I····::T: .. ,·,·········"'~·, .. , .. , .,•. , , ...

f' 1,2 ... (co .,J.l..,CP'l.J.l.~.A.(l.,l.).*.B.I.l ••. p. L .. " .C~~PU.T.E .. P.R~.DU.~.T. ,M.A.T.R.I.X.C .•... _
PRUT 16 (CI.l J) J=I 2) 1=1 21 I PRINT MATRIX G

1.6 F/.RM,A,T, .(,I.H,I.2.F.7.·,2.l.I.H.02.F.7·.2) .. $. . ., ., ,

::.: : : : ~:~r$~: : : : : : : : : : : :: : : : : : : : : : : : : :: ~ : ~
, , I ... ,......... .,•..... , .. -

• •.• ", I""·"""'" ., •• 1 •••

............. ,

... ~ •.. t . , . , .. , , , -
~t-~~-1""~ ~ -

r--'-------o........H~~~ ~-"" j ~ ..• ~ .. ~---•... - ..•...•.• .' ... -- ~'-~~~'~~~~-l
f----..~·-H-----·· I' _ < ._ ~-~- ••••• ~~-.~--

-~.-~ f--.-.'~'" •••..••.. I ~ ••• _.-••.••• ~~ '-.~
. .." j ~ _._ _.-

Figure 7 - An ALTAC Program

* Refer to the Philco 2000 TAC Manual, TM-11.

2 ALTAC III

The ALTAC
Coding Form

i-lMPOl1~ I --EINT I~t ((C(1.:.j"fJ=I,2), 1~1021 $ PRINT MATRI>: C ;

AMPOIOq 112 1'< I .J);q<"1 ,JHA<fl .!<I-B<i<-;-J) -$- TOMPUTE pRODUCT ",ATRIX q

i-lMP009ql pO 121(12. 4 $ 11 : : : : :
AMPq08~ F<" JJ='f" 1 I"BqItUI $! l;: :

i-lMP007Q 1 po 12 J=tI. 2 $ liS
AMP006Q 1 po 12 I =jI • 2 $ I: : 0 ~

jfAMPOO:lq ~ FORMAT <t16F3.1) F 1 '" ~ ~
AMPo04Qf3FEAD 6 • .:tB $ I 1 : JPATA IN1p ARRAYS: A' AND I! E ~

AMP003q I plMENSICfi A<2.4)~I«4.2),C(F.2) $: ~

AMP002Cf'1 fROGRAM ~O FORM ~I£ PRODuCtr OF T~O: MATR I cq;

AMPOOI~ pAMPLE FfOGRAn: 1 1
~!! .. !.!!!;_31TIT.~-~l .. • uu

~~ GJ ~,-::-'-~

I~I;-~: .. I! ~!!! ~: 1: ~:! ~!!! ::::::: !:::~::: ::: ::!!!:.~!! ::! !!!!! ~:::!!! !!!!~!!!:: !!:!: ~:::
I!IIII,IIIIIIIIII,IIIIIIIIII,IIIII:IIIIIIII:IIIIIIII:I1111111:11111111:11111111:111111

-
222222222222222.22222222222222222122222222122222222122222222,22222222'222222221222222

.... t \ I , I I ,..
~ 1I111111111111111111 ,11111I11I1111111111111111I111I1111111I1I1111I1I111111111I1111I1I1 ~

i 44:,.44 44 C 44 44 • 44 441 •••• 44 44 44 •• 44 •• :44 44 44 44: ••• 44 44 .:. 44 •• 44 .:44 44 • 44 .:. 44 •• 44 .:44 •• 44 ~
e I I I I I I ..
~ 555555555555555555555,555555555555:55555555:55555 55 5:5 5 55 55 55:55 55 55 55:5 555 5 5 55:5 55 5 55 ~

~ &111111& 61111111111111111 -1111111111 11111111111111111111111111&11111111111111111111111
I I I I I I

111 i 111111111111111, 111, 111, 1111111111111111111 111111111111111,1111111111 1111111111 1111 r-
"~'I ",.aI1 "'1111" ••• 111 •• '. I'I'~" " ••• ':.1.1 III a~'I'I" ":'I'II'.~I" 'II!~ r-
'~;~~:.:~',; '"u" •• <....... .' ·.~.~.;::,~.;::;,;;;:,:,"":'m,,,~~_r-

-
f-

-
r-

"'1101"

Figure 2 - An AL TAe 'Source Deck

The program is transferred from cards to magnetic tape before
being read into the computer.

The following diagram shows the format of the ALT AC coding
form and card:

IDENTITY AND L LOCATION AL TAC STATEMENT
1 SEQUENCE 8 910 16 17 80

An explanation of the contents of each field is presented below,
together with the coding conventions which must be followed when
writing ALTAC statements in ALTAC format.

FOHMAT OF TilE SOUnCE PHOGHAM

COLUMNS

1-8

9

10-16

17-80

HEADING

IDENTITY
AND

SEQUENCE

L

CONTENTS

Any combination of characters
to be used as identity and se­
quence numbers.

The ALTAC Translator ignores
any information in these celumns.

A space, an asterisk (*), aT, or
an 1.

A space signifies an ALTAC
language card; an asterisk signi­
fies a remarks card; a T signif;ies
a TAC insert card; an I signifies
the card containing the program
identity. (See Chapter VIII.)

LOCATION Statement numbers or symbolic
addresses.

A statement number may be any
unsigned integer from 0 to 99999.
A symbolic address may be any
alphanumeric symbol from one to
seven characters long, the first
character of which must be
alphabetic.

ALTAC ALTAC language statements.
STATEMENT

Because remarks are permitted
following an ALTAC statement,
a dollar sign must be used to
terminate the statement. The re­
marks are written on the same
line as the statement, and may
start anywhere after the dollar
sign.

ALTAC statements may be com­
pounded and continued on suc­
ceeding cards (see page 14).
Spaces appearing in an ALTAC
statement are ignored. t

3

t Except spaces in Hollerith fields, and in columns 17-32 of
the I Card. See pages 41, 54, and 59.

4

FORTRAN
FORMAT

ALTAC III

FORTRAN programs, or ALTAC programs written in FORTRAN
format, are acceptable to the ALTAC Translator. The format is
communicated to the ALTAC Translator by means of an IDENTIFY
statement (see page 57).
Figure 3 is an illustration of the standard FORTRAN card format.
The contents of each column is discussed below:

/ ~~I
FORTRAN STATEMENT '0'.""(.'10_ ",." .. ,., ! _"".u ~

.0000 o ~ a a 0 ao a a 0 0 0 0 0 0 D 0 0 0 a a a a 0 a 0 0 0 0 0 0 0 0 0 aDo 0 a 0 a a ~aaOla ..
• 12J4' ,' ••• """~~~"qq.~»n~~~v~na~»UM~.J, ••• ~qUMu •• r.uM'I~UW~M)7MMMIIUU~UMI)M.~'ln 71MP\,.""".
,1'1 " 11"1"""'" """"" "" """""" I"""""'" """'" "" ""'''' I

~2222 Z~ZZ2}222222ZZZ2Z222Z22 22222222

lh 333 333 U U 3 3 3 3 3 3 3333 333 3 33 3 3 3 3 1 3 1 3 3333333333333333333333 1 3 1 3 3 33 3 3l 33 3 1 33333333

4:" 44 444 44444444

515555 5 5 5555 55 5 5 5 5 5 5 5 5 5 5 5 5S 5 5 5 55 ~ ~ 5 55 5 B 5 5 5 5 5 5 5S S5555SSS

,IU" I II"" I II 61" 1&, II II &6, '" II &6 6 6& && & && 1& 6 & & & &6 & & & & & &6 , ,,1& & 61 "I" I "&&&51&

111111 1111111111111111111111 J 111111111111111111 JIll J 111 J J 11 J 1111111111111 11111111

.'11 .. '1" I ••• I I I • I I I • I I I I I •• I I •• I I I I ••• I I I I •• I I I I I • I ••••• I I I I • I I I I • II I II I 11111111
I

~91999~"S~'911S99119'9999999999999991S9999999999999999199999999999999'9""'"
112 :I • " • , •• 1' .. {1J U .41\ t6 U '1".'1 nll14 r.. ltlJlIn .]Ill' J1 Jot:toll)I»ft ••• G4J" •• U.,,")1 "U")I.".".II UUMeN" •• "'1 nIl N" lin" ". , ,.,

COLUMNS

1

1-5

6

7-72

73-80

Figure 3 - Stanelarel FORTRAN Carel

HEADING

C

STATEMENT
NUMBER

CONTINUATION

FORTRAN
STATEMENT

IDENTIFICATION

CONTENTS

A "C", a "T", or a space.

A "C" indicates a comments
or remarks card; a "T"
indicates a TAC insert; a
space indicates a FORTRAN
statement.

Same as for columns 10-16
of an ALTAC card, except
that the first character of a
symbolic address cannot be
a "C" or a "T" in column 1.

Because remarks are not
permitted in FORTRAN
statements the dollar sign is
not needed to terminate the
statement.

For a single statement: Blank
For a continuation card:
any non-blank character.

FORTRAN statements

Identity and sequence num­
bers.

FORMAT OF THE SOURCE rHOCHAM 5

ALTAC
CHARACTERS

The characters that are allowable in ALTAC statements t are:

• All decimal digits.

• All alphabetic characters.

• The twelve special characters + - * / () ,. =
space (denoted by ~) and $.

t Additional characters shown in Appendix A are also allowable,
provided they appear as a Hollerith field in a FORMAT state­
ment (see page 41).

Chapter II

BASIC ELEMENTS OF THE ALTAC LANGUAGE:
CONSTANTS, VARIABLES, SUBSCRIPTS,

AND EXPRESSIONS

CONSTANTS

Fixed-Point
Constants

In the ALTAC Language there are provisions for expressing
constants, subscripted and non-subscripted variables, Hollerith
fields, and arrays of up to four dimensions. When linked together
with certain ALTAC "operators" (see page 10) these elements
form expressions meaningful to the ALTAC Translator.

ALTAC constants are of two types - fixed point and floating point.
These are defined as follows.

Fixed-point constants are constants which are written in the
following general form:

GENERAL FORM EXAMPLES

Any decimal integer in the range 7
-32767 to +32767. +3895

-50

If the absolute value of a constant is greater than 32767, it is
treated as a floating-point constant (see next page).

When used as a subscript, a fixed-point constant is treated
modulo the size of core storage (the number of memory locations)
in the object machine.

Unsigned fixed-point constants are regarded as positive. The
fixed-point constants +0 and -0 are the same in the object
program.

8

Floating-Point
Constants

VARIABLES

Fixed-Point
Variables

Floating-Point
Variables

ALTAC III

Floating-point constants are constants which are written in the
following general form:

GENERAL FORM EXAMPLES

Any decimal number whose absol ute + 1.
val ue is greater than 32767, or which 3.14 or .314E1

is written either with a decimal point -.0062 or -6.2E-3

or with a decimal exponent preceded +101E5

by an E. (The letter E means "times
98765

10 to the power".)

Themagnitude ofthe number thus ex-

pressed must ei ther be zero, or must

lie in the range 10.600 to 10600•

Note that the floating-point constants +0. and -0. are the same
in the object program, while the fixed-point constant 0 and the
floating-point constant 0. are not the same in the object program.

The name of a variable may consist of from one to seven alpha­
numeric characters. The first character, which must be alpha­
betic, determines the mode (fixed- or floating-point) of the
variable.

Fixed-point variables are variables whose names are written in
the following general form:

GENERAL FORM EXAMPLES

Name contains 1-7 alphanumeric char- I

acters, the first of which is either I, JOB38

I, K, L, M, or N. KAPPA
NUMBER5

Fixed-point variables can assume any integral value from
-32768 to 32767 (except -0, since, as is the case with fixed-point
constants, -0 and +0 are the same in the object program). If the
value of a fixed-point variable lies outside this range, the value
is reduced modulo 32768, or modulo the size of core storage of
the obJect machine when used as a subscript.

Floating-point variables are variables whose names are written
in the following general form:

GENERAL FORM EXAMPLES

Name contains 1-7 alphanumeric char- ALPHA
acters, the first of wh ich is alphabetic E

but not I, I, K, L, M, or N.
RH07

BASIC ELEMENTS OF THE ALTAC LANGUAGE 9

SUBSCRIPTS

Subscripted
Variables

Storage of
Arrays

Floating-point variables can assume the value 0., or any value not
exceeding 10600 nor less than 10-600 in magnitude. (An assumed
value of -0. is the same as +0. in the object program.)

A subscript may be any fixed-point expression (see page 10). By
subscripting a variable, it can be made to refer to any element
of a one-, two-, three-, or four-dimensional array. The number
of subscripts must always agree with the number of dimensions
of the array.

GENERAL FORM EXAMPLES

A fixed-or floating-point variable, C(I)

followed by parentheses enclosing ALPHA(I, J)

1, 2, 3, or 4 subscri pts separated BET A(I, J, K, L)

by commas. GAMMA(2*1+3, J, K+5)

For each variable that appears in subscripted form, the size of
the corresponding array (i. e., the subscripts of its last element)
must be stated in a DIM:ENSION or TABLEDEF statement (see
pages 25 and 28) preceding the first appearance of the variable.

Subscripted variables may appear in subscripts to any desired
depth. For example, the subscripted variable

MATRIX(J(I),K)

will be read as
MATRIX. k .

Ji ,

The variable J is also the name of an array and must appear in
a DIM:ENSION or TABLEDEF statement. ALTAC will use the
value of the ith element of array J as the first subscript of
MATRIX.

A general method for computing the effective address of a sub­
scripted variable (i.e., the actual memory address represented
by the variable) is presented on page 26.

Arrays are stored forward in memory, in order of increasing
absolute location, with the innermost subscript varying most
rapidly. Thus, a two-dimensional array may be said to be stored
"column-wise." For example, the elements of the 2x3 array

10

EXPRESSIONS

Operation
Symbols

Processing of
Expressions

ALTAC III

For three-dimensional arrays, elements of the first plane are
stored before elements of the second plane, etc. This same
method of storage is extended to four-dimensional arrays.

An expression is any sequence of constants, variables (subscripted
or non-subscripted), and functions, separated by operation symbols
and parentheses, so as to form a meaningful, unambiguous
mathematical expression.

There are five "operators" or operation symbols in ALTAC
Language. These are:

+ denoting addition (binding strength 1)

denoting subtraction (binding strength 1)

* denoting multiplication (binding strength 2)

/ denoting division (binding strength 2)

** denoting exponentiation (binding strength 3)

Any of the above operators may be used in an expression, to define
relationships between constants, variables, and functions. The
effect of each of their binding strengths is discussed below.

The efficiency of the instructions compiled from ALTAC expres­
sions depends to some extent on the way the expressions are
written. ALTAC processes an expression according to the
following rules:

Rule 1 - In an expression of the form A op 1 Bop 2 C, if the binding
strengths of the operators op 1 and op 2 differ, the
operations with the greater binding strength will be
applied first. If the binding strengths of oPland op 2 are
the same, then the operations in general will be per­
formed from left to right. For example, the expression
A*B**C will be computed as A*(B**C), and the expression
A/B*C will be computed as (A/B)*C.

Rule 2' - ALTAC assumes that the entire expression is paren­
thesized. ALTAC scans from left to right until it
encounters a right parenthesis; it then proceeds to
evaluate the expression between this right parenthesis
and its corresponding left parenthesis according to
rule 1. After replacing the parenthetic expression by
its value, ALTAC continues scanning (from left to right)
until it encounters another right parenthesis, and pro­
ceeds as above, until all parenthetic expressions are
evaluated.

BASIC ELEMENTS OF TilE ALTAC LANGUAGE 11

Mixed
Expressions

In an ALTAC expression there must be a corresponding right
parenthesis for each left parenthesis used, and vice versa. If
this condition is not met, the statement is illegal.

An expression of the form A24 should be written as A ** (2**4) or
as (A **2)**4 depending on whether A(24) or (A 2) 4 is meant.
A **2**4 is ambiguous and is therefore not a valid ALTAC
expression.

No two operators are written consecutively. Negative exponents
and fractional exponents of the form (x/y) should always be
enclosed in parentheses, since exponentiation has the greatest
binding strength.

A special feature of the ALTAC system is that it permits the
writing of mixed expressions. A mixed expression is one con­
taining a combination of fixed- and floating-point variables or
constants.

In mixed expressions the floating-paint mode has precedence in
specifying the mode of the value of the expression. For example,
the expressions A **1 and I**B would be converted to~floating-point
mode because of the floating-point variables ~lill\traUtes resulting
from fixed-point operations are always truncated to an integer.

THE
ARITHMETIC
STATEMENT

Chapter III

ARITHMETIC STATEMENTS

The ALTAC Language comprises five types of statements:

• Arithmetic Statements

• Control Statements

0 Specification Statements

• Input-Output Statements

0 Subprogram Statements

Each type of statement performs a specific function. Arithmetic
statements are discussed in this chapter; subsequent chapters
are devoted to the discussion of the other statements.

Arithmetic statements are written as equations. The equal sign
signifies that the value of the variable on the left side is to be re­
placed by the value of the expression on the right side, not that
the variable equals the expression. (See, in particular, the third
example below.) The general form of an arithmetic statement
is:

GENERAL FORM EXAMPLES

v = e y=x
where v is a variable (subscripted or A(I) = B(I)-C(I)

non-subscripted), and e is an expres-
SUM = SUM + X(I)

sion.
KAPPA = A* (S-3.)/L

The value of the expression (e) is always converted to the mode of
the variable (v). Thus, in the last example above, the floating-point
value of the mixed expression would be truncated to the integer
(and reduced modulo 32768 if necessary) before being stored in
the memory location represented by KAPPA. For example, if the
value of the expression is 7.998, the value 7 will be stored, not 8.

14

COMPOUND
STATEMENTS

ALTAC III

The following are other examples of arithmetic statements:

STATEMENT

Z=A+B

X=KAPPA

Y=Y+X(I)

N(I)=BETA*7

MEANING

Add the quantity in A to the
quantity in B and store the
result in Z.

Convert the quantity in location
KAPPA to floating-point and
store the result in X.

Add the quantity in the ith loca­
tion of array X to the quantity
in Y, and store the result in Y.

Multiply the quantity in BE T A
by floating-point 7, convert the
product to fixed-point and store
the result in the ith location of
array N.

A series of arithmetic statements may be compounded (written
sequentially) by linking them with semicolons to form one or
more consecutive lines of coding. Statements continued on
succeeding lines must start after column 16. The last statement
of the series must be terminated by a dollar sign.

The following is an example of a compound statement:

LOCATION ALTAC STATEMENT

BETA=3*Y; A=K-N/7; C=A+B $

Each statement is executed in the order in which it occurs in the
program. Other examples of compound statements are presented
on page 18.

If a statement number oJ'f symbolic address is used with a com­
pound statement, only the first statement in the compound
statement will be identified by the statement number or symbolic
address.

UNCONDITIONAL
GO TO

ASSIGNED
GO TO

Chapter IV

CONTROL STATEMENTS

This chapter discusses the sixteen ALTAC statements which
control the sequence of operations in a program. In general, these
control statements may be used to:

• provide unconditional transfer of control to other state­
ments in the program

G test variables and provide conditional transfer of control
to other statements in the program

o set or test "program switches" to determine which of
several paths a program may take

o execute a particular sequence of statements repeatedly a
specified number of times

The Unconditional GO TO statement is used to unconditionally
transfer control to other statements in the program. The general
form of this statement is:

GENERAL FORM EXAMPLES

GO TO n GO TO 9

where n is either a statement number GO TO ALPHA

or a symbolic; address, ,

This statement causes control to be transferred to the statement
with symbolic address or statement number n.

A GO TO statement that is subject to modification by an ASSIGN
statement (see next page) is called an Assigned GO TO. Assigned
GO TO statements also provide unconditional transfer of control,
and they may be written in either of two forms:

GENERAL Fa RMS EXAMPLES

GO TO m GO TO Z
or

GO TO Z, (7, K, 15)
GO TO m, (n I' n 2' ••. , n k)

where m is a non-subscripted variable

appearing in a previously executed
ASSIGN statement,andn I ,n2,·, " nk

are each either a statement number or

a symbol ic address.

16

ASSIGN

COMPUTED
GO TO

ALTAC III

The Assigned GO TO statement causes control to be transferred
to the statement whose symbolic address or statement number is
equal to the value last assigned to m by an ASSIGN statement.
When the second form above is used, the variable 'In should not
be assigned a value which does not appear in the parenthesized
part of the statement.

The ASSIGN statement is used to assign a value to a non­
subscripted variable which appears in an Assigned GO TO
statement. The general form of the ASSIGN statement is:

GENERAL FORMS EXAMPLES

ASSIGN n to m ASSIGN 7 to Z
or

ASSIGN (K) to Z
ASSIGN (n) to m

where n represents a statement num-

ber, or a symbolic address if en-

closed in parentheses, and m is a

non-subscri pted variable.

When used with a subsequent GO TO statement, the ASSIGN
statement causes the GO TO to transfer control to the statement
whose symbolic address or statement number is n.

The statement ASSIGN n to m is not the same as the arith­
metic statement m = n. A variable which has been assigned can be
used only for an Assigned GO TO, until it is re-established as
an ordinary variable.

The Computed GO TO statement is used to transfer control to
one of several statements in the program. The general form of
this statement is:

GENERAL FORM EXAMPLES

GO TO (n I , n2 , ••• , n m), i GO TO (10, 15, 20), J

wh ere n l' n 2' • • • , n m are each either GO TO (BET A, 6, DEL), K
a statement number or a symbol ic ad-

dress, and i is a non-subscripted fixed-

point variable.

This statement functions as a program switch. It causes control
to be transferred to the statement with symbolic address or
statement number n1 ,n2 , •.. , or nm ' depending on whether the

CONTROL STATEMENTS

IF

17

value of i at the time of execution of the statement is 1,2, ... ,or In,
respectively.

Thus, if J in the first example above has the value 2 at the time
of execution of the statement, control will be transferred to the
statement with statement number 15.

IF statements provide a means of making comparisons and condi­
tionally transferring control. IF statements may be written in
either of two forms:

GENERAL FORMS EXAMPLES

J F (e) n l' n 2' n 3 IF (X-Y)3, K, 6

or
IF (X)GT(Y), GO TO 6

J F (e 1) : (e 2)' S

where e, e 1 and e 2 represent expres-
sions, : represents a comparison sym-

bol, S represents a statement, and n l'

n 2' and n 3 are each either a statement

number or a symbol ic address.

Any of the following comparison symbols may be used in an IF
statement of the second form above:

SYMBOL MEANING

E Equal to

NE Not equal to

LT Less than

LTE Less than or equal to

GT Greater than

GTE Greater than or equal to

In the first form above, control would be transferred to the
statement with symbolic address or statement number nj , n2, or
n3 ,if the value of the expression denoted by e is less than, equal to,
or greater than zero, respectively.

In the second form, control would be transferred to the statement
represented by S, if the relationship (denoted by the comparison
symbol) between the expressions ej and e2 is met. If the relation­
ship is not met, the next statement is executed.

18

COMPOUND IF
STATEMENTS

SENSE LIGHT

ALTAC III

If several statements are to be executed as a result of satisfying a
single IF condition, the dependent statement S (in the second form
above) may be written as a compound statement terminated by
another IF statement (see Compound IF statements below), or by
a dollar sign. For example, if the condition (X) E (Y) is satisfied
in the following:

IF (X) E (Y),I=J+6;Z=A+BETA-2;GO TO KAPPA $

all three statements (making up the dependent statement S) follow­
ing the IF condition would be executed. If the condition (X)E(Y) is
not satisfied, all three statements will be ignqred, and control
will be transferred to the statement following the IF statement.

The expressions eJ and e2 in the second form need not be in the
same mode; however, more efficient coding will result if they are.

A compound IF statement is composed of several IF statements
separated by semi-colons. The following is an example of a
compound IF statement:

IF (X) E (Y),I=J+1;IF(X)GT(Y),I=J-1;GO TO K $

The object program tests the conditions in sequence until it finds
one condition that is satisfied. The dependent statement(s) following
this satisfied IF condition are then executed. The remainder of
the compound statement is ignored. The program then proceeds
to the first statement which follows the compound IF statement.

The SENSE LIGHT statement is used to set a particular bit of a
word in memory to 1, or all bits to zero, simulating an on or off
condition respectively. The lights or bits are numbered from 1 to
48, and are referred to in the following manner:

GEN ERAL FORM EXAMPLES

SENSE LlGH T i SENSE LIGHT 40

where i is any unsigned integer 0-48.

If i has the value zero, all lights are turned off. If i has any other
value 1-48, then sense light i is turned on.

CONTnOL STATEMENTS

IF SENSE
LIGHT

IF SENSE
SWITCH

IF SENSE BIT

19

The IF SENSE LIGHT statement is used to test a sense light (set
by a previous SENSE LIGHT statement) and to turn it off. The
general form of this statement is:

GENERAL FORM EXAMPLES

IF (SENSE LIGHT i) n I , n2 IF (SENSE LIGHT 7)5, 10

where i is any unsigned integer 1-48, IF (SENSE LIGHT 40)K, 7
and n 1 and n 2 are each either a state-

ment number or a symbolic address.

This statement causes control to be transferred to the statement
with symbolic address or statement number n 1 or n2, if sense
light i is on or off,respectively. If the sense light is on, it is turned
off prior to transfer of control.

The IF SENSE SWITCH statement is used to test a sense switch.
A sense switch is one of the forty-eight toggles numbered 0-47 on
the Philco 2000 Console. (Reference to sense switch 48 is inter­
preted as a reference to sense switch 0.) This statement is
written as follows:

GENERAL FORM EXAMPLES

IF (SENSE SWITCH i) n I , n2
IF (SENS E SWITCH 9) 15, 30

where i is any unsigned integer 0-48, IF (SENSE SWITCH 37)4, BETA

and n 1 and n 2 are each either a state-

ment num ber or a symbol ic address.

The IF SENSE SWITCH statement causes control to be transferred
to the statement with symbolic address or statement number n1 or
n2, if sense switch i is on or off, respectively.

The IF SENSE BIT statement is used to test a sense bit. A sense
bit is one of forty-eight bits in a memory location* within an
operating system. The general form of this statement is:

GENERAL FORM EXAMPLES

IF (SENSE BIT i) n I , n2 IF (SENSE BIT 24)9, 12

where i is an unsigned integer 0-48, IF (SENSE BIT 40)B, KAPPA
and n 1 and rz 2 are each ei ther a state-

ment number or a symbolic address.

* In the Philco Operating System SYS, the address of the memory
location is 49.

20

IF OVERFLOW

DO

ALTAC III

This statement causes control to be transferred to the statement
with symbolic address or statement number nl or n2' if bit i of
of the memory location is 1 or 0, respectively. Reference to
sense bit 48 is interpreted as reference to sense bit 0.

The IF OVERFLOW statement is used to test an overflow indicator
for floating-point exponent fault. The general form of this state­
ment is:

GENERAL FORM EXAMPLES

IF OVERFLOW n I , n2 IF OVER FLOW 6, 25

where n I and n 2 are each either a IF OVERFLOW 0, LAMBDA
statement number or a symbolic ad-

dress.

If floating-point exponent fault occurred, the overflow indicator
is cleared to zero and control is transferred to the statement
with symbolic address or statement number n 1. If overflow did
not occur, control is transferred to the statement with symbolic
address or statement number n2 •

The FORTRAN statements IF ACCUMULATOR OVERFLOW,
IF QUOTIENT OVERFLOW, and IF DIVIDE CHECK are all
treated as IF OVERFLOW statements by ALTAC.

The DO statement is used to execute a series of instructions
repeatedly a specified number of times. This statement may be
written in either of two forms:

GENERAL FORMS

or

DO (n) i = m
I

, m2, m3

where n is a statement number, or a

symbol ic address if enc losed in

parentheses; i is a non-subscr ipted

fixed-point variable; and m I' m 2' and
m 3 are each either an unsigned

fixed-point constant or a non-sub­

scripted fixed-point variable.

EXAMPLES

DO 7 1= 1, 9, 2

DO (K) J = 1, 16, 3

DO 5 K = 1, N

~~~? 



CONTROL STATEMENTS 21 

The DO statement causes. repeated execution of all statements 
within its range. The range of a DO statement extends from the 
first statement following the DO statement up to and including 
the statement whose symbolic address or statement number is n. 

The statements in the range are executed repeatedly, first for 
i =m 1, and each succeeding time for i incremented by m 3' until 
the value of i exceeds m 12. When the value of i exceeds m 12' the 
DO is said to be satisfied, and control is transferred to the first 
statement following the statement with symbolic address or 
statement number n. 

The fixed-point variable i is called the index of the DO. m 1 repre­
sents the initial value of i , m 12 the limiting value, and m 3 the 
incrementing quantity. If m3 is omitted, it is assumed to be 1; 
if m 2. is omitted, it is assumed to be m 1. 

In the special case where both m 1 and m 2 are i , the DO is auto­
matically satisfied at the end of its range and the value of i re­
mains as m 1. 

The following is an example of a DO statement: 

STATEMENT MEANING 

DO(ALPHA) 1=1,5,2 Execute all statements immediately 
following, up to and including the 
statement with symbolic address 
ALPHA, first for 1=1, next for 1=3, 
and last for 1=5; then transfer con-
trol to the statement following the 
statement whose symbolic address 
is ALPHA. 

Statements in the range of a DO may themselves use the current 
value of the index, but are not permitted to redefine this value. 
This restriction, therefore, automatically excludes a DO in the 
range of another DO with the same index name. 

A GO TO statement or an IF statement of the form IF (e) n1 ,n2 ,n3 
should not be the last statement in the range of a DO. 

DO Nests. The range of a DO may include other DO statements, 
provided that the DO's are properly nested. A set of DO's is 
considered to be properly nested if the following rule is observed: 

• If a DO statement is in the range of another DO, all statements 
in the range of the former DO must also be in the range of 



22 ALTAC III 

the latter. The following is an illustration of proper and 
improper nesting arrangements. 

PERMITTED NOT PERMITTED 

DO 

As many as 63 levels.if DO's are permitted in a nest. 

Control cannot be transf€rred into the range of a DO from outside 

, its range. The only exception to this ru!~ i:~~tit ... ~:i;: 
G'l-~~rt o,,\'"-':t- J~ N~v..A ~t;,iiu returned into the range of the DO" a . --. I .. - . --

/'uVl"'-c;- rf 1"'- d> c ;./ U). ~L 1> .. U ~'1fttJ;'lVI..,l: exe-cutecl-eut-side-it-s-range which changed the-val-l:le-ef-the-index-er 
() ~- - ) -I' Z u~ /\M--~ any--Gf-the-index-ing:-pa-r-a-me-t-ers of the ne;--rF-his-except-ion-makes 

.Wv<..O A.AL.(NVI.-UA g-1N\ .. ,/2A .. tV\..' ,) 
~ { it-PQssibl~-it-teffil3g~m-t~a-t:o-exe-cute-

~ ( z-) v .2:t::~1\.L-o,,-t j¢..#)fi.- i _ Z .a-..sl:lbroutine, if desir-ed. 
~~ 'L0'lw.> ~ tw--1';'e;k c)~y ~ 

~l\A;rv~/b-U~VlL¥ {L()v,J0\-,iw"'\J The following shows which transfers of control are permissible 
--!r- I1r -au 1)0 . and which are not. 

fAl'vll~{.;!A- {j 

Transfers 1, 3, and 6 are permitted. Transfer 4 is permitted only 
if it adheres to the provisions stated in the exception above. 
Transfers 2 and 5 are not permitted. 

If a DO has been satisfied and control transferred out of its 
range, the value of the index controlled by the DO is no longer 
defined, and must be redefined prior to its use again. If exit is 
made before the DO is satisfied, the current value of the index 
remains available for use. 

In nested DO loops, the index value of one DO may be used by the 
other DO's as indexing parameters, or as subscripts or operands 
in other statements. For example: 

DO 15 J=1,N $ 
DO 13 K=J,40 $ 
SUM=A(J)-J $ 



CONTROL STATEMENTS 

CONTINUE 

PAUSE 

STOP 

23 

The CONTINUE statement is used primarily as the last statement 
in the range of a DO, and serves as a common point to which 
control is transferred. It generates no coding, other than the 
assignment of a statement number or symbolic address for pur­
poses of modifying and testing the index. The general form of this 
statement is: 

GENERAL FORM EXAMPLE 

CONTINUE CONTINUE 

At the end of the range of a DO, CONTINUE simply means "do 
nothing, but proceed to modify and test the index." 

If the first executable statement in an ALTAC program is a 
TAC insert (see page 57), then a CONTINUE statement must 
precede the TAC insert (including the STARTTAC statement, 
if any). 

The PAUSE statement is used to provide a temporary halt in a 
program. The general form of this statement is: 

GENERAL FORM EXAMPLES 

PAUSE n PAUSE 

where n is any unsi gned fixed-point PAUSE 111 

octal number of up to 5 digits. If n PAUSE 77777 
is omitted, zero is assumed. 

Upon executing a PAUSE statement, the computer will halt dis­
playing the octal number n. Pressing ADVANCE on the console 
will cause the program to resume operation, starting at the next 
sequential statement. 

The STOP statement is used to signal the end of a program run. 
The general form of this statement is: 

GENERAL FORM EXAMPLE 

STOP STOP 

When this statement is executed, all tapes· will be run out 
(see page 36), and cont~ol transferred to the operating system used. 





DIMENSION 

Chapter V 

SPECIFICA TION STATEMENTS 

The ALTAC Language includes four Specification Statements: 
DIM:ENSION, EQUIVALENCE, COMMON, and TABLEDEF. These 
are non-executable statements; they provide the ALT AC Translator 
with information concerning the allocation of storage, and the 
arrangement of data in memory. The function of each of these 
statements is discussed below. 

The DIJ.\I1ENSION statement provides ALTAC with the information 
necessary to allocate storage for an array in the source program. 
The name of each array together with its dimensions must appear 
in a DIJ.\I1ENSION (or TABLEDEF) statement. The general form of 
the DIJ.\I1ENSION statement is: 

GENERAL FORM EXAMPLES 

DIMENSION v l' v 2' v 3' .•. DIMENSION A(5), 8(4, 7) 

where each v is a variahle, sub- DIMENSION KA PPA(3, 5, 7), 

scripted with 1, 2, 3, or 4 un- RHO(2, 4, 6, 8) 

signed fixed-point constants, 

representing the maximum dimen-

sions (last element) of the cor-

responding array. 

In the second example above, KAPPA is shown to be the name of 
a 3-dimensional array for which 105 (3x5x7) locations are 
reserved; RHO is the name of a four dimensional array for 
which 384 (2x4x6x8) locations are reserved. 

If the name of an array appearing in a DIMENSION (or TABLEDEF) 
statement also appears in an EQUIVALENCE and/or COMMON 
statement, the EQUIVALENCE statement must precede the 
COMMON, DIMENSION or TABLEDEF statements; the COMMON 
statement, in turn, must precede the DIJ.\I1ENSION or TABLEDEF 
statement. 

There may be several DIMENSION statements in a program, each 
of which must precede the first appearance* of any of its variables 
in the program. 

* Not considering appearances in EQUIVALENCE and COMMON 
statements. 



26 

EQUIVALENCE 

Computing 

Effective 
Addresses 

ALTAC III 

A DTh!IENSION statement should not contain the names of functions 
or subroutines. 

The EQUIVALENCE statement permits the programmer to con­
serve storage by specifying that storage locations are to be 
shared by two or more variables. EQUIVALENCE is also used in 
conjunction with the COMMON statement, to control the allocation 
of storage in the common storage area (see page 27). The general 
form of the EQUIVALENCE statement is: 

GENERAL FORM EXAMPLE 

EQUIVALENCE (v 1' v 2' v 3' ••• ), EQUIVALENCE (A, B(5), C), 

(v k ' vkt1'·· .), ••• 
(BET A(lO), 

RHO, X(2)) 
where each v represents a variable. 

A single unsigned fixed-point con-

stant in parentheses may follow a 

variable. 

In the example shown above, arrays A, B, and C are to be 
assigned storage locations in such a way that the first element of 
array A, the fifth element of array B, and the first element of 
array C all occupy the same location. Similarly, the tenth 
element of array BE TA occupies the same memory location as 
the first element of array RHO, and the second element of 
array X. A programmer can thus refer to the same memory 
location by different names. It is his responsibility, however, to 
insure that the appropriate values appear in these locations at 
the time of reference. 

It may be necessary for a programmer to know the effective 
address of a subscripted variable, for example, when planning to 
use the EQUIVALENCE statement. By means of the following 
information, he can calculate this address: 

Assuming a subscripted variable of the form A(Jl,J2,J3,J4), with 
corresponding DIMENSION statement 

DIMENSION A(Nl,N2,N3,N4) 

the general equation for computing the effective address is: 

The address of A(Jl,J2,J3,J4) = A+(Jl-l)+Nl(J2-1)+N1N2(J3-1)+ 

N1N2N3(J4-1) 



SPECIFICATION ST ATEl\1 ENTS 27 

COMMON 

For a variable of less than four dimensions, substitute 1 for the 
unused subscripts in the general equation above. Thus, if 
A(2,1,2) is a subscripted variable with dimensions A(3,3,3), the 
effective address of A(2,1,2) = A+(2-1)+3(1-1)+9(2-1) = A+ 10, the 
eleventh element of array A. 

The COMMON statement is used to reserve areas of common 
storage which are equally accessible to different object programs 
in memory. The general form of this statement is: 

GEN ERAL FORM EXAMPLE 

COMMON vI' v 2' 1/3 ••• COMMON ZETA, B, TAU 

where each v is the name of a variable 

or is a non-subscripted array name. 

The variables are placed in common storage in the order that 
they appear in the COMMON statement, provided none of them 
appear in an EQUIVALENCE statement. Variables which appear 
in both EQUIVALENCE and COMMON statements will be placed 
first in the common area, in the order that they appear in the 
EQUIVALENCE statement. For example, according to the state­
ments: 

EQUIVALENCE (D,H), (A,F) 

COMMON A,B,C,D,E 

DIMENSION B(3),C(2),E(2) 

common storage would be aSSigned as follows: 

D and H 

A and F 

B (1) 

B (2) 

B (3) 

C (1) 

C (2) 

E (1) 

E (2) 

The size of the EQUIVALENCE storage within COMMON plus the 
total size of those variables which appear in COMMON and do 
not appear in EQUIVALENCE, is the size of the area of memory 
reserved for common storage. 



28 

TABLEDEF 

. ALTAC III 

The TABLEDEF statement is used to specify the dimensions of 
an array which has been defined by means of a TAC insert 
(see page 57). The general form of this statement is: 

GENERAL FORM EXAMPLE 

TABLEDEF VI' v2' v3' ••• TABLEDEF A(1D), B(5, 8), 

where each V is a variable, sub-
DEL TA(3, 4, 5) 

scripted with 1, 2, 3, or 4 un-

signed fixed-point constants, 

representi ng the maximum d imen-

sions (last element) of the cor-

respondi ng array. 

ALTAC does not reserve storage for an array which appears 
in a TABLEDEF . statement, unless the array also appears in an 
EQUIVALENCE or COMMON statement, or appears as a formal 
parameter of a subprogram (see page 46) . 



ORDER 
STATEMENTS 

Chapter VI 

INPUT -OUTPUT STATEMENTS 

There are two kinds of input-output statements in ALT AC: 
ORDER statements and FORMAT statements. These statements 
are used together to specify the transmission of information be­
tween core and magnetic tapes. 

ORDER statements specify either an input or an output operation 
to be performed, or the manipulation of magnetic tapes. These 
statements may contain a tape reference, a FORMAT statement 
reference, and a list of the quantities to be transmitted. 

FORMA T statements provide information about the form and 
arrangement of data, and the type of data conversion to be 
performed. 

There are thirteen ORDER statements in ALTAC. These may be 
grouped as follows: 

• Six statements which provide for the transfer of binary coded 
(6 bits per character) information: 

READ n, List 
PRINT n, List 
PUNCH n, List 
READ INPUT TAPE i, n, List 
WRITE OUTPUT TAPE i, n, List 
PUNCH OUTPUT TAPE i, n, List 

• Two statements which provide for the transfer of binary 
information: 

READ TAPE i, List 
WRITE TAPE i, List 

• Five statements which provide for the manipulation of mag-
netic tapes: 

END FILE i 
RUNOUT i 
BACKSPACE i 
REWIND i 
LOCKOUT i 

The parameter i represents a magnetic tape unit, n represents 
the statement number or symbolic address of a FORMAT state­
ment, and List represents a list of the variables and arrays that 
are to be tranSferred, and the order of transfer. 



30 

Magnetic Tape 

References 

Format 

Statement 
References 

Lists 

ALTAC III 

The parameter i, representing a magnetic tape unit, is a fixed­
point variable or an unsigned fixed-point constant. If i is a fixed­
point variable, it must be defined prior to its use. If i is a fixe\l­
point constant, the following rules apply: 

• If i consists of two digits or less, the digits will be inter­
preted as the tape number. 

• If i consists of more than two digits, the last two digits will 
be interpreted as a data select* character, while the .preced­
ing digits will be interpreted' as the tape number. 

Both the data select character and the tape number are treated 
modulo 16. 

The parameter n is the statement number or symbolic address 
of the FORMAT statement that is associated with the ORDER 
statement. In a READ, PRINT, or PUNCH statement, a symbolic 
address n must always be enclosed in parentheses. 

ORDER statements which call for the transfer of information 
ordinarily contain a List of the quantities to be transmitted. 
(Cases where the List parameter is omitted are discussed on 
page 31.) A List refers to specific locations in memory, and is 
represented by a series of subscripted or non-subscripted vari­
ables separated by commas. The following are some examples 
of Lists: 

A 
A,B 
A,B, (C(I), 1=1,10) 
A,B, «C(I,J), 1=3,1 0,2),D(J, 7),J=1, 5) 

A List is read from left to right with repetition for variables 
enclosed in parentheses. 

Information is transferred item by item in the order that the 
variables appear in the List. When no items remain, transmission 
ceases. 

* Refer to the Philco 2000 Input-Output Systems Manual (TM-16). 

, 
I 



INPUT-OUTPUT STATEMENTS 31 

Simplifying 
a List 

Omission of 
The List 
Parameter 

The iterative action involved in assigning values to the elements 
of a parenthesized List is the same as that for a.DO loop. For 
example, the order of operations for 

A,C,(B(I),I=1,10),D 

is the same as for the following: 

A 
C 
DO 7 1=1,10 

7 B(I) 
D 

For a List of the form 

A,X(5), «D(I,J), 1=1 ,3,2),BETA(1 ,J),J=l ,2) 

the information would be processed as follows: 

A 
X(5) 
D(l,l) 
D(3,1) 
BETA(l,l) 
D(1,2) 
D(3,2) 
BETA(1,2) 

An entire array may be transmitted by writing only the name of 
the array. For example, if the names ALPHA and BETA pre­
viously appear in a DIMENSION statement, the statement 

READ INPUT TAPE i ,n,ALPHA,BETA$ 

would cause the input of all the elements of arrays ALPHA and 
BETA, in the order in which they are stored in memory. When­
ever possible the programmer should use this abbreviated nota­
tion, for its use will result in a more efficient object program. 

The List parameter is omitted in the following cases: 

o To space forward over an input record. 

o To write a blank record on tape. (On binary tapes, a blank 
record is interpreted as an end-of-file record. *) 

o To read or write a record described by a FORMAT state­
ment that contains Hollerith specifications only. 

*See also the END FILE statement, page 35. 



32 

READ 

READ INPUT TAPE 

ALTAC III 

The READ statement is used to read binary coded information 
from the system input tape *. The general form of this statement 
is: 

GENERAL FORM EXAMPLES 

READ n, List READ 11, A, (B(I), I = 1, 5) 

where n and List are as descri bed READ(K), (BET A(I), I = 1, 10) 

on page 30. 

This statement causes card after card of information to be read 
from the system illPut tape until the amount of information speci­
fied by the List is transmitted. The information that is read is 
converted according to the FORMAT statement whose symbolic 
address or statement number is n , and is stored in the memory 
locations specified in the List. If the FORMAT statement specifies 
more than 80 characters to be read from a card, an error will 
result and control will be transferred to the operating system. 

The READ INPUT TAPE statement is used to read binary coded 
information from a tape. The general form of this statement is: 

GENERAL FORM EXAMPLES 

READ INPUT TAPE i, n, List READ INPUT TAPE 9, 30, 

where i, n, and List are as descri bed 
(A(I), I = 1, 99, 2) 

READ INPUT TAPE 6, 25, 
on page 30. 

ALPHA,BETA 

READ INPUT TAPE INAME, 
KAPPA, (A(J), J = 1, N) 

This statement causes binary coded information to be read a 
card at a time from tape i. The information is converted accord­
ing to the FORMAT statement whose symbolic address or state­
ment number is n, and stored in the memory locations specified 
in the List. 

If the FORMAT statement specifies more than 80 characters to 
be read from a card, an error will result and control will be 
transferred to the operating system. 

* System input and output tapes are those input or output tapes 
that are defined and/or controlled by a particular operating 
system. 



INPUT-OUTPUT STATEMENTS 33 

READ TAPE 

PRINT 

The READ TAPE statement is used to read binary information 
from tape. The general form of this statement is: 

GENE RAL FORM EXAMPLES 

READ TAPE i, List READ TAPE 10, (A(I), I = 1, 20) 

where i and List are as described READ TAPE L, (ALPHA(J), J = 1, N, 2) 

on page 30. 

This statement causes binary information to be read from tape i 
into the memory locations specified in the List. No conversion 
is required; consequently there is no FORMAT reference n in 
this statement. 

The binary information must have been written by a WRITE TAPE 
statement (see page 35), and will contain as many words as are 
specified in its List. 

All or part of the record may be read by the READ TAPE state­
ment, afte r which the tape is positioned at the beginning of the 
next record. Attempting to read more words than were written 
in the record will result in an error and control will be trans­
ferred to the operating system. 

The PRINT statement is used to write binary-coded information 
on the system output tape, edited for the off-line High Speed 
Printer. The general form of this statement is: 

GENERAL FORM EXAMPLES 

PRINT Il, List PRINT 34, A, (B(I), 1= 1, 7) 

where nand Li st are as descri bed PRINT(K), A, (BETA(I), I = 1, 16, 3) 

on page 30. 

This statement causes information specified in the List to be 
written on the system output tape (defined by the installatic..n), 
edited for the High Speed Printer. The tape is then printed off-line. 

As many as 120 characters may be printed on a line. ~~H.lccebsive 
lines are printed in accordance with the FORMAT statement 
whose symbolic address or statement number is n, until the com­
plete List has been satisfied. If the FORMAT statement specifies 
more than 120 characters to be printed on a line an error will 
result, and control will be transferred to the operating system. 



34 

PUNCH 

PUNCH OUTPUT· 
TAPE 

ALTAC III 

The PUNCH statement is used to write binary-coded information 
on the system output tape, edited for the off-line punch. The 
general form of this statement is: 

GENERAL FORM EXAMPLES 

PUNCH rl, List PUNCH 100, (ALPHA(I), I = 1, 30) 

where n and List are as descri bed PUNCH(KAPPA), A, B, (C(J), J = 1,50) 

on page 30. 

This statement causes information specified in the List to be 
written on the system output tape, edited for the Card Punch. 
The tape is then punched off-line. 

As many as 80 columns can be punched on a card. Successive 
cards are punched, according to the FORMAT statement with 
symbolic address or statement number n, until the List has been 
satisfied. If the FORMAT statement specifies more than 80 char­
acters to be punched on a card, an error will result and control 
will be transferred to the operating system. 

The PUNCH OUTPUT TAPE statement is used to write binary­
coded information on a tape, edited for the off-line punch. The 
general form of this statement is: 

GENERAL FORM EXAMPLES 

PUNCH OUTPUT TAPE i,ll, List PUNCH OUTPUT TAPE 13, K, 

where i, rl, and List are as described 
(BETA(I), I = 1, 40) 

PUNCH OUTPUT TAP E 1302, 
on page 30. K, ALPHA, BETA 

PUNCH OUTPUT TAPE L, K, 
(GAMMA(I), I = 1, 10) 

This statement causes binary coded information in the Lis t to be 
written on tape i, edited for the Card Punch according to the 
FORMAT statement with symbolic address or statement number 
n. Tape i is then punched off-line. 

Successive cards are punched in accordance with the FORMAT 
statement until the List is satisfied. If the FORMAT statement 
specifies more than 80 characters to be punched on a card, an 
error will result and control will be transferred to the operating 
system. 



INPUT-OUT PUT STATEMENTS 35 

WRITE OUTPUT 
TAPE 

WRITE TAPE 

END FILE 

The WRITE OUTPUT TAPE statement is used to write binary 
coded information on a tape edited for the off-line High Speed 
Printer. The general form of this statement is: 

GENERAL FORM EXAMPLES 

WRITE OUTPUT TAPE i, n, List WRITE OUTPUT TAPE 12, K, 

where i, n, and List are as descri bed 
(BETA(I), 1= 1,40) 

WRITE OUTPUT TAPE 1205, 
on page 30. 

K, DELTA,GAWMA 

WRITE OUTPUT TAPE M, 
KAPPA, A, (B(I), I = 1, 30) 

This statement causes binary coded information specified in the 
List to be written on magnetic tape i, edited for the High Speeci 
Printer according to the FORMAT statement with symbolic ad-

fJ<.{I1'\~;:;r2-

dress or statement uncter n. The information is printed off-line. 
As many as 120 characters can be printed per line. Successive 
lines are printed in accordance with the FORMAT statement, 
until the List is satisfied. If the FORMAT statement specifies 
more than 120 characters to be printed on a line, an error will 
result and control will be transferred to the operating system. 

The WRITE TAPE statement is used to write binary information 
on tape. The general form of this statement is: 

GENERAL FORM EXAMPLES 

WRITE TAPE i, List WRITE TAPE 10, (A(I), I = 1, 20) 

where i and List are as described on WRITE TAPE L,(ALPHA(J), 

page 30. J =1, 25, 2) 

This statement causes a record of binary information to be writ­
ten on tape i . The record is written in a format that is acceptable 
to the READ TAPE statement and consists of all the words speci­
fied in the List. 

The END FILE statement is used to write an end-of-file mark on 
a tape. The general form of this statement is: 

GENERAL FORM EXAMPLES 

END FILE i END FILE 12 

where i is an unsigned fixed-point END FILE K 

constant or fixed-point variable, as 
END FILE 506 

described on page 30. 



36 

RUNOUT 

BACKSPACE 

ALTAC III 

This statement causes an end-of-file indicator to be written on 
tape i. In the case where tape i was last used as an input data tape 
or is a system controlled tape, no end-of-file indicator is written. 

The RUNOUT statement may be used to position an input tape or 
to transmit the contents of an output buffer block. * The general 
form of this statement is: 

GENERAL FORM EXAMPLES 

RUNOUT or RUNOUT i RUNOUT 

where i is an unsigned fixed-point RUNOUT 9 
constant or fixed-point variabl e, 

RUNOUT K 
as descri bed on page 30. 

The RUNOUT statement is interpreted as follows: 

• If the last reference to tape i was made by an input statement, 
the RUNOUT i statement will position the tape at the end of 
the block which contains the last processed record. 

• If the last reference to tape i was made by an output state­
ment, the RUNOUT i statement will complete the editing 
and transmit the contents of the output buffe r blocks to that 
tape, if necessary. 

A RUNOUT statement without a tape reference is interpreted as 
a runout of all tapes used. 

The BACKSPACE statement is used to backspace a binary tape. 
The general form of this statement is: 

GENERAL FORM EXAMPLES 

BACKSPACE i BACKSPACE 10 

where i is an unsigned fixed-point BACKSPACE L 

constant or fixed-point variable, 

referring to a binary tape. 

This statement causes binary tape i to be backspaced one record. 

* 128 word area in memory or on magnetic tape. 



INPUT-OUTPUT STATEMENTS 37 

REWIND 

LOCKOUT 

FORMAT 
STATEMENTS 

The REWIND statement is used to rewind a tape. The general 
form of this statement is: 

GENERAL FORM EXAMPLES 

REWIND i REWIND 12 

where i is a fixed-point constant or REWIND K 
fixed-point variable, as descri bed 
on page 30. 

This statement causes tape i to be rewound. If the last reference 
to tape i was made by an output statement, the REWIND statement 
will complete the editing and transmit the contents of the output 
buffer blocks before the rewind occurs. 

The LOCKOUT statement is used to rewind and lockout* a tape. 
The general form of this statement is: 

GENERAL FORM EXAMPLES 

LOCKOUT i LOCKOUT 9 

where i is a fixed-point constant or LOCKOUT K 
fixed-point variable, as descri bed 
on page 30. 

This statement causes tape i to be rewound with lockout. If the 
last reference to tape i was made by an output statement, the 
LOCKOUT statement will complete the editing and transmit the 
contents of the output buffer blocks before the rewind with lockout 
occurs. 

The FORMAT statement is used to control the conversion of data 
to or from an internal form and an external form. FORMAT 
statements contain field descriptors which provide information 
about the external form of the data, and the type of data conversion 
to be performed. 

FORMAT statements are of the following general form: 

GENERAL FORM EXAMPLES 

FORMAT (d l ,· •• , d
n

) FORMAT (2H 10, 13, F5.2, ES.3, AS/) 

where each d is a field descriptor. 

* When a tape is {(locked-out" it can no longer be referenced by 
the program, unless an operator intervenes and changes its 
lockout status. 



38 

FIELD 
DESCRIPTORS 

Numerical Field 
Descriptors 

ALTAC III 

Each unmodified* field descriptor describes one field. The left­
most descriptor describes the first field, the next descriptor 
describes the second field, and so on. 

Each FORMAT statement must contain a statement reference in 
its location field. FORMAT statements are non-executable state­
ments, and may therefore be placed anywhere in a program. ** 

ALTAC field descriptors comprise the lw, Fw.d, Ew.d, Ow,'Aw, 
nH and nX descriptors. These descriptors may be used to de~ 
scribe numeric, alphanumeric, and blank fields. 

Four forms of conversion of numerical data are available: 

DESCRIPTOR EXTERNAL FORM INTERNAL FORM 

lw Decimal Integer Fixed-Point Binary 

Fw.d Fixed-Point Floating-Point Binary 
Decimal 

Ew.d Floating - Point Floating - Point Binary 
Decimal 

Ow Octal Integer Binary representation 
of the octal integer 

• I, F, E and 0 are control characters specifying the type of 
conversion. 

• w is an unsigned fixed-point constant representing the width 
(number of characters) of the field in the external medium. 

• d is an unsigned fixed-point integer representing the number 
of characters in the field which appear to the right of the 
de cimal point. 

For F and E conversions, w may represent an input field of as 
many as 80 characters, corresponding to the contents of an entire 
card. For I conversions, an input quantity should not be greater 

* See Repetition of Similar Formats, page 41. 

** If all FORMAT statements are placed before the first execut­
able statement of the source program, a more efficient object 
program will result. 



INPUT-OUTPUT STATEMENTS 39 

than 32767 in magnitude; if it is, it is reduced modulo 32768. 
For 0 input conversions, UJ should not exceed 16; if UJ exceeds 16, 
only the right-most 16 characters of the field are used. 

An output field may contain as many as 80 characters on a card, 
or as many as 121 * characters to a printed line. The output field 
always contains the right-most w characters of the output quantity, 
with leading spaces added to make up the w count where necessary. 

A numerical field may contain decimal or octal digits, decimal 
point, plus and minus signs, spaces, and the letter E (in the case 
of E and F input conversions). On input, non-leading spaces are 
interpreted as zeros. 

The character d represents the number of characters in the field 
which appear to the right of the decimal point. In the case of E 
output conversions, where the output quantities are ordinarily 
expressed in mantissa-exponent form (see below), d represents 
the number of fractional digits of the mantissa. 

If d is greater than 10, it is assumed to be 10. If the decimal 
point is omitted from an Fw.d or an Ew.d descriptor, the de­
scriptor assumes the d specified (or assumed) for the previous 
F or E descriptor. 

A decimal point appearing in an input data field takes precedence 
over the d specification for that field. 

The acceptable forms of input fields for the E conversion are: 

±mantissa 
±mantissa±exponent 
±mantissaE±exponent 
±mantissaEexponent 

These forms may be written with or without a sign. 

The mantissa may be of any magnitude; the exponent may be any 
integer .Ln the range -600 to 600. The output form for the E con­
version with no scale factor (see page 40) is: 

w 

r±O. xxx .. ~.xxx±eee) 

* 120 printable characters plus a printer control character (see 
page 45). 



40 

Alphanumeric 
Field Descriptors 

Examples of Input Conversions 

If the data punched on the following card 

,;;5 ;:?4 -162+5 703 
I 

ALTAC III 

I : 1 4 5 I 7 I t 1011 12 IJ 14 15 ~ 1111 "2D 11 n 1] 1415"" l7 2119 3D 31 31 JJ)4 n lIi 31 JB Jt 40.141 4J U 'S 45 41 48 49 ~ 51 ~15J ~ 55 SG 57 51 59 r.o II 12 U 54 IS 6Ii I' EI" 10 H n 737' JS JI 11 71 7910 

I 
I I 

~2J45' 7"~I'121J14151'~"1'M2'nn~~~»n~~Jllln)4B~JI~~~41Q'lU~qCJ"~~51~n~~~p~~W~I2U"n"~unro~nn~nnJ171791D 

I 
1 i 1 4 5 I , I 1101112.14151111111910 2' 221l241S 26 211119 3D JI 1111 34 JS l6 J7 31 39404' 4243444546414149511151525] $4 55 ~ 51 5159 601' 1113 54 IS &i 17 II n 10 11 7113 '4 75 7' 11711110 

I 
1 2 l 4 i' 7 I 110111213 '4 Ii 11'711'92011 n n~ 15 21172121)0 3132 J3 J4l5l111l1 ;)!4Q4, 414] 4445 tl4' .,.tSO 51525,J)455!11 5155 59 15011521l 141516 ,711" 107172 7l', n lin 711110 

is described by the statement 

FORMAT (12, F4.1 ,E 7.2,04) $ 

the fields will be interpreted as 35,27.4,-1.62x105, and octal 703. 

Examples of Output Conversions 

If the internal quantities 417,-.329,+.538x103, and octal 627 are 
described by the statement: 

FORMAT (lH1I3,F6.2,E10.3,05)$ 

they will be represented externally as: 

41 7 ~-0.33~O. 538+003~ ~627 

where ~ denotes a space, and the characters 1H1 in the FORMAT 
statement are printer control characters (see page 42), which 
cause the printer to skip to the top of the next page before printing 
the line. 

The descriptors Aw and wH are used to specify the form of alpha­
numeric fields. An alphanumeric field may contain any of the 
Philco characters shown in Appendix A. 

The Aw descriptor may be used to describe a field of up to eight 
characters. 

For A input: w should not exceed 8; if w exceeds 8, the right­
most 8 characters of the input field are used to fill the computer 
word. If w is less than 8, the w characters of the field are stored 
left justified with trailing blanks. 



rnpUT-OUTPUT STATEMENTS 41 

Blank Field 
Descriptor 

REPETITION OF 
SIMILAR FORMATS 

For A output: if w is greater than 8, the 8 characters of the out­
put field are preceded by w - 8 spaces. If w is less than 8, the left­
most w characters of the computer word are transmitted. 

The alphanumeric field described by a wH descriptor, unlike that 
described by an Aw descriptor, is not limited to a single computer 
word. The w characters of the field are written following the wH 
specification in the FORMAT statement. For example, 

41H ALPHANUMERIC=HOLLERITH=PHILCO CHARACTERS 

Note that spaces are significant, and are included in the w count. 
w may be any value not exceeding the record size (i.e., 121 char­
acters when specifying a printed line of 120 characters, or 80 
characters per card). 

For H input: w characters are extracted from the input record 
and they replace the w characters following the wH specification. 

For H output: the w characters following the specification (or the 
characters which replace them, see H input above) are written as 
part of the output record. 

The descriptor wX may be used to skip w characters of an input 
record, or to insert w spaces in an output record. 

If the descriptor wX (or wH) precedes another descriptor, the 
comma normally used to separate the two descriptors may be 
omitted. Only in the case of these two descriptors is this omis­
sion permitted. 

When successive fields within a record are to be of the same 
format, a single descriptor may be used to specify this common 
format. The number of fields affected by this single descriptor 
is indicated by a fixed-point constant, n, which is prefixed to the 
descriptor (T,F,E,O, or A). Thus, 

FORMAT (F6 0 2,F6.2,F6o2) 
and 

FORMAT (3F6.2) 
are equivalent. 

If the format of a group of fields are to be repeated n times, the 
descriptors for the group may be enclosed in parentheses, pre­
ceded by the constant n. For example, the statement 

FORMAT(F5.2, 3XF5. 2,3X)$ 
and 

FORMAT(2(F5.2,3X»$ 
are equivalent. 



42 

SCALE FACTORS 

PR INTER 0 UTPUT 
CONTROL 

CHARACTERS 

MULTI-RECORD 
FORMATS 

ALTAC III 

To permit more general use of the F and E descriptors, a scale 
factor, nP, may precede the specification. n is a fixed-point con­
stant, which may be negative or unsigned. (A plus sign is not a 
legitimate character in a FORMAT statement.) P is a control 
character. 

For F input and output conversions, the scale factor is defined 
such that: 

External Number = Internal Number x 10n 

Wh~n nP is used with an E output descriptor, the mantissa of the 
output quantity is lTIultiplied by 10 n and the exponent is reduced by 
n. Thus, if the quantities 536, 1624, .732x105, were described by 
the statement 

FORMAT(I3,-1PF7 0 1,2PE10.1)$ 

the following would result: 

536 162.4 73.2+003 

The E input descriptor ignores the scale factor. 

Once nP is specified for an F or E descriptor, it will apply to all 
succeeding F or E descriptors within the FORMAT statement 
until another nP is specified. 

The first character of each record that is to be printed is treated 
as a vertical format character. Vertical format characters con­
trol the vertical spacing of the paper on the High Speed Printer, 
and are interpreted as follows: 

CHARACTER 

1 
o 
6. (space) 
+ 

MEANING 

skip to top of next page 
double space 
single space 
no space 

Any other character used will be interpreted as single space. 

A single FORMAT staten1ent may be used to describe several 
records. The descriptors of each record are separated by slashes. 
For example, if data are to be printed according to the statement 

FORMAT(1H1I5,F8.2/1H6. E9.2)$ 



INPUT-OUTPUT STATEMENTS 43 

FORMAT 
STATEMENT 
PROCESSING 

FORMAT 
STATEMENTS READ 
IN DURING 
PROGRAM 
EXECUTION 

the first line would be printed according to descriptors 15 and 
F8.2, and the second line according to descriptor E9.2. If the 
second and all succeeding lines are to be printed according to 
descriptor E9.2, the specifications for these lines should be en­
closed in another pair of parentheses, as follows: 

FORMAT(lH1I5, F8.21 (lH~E9.2))$ 

If the end of a forlnat statement is reached before the List is sat­
isfied, the fonnat repeats from the last open (left) parenthesis. 

Both the slash and the last right parenthesis of a FORMAT state­
ment indicate the end of a record. 

Consecutive slashes may be used in order to skip records; i.e., 
to skip an input card, or to produce a blank line or a blank card. 
12+1 consecutive slashes causes n records to be skipped. For 
example, 

I I I would cause two records to be skipped. 

FORMAT statements are translated and stored as one or more 
consecutive word (Wi) constants * by ALTAC during compilation. 
The first word begins with the first left parenthesis that followed 
the word (( FORMAT"; the last word ends with the last right 
parenthesis with trailing blanks if necessary. Interpretation of 
the FORMAT statement is made at run time. 

Although FORMAT statements are usually written in the source 
program, they may also be read in during the execution of the 
object program. For example, according to the statements: 

LOCATION ALTAC STATEMENT 

DIMENSION SPEC (20), ALPHA(20)$ 

1 FORMAT (20A8) $ 

READ 1, SPEC $ 

READ (SPEC). ALPHA $ 

* Refer to the Philco 2000 T AC Manual, TM-ll. 



44 ALTAC III 

the alphanumeric data that is read into array SPEC by the first 
READ statement, is used as format specifications by the second 
READ statement. The format specifications (alphanumeric data) 
read into array SPEC must have been written as if they were 
appearing in a FORMAT statement in the source program, except 
that the word "FORMAT" is omitted (see preceding section). 



Chapter VII 

FUNCTIONS AND SUBROUTINE SUBPROGRAMS 

FUNCTION NAMES 

A function or a subroutine is a pre-coded set of instructions for 
performing a particular operation. 

There are three distinct types of functions in ALTAC: Arithmetic 
Statement Functions, Library Functions, and Function Subpro­
grams. * There are also Subroutine Subprograms. 

An Arithmetic Statement Function is a function which is defined 
by a single arithmetic statement in the source program. A Li­
brary Function is a function which is defined on the T AC library 
tape. A Function Subprogram is a function which is defined by a 
subprogram. A Subroutine Subprogram is a subroutine which is 
defined by a subprogram. Subroutine Subprogram~ differ from 
Functions in their output capacity and in the method in which 
they are referenced (see page 53). 

Arithmetic Function Statements should precede all other state­
ments in the source program, except IDENTIFY, FUNCTION, 
SUBROUTINE, or the I card. 

Other details regarding Functions and Subroutine Subprograms 
are presented below. 

The name of a function may be composed of from one to seven 
alphanumeric characters. The first character, which must be 
alphabetic, determines the mode of the value of the function. 

The following rules must be observed when naming functions: 

Rule 1 - If the name of a function is four to seven characters 
long and the last character is an F, then the value of the 
function is in fixed-point mode only if the first character 
is X. 

Rule 2 - If the name of a function is four to seven characters 
long and the last character is not an F, or if the name of 

* A subprogram is a separately written source program designed 
to operate under the control of a main program. Subprograms 
may also call other subprograms. 



46 

SUBROUTINE 
NAMES 

ARGUMENTS 

ALTAC III 

the function is less than four characters long, then the 
value of the function is in fixed-point mode only if the 
first character is l, J, K, L, M, or N. 

Rule 1 applies to Arithmetic Statement Functions and Library 
Functions; rule 2 applies to Function Subprograms. 

The name of a Subroutine Subprogram luay be composed of from 
one to seven alphanumeric characters, the first chara·cter of 
which must be alphabetic. (Unlike function names, a subroutine 
name does not have any mode associated with it.) 

The arguments of a function or subroutine are written separated 
by commas, and enclosed in parentheses following the function 
or subroutine name. An argument of an Arithmetic Statement 
Function may be any expression .. An argument of any other func­
tion or any subroutine may be an expression, the name of an 
array, or a Hollerith field. 

The appearance of the name of a function in an expression, or the 
name of a subroutine in a CALL statement (see page 54), serves 
to call that function or subroutine. The function or subroutine is 
then computed using the arguments which appear after the func­
tion name in the expreSSion, or which appear after the subroutine 
name in the CALL statement. The arguments which appear after 
the function or subroutine name in the statement defining or iden­
tifying the function or subroutine, are formal paraJneters. Each 
formal parameter is a single non-subscripted variable. These 
formal parameters are replaced by the corresponding arguments 
in the calling statement prior to the calculation of the function or 
subroutine. 

The arguments of the function or subroutine in the calling state­
ment must alUJays agree in number, order, and mode, with the 
formal parameters in the statement defining or identifying the 
function or subroutine. 

The number* of arguments following a function or subroutine 
name can be from 1 to 31 for an 8192 word source computer, or 
frpm 1 to 255 for a 16,384 or 32,768 word source computer. 

* As shown on page 53, this number can also be zero for sub­
routines, since a subroutine can be without arguments. 



FUNCTIONS AND SUOROUTINE SUDPIlOGRAMS 47 

ARITHMETIC 
STATEMENT 
FUNCTIONS 

LIBRARY 
FUNCTIONS 

These are functions which are defined by a single arithmetic 
statement. The general form of this type of function is: 

GENERAL FORM EXAMPLES 

{(aI' a2, • •• ) = e RATEF (A, B) = A/60*B 
XVALUEF(J, K) = J*K/N**2 

where f is a functi on name that obey s 

rule 1 on page 45, each a is a formal 

parameter, and e is an expression not 

involving subscripted variables. 

The arithmetic statement defining the function must precede any 
statement calling the function and any EQUIVALENCE, COMMON, 
DIMENSION or TABLEDEF statement in the program. 

The arguments which appear after a function name in the state­
ment defining the function are formal parameters, and are re­
placed by the corresponding arguments in the calling statement 
prior to the calculation of the function. For example, according 
to the following statements 

. 
Defining ~ RATIOF(X,Y)=X/Y 
Statement 

Calling ~ Z=10 * RATIOF (A+B, C**2) 
Statement 

the calling statement, Z, would be evaluated as if it were written 

Z = 10*(A+B)/C**2 

Library functions are functions that are included on the TAC li­
brary tape because of their frequent use. Each installation may 
have its own set of ALTAC library functions. The following are 
some of the standard functions which are supplied with the ALTAC 
Translator. The appearance of the name of the function in an 
expression serves to call the function. 



48 ALTAC III 

Function Number of Mode of 

Name Arguments Arguments Functi on 
Operation Performed 

ABSF 1 Floating Floating Computes I arg I 
XABSF 1 Fixed Fixed Computes I arg I 

FCABSF 2 Floating Floating Computes I arg I, where 
arg is a complex number 

COSF 1 Floating Floating Computes COS (arg) in 
radians 

COS1F 1 Floating Floating Same as COSF 

ACOSF 1 Floating Floating Computes COS-1 arg 

ACOS1F 1 Floating Floating Same as ACOSF 

FCORF 7 One Fixed Floating Computes correlation 
and Six coefficient of two 
Floating variables 

-E..CQRM.lLF-- '"% Gne-F-ix-ed- -F-loatirrg-- -Computes correlatiOil 
-and Thre.e, --eeeffi-eient,m-eans,--and 
.$--loo.tiHg va-rc-ianG-es-of--tw-O-va-r.ible s 

DIMF 2 Floating Floating Produces a positive 
difference: 
DIM:F (aygl,arg2) = 

arg1 - MINF (arg1,ayg2) 

XDIMF 2 Fixed Fixed Same operation as above, 
using XMINF 

EXPF 1 Floating Floating Computes the value earg 

FGAMMAF 1 Floating Floating Computes r (arg) 

-F-LEeF- -3-- Brre-Fixecl Eleating Selves a syslemof 
afltf-!Pwo -l-iHe-a--r-equa liOns by 
F-l-eating--- _Cl::-Gtlt's methgfl.-

~ --s--- -One-F-i-xe€l Fl.gat-ing- C1 ., 
IJOl.VI::;:' c1 ::;Y::;lem ur 

attd 'fwo liHear equations-
FlGat-ing----· 

FLOATF 1 Fixed Floating Converts fixed-point arg 
to floating point 



FUNCTIONS AND SUBHOUTINE SUBPROCHAMS 49 

Function Number of Mode of 

Name Arguments Arguments Function 
Operation Performed 

FMDNF 2-255 One Fixed; Floating Computes the median of 
the others a set of numbers 
Floating 

F-RE·F-AI:.¥ -5- Fleat-ing--. ~eating-f-eomputes-real-r0 ot-of __ 
-f(-x)-by...-r-€gula-r-fa-lsi 
method.,-where 
arg-y-:5-:x-~--arg 2 

-FSIM-P-F-- r:: One Fixed Floating-f-Gomputes--f{x)--according -v 

and-Four to-Sim-pson:sJhlla,--W.here 
Fl-oatnrg-- .-argT'<:-x-~-a-r-g2---·· 

FTENXF 1 Floating Floating Computes the value 10 arg 

F2XF 1 Floating Floating Computes the value 2 arg 

INTF 1 Floating Floating 
Computes the integral 

XINTF 1 Floating Fixed 
part of arg 

FINTLF 3 One Fixed; Floating Interpolates within a set of 
Two Floating pointsbyLagrange's formula 

LOGF 1 Floating Floating Computes the value 
loge arg 

LOG10F 1 Floating Floating Computes the value 
log10 arg 

FLOG2XF 1 Floating Floating Computes the value 
log2 arg 

MAXF 2-30 Floating Floating 

XMAXF 2-30 Fixed Fixed 

MAXOF 2-30 Fixed Floating Selects the argument 
with the largest value 

XMAXOF 2-30 Fixed Fixed 

MAX1F 2-30 Floating Floating 

XMAX1F 2-30 Floating Fixed 



50 ALTAC III 

Function Number of Mode of 
Operation Performed 

Name Arguments Arguments Function 

MINF 2-30 Floating Floating 

XMINF 2-30 Fixed Fixed 

MINOF 2-30 Fixed Floating Selects the argument 
with the smallest value 

XMINOF 2-30 Fixed Fixed 

MIN1F 2-30 Floating Floating 

XMIN1F 2-30 Floating Fixed 

MODF 2 Floating Floating Produces Integral 
Remainders: 
MODF (arg1 , argZ) = 
arg 1-INTF (arg 1/ arg 2) * 
arg2 

XMODF 2 Fixed Fixed Same operation as above, 
using XINTF 

RAND1F One dummy Floating Generates positive frac-
fixed-point tional random numbers 
argument 

FNRANDF 2 Floating Floating Generates a single nor-
mally-distributed number. 
arg1 = Mean, arg

2 
= cr 

SINF 1 Floating Floating Corllputes SIN (arg) in 
radians 

SIN1F 1 Floating Floating Same as SINF 

ASINF 1 Floating Floating Computes SIN- 1 arg 

ASIN1F 1 Floating Floating Same as ASINF 

SIGNF 2 Floating Floating Transfers sign of arg2 
tolarg11 

XSIGNF 2 Fixed Fixed Same operation as, above 

SQRTF 1 Floating Floating Computes J arg . 

SQRT1F 1 Floating Floating Same as SQRTF 



FUNCTIONS AND SUBROUTINE SUBPROGIlAMS 51 

Function 

Name 

FCSQRTF 

NROOTF 

TANF 

TANIF 

ATANF 

ATANIF 

TANHF 

XFIXF 

FUNCTION 
SUBPROGRAMS 

FUNCTION 

RETURN 

Number of Mode of 
Operation Performed 

Arguments Arguments Function 

2 

2 

1 

1 

1 

1 

1 

1 

Floating Floating Computes ~ arg, where 
arg is a complex number 

Floating Floating Computes arg 2 ~argl 

Floating Floating Computes TAN (arg) in 
radians 

Floating Floating Same as TANF 

Floating Floating Computes TAN-1arg 

Floating Floating Same as ATANF 

Floating Floating Computes TANH (arg) 

Floating Fixed Converts floating-point 
arg to fixed point 
(Same as 'X-tN:~ X I}J T F ") 

For additional information on any of the above functions, the re­
spective subroutine descriptions should be consulted. 

These are functions which cannot be defined by a single ALTAC 
statement, and are not used frequently enough to warrant inclu­
sion on a library tape. A Function Subprogram is a source pro­
gram, the first statement of which is a FUNCTION statement. 

The FUNCTION statement is the first statement of a Function 
Subprogram, and it identifies the function that is being defined. 
The general form of this statement is: 

GENERAL FORM EXAMPLES 

FUNCTION ((a
l

, a
2

, ; •• ) 
FUNCTION HMEAN (A, B, C) 

where f is a function name that obeys FUNCTION FACTOR(PAR1, PAR2) 

rule 2 on page 45, and each a is a for- FUNCTION INDEX (X, Y, Z) 
mal parameter. 

The RETURN statement is the last executed statement in a sub­
program, and it returns control to the calling program. It is used 
in both Function and Subroutine Subprograms, and it logically 



52 

Defining and 
Calling a Function 
Subprogram 

ALTAC III 

precedes the END or COMPLETE statement which indicates the 
physical end of the subprogram (see page 59). The general form of 
the RETURN statement is: 

GENERAL FORM EXAMPLE 

RETURN RETURN 

As is the case with Arithmetic Statement Functions and Library 
Functions, a Function Subprogram may be called by any expres­
sion in the main program which contains its name. 

The value of the function that is returned to the calling program 
may be defined by means of an arithmetic statement or by an 
input order statement. For example, if the following subprogram 

LOCATION ALTAC STATEMENT 

FUNCTION INDEX (X,Y,Z) $ 

12 FORMAT (15)$ 

IF (Z) 1,1,2 $ 

1 INDEX = 3*X+Y**2 $ 

RETURN $ 

2 READ 12, INDEX $ 

RETURN $ 

END $ 

is called by a program containing the statement, 

IVALUE=INDEX(SUPPLY, DEMAND, CREDIT) $ 

the value of the function INDEX would be defined by the statement 

INDEX=3*SUPPLY+DEMAND**2 $ 

or by the statement 

READ 12, INDEX $ 

depending on whether the value of CREDIT is not or is greater 
than zero, respectively. 



FUNCTIONS AND SUBROUTINE SUBPROGRAMS 53 

SUBROUTINE 
SUBPROGRAMS 

SUBROUTINE 

When a formal parameter in a FUNCTION statement is an array 
name, the corresponding argument in the calling statement must 
also be an array name. Each such array name must be defined 
in a DIMENSION or TABLEDEF statement in its respective 
source program, and all but the last dimension must correspond. 

A subroutine subprogram is a source program, the first state­
ment of which is a SUBROUTINE statement. Subroutine sub­
programs differ from functions in two basic ways: 

• Unlike a function which may be called by any expression 
containing its name, a subroutine subprogram can only be 
called by a CALL statement (see page 54). 

• A function produces only a single result; a subroutine sub­
program can produce more than one result. * Each result 
corresponds to a formal parameter of the subroutine. 

The SUBROUTINE statement is the first statement of a subroutine 
subprogram, and it identifies the subroutine that is being called. 
The general form of this statement is: 

GENERAL FORM EXAMPLES 

SUBROUTINE I(a l , a
2

, ••• ) SUBROUTINE CALC (A, B, 

where I is the name of a subroutine 
ANS 1, ANS2) 

SUBROUTINE RATE(PAR1, 
subprogram (see page 46), and each PAR2, RESULT) 
a is a forma I parameter. 

SUBROUTINE TREND (A, 
The formal parameters, and the pa- B, C, D, E) 

rentheses enclosi ng them, may be SUBROUTINE INPUT 
o mit ted from th e SUBROUTINE 
statement. 

When a formal parameter in a SUBROUTINE statement is an 
array name, the corresponding argument in the CALL statement 
(see below) must also be an array name. Each such array name 
must be defined in a DIMENSION or TABLEDEF statement 
in its respective program, and all but the last dimension must 
correspond. 

An example of the use of the SUBROUTINE statement is pre­
sented on page 55. 

* A subroutine can also be made to perform an operation and not 
produce a result. In this case the arguments following the sub­
routine name are omitted. 



54 

CALL 

Hollerith 
Arguments 

ALTAC III 

The CALL statement is used to call the Subroutine Subprogram 
whose name appears in the statement. The general form of the 
CALL statement is: 

GENE RAL FORM 

CALL {(aI' a2, •.. ) 

where {is the name of a subroutine 

subprogram (see page 46) and each 

a is an argumentofone of the forms 

indicated below. 

The arguments may be om itted when 

cor res p 0 n din g to a SUBROU­

TIN E statement wit h no forma I 

parameters. 

EXAMPLES 

CALL CALC(X, Y, SOL, SIG) 

CALL RATE (RISK, CAPITAL, GAIN) 

CALL TREND (TEMP, PRESS, WIND, 
PREC IP, FORCAST) 

CALL FACTOR (WEIGHT, FUEL, 
THRUST) 

CALL INPUT 

An argument appearing in a CALL statement may be in any of 
the following forms: 

• Fixed-or floating-point expressions 

o Names of arrays 

• Hollerith fields 

The use of a Hollerith field as an argument of a subprogram is 
presented below. The other types of arguments listed above were 
discussed on page 46. 

The arguments in the CALL statement must be presented in the 
same order, number, form, and mode as the corresponding for­
mal parameters in the SUBROUTINE statement. 

Hollerith arguments may be used by a program to define a Hol­
lerith field internally (i.e., without the use of an input statement). 

The Hollerith argument in the calling statement must be of the 
following general form: 

nH . .•... 

where n is any unsigned decimal integer greater than zero. The n 
alphanumeric characters following the H will be translated by 
ALTAC into TAC word constants (Wi •••••••• ), eight characters 
per word. If n is not a multiple of eight, the unused right-most 
part of the last word will be filled with spaces. A word of 48 one 
bits will follow the last word. 



FUNCTIONS AND SUBROUTINE SUBPROGRAMS 55 

A word containing the starting location of the Hollerith informa­
tion is the argument transmitted to the subprogram. The cor­
responding formal parameter should be the name of an array that 
appears in a DIMENSION statement in the subprogram. 

The following example illustrates the use of the CALL, and 
SUBROUTINE statements: 

Assume A and B are two single-dimensioned arrays of 100 ele­
ments each. Define a third array C, such that for n=1,2, ••• , 100 

Cn=O If An=O or Bn=O or both 

otherwise 

The necessary coding could be of the form: 

LOCATION ALTAC STATEMENT 

· DIMENSION A(100),B(100),C(100)$ 

· 
· 
· 12 CALL CALC (A,B,C)$ 

· · 
and the subroutine could have been written as: 

LOCATION ALTAC STATEMENT 

SUBROUTINE CALC (S,T,U) $ 
DIMENSION 8(100), T(100), U(100) $ 
DO 5 1=1,100 $ 
U(I)=O. $ 
IF(S(I))3,5,3 $ 

3 IF(T(I))4, 5,4 $ 
4 U(I)=ABSF(S(I)-T(I)) $ 
5 CONTINUE $ 
6 RETURN $ 

END $ 



56 ALTAC III 

Statement 12 in the main program transfers control to the sub­
routine CALC. After array C is formed, statement 6 of the sub­
routine returns control to the main program at the first state­
ment following statement 12. Note that formal parameters S, T, 
and U in the subprogram are dimensioned, and are of the same 
mode, order, and number, as arguments A,B, and C in the main 
program. 



Chapter VIII 

ADDITIONAL FEATURES OF THE ALTAC SYSTEM 

TAC CODING 
WITHIN AN 
ALTAC PROGRAM 

IDENTIFY 

This chapter discusses TAC coding within an ALTAC program, 
the IDENTIFY statement, the I Card, Remarks Cards, and the 
COMPLETE and END statements. 

T AC coding in the standard T AC format may be included in an 
ALTAC program in either of two ways: 

1. By writing the AL T AC statement 

STARTTAC $ 

immediately before the T AC coding, and the statement 

ENDTAC $ 

in columns 17-22, immediately after the TAC coding. 

All T AC coding between these statements is unprocessed by 
ALT AC and are passed on as part of the T AC program that 
results from the ALTAC Translation. 

2. By writing a T in column. 9 (column 1 when in FORTRAN 
format) of every TAC instruction inserted. ALTAC replaces 
the T in the label field with a space character, and then inter­
prets columns 9- 80 literally. 

An instruction with a T in the label field must never appear 
between the statements STARTTAC and ENDTAC, otherwise 
a label field error will be indicated by the TAC Assembler. 

If the first executable statement of an ALTAC source program 
is a TAC instruction, this instruction, and the STARTTAC state­
ment preceding it (if any), must be preceded by a CONTINUE 
statement. 

The IDENTIFY statement is used to: 

• Identify the format of the source program 



58 

• 

• 

ALTAC III 

Indicate to the ALTAC Translator the size (amount of core 
storage) of the computer on which the object program will 
be run. 

Specify the least amount of COMMON storage that must be 
reserved. * 

The general form of the IDENTIFY statement is: 

GENERAL FORM EXAMPLES 

IOENTI FY Type, mK, nlV IDENTI FY A, 32K, 1200W 

where Type, mK, and n IV are optional IDENTIFY F, 16K, 800W 
parameters, 

follows. 

PARAMETER 

Type 

wh ich are explained as 

EXPLANATION 

(( Type" may be A or F, indicating that the" source 
program is in ALTAC format or in FORTAN for-

A t" 
mat.~ If statements in ALTAC format and FORTAN 

i\ 

format are mixed within a program, an IDENTIFY 
statement with the appropriate type parameter 
must precede each change in format. 

If the type parameter is omitted from the IDEN­
TIFy statement, ALTAC assumes that the program 
is in ALTAC format. 

mK This parameter defines the memory size of the 
Philco 2000 computer on which the object program 
will be run. m may be 8, 16, or 32, denoting 8,192, 
16,384 or 32,768 words of memory respectively. 
If the same size memory is to be used in both the 
compilation and run phase, this parameter may be 
omittedo 

A program that is compiled for a Phil co 2000 with 
a larger memory may run on a Philco 2000 with a 
smaller memory; however, a program that is 
compiled for a Philco 2000 with a smaller mem­
ory may not run on one with a larger memoryo 

n W This parameter specifies the least number of 
words of COMMON storage which must be con­
tained in the program to be compiled. * 

* This need only be specified when deviating from the standard 
mode (relocatable) of compilation (see the Philco 2000 Operating 
System Manual, TM-23). In this case, the first source program 
must make provision for the largest amount of common storage 
required for the entire programo 



ADDITIONAL FEATURES OF TilE ALTAC SYSTEM 59 

I CARD 

REMARKS CARD 

COMPLETE OR 
END 

The I Card is the first physical card of a program, and it identi­
fies the program. The general form of this card is: 

L LOCATION ALTAC STATEMENT 

I SAMPLE~PROGRAM~~ . 
. 

An I is written in the label column (column 9) while a name (e.g., 
SAMPLE .6. PROGRAM .6..6.) identifying the program is written in 
columns 17 -32. The name is comprised of all 16 characters 
(spaces included) in these columns, and is not terminated with a 
dollar sign. 

An "*" in the label field of a card indicates that all information 
on that card is to be interpreted as remarks, and does not affect 
the compilation. A Remarks Card must not appear between cards 
of another statement. 

Either the COMPLETE or the END statement is used to signal to 
the ALT AC Translator the end of the program being compiled. 
The COMPLETE or END statement must be the last physical 
statement in the source program. The general forms of these 
statements are: 

GENERAL FORMS EXAMPLES 

COMPLETE COMPLETE 

END END 





Appendix A 
TABLE OF PHILCO CHARACTERS 

PHILCO OCTAL HOLLERITH PHILCO OCTAL HOLLERITH 
CHARACTER CODE PUNCH CHARACTER CODE PUNCH 

0 00 0 - 40 11 or 8-4 CD 
1 01 1 J 41 11-1 
2 02 2 K 42 11-2 
3 03 3 L 43 11-3 
4 04 4 M 44 11-4 
5 05 5 N 45 11-5 
6 06 6 0 46 11-6 
7 07 7 p 47 11-7 
8 10 8 Q 50 11-8 
9 11 9 R 51 11-9 
@ 12 8-2 CD ').,;': I 52 11-8-2 CD 
= 13 8-3 $ 53 11-8- 3 
, 14 8-4 
- 15 8-5 ffi & 16 8-6 , 17 8-7 

* 54 11-8-4 
< 55 11-8-5 

ffi # 56 11-8-6 
LJ 57 11-8-7 

+ 20 12 Blank (space) 60 Blank 
A 21 12-1 / 61 0-1 
B 22 12-2 S 62 0-2 
C 23 12-3 T 63 0-3 
D 24 12-4 U 64 0-4 
E 25 12-5 V 65 0-5 
F 26 12-6 W 66 0-6 
G 27 12-7 X 67 0-7 
H 30 12-8 y 70 0-8 
I 31 12-9 Z 71 0-9 
n ® 32 12-8-2 CD I 72 0-8-2 CD 

33 12-8-3 , 73 0-8-3 
) 34 12-8-4 
% 35 12-8-5 ffi ? 36 12-8-6 

( 74 0-8-4 
> 75 0-8-5 ffi 76 0-8-6 

" 37 12-8-7 CD e ® 77 0-8-7 CD 

CD Multiple punched. 

® These two characters are not acceptable ALTAC characters, and are included here 
only to show the complete character codes. 





Appendix B 
SUMMARY LIST OF ALT AC STATEMENTS 

This appendix provides a convenient reference to all ALTAC statements 
discussed in the manual. 

STATEMENT 

v = e 

GO TOn 

GO TO m or GO TO m, (ni' n2' ... , nk) 

ASSIGN n to m or ASSIGN (n) to m 

GO TO (n1 , n2' ... ,nm ), i 

IF (e) ni' n2' n3 or IF (ei) : (e2) , S 

SENSE LIGHT i 

IF (SENSE LIGHT i) ni' n2 

IF (SENSE SWITCH i) ni , n2 

IF (SENSE BIT i) ni' n2 

IF OVERFLOW nl' n2 

DO n i = ml' m2' m3 or DO (n) i = mi' m2, m3 

CONTINUE 

PAUSE n 

STOP 

EQUIVALENCE (vi' v2' v3'" .), (vk' vk+i" .. ), ... 

COMMON vi' v2' v3' .. . 

DIMENSION vl, v2, v3 ' .. . 

TABLEDEF vi, v2' v3' .. . 

READ n, List 

READ TAPE i, List 

READ INPUT TAPE i, n, List 

PRINT n, List 

PUNCH n, List 

PAGE 
TYPE REFERENCE 

Arithmetic 13 

Control 15 

Control 15 . 

Control 16 
Control 16 

Control 17 

Control 18 

Control 19 

Control 19 

Control 19 

Control 20 

Control 20 

Control 23 

Control 23 

Control 23 

Specification 26 

Specification 27 

Specification 25 

Specification 28 

Input 32 

Input 33 

Input 32 

Output 33 

Output 34 



64 ALTAC III 

STATEMENT TYPE PAGE 
REFERENCE 

PUNCH OUTPUT TAPE i, n, List Output 34 

WRITE TAPE i, List Output 35 

WRITE OUTPUT TAPE i, n, List Output 35 

END FILE i Output 35 

RUNOUT i Input/Output 36 

BACKSPACE i Input/ Output 36 
REWINDi Input/ Output 37 

LOCKOUT i Input/ Output 37 
FORMAT (d1, . .. , dn) Input/ Output 37 

FUNCTION f (al' a2" .. ) Subprogram 51 

SUBROUTINE f (al' a2" .. ) Subprogram 53 

CALL f (al' a2' ... ) Subprogram 54 

RETURN Subprogram 51 

IDENTIFY Type, mK, nW Compiler Control 58 

COMPLETE Compiler Control 59 

END Compiler Control 59 



INDEX 

Alphanumeric characters, 8,41,61 
Alphanumeric field descriptors, 40 
ALTAC 

characters, 5 
features of, x 
format, 1-3 
language, ix 
translator, ix 

Arguments 
of a function, 46-51 
of a subroutine, 46, 53 

Arithmetic statements, 13 
Arithmetic statement functions, 47 
Arrays, x, 7, 9,25-28,31,46,53-56 
ASSIGN statement, 16 
Assigned GO TO statement, 15 

BACKSP ACE statement, 36 
Binary tapes, 31, 33, 35, 36 
Binding strength, 10 
Blank field descriptor, 41 
Blanks, 3-5,40-42,59,61 

CALL statement, 46,53-55 
Characters 

alphanumeric, 8, 41, 61 
ALTAC, 5 
blank, 3-5,40-42,59,61 

Coding form, 2 
COMMON statement, 25-28,47 
Compilation, ix 
COMPLETE statement, 59 
Compound IF statelnents, 18 
Compound statements, 14 
Computed GO TO statenlent, 16 
Constants 

fixed-point, 7 
floating-point, 8 

CONTINUE statement, 23, 57 

Data card, 40 
Data transmission and conversion, 29, 

30, 40 
DIMENSION statement, 9,25-27,31,47, 

53,55 

DO statement 
exit and return, 21, 22 
increment, 20, 21 
index, 20, 21 
initial value parameter, 20, 21 
limiting value parameter, 20, 21 
multiple DO loops, 21, 22 
nesting of DO's, 21,22 
range of, 21 
use of, 20 
use of index and restrictions, 21, 22 

Dummy variables (see Formal parameters) 

E descriptor, 38,39 
Element of an array, 25-27 
END statement, 59 
ENDFILE statement, 35, 36 
End of record indicators, 43 
ENDTAC statement, 57 
EQUIVALENCE statement, 25- 28, 47 
Exponent modifier (see Scale factor) 
Exponentiation, 10 
Exponent fault, 20 
Expressions 

mixed, 11 
processing of, 10, 11 
rules for writing, 10, 11 

F descriptor, 38,39 
Field descriptors, 38 

A, 40,41 
E, 38,39 
F, 38,39 
H, 41 
I, 38,39 
0, 38,39 
X, 41 

Fixed-point 
arithmetic, 13, 14 
constants, 7 
range, 7 
variables, 8, 9 

Floating-point 
arithmetic, 14 
constants, 8 
range, 8 



66 

variables, 8, 9 
Formal parameters, 46,47, 51, 53, 56 
FORMAT statement, 29, 37 

field descriptors, 37-41 
scale factors, 42 

FORMAT statement references, 30 
FORTRAN format, 4 
Functions 

arguments of, 46 
names of, 45,46 
types of, 45 

FUNCTION statement, 51, 53 
Function subprograms, 51-53 

GO TO statements 
unconditional, 15 
assigned, 15 
computed, 16 

H descriptor, 41 
Hollerith 

arguments, 54 
characters, 3,5,41,61 
fields, 41, 54 

I card, 59 
I descriptor, 38, 39 
IDENTIFY statement, 57-58 
IF statements 

IF, 17 
IF OVERFLOW, 20 
IF SENSE BIT, 19 
IF SENSE LIGHT, 19 
IF SENSE SWITCH, 19 

Index of a DO, 20, 21 
Indexing of lists, 30, 31 
Input-Output statements 

FORMAT statement, 29,37 
descriptors, 37-41 
scale factors, 42 

ORDER statements, 29-37 
for the tr·ansfer of binary coded 

information, 29 
for the transfer of binary 

information, 29 
for the manipulation of mag­

netic tapes, 29 

Language of ALTAC 
elements of, 7-11 
statements, 13, 15,25,29,51,53,54, 57 

Library functions, 47-51 
Line spacing, 42 

ALTAC III 

List 
definition of, 29, 30 
indexing of, 30,31 
representing arrays, 29,30,31 
rules of forming, 30 

LOCKOUT statement, 37 

Magnetic tape references, 30 
Mixed expressions, 11 
Multiple records, 42,43 

Names of variables, 8 
Nest of DO's, 21, 22 
Non-executable statements, 25 
Numerical field descriptors, 38 

o descriptor, 38,39 
Obj ect program, ix 
Operation symbols, 10 
Order of operations, 10, 11 
ORDER statements, 29-37 
Overflow 

IF OVERFLOW, 20 

Parentheses 
use of, 9, 11, 16,30,41,43,46 

PAUSE statement, 23 
PRINT statement, 33 
Program identification (see I card) 
Program run, ix 
PUNCH statement, 34 
Plus sign, 5,42,61 
Printer control characters, 42 

Raising to a power, 10 
Range of a DO, 21 
READ statement, 32 
RE AD INP UT TAPE statement, 32 
READ TAPE statement, 33 
Record, 31,33,35, 36, 42, 43 
Remarks, 3, 4, 59 
RETURN statement, 51 
REWIND statement, 37 
RUNOUT statement, 36 

Scale factor, 42 
Scanning, 10 
Sense bit 

IF SENSE BIT, 19 
SENSE LIGHT statement, 18 
Sense switch 

IF SENSE SWITCH, 19 
Skipping characters, 41 
Skipping· records, 43 



INDEX 

Source program, ix 
'Spaces (see Blanks) 
Specification statements 

COMMON, 25-28, 47,58 
DIMENSION, 9,25-27,31, 47,53, 55 
EQUIVALENCE, 25-28,47 
TABLEDEF, 9,25-28,47,53 

Statement numbers, 3,4 
STARTTAC statement, 23, 57 
STOP statement, 23 
Subprograms 

Function, 45, 51 
Subroutine, 45, 53 

SUBROUTINE statement, 53 
Subscripts 

rules for forming, 9 
subscripting of, 9, 26 

Subscripted variables, 9, 26 
Symbolic addresses, 3 

TABLEDEF statement, 9,25-28,47, 53 
T AC coding within an ALTAC 

program, 1, 23, 28, 57 
Translator, ix 
Truncation, -12,47 1/) I 3 

Unconditional GO TO, 15 

Variables 
dummy (see Formal parameters) 
fixed-point, 8, 9 
floating-point, 8, 9 
subscripted, 9 

WRITE OUTPUT TAPE statement, 35 
WRITE TAPE statement, 35 

X descriptor, 41 

Zero, 7, 8,9,42 

67 


