0O
é

4 ‘/"% \“\,
Ow

b
|
4 o

i

i
— i

PHILCO ELECTRONIC DATA PROCESSING SYSTEMS

Preface

This manual discusses the Philco 2000 Assembler-Compiler,
TAC. It defines the language of TAC, states the rules which must
be followed when writing programs in this language, and describes
the output produced.

The topics include TAC assembly-control instructions, i.e.,
control instructions to the TAC Assembly Program, as dis-
tinct from TAC Mnemonic instructions discussed in the Philco
-210/211 and the Philco 212 Programming Manuals. Other topics
include TAC Constants, Source and Object Program Formats,and
information necessary for preparing a TAC language program to
be run on a Philco 2000 computer.

No previous computer experience, other than a knowledge of
the information presented in the above-mentioned programming
manuals, is required for an understanding of the information
presented herein. ‘

Contents

Page

5 Y = X o iii

INtroduction « « « v v e v e v et e et o e e oot s aseoseoon PP c e s e s e . xi
Chapter ‘

1 ELEMENTS OF THE SOURCE PROGRAM . . ¢ v ¢t v e e s s e v e 1

The Philco Coding FOImM « « ¢ « v v o v v e e oo s oeesonososss 1

The Identity and Sequence Field e e 3

The Label Field « . v v v v v vttt e it eeeencanennens . 3

The Location Field v .o v v v v v ns 5

The Command Field . .. vt vttt v e toneoaocnoeonas 5

The Address and Remarks Field . . v ¢ v et v oo e nen e 5

Absolute Quantities « .« ¢ vttt it ittt i i i et 6

Symbols e e e e et 6

Special SymbOIS. ¢+ v ¢ e v e v v s s e s eoesasososoncsos 7

Compound SymbolS. « ¢ « v e vt v i i ittt neee oo 7

Address ArithmetiC. « « v v v ¢ ¢ e v et e v esoneeacsas 7

Index Register Notations ceececoanae ceaans . 9

Address Field Termination c et e e - 9

Remarkscici ittt inneneannnns 9

2 CONTROL INSTRUCTIONS . « .+« e v e 00 0 v v et s e s e s e e e . 11

NAME & .ttt it i ittt teeeeeesoeneeoeecaennanenns 11

IDENTIFY « ¢ oo eeeeeses e ne e e e s s e e e e e e . 12

ASTOR. . ¢ v it ittt ittt ot o ssaasoesnssaassonasaa .o 13

AFEND ettt e e e e e e c e e e 14

Nullification of the AFEND Instruction ce.. 14

S 3 . 15

SETSMALL and SETLARGE . . . « ¢« v e v v v o 16

ASGN and SAME. . ¢ v ittt v ettt e eeoceenceeaneeesan 17

DEFINE « « « c v v vun.. e ettt 17

SYMBOUT ettt 19

REFOUT T e e s e e e s e e e 20

COMSTOR + ¢ vt et eeenosoonasosscsssencscncosceass 21

SPACE + i it ititinetnneneeneeeeaeeaaeeneenns 23

PAGEt eeens e e et 23

SUBR ¢t ettt ot etessotesssasesssasssssssscesscna 23

END ettt i et e et 24

3 COMMON SYMBOLS ..ttt veeeenes e et e e c e e e 25

The CLabel¢.00.4 1)

The Name COMMON ...ttt eeoocscaosoas cseeesea. 26

Contents (Continued)

Chapter
4 CONSTANTS ..ttt eeetoteoneoseonossosasansnnosenas
Pooland Non-PoolConstants v vt e oot etnnacs
Full-Wordand FieldConstants . . . v v e v v vt e vt e v v v s anns
Full-Word Constants e e e e e e et e e e e
Fixed-Point Decimal Constants
Floating-Point Decimal Constants
WOord ConstantsS « v o e v e oot v oo eooonoeeeeannas
TocationConstants v v ittt it i i i it e
FieldConstants¢ce0vetveveeeeecososcoasoennes
Alphanumeric Constants e e e e
OctalConstants 00 v P e e s et e e e
Hexadecimal Constants e e s e e s s e s s e e e s
NumericConstants ¢t ittt et enneeosns
Binary Constants et e e s e s
Parameter Constants e e e e s e e c et e
Command Constants e s s s sesres s s e s .
Groups of Field ConstantS.: « « s « e o ¢ e s ¢ o s e et e
5 LIBRARY ROUTINES00t eeetessosoosocncsoss
General Description ., e s s e e st e e e e e e e e
Subroutines v v v it ittt et e et et e,
Calling A Subroutine ..,............ c e e
Writing ASubroutinettt ittt
Adding A Subroutine To The Library Tape e e
L1231 T=3 - o) of S
Calling A Generator N
Writing A Generator et e et e
Symbols Permitting Communication ~
Between TAC and Generatorso v veeen. oo e
Adding A Generator To The Library Tapecc oo
MacCIrOS . vt v v oot eseoneenssosssssssescanennaso
Calling AMacroo C et e e e e e .
SkeletonCoding.coev.vee..
Adding Skeleton Coding to the Library Tape oo e
6 OBJECT PROGRAM FORMATS ...t cetevvvoenoosonnssse
Binary Object Program Cards, et e s e e
A Relocatable Binary Deck cve e v'v v e eees c e
The PMAX Card
Symbol Definition Cards et e e s ae e e s e

vi

Contents (Continued)

Page
Chapter
6 (Continued) Relocatable Binary Instruction Cards. 56
The Relocatable End-Program Card 58
An Absolute Binairy DecK. . . . v oot v v v v e e vnnnnnnn. . 60
Absolute Binary InstructionCards000u.. 61
The Absolute End-Program Card. vvoeeeoeon 62
Binary Object Program Tapeceoeeeeeeeeesooas 03
RPL Object Programs0000.. e e 63
The PROGRAM IDENTITY Control Word et et 64
The LOAD Control Wordcovevveeueneaenn 64
The TRANSFER ControlWord ., oo eveeeenn 65
(MIXED INPUT DECKS ... 0ttt eereeensooeoconsnss 67
The BITS Input Control Card C et e s 68
The TACL Input ControlCard00c... 68
8 THE CODE-EDIT¢00u000eei. 69
Contents of the Code-Edit00ivieeeennnns 69
ErrorIndications.t iienieeeenneeeeeens 74
Serious ErrorS ueeeeeeeooooonoocananns 74
Possible Errors. et e e e .15
Generated Remarks e 75
Appendix
A CONSOLE TYPEWRITER TYPE-OUTS¢.... e e e s ™
B LOADING OBJECT PROGRAMS , .., ...ttt eeeesconcssss 79
C CALLS ON FORTRAN SUBROUTINES ¢ v v e et v v v v 87
D TABLE OF PHILCO CHARACTERSttt ottt veeenes 89
E TACMNEMONICSo v vt et e v e e e e b e 91
F SUMMARY LIST OF TAC CONTROL INSTRUCTIONS........ 93

vii

Figures

A TAC COMPILATION .,0c00eneses
APROGRAMRUN cecers o ns
ATACSOURCE PROGRAM ¢ cvevevesnnes
PHILCO2000CARD
A RELOCATABLE BINARYDECK
FORMATOFTHEPMAXCARD..............

FORMAT OF A SYMBOL DEFINITION CARD

FORMAT OF A RELOCATABLE BINARY INSTRUCTIONS CARD

FORMAT OF THE RELOCATABLE END-PROGRAM CARD

AN ABSOLUTE BINARYDECK ¢+ttt teeeeonotoacanons

FORMAT OF AN ABSOLUTE BINARY INSTRUCTIONS CARD

FORMAT OF THE ABSOLUTE END-PROGRAM CARD ..

RPL COMPILATIONOUTPUT0e00v .. cese et s e e b e e e

FORMAT OF ANRPLOBJECT PROGRAM.vv et eess ceeee s
AMXEDINPUT DECK. ittt it teteenreenenseoconasonseoaas
LOADING OF RELOCATABLE OBJECT PROGRAMScviveeeenns

LOADING OF ABSOLUTE OBJECT PROGRAMS e e e e

ix

Page
xii

xii

51
52
54
56
58

A TAC Compilation

Introduction

The TAC Assembler Program is one of many automatic program-
ming systems that are available with Philco 2000 computers.
TAC is the basic system; most other programming systems
translate into the language of TAC.

The TAC-language program which defines the operations to be
performed by the computer is the source program. In a TAC
compilation, the TAC Assembler:

e assemblies an object program in Philco 2000 machine language
from the source program,

e compiles library routines into the assembled program, if
desired,

e produces a Code-Edit on tape, listing both the source pro-
gram and the compiled object program (see Chapter VIII),

o records the object program on tape in the object format
specified.
The object format specified may be:

e Relocatable Binary Card Format (REL)
o Absolute Binary Card Format (ABS)
¢ Absolute Binary Tape Format (RPL)

In an RPL or ABS compilation, all parts of the program (i.e.,
subroutines, separate logical sections, subprograms)are included
in the compilation.

In an REL compilation, it is not required that all parts of the
program be included in the compilation. Separately compiled
program parts such as binary library subroutines or previously
compiled subprograms can be included at load time.

Each object format reflects the use of a particular Loader (see
Appendix B, Loading Object Programs).

Subsequent to the compilation, the Code-Exit is printed off-line;
binary cards of REL and ABS programs may be punched off-line.

xi

A ProgramRun

The following diagram shows the relationship between source
and object programs, and the TAC Assembler. Solid arrows
(—) denote on-line, continuous operation; broken arrows
(----.) denote off-line operation.

TAC
ASSEMBLER

PROGRAM

SOURCE
PROGRAM
TAPE

PHILCO 2000
COMPUTER

MACHINE
LANGUAGE

TAC — LANGUAGE
SOURCE PROGRAM
CARDS

BINARY
OBJECT
PROGRAM

je———— A TAC COMPILATION ———» CARDS

In a program run, the object program on tape is loaded into
memory, then executed. The following diagram depicts this
process: '

INPUT
DATA
OBJECT PHILCO 2000
PROGRAM COMPUTER

BINARY

A PROGRAM .RUN »{

¥

xii

ELEMENTS
OF THE
SOURCE

PROGRAM

Chapter 1

Philco Coding Form and Card Fields.

Field Elements.
Symbols.

Remarks.

Absolute Quantities.

A TAC source program consists of a series of instructions
written in TAC-language format. Each instruction is written on a
line of the Philco coding form (see Figure 1). An instruction or
statement that is too long to fit on one line may be continued on
succeeding lines, starting after column 24,

THEPHILCO The columns of the coding formare divided into fields, as follows,

CODING FORM

corresponding to the fields on the Philco 2000 card (see Figure 2).

ldentity and
Sequence

Location

10 16

Command

17 24

25

Address and Remarks

80

PH ILCO

A SUBSIDIARY OF M@r@mﬂm%

COMPUTER DOIVISION

PHILCO CODING FORM

Program: Programmer: Date:

'DSEENQTL',%QE‘D L| vrocation COMMAND ADDRESS AND REMARKS
1 2 3 4 5 6 7 8 |9§1011 12 13 14 15 16 |17 18 19 20 21 22 23 24|25 26 27 28 29 30l3] 32 33 34 354‘35 37 38 39 40'41 42 A3 ‘4265 47 48 49 51& 52 53 54 S5 lSG 57 S8 $9 60.81 62 63 64 65 155 67 68 69 70 I7l 72 73 74 7L7S 77 78 79 80

1 1 B T (R T | 1 1 1 j S 11 .1 L 1 1t R T S N .] 1 1k 1 1 1 1 1 1 1 1 o g1 1 [1 1 1 1 V' 1 A 11 A1t L1 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1

L]

sIAIMIPIOLOI IJQ I 1 1 1 1 11 s A MP L E P R ¢ GIBIAIMI v 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 L1 1 1 1 1 1 1 1 1 11 11 S B T S 1 1
SIAIMLPIOJQIZJ?* 1 1 1 1 J — P RJQIGJBIAM T ¢ E VA L U A.'-lsl IAI ;PI¢|LIYIN‘¢M11£ILJ_I 1 1 1 1 1 1 1 R S & L 1 1 1 [1 . 1 1 1 1 1 1 1 1 1
sLAlMJPlngJ3_l9 1 1 1 1 1 NIAJMIEL 1 1 1 s AIMIPIL]EI$ 1 1 1 1 1 1 1 1 1 11 L 1 1 1 1 1 L 1 1 L 1 L 1 1 L 1 1 1 1 1 L L 1 i 1 1 11 1 1 L 1 1 L 1
SAM.PIOIO‘4.O C‘plE'F‘F‘) A‘SJ‘QL L N+‘| ‘$, e leﬂlgFli ‘LS‘ lSXT‘A‘R‘T#IIN G L ¢ C A T I ¢ N F ¢ R C ¢ E F F I C I E N T S

SAMPO0050

ASGN

100$ DEFINE DEGREE ¢F P¢LYN¢MIAL

SAMFOs o] [FXECTTEMD, Ly cgerF T oA AR A RARIRARS .
sAmMPOO7Ol| ~ |TbXLC |,8¢%
SAMPOOSBOIR| =~ |RPTNA AR o
SAMPOO9O{| .~ jTMQ@ ~ j0,5%$
SAMPO |00 . |Fmvmrs Ht,5¢ 0 L
SAMPO 110 _gll“ijﬁllllNﬁjﬂﬁflgju_,J‘J_AAAJAlg‘.lllIII‘>CALCULATE C¢EFFICIENTS
SAMPO | 20|s|LggP [FLPGIOX [,5¢
sAmMPOI30 | . fram - t,85¢
SAMPO140 .. . Itmp |c/HLT,CPEFF+N+I1;C/HLT,LEBPS |
SAMPO150 o |Aarxg o f1,85% A

SAMPO 160

ARG; N;CAEFF$ = WITH ARGUMENT IN ARG,EVALUATE PALYNSMIAL

SAMPO.170

VALUE .$ e

SAMPO 180/ | ~ [PRT ELMAQQ&.ﬁt_,“I,L,LI....KI‘J.PRINT VALUE @F P¢LYN¢MIAL

sAMPoOl9ol|F ~ |FRMAT |(9HIVALUE = ,EI7.5)¢%

SAMPO200| [. |PASITI@N|$ L

SAMPO210O(| JME,E...WKéﬁE_E_J....“.IEJJJI. e

sAMPo220((~ [END [EXECUTE $
[]

1 2 3 4 5 6 7 8 9 10111213101516)7131920212223242526272829303132333!353637333940‘1‘243‘66546‘76!09505152535'5556575!59805\52536‘6556676869707! 72 73 74 75 76 77 78 19 80

TF-25

Figure 1 — A TAC Source Program

HATIdNOI-HATANASSY DV.L

ELEMENTS OF THE SOURCE PROGRAM 3

THEIDENTITY AND
SEQUENCE FIELD
(Columns1-8)

THE LABEL FIELD (L)
(Column 9)

After the program is written, it is punched on cards, each line of
the coding form corresponding to one card. The program is then
transferred from card to magnetic tape in an off-line operation,
before being read into the computer for compilation. During
compilation, the TAC Assembler assigns a location to each
mnemonic command, and computes its corresponding address
field.

] I | |l ! i P I ! |
{_ioent a'seo. [if 10CATION | commano | ADDRESS AND REMARKS]
I I | I'l [T I - } I
[soentiTy ano uoumc‘|| |__tocaton] | 11 1 | 2 1 3 1

nnﬂﬂuﬂuuﬂuoﬂﬂnﬂﬁinﬂﬂﬂﬂnﬂmﬂﬂﬂﬂﬂﬂmUlﬂﬂﬂuﬂﬂﬂﬂlﬂﬂﬂﬂﬂ“ﬂﬂlﬂﬂﬂﬂIoﬂﬂlﬂnﬂouﬁﬂnmﬂnﬂﬂuoﬂmnunun

trresariftiennnusununanannsnnananpnusx R ciusdraauls uINsRNTINRRQDUEKReaN D RIs A AN

l||1||||||||||l|l||l|||l"||||||Iﬂllllllllnlll|||l"|||||||"|l|||||"|‘||‘

2222222222212122222222222122222212122221222|22221122&12222222'22222222:2!2212
! [} [}

133333333331333JJJJJJJJJ3D3333333&33133!3“133333!“3333ISSN3333333P33333
1

IRRRRRRAI
22222222
33333333

AAAA44 4004480404444 8440434444440 0800448401 04444844144044000144480040100004408401040444

®

PHILCO 2000 TAC CARD
NOIYIOJI0I OIUHY

SGESGEE585566is65885558ENE5555555656565‘5“5SEi55Gﬁlﬁ‘ﬁ“‘“sliiii&miﬁils
717111771117117777777771”77771771"7777171"171171101111111"117117"111717
| |
ttltﬂlﬂ&lﬂOBl!llClJllll!liﬂll!l!llulllllllﬂlﬂllllﬂllllll
1 2 1 .

66666666
11111117
88388988

IDENTITY AND
SEQUENCE

8888888

LOCATION

98888888

Apoetss, Aun RemAxs

1]
1
2
3
4
555555555555555555555555555555555ﬂSS555S5455555SSSF55555555555555555555555555555
6
1
8
Y
L

LI
ABS 10079

(LILLSHI MO0 LML T D)

Figure 2 — Philco 2000 Card

The identity and sequence field may be:

o Blank (spaces), or contain
o Alphanumerict identity and sequence information, used to |
indicate to the programmer or operator the sequence of the

source program cards, and to identify the program to which
these cards belong.

Information in the field has no effect on the compilation.

The label field may contain:

e A blank, or

o Any of eleven TAC label characters: B,C,D, E, F, I, L, P,
R, S, or * (asterisk),

fAny combination of alphabetic and/or numeric characters.

TAC ASSEMBLER-COMPILER

Each of these eleven label characters performs a special control
function, as described below.

LABEL
CHARACTER FUNCTION

I Indicates that the program’s identity (an alpha-
numeric name identifying the program) is speci-
fied in columns 17-32. The identity is comprised
of all sixteen characters (spaces included) inthese
columns.

The ¢‘‘I-Card’”’ must be the first card of the
program.

L Indicates that the instruction written in the com-
miand and address fields is to be placed in the
left half of an instruction word. If the previous
instruction already occupied the left half of the
word, a NOP instruction will be inserted in the
right half of the word, and this instruction placed
in the left half of the succeeding word.

R Indicates that the instruction is to be placed in
the vight half of an instruction word. If the pre- |
vious instruction already occupied the right half
of the word, a NOP instruction will be inserted in
the left half of the next word, and the instruction |
placed in the vight half of this word.

C Indicates that the symbol in the location field of
the instruction, or inthe address fieldof an ASGN,
SAME, SYMBOUT, or REFOUT instruction, is a
common symbol (see page 28). A common symbol
is a symbol which has a singular definition
‘throughout the program.

B Performs the functions of both C and L labels.

D Performs the functions of both C and R labels.

E Indicates the end of the effect of a previous AFEND
control instruction (see page 16). This character
is written in the label field of an AFEND instruc-
tion only.

P Indicates that the comstant beginning in the com-
mand field is a Pool Constant (see page 30).

S Indicates that the command and address fields |
-contain a TAC subroutine call (see page 41). ‘

F Indicates a FORTRAN subroutine call, See Ap-
pendix C,

* Indicates that this line (card) contains remarks
only, and has no effect on the compilation. (See
page 12).

T For a review of the format of an instruction word, see the Philco 210/211 Programming Manual (TM=10),
or the Philco 212 Reference Manual (TM-29).

ELEMENTS OF THE SOURCE PROGRAM

THE LOCATION FIELD
(Columns 10-16)

THE COMMAND
FIELD
(Columns 17-24)

THE ADDRESS AND
REMARKS FIELD
{Columns 25-80)

The location field is used to tag (assign a symbolic name to)
an instruction, as a means of referencing that instruction. This
field may be:

e Blank, or may contain

e A symbol* of from 1 to 7 characters.

If the location field contains a blank, and the command field
contains a TAC mnemonic, the resulting instruction will be
assigned the next consecutive available memory location.

If the location field contains a symbol (tag), all references to this
symbol will be linked to the corresponding memory location
assigned to the tagged instruction.

When used in the location field of a mnemonic, or in the location
field of a SET, SETLARGE, SETSMALL, ASTOR, or COMSTOR
control instruction, the symbol is considered defined, and it must
not appear again in the location field, or appear as a symbol
(symb) to be defined in the address and remarks field of an ASGN
or SAME instruction (see page 17), in the same program section.
If a symbol is doubly defined, the first definition is used and an
error indication is printed on the Code-Edit.

The command field is used to specify:

o A Philco 2000 Mnemonic

o The command portion of any TAC Control Instruction (see
Chapter 2)

o A Constant, as described in Chapter 4
o Subroutine Calls, Generator Calls, or Macro Calls, as de-
scribed in Chapter 5.

The address and remarks field is used to specify address field
elements, pool constants (see Chapter 4), and/or remarks.

An address field element may be:

e An Absolute Quantity

e A Symbol, of from 1 to 23 characters
e A Special Symbol

e A Compound Symbol

¢ An Index-Register Notation

TAC computes the resultant instruction address from the address
field elements specified.

*A symbol is any group of alphanumeric characters with at least
one character alphabetic.

6

Absolute Quantities

Symbols

TAC ASSEMBLER-COMPILER

An abpsolute quantity is a decimal or octal integer value written
as follows:

GENERAL FORMS EXAMPLES
XXXXX 12345
M/yyyyy M/33333

where xxxxx is a decimal integer of up to
five digits, and M/ indicates that yyyyy is
an octal integer of up to five digits, Neither
xxxxx nor yyyyy exceeds 32,767 decimal,

A symbol appearing in the address and remarks field may be
written in either of two forms:

GENERAL FORMS EXAMPLES
Symb ALPHA
Name.Symb ’ PROGRAM.ALPHA

where Symb represents a symbol of up-to 23
characters in length, and Name is the name of
a program section (see page 13),

During compilation, these symbols will be defined (assigned
a value) by virtue of their appearance in:

e the location field of a mnemonic, or SET, SETLARGE, SET-
SMALL, ASTOR, or COMSTOR control instruction, or in

o the address and remarks field of an ASGN or SAME instruc-
tion (see page 19)

Once a symbol is thus defined, it cannot be redefined. Any
attempt at redefinition will result in the symbol being doubly
defined; in which case, the first definition is used, and an error
indication is printed on the Code-Edit.

Undefined symbols (symbols not defined as above) in the program
are defined by the TAC Assembler. These undefined symbols are
called TEMPORARIES, and are so designated on the Code-Edit.

Preset symbols such as index-register designations (1X, 2X, etc.,
see page 11) are predefined in the symbol table of TAC, and cannot
be redefined during a compilation. They can only be changed by
modifying their assignment in TAC itself.

A detailed discussion of the Name.Symbol form is discussed
under the NAME control instruction, page 13.

ELEMENTS OF THE SOURCE PROGRAM

Special Symbols

Compound Symbols

Address Arithmetic

The notations (P), (PMAX), and #H are special TAC symbols,
each with a special meaning. These notations are written as
follows:

GENERAL FORMS EXAMPLES
(P) (P)

(PMAX) (PMAX)

nH 7H

where n is a decimal integer other than zero.

The notation (P) refers to the current contents of the Program
Counter, and represents the location of the current instruc-
tion (i.e., the location of the instruction in which the notation (P)
appears).

The notation (PMAX) represents the left address immediately
following the largest memory address occupied by the program.

The notation nH refers to kalf of a location word. It represents
the »th half-word relative to (following or preceding) another
half-word.

A Compound Symbol is an address field notation that consists
of two or more absolute quantities, and/or symbols, and/or
special symbols, separated by arithmetic operators. These
operators are + (plus), - (minus), * (asterisk), and : (colon), de-
noting addition, subtraction, multiplication, and division, re-
spectively.

To determine the resultant instruction address that the Compound
Symbol represents, address arithmetic is performed from left
to right of the Compound Symbol as follows: multiplications and
divisions first, then additions and subtractions. If the final result
of the address arithmetic performed is negative, the two’s
complement of the result is used as the resultant address.

Example

Assume the symbols ALPHA and BETA have been assigned the
values 4000 and 9000 respectively, and the Program Counter
currently contains the value 7000. Then, the Compound Symbols:

ALPHA+50$
BETA-ALPHA:2$
ALPHA*M/10$
(P)+5H$

represents the resultant addresses (memory locations) 4050, 7000,
32,000, and the right half of location 7002, respectively.

TAC ASSEMBLER-COMPILER

The resultant address computed depends on the object program
format specified (REL, ABS, or RPL, see pages 51, 60 and 63),
and must be one of the following:

1. Absolute

2. Relative to program origin (the location of the first instruc-
tion of the program)

3. Relative to the common storage area (see page 83)

Symbolic with an increment*

A symbol is considered absolute when it is assigned a numeric
value in an ASGN or SAME instruction (see page 19); it is
considered relafive when defined by TAC in terms of the program
counter during compilation.

When REL object format is specified, the following restrictions
apply:

e If additions only are to be performed, only one of the
operands may be relative; all other operands must be
absolute.

o If subtractions only are to be performed, the operands can be
absolute or relative; however, if relative, they must be
relative to either the common ovigin or to the program
origin.

e If additions and subtractions are to be performed, there must
be at least z-1 relative operands involved in the subtraction
process for the z relative operands involved in the addition
process,

® Multiplication and division are permitted betweentwo operands
only if both are absolute.

e No more than one of the operands involved in address arith-
metic may be a REFOUT symbol (see page 23).

e The result of address arithmetic performed on the address
in an ASTOR or COMSTOR instruction (see pages 15 and 25)
must be absolute,

There are no address arithmetic restrictions with ABS or RPL
format.

*Resulting from a REFOUT instruction, see page 23.

ELEMENTS OF THE SOURCE PROGRAM

Index Register

Notations

Address Field
Termination

Remarks

An Index Register Notation is a notation, in the address and
remarks field, that contains a reference to an Index Register.
The general forms of Index Register Notations are:

GENERAL FORMS EXAMPLES

:i 15

or 100,5X

val,i ,BETA
M/1000,BETA

where i is adecimal integer (0-8) or a symbol,
and the characters ,i represent Index Regis-
ter i.

When i is a decimal integer, an X may be writ-
ten following it as an alternate way of speci-
fying the Index Register.

The symbolwval, if present, represents a value
in the form of an absolute quantity, symbol,
special symbol, or compound symbol.

The address formed by TAC has V and N fields of val and i
respectively. During program execution, the resultant address is
the sum of the contents of Index Register ¢ and the value val.

Assuming that Index Register 5 contains the value 2000, and that
the symbol BETA has been assigned the value 5, the above
examples refer to memory locations 2000, 2100, 2000, and 2512,
respectively.

Address field elements are terminated by a $ character or by
means of a previous AFEND instruction (see page 16). Where
necessary, these address elements may be continued into suc-
ceeding address and remarks fields until terminated by a $
character or by means of a previous AFEND instruction.

When address elements continue into the address and remarks
field of succeeding (continuation) cards, and label, location, and
command fields must be blank.

Remarks may be written after the $ character terminating an
address field element, or after the column specified by a pre-
vious AFEND instruction. (The * label discussed on page 5 is
also used as an alternate way of writing remarks.) Remarks
have no effect on the compilation.

CONTROL
INSTRUCTIONS

NAME

Chapter 2

Control Instructions To The TAC

Assembler Program.

Control instructions provide the TAC Assembler with information
necessary for performing the following control functions:

Identify a program or program section (NAME Instruction)

Specify the memory size and number of index registers of
the source computer (IDENTIFY Instruction)

Reserve storage locations (ASTOR Instruction)

Define the length of the addressfields of instructions (AFEND
Instruction)

Alter the program counter (SET,SETSMALL ,andSETLARGE
Instructions)

Define symbols (ASGN or SAME Instruction)

Define new instructions in terms of current acceptable ones
(DEFINE Instruction)

Permit intercommunication between separately compiled
relocatable object programs (SYMBOUT and REFOU T Instruc-
tions) '

Reserve common storage area for relocatable object pro-
grams (COMSTOR Instruction)

Control line and page spacing on the High-Speed Printer
(SPACE and PAGE Instructions)

Reference a subroutine (SUBR Instruction)
Indicate the end of a program (END Instruction)

The function of each control instruction is discussed in detail
below. The instructions do not affect the flow of operation in the
program, nor do they (except the SUBR Instruction) introduce
any additional coding in the object program.

The NAME instruction is used to identify a program or program
section (subprogram). This instruction permits TAC to distin-
guish between different program sections making up the complete

11

12

IDENTIFY

TAC ASSEMBLER-COMPILER

program, and between identical symbols used in the different
program sections. The general form of the NAME instruction is:

GENERAL FORM EXAMPLES
Command Address and Remarks Command | Address and Remarks
NAME p NAME ALPHA
. NAME BETA101
where p is the name of a program

or program section (subprogram).
Program and subprogram names
may be one to eight alphanumeric
characters long, the first charac-
ter of whichmust be alphabetic,

All symbols following a NAME instruction are identifiable by
the name (p) appearing in that NAME instruction. If the NAME
instruction is omitted from a program, TAC assumes the name
NONAME for that program.

The NAME instruction must be used in cases where a program
comprises two or more sections. As many as 256 different NAME
sections may occur in a program. If this amount is exceeded, an
appropriate error indication is printed on the Code-Edit.

When an instruction of a subprogram is to be referenced from
outside the subprogram, the name of the subprogram must
be prefixed to the location of the instruction referenced. A period
is used to separate the prefixed subprogram name from the
location referenced. For example, address DELTA in subprogram
B must be referred to as address B.DELTA when referenced
from outside subprogram B.

The name COMMON has special meaning. Use of this name is
discussed under Common Symbols, page 28.

The IDENTIFY instruction is used to indicate to TAC that the
object computer (the computer on which the object program is
to be run) differs in memory size and/or in the number of index
registers from the source computer (the computer on which the
source program is compiled).

CONTROL INSTRUCTIONS

The general form of this instruction is:

13

GENERAL FORM EXAMPLES
Command Address and Remarks Command | Addressand Remarks
IDENTIFY mK,nX IDENTIFY | 32K,8X
IDENTIFY | 16K
where m is 8, 16, or 32, indicat- IDENTIFY ,8X
ing an 8192, 16,384, or 32,768

word obiec'r computer, respec-
tively; and n is an integer* indi-
cating the number of index regis-
ters of the object computer,

The parameters mK and n»X are optional; either one may be
omitted from the IDENTIFY instruction. The parameter mK
may be omitted if source and object computers have the same
size memory; the parameter #X may be omitted if both computers
have the same number of index registers. Where source and
object computers do zof differ in memory size and number of index
registers, the entire IDENTIFY instruction may be omitted from
the program.

ASTOR The ASTOR instruction is used to reserve a specified number. -
of storage locations in memory, outside the area occupied by the

program. The general form of this instruction is:

GENERAL FORM EXAMPLES
Location [Command | Address Location | Command | Address
Symb ASTOR |n ARRAY | ASTOR | 128
BETA ASTOR M/7447
where Symb is a symbol, and n KAPPA | AsToRr SIZE
is an absolute quantity, or sym-
bol or compound symbol defined DELTA ASTOR N*128-128

in the program

Symb represents the symbolic ad-
dress of the first location of the
storage area reserved; n repre-
sents the number of storage lo-
cations reserved.

*If the value of # exceeds the computer memory size, the value is
reduced modulo that size. If address arithmetic is indicated by
n, the result of the address arithmetic must be absolute.

f

14

AFEND

Nullification of the
AFEND Instruction

TAC ASSEMBLER-COMPILER

There can be as many ASTOR instructions in a program as
memory will permit. The storage locations are reserved con-
tiguously, in the order of appearance of the ASTOR instructions
in the program.

The AFEND (Address Field END) instruction permits a pro-
grammer to terminate address fields without having to write a
$ character after each address field. The AFEND specifies where
the address field of individual instructions end. The general form
of this instruction is:

GENERAL FORM EXAMPLE
Command Address and Remarks | Command Address and Remarks|
AFEND n$ AFEND 42%

where n is any decimal integer
25-80, indicating the column of
the coding form or card where
each subsequent address field is
to be assumed terminated,

The AFEND instruction causes TAC to assume a dollar sign in
column » of each subsequent instruction, until the AFEND is
nullified (see below). Remarks may be written after columnn
of the instructions.

The effect of an AFEND instruction may be temporarily or
permanently nullified at a subsequent point in the program.

Temporary nullification occurs for:

e Any subsequent instruction whose address is terminated
with a $ character prior to column z of the AFEND.

e Any subsequent instruction whose address field contains
a non-space character in column #. Such instructions must
therefore be terminated by a $ character.

° Macro or Generator Calls. If remarks are associated with
a Call, a $§ character must precede the remark.

e Instructions which are included in the program as a result
of a Subroutine, Macro, or Generator call. An AFEND in the
main program does not affect such inserted coding. The
inserted coding may contain their own AFEND instructions.

CONTROL INSTRUCTIONS

SET

15

Permanent nullification occurs when:;

e A subsequent AFEND instruction specifies a new value for n.

e A subsequent AFEND instruction with an E in its label field
is encountered. The E indicates the End of the effect of the
previous AFEND instruction. The format of this AFEND is:

L Location Command Address and Remarks

E AFEND §$

The effect of the AFEND instruction on alphanumeric constants
is discussed on page 34.

The SET instruction is used to set the program counter. By
means of this instruction the programmer can specify the location
of any instruction in his program, and can reserve memory
locations within his program. The general form of this instruction
is:

GENERAL FORM EXAMPLES
Command Address and Remarks’ Command | Address and Remarks
SET addr SET 512
where addr is any address field SET M/1000
element except the Symbol SET BETA
(PMAX) and Index Register No- SET (P)+50
tations. SET (PH+BETA

For REL compilations, the compilation base (initial program
counter setting) is zero; all relocatable instruction addresses
are compiled with zero as thebase. In ABS and RPL compilations,
TAC assumes the compilation base presetby the installation. This
base depends on the size of the operation system used, and is
fixed by the installation*.

The SET instruction causes the program counter to be reset to
the address element specified in its address and remarks field,
thus changing the address at which the next and succeeding
instructions are to be placed in the program. For example,

*If SYS (the Philco 2000 Operating System) is the operating sys-
tem used, the compilation base is 1000 octal. If 32K SYS is the
operating system, the compilation base is 10,000 octal.

16

SETSMALL and
SETLARGE

TAC ASSEMBLER-COMPILER

if the following coding,

L | Location Command

Address and Remarks

NAME |TRACK$

START |TMD ALPHA$
SET 20008

RHO TMA BETAS$

appeared in a program, location RHO would be assigned the
address 2000* If the program counter read 1500 previously,

500 locations (words) would be skipped over when the SET is
executed.

All symbolic address field elements must be defined prior to
their appearance in a SET instruction. However, symbols defined
in ASTOR or COMSTOR control instructions must not appear as
an address field element of a SET instruction.

These two control instructions perform basically the same
function as the SET instruction. The SETSMALL. instruction
causes the program counter to be reset to the smaller of the two
address elements appearing in its address and remarks field;
the SETLARGE instruction causes the program counter to be
reset to the lavger of the two address elements appearing in its
address and remarks field. In all other respects, these two
instructions are similar to the SET instruction. All rules con-
cerning the SET apply.

The general forms of these two instructions are:

GENERAL FORMS EXAMPLES
Command Address and Remarks Command Address and Remarks
SETSMALL | addr,,addry SETSMALL |A+ 1, B+2
SETLARGE addrl,addr2 SETLARGE |C, D

where addr; and addrg are address
field elements except the symbol
(PMAX) and Index Register Nota-

tions.,

*In reloeatable programs this address is relative to the pro-
gram’s loading origin,

CONTROL INSTRUCTIONS

ASGN and SAME

DEFINE

17

The ASGN and SAME instructions perform the same function.
Either ASGN or SAME is used to assign a value to a symbol.
The value assigned may be absolute or symbolic. The general
forms of these two instructions are: '

GENERAL FORMS

EXAMPLES

Command Address and Remarks Command Address and Remarks
ASGN symb,n ASGN ALPHA, 2000
SAME symb,n ASGN ALPHA, M/3720

where n is a value in the form of SAME BETA, TAU

an address field element (other SAME BETA, EPSILON+50

than an | ndex Register Notation), ASGN A,2000;B,POS;C,M/1500

and syml? is a s'ymbolto which the SAME A, D-40; B, (P)+50

value n is assigned.

ASGN NP, M/1051+ 1H

Several symbols (symb) may be
defined by a single ASGN or SAME

instruction, In this case, each
““symb,n’’ combination must be
separated by semicolons, as fol-
lows:

ASGN symb,n;symbg,ng;-..
SAME symby,ny;symbg,ng;...

As indicated in the examples, the parameter n may specify ad-
dress arithmetic; the parameter symb may not.

A “C’ in the label field of an ASGN or SAME instruction makes
the symbols (symbd) in the address and remarks field of the
instruction common throughout the program. (See page 28.)

The DEFINE instruction is used to define or redefine a command.
The general form of this instruction is:

GENERAL FORM EXAMPLES
Command Address and Remarks Command Address and Remarks
DEFINE symb,c DEFINE LLD, TMD
where symb is a symbol 1-8 char- DEFINE JBT, NOP
acters long, and ¢ is a command, DEFINE PAUSE,
or control word written as a 16- 0/0000000401150001
digit octal constant.

18

TAC ASSEMBLER-COMPILER

This instruction causes all subsequent symbols symb in the
command field to be interpreted as the command or control
word c. (The repeat mnemonic RPT is a special case, and
must nof appear as either symb or c in a DEFINE instruction.)
The machine coding produced for symb upon compilation is that
normally produced for c.

As indicated in the above examples, the DEFINE instruction
permits a programmer to:

1. Define a new command in terms of anexisting TAC command.
2. Redefine one TAC command in terms of another.

3. Define ‘a computer half-word in terms of a control word
of the following format:

BITS CONTENTS

0-16 [A 17-bit mask which is used to insert the S-bit, address
field, and F-bit into the instruction. If the F-bitisa
function of the address representation, bit 16 must be
one. If the F-bit is determined by the mnemonic in bits
21-28, bit 16 must be zero.

17-20 | Zeroes.

21-28 | The command portion of the half-word being defined.

29 One or zero:

A one causes a possible ervor indication to appear on
the Code-Edit if the address field of the instruction
refers to a pool constant.

30 One or zero:

A one causes a possible error indication to appear on
the Code-Edit if the address field of the instruction
refers to an index register.

31 One or zero:

A one causes a possible error indication to appear on
the Code-Edit if the address field does #nof refer to
an index register.

32-33 | Address F-bit indicator.

00: Indicates that the address of the instruction may
. be a left or right address.

01: Indicates that the address of the instruction should
’ be a left address.

11: Indicates that the address of the instruction should
: be a right address.

34 Zero.

CONTROL INSTRUCTIONS

SYMBOUT

19

BITS CONTENTS

35 One or zero:

A one causes a possible error indication to appear on
the Code-Edit if the address field of the instruction
refers to a ftemporary address, or to the location of
an ASTOR instruction or a COMSTOR instruction.

right instruction.

tion.

36-37|00: Indicates that the instruction is either a left or
01: Indicates that the instruction is a left instruc-

11: Indicates that the instruction is a right instruction.

38-46) Zeros.

47 One.

When relocatable programs are loaded together, symbols which
are defined in one program may reference, or be referenced
by, instructions in the other programs. To permit such inter-
program referencing, SYMBOUT instructions (and REFOUT
instructions, see next page) identifying the symbols must be

included in the programs.

The SYMBOUT instruction permits TAC to supply the relocatable
program loader with the definitions of the symbols which appear

in its address and remarks field.

The general form of the SYMBOUT instruction is:

name.symb) that is defined in the
program containing the SYMBOUT
and that may be referenced by
another program. (The element
symb may be composed of from 1
to 8 characters.)

Any number of symbols may be
specified in the address and re-
marks field of a SYMBOUT in-
struction. If several symbols are
specified, they must be separated
by semicolons, as follows:

SYMBOUT addrl;addr2;

GENERAL FORM EXAMPLES
Command Address and Remarks Command Address and Remarks
SYMBOUT| addr SYMBOUT LOOP
SYMBOUT ALPHA.BETA
where addr is a symbol (symb or | SYMBOUT | RHO; TAU; BETA

20

REFOUT

TAC ASSEMBLER-COMPILER

The symbol specified in the address and remarks field of the
SYMBOUT instruction is defined in the program containing the
SYMBOUT, and both the symbol and its definition are forwarded
to the relocatable program loader on SYMBOL DEFINITION
CARDS, produced during compilation from the SYMBOUT cards
(see page 58). The REL loader applies the definition to the symbol
wherever it appears in another program, provided thatthe symbol
also appeared in a REFOUT instruction in that program.

A ‘“C” in the label field of a SYMBOUT instruction causes the
symbol(s) in the address and remarks field of the instruction to
be made common throughout the program (see page 28).

The REFOUT instruction is usedin conjunction withthe SYMBOUT
instruction to permit inter-program referencing of symbolic
locations.

The REFOUT instruction indicates to TAC that the symbols
appearing in its address and remarks field are defined in another
program, and that the definitions of these symbols will be avail-
able to the loader at load time.

The general form of the REFOUT instruction is:

GENERAL FORM EXAMPLES

Command Address and Remarks Command Address and Remarks

REFOUT addr REFOUT LOOP

REFOUT ALPHA.SPOT
where addr is a symbol thatis de- REFOUT A.RHO;B.TAU; G.BETA
fined in another program, and ap- |
pears in a SYMBOUT instruction

in that program,

Any number of symbols may be
specified in the address and re-
marks field of a REFOUT instruc-
tion. |f several symbols are speci-
fied, each symbol must be sep-
arated by a semicolon as follows:

REFOUT | addr;; addry;

This instruction causes all references to these symbols to be
indicated symbolically in the.relocatable binary deck produced
from the compilation (see page 55). During loading, the relocat-
able program loader obtains from SYMBOL DEFINITION CARDS
the definitions of these symbols.

CONTROL INSTRUCTIONS

COMSTOR

21

REFOUTSs are produced for subroutine calls automatically by TAC.
(See pages 41 and 43). Any symbol in the program with the same
name as the called subroutine will automatically be considered a
REFOUT symbol.

A “C’ in the label field of a REFOUT instruction causes the
symbols in the address and remarks field of the instruction to be
made common throughout the program (see page 28).

The following example shows the use of the SYMBOUT and
REFOUT instructions in the two separately compiled programs
PROGA and PROGB:

L | Location Command I Address and Remarks

NAME |PROGA
SYMBOUT|LOOP $

LOOP TMA ALPHA §

.

.

END $

NAME PROGB
REFOUT |PROGA.LOOP $

JMP PROGA.LOOP $

END $

Because the symbol LOOP is defined in program PROGA and not
in program PROGB in which it is referenced, an appropriate
SYMBOUT instruction specifying the symbol is included in
program PROGA, and anappropriate REFOUT inprogram PROGB.

The COMSTOR instruction is used to reserve a specified number
of words in memory as a common storage area, to be used by all
relocatable programs loaded together.

22

TAC ASSEMBLER-COMPILER

The general form of this instruction is:

GENERAL FORM EXAMPLES
Location| Command | Address Location| Command Address
symb COMSTOR| n ALPHA | COMSTOR | 80

. BETA - | COMSTOR | 500
where symbis a symbol represent-
ing the location of the first word DELTA | COMSTOR | M/700

of the area reserved, and n is any
address field element (except a
Special Symbol oran Index Regis-
ter Notation) representing the
number of memory locations that
are reserved,

The common storage area is reserved outside the boundaries of
the program containing the COMSTOR. The location of the area
reserved is not defined at compilation time but at load time.
At load time, the first word of common memory reserved is
made identical for all relocatable programs loaded together.

There can be as many COMSTOR instructions in a program as
memory will permit. The {fofal amount of common storage
specified by a program is equal to the sum of the amounts of
storage specified by the individual COMSTORSs in the program.
The COMSTOR areas are reserved contiguously, in the order of
appearance of the COMSTORS in the program.

When several relocatable programs are loaded together, the
amount of common storage reserved will be the largest of the
total amounts specified for the individual programs. For example,
if the COMSTOR instructions in the above example represent the
total amount of storage specified for three separately compiled
relocatable programs loaded together, a single common storage
area of 500 words would be reservedfor use by all three programs.

For relocatable programs, the common storage area starts
immediately after the last word occupied by the operating system.
At load time all addresses in the common storage area are
adjusted relative to common origin (the location of the first word
in this area) by the relocatable program loader.

Although the COMSTOR instruction is used primarily in relocat-
able programs, it may also be used in absolute programs. When
COMSTOR is used in an absolute program, the common storage
area reserved starts after the last ASTOR area, and the overall
program size indicated as (PMAX) will reflect the inclusion of
this area.

CONTROL INSTRUCTIONS

SPACE

PAGE

SUBR

23

The SPACE instruction permits the programmer to control the
vertical spacing of information on the Code-Edit. SPACE causes
the High-Speed Printer to advance the Code-Edit a specified
number of lines. The general form of this instruction is:

- GENERAL FORM ' EXAMPLE
Command Address and Remarks Command Address and Remarks
SPACE n SPACE 10

where n is any decimal integer
from 1 to 32767, indicating the
number of lines to be skipped.

The value n does not include the margins at the top and bottom
of each Code-Edit page.

The PAGE instruction is used to control the amount of informa-
tion to be printed on a page of the Code-Edit. PAGE causes
the High Speed Printer to advance the Code-Edit to the top of
the next page. The form of this instruction is:

GENERAL FORM EXAMPLE

Command Address and Remarks Command Address and Remarks

PAGE PAGE

The SUBR instruction is used to call a subroutine. (See also, the
use of the S label, pages 5 and 41.) This instruction causes TAC
to include the subroutine specified in the address and remarks
field of the instruction in the compiled program. The general

form of this instruction is:

GENERAL FORM EXAMPLE
Command Address and Remarks Command Address and Remarks

SUBR name SUBR XORD

where name is the name of the
subroutine that is called.

This instruction does not provide transfer of control to the sub-
routine. The programmer may do this by writing a jump instruc-

tion elsewhere in the program.

24 TAC ASSEMBLER-COMPILER

END The END instruction is used to indicate the end of a program,
and must be the last physical instruction of the program.

The general form of this instruction is:

GENERAL FORM EXAMPLES
Command Address and Remarks Command Address and Remarks

END addr END START

where addr is an address field END AEXECUTE
element (except on Index Register END BEGIN + 1
Notation), which, if present®,
represents the location to which
control should be transferred after
the program is loaded.

*When compiling a subroutine for example, addr is omitted
from the card. (See WRITING A SUBROUTINE, page 43.)

Chapter 3

COMMON
SYMBOLS

THE C LABEL

Use of C Label and Name COMMON
in Defining Common Symbols.

If a symbol that is used in different named sections of a program
is to have the same definition in each section, this common
definition may be specified by means of the C Label or by means
of the name COMMON.

e A “C” in the label field of aninstruction ofer than an ASGN,
SAME, SYMBOUT or REFOUT instruction, causes the symbol
specified in the location field of that instruction to be made
common, and to have the same definition whereverit appears
through the program, regardless of the NAME originally
associated with it.

o A “C” in the label field of an ASGN or SAME instruction
causes each symbol symb in the address field of that in-
struction (see page 19) to be defined as a common symbol,
regardless of the NAME originally associated with it.

e A ““C’” in the label fields of SYMBOUTand REFOUT instruc-
tions causes the symbol(s) appearing in both of these instruc-
tions to be defined as common throughout the program, re-
gardless of the NAME originally associated with it.

° A ““C’” in the label field of a NAME instruction causes each
symbol defined in that named section to have the same
definition wherever it appears wndefined in the other named
sections of the program. For example, according to the
coding:

25

26

THENAME
COMMON

TAC ASSEMBLER-COMPILER

Location Command Address and Remarks

NAME |A
Tl;/lD ALPHAS$

BETA |D/7.5B3$
ASGN |DELTA, 100$
NAME |B
TMA B}é}TA$
TMD DELTAS$

the symbols BETA and DELTA appearing in NAME sections
A and B will be defined only once. The symbol ALPHA isno?
made common,

The name COMMON given to a section of a program causes
each symbol in that section that is not prefixed with a pro-
gram name to be defined as a common symbol.

The name COMMON prefixed to a symbol causes that symbol
to be made common throughout the program.,

Chapter 4

CONSTANTS

POOL AND
NON-POOL
CONSTANTS

Pool and Non-«Pool Constants.
Full-Word Constants. Field Constants.
Fixed-Point and Floating-Point Decimal
Constants. Word and Location Con-
stants. Alphanumeric, Octal, Hexa-
decimal, Numeric, Binary, Parameter,
and Command Constants.

A constant is any full word of data, entered with the program,
that does not vary from compilation to compilation. There are
eleven different types of constants in TAC language. An alpha-
betic or numeric character written preceding the constant and
separated from it by a slash, specifies the type of constant. During
compilation, TAC converts each constant to its binary form and
provides a storage location for it in memory.

With the exception of alphanumeric non-pool constants (see page
34), no more than one word of constants may be written per line
of the coding form.

Pool constants are constants that are placed by TACina
separate section of the program called the constant pool; non-
pool constants are constants that occupy the memory locations
assigned to the positions where they appear in the program.

A constant is interpreted as a pool constant if it is written:

1. as the address of a mnemonic, or
2. beginning in the command field, with a P in the label field.

Non-pool constants are written starting in the command field,
with #o P in the label field.

Some pool constants are conservable (that is, if their binary
configuration already exists in a word in the pool, it is not dupli-
cated), some are not.

Constants written as the address of a mnemonic are conservable,
except:

a. Location Constants

b. Field constants containing a Command Constant field or a
Parameter Constant field.

27

28

FULL-WORD AND
FIELD CONSTANTS

FULL-WORD
CONSTANTS

Fixed-Point
Constants (D/.....

TAC ASSEMBLER-COMPILER

A conservable pool constant occurring after another pool constant
with similar binary configuration will be conserved on the basis
of the former constant, provided the former constant is also of
the conservable type, or is of the P-label type other than type (a)
or (b), above.

In conserving pool constants, the TAC Assembler searches the
constant pool to determine whether a binary configuration of the
constant already exists in the pool. I one exists, its location is
used and the constant is not repeated. If none exists, TAC inserts
the constant in the next available word in the pool, and places the
location of this word in the address field of the mnemonic,

If the constant is written as a P-label pool constant or as a non-
pool constant, it may be assigned a symbolic location by the pro-
grammer. Note, however, that because of the possibility of con-
servation occurving for a succeeding constant, a ‘‘P-label’’
constant with a symbolic location field should not be changed
during program execution. P-label pool constants consecutively
grouped will be stoved in the pool exactly as grouped.

Some constants occupy a full word of memory, other constants
may occupy fields or parts of a word. Constants that occupy a
full word are called full-word constants; constants that occupy
fields are called field constants. If combined field constants do
not completely fill a word, the unused bit positions are filled
with zeros or space symbols, depending upon the type of constant
that is written.

Full-word and field constants may be of the pool type or of the
non-pool type.

There are four types of full-word constants in TAC language:

Fixed-point decimal constants
Floating-point decimal constants
Word Constants

Location Constants

L e

A fixed-point decimal constant is represented by the characters
D/ followed by any combination of decimal digits, with or without
a decimal point, not exceeding 140,737,488,355,3217.

A fixed-point constant may be signed (+ or -) or unsigned. If
unsigned, it is interpreted as positive., A negative fixed-point
constant is stored in memory in two’s complement form.

A binary position factor is used to indicate where the binary
point should be placed in the computer word. The binary position
factor is written immediately after the constant, and is desig-
nated by the letter B followed by a number (0-47) representing

CONSTANTS

Floating-Point
Decimal Constants

Word Constants
(W/....)

29

the least significant bit position of the integralpart of the decimal
constant. If no binary position factor is written, the integral part
of the constant is scaled B47 and the fractional part (if any) is
lost.

Example
The constant D/1.5B15 would be stored in a word in memory as

follows:

(o] 1516 47

(o] oljlo (o]

Floating-point decimal constants are represented by the charac-
ters F/ followed by any combination of decimal digits, with or
without the decimal point. A decimal scale factor, En, which
means ““x1017’, may also be written following the constant. The
character » may be any decimal integer exponent -600 to 600. A
binary position factor is not used with a floating-point constant.

As is the case with fixed-point constants, a positive quantity is
indicated by no sign or by a plus sign (+), and a negative quantity
by a minus sign (-).

Examples

F/.00002¢ F/.240E3 F/240.E-4

Word constants are represented by the characters W/ followed
by any eight Philco characters (see Appendix D), including the $
character. The constant is considered automaucally termmated
after the eighth character.

The eight characters in the word constant are stored in the order
in which they are written. For example, the constant

W/;(TMD)$A

would be stored as follows:

30

Location Constants

FIELD CONSTANTS

TAC ASSEMBLER-COMPILER

A location constant is represented by the characters L/ followed
by an address field element. The address field element is stored
(in binary) in the address portion of botk halves of the word con-
taining the constant.

If the address field element ALPHA +2 representsa left address,
the constant is stored as:

0 1516 23 24 3940 47

ALPﬁA +2 o—

o

ALPHA +2 0——0

If the address field element represents a right address, an F bit
of one will appear immediately to the right of the address in both
halves of the word. ‘

Field constants, as their name implies, occupy fields or parts of
a computer word. A Position Factor, Tn, written immediately
following the constant, indicates where the constant (except
Alphanumeric and Command constants, see pages 34 and 39)
terminates in the word. The character z is a decimal integer
(0-47) specifying the position of the least significant bit of the
constant.

When several field constants are made to occupy a word, the
individual constant designations are written separated by semi-
colons, and the individual position factors, if any, must be in
ascending order. If a field reserved for a constant is such that
the high order bits of the constant extends into a preceding con-
stant, or beyond bit position zero, the high order bits are lost.

If position factors are not specified with the constants, the fields
fill the word from left to right, in the order in which they are
written.

There are seven types of field constants in TAC language:

e Alphanumeric Constants (No position factor is used.)

e Octal Constants (A position factor may be used.)
e Hexadecimal Constants (A position factor may be used.)
e Numeric Constants (A position factor must be used.)
e Binary Constants (A position factor may be used.)
e Parameter Constants (A position factor must be used.)

e Command Constants (No position factor is used.)

CONSTANTS . 31

Alphanumeric Alphanumeric constants are represented by the characters A/
Constants followed by any number of the sixty-four Philco characters
(A/) listed in Appendix D, except the semicolon, dollar sign, and

the right parenthesis. A semicolon, dollar sign, and in some
instances a right parenthesis, automatically terminates the
field. Each character is converted to a unique six-bit code; eight
such characters occupy a full computer word.

Alphanumeric constants fill a word from left to right starting

- with the six high-order bits. A termination indicator cannot be
used to position an alphanumeric field within a word; leading
zeros may be used for this purpose, if necessary.

An alphanumeric constant that is written in the address and
remarks field, may contain eight or less characters, but not
more than eight. If the constant contains less than eight charac-
ters, and no other field constants are specified to fill the re-
mainder of the word, a $ character must immediately follow the
last character of the constant. The remainder of the word is filled
with zeros.

An alphanumeric constant that is written in the command field
may contain any number of characters. These characters, if
necessary, may be continued on succeeding lines of the coding
form, beginning in the address and remarks field. Each eight-
character group is placed in a consecutive memory location. If
the number of characters written is not a multiple of eight, and
no other field constants are specified to fill the remainder of the
word, a $ character must immediately follow the last specified
character. The remainder of the last word is filled with spaces.

Thus, the alphanumeric constant,
A/12345678ABCD$

written starting in the command field, would occupy two consecu-
tive memory locations as follows:

32

Octal Constants

Hexadecimal
Constants (H/

ooooo

TAC ASSEMBLER-COMPILER

If an AFEND instruction (see page 16) is used in the program,
and the alphanumeric constant is nof terminated by a $, the
contents of all columns up to and including the column referred
to by the AFEND are included in the constant. If the constant
contains a non-space character in the column (n) referred to by
the AFEND, the constant must be terminated by a § character.

Octal constants are represented by the characters 0/ followed
by as many as sixteen octal digits (0-7). Each octal digit of the
constant is converted to three binary bits. A position factor may
be used to terminate the constant. When no position factor is
used, the octal constant fills the constant word from left to
right, starting at the 0/z bit position. Unused bit positions are
filled with zeros.

Example

The octal constant O/16T5, O7T4, O/1600000000000000, or O 16
would appear as follows:

012345 47

001110 o

Hexadecimal constants are represented by the characters H/
followed by as many as 12 hexadecimal characters (0-9 and
A-F). Each character of the constant is converted to four binary
bits, as shown below:

HEXADECIMAL CHARACTER BINARY EQUIVALENT

0000
000t
o010
oolIl
0100
ot0l
ol1o
ot
1000
1001
1010
1011
1100
1101
Lo
[N

MM OO WP OWO~NOOaHWwMN®m—O0

CONSTANTS

Numeric Constants

Binary Constants

33

A position factor may be used with the constant. When no position
factor is used, the hexadecimal constant fills the constant word
from left to right, starting at the 0fZ bit position. Unused bit
positions are filled with zeros.

Example

The constant H/5AC T23 would be stored as follows:

0 12 23 24 a7

0——————0jolot 10101l 100]O o]

Numeric constants are represented by the characters N/ followed
by an unsigned decimal integer. A position factor must be written
following the decimal integer or an error will be indicated.
Example

The numeric constant N/1149T35 would be stored as follows:

0 35 36 47

[o] 010001 tIT1OIMO (o}

Binary constants are represented by the characters n/ followed
by some binary configuration. The character » is any decimal
integer 1 to 48, indicating that the binary configuration specified

in actually a pattern that is repeated # times in the constant.

A position factor may be used with the constant. When no position
factor is used, the binary constant fills the constant word from
left to right, starting at the 07% bit position. Unused bit positions
are filled with zeros.

Example

The binary constant 5/101T23 would be stored as follows:

0 89 23 24 47

Q—————0ojlo!101101 101100 o

34

Parameter Constants

Command Constants

ooooo

TAC ASSEMBLER-COMPILER

Parameter constants are represented by the characters P/ fol-
lowed by an address field element. W position factor Tn or Fn,
must be used with this constant, andis separated from the address
field element specified by a comma.

When tn is used, the address element without its F-bit is stored
in the constant word at the position specified by the termination
indicator n; and unused bit positions are filled with zeros.

When F# is used, the address element isterminated at the (n-1)¢%
bit, and the n#k bit will be one or zero, depending on whether the
address element represents a right or left address, respectively.
(In relocatable programs, a relocatable address element in a
Parameter constant must be scaled T15, F16, T39 or F40.)

Example
Assume that KAPPA represents a 7ight address that has been

assigned the value 8, then, the constant P/KAPPA, T39 would be
stored as:

0)) 3940 a7

(o] o1 000|lO

The same constant positioned F40 would be stored as follows:

[*] 3940 47

o 01000/0————0

The command constant describes half-words of information in
instruction format. Command constants are represented by the
characters C/ followed by a Mnemoni¢ and an address field
element. The address field element is separated from the com-
mand by a comma. No position factor is used with the canstant.

Two command constants, written separated by a semicolon,
occupy an entire constant word. If only one command constant is
written, the constant will occupy the left half of the word; the
right half will be filled with zeros. If another type of field
constant (positioned before T24) is written precedingthe command
constant, the command constant will occupy the right half of the
constant word.

BTy

CQNSTANTS

Groups of
Field Constants

35

Examples

The constant C/HLTR,ALPHA; C/JMPL, BETA+1 wouldbe stored
as:

0 1516 2324 3940 47

ALPHA 10000000 BETA+1 001 00000

The constant 2/101T23; C/HLTL,KAPPA would be stored as:

o 2324 39 40 47

[o] 010110l KAPPA 0

Some typical field constant groups could be:
N/5T15;C/HLT,ALPHA+5H$
1/1T0;0/7T23;A/ABCD$

P/ALPHA-BETA, T15; C/HLT,M/50003
H/ABCD;8/1T23;0/7;N/1T47$
0/32;A/TYPEOUTS

48/1%

Chapter 5

R o UT I N E s Subroutines. Generators. Macros.

GENERAL
DESCRIPTION

SUBROUTINES

Calling a
Subroutine

Calling and Writing Library Routines.
Adding Library Routines to the
Library Tape. TAC Generator Symbols.
Skeleton Coding.

Library routines are Subroutines, Generators, and Macros on
the TAC Library tape. Each routine is an individual program, or
set of instructions, designed to perform a frequently required
operation. I the operation to be performed at a point in the
program can be accomplished by one of these routines, the
programmer need only reference (call on) the respective routine
at that point in his program, thus saving valuable coding time
and effort by not having to code the routine himself.

A subroutine is a program that operates under control of a
calling program, and that is included only once in the calling
program regardless of the number of times referenced.

Library subroutines are subroutines on the TAC library tape.
These may be in TAC-language or . in relocatable binary form.

A subroutine call is used to reference a subroutine. This call
may be written in either of two forms:

GENERAL FORMS EXAMPLES
L | Location | Command | Address L | Location| Command | Address
S entrance | param S FLEJ ADR1,ADR2;
ADR3
SUBR entrance SUBR FLEJ

where entrance is an entrance to
the subroutine being referenced,
and param represents the para-
meters of the subroutine.

Parameters are separated by semi-
colons. If a parameter is repre-
sented by a group of field con-
stants, the parameter must be
enclosed inparentheses to prevent
ambiguity in the meaning of the
semicolons,

37

38

TAC ASSEMBLER-COMPILER.

During compilation, TAC replaces the subroutine call with:

1. A TMA instruction, to place the first parameter in the Call
in the A Register.

2. A TMQ instruction, to place the second parameter in the Call
in the Q Register.

3. TMD and TDM instructions, to place the third and succeeding
parameters in consecutive memory locations immediately
following the entrance word. (See Writing A Subroutine, page

)

4. A JMP instruction, to transfer control to the subroutine. The
SUBR call does not provide for parameter setup as in (1), (2)
or (3) above, nor for transfer of control to the subroutine. The
programmer may transfer control to the subroutine elsewhere
in his program.

During its execution, the subroutine obtains the first parameter
in the call from the A Register, the second parameter from the
Q Register, and the third and succeeding parameters from con-
secutive memory locations immediately following the entrance
word.,

If a parameter will already be in its proper register or memory
location when the subroutine obtains control, this parameter
may be omitted from the subroutine call. For example, the follow-
ing calls:

L| Location | Command Address and Remarks
S ENTRANI [;ADR2 $

S |DELTA | ENTRAN2|ADR1;;ADR3;;ADR5 $

S ENTRAN3|$

indicate that the first parameter of subroutine ENTRAN1 is
already in the A Register; the second and fourth parameters of
subroutine ENTRAN2 are in the Q Register and in memory lo-
cation ENTRAN2, ENTRAN2+2, respectively; and, all parameters
of subroutine ENTRANS are in their proper locations.

When a parameter is thus omitted from a call, the corresponding
TMA, TMQ, or TMD and TDM instructions are not generated.

Subroutines generally store their output values in the same order
and locations as their parameters (i.e., the first output value in
the A Register, the second in Q, etc.). Individual output proce-
dures are indicated in the respective subroutine descriptions.

LIBRARY ROUTINES

Writing a
Subroutine

39

Subroutines may call on generators, macros, or other sub-
routines, which in turn may call on still other subroutines.
There is no repetition of subroutines in a program; TAC always
checks to see if a subroutine was previously requested, in which
case it would already be scheduled for incorporation into the
program,

If a section of the calling program has the same name as a sub-
routine being called, the call is assumed satisfied, and the
library tape is not searched for that subroutine.

If a called subroutine is not included in the compilation, the
notice “THE FOLLOWING SUBROUTINES NOT INCLUDED” is
printed on the Code-Edit. In an RPL or ABS compilation, this is
a serious evror condition.

If subroutines are not to be compiled inthe program, but are to be
brought in at load time (in which case both the subroutine and
the calling program must be in relocatable binary form), refer-
ences to the entrances of the subroutines are automatically com-
piled as REFOUT symbols.

Most subroutines use Index Registers 1 and 2. The previous
contents of these registers are not restored by the subroutines;
the contents of all other Index Registers are saved.

A subroutine may have several entrances. Each entr:'mce permits
access to a specific group of instructions that perform a particu-~
lar operation,

The first word of each group of instructionsis the entrance word.
The left instruction in this word establishes the address for
returning control to the calling program. The right instruction in
this word provides a transfer of control to the instruction im-
mediately following the last of the words reserved for storing the
third and succeeding parameters (if any) of the call. The last
instruction of the group provides an exit from the subroutine by
transferring control to the half-word immediately following the
subroutine call.

An entrance may be left or right; if it involves more than two
parameters, it must be left.

*For calls on FORTRAN type subroutines, refer to Appendix C.

40

TAC ASSEMBLER-COMPILER

‘The following example illustrates the format of a standard TAC

subroutine:
L Location Command Address and Remarks
NAME ENTRAN1$
L{ENTRANI1 | TJIM EXIT$ First entrance
JMP ALPHA $
. Locations reserved for
parameters
ALPHA Beginning instruction of
group
JMP EXIT$ Last instruction of group
L ENTRAN2| TJM EXIT$ Second entrance
JMP BETA $
Locations reserved for
parameters
BETA Beginning instruction of
group
JMP EXIT $ Last instruction of group
Other entrances and
groups of instructions
EXIT JMP 1SUBERR$ Exit from subroutine
ENDSUB |$

If the subroutine is to be a TAC-language library subroutine, it
is added to the library tape asitappears above. I it is to be added
to the library as a relocatable binary subroutine:

the ENDSUB $ instruction is replaced an END § instruction,

the entrances and other symbols of the subroutine that may
be referred to from outside the subroutine must be defined
as SYMBOUT symbols and appear in the address and re-
marks field of SYMBOUT cards in the subroutine. Generally,
a SYMBOUT symbol represents a left address, as this pre-
vents the instruction in the calling program that refers to
this address from being altered at load time. (Refer to F-Bit
Modifications at Load Time, page 88.)

the subroutine is compiled in REL format, and the resultant
relocatable program deck is added to the library.

LIBRARY ROUTINES

Adding «a
Subroutine to the
Library Tape

GENERATORS

Calling on
a Generator

41

For a description of how to add subroutine to the TAC library,
see Program Report 13, PLUM (Program for Library Update and
Maintenance).

A Generator is an RPL program on the TAC library tape which,
when called upon, generates coding to perform a specific oper-
ation. The coding generated depends on the type of generator call,
and the parameters contained in the call.

A generator call is used to call ona Generator. The general form
of this call is:

GENERAL FORM EXAMPLES
Command Address and Remarks Command Address and Remarks
Cmnd Pps---»Pp PRT 15;A;B;C$
FORMAT (5E8.2,2F6.3)%
where Cmnd is a generator com- RIT 10,F200,A(10)$

mand (1 to 8 alphanumeric char-
acters long) representing an oper-
ation to be performed, and each
p is a symbol representing a
parameter of the generator,

The number, order, and format of
the parameters are established by
the generator.

With some generator commands, such as in the second example,
the complete set of parameters must be enclosed in parentheses.
Parameters too many to fit on one card may be continued in the
address and remarks field of succeeding (continuation) cards.

TAC reserves processing of generator calls until all regular
TAC instructions (control instructions, mnemonics, ete.) in the
program are processed. TAC then determines the specific
generator that is associated with each call, supplies the generator
with information about the call, and transfers control to the
generator. The generator processes the call, generates TAC-
language coding compatible with the type of call and the parameters
specified, and returns control to TAC. TAC then compiles the
generated coding into the calling program.,

42

TAC ASSEMBLER-COMPILER

TAC reserves a unique 8-character symbol (in location

EG2.1GNEW, see page 49) as the address to bhe assigned to.

the coding generated. If the generator call requires a transfer

of control to the generated coding, TAC replaces the call with a
JMP Unique Symbol

instruction, Whatever was specified in the label and location fields

of the call would be indicated in similar fields of the JMP instruc-

tion substituted. The generator provides the appropriate linkage

between the JMP and the generated coding by generating a

definition for the unique symbol, and by generating an appropriate
NAME instruction. (The program name that is to appear in the
generated NAME instruction is supplied to the generator by TAC,
and is the name of the program section containing the call.)

If the call does nof require transfer of control to the generated
coding, it is deleted from the program after being processed; no
JMP instruction is generated.

The calls are processed in the order indicated by sort numbers
assigned to the generator commands (Cmnd) when the generator
is added to the library tape. This permitsall the calls of one type
to be processed before calls of another type.

After all generators calls in the program have been processed

by their respective generators, TAC insertsan E AFEND and

an ENDGEN instruction immediately after the last instruction of
the generated coding.

The generated coding appears after the calling program and
before the area reserved for pool constants on the Code-Edit

(see page 75).

L=y

LIBRARY ROUTINES

Writing a
Generator

43

The following coding illustrates the general form of a Generator:

Location Command Address and Remarks
ASGN or SAME instruc-
. tions permitting com-
. munication between TAC
. and the Generator. (See
page 49.)
SET 1GENADD$ Establish entry point*
TIM EXIT$ Establish exit
JMP EG2.1GNC$ Obtain parameters
Generate coding
JMP EG2.1DUMP$ Write out generated cod-
ing
ASGN EXIT,(P)$
JMP (P)$ Return control to TAC
END EG2.ENDCARD$

After the generator is selected from tape, it is loaded into
memory, initialized, then executed. Initialization is performed
upon a transfer of control to location EG2.ENDCARD (specified
in the END card), the starting address of a generator-initializing
routine in TAC. After initialization, TAC supplies the generator.
with the following information about the call, and transfers con-
trol to location 1GENADD of the generator:

e The generator command (Cmnd) left justified and with

trailing spaces, in the A Register.

e The sort number of the generator command scaled T15 in
the Q Register. (See Adding A Genevator To The Library,

page 51.)

*Address fields of subsequent SET instructions, if any, must
always contain an address greater than 1IGENADD.

44

The

TAC ASSEMBLER-COMPILER

A unique 8-character symbol in location EG2.1GNEW, to be
used as the entrance location of the generator coding if,
during program execution, control is to be transferred to the
generated coding.

The label field of the generator call scaled T5 in location
EG2.1GLABEL.

The location field of the generator call, in location
EG2.1GFLAD.

The program name in effect at the time the call was encoun-
tered, in location EG2.1GNAME.

The P-count in binary, scaled T40 in location EG2.1GPCTR,
corresponding to the point in the program where the call
occurred.

generator processes the above information and:

Obtains the contents of the address and remarks field of the
call from TAC one character* at a time, by transferring
control each time to location EG2.1GNC. (The character
obtained appears scaled T5 in both the A and Q Registers,
after which, control is returned to the generator at the
instruction following the last executed JMP EG2.1GNC. The
generator should test for a $ character to determine when no
more characters in the call remain to be processed.)

Generates coding compatible with the type of call and the
parameters specified.

Writes-out the. generated coding on tape by transferring
control to location EG2.1DUMP, with the number of cards to
be output scaled T15 in the A Register and the starting
location of the generated coding scaled T29inthe Q Register.
(After the output cards are written, control is returned to the
generator at the instruction following the last executed JMP
EG2.1DUMP.) :

Returns control to TAC at the instruction immediately
following the instruction that transferred control to location
1GENADD of the generator.

Either obtains and processes (in the manner indicated above)
the next call on the generator when control is returned to
location 1GENADD, or generates and writes close-out coding
if no other call remains to be processed by the generator.
(The condition of no calls remaining to be processed is indi-
cated by all ones in the A Register at the time TAC returns
control to location 1GENADD.) After producing close-out cod-
ing, if desired, the generator returns control to TAC at the
instruction following the last executed JMP 1GENADD.

*Space characters included. K control is transferred to iocation

EG2.2GNC instead of EG2.1GNC, space characters are ignored
and not transferred to the generator.

-

LIBRARY ROUTINES

Symbols Permitting
Communication
Between TAC and
Generators

45

To permit communication between TAC and the generator, ASGN
or SAME cards defining the following symbols must be included
in the generator. In the event of modification of TAC, the symbol

TACBASE must be redefined.

SYMBOL

DEFINITION

EXPLANATION

TACBASE

NTLOAD1.TACBASE

The lowest memory location
used by TAC itself (i.e., the
origin of TAC in memory).

1GENADD

TACBASE+M/ 2000

Location of firstexecutable in-
struction of generator.

ENDCARD

TACBASE+M/1016

Generator end card address.

1GNAME

TACBASE+M/1003

Location containing alphanu-
meric program name in effect
when call occurred.

1GNEW

TACBASE+M/1004

Location containing TAC-
created, alphanumeric symbol
for generated coding.

1GPCTR

TACBASE+M/1006

Location containing, in binary
form at T40, the TAC pro-
gram (P) count corresponding
to the point where the call
occurred.

1GFLAD

TACBASE-+M/1007

Location containing, in alpha-
numeric form, the location
field of the call.

1GLABEL

TACBASE+M/1010

Location containing the label
field of call, scaled T5.

1GNC

TACBASE+M/1011

Location of a parametev-input
subrouting in TAC thatis avail-
able to generators.

2GNC

TACBASE+M/1012

space (blank) characters.

Location of a second param-
eter-input subroutine in TAC
that is available togenerators.
Unlike the preceding subrou-|
tine, this subroutine ignores

46

TAC ASSEMBLER-COMPILER

SYMBOL

DEFINITION

EXPLANATION

1DUMP

TACBASE+M/1013

Location of an oulput sub-
routine in TAC that is avail-
able to generators.

When this subroutine is
entered, the A Register must
contain the number of cards to
be output, scaled T15, and the
Q Register, the starting loca-
tion of the generated coding to
be output, scaled T39.

OVERLAY]

TACBASE+M/1014

Location of a get-next-block-
on-library subroutine in TAC
that is available togenerators.

This subroutine reads the next
block from the library tape
containing the generator. The
starting address of the 128-
word area into which the block
is to be read must be scaled
T15 in the A Register at the
time this subroutine is entered.

RPLOVER

TACBASE+M/1015

Location of a get-nexi-RPL-
program-on-libvary subrou-
tine in TAC that is available to

| generators.

This subroutine reads the next
RPL program on the library
tape containing the generator,
and transfers control to the
instruction immediately fol-
lowing the

JMP EG2.RPLOVER

Also, the end card of this
‘‘next RPL’’ must be

END EG2.ENDCARD

to permit TAC to return control
to the generator properly.

LIBRARY ROUTINES

Adding a
Generator to the
Library Tape

MACROS

Calling a Macro

47

After the generator program is written, it is compiled in RPL
format, then added to the TAC library tape. At the time of its
addition to the library, information about the location and size of
the generator on tape, the calls it will accept, the order in which
the calls are to be processed, and which calls require transfer of
control to the generated coding, must be supplied.

Procedures for supplying this information when adding a generator
to the library tape are discussed in detail in Program Report 13,
PLUM (Program for Library Update and Maintenance).

A Macro-generator is a program, supplied with the TAC library
tape, which when called upon by means of a macro-call (macro-
instruction), inserts coding into the calling program.

The coding inserted consists of a fixed number of instructions,
and replaces the macro-call in the program.

A macro-call (macro-instruction) is used to call on the Macro-
generator. The general form of this call is:

GENERAL FORM EXAMPLES
Command | Address and Remarks Command | Address and Remarks
Cmnd P1se--3Py RDMTF UNIT;CSA;NBP;NBS$
CHKMT ORDER;INCOMPLETE;
where Cmnd is a symbol (1 to 8 ERROR;B$

alphanumeric .characfers long)
specifying an operation to be per-
formed for which coding must be
inserted into the program, and
each p is a numeric or alpha-
numeric symbol representing a
parameter to be used in the in-
serted coding.

Parameters are separated by
semicolons. '

When TAC encounters a macro-call in a program during com-
pilation, it determines from the Table of Contents on the library
(see PLUM, Program Report 13) the amount of coding that will.
be inserted for the call, and reserves.the appropriate space in
the program for the coding.

48

Skeleton Coding

TAC ASSEMBLER-COMPILER

The coding to be inserted exists in skeleton form (see below)
following the Macro-generator on tape. TAC transfers control to
the Macro-generator, which expands the skeleton coding by placing
the parameters of the macro-call in their proper places in the
skeleton coding, and inserts the expanded coding into the calling
program.

As many parameters may be specified in a macro-call as are
provided for in the corresponding skeleton coding. Parameters
too many to fit on one card may be continued in the address and
remarks field of succeeding continuation cards.

Numbers and letters assigned to the parameters in the skeleton
coding indicate where each parameter is to be inserted into the
coding. The parameters are labeled 1 through 9 and A through Z,
with each number or letter preceded by an equal (=) sign. The
first parameter is inserted at the point where the =1 characters
appear in the skeleton coding, the second parameter is inserted

. where the =2 characters appear in the skeleton coding, the tenth

parameter where the =A characters appear, and so on, until the
skeleton coding is completely expanded and all parameters are
included.

The following example is an illustration of a macro-expansion.
Consider the Macro TLUEQ (Table Look-up for Equality), the
skeleton coding of this Macro is:

L | Location Command Address and Remarks
TMD 1/=3%
TDX ,1X$
T™Q 0/ =2$
ETA =1$
R RPTAN =4$
ETD 1,1X$
JAED |(P)+2H$
JMP =5$
SIXO 1,1X$

For a macro-call of the form:

L| Location

Command

Address and Remarks

TLUEQ

KEY;7777; TABLE;100; ALPHA $

LIBRARY ROUTINES

Adding Skeleton
Coding to the
Library Tape

the expanded coding will be:

49

L Location Command Address and Remarks
TMD L/ TABLE$
TDX ,1X$
T™Q |0/7777$
ETA KEY$
R RPTAN |100$
ETD 1,1X$
JAED |(P)+2H$
JMP ALPHA$
SIXO |1,1X$

This expanded coding is inserted in-line into the calling program,
replacing the macro-call. On the Code-Edit, the expanded coding
is located after the calling program.

At the time the TAC-language skeleton coding is added to the
library tape, information about its Marco-generator, the number
of locations it will occupy in the program after compilation, and
whether its first instruction is a left or right instruction, must

be supplied.

Procedures for supplying this information when adding skeleton
coding to the library are presented in Program Report 13, PLUM
(Program for Library Update and Maintenance).

OBJECT

Chapter 6

PROGRAM
FORMATS

BINARY OBJECT
PROGRAM CARDS

A RELOCATABLE
BINARY DECK

Binary Object Program Cards and
Tape. A Relocatable Binary Deck.
An Absolute Binary Deck. An RPL

Object Program Tape.

As indicated earlier in the Introduction, TAC object programs
may be compiled in any of three formats: REL, ABS, or RPL.
Consistent with the format specified, a RELocatable Binary
Card Deck, an ABSolute Binary Card Deck, or an RPL Absolute
Binary Program on tape, is produced.

The format and contents of the object program cards and the RPL
object program tape are discussed in this chapter. The manner in
which a loader processes these cards is discussedin Appendix B.

The binary deck produced on a REL compilation may be depicted
as follows:

RELOCATABLE.

END-PROGRAM
CARD

TAC
ASSEMBLER

TAC
LANGUAGE
SOURCE
PROGRAM

_| PHILCO 2000
COMPUTER

7l
‘!e‘ RELOCATABLE
BINARY
INSTRUCTION
CARDS

EDITED
OUTPUT
TAPE

Y symsoL
DEFINITION

PMAX CARD CARDS

REL DECK

Figure 3 — A Relocatable Binary Deck

51

52

The PMAX Card

TAC ASSEMBLER-COMPILER

As shown in the preceding figure, each relocatable object deck
contains the following cards:

1. PMAX CARD

2. SYMBOL DEFINITION CARDS

3. RELOCATABLE BINARY INSTRUCTION CARDS
4. RELOCATABLE END-PROGRAM CARD

The formats and functions of these cards are discussed below.
A 1 indicates a punch, a 0 indicates a blank or non-punch,

Except for identify and sequence information in columns 1-8,
which is in Hollerith code, all other information on the cards
is in binary.

The PMAX card is the first card of the object program. It contains
the program identifier, information as to the length (size) of the
program, and the amount of common storage required by the
program. (Program length is the address of the first available
memory location relative to program origin. It includes the
amount of storage required by the program, temporaries, ASTOR
areas, and areas reserved for pool constants.)

The format of the PMAX card is:

3|
12345678[9101 1213“]516117]9|9202!22232415162728293021323334353537333540"4143“05‘6414!49505152515455555758,

= C XX RKASY — N\
12(00000000(0 = 0::::} 0005030000000000000000000000000

111000000000 B OUZ\QODU000})0000000000000000000
0joo000000)0

00-—-\\00000000000000000000000000
—

1 oo000000looiis JEN \\0000000000000000000000000
2{ 00000000]0 :unqu:§oonuoooouooouuooonooonuuoo
3l 60000000f0 iEouuzognuaoooununonunuuuuuooaoooou
R ORXRRXRE— =\

4{0000co0ofofo _you:o%oouuoonunooouououoounuuoun
5{ 0000000 0oo §1qu0§00u'ooounuoounoonunoouuuuooo
6| 0000000 ofofofiE 'Mngo\%\uuunounonnooonoounuoonnnoo
7

7

0000000 o0oof g ouoEn%‘uuoonnuonouooouooouuonoonuo

X :0’0 =
LSRXRRRRXX =

900000000 R0 0 0 =0 N0 0 00000 0000000000000000000

12345678 910‘;1 121114151617121426212!2930;] 323334353537351940"424344!54647404550515253545556575’

&S
8{ 00000000 0.0 0fSKCEEN 0 0 =g \0 0 0000000000000000000000000
RICIHREEL
PHILCO_2000 BINARY CARD

Figure 4 — Format of the PMAX Card

OBJECT PROGRAM FORMATS 53

EXPLANATION OF PMAX CARD FORMAT

LEGEND COLUMNS ROWS CONTENTS
1-8 12-9 | Identity and Sequence information, in Hollerith.
9-12 12-9 Punches, or Zero, If zero, card is ignored. If one or

more of these columns contain pun-
ches, card is processed.

10 3-9 1000000 (PMAX Card identification)

11-12 .12-9 Checksum* or Zero

13 11-9 | A binary value. This value is interpreted according to
14 12-1 | the contents of row 9 of column 16.

16 9 An indicator bit:

0 indicates that columns 13-14 specify the lengih
of the object program.

1 indicates that columns 13-14 specify the loading
origin of the object program,

17-24 12-9 | Program Identification (96 bits). These bits affect
checksum only.
R 2 25 11-9 Number of words of COMMON storage requ1red by the
sReea 26 12-1 | program about to be loaded.
29 11-2 | Number of TEMPORARY and ASTOR locations used by
30 12-1 | the program about to be loaded.

11-9 | Starting address, relative to program origin, of TEMP -
12-1 | ORARY/ASTOR area.

9 lor 0. If 1, record is not replaced by record of sub-
sequent TEMPORARY/ASTOR area. Next card
is processed.

Columns not mentioned above have no effect on loader processing other than their effect
on the checksum.

*A sum of all relevant bits on the card, used to ckeck accurate transfer of the informa-
tion on the card. The actual checksum technique is discussed on page 88.

54 TAC ASSEMBLER-COMPILER

Symbol Definition Symbol Definition Cards provide a loader with the definitions

Cards of certain symbols used in the object program. These cards
are produced during compilation from SYMBOUT source cards,
and are of the following format:

1234567 8[910111213 1471516

120000000000
11100000000j00
0j00000000]00

1{ 00000000003
2{ 00000000003
0000000 0[of

0000000000
5100000000
000000000

0000000 O0[0[8fe
8000000000
9/ 00000000{0}0

a ®,
1234567 8[910111213141516[1718 192021 22 23 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 3 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 5]
PHILCO 2000 BINARY CARD

Figure 5 ~ Format of a Symbol Definition Card

OBJECT PROGRAM FORMATS 55

EXPLANATION OF SYMBOL DEFINITION CARDS FORMAT

LEGEND { COLUMNS | ROWS ' CONTENTS
I T 3-9 [1111110 (Symbol Definition Card identification)
1-8 12-9 |Identity and Sequence information, in Hollerith
9-12 12-9 [Punches, or zero. ¥ =zero, card is ignored. If one

or more of these columns con-
tain punches, the card is pro-
cessed.

2 11-12 12-9 | Checksum or zero

13 12-11 | Type of address defining the NAME.SYMBOL which
appears in column 15;

00 indicates the address is relative to program
origin

10 indicates the address is absolute

11 indicates the address is relative to common
origin

13 9 An indicator bit:)

0 indicates that the information contained in this
symbol-definition field is to be processed

indicates that the information contained in this
symbol-definition field is to be ignored*

15 11-9 | Address definition of NAME.SYMBOL. (Row 2 of
16 12-2 | column 16 contains the F-bit.)

Q 17-20 12-9 | Subprogram NAME associated with SYMBOL. (If

: these columns are blank, this symbol-definition field
\ is ignored, and the next symbol-definition field is
NN

First Symbol-Definition Field (Columns 13-24)
fo—y

processed.)

21-24 12-9 | SYMBOL

§ 25-36 Second symbol-definition field, **
g g 3 37-48 Third symbol-definition field, **
g g E 49-60 Fourth symbol-definition field, **

§> 61-72 Fifth symbol-definition field. **

Columns not mentioned above have no effect on loader processing, other than their
effect on the checksum.

* Note the possible use of this feature to have a double definition of a symbol
. ignored.
*kFor second, third, fourth, and fifth symbol-definitionfields, the format is the same
as for the first symbol-definition field shown above.

56

Relocatable Binary
Instruction Cards

TAC ASSEMBLER-COMPILER

Relocatable Binary Instruction Cards contain the symbols whose
definitions are to be found on Symbol Definition Cards, source pro-
gram instructions in relocatable binary form, and certain control
information for a loader.

The format of these cards is:

12345678

1112 13 14 15 16}

)
1718192021223 24‘15 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58]

ojocooo0o00

10000000
210000000
3jopo0000

600000000

ooo000000000O0O000000000000000000000000000
poooo000000000C000O00000000000000000000000
00

LT =

%UU0000ﬂ000U0000000000000000000000000000
2000000/000000000000000000000000000000000
E0000000000DODODDDDDUI]BDUI]IJIJDI]UDOI]I]UOUUDU

| =

70000000
gloooo0o000
9)00000000

oooo0oo0[000000O0000000000000000000000000000
@000000000000000000000000000000000000000
EUBDUDBDUUUUDDUO000000000000000000000000

.

goooooc0o00000D0000000000000000000000000C00
0000000600000000000000000000000000000000
oboooo00j00O0DO0O0OO0O0CO0O000000000000000000000000

S SRR

-\-—_

o = =

12345678

9 10 111213 1415 16

1718 192021222324'25252723293031 32333435363738334041424344454647484950 51 5153545555572]

PHILCO 2000 BINARY CARD

Figure 6 — Format of a Relocatable Binary Instructions Card

OBJECT PROGRAM FORMATS

57

EXPLANATION OF RELOCATABLE BINARY INSTRUCTIONS CARD FORMAT

LEGEND

COLUMNS

ROWs

CONTENTS

1-8

12-9

Identity and sequence information, in Hollerith.

9-12

12-9

Punches, or zero. If zero, card is ignored. If one or
more of these columns contain punches, the card is
processed.

10

12-9

12-1

Core Starting Address of first instruction on card.

Row 1 of column 10 is interpreted as the F-bit:

0 indicates that the first instruction starts in
column 17.

1 indicates that the first instruction starts in
column 19,

10

1 (Relocatable Binary Instructions Card Identifi-
cation)

10

4-9

Number (1-32) of instructions on card.

11-12°

12-9

Checksum or zero

13-16

12-9

A series of variable length (1-4 bits) indicators, which
specify the type of address in each instruction:

0 indicates the address is relative to program
origin
10 indicates the address is absolute
110 indicates the address is relative to common
origin
1110 indicates the address references a REFOUT
symbol

17-18
or
17-26

12-9

First instruction on card.

An instruction usually occupies two columns on the
card; however, if the address specified in the instruc-
tion references a REFOUT symbol this instruction will
occupy ten columns onthe card. (The last eight columns
will contain the REFOUT symbol.)

19-80
or
27-80

12-9

Additional instructions on card.

58

The Relocatable

End-Program Card

TAC ASSEMBLER-COMPILER

The Relocatable End-Program Card is produced during compila-
tion from the END card, and is the last card of the relocatable
binary program deck. This card causes a loader to:

1. transfer control to the address specified in the END
card in order to start execution of program, or

2. commence loading the next relocatable object program.

The format of this card is:

S |
1.2 3456 7 8[9 101112131415 16[17 18 19 20 21 22 23 24]25 26 27 28 23 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

1200000000 00000000000000000000000000000000D0
11jo0000000 0000000000000000000000000000000000
000000000 poo00000000000000000000000000000000

11000000000
2000000000
00000000]0

0 000000000000000000000000000000000
0 0oco000000000000000000000000000000
0000000000000000000000000000000000

400000000l 00go 0000000000000000000000000000000000
5/ 00000000[0 u:;o 0000000000000000000000000000000000
6| 00000000|0 oEo ; 000000000000000000000000000000000
7100000000[0 o 0000000000000000000000000000000000

8000000000 oopooooo00O000000DOCOCOOO00D0000000000D
9(o0o0o0o00000/0 0000000000000000000000000000000000

12345678{9101 |l|1‘4|5|6ll1ll\91\12‘122314!2526272329303‘323]343536313833404\4243«4546474!4!50515153545555575[

oooeontatasess
o o

PHILCO 2000 BINARY CARD

Figure 7 — Format of the Relocatable End-Program Card

OBJECT PROGRAM FORMATS 59

EXPLANATION OF RELOCATABLE END-PROGRAM CARD FORMAT

LEGEND COLUMNS ROWS CONTENTS
1-8 12-9 | Identity and sequence information, in Hollerith.
9-12 12-9 | Punches, or zero. I zero, card is ignored. If one or

more of these columns contain pun-
ches, the card is processed.

10 3-9 1111111 (Relocatable End-Program Card identifica-
tion)
11-12 12-9 Checksum or zero
13 12-1 Indicator bits, spécifying the type of address in'columns
15 and 16:

0000 indicates that the address is relative to pro-
gram origin

1000 indicates that the address is absolute

1100 indicates that the address is relative to
common origin

1110 indicates that the address references a RE-
FOUT ‘NAME.SYMBOL’

13 9 An indicator bit, which is interpreted follows:

0 indicates that next program is to be loaded

1 indicates that after this program is loaded, con-
trol is to be transferred to the jump address
specified in columns 15 and 16

15 11-9 | An addressinthe program to whichthe loader transfers
16 12-2 | control after loading the program. (Row 9 of column
13 must have been 1.)

17-24 12-9 A NAME.SYMBOL. (Rows 12-1 of column 13 must
have been 1110)

Columns not mentioned above have no effect on loader processing other than their effect
on the checksum.

60 TAC ASSEMBLER-COMPILER

AN ABSOLUTE The binary deck produced on an ABS compilation may be de-
BINARY DECK picted as follows:
ABSOLUTE
END-PROGRAM
TAC CARD

ASSEMBLER

TAC
LANGUAGE

SOURCE |
PROGRAM:

PHILCO 2000
COMPUTER

EDITED
OUTPUT
TAPE

BINARY
INSTRUCTION

TAC ABS DECK CARDS

LIBRARY

Figure 8 — An Absolute Binary Deck
As shown in the above figure, each absolute object deck contains
the following cards: ,
1. ABSOLUTE BINARY INSTRUCTION CARDS
2. ABSOLUTE END-PROGRAM CARD*

Except for identity and sequence information in Hollerith in
columns 1-8, all other information on the cards is in binary.

*Also referred to as BINARY JUMP CARD

OBJECT PROGRAM FORMATS 61

Absolute Binary Absolute Binary Instruction Cards contain the source program
Instruction Cards instructions inabsolute binary form, and certain control informa-
tion for a loader. The format of this card is:

—]
12345678|3101 Ill]ltlil&ll’lIBl!202|221324'2525212529301132]13415383138394041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)

12(00000000 :E@ﬂﬂﬂ00000000000000000000000000000000000000
100000000 goj0ooo00000/000000000000C00D00000000000000000000
o{ooo000000 ﬁﬂU00

20 0/00000000/0000000000000000000000000600000000
0

1100000000

2(00000000 00[000

777

31 00000000Np 3%00(00000000/000000000000000000000000000000000
4 00000000\ pojoooooooo0p0OOO0O00O0OCO00000D000C0000000000000000
500000000 00/00000000(0000000000000000000000000000000000
6:00000000 oofjooooooOooCjp0OOOOO0OOO0OO000CO0O0DD00000000000000000
7100000000 0000000000/00000000000000000000000006000000000
g 00000000 oofooooooo0O0COOODOOODOO00CO0O0O0D00000000000000000
900000000 oofoooo00QODDOOOOOOOCO000O0000000D000000000000000
W\ =

12345678{910111213 “15!5[]7 18 1920212223“[15252723293031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 43 50 51 5253545556515/
PHILCO 2000 BINARY CARD]

Figure 9 ~ Format of an Absolute Binary Instructions Card

EXPLANATION OF ABSOLUTE BINARY INSTRUCTIONS CARD FORMAT
LEGEND | COLUMNS | ROWS CONTENTS
1-8 12-9 | Identity and sequence information, in Hollerith
9-12 12-9 | Punches, or zero. If zero, card is ignored. If one or
more of these columns contain punches, the card is
processed.
N 12-9 Core Starting Address of first instruction on card.

10 12-1 Row 1 of column 10 is interpreted as the F bit:

0 indicates that the first instruction is in columns
13 and 14
1 indicates that the first instruction is in columns
15 and 16

10 3 0 (Absolute Binary Instructions Card identification)

10 4-9 Number (1-34) of instructions on card

11-12 12-9 | Checksum or zero

3 13-14 12-9 | First instruction on card
: or
: 15-16 . _
15-80 12-9 | Additional instructions on card. (Two columns per
or instruction.)
17-80

'

62

The Absolute
End-Program Card

TAC ASSEMBLER-COMPILER

The Absolute End-Program Card is produced during compilation
from the END card, and is the last card of an absolute binary
program deck. This card causes a loader to transfer control
to an address in the program, prior to the execution of the
program.

The format of the Absolute End-Program Card is:

. |
1234567813101 iZIJIA15|6||1l!'(!202121231‘!25262725293031 3233343535371!!39‘041414]“45(641‘3‘8505]5253545556515!,

%uoonnuuoouanuuounooouunnonnnuuoououooooauooon
%nunoununoonunuuonuaoouuaoouuoouuoounuuuouuoouu

000000/0000000000000000000000000000000000
'\\onuouo

2(00000000

000/00000000[000000000000000000000000000000000
3jooooo0000 0

N\ 0
X
EEEOUUUOUUUﬂ00000000000000000000000000000000000

\\ 000/00000000/000000000000000000000000000000000
40000000030 QOD00000l0000000000ﬂ000000000000000000000000007

5/00000000Fj0RNNC00000000000000000000000000CG0000000000000000000
6100000000 jO0RN\N000000O00D000000000000000000000000000000000000

lE§000000000000000000000D000000000000!000000000!0

71100000000
g 00000000 {0NN00O00C0O00D0O000000000000000D0D00000000000000000000
9(00000000 {0NN0DO0O00000000D/00O0000D0O0O0O000D0C0O000000000000000000

1234567843101 121]1415\5]]1|ll!2ﬂ1|22231l|25251729293031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 43 50 51 52535‘5556515/
PHILCO 2000 BINARY CARD

Figure 10 = Format of the Absolute End-Program Card

EXPLANATION OF ABSOLUTE END-PROGRAM CARD FORMAT

LEGEND COLUMNS ROWS CONTENTS
1-8 12-9 | Identity and sequence information, in Hollerith
9-12 12-9 | Punches, or zero. If zero, card is ignored. If one or

more of these columns contain pun-
ches, the card is processed.

12-9 | The address of the first executable instruction in the
12-1 program to which aloader transfers control after load-
ing the program. Row 1 of column 10is interpreted as
the F-bit.

3-9 | 0111111 (Absolute End-Program Card identification)

11-12

12-9 Checksum or zero

Columns not mentioned above have no effect on loader processing other than their effect

on the checksum.

OBJECT PROGRAM FORMATS

BINARY OBJECT
PROGRAM TAPE

RPL OBJECT
PROGRAMS

63

All object programs (REL, ABS, and RPL) are recorded on the
Object Program Tape. In the case of REL and ABS programs,
object decks are subsequently produced; in the case of RPL pro-
grams, no object decks are produced. Except for this latter fact,
and the fact that no checksum is calculated for RPL programs,
the RPL program is the same as the ABS program.

TAC
ASSEMBLER|
LANE?J%GE PHILCO 2000
SOURCE COMPUTER
PROGRAM

Figure 11 — RPL Compilation Output

Evidence of the similarity between ABS and RPL programs may
be found, for example, in the number (34) and arrangement of the
instructions on the cards and on tape. Also, the RPL instructions
on tape occuringroups, withas many as 34 instructions per group;
and, preceding each group is appropriate load information (see
Figure 12, below).

The RPL object program on tape includes three types of control
words produced during compilation:

1. A PROGRAM IDENTITY control word

2. A LOAD control word

3. A TRANSFER control word

These control words permit a loader to locate the object program
on the Object Program Tape, to load this object program, and to
start execution of the program by transferring control to an
instruction in the program.

The following figure shows how an RPL program is arranged
on tape.

RPL OBJECT PROGRAM -
LOAD CONTROL WORD

/ (4 FRAMES) \‘

.........

PROGRAM | PROGRAM

AR iz
TRANSFER / ey 2%
CONTROL &4 %3 (pENTITY ['DENTITY | 1apg
WORD i %=1 (2 WORDS-1™unon MoTIon
{4 FRAMES) e 673 8 FRAMES) | WoRb o)
= A-‘:’."'! U ‘2L
\ / A
PROGRAM - READ
INSTRUCTIONS HEAD

Figure 12 = An RPL Object Program

64

The PROGRAM
IDENTITY
Control Word

The LOAD
Control

Word

TAC ASSEMBLER-COMPILER

The RPL object program starts at the beginning of a block,
The first word of the first block is the Program Identity Control
Word. This control word indicates the number of words following
it that contain the program’s identity.

0o 89 2324 47

1110101000 ol10[0 0

Bits 0-8 identify this word as the Program Identity Control
Word.

Bits 9-23 specify the number (2) of words, following the Program
Identity Control Word, that contain the RPL program’s
identity.

Bits 24-47 are ignored.

A LOAD Control Word precedes each group of instructions of
the program. This control word indicates the number of full
words of instructions following it that are to be loaded into
memory. The format of this word is:

0 89 232425 394041 47
[o] 0
11111001 n OR] ADDRESS OR|O (]

Bits 0-8 identify this word as the Load Control Word.

Bits 9-24 specify the number (#) of full words of instructions,
following this load control word, that are to be loaded
into memory. (» represents any number 1-34.)

Bit 24 specifies whether the number of instructions to be
loaded is even or odd:
0 indicates an even number of instructions to be
loaded
1 indicates an odd number of instructions to be
loaded

Bits 25-39 indicate the starting address where the instruc-
tions in the group following are to be loaded sequent-
ially into memory.

Bit 40 specifies which half-word is to contain the first
instruction of the group:

0 indicates that the first instruction of the groupis
to be loaded into the left-half of the memory
location specified in bits 25-39.

1 indicates that the first instruction of the groupis
to be loaded into the right-half of the memory
location specified in bits 25-39.

Bits 41-47 are ignored.

OBJECT PROGRAM FORMATS 65

The TRANSFER The last word of an RPL object program is the Transfer Control
Control Word Word. This word causes aloader totransfer control to an instruc-
tion in the program after loading.

The format of the Transfer Control Word is:

[*] 89 24 25 39 40 47

o
1110000010 o address OR O (o}

Bits 0-8 identify this word as the Transfer Control Word.
Bits 9-24 are ignored.

Bits 25-39 indicate the addvess of the instruction to which con-
trol is to be transferred after the loading function is
completed.

Bit 40 is an F-bit specifying the instruction(0: left, 1: right)
to which control is to be transferred.

Bits 41-47 are ignored.

MIXED

INPUT
DECKS

Chapter 7

Mixed Input. The BITS Input Control
Card. The TACL Input Control Card.

RELocatable binary decks may be combined with TAC-language
source decks to form a mixed input deck. (See Figure 13, below).
This mixed deck may then be compiled in one of the three object
formats: REL, ABS, or RPL.

TAC —LANGUAGE
CARDS

PHILCO 2000
e COMPUTER

RELOCATABLE
BINARY
CARDS

MIXED INPUT

Figure 13 -~ A Mixed Input Deck

To specify the forms (TAC-language or binary) of the respective
decks, the input control cards TACL and BITS (TACL before
the TAC-language decks, and BITS before the relocatable binary
decks) must be included by the programmer. Also, the pre-
compilation card-to-tape operation must be performed in image-
mode. *

*See the Philco 2000 Operating System Manual, TM-23, for a
definition of image mode.

67

68

THE BITS INPUT
CONTROL CARD

THE TACL INPUT
CONTROL CARD

TAC ASSEMBLER-COMPILER

The BITS input control card is inserted preceding the relocatable
binary decks of the mixed deck, and it indicates that relocatable
binary cards follow. The characters BITS are punched in Hollerith
in columns 9-16 of the card.

The TACL input control card is inserted preceding the TAC-
language decks of the mixed deck, and it indicates that TAC-
language cards follow. The characters TACL are punched in
Hollerith in columns 9-16 of the card.

THE

Chapter 8

CODE-EDIT

CONTENTS OF
THE CODE-EDIT

Contents of the Code-Edit. Source
and Object Program Listing, Error
Indications. Generated Remarks.

Miscellaneous Information.

The Code-Edit is a printed list of the source program, the object
program, and other information relevant to the compilation
process. The source program is shown from I card to END card
exactly as written by the programmer; the corresponding object
program is printed in octal adjacent to and following the source
program.

The Code-Edit is produced by TAC during compilation, and is
written on the Edited Output Tape*, then printed off-line. In
addition to vemarks and evror notices which may be included to
aid the programmer in debugging an unsuccessfully compiled
program, the following information is also printed: '

Library tapes used

REFOUT symbols

ASTOR symbols

COMSTOR symbols

SYMBOUT symbols

Called library subroutines that are not included in the
compilation

TEMPORARY symbols

Program length

Starting location of Pool Constants

Amount of common storage

Symbol Table

Source and Object Programs

The coding of called subroutines (if compiled with the
program)

o Pool Constants

© 0 © 0 0 0

© 0 06 06 0 0 O

A Code-Edit of the sample program in Figure 1 is shown below.
This program was compiled in RELocatable format; if it were
compiled in ABS or RPL format, information such as SYMBOUTS
and REFOUTS would be irrelevant, and the notice SUBROUTINES
NOT INCLUDED would constitute a serious error condition.

*Also referred to as the Code-Edit Tape.

69

Month I HourJ Winuus I I ldentity of Library Tape used".‘
b - 7 7
. L

[Symbols defined as REFOUTS by TAC.

Routines in which these REFOUT
symbols are defined.

Symbolic definition of first word

in ASTOR area.

I Starting location (octal) of ASTOR area. I——

LNumbel of words:in ASTOR area, in decimul.{f
I COMSTOR areas reserved, - if any.

SYMBOUT symbols appearing in
program, - if any.

I_Binury‘relocufable library;subroutines called. Nof]

includediduring compilation, but at load time.

r Undefined symbols in the program.

| Octal definitions supplied by TAC.

I Length of program, in octal.

Beginning location of Pool Constants,
in octal.

12418 11~31,6 CODE EDIT OF SAMPLE PROGRAM
[} —
LIBRARIES USED BL3DECES
[}
1 REFOQUTS
I~ 1
[I0H .10HOUT
FLOG10X JFLOG10X
10K +IOCNV
[J TOHTAB L RUNALL
10K JFILL
ASTORS
—_—
—@&——00037 SAMPLE ,COEFF 101
| & .
./;HE FOLLOWING SUBROUTINES NOT INCLUDED
FLOG10X
I0H
| l1onmas
] [J
! TEMPORARIES
00035 SANPLE ARG
F—1——"""0003s saMPLE .VALUE
[J
]J——1———o00204 PROGRAM MAX
-/

00031 BEGINNING POOL CONSTANTS
/G/’ TOTAL COMMON STORAGE

Size of common storage area.

PAGE

1

*If no libraries are used in the compilation process, the words “NO LIBRARIES USED"’ are printed,

0L

HHTIdWOD-HHTHNISSY DV.L

The Symbol Table lists the definitions of all symbols
(alphanumerically sorted) encountered during the compi-

Name .. Symbol I

lation process.

Memory address (in octal) assigned to adjacent Name.
Symbol. The letters L ond R indicate the lef¢ and right [
halves of the address, - respectively.

Address type indicator*:

P meons address is relative to program origin.

|

12-18 11=31,6

—, T
A0OOOOL COMMON ,0X
P00021L SAMPLE ,17Y0004
A0QO03L COMMON ,3X
A00006L COMMON ,6X
PDO03SL SAMFLE ARG
PQO023L SAMPLE ,F
P00026L PIOSGEN RESTORE
POOO3I6L SAMPLE ,VALUE

A means address is absolute.

C meons address is relative to common origin.

CODE EDIT OF SAMPLE PROGRAM

A00003L
A00004L
A00004L
A00007L
PO0O3IL
PO0QQIR
POO027R
PO0204L

SYMBOL TABLE

COMMON
COMMON
COMMON
COMMON
SAMPLE
SAMPLE
PIOSGEN
COMMON

+1SUBERR
WX

«4X

7%
+COEFF
JLOOP
+RETURN
o (PMAX)

PO0014L
ABCDOZL
AB000SL
ADDOOOL
POOOOOL
ADD144L
PODO3OL

SAMPLE
COMMON
COMMON
COMMON
SAMPLE
SAMPLE
PIOSGEN

PAGE

«1T0p02
,2x

e 9X

«8X
JEXECUTE
N

LSAVE

2

*Included only if program is relocatable.

LIAd-3a0D HHL

12

Address Type Indicator*, specified for each half-word:

P means oddress in instruction is relative to program
origin. A T indicates that some part of the address specified is
a TEMPORARY.

C means address in instruction is relative to common Source Program, expanded skeleton coding, -and generated

origin. IOb]ecf Program, -in octal. coding, -in TAC-language.

Ameans oddress is obsolute.

cL

S indicates some part of the address specified is a ® 1031.6 c DIT OF SAMP PROGAA £ 3
REFOUT. (Definition of this part will be 12-18 11-31. OPE EDI AMPLE * PAG
made at load time,. and appears during [e ————— et £ / \
compilation as zero on the Code-Edit.) - SAMPO0L0 I SAMPLE PROGRAM
SAMPUQ20 # PROGRAM TO EVALUATE A POLYNOMIAL
[The instruction (ic ond address) in octal. || W SAMPOO30 NAME SAMPLES
= y | SAMPO04¢ COEFF ASTOR N#1$ COEFF IS STARTING LOCATION FOR COEFFICIENTS
Address field of instruction, -in_octal**. 7] SAMPODS) ASGN N,1068 DEFINE DEGREE OF POLYNOMIAL
[) 00000L TMD 00031 00014423 P SAMPO060 EXECUTETMD L/COEFFS
I Mnemonic (reflecting F-bit setting)s V 00000R ;g:tc 30(0100105 g;gggg:% : SAMPOQ7U TOXLC 258
00001L 0000
I Octal location of instruction. L] ® cocosR Rt weies 1g062413 4 sawpooso R RPTNA Ne1$
00002L " THMQ 00000,05 64000g22 A SAMP0090 THMQ Oags
" . 00002R FMMKS 00001,05 64000743 A SAMP0100 FMHRS 1,58
Coding generated to properly load parameter of subroutine] 00003L SIXOL 00145,05 64062477 A SAMP0110 1X0 Ne1,53 CALCULATE COEFFICIENTS
FLOGIOX, - and to transfer control to the subroutine. SAMP0120 S LOOP FLOGIOX »58%
\{000U3R TMA 00000,05 64000021 A
r Macro-instruction. l\ o 00004L JMPL 00000 00000040 S
- - — 00004R TAM 00000,05 64000024 A SAMP0130 TAM 198
JUMP instruction inserted for PRT generator call requiring 00005L TMD 00032 00015023 P SAMP0140 TMD C/HLT,COEFF«N+13C/HLT.LOOPS
transfer of control to generated coding. 00005R AIXu 00001,05 64000474 A SAMPO1S0 ALXY 1,5%
00006L NOPL 00000 00000003 A .
00006R SAMP0160 POLYVAL ARG3NJICOEFFS WITH ARGUMENT IN ARG+EVALUATE POLYNOMIAL
Generator call not requiring transfer of control to gen- . 00012L TAM 00036 00017024 P T SAMPO170 TAM VALUE §
erated codin 00012R JHPL 00084 00006040 P SAMPO18O PRT F,VALUE § PRINT VALUE OF POLYNOMIAL
g SAMP0199 F FORMAT (9HIVALUE = ,E17,5)8
. 00013'. JMPL 00021 00010440 P SAMP0200 POSITIONS
00013R JMPL 00005 00002440 A SAMPO210 JMP H/55
4 by TA SAMP0220 END EXECU $
Remark generated by C. W= 2520335305553 333333333 30333535355 3>55>>5>3>>33>END CARD JUMP lDDRESS !S POOOUOL
NAME SAMPLE §
: [] 00014L SET M/00806 *1H §
. . : 54 P 0 T COEFF#1$
Object program coding corresponding to POLYVAL Macro- L Dggggt PI;EL ggggg,m 223:0058 A :f)t;ggg; F TSE ':;.XES)E .1
instruction call. —~a-| {00007R TMA 00037 00017421 P POLY(0O3 THA COEFFS Expanded Skeleton Coding inserted in-line fo satisfy
00010L TMQ 00035 00016422 P T POLYO0004 ™Q AKGS POLYVAL Macro call.
00010R RPTNA 00144 10062013 A POLYOOOS® R RPTNA NS
[] 00011L FMAR 00000 00000352 & POLYO0006 FMAR $
00011R FAM 00001,01 44000700 A POLYO0O007 FAM 1,1Xs
POLYODO8 ENDMAGRO
([] 3 AFENDS d
NAME SAMPLE §
00014L TJMR 00027 00013620 P 170002 TuM PIOSGEN,RETURNS
[] 00014R TMQ 00034 00016022 P TMO H/BT4LS 3P/F,T39$
00015L TXDLC 00000,01 44000063 A TXDLC 218
00015R TXDRC 00000,02 50000263 A TxDRC »28 Codi 4 for PRT "
Iob]ec! program coding corresponding to PRT generator culr}— ([] gggi:lﬁ IEEL ggggg ggg;ggig g Igg ;ég?;g:oa?zss oding generated for generator co
00017L TMA 00036 60017021 P T TMA VALUES
[] 00017R JMPL 00000 00000040 S JMP IOH.IOCNVS
_ 00020L JMPL 00000 00000040 S JMP IOH.FILLS
Object program coding corresponding to POSITION geni}\ PY gggg:t #::t 3822; gggt:g:: : 110004 #3: F(’g?f;:”i RESTORES
srator call. ~~—_\oooastk MPL codos GoomO04D S JMP IGHTABRUNALLS } Coding generated for POSITION generator call.
Py 00022L JMPL 00022 00041040 P JMP (P)S$
00022R NOPL 00000 00000003 A di ted for FORMA H
00023 7411 3001 6521 4364 A F W/ (IHIVALY FII[S' of series of coding generated for T generator
Non-Pool constant corresponding to word (w/) constant ———— ca
generated for FORMAT generator call. (Note that con- °]
stants occupy entire words, and that two Address Type
Indicators are specified for each constant—one per half-)
word.)

* Included only if program is relocatable.
**Both V and N fields, if an index register is specified.

HH'TIdWOD-HHTHINHSSY DV.L

Pool Constonts and their locations.

|_

If subroutines are compiled with the program, the sub-
routines will appear in object program form i diately

12-18

00024
00025

00026L
00026R
000271
00027R
goo3o

6 © 0 6 o0 o

00031
00034

preceding the Pool Constants.

© 06 0 © o O

11-31,6
2560 1360 7325 0107
3305 3460 6060 6060

TMD
TDXLC

00030 00014023
00000,01 44000061
TDXRC 00000,02 50000261
JMPR voge7 00013640
0000 0000 0006 0000

0001 7400 0001 7400
0000 0200 0001 1400

PP
AP

CODE EDIT OF SAMPLE PR

W/E 3 ,E
W/ 45)
NAME
RESTORETMD
TuxLe
TDXRC
RETURN JMP
SAVE
SUBR
SUBR
E AFENDS
ENDGENS

00032 0010 2000 000V 2

OGRAM PAGE

4

call.

17 $
s

}n ind

of coding g d for FORMAT g

PIOSGENS
PIOSGEN,SAVES
)18

+2% "
(P)s Close-out coding generated by Generator.
IOHS

IDHTABS

TAC generated instructions.

600 PP 00033 0002 0000 0002 0000

PP

For ABS compilation, -this notice specifies the number of
absolute binary cards. For RPL compilation, -the number of
RPL dlocks is specified.

Number of serious and possible compilation errors, if any.

]
—

=]
12-18

(]

[+]
[——saMPLE

0O © 0 ¢ © ©

11«31,6

PROGRAM Is

CODE EDIY OF SAMPLE PR

8 CARDS IN RELOCATABLE BINARY 2

ENU OF CODE EDIT

OGRAM PAGE

BLOCKS

5

LI@3-4d0D dHL

€L

74

ERROR
INDICATIONS

Serious Errors

TAC ASSEMBLER-COMPILER

If an error is encountered in the source program during compila-
tion, an appropriate error indication is printed following the
erroneous instructions or constant on the code-edit, and compila-
tion continues. Serious error indications are preceded by minus
signs; possible error indications* are preceded by asterisks.

The following is a list of serious error indications that may be
printed on the code-edit.

SERIOUS ERRORS

- - - - - ADDRESS OF NEXT INSTRUCTION CYCLES MEMORY

DOUBLE ASSIGNMENT WOULD OCCUR IF SYMBOL WERE COMMON

- - - ADDRESS FIELD ERROR

- - - - AMBIGUOUS OR CONFLICTING F BITS
- - - - - - -BINARY CARD ‘‘nnnnnnnn’’ BAD
- - - - - - -COMMAND FIELD ERROR
- - - CONTROL CARD ADDRESS FIELD ERROR
CSA OF BINARY CARD IMPROPER, USED ZERO

- - - - - -DOUBLE ASSIGNMENT

- - - - - - - -END CARD ADDRESS ERROR
- - - ILLEGAL CONSTANT ON PREVIOUS CARD

- -~ - ILLEGAL CONTINUATION CARD
IMPROPER REFERENCE TO AN INDEX REGISTER
- = = - - - - - - - LABEL FIELD ERROR
- = = =« - = - - -LOCATION FIELD ERROR
- - - - NAME FIELD ERROR, NONAME USED
- - P/ CONSTANT NOT PROPERLY POSITIONED
- - - - PROGRAM CYCLES MEMORY
- SET PARAMETER NOT PREVIOUSLY DEFINED
- = « « - =~ - SYMBOL TABLE OVERFLOW
TOO MANY NAMES, NONAME USED
- = = e e e - - exxmxxx’ NOT DEFINED
- - - - - = 212 COMMAND IN 211 PROGRAM

*Indications of minor errors which are due to unusual coding
techniques, but may have been intended by the programmer.

THE CODE-EDIT 75

Possible Em,rs‘ The following is a list of possible error indications that may be
printed on the code-edit:

POSSIBLE ERRORS
* % % * % % % % % % % % * * % *x *x *x * % ADDRESS FIELD OVERLAP
* x ok ok ok % % %k 3k ¥ kx % % x % FIELD OVERLAP PREVIOUS CONSTANT
* ok ok ok ok x ok ok x k% >k *x x ¥ x x % JMPROPER INDEX REGISTER FIELD
% k% k ok ok ok ok k * % >k % * *x % % % * ¥ * * *x *x IMPROPER LABEL
% % k %k k %k % k% %k % k % % k¥ % % % % ¥ * % JINDEX FIELD OMISSION
* % % % % % % % % % * NODOLLAR SIGN (AS THE END SYMBOL OF A LINE)
% %k % *k *k %k % % *k % k % * % % * % % ¥ NUMERIC FIELD TOO LARGE|
* k% % x x X% x % x % % *x POSSIBLE ERROR REFERENCE TO A CONSTANT
* % x x POSSIBLE ERROR REFERENCE TO TEMPORARY, ASTOR OR COMSTOR
% % k %k %k k k % * % k % % % % * % % *x *x *x POSSIBLE F-BIT ERROR
* % % x % * % % * ¥ REFERENCE TO COMMON STORAGE MADE ABSOLUTE
* k ok ok ok X % % % % % % % x % * REFOUT ADDRESS IS INDEX MODIFIED
* ok ok ok ok ok %k k% k % * % * *x RELOCATABLE ADDRESS MADE ABSOLUTE
¥ % % % x * % TOO MANY FRACTIONAL CHARACTERS PREVIOUS CONSTANT
GENERATED In addition to the error indications discussed above, any of the
REMARKS following three remarks about the END card may also be included

on the code-edit by TAC:

>>>>>2>>2>2>2>2>> NO ADDRESS IN END CARD
>>>>>>>>2>>2>2>>>REFOUT IN END CARD
> > > 2> > > > >END CARD JUMP ADDRESS IS XXXXXXXX

Appendix A lists other comments, accompanying the Code-Edit,
that are typed out on the Console Typewriter by TAC during
compilation.

CONSOLE
TYPEWRITER
TYPE-OUTS

Appendix A

Operating System Typeouts of Source
Tape and Other

Errors Encountered During Compilation.

Program Errors, -

During the compilation process, one or more of the following
notices are typed out on the Console Typewriter by the TAC

Assembler.

TYPEOUT

MEANING

SUGGESTED RECOVERY
ACTION

Program Identity is xx. . .xx

TAPE n NOT AV

Tape unit identified as # is not
available, Computer halts with
M/11111 displayed in its Pro-
gram Register.

Make tape available and press
ADVANCE to continue.

TAPE n NO LIB

The tape mounted on Tape Unit
n was not a library tape.

Mount correctlibrary tape and
press ADVANCE to continue.

BAD LIB TAPE #

An illegal control word wasen-

None. TAC continues assem-

IGNORED countered in the Table of Con- bling, ignoring the rest of the
tents of the library tape now on Table of Contents of that li-
tape ». brary tape.

BAD RPL A missing control word was None.

detected in a called Generator
or Macro-generator program,
Computer halts with M/77777
displayed in the Program Reg-
ister.

TAPE n IN LOCAL

Tape unit # is in local status.
Computer halts with M/11111
displayed in the Program Reg-
ister.

Make tape available and press
ADVANCE to continue.

ks

78

TAC ASSEMBLER-COMPILER

TYPEOUT

MEANING

SUGGESTED RECOVERY
ACTION

TAPE n WR RING

Tape unit » is missing a write
ring, Computer halts with M/
11111 displayed in the Program

| Register.

Make tape available andpress
ADVANCE to continue.

TAPE n ROCKED
5

A Parity or Sprocket error was
detected on tape 7z. Program
tried to correct error five
times and failed. Computer
halts with M/11111 displayed in
the Program Register.

Press ADVANCE toattempt to
correct error five more
times, or change tape and re-
start job.

TAPE » NO GOOD

Non - recoverable tape error
detected on tape 7. Program

Change tape 7 and restart
job.

GEN ERR

A Generator requested more
parameters than were supplied
in its generator call by the
programmer. TAC assumes the
call to be satisfied and pro-
ceeds with the compilation.

Check generator or generator
call.

1 DMP TAC
or
.2 DMP TAC

A TAC Assembler Program
error. Computer halts with M/
77777 displayed in the Program
Register.

Get post-mortem dumps and
call Philco’s Programming
Department.

‘T n x CARDS y
BLOCKS

This typeout occurs at the end
of compilation if the object pro-
gram is in REL or ABS format.
It tells the number (x) of cards
of information transferred to
the Object Program Tape, n,
and the number of blocks on
this tape that contains this
transferred information. (Card
output blocks are always in
image mode, 20 words per
card, 6 cards per block. The
last block isfilled with blanks.)

RPL BLOCKS y

This typeout indicates the num-
ber of blocks () the RPL ob-
ject program comprises on
tape.

Appendix B

LOADING

OBJECT

I ROG RAMS Typical REL, ABS, and RPL Program.

THE RELOCATABLE
PROGRAM LOADER

Loaders. Processing of Object Program
Cards and Tape. Address Modifica-
tions, FaBit Modifications. Checksum.

This appendix briefly describes the loading functions performed
by typical TAC loader programs.

During compilation, a binary object program is produced on tape,
together with information necessary for a loader to properly load
this object program. The loader may be'a RELocatable program
loader, an ABSolute program loader, or an RPL program loader,
depending on whether REL, ABS, or RPL object program format
was specified.

It is not necessary in a REL compilation for every individual
program section, such as a binary library subroutine or a
previously compiled subprogram, tobe included in the compilation.
At load time, the separately compiled programs or program
sections can be loaded together by the REL loader to form an
integrated program. All the necessary linkage or intercommuni-
cation between the respective programs is achieved by the loader
from information on SYMBOL DEFINITION CARDS (see page 58),
and RELOCATABLE INSTRUCTION CARDS (see page 60), which
are produced during compilation from SYMBOUT and REFOUT
source cards respectively (see pages 22 and 23). '

The loading origin for relocatable programs is a variable which
depends on the program size and the amount of available memory
locations. The loading origin of a relocatable program is calcu-
lated by the Relocatable Program Loader, by subtracting the
length of the program, which is supplied on a PMAX card by TAC
(see page 56), from the address of the last available memory
location. For example, if a REL program requires 4000 memory
locations, and the amount of available memory is 32,768 locations,
then, the program’s loading origin would be location 28,768
(i.e., 32,768 - 4000).

If the address definition assigned to the symbol ALPHA during

compilation is 2000, ALPHA will refer to location 30,768 (i.e.,
2000 locations relative to 28,768).

79

80

TAC ASSEMBLER-COMPILER

REL object programs.are loaded in a forward direction (in order
of increasing location) at the end of memory. The first object
program is loaded in such a way that the last location of the
program occupies the last memory location; the second object
program is loaded so that iis last location occupies the location
immediately preceding the location occupied by the first location
of the first program, and so on. (Refer to Figure 14, below.)

REL PROGRAMS

«@t—BEGINNING OF MEMORY

OPERATING
SYSTEM

COMMON
STORAGE

RELOCATABLE
LIBRARY SUBROUTINES

THIRD
RELOCATABLE
BINARY
DECK

LOADING ORIGINS

SECOND
RELOCATABLE
BINARY
DECK

FIRST
RELOCATABLE
BINARY

DECK END OF MEMORY

Figure 14 ~ Loading of Relocatable Object Programs

For REL programs, the common storage area starts immediately
after the last memory location occupied by the operating

LOADING OBJECT PROGRAMS 81

REL LOADER
PROCESSING OF
OBJECT PROGRAM
CARDS

Processing Done
For All Cards

Address
Modifications

system.* The length of this area will be the largest of the common
storage requirements indicated on the individual PMAX cards.

An error check is made by the REL loader to insure that no
relocatable program overlaps the common storage area. Itadjusts
all addresses relative to the common origin or relative toa -
program origin,

After all the respective binary card decks representing the
individually compiled program sections are loaded, the REL loader
checks for remaining undefined symbols (REFOUTS). If undefined
symbols exist, the loader searches the TAC binary relocatable
library tape for the subroutines containing definitions on SYM-
BOL DEFINITION CARDS for these REFOUT symbols. These
subroutines are then loaded. If undefined symbols still exist after
the library search is completed, an appropriate error notice is
given and the loader transfers control to the operating system.

The REL loader processes every object program card. The
manner in which the information on these cards (shown in the
format explanation charts in Chapter 6) isprocessedis described
below.

o Columns 1-8 of each card are ignored. These columns contain
Identity and Sequence information in Hollerith, and have no
effect on loader processing.

o Columns 9-12 of each card are checked to determine if they
contain punches. I these columns contain no punches, the
card is ignored.

o If one or more of columns 9-12 contain punches, row 3 or
rows 3-9 of column 10 are checked for card identification.
If these rows are not punched, loader processing halts and
control is returned to an error routine in the operating
system.,

° Columns 11 and 12 of each card contain a checksum for that
card, If this checksum and that computed by the loader do not
agree, loader processing halts and control is returned to an
error routine in the operating system. **

I columns 11 and 12 are blank, no checksum is computed for
the card.

The Relocatable Program Loader adjusts all relative addresses
appearing on the SYMBOL DEFINITION CARDS, the RELO-
CATABLE BINARY INSTRUCTION CARDS; and the RELOCAT-
ABLE END-PROGRAM CARD. Absolute addresses are not
modified.

* I SYS (the Philco 2000 Operating System) is the operating
system used, the last memory location occupied by the
operating system is 777 octal. If 32K SYS is the operating
system used, the last memory location occupied by the
operating system is 7,777 octal.

*¥ Refer to the checksum technique discussed on page 88.

82

Processing The
PMAX Card

Processing Symbol
Definition Cards

TAC ASSEMBLER-COMPILER

In addition to the processing indicated on page 81, which is done
for all object program cards, the PMAX card is further processed
by the loader as follows:

. The loader determines the loading origin for the object
program from the contents of columns 13, 14, and 16:

If row 9 of column 16 is punched (one), the address
specified in columns 13 and 14 is the loading origin
of the object program.

If row 9 of column 16 is notpunched (zero), the informa-
tion contained in columns 13 and 14 is subtracted from
the address of the last available memory location, and
this difference becomes the loading origin of the object
program,

e The loader establishes the origin of the common storage
area as that location immediately following the last location
occupied by the operating system, and adjusts all common
addresses, specified by the contents of columns 25 and 26 of
the PMAX card, relative to this common origin.

e After processing the information in the other columns of the
PMAX card, the loader checks to insure that available
memory is not exceeded, and no overlap of the common
storage area occurs. If memory is exceeded or an overlap
occurs, loading is terminated, an appropriate error indica-
tion is typed by the console typewriter, and a post-mortem
dump is performed.

The loader constructs a list of the symbols whose definitions are
found on SYMBOL DEFINITION CARDS. This symbol list occupies
the area that was assigned to ASTORS, TEMPORARIES, and
common storage at compile time. The loader inserts the defini-
tions specified in these cards into the symbol list as follows:

e If the symbol is not already in the list, it is placed in the list
with its definition.

e If the symbol is already in the list, and is undefined (that is, -
it is placed in the list because of a previously encountered
REFOUT on a RELOCATABLE INSTRUCTIONS CARD OR
RELOCATABLE END-PROGRAM CARD), its definition is
placed in the list, -and each address, on the previously en-
countered RELOCATABLE INSTRUCTIONS and RELOCAT-
ABLE END-PROGRAM cards, that contains a reference
to the symbol is replaced with the sum of the definition of
the symbol and the compiled definition of the address.

e If the symbol is already defined in the list, a ‘‘double defini-
tion’’ error notice is typed on the Console Typewriter, and
the first definition specified is used.

LOADING OBJECT PROGRAMS 83

Processing
Relocatable Binary
Instruction Cards

Processing The
Relocatable
End-Program Card

In processing a RELOCATABLE BINARY INSTRUCTION CARD,
the Relocatable Program Loader adjusts the definitions of the
addresses on the card relative to program origin or to common
origin, according to the indicator bits in columns 13-16 of the
card. No adjustment is made for absolute addresses.

If the address references a REFOUT symbol, the loader:

o Adds the REFOUT symbol to the symbol list if it is not
already in the list, or

o If the symbol and its definition is already in the list (derived
from the symbol’s appearance on a previously encountered
SYMBOL DEFINITION CARD), the loader obtains its defini-
tion from the list, and replaces the address referencing that
symbol with the sum of the definition of the symbol and the
compiled definition of the address

If an address element was specified in the address and remarks
field of the END source card, the resulting RELOCATABLE END-
PROGRAM CARD will cause the loader to transfer control to this
address after loading the program. Before transferring control
however, the loader:

o Adjusts the address in columns 15 and 16 of the card accord-
ing to the indicator bits in column 13, in the same manner as
described above in processing RELOCATABLE BINARY
INSTRUCTION CARDS.

o Checks its list for any remaining undefined ‘symbols (RE-
FOUTs). ¥ no undefined symbols remain, control is trans-
ferred to the address in the End-Program Card.

If undefined symbols remain, the loader searches the TAC
relocatable binary library tape for subroutines containing
defintions on SYMBOLDEFINITION CARDS for these REFOUT
symbols. The loader then loads these subroutines and trans-
fers control to the address in the End-Program Card.

If undefined symbols still exist after the library search is
completed, an appropriate error notice is given, and the
loader transfers control to the operating system.

If no address element was specified on the END source card, the
loader will attempt to load the nextprogramdirectly after loading
this program.

84

F-Bit Modifications.
AtLoad Time

Checksum Performed
by The Loader

TAC ASSEMBLER-COMPILER

In order to have an instruction that contains a REFOUT symbol
refer to the proper half of the address represented by that symbol,
the relocatable program loader may modify the F-bit of the
instruction by adding zero or one (corresponding to the address
being left or right, respectively) to the F-bit. For example, if
the symbol ENTRAN1 represents a right address in a called
subroutine, and the instruction TDM in a calling program refers
to this address, TDM will be changed to SCD at load time.

The loader computes the checksum for an object program card
by summing all the relevant data bits on the card, and compares
this computed checksum with the checksum value existing in
columns 11 and 12 of the card. If these two columns are blank,
no checksum is computed.

The checksum values will agree when data on the card has
been transferred accurately. If these values do not agree, loader
processing halts, and control is returned to an error routine
in the operating system.

The following coding shows the checksum procedure; assume
that symbolic index register CARD is set to the address of
a word containing columns 1-4 of the card being checksummed:

L Location Command ~ Address and Remarks
TJM CKSUMX
CD
TXDLC 10,CARD
TDM CARDLOC
TMQ 2,CARD TEST FOR COLUMNS
ETA 24/1T47 11-12 BLANK
JAZ CKSUMX
ETA 24/1T23 COLUMNS 9-10TO AL
cQ
SRAQ 1

AIXOL {3,CARD
R|VARRPT[RPTAN |(0)

SET TO COLUMN 13
PRESET BY CARD

TYPE
AMA 1,CARD
SRAQ - |1
AQA
TAD
SCD 24
AD
SRA 24
TMD CARDLOC

RESET TO COLUMN1
COMPARE WITH

TDXLC |0,CARD
T™MQ 24/1T47

RPLPLABR R ALRNLRLANL ARARABLBLBLLRANLRARRNLBLN

. ES 2,CARD CHECKSUM ON CARD
CKSUMX |JAZ CKSUMX CHECKSUMS AGREE
JMP ERRORB NO AGREEMENT

LOADING OBJECT PROGRAMS 85

THE ABS AND RPL
PROGRAM LOADERS -

Because the number of columns to be summed depends on the
card type, the symbol VARRPT in the above coding should be
assigned:

e the valuel7for PMAX,SYMBOLDEFINITION, and RELOCAT-
ABLE END-PROGRAM cards
° the value 0 for ABSOLUTE END-PROGRAM cards

e the symbol Y for RELOCATABLE and ABSOLUTE BINARY
INSTRUCTION CARDS. The symbol Y is defined as the
integer part of the quantity (x+%+1), where

= Number of instructions on card specified in rows 4-9 of column 10

2

and k = 1/2 or 1, depending on whether the F-bit in row
1 - column 10 of the card is zero or one, respectively.

The loading origin for absolute programs is the compilation base.
ABS and RPL programs are loadedinaforward direction, starting
at the compilation base.

The common storage area may be located anywhere in memory.
The ABS or RPL loader does not keep a record of common stor-
age, not checks for memory overlap,

The following figure shows the loading scheme for ABS and RPL
programs.

ABS & RPL PROGRAMS

BEGINNING
OF
MEMORY

OPERATING
SYSTEM

LOADING ORIGIN

SINGLE
PROGRAM

(ALL CALLED
SUBROUTINES
AND SUB—
PROGRAMS
‘INCLUDED?)

- END OF MEMORY

Figure 15 — Loading of Absolute Object Programs

86

ABS LOADER
PROCESSING OF
OBJECTPROGRAM
CARDS

ABS Loader Processing
of Absolute Binary
Instruction Cards

ABS Loader Processing
of The Absolute
End Program Card

TAC ASSEMBLER-COMPILER

The ABS loader processes every object program cards The in-
formation in columns 1-12 of these cards are processed in the
same manner as for Relocatable Program Cards, indicated on page
85. No address modifications are performed.

In processing an Absolute Binary Instructions Card, the ABS
loader loads the instructions appearing on the card consecutively
into memory, according to the Core Starting Address specified
in columns 9 and 10 of the card.

The address indicated in columns 9 and 10 of the Absolute End-
Program Card is the address originally specified in the address
field of the END source card, and it is to this address that the
loader transfers control subsequent to loading the program,

Appendix C
CALLS ON
FORTRAN SUBROUTINES

The F label is used for calls on FORTRAN type subroutines.
It is currently a feature of the 32KSYS version of TAC* only.

The general form of this call is:

L Location Command Addess and Remarks

F symb entrance pamml;pammz;. . paramn$

where symb represents and optional symbol, and each param is
a parameter of the subroutine.

The format of the call on a FORTRAN subroutine is similar to
that on a standard TAC subroutine (see page 37) except that:.

° F in the label field signifiesacallon a FORTRAN subroutine.
° None of the parameters may be omitted from the call.

The resultant in-line coding generated for the FORTRAN sub-
routine call is:

JMP entrance .entrance$
NOP pavam1$
NOP param 9$
NOP paramn$

The symbol in the location field, if any, is assigned to the loca-
tion of the generated JMP instruction. Because FORTRAN sub-
routines expect transfer of control to have come from a right hand
instruction, the JP instruction is always made to occupy the right
half of the word as if an R had been written in its label field.

A NOP instruction is generated for each parameter. The address
field of the NOP is the address of the parameter.

*The version of TAC that is designed to operate under control of
the Philco Operating System, 32KSYS,

87

Appendix D

TABLE OF
PHILCO
CHARACTERS
PHILCO OCTAL HOLLERITH PHILCO OCTAL HOLLERITH
CHARACTER CODE PUNCH CHARACTER CODE PUNCH
0 00 (o0 - 40 11or 8-4 D
1 01 1 J 41 11-1
2 02 2 K 42 11-2
3 03 3 L 43 11-3
4 04 4 M 44 11-4
5 05 5 N 45 11-5
6 06 6 o 46 11-6
(07 7 P 47 11-7
8 10 8 Q 50 11-8
9 11 9 R 51 11-9
@ 12 8-2 @ - 52 11-8-2 @®
= 13 8-3 $ 53 11-8-3
; 14 8-4 * 54 11-8-4
= 15 |85 N 55 |[11-8-5 @D
& 16 8-6 @ # 56 11-8-6 D
' 17 8-17 () 57 11-8-7 @D
+ 20 12 Blank (space) 60 Blank
A 21 12-1 / 61 0-1
B 22 12-2 S 62 0-2
Cc 23 12-3 T 63 0-3
D 24 12-4 U 64 0-4
E 25 12-5 v 65 0-5
F 26 12-6 w 66 0-6
G 27 12-7 X 67 0-7
H 30 12-8 Y 70 0-8
I 31 12-9 z (j 0-9
n @ 32 12-8-2 @ | 72 0-8-2 @
: 33 12-8-3 , 73 0-8-3
) 34 12-8-4 (74 0-8-4
% 35 12-8-5 - 5 0-8-5 D
? 36 12-8-6 : 76 0-8-6 @
" 37 12-8-7 (D e @ ™ 0-8-7 @D
@ Multiple punched,
@ These two characters are not acceptable TAC characters, and are included

here only to show the complete character codes.

89

TAC

MNEMONICS

The following TAC mnemonics are currently acceptable to the TAC Assembler.

Appendix E

MNEMONICS

AD DORMS FMA JAGQFR MMAR SRD
ADXL DR FMAA JAGQL MMARS SRDN
ADXR FMAAR JAGQR MMAS SRQ
AIXJ EA FMAARS JANL MMR SRQN
AIXJEG EI FMAAS JANR MMRS SWD
AIXJS EIS FMAD JAPL MMS
AIXOL ENDDP FMAR JAPR MSU TAD
AIXOR ES FMARS JAZL TAM
AM ETA FMAS JAZR NOPL TAQ
AMA ETD FMM JBTL NOPR TCM
AMAS ETX FMMA JBTR TCXS
AMS FMAAR JDPL RPT TCXZ
AQ FAD FMAARS JDPR TDA
AQA FAM FMAAS JL SCD TDC
AQAS FAMA FMMR JMPL SD TDM
AQS FAMAS FMMRS JMPR SDXL TDQ
AWCS FAMS FMMS JNOL SDXR TDXL

FAQ FMSU JNOR SETDP TDXLC
CA FAQA FSD JOFL SIXJ TDXLY
CAM FAQAS FSM JOFR SIXJES TDXR
CAMA FAQS FSMA JQEL SIXJG TDXRC
CAMAS FCAM FSMAS JQER SIXOL TDXRY
CAMS FCAMA FSMS JQNL SIXOR TIJL
CAQ FCAMAS FSQ JQNR SKC TIO
CAQA FCAMS FSQA JQOL SKF TIXS
CAQAS FCAQ FSQAS JQOR SLA TIXZ
CAQS FCAQA FSQS JQPL SLAN TJML
Cbh FCAQAS JQPR SLAQ TJMR
CM FCAQS HLTL JR SLAQN TMA
cQ FCSM HLTR SLQ TMD
CsM FCSMA LWD SLQN T™MQ
CSMA FCSMAS ICOS SM TQA
CSMAS FCSMS I1ICOZ MA SMA TQD
CSMS FCSQ INCAL MAA SMAS TQM
CsQ FCsQA INCAR MAAR SMS TTD
csQAa FCSQAS MAARS sSQ TXDL
CSQAS FCSQSs JAEDL MAAS SQA TXDLC
CsQs FDA JAEDR MAD SQAS TXDLY

FDAQ JAEQL MAR sSQs TXDR
DA FDAQS JAEQR MARS ‘SRA TXDRC
DAQ FDAS JAGDL MAS SRAN TXDRY
DAGQS FEA JAGDR MM SRAQ TYXS
DAS FES JAGQFL MMA SRAQN TYXZ

91

Appendix F
SUMMARY
LIST OF
TAC CONTROL
INSTRUCTIONS

This appendix provides a convenient reference to all TAC control instructions discussed
in the manual.

INSTRUCTIONS Page
Command Address and Remarks Reference
AFEND n 14
ASGN symb, n : 17
ASTOR n 13
COMSTOR n ' 21
DEFINE symb, ¢ 17
END addr 24
IDENTIFY mk,nX 12
NAME - b 11
PAGE 23
REFOUT addyr ' 20
SAME symb,n ' 17
SET addr 15
SETLARGE add?’l ,addyr P 16
- SETSMALL addr,, addr, 16
SPACE n 23
SUBR name 23
SYMBOUT addr 19

93

TM-35 6-64 1M-1

A SUBSIDIARY OF MOM%W%

COMMUNICATIONS & ELECTRONICS DIVISION
3900 Welsh Road « Willow G Pa.

INT
'ﬂm 9
us.k

