

Preface

This manual discusses the Philco 2000 Assembler-Compiler,
TAC. It defines the language of TAC, states the rules which must
be followed when writing programs in thls language, and describes
the output produced.

The topics include TAC assembly-control instructions, i.e.,
control instructions to the TAC Assembly Program, as dis­
tinct from TAC Mnemonic instructions discussed in the Philco

·210/211 and the Philco 212 Programming Manuals .. Other topics
include TAC Constants, Source and Object Program Formats, and
information necessary for preparing a TAC language program to
be run on a Philco 2000 computer.

No previous computer experience,. other than a knowledge of
the information presented in the above-mentioned programming
manualS, is required for an understanding of the information
presented herein.

Contents

Page

Preface e _ .'. • .. •. • • •• iii

Introduction

Chapter

1

2

3

ELEMENTS OF THE SOURCE PROGRAM.
The Philco Coding Form •.•••.•.

The Identity and Sequence Field
The 'Label Field
The Location Field • .
The Command Field
The Address and Remarks Field

Absolute Quantities
Symbols •.•..•••.
Special Symbols. . .
Compound Symbols •.

Address Arithmetic ..
Index Register Notations
Address Field Termination
Remarks ..••.••.•.•••..

CONTROL INSTRUCTIONS.
NAME •..
IDENTIFY
ASTOR ..•
AFEND .. '.

Nullification of the AFEND Instruction
SET .•..••...•.......
SETSMALL and SETLARGE ••.
ASGN and SAME.
DEFINE •..
SYMBOUT
REFOUT
COMSTOR
SPACE
PAGE
SUBR
END

CO'MMON SYMBOLS
The' C Label
The Name COMMON

v

. ...

....

xi

1
1
3
3
5
5
5
6
6
7
7
7
9
9
9

11
11
12
13
14
14
15
16
17
17
19
20
21
23
23
23
24

25
25
26

Contents (Continued)

Chapter

4

5

6

Page

CONSTANTS •••........••..•........•........... 27
Pool and Non-Pool Constants .. 27
Full-Word and Field Constants. . • . • •. 28

Full-Word Constants . •. 28
Fixed-Point Decimal Constants ••.•.............• 28
Floating-Point Decimal Constants •. 29
Word Constants • • • • . • • •. 29
Location Constants . . . • • . . . • . •. 30

Field Constants •..............•...•..•......• 30
Alphanumeric Constants ...•....... .;• 31
Octal Constants • . • •. 32
Hexadecimal Constants•....•........... ;.. 32
Numeric Constants • . . • 33
Binary Constants • . . • •• 33
Parameter Constants • • . . . • . . • . . • •• 34
Command Constants • • . . . • 34

Groups of Field Constants. . . . • •. 35

LIBRARY ROUTINES•..•............ 37
General Description • .. 37
Subroutines . • . • •. 37

Calling A Subroutine • • •. 37
Writing A Subroutine .. 39
Adding A Subroutine To The Library Tape ••.......... 41

Generators .. 41
Calling A Generator• 41
Writing A Generator • 43

Symbols Permitting Communication
Between TAC and Generators. 45

Adding A Generator To The Library Tape. . • • • 47
Macros 47

Calling A Macro ... _ ~ • • . . . • • • • . • • . • • • • •. 47
Skeleton Coding. _ • •. 48
Adding Skeleton Coding to the Library Tape. 49

OBJECT PROGRAM FORMATS •..•....... 0 • • • • • • • • • •• 51
Binary Obj ect Program Cards. . . . • . . • • • . • . • 51

A Relocatable Binary Deck • • 51
The PMAX Card 52
Symbol Definition Cards•.••.••............ 53

vi

Chapter

6 (Continued)

7

8

Appendix

A

B

C

D

E

F

Contents (Continued)

Relocatable Binary Instruction Cards ••.••••.••..••
The Relocatable End-Program Card ••••••••.•.•••

An Absolute Binary Deck •.•.•••......••••.....••
Absolute Binary Instruction Cards •••••.•••••.•.•
The Absolute End~ Program Card •••••••••••••••••

Binary Obj ect Program Tape •••••••.••.••.•••.•.••
RPL Object Programs ••••••••.•••••••••.••••••

The PROGRAM IDENTITY Control Word ••••.••.•••
The LOAD Control Word . • . . • • • • • • • • • • • • • • • • • •
The TRANSFER Control Word •••••••••••.....•.

MIXED INPUT DECKS • • • • . . • • • • • . • • • • • • • • • . • . • • • •
The BITS Input Control Card • • • • . • . • • • • • . • . • • • • • • •
The TACL Input Control Card ••••.•••••••••••••.••

THE CODE - EDIT .•.•.•.•••.•...••.••••••••••...
Contents of the Code - Edit • • • • . . • . . • • • • • • . • • • • • . . •

Error Indications •••.•••..•.•••.••••.••.••••••
Serious Errors •.•.••.. ••..••••••.••......•
Possible Errors •••••.••..•••.•.•••••••...••

Generated Remarks

CONSOLE TYPEWRITER TYPE-OUTS

LOADING OBJECT PROGRAMS • • . .; .•..••...•••••••..

CALLS ON FORTRAN SUBROUTINES

TABLE OF PHILCO CHARACTERS•

TAC MNEMONICS . . • .

SUMMARY LIST OF TAC CONTROL INSTRUCTIONS

vii

Page

56
58
60
61
62
63
63
~4
64
65

67
68
68

69
69
74
74
75
75

77

79

87

89

91

93

Figures

Page

A TAC COMPILATION • • • • • • . • • • . •• xii

A PROGRA.M RUN •• xii

A TAC SOURCE PROGRA.M • 2

PIDLCO 2000 CARD •• 3

A RELOCATABLE BINARY DECK

FORMAT OF THE PMAX CARD ••••••••••••• .; •••••••••••••••••••

FORMA T OF A SYMBOL DEFINITION CARD ••••••••••••••••••••••••

FORMAT OF A RELOCATABLE BINARY INSTRUCTIONS CARD •••••••••••

FORMAT OF THE RELOCATABLE END-PROGRAM CARD •••••••••••••..

AN ABSOLUTE BINARY DECK

FORMAT OF AN ABSOLUTE BINARY INSTRUCTIONS CARD •••••••••••••

FORMA T OF THE ABSOLUTE END-PROGRAM CARD •• L •••••••••••••••

RPL COMPILATION OUTPUT • • • • • • • •••••••••••••••••••••••••••

FORMAT OF AN RPL OBJECT PROGRA.M •••• 0 •••••••••••••••••••••

A MIXED INPUT DECK. . . • . • • • . • • • • . • • • • • • • • . • • 0 • • • • • • • • • • • • •

LOADING OF RELOCATABLE OBJECT PROGRA.MS •••••••••••••••••••

LOADING OF ABSOLUTE OBJECT PROGRA.MS .

ix

51

52

54

56

58

60

61

62

63

63

67

80

85

A T AC: Compilation

Introduction

The TAC Assembler Program is one of many automatic program­
ming systems that are available with Philco 2000 computers.
TAC is the basic system; most other programming systems
translate into the language of TAC.

The TAC-Ianguage program which defines the operations to be
performed by the computer is the source program. In a TAC
compilation, the TAC Assembler:

• assemblies an. object program in Philco 2000 machine language
from the source program,

• compiles library routines into the assembled program, if
desired,

o produces a Code-Edit on tape, listing both the source pro­
gram and the compiled object program (see Chapter VIII),

o records the object program on tape in the object format
specified.

The object format specified may be:

o Relocatable Binary Card Format (RE L)

o Absolute Binary Card Format (ABS)

• ,Absolute Binary Tape Format (RPL)

In an RPL or ABS compilation, all parts of the program (i.e.,
subroutines, separate logical sections, subprograms) are included
in the compilation.

In an REL compilation, it is not required that all parts of the
program be included in the compilation. Separately compiled
program parts such as binary library subroutines or previously
compiled subprograms can be included at load time.

Each object format reflects the use of a particular Loader (see
Appendix B, Loading Object Programs).

Subsequent to the compilation, the Code-Exit is printed off-line;
binary cards of REL and ABS programs may be punched off-line.

xi

A Program Run

The following diagram shows the relationship between source
and object programs, and the TAC Assembler. Solid arrows
(---...) denote on-line, continuous operation; broken arrows
(---+.) denote off-line operation.

TAC - LANGUAGE
SOURCE PROGRAM
CARDS

--~
BINARY
OBJECT
PROGRAM

1 ... 41---- A TAC COMPILATION -----I.-.tl CARDS

In a program run, the object program on tape is loaded into
memory, then executed. The following diagram depicts this
process:

PHILCO 2000
COMPUTER

I 41--------14 PROGRAM .RUN-------1 .• ~1

xii

Chapter 1
ELEMENTS
OFTHE
SOURCE
PROGRAM

THEPHILCO

CODING FORM

Philco Coding Form and Card Fields.

Field Elements. Absolute Quantities.

Symbols. Remarks.

A TAC source program consists of a series of instructions
written in TAC-language format. Each instruction is written on a
line of the Philco coding form (see Figure 1). An instruction or
statement that is too long to fit on one line may be continued on
succeeding lines, starting after column 24.

The columns of the coding form are divided into fields, as follows,
corresponding to the fields on the Philco 2000 card (see Figure 2).

Identity and L Location Command Address and Remarks
Sequence

1 8 9 10 16 17 24 25 80

1

---"-'--"- _ .. _._ ... -. - ---------

PHILeo
.SUB"D'."OF,5ii;;a~Yi'~
COMPUTER OIVISION

Program:

IDENTITY AND L LOCATION SEQUENCE
12345678 9 10 11 12 13 14 15 16

SAMPOOIOI
SAMP0020*
SAMP0030
SAMP0040 C,0EFF
SAMP0050
SAMP0060 EXECUTE
SAMP0070
SAMP0080R
SAMP0090
SAMPOIOO
SAMPOIIO
SAMPOl20 S L¢!lJP
SAMPO 130
SA M PO 140
SAMPOl50
SAMPOl60
SAMPOl70
SAMPOl80
SAMPOl90 F
SAMP0200
SAMP0210
SAMP0220

I I I I I I I I I I I , I

PHILCO CODING FORM
Page •• ! ... of •..• 1 •••••••

I Programmer: I Date:

COMMAND ADDRESS AND REMARKS

1718 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55,56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75,76 77 78 79 80

•
--'- I

• , I· I

SAMPLE P R 0 GRAM,
I

PR¢GRAM T¢ EVALUATE A P¢LYN¢MIAL , --'-

NAME SAMPLE$, ,
A ST ¢R N+ 1 $ C¢EFF ,I,S, ,S,T,A,R,T,I,N,G, ,L,¢,C,A,T,I,¢,N, ,F,¢,R, ,C,¢,E,F,F,I,C,I,E,N,T S
ASGN N ,100$ DEFINE DEGREE 0F P0LYN0MIAL
TMD L/C0EFF$ " ,
TDXLC ,5$
RPTNA N+I$
TMQ o ,,5,$, I ,

I

--' , ,
FMMRS 1 , 5 $, , , , I

SIX¢ N + 1 t 5 $.. > C A L,C U L A T,E C ¢ E F F I C I,E NT S I

FL¢GIOX ,5$
--'- , ,

TAM ,5$
1 _L

TMD C/HLT,Cfl}EFF+N+1 ;C/HLT,L¢¢P,$, 1

AIXJ I , 5 $
I I I I I I I I I I I I I I I I

, ~
.1

P0LYVAL ARG; N;C0EFF$ WITH ARGUMENT I N ARG,EVALUATE Pfl}LYNfl}MIAL
TAM VALUE $

I I

PRT F,VALUE $. P,R I NT VALUE ,0F P¢LYN¢MIAL
F¢RMAT (9HIVALUE -. ,EI7.5)$

L

P0SITI0N$, , ..
JMP M/5$

l. --' --'-

END EX E C U T,E $
•

I I I L I I I I I I I I I I I I I I I I I I I_I I_I I I I I I I I 1 __ 1 I~I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

TF ·25

Figure 1 - A T AC Source Program

>-:3
:>
n
:>
en
en
t"j
::::
t:I:l
t""
t"j

~
n
o
::::
"'tl

t=
t"j

==

ELEMENTS OF THE SOURCE PROGRAM 3

THE IDENTITY AND
SEQUENCE FIELD
(Columns 1-8)

THE LABEL FIELD (L)
(Column 9)

After the program is written, it is punched on cards, each line of
the coding form corresponding to one card. The program is then
transferred from card to magnetic tape in an off-lin~ operation,
before being read into the computer for compilation.· During
compilation, the TAC Assembler assigns a location to each
mnemonic command, and computes its corresponding address
field.

ADDIESS AND IlMAIIC.S

00000000000000000000000000000000001000000001000000 0 010 0 0 0 0000100000000100000 D 0 010 0 0 0 0 0
11,'" 7"~II~nun~UYn~nnDn3nnDa.~~U~B.n~ •• ~U~"UMu.a.~~DM •• U.~.uaaM •• ~ ••• nnn.I~.n •••
111 111

I I I I I I
c 22 2 2 2 2 2 2 2 2 2 222 2 2 2 2 2 2 2 2 2 2 2 2 222 222 2 212 2 2 2 2 2 2 212 2 2 2 2 2 2 2'2 Z Z Z Z Z Z 212 2 Z 2 Z 2 2 212 2 Z 2 2 Z Z 212 Z 2 2 2 Z
.. . I I " I I 1
.. 3333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333 33 333 333 3 313 3 3 3 3 3 3 313 3333333133333333133333 3 3 313 3 3 3 3 3 3 313 3 3 3 3 3

I I , I 1 1
4444444 4 4 4 4 4 4 4 4 4 4 444 4 444 44 4 4 4 444 4414444444414444444414444444414444444414444444414444 4 4

e§ 5555555555555555555555555555555555:5555555 5:5 5 5 5 5 5 5·5:5 5 5 5 5 5 5 5:5 5 5 5 5 5 55:5 5 5 5 5 5 5 5:5 5 5555
f 1 I , I I I

666666666666666666 &6 6 6 6 6 6 6 6 6 6 6 6 6 6 616 6 6 6 66 6 616 66 & 6 6 UI6 66 66 66 61&& 66 6 &6 616 6& 61 && 61& 66 6& 6
I I. I I I I

111717 7717 77111 7 1177
, I, I I I I I

8 8 8 8 8 8 8 8 8 8 8 8 8 8 I III 8 8 I 8 8 8 I 8 8 8 8 888 8 818 8 •••• 8 '11 I ., I " II' I ,. , , , ,I, I ••••• III III ••• 118 III • I
ID:~~~:N~:D L LOCATION COMMAND 1 2 I I ADDIE!' D ':MAltc.S IS: • I 7

Figure 2 - Phi/co 2000 Carel

The identity and sequence field may be:

o Blank (spaces), or contain

o Alphanumeric t identity and sequence information, used to
indicate to the programmer or operator the sequence of the
source program cards, and to identify the program to which
these cards belong.

Information in the field has no effect on the compilation.

The label field may contain:

• A blank, or

o Any of eleven TAC label characters: B, C, D, E,F, I, L, P,
R, S, or * (asterisk).

f Any combination of alphabetic and/or numeric characters.

4 TAC ASSEMBLER';COMPILER

Each of these eleven label characters performs a special control
function, as described below.

LABEL FUNCTION CHARACTER

I Indicates that the program's identity (an alpha-
numeric name identifying the program) is speci-
fied in columns 17-32. The identity is comprised
of ali sixteen characters (spaces included) in these
columns.

The Ill-Card" must be the first card of the
program.

L Indicates that the instruction written in the com-
mand and address fields is to be placed in the
left half of an instruction word. If the previous
instruction already occupied the left half of the
word, a NOP instruction will be inserted in the
right half of the word, and this instruction placed
in the left half of the succeeding word.

R Indicates that the instruction is to be placed in
the right half of an instruction word. If the pre-
vious instruction already occupied the right half
of the word, a NOP instruction will be inserted in
the left half of the next word, and the instruction
placed in the right half of this word.

C Indicates that the symbol in the location field of
the instruction, or in the addressfieldofan ASGN,
SAME, SYMBOUT, or REFOUT instruction, is a
com.mon symbol (see page 28). A common symbol
is a symbol which has a singular definition
throughout the program.

B Performs the functions of both C and L labels.

D Performs the functions of both C and R labels.

E Indicates. the end of the effect of a previous AFEND
control instruction (see page 16). This character
is written in the label field of an AFEND instruc-
tion only.

P Indicates that the constant beginning in the com-
mand field is a Pool Constant (see page 30).

S Indicates that the command and address fields
. contain a TAC subroutine call (see page 41) ..

F Indicates a FORTRAN subroutine caU.· See Ap-
pendix C.

* Indicates that this line (card) contains remarks
only, and has no effect on the compilation. (See
page 12).

t For a review of the format of an Instruction word, see the Phil co 210/211 Programming Manual (TM-10),

or the Phllco 212 Reference Manual. (TM-29).

I

ELEMENTS OF THE SOURCE PROGRAM 5

THE LOCATION FIELD
(Columns 10-16)

THE COMMAND
FIELD
,(Columns 17-24)

THE ADDRESS AND
REMARKS FIELD
(Columns 25-80)

The location field is used to tag (assign a symbolic name to)
an instruction, as a means of referencing that instruction. This
field may be:

• Blank, or may contain

• A symbol* of from 1 to 7 characters.

If the location field contains a blank, and the command field
contains a TAC mnemonic, the resulting instruction will be
assigned the next consecutive available memory location.

If the location field contains a symbol (tag), all references to this
symbol will be linked to the corresponding memory location
assigned to the tagged instruction.

When used in the location field of a mnemonic, or in the location
field of a SET, SETLARGE, SETSMALL, ASTOR, or COMSTOR
control instruction, the symbol is considered defined, and it must
not appear again in the location field, or appear as a symbol
(symb) to be defined in the address and remarks field of an ASGN
or SAME instruction (see page 1 7), in the same program section.
If a symbol is doubly defined, the first definition is used and an
error indication is printed on the Code-Edit.

The command field is used to specify:

o A Philco 2000 Mnemonic

o The command portion of any TAC Control Instruction (see
Chapter 2)

o A Constant, as described in Chapter 4

o Subroutine Calls, Generator Calls, or Macro Calls, as de.,.
scribed in Chapter 5.

The address and remarks field is used to specify address field
elements, pool constants (see Chapter 4), ancl/ or remarks.

An address field element may be:

• An Absolute Quantity

• A Symbol, of from 1 to 23 characters

o A Special Symbol

• A Compound Symbol

• An Index-Register Notation

TAC computes the resultant instruction address from the address
field elements specified.

*A symbol is any group of alphanumeric characters with at least
one character alphabeUc.

6

Absolute Quantities

SYl11bols

TAC ASSEMBLER-COMPILER

An absolute quantity is a decimal or octal integer value written
as follows:

GENERAL FORMS EXAMPLES

xxxxx 12345

M/yyyyy M/33333

where xxxxx is a decimal integer of up to
five digits, and M/ indicates that yyyyy is
an octal integer of up to five digits. Neither
xxxxx nor yyyyyexceeds 32,767 decimal.

A symbol appearing in the address and remarks field may be
written in either-of two forms:

GENERAL FORMS EXAMPLES

Symb ALPHA

Name.Symb PROGRAM.ALPHA

where Symb represents a symbol of up-to 23
characters in length, and Name is the name of
a program section (see page 13).

During compilation, these symbols will be defined (assigned
a value) by virtue of their appearance in:

• the location field of a mnemonic, or SET, SETLARGE, SET­
SMALL, ASTOR, or COMSTOR control instruction, or in

• the address and remarks field of an ASGN or SAME instruc­
tion (see page 19)

Once a symbol is thus defined, it cannot be redefined. Any
attempt at redefinition will result in the symbol being doubly
defined; in which case, the first definition is used, and an error
indication is printed on the Code-Edit.

Undefined symbols (symbols not defined as above) in the program
are defined by the TAC Assembler. These undefined symbols are
called TEMPORARIES, and are so designated on the Code-Edit.

Preset symbols such as index-register designations (lX, 2X, etc.,
see page 11) are predefined~n the symbol table of TAC, and cannot
be redefined during a compilation. They can only be changed by
modifying their assignment in TAC itself.

A detailed discussion of the Name.Symbol form is discussed
under the NAME control instruction, page 13.

ELEMENTS OF THESOURCE PROGRAM 7

Special Symbols

Compound Symbols

Address Arith metic

The notations (P), (PMAX) , and nH are special TAC symbols,
each with a special meaning. These notations are written as
follows:

GENERAL FORMS EXAMPLES

(P) (P)

(PMAX) (PMAX)

nH 7H

where n is a decimal integer other than zero.

The notation (P) refers to the current contents of the Program
Counter, and represents the location of the current instruc­
tion (i.e., the location of the instruction in which the notation (P)
appears).

The notation (PMAX) represents the left address immediately
following the largest memory address occupied by the program.

The notation nH refers to half of a location word. It represents
the nth half-word relative to (following or preceding) another
half-word.

A Compound Symbol is an address field notation that consists
of two or more absolute quantities, ancl/ or symbols, ancl/ or
special symbols, separated by arithmetic operators. These
operators are + (Plus), - (minus), * (asterisk), and: (colon), de­
noting addition, subtraction, multiplication, and division, re­
spectively.

To determine the resultant instruction address that the Compound
Symbol represents, address arithmet~c is performed from left
to right of the Compound Symbol as fOUows: multiplications and
divisions first, then additions and subtractions. If the final result
of the address arithmetic performed is negative, the two's
complement of the result is used as the resultant address.

Example

Assume the symbols ALPHA and BETA have been assigned the
values 4000 and 9000 respectiyely, and the Program Counter
currently contains the value 7000. Then, the Compound Symbols:

ALPHA+50$
BETA-ALPHA: 2$
ALPHA*M/10$
(P)+5H$

represents the resultant addresses (memory locations) 4050, 7000,
32,000, and the right h3.l.f of location 7002, respectively.

8 TAC ASSEMBLER-COMPILER

The resultant address computed depends on the object program
format specified (REL, ABS, or RPL, see pages 51, 60 and 63),
and must be one of the following:

1. Absolute

2. Relative to program origin (the location of the first instruc­
tion of the program)

3. Relative to the common storage area (see page 83)

4. Symbolic with an increment*

A symbol is considered absolute when it is assigned a numeric
value in an ASGN or SAME instruction (see page 19); it is
considered relative when defined by TAC in terms of the program
counter during compilation.

When REL object format is specified, the following restrictions
apply:

• If additions only are to be performed, only one of the
operands may be relative; all other operands must be
absolute.'

• If subtractions only are to be performed, the operands can be
absolute or relative; however, if relative, they must be
relative to either the common origin or to the program
origin.

• If additions and subtractions are to be performed, there must
be at least n-l relative operands involved in the subtraction
process for the n relative operands involved in the addition
process.

• Multiplication and division are permitted between two operands
only if both are absolute.

• No more than one of the operands involved in address arith­
metic may be a REFOUT symbol (see page 23).

• The result of address arithmetic performed on the address
in an ASTOR or COMSTOR instruction (see pages 15 and ·25)
must be absolute.

There are no address arithmetic restrictions with ABS or RPL
format.

*Resulting from a REFOUT instruction, see page 23.

ELEMENTS OF THE SOURCE PROGRAM 9

Index Register

Notations

Address Field
Termi,nation

Remarks

An Index Register Notation is a notation, in the address and
remarks field, that contains a reference to an Index Register.
The general forms of Index Register Notations are:

GENERAL FORMS EXAMPLES

, i ,5

or 100,5X

val,i ,BETA

M/10OO,BETA

where i is a decimal integer (0-8) or a symbol,
and the characters ,i represent Index Regis-
ter i.

When i is a decimal integer, an X may be writ-
ten fol lowing it as an alternate way of speci-
fying the Index Register.

The symbol val, if present, represents a value
in the form of an absolute quantity, symbol,
special symbol, or compound symbol.

The address formed by TAC has V and N fields of val and i
respectively. During program execution, the resultant address is
the sum of the contents of Index Register i and the value val.-

Assuming that Index Register 5 contains the value 2000, and that
the symbol BETA has been assigned the value 5, the above
examples refer to memory locations 2000, 2100, 2000, and 2512,
re spe cti vely .

Address field elements are terminated by a $ character or by
means of a previous AFEND instruction (see page 16). Where
necessary, these address elements may be continued into suc­
ceeding address and remarks fields until terminated by a $
character or by means of a previous AFEND instruction.

When address elements continue into the address and remarks
field of succeeding (continuation) cards, and label, location, and
command fields must be blank.

Remarks may be written after the $ character terminating an
address field element, or after the column specified by a pre­
viousAFEND instruction. (The * label discussed on page 5 is
also used as an .alternate way of writing remarks.) Remarks
have no effect on the compilation.

Chapter 2
CONTROL
INSTRUCTIONS

NAME

Control Instructions To The TAC

Assembler Program.

Control instructions provide the TAC Assembler with information
necessary for performing the following control functions:

• Identify a program or program section (NAME Instruction)

• Specify the memory size and number of index registers of
the source computer (IDENTIFY Instruction)

• Reserve storage locations (ASTOR Instruction)

• Define the length of the address fields of instructions (AF END
Instruction)

• Alter the program counter (SET,SETSMALL,andSETLARGE
Instructions)

o Define symbols (ASGN or SAME Instruction)

o Define new instructions. in terms of current acceptable ones
(DEFINE Instruction)

• Permit intercommunication between separately compiled
relocatable object programs (SYMBOUTand REFOUTInstruc­
tions)

• Reserve common storage area for relocatable object pro­
grams (C OMS TOR Instruction)

• Control line and page spaCing on the High..:.Speed Printer
(SPACE and PAGE Instructions)

• Reference a subroutine (SUBRInstruction)

• Indicate the .end of a program (END Instruction)

The function of each control instruction is discussed in detail
below. The instructions do not affect the flow of operation in the
program, nor do they (except the SUBR Instruction) introduce
any additional COding in the object program.

The NAME instruction is used to identify a program or program
section (subprogram). This instruction permits ·TAC to distin­
guish between different program sections making up the complete

11

12

IDENTIFY

TAC ASSEMBLER~COMPILER

program, and between identical symbols used in the different
program sections. The general form of the NAME instruction is:

GENERAL FORM EXAMPLES

Command Address and Remarks Command Address and Remarks

NAME p NAME ALPHA

where pis the name of a program
NAME BETA 101

or program section (subprogram).
Program and subprogram names
may be one to eight alphanumeric
characters long, the first charac-
ter of which must be alphabetic.

All symbols following a NAME instruction are identifiable by
the name (PJ appearing in that NAME instruction. If the NAME
instruction is omitted from a program, TAC assumes the name
NONAME for that program.

The NAME instruction must be used in cases where a program
comprises two or more sections. As many as 256 different NAME
sections may occur in a program. If this amount is exceeded, an
appropriate error indication is printed on the Code-Edit.

When an instruction of a subprogram is to be referenced from
outside the subprogram, the name of the subprogram must
be prefixed to the location of the instruction referenced. A period
is used to separate the prefixed subprogram name from the
location referenced. For example, address DELTA in subprogram
B must be referred to as address B.DELTA when referenced
from outside subprogram B.

The name COMMON has speCial meaning. Use of this name is
discussed under Common Symbols, page 28.

The IDENTIFY instruction is used to indicate to TAC that the
object computer (the computer on which the object program is
to be run) differs in memory size and/or in the number of index
registers from the source computer (the computer on which the
source. program is compiled).

CONTROL INSTRUCTIONS

ASTOR

13

The general form of this instruction is:

GENERAL FORM EXAMPLES

Command Address and Remarks Command Address and Remarks

IDENTIFY mK,nX IDENTIFY 32K,8X

IDENTIFY 16K

where m is 8, 16, or 32, indicat- IDENTIFY ,8X
ing an 8192, 16,384, or 32,768
word object computer, respec-
tively; and n is an integer* indi-
cating the number of index regis-
ters of the object computer.

The parameters mK and nX are optional; either one may be
omitted from the IDENTIFY instruction. The parameter mK
may be omitted if source and object computers have the same
size memory; the parameter nX may be omitted if both computers
have the same number of index registers. Where source and
object computers do not differ in memory size and number of index
registers, the entire IDENTIFY instruction may be omitted from
the program.

The ASTOR instruction is used to reserve a specified numbe3/'­
of storage locations in memory, outside the area occupied by the
program. The general form of this instruction is:

GENERAL FORM EXAMPLES

Location Command Address Location Command Address

Symb ASTOR n ARRAY ASTOR 128

BETA ASTOR M/7447
where Symb is a symbol, and n KAPPA ASTOR SIZE
is an absolute quantity, or sym-

DELTA ASTOR N*128-128 bol or compound symbol defined
in the program

Symb represents the symbolic ad-
d ress of the first location of the
storage area reserved; n repre-
sents the number of storage lo-
cations ~eserved.

*It the value of n exceeds the computer memory size, the value is
reduced modulo that size. If address arithmetic is indicated by
n, the result of the address arithmetic must be absolute.

14

AFEND

Nullification of the
AFEND Instruction

TAC ASSEMBLER-COMPILER

There can be as many ASTOR instructions in a program as
memory will permit. The storage locations are reserved con­
tiguously, in the order of appearance of the ASTOR instructions
in the program.

The AFEND (Address Field END) instruction permits a pro­
grammer to terminate address fields without having to write a
$ character after each address field. The AFEND specifies where
the address field of individual instructions end. The general form
of this instruction is:

GENERAL FORM EXAMPLE

Command Address and Remarks Command Address and Remarks

AFEND n$ AFEND 42$

where n is any decimal integer
25-80, indicating the column of
the coding form or card where
each subsequent address field is
to be assumed terminated.

The AFEND instruction causes TAC to assume a dollar sign in
column n of each subsequent instruction, until the AFEND is
nullified (see below). Remarks may be written after column n
of the instructions.

The effect of an AFEND instruction may be temporarily or
permanently nullified at a subsequent point in the program.

Temporary nullification occurs for:

• Any subsequent instruction whose address is terminated
with a $ character prior to column n of the AFEND.

• Any subsequent instruction whose address field contains
a non-space character in column n. Such instructions must
therefore be terminated by a $ character.

• Macro or Generator Calls. If remarks are associated with
a Call, a $ character must precede the remark.

\
• Instructions which are included in the program as a result

of a Subroutine, Macro, or"Generator call. An AFEND in the
main program does not affect such inserted coding. The
inserted coding may contain their own AFEND instructions.

CONTROL mSTRUCTIONS

SET

15

Permanent nullification occurs when:

• A subsequent AFEND instruction specifies a new value for n.

• A subsequent AFEND instruction with an E in its label field
is encountered. The E indicates the End of the effect of the
previous AFEND instruction. The format of this AFEND is:

L Location Command Address and Re_marks

E AFEND $

The effect of the AFEND instruction on alphanumeric constants
is discussed on page 34.

The SET instru~tion is used to set the program counter. By
means of this instruction the programmer can specify the location
of any instruction in his program, and can reserve memory
locations within his program. The general form of this instruction
is:

GENERAL FORM EXAMPLES

Command Address and Remarks Command Address and Remarks

SET addr SET 512

where addr is -any address field
SET M/1000

element except the Symbol SET BETA

(PMAX) and Index Register No- SET (P)+50
tations. SET (P)+BETA

For REL compilations, the compilation base (initial program
counter setting) is zero; all relocatable instruction addresses
are compiled with zero as the base. In ABS and RPL compilations,
TAC assumes the compilation base preset by the installation. This
base depends on the size of the operation system used, and is
fixed by the installation *.
The SET instruction causes the program counter to be reset to
the address element specified in its address and remarks field,
thus changing the address at which the next and succeeding
instructions are to be placed in the program. For example,

*If SYS (the Philco 2000 Operating System) is the operating sys­
tem used, the compilation base is 1000 octal. If 32K SYS is the
operating system, the compilation base is 10,000 octal.

16

SETSMALL and
SETLARGE

TAC ASSEMBLER-COMPILER

if the following coding,

L Location Command Address and Remarks

NAME TRACK$
START TMD ALPHA$

·
· SET 2000$

RHO TMA BETA$

·
·

appeared in a program, location RHO would be assigned the
address 2000*. If the program counter read 1500 previously,
500 locations (words) would be skipped over when the SET is
executed.

All symbolic address field elements must be defined prior to
their appearance in a SET instruction. However, symbols defined
in ASTOR or COMSTOR control instructions must not appear as
an address field element of a SET instruction.

These two control instructions perform basically the same
function as the SET instruction. The SETSMALL instruction
causes the program counter to be reset to the smqHer_ of the two
address elements appearing in its address and remarks field;
the SETLARGE instruction causes the program counter to be
reset to the larger of the two address elements appearing in its
address and remarks field. In all other respects, these two
instructions are similar to the SET instruction. All rules con­
cerning the SET apply.

The general forms of these two instructions are:

GENERAL FORMS EXAMPLES

Command Address and Remarks Command Address and Remarks

SETSMALL addr} ,addr2 SETSMALL A + 1, B + 2

SETLARGE addr}' addr2 SETLARGE C, D

where addr} and addr2 are address
field elements except the symbol
(PMAX) and Index Regi ster Nota-
tions.

*In relocatable programs this address is relative to the pro­
gram's loading origin.

CONTROL INSTRUCTIONS

ASGN and SAME

DEFINE

17

The ASGN and SAME instructions perform the same function.
Either ASGN or SAME is used to assign a value to a symbol.
The value assigned may be absolute or symbolic. The general
forms of these two instructions are:

GENERAL FORMS

Command Address and Remarks

ASGN symb,n

SAME symb,n

where n is a value in the form of
an address fi eld element (other
than an Index Regi ster Notation),
and symb is a symbol to which the
value n is assigned.

Several symbols (symb) may be
defined by a single ASGN or SAME
instruction. In thi s case, each
"symb,n" combination must be
separated by semicolons, as fol­
lows:

ASGN symb 1 ,nl; symb2,n2; •••

SAME symb1 ,nl; symb 2,n2; ••.

Command

ASGN

ASGN

SAME

SAME

ASGN

SAME

ASGN

EXAMPLES

Address and Remark s

ALPHA, 2000

ALPHA, M/3720

BETA, TAU

BETA, EPSILON +50

A,2000;B,POS;C,Mil500

A, D-40; B, (P) + 50

NP, M/1051 + lH

As indicated in the examples, the parameter n may specify ad­
dress arithmetic; the parameter symb may not.

A "C" in the label field of an ASGN or SAME instruction makes
the symbols (symb) in the address and remarks field of the
instruction common throughout the program. (See page 28.)

The DE FINE instruction is used to define or redefine a command.
The general form of this instruction is:

GENERAL FORM EXAMPLES

Command Address and Remarks Command Address and Remarks

DEFINE symb,c DEFINE LLD, TMD

where symb is a symbol 1-8 char-
DEFINE JBT, NOP

acters long, and cis a command, DEFINE PAUSE,
or control word written as a 16- 010000000401150001
digit octal constant.

18 TAC ASSEMBLER-COMPILER

This instruction causes all subsequent symbols symb in the
command field to be· interpreted as the command or control
word c. (The repeat mnemonic RPT is a special case, and
must not appear as either symb or c in a DEFINE instruction.)
The machine coding produced for symb upon compilation is that
normally produced for c.

As indicated in the above examples, the DEFINE instruction
permits a programmer to:

1. Define a new command in terms of an existing TAC command.

2. Redefine one TAC command in terms of another.

3. Define a computer half-word in terms of a control word
of the following format:

BITS CONTENTS

0-16 A 17-bit mask which is used to insert the S-bit, address
field, and F-bit into the instruction. If the F-bit is a
function of the address representation, bit 16 must be
one. If the F-bit is determined by the mnemonic in bits
21-28, bit 16 must be zero.

17-20 Zeroes.

21-28 The command portion of the half-word being defined.

29 One or zero:
A one causes a possible error indication to appear on
the Code-Edit if the address field of the instruction
refers to a pool constant.

30 One or zero:
A one causes a possible error indication to appear on
the Code-Edit if the address field of the instruction
refers to an index register.

31 One or zero:
A one causes a possible error indication to appear on
the Code-Edit if the address field does not refer to
an index register.

32-33 Address F-bit indicator.
00: Indicates that the address of the instruction may

be a left or right address.
'01: Indicates that the address of the instruction should

be a left address.
111: Indicates that the address of the instruction should

be a right address.

34 Zero.

CONTROL INSTRUCTIONS

SYMBOUT

19

BITS CONTENTS

35 One or zero:
A one causes a possible error indication to appear on
the Code-Edit if the address field of the instruction
refers to a temporary address, or to the location of
an ASTOR instruction or a COMSTOR instruction.

36-37 00: Indicates that the instruction is either a left or
right instruction.

01: Indicates that the instruction is a left instruc-
tion.

11: Indicates that the instruction is a right instruction.

38-46 Zeros.

47 One.

When relocatable programs are loaded together, symbols which
are defined in one program may reference, or be referenced
by, instructions in the other programs. To permit such inter­
program referencing, SYMBOUT instructions (and REFOUT
instructions, see next page) identifying the symbols must be
included in the programs.

The SYMBOUT instruction permits TAC to supply the relocatable
program loader with the definitions of the symbols which appear
in its address and remarks field.

The general form of the SYMBOUT instruction is:

GENERAL FORM
Command Address and Remarks

SYMBOU T addr

where addr is a symbol (8ymb or
name.8ymb) that is defined in the
program containing the SYMBOUT
and that may be referenced by
another program. (The element
8ymb may be composed of from 1
to 8 characters.)

Any number of symbol s may be
specified in the address and re­
marks field of a SYMBOUT in­
struction. If several symbols are
specified, they must be separated
by semicolons, as follows:
SYMBOUT I addr1 ;addr2;

Command

SYMBOUT
SYMBOUT
SYMBOUT

EXAMPLES

Address and Remarks

LOOP
ALPHA.BETA
RHO; TAU; BETA

20

REFOUT

TAC ASSEMBLER-COMPILER

The symbol specified in the address and remarks field of the
SYMBOUT instruction is defined in the program containing the
SYMBOUT, and both the symbol and its definition are forwarded
to the relocatable program loader on SYMBOL DEFINITION
CARDS, produced during compilation from the SYMBOUT cards
(see page 58). The REL loader applies the definition to the symbol
wherever it appears in another program, provided that the symbol
also appeared in a REFOUT instruction in that program.

A "C" in the label field of a SYMBOUT instruction causes the
symbol(s) in the address and remarks field of the instruction to
be made common throughout the program (see page 28).

The REFOUT instruction is used in conjunction with the SYMBOUT
instruction to permit inter-program referencing of symbolic
locations.

The REFOUT instruction indicates to TAC that the symbols
appearing in its address and remarks field are defined in another
program, and that the definitions of these symbols will be avail­
able to the loader at load time.

The general form of the REFOUT instruction is:

GENERAL FORM

Command Address and Remarks

REFOUT addr

where addr is a symbol that is de­
fined in another program, and ap­
pears in a SYMBOUT instruction
in that program.

Any number of symbols may be
specified in the address and re­
marks field of a REFOUT instruc­
tion. If several symbol s are speci­
fied, each symbol must be sep­
arated by a semicolon as follows:

REFOUT I addTI; addT2; •••.

Command

REFOUT
REFOUT
REFOUT

EXAMPLES

Address and Remarks

LOOP
ALPHA.SPOT
A.RHO;B.TAU; G.BETA

This instruction causes all references to these symbols to be
indicated symbolically in the. relocatable binary deck produced
from the compilation (see page 55). During loading, the relocat­
able program loader obtains from SYMBOL DEFINITION CARDS
the definitions of these symbols.

CONTROL INSTRUCTIONS

COMSTOR

21

REFOUTs are produced for subroutine calls automatically by TAC.
(See pages 41 and 43). Any symbol in the program with the same
name as the called subroutine will automatically be considered a
REFOUT· symbol.

A "C" in the label field of a REFOUT instruction causes the
symbols in the address and remarks field of the instruction to be
made common throughout the program (see page 28).

The following example shows the use of the SYMBOUT and
REFOUT instructions in the two separately compiled programs
PROOA and PROOB:

I

L Location Command Address and Remarks

·
· NAME PROOA

·
SYMBOUT LOOP $

LOOP TMA ALPHA $

·
· END $

·
·

NAME PROOB

·
REFOUT PROOA. LOOP $

·
JMP PROGA.LOOP $

·
END $

~cause the symbol LOOP is defined in program PROGA and not
in program PROOB in which it is referenced, an appropriate
SYMBOUT instruction specifying the symbol is included in
program PROGA, and an appropriate REFOUT in program PROG B.

The COMSTOR instruction is used to reserve a specified number
of words in memory as a common storage area, to be used by all
relocatable programs loaded together.

22 TAC ASSEMBLER-COMPILER

The general form of this instruction is:

GENERAL FORM EXAMPLES

Location Command Address Location Command Address

symb COMSTOR n ALPHA COMSTOR 80

where symb is a symbol represent-
BETA COMSTOR 500

ing the location of the first word DELTA COMSTOR M/700
of the area reserved, and n is any
address field el ement (except a
Special Symbol or an Index Regis-
ter Notation) representing the
number of memory locations that
are reserved.

The common storage area is reserved outside the boundaries of
the program containing the COMSTOR. The location of the area
reserved is not defined at compilation time but at load time.
At load time, the first word of common memory reserved is
made identical for all relocatable programs loaded together.

There can be as many COMSTOR instructions in a program as
memory will permit. The total amount of common storage
specified by a program is equal to the sum of the amounts of
storage speCified by the individual COMSTORs in the program.
The COMSTOR areas are reserved contiguously, in the order of
appearance of the COMSTORs in the program.

When several relocatable programs are loaded together, the
amount of common storage reserved will be the largest of the
total amounts specified for the individual programs. For example,
if the COMSTOR instructions in the above example represent the
total amount of storage specified for three separately compiled
relocatable programs loaded together, a single common storage
area of 500 words would be reserved for use by all three programs.

For relocatable programs, the common storage area starts
immediately after the last word occupied by the operating system.
At load time all addresses in the common storage area are
adjusted relative to common origin (the location of the first word
in this area) by the relocatable program loader.

Although the COMSTOR instruction is used primarily in relocat­
able programs, it may also be used in absolute programs. When
COMSTOR is used in an absolute program, the common storage
area reserved starts after the last ASTOR area, and the overall
program size indicated as (PMAX) will reflect the inclusion of
this area.

CONTROL' INSTRUCTIONS

SPACE

PAGE

SUBR

23

rhe SPACE instruction permits the programmer to control the
vertical spacing of information on the Code-Edit. SPACE causes
the High-Speed Printer to advance the Code-Edit a specified
number of lines. The general form of this instruction is:

GENERAL FORM EXAMPLE
Command Address and Remarks Command Address and Remarks

SPACE n SPACE 10

where n is any decimal integer
from 1 to 32767, indicating the
number of lines to be skipped.

The value n does not include the margins at the top and bottom
of each Code -Edit page.

The PAGE instruction is used to control the amount of informa­
tion to be printed on a page of the Code-Edit. PAGE causes
the High Speed Printer to advance the Code-Edit to the top of
the next page. The form of this instruction is:

GENERAL FORM EXAMPLE
Command Address and Remarks Command Address and Remarks

PAGE PAGE

The SUBR instruction is used to call a subroutine. (See also, the
use of the S label, pages 5 and 41.) This instruction causes TAC
to include the subroutine speCified in the address and remarks
field of the instruction in the compiled program. The general
form of this instruction is:

GENERAL FORM EXAMPLE
Command Address and Remarks Command Address and Remarks

SUBR name SUBR XORD

where name is the name of the
subroutine that is called.

This instruction does not provide transfer of control to the sub­
routine. The programmer may do this by writing a jump instruc­
tion elsewhere in the program.

24

END

TAC ASSEMBLER-COMPILER

The END instruction is used to indicate the end of a program,
and must be the last physical instruction of the program.

The general form of this instruction is:

GENERAL FORM EXAMPLES

Command Address and Remarks Command Address and Remarks

END addr END START

where addr is address field
END A·EXECUTE

an
element (except on Index Regi ster END BEGIN + 1

Notation), which, if present* I
repr~sents the location to which
control should be transferred after
the program is loaded.

*When compiling a subroutine for example, addr is omitted
from the card. (See WRITING A SUBROUTINE, page 43.)

Chapter 3
COMMON
SYMBOLS

THE C LABEL

Use of C Label and Name COMMON

in Defining Common Symbols.

If a symbol that is used in different named sections of a program
is to have the same definition in each section, this common
definition may be specified by means of the C Label or by means
of the name COMMON.

• A "e" in the label field of an instruction other than an ASGN,
SAME, SYMBOUT or REFOUT instruction, causes the symbol
specified in the location fie ld of that instruction to be made
common, and to have the same definition wherever it appears
through the program, regardless of the NAME originally
associated with it.

• A "C" in the label field of an ASGN or SAME instruction
causes each symbol symb in the address field of that in­
struction (see page 19) to be defined as a common symbol.,
regardless of the NAME originally associated with it.

• A ((C" in the label fields of SYMBOUTand REFOUT instruc­
tions causes the symbol(s) appearing in both of these instruc­
tions to be defined as common throughout the program, re­
gardless of the NAME originally associated with it.

• A "c" in the label field of a NAME instruction causes each
symbol defined in that named section to have the same
definition wherever it appears undefined in the other named
sections of the program. For example, according to the
coding:

25

26

THENAME
COMMON

L

C

TAC ASSEMBLER-COMPILER

Location Command Address and Remarks

·
NAME A

·
TMD ALPHA$

·
BETA D/7.5B3$

·
ASGN DELTA, 100$

·
·
·

NAME B

,

TMA BETA$

TMD DELTA$
·

·
the symbols BETA and DE LTA appearing in NAME sections
A and B will be defined only once. The symbol ALPHA is not
made common.

• The name COMMON given to a section of a program causes
each symbol in that section that is not prefixed with a pro­
gram name to be defined as a common symbol.

• The name COMMON prefixed to a symbol causes that Symbol
to be made. common throughout the program.

Chapter 4
CONSTANTS

POOL AND
NON-POOL
CONSTANTS

Pool and Non.Pool Constants.

Full-Word Constants. Field Constants.

Fixed-Point and Floating-Point Decimal

Constants. Word and Location Con­

stants. Alphanumeric, Octal, Hexa­

decimal, Numeric, Binary, Parameter,

and Command Constants.

A constant is any full word of data, entered with the program,
that does not vary from compilation to compilation. There are
eleven different types of constants in TAC language. An alpha­
betic or numeric character written preceding the constant and
separated from it by a slash, specifies the type of constant. During
compilation, TAC converts each constant to its binary form and
provides a storage location for it in memory.

With the exception of alphanumeric non-pool constants (see page
34), no more than one word of constants may be written per line
of the coding form.

Pool constants are constants that are placed by TAC in a
separate section of the program called the constant pool; non­
pool constants are constants that occupy the memory locations
assigned to the positions where they appear in the program.

A constant is interpreted as a pool constant if it is written:

1. as the address of a mnemonic, or

2. begiIming in the command field, with a P in. the label field.

Non-pool constants are written starting in the command field,
with no P in the label field.

Some pool constants are conservable (that is, if their binary
configuration already exists in a word in the pool, it is not dupli­
cated), some are not.

Constants written as the address of a mnemonic are conservable,
except:

a. Location Constants

b. Field constants containing a Command Constant field or a
Parameter Constant field.

27

28

FULL- WORD AND
FIELD CONSTANTS

FULL-WORD
CONSTANTS

Fixed-Point
Constants (D /)

TAC ASSEMBLER-COMPILER

A conse rvable pool constant occurring after another pool constant
with similar binary configuration will be conserved on the basis
of the former constant, provided the former constant is also of
the conservable type, or is of the P-Iabel type other than type (a)
or (b), above.

In conserving pool constants, the TAC Assembler searches the
constant pool to determine whether a binary configuration of the
constant already exists in the pool. If one exists, its location is
used and the constant is not repeated. If none exists, TAC inserts
the constant in the next available word in the pool, and places the
location of this word in the address field of the mnemonic.

If the constant is written as a P -label pool constant or as a non­
pool constant, it may be assigned a symbolic location by the pro­
grammer. Note, however, that because of the possibility of con­
servation occurring for a succeeding constant, a H P-label"
constant with a symbolic location field should not be changed
during program execution. P-label pool constants consecutively
grouped will be stored in the pool exactly as grouped.

Some constants occupy a full word of memory, other constants
may occupy fields or parts of a word. Constants that occupy a
full word are called full-word constants; constants that occupy
fields are called field constants. If combined field constants do
not completely fill a word, the unused bit positions are filled
with zeros or space symbols, depending upon the type of constant
that is written.

Full-word and field constants may be of the pool type or of the
non-pool type.

There are four types of full-word constants in TAC language:

1. Fixed-point decimal constants

2. Floating-point decimal constants

3. Word Constants

4. Location Constants

A fixed-point decimal constant is represented by the characters
D/ followed by any combination of decimal digits, with or without
a decimal point, not exceeding 140,737,488,355,327.

A fixed-point constant may be signed (+ or -) or unsigned. If
unsigned, it is interpreted as positive. A negative fixed-point
constant is stored in memory in two's complement form.

A binary pOSition factor is used to indicate where the binary
point should be placed in the compute r word. The binary position
factor is written immediately after the constant, and is desig­
nated by the letter B followed by a number (0-47) representing

CONSTANTS

Floati ng-Point
Decimal Constants

Word Constants

(Wi····)

29

the least significant bit position of the integral part of the decimal
constant. If no binary position factor is written, the integral part
of the constant is scaled B47 and the fractional part (if any) is
lost.

Example

The constant D/1.5B15 would be stored in a word in memory as
follows:

o 15 16 47

Floating-point decimal constants are represented by the charac­
ters F/ followed by any combination of decimal digits, with or
without the decimal point. A decimal scale factor, En, which
means "xl onl

', may also be written following the constant. The
character n may be any decimal integer exponent -600 to 600. A
binary position factor is not used with a floating-point constant.

As is the case with fixed-point constants, a positive quantity is
indicated by no sign or by a plus sign (+), and a negative quantity
by a minus sign (-).

Examples

F/.000024 F/.240E3 F/240.E-4

Word constants are represented by the characters W/ followed
by any eight Philco characters (see Appendix D), including the $
character. The constant is considered automatically terminated
after the eighth character.

The eight characters in the word constant are stored in the order
in which they are written. For example, the constant

W/;(TMD)$A

would be stored as follows:

00 I 1 00 1 I 1 I 001 10 o I I 10 01 00 01 01 00 01 I I 00 10 101 10 10 001

~~ .&. A A A. ~,,.
~ "Y

($ M T A D

30

Location Constants
(L/·····)

FIELD CONSTANTS

TAC ASSEMBLER-COMPILER

A location constant is represented by the characters L/ followed
by an address field element. The address field element is stored
(in binary) in the address portion of both halves of the word con­
taining the constant.

If the address field element ALPHA + 2 represents a left address,
the constant is stored as:

o 1516 2324 3940 47

,
ALPHA +2 [o-o[ALPHA +2

If the address field element represents a right address, an F bit
of one will appear immediately to the right of the address in both
halves of the word.

Field constants, as their name implies, occupy fields or parts of
a computer word. A Position Factor, Tn, written immediately
following the constant, indicates where the constant (except
Alphanumeric and Command constants, see· pages 34 and 39)
terminates in the word. The character n is a decimal integer
(0-47) specifying the position of the least significant bit of the
constant.

When seve ral field constants are made to occupy a word, the
individual constant deSignations are written separated by semi­
colons, and the individual position factors, if any, must be in
ascending order. If a field reserved for a constant is such that
the high order bits of the constant extends into a preceding con­
stant, or beyond bit pOSition zero, the high order bits are lost.

If position factors are not specified with the constants, the fields
fill the word from left to right, in the order in which they are
written.

There are seven types of field constants in TAC language:

• Alphanumeric Constants (No position factor is used.)

• Octal Constants (A position factor may be used.)

• Hexadecimal Constants (A position factor may be used.)

• Numeric Constants (A position factor must be used.)

• Binary Constants (A position factor may be used.)

• Parameter Constants (A position factor must be used.)

• Command Constants (No position factor is used.)

CONSTANTS

Alphanumeric

Constants
(AI .. · . .)

, 31

Alphanumeric constants are represented by the characters A/
followed by any number of the sixty-four Philco characters
listed in Appendix D, except the semicolon, dollar sign, and
the right parenthesis. A semicolon, dollar, sign, and in some
instances a right parenthesis, automatically terminates the
field. Each character is converted to a unique six-bit code; eight
such characters occupy a full computer word.

Alphanumeric constants fill a word from left to right starting
with the six high-order bits. A termination indicator cannot be
used to position an alphanumeric field within a word; leading
zeros may be used for this purpose, if necessary.

An alphanumeric constant that is written in the address and
remarks field, may contain eight or less characters, but not
more than eight. If the constant contains less than eight charac­
ters, and no other field constants are specified to fill the re'­
mainder of the word, a $ character must immediately follow the
last character of the constant. The remainder of the word is filled
with zeros.

An alphanumeric constant that is written in the command field
may contain any number of characters. These characters, if
necessary, may be continued on succeeding lines of the COding
form, beginning in the address and remarks field. Each eight­
character group is placed in a consecutive memory location. If
the number of characters written is not a multiple of eight, and
no other field constants are specified to fill the remainder of the
word, a $ character must immediately follow the last specified
character. The remainder of the last word is filled with spaces.

Thus, the alphanumeric constant,

A/12345678ABCD$

written starting in the command field, would occupy two consecu­
tive memory locations as follows:

00 00 01 00 00 10 00 00 I I 00 01 00 00 01 01 00 01 10 00 01 1 1 00 10 00

1 2 3 4 5 6 7 8

I
01 00 01 01 00 10 01 001 I 0 10 10 01 10 00 01 10 00 01 10 00 01 10 000

A B

32

Octal Constants
(0/)

Hexadecimal

Constants (HI •••••)

T AC ASSEMBLER-COMPILER

If an AFEND instruction (see page 16) is used in the program,
and the alphanumeric constant is not terminated by a $, the
contents of all columns up to and including the column referred
to by the AFEND are included in the constant. If the constant
contains a non-space character in the column (n) referred to by
the AFEND, the constant must be terminated by a $ character.

Octal constants are represented by the characters 0/ followed
by as many as sixteen octal digits (0-7). Each octal digit of the
constant is converted to three binary bits. A position factor may
be used to terminate the constant. When no position factor is
used, the octal constant fills the constant word from left to
right, starting at the Oth bit position. Unused bit positions are
filled with zeros.

Example

The octal constant 0/16T5, 07T4, 0/1600000000000000, or 0 16
would appear as follows:

o 12345 47

Hexadecimal constants are represented by the characters HI
followed by as many as 12 hexadecimal characters (0-9 and
A-F). Each character of the constant is converted to four binary
bits, as shown below:

HEXADECIMAL CHARACTER BINARY EQUIVALENT

0 0000

I 0001

2 0010

3 00 II

4 0100

5 0101

6 01 10

7 o I I I

8 1000

9 1001

A 1010

B 101 I

C I 100

D I 101

E 1110

F I I I I

CONSTANTS

Numeric Constants

(N/)

Binary Constants

(n/)

33

A position factor may be used with the constant. When no position
factor is used, the hexadecimal constant fills the constant word
from left to right, starting at the Oth bit position. Unused bit
positions are filled with zeros.

Example

The constant H/5AC T23 would be ·stored as follows:

o 1112 2324 47

Numeric constants are represented by the characters N/ followed
by an unsigned decimal integer. A position factor must be written
following the decimal integer or an error will be indicated.

Example

The numeric constant N/1149T35 would be stored as follows:

o 35 36 47

Binary constants are represented by the characters n/ followed
by some binary configuration. The characte r n is any decimal
integer 1 to 48, indicating that the binary configuration specified
in actually a pattern that is repeated n times in the constant.

A position factor may be used with the constant. When no position
factor is used, the binary constant fills the constant word from
left to right, starting at the oth bit position. Unused bit positions
are filled with zeros.

Example

The binary constant 5/101 T23 would be stored as. follows:

o 89 2324 47

34

Parameter Constants
(P /)

Command Constants

(C/)

TAC ASSEMBLER-COMPILER

Parameter constants are represented by the characters p/ fol­
lowed by an address field element. W position factor Tn or Fn,
must be used with this constant, and is separated from the address
field element specified by a comma.

When tn is used, the address element without its F..:bit is stored
in the constant word at the position specified by the termination
indicator n; and unused bit positions are filled with zeros.

When Fn is used, the address element is terminated at the (n-I)th
bit, and the nth bit will be one or zero, depending on whether the
address element represents a right or left address, respectively.
(In relocatable programs, a relocatable address element in a
Parameter constant must be scaled T15, F16, T39 or F40.)

Example

Assume that KAPPA represents a right address that has been
assigned the value 8, then, the constant P/KAPPA, T39 would be
stored as:

The same constant positioned F40 would be stored as follows:

The command constant describes half-words of information in
instruction format. Command constants are represented by the
characters C/ followed by a Mnemonic and an address field
element. The address field element is separated from the com­
mand by a comma. No position factor is used with the constant.

Two command constants, written separated by a semicolon,
occupy an entire constant word. If only one command constant is
written, the constant will occupy the left half of the word; the
right half will be filled with zeros. If another type of field
constant (positioned before T24) is written precedingthe command
constant, the command constant will occupy the right half of the
constant word.

~
i:
"

CQNSTANTS

Groups of

Field Constants

35

Examples

The constant C/HLTR,ALPHAj C/ JMPL, BETA+1 would be stored
as:

o J516 2324 3940 47

ALPHA BETA+ I

The constant 2/101 T23; C/HLTL,Ki\PPA would be stored as:

KAPPA

Some typical field constant groups could be:

N/ 5T15;C/HLT ,ALPHA+5H$

1/1 TO;O/7T23;A/ ABCD$

P/ALPHA-BETA, T15; 'C/HLT,M/5000$

H/ ABCD;8/1 T23;O/7;N/1 T47$

O/32;A/TYPEOUT$

48/1$

3940 47

Chapter 5
LIBRARY
ROUTINES Subroutines. Generators. Macros.

Ca lIing and Writing library Routines.

Adding library Routines to the

library Tape. T AC Generator Symbols.

Ske leton Cod ing.

GENERAL
DESCRIPTION

SUBROUTINES

Calling a
Subroutine

Library routines are Subroutines, Generators, and Macros on
the TAC Library tape. Each routine is an individual program, or
set of instructions, designed to perform a frequently required
operation. If the operation to be performed at a point in the
program can be accomplished by one of these routines, the
programmer need only reference (call on) the respective routine
at that point in his program, thus saving valuable coding time
and effort by not having to code the routine himself.

A subroutine is a program that operates under control of a
calling program, and that is included only once in the calling
program regardless of the number of times referenced.

Library subroutines are subroutines on the TAC library tape.
These may be in TAC-language orin relocatable binary form.

A subroutine call is used to reference a subroutine. This call
may be written in either of two forms:

GENERAL FORMS

L Location Command Address

s entrance param

SUBR entrance

where entrance is an entrance to
the subroutine being referenced,
and param represents the para­
meters of the subroutine.

Parameters are separated by semi­
colons. If a parameter is repre­
sented by a group of field con­
stants, the parameter must be
enclosed in parentheses to prevent
ambiguity in the meaning of the
semicolons.

37

EXAMPLES

L Location Command Address

s FLEJ

SUBR

ADR1;ADR2;
ADR3

FLEJ

38 TAC ASSEMBLER-COMPILER-

During compilation, TAC replaces the subroutine call with:

1. A TMA instruction, to place the first parameter in the Call
in the A Register.

2. A TMQ instruction, to place the second parameter in the Call
iIi the Q Registe r.

3. TMD and TOM instructions, to place the third and succeeding
parameters in consecutive memory locations immediately
following the entrance word. (See Writing A Subroutine, page

.)
4. A JMP instruction, to transfer control to the subroutine. The

SUBR call does not provide for parameter setup as in (1), (2)
or (3) above, nor for transfer of control to the subroutine. The
programmer may transfer control to the subroutine elsewhere
in his program.

During its execution, the subroutine obtains the first parameter
in the call from the A Register, the second parameter from the
Q Register, and the third and succeeding parameters from con­
secutive memory locations immediately following the entrance
word.

If a parameter will already be in its proper register or memory
location when the subroutine obtains control, this parameter
may be omitted from the subroutine call. For example, the follow­
ing calls:

L Location Command Address and Remarks

S ENTRAN1 ;ADR2 $

S DELTA ENTRAN2 ADR1··ADR3··ADR5 $
" "

S ENTRAN3 $

indicate that the first parameter of subroutine ENTRAN1 is
already in the A Register; the second and fourth parameters of
subroutine ENTRAN2 are in the Q Register and in memory lo­
cation ENTRAN2. ENTRAN2+2, respectively; and, all parameters
of subroutine ENTRAN3 are in their proper locations.

When a parameter is thus omitted from a call, the corresponding
TMA, TMQ, or TMD and TOM instructions are not generated.

Subroutines generally store their output values in the same order
and locations as their parameters (i. e., the first output value in
the A Register, the second in Q,etc.). Individual output proce­
dures are indicated in the respective subroutine descriptions.

LIBRARY ROUTINES

Writing a

Subroutine

39

Subroutines may call on generators, macros, or other sub­
routines, which in turn may call on still other subroutines.
There is no repetition of subroutines in a program; TAC always
checks to see if a subroutine was previously requested, in which
case it would already be scheduled for incorporation into the
program.

If a section of the calling program has the same name as a sub­
routine being called, the call is assumed satisfied, and the
library tape is not searched for that subroutine.

If a called subroutine is not included in the compilation, the
notice "THE FOLLOWING SUBROUTINES NOT INCLUDED" is
printed on the Code-Edit. In an RPL or ABS compilation, this is
a serious error condition.

If subroutines are not to be compiled in the program, but are to be
brought in at load time (in which case both the subroutine and
the calling program must be in relocatable binary form), refer­
ences to the entrances of the subroutines are automatically com­
piled as REFOUT symbols.

Most subroutines use Index Registers 1 and 2. The previous
contents of these registers are not restored by the subroutines;
the contents of all other Index Registers are saved.

I

A subroutine may have several entrances. Each entrance permits
access to a specific group of instructions that perform a particu­
lar operation.

The first word of each group of instructions is the entrance word.
The left instruction in this word establishes the address for
returning control to the calling program. The right instruction in
this word provides a transfer of control to the instruction im­
mediately following the last of the words reserved for storing the
third and succeeding parameters (if any) of the call. The last
instruction of the group provides an exit from the subroutine by
transfe rring control to the half-word immediately following the
subroutine call.

An entrance may be left or right; if it involves more than two
parameters, it must be left.

*For calls on FORTRAN type subroutines, refer to Appendix C.

40 TAC ASSEMBLER-COMPILER

The following example illustrates the format of a standard TAC
subroutine:

L Location Command Address and Remarks

NAME ENTRAN1$

L ENTRANl TJM EXIT$ First entrance

JMP ALPHA $

·
· t Locations reserved for

· parameters

· ALPHA · Beginning instruction of

· group

· JMP EXIT$ Last instruction of group

L ENTRAN2 TJM EXIT$ Second entrance

JMP BETA $

·
· Locations reserved for

parameters

· BETA · Beginning instruction of

· group

JMP EXIT $ Last instruction of group

·
·
· Other entrances and

groups of instructions

· EXIT JMP ISUBERR$ Exit from subroutine
ENDSUB $

If the subroutine is to be a TAC-Ianguage library subroutine, it
is added to the library tape as it appears above. If it is to be added
to the library as a relocatable binary subroutine:
• the ENDSUB $ instruction is replaced an END $ instruction,

• the entrances and other symbols of the subroutine that may
be referred to from outside the subroutine must be defined
as SYMBOUT symbols and appear in the address and re­
marks field of SYMBOUT cards in the subroutine. Generally,
a SYMBOUT symbol represents a left address, asthis_'pre-
vents the instruction in the calling program that refe rs. to
this address from being altered at load time. (Refer to F-Bit
Modifi'cations at Load Time, page 88.)

• the subroutine is compiled in RE L format, and the resultant
relocatable program deck is added to the library,.

LIBRARY ROUTINES

Adding a
Subroutine to the
Library Tape

GENERATORS

Calling on
a Generator

41

Fbr a description of how to add subroutine to the TAC library,
see Program Report 13, PLUM (Program for Library Update and
Maintenance).

A Generator is an RPL program on the TAC library tape which,
when called upon, generates cOding to perform a specific oper­
ation. The coding generated depends on the type of generator call,
and the paramete rs contained in the call.

A generator call is used to call ona Generator. The general form
of this call is:

GENERAL FORM

Command Address and 'Remarks

where Cmnd is a generator com­

mand (1 to 8 alphanumeric char­

acters long) representing an oper­

ation to be performed, and each

p is a symbol representing a

parameter of the generator.

The number, order, and format of

the parameters are establ i shed by

the generator.

Command

PRT
FORMAT
RIT

EXAMPLES

Address and Remarks

lS;A;B;C$
(5E8.2,2F6.3)$
lO,F200,A(lO)$

With some generator commands, such as in the second example,
the complete set of parameters must be enclosed in parentheses.
Parameters too many to fit on one card may be continued in the
address and remarks field of succeeding (continuation) cards.

TAC reserves processing of generator calls until. all regular
TAC instructions (control instructions, mnemonics, etc.) in the
program are processed. TAC then determines the specific
generator that is associated with each call, supplies the generator
with information about the call, and transfers control to the
generator. The generator processes the call, generates TAC­
language coding compatible with the type of call and the parameters
specified, and returns control to TAC. TAC then compiles the
generated coding into the calling program.

42 TAC ASSEMBLER-COMPILER

TAC reserves a unique 8-character symbol (in location
EG2.1GNEW, see page 49) as the address to be assigned to.
the coding generated. If the generator call requires a transfer
of control to the generated coding, T AC replaces the call with a

JMP Unique Symbol
instruction. Whatever was 'specified in the label and location fields
of the call would be indicated in similar fields of the JMP instruc­
tion substituted. The generator provides the appropriate linkage
between the JMP and the generated coding by generating a
definition for the unique symbol, and by generating an appropriate
NAME instruction. (The program name that is to appear in the
generated NAME instruction is supplied to the generator by TAC,
and is the name of the program section 'containing the call.)

If the call does not require transfer of control to the generated
COding, it is deleted from the program after being processed; no
JMP instruction is generated.

The calls are processed in the order indicated by sort numbers
assigned to the generator commands (Cmnd) when the generator
is added to the library tape. This permits all the calls of one type
to be processed before calls of another type.

After all generators calls in the program have been processed
by their respective generators, TAC inserts an E AFEND and
an ENDGEN instruction immediately after the last instruction of
the generated coding.

The generated coding appears after the calling program and
before the area reserved for pool constants on the Code-Edit
(see page 75).

LIBRARY ROUTINES

Writing a
Generator

43

The following coding illustrates the general form of a Generator:

Location Command Address and Remarks

· \, ASGN or SAME instruc-

· , tions permitting com-

· > munication between TAC

· , and the Generator. (See

· page 49.)

SET IGENADD$ Establish entry point*

TJM EXIT$ Establish exit

·
JMP EG2.IGNC$ Obtain parameters

·
} Generate coding ·

·
JMP EG2.IDUMP$ Write out generated cod-

ing

·
·
· ASGN EXIT,(P)$

~

JMP (P)$ Return control to TAC

END EG2. ENDCARD$

After the generator is selected from tape, it is loaded into
memory, initialized,· then executed. Initialization is performed
upon a transfer of control to location EG2.ENDCARD (specified
in the END card), the starting address of a generator-initializing
routine in TAC. After initialization, TAC supplies the generator.
with the following information about the call, and transfers con­
trol to location IGENADD of the generator:

• The generator command (Cmnd) left justified and with
trailing spaces, in the A Register.

• The sort number of the generator command scaled TI5 in
the Q Register. (See Adding A Generator To The Library,
page 51.)

*Address fields of subsequent SET instructions, if any, must
always contain an address greater than IGENADD.

44 TAC ASSEMBLER-COMPILER

• A unique 8-character symbol in location EG2.1GNEW, to be
used as the entrance location of the generator coding if,
during program execution, control is to be transferred to the
gene~ated coding.

• The label field of the generator call scal~d T5 in location
EG2.1GLABEL.

• The location field of the generator call, in location
EG2.1GFLAD.

• The program name in effect at the time the call was encoun­
tered, in location EG2.1GNAME.

• The P-count in binary, scaled T40 in location EG2.1GPCTR,
corresponding to the point in the program where the call
occurred.

The generator processes the above information and:

• Obtains the cqntents of the address and remarks field of the
call from TAC one character* at a time, by transferring
control each time to location EG2.1GNC. (The character
obtained appears scaled T5 in both the A and Q Registers,
after w~ich, control is returned to the generator at the
instruction following the last executed JMP EG2.1GNC. The
generator should test for a $ character to determine when no
more characters in the call remain to be processed.)

• Generates coding compatible with the type of call and the
parameters specified.

• Writes-out the. generated coding on tape by transferring
control to location EG2.1DUMP, with the number of cards to
be output scaledT15 in the A Register and the starting
location of the generated coding scaled T29 in the Q Register.
(After the output cards are written, control is returned to the
generator at the instruction following the last executed JMP
EG2.1DUMP.)

• Returns control to TAC at the instruction immediately
follOwing the instruction that transferred control to location
IG ENADD of the generator.

• Either obtains and processes (in the manner indicated above)
the next call on the generator when control is returned to
location IGENADD, or generates and writes close-out coding
if no other call remains to be processed by the generator.
(The. condition of no calls remaining to be processed is indi­
cated by all ones in the A Register at the time TAC returns
control to location IGENADD.) After producing close-out cod­
ing, if desired, the generator returns control to TAC at the
instruction following the last executed JMP IG ENADD.

*Space characters. included. If control is transferred to location
EG2.2GNC instead of EG2.1GNC, space characters are ignored
and not transferred to the generator.

LIBRARY ROUTINES

Symbols Permitting
Communication
Between TAC and
Generators

45

To permit communication between TAC and the generator, ASGN
or SAME cards defining the following symbols must be included
in the generator. In the event of modification of TAC, the symbol
TACBASE must be redefined.

SYMBOL DEFINITION EXPLANATION

TACBASE NTLOADl. TACBASE The lowest memory location
used by TAC itself (i.e., the
origin of TAC in memory).

IGENADD TACBASE+M/2000 Location of first executable in-
struction of generator.

END CARD TACBASE+M/I016 Generator end card address.

IGNAME T ACBASE+M/ 1 003 Location containing alphanu-
meric program name in effect
when call occurred.

IGNEW TACBASE+M/I004 Location containing TAC-
created, alphanumeric symbol
for generated coding.

IGPCTR TACBASE+M/ 1 006 Location containing, in binary
form at T40, the TAC pro-·
_gram (P) count corresponding
to the point where the call
occurred.

IGFLAD TACBASE+M/I007 Location containing, in alpha-
numeric form, the location
field of the call.

IGLABEL TACBASE+M/IOIO Location containing the label
field of call, scaled T5.

IGNC TACBASE+M/IOll Location of a parame ter-input
sub routing in TAC that is avail-
able to generators.

2GNC TACBASE+M/I012 Location of a second param-
eter-input subroutine in TAC
that is available to generators.
Unlike the preceding subrou-
tine, this subroutine ignores
space (blank) characters.

46

SYMBOL DEFINITION

1DUMP TACBASE+M/1013

OVERLAY TACBASE+M/1014

T AC ASSEMBLER-COMPILER

EXPLANATION

Location of an output sub­
routine in TAC that is avail­
able to generators.

When this subroutine is
entered, the A Register must
contain the number of cards to
be output, scaled T15, and the
Q Register, the starting loca­
tion of the generated COding to
be output, scaled T39.

Location of a get-next-blocl?­
on-library subroutine in TAC
that is available to generators.

This subroutine reads the next
block from the library tape
containing the generator .. The
starting address of the 128-
word area into which the block
is to be read must be scaled
T15 in the A Register at the
time this subroutine is entered.

RPLOVER TACBASE+M/1015 Location of a get-next-RPL-
program-on-library subrou­

,tine in TAC that is available to
I generators.

This subroutine reads the next
RPL program on the library
tape containing the generator,
and transfers control to the
instruction immediately fol­
lowing the

JMP EG2.RPLOVER

Also, the end card of this
"next RPL" must be

END EG2.ENDCARD

to permit TAC to return control
to the generator properly.

LIBRARY ROUTINES

Adding a
Generator to the
Library Tape

MACROS

Calling a Macro

47

After the generator program is written, it is compiled in RPL
format, then added to the TAC library tape. At the time of its
addition to the library, information about the location and size of
the generator on tape, the calls it will accept, the order in which
the calls are to be processed, and which calls require transfer of
control to the generated coding, must be supplied.

Procedures for supplying this information when adding a generator
to the library tape are discussed in detail in Program Report 13,
PLUM (Program for Library Update and Maintenance).

A Macro-generator is a program, supplied with the TAC library
tape, which when called upon by means of a macro-call (macro­
instruction), inserts coding into the calling program.

The coding inserted consists of a fixed number of instructions,
and replaces the macro-call in the program.

A macro-call (macro-instruction) is used to call on the Macro­
generator. The general form of this call is:

GENERAL FORM

Command Address and Remarks

where Cmnd is a symbol (1 to 8
aiphanumeric . characters long)
specifying an operation to be per­
formed for which coding must be
inserted into the program, and
each p is a numeric or alpha­
numeric symbol representing a
parameter to be used in the in­
serted coding.

Parameters are separated by
semicolons.

Command

RDMTF
CHKMT

EXAMPLES

Address and Remarks

UNIT;CSA;NBP;NBS$
ORDER; INCOMPL ETE;
ERROR;B$

When TAC encounters a macro-call in a program during com­
pilation, it determines from the Table of Contents on the library
(see PLUM, Program Report 13) the amount of coding that will
be inserted for the call, and reserves. the appropriate space in
the program for the coding.

48

Skeleton Coding

TAC ASSEMBLER-COMPILER

The cOding to be inserted exists in skeleton form (see below)
following the Macro-generator on tape.· TAC transfers control to
the Macro-generator, which expands the skeleton cOding by placing
the para~eters of the macro-call in their proper places in the
skeleton cOding, and inserts the expanded cOding into the calling
program.

As many parameters may be specified in a macro-call as are
provided for in the corresponding skeleton coding. Parameters
too many to fit on one card may be continued in the address and
remarks field of succeeding continuation cards.

Numbers and letters assigned to the parameters in the skeleton
cOding indicate where each parameter is to be inserted into the
coding. The parameters are labeled 1 through 9 and A through Z,
with each number or letter preceded by an equal (=) sign. The
first parameter is inserted at the point where the =1 characters
appear in the skeleton cOding, the second parameter is inserted

. where the =2 characters appear in the skeleton cOding, the tenth
parameter where the =A characters appear, and so on, until the
skeleton cOding is completely expanded and all parameters are
included.

The following example is an illustration of a macro-expansion.
Consider the Macro TLUEQ (Table Look-up for Equality), the
skeleton coding of this Macro is:

l location Command Address and Remarks

TMD L/=3$
TDX ,1X$
TMQ 0/=2$
ETA =1$

R RPTAN =4$
ETD 1,lX$
JAED (P}+2H$
JMP =5$
SIXO 1,lX$

For a macro-call of the form:

L location Command Address and Remarks

TLUEQ KEY;7777;TABLE;100;ALPHA $

LIBRARY ROUTINES

Adding Skeleton
Coding to the
Library Tape

49

the expanded cOding will be:

L Location Command Address and Remarks

TMD L/TABLE$
TDX ,1X$
TMQ 0/7777$
ETA KEY$

R RPTAN 100$
ETD 1,1X$
JAED (P)+2H$
JMP ALPHA$
SIXO 1,lX$

This expanded coding is inserted in-line into the calling program,
replacing the macro-call. On the Code-Edit, the expanded coding
is located after the calling program.

At the time the TAC-Ianguage skeleton coding is added to the
library tape, information about its Marco-generator, the number
of locations it will occupy in the program after compilation, and
whether its first instruction is a left· or right instruction,must
be supplied.

Procedures for supplying this information when adding skeleton
coding to the library are presented in Program Report 13, PLUM
(Program for Library Update and Maintenance).

1
t

Chapter 6
OB~ECT

PROGRAM
FORMATS

BINARY OBJECT
PROGRAM CARDS

A RELOCA TABLE
BINARY DECK

Binary Object Program Cards and

Tape. A Relocatable Binary Deck.

An Absolute Binary Deck. An RPL

Object Program Tape.

As indicated earlier in the Introduction, TAC object programs
may be compiled in any of three formats: REL, ABS, or RPL.
Consistent with the format specified, a RELocatable Binary
Card Deck, an ABSolute Binary Card Deck, or an RPL Absolute
Binary Program on tape, is produced.

The format and contents of the object program cards and the RPL
object program tape are discussed in this chapter. The manner in
which a loader processes these cards is discussedin Appendix B.

The binary deck produced on a REL compilation may be depicted
as follows:

COMPUTER

PMAX CARD

REL DECK

Figure 3 - A Relocatable Binary Deck

51

RELOCATABLE.
END-PROGRAM

CARD

52

The PMAX Card

TAe ASSEMBLER-COMPILER

As shown in the preceding figure, each relocatable object deck
contains the following cards:

1. PMAX CARD

2. SYMBOL DEFINITION CARDS

3. RELOCATABLE BINARY INSTRUCTION CARDS

4. RELOCATABLE END-PROGRAM CARD

The formats and functions of these cards are discussed below.
A 1 indicates a punch, a 0 indicates a blank or non-punch.

Except for identify and sequence information in columns 1-8,
which is in Hollerith code, all other information on the cards
is in binary.

The PMAX card is the first card of the object program. It contains
the program identifie r, information as to the length (size) of the
program, and the amount of common storage required by the
program. (Program length is the address of the first available
memory location relative to program origin. It includes the
amount of storage required by the program, temporaries, ASTOR
areas, and areas reserved for pool ·constants.)

The format of the PMAX card is:

1I-_~~1I000000000000000000000000

0000000000000000000000000

00000000000000000000000000

00000000000000000000000000

00000000000000000000000000

ooooouooooooooooooooooooo

0000000000000000000000000

00000000000000000000000000

0000000000000000000000000

Figure 4 - Format of the PMAX Carel

I ..

OBJECT PROGRAM FORMATS

LEGEND COLUMNS

1-8

9-12

10

11-12

13
14

16

17-24

25
26

29
30

31
32

32

53

EXPLANATION OF PMAX CARD FORMAT

ROWS CONTENTS

12-9 Identity and Sequence information, in Hollerith.

12-9 Punches, or Zero. If zero, card is ignored. If one or
more of these columns contain pun­
ches, card is processed.

3-9 1000000 (PMAX Card identification)

12-9 Checksum* or Zero

11-9 A binary value. This value is interpreted according to
12-1 the contents of row 9 of column 16.

9 An indicator bit:

12-9

11-9
12-1

11-2
12-1

11-9
12-1

9

o indicates that columns 13-14 specify the length
of the object program.

1 indicates that columns 13-14 specify the loading
origin of the object program.

Program Identification (96 bits). These bits affect
checksum only.

Number of words of COMMON storage required by the
program about to be loaded.

Number of TEMPORARY and ASTOR locations used by
the program about to be loaded.

Starting address, relative to program origin, of TEMP­
ORARY/ ASTOR area.

1 or O. If 1, record is not replaced by record of sub­
sequent TEMPORARY/ASTOR area. Next card
is processed.

Columns not mentioned above have no effect on loader processing other than their effect
on the checksum.

*A sum of all relevant bits on the card, used to check accurate transfer of the informa­
tion on the card. The actual checksum technique is discussed on page 88.

54

Symbol Definition
Cards

TAC ASSEMBLER-COMPILER

Symbol Definition Cards provide a loader with the definitions
of certain symbols used in the object program. These cards
are produced during compilation from SYMBOUT source cards,
and are of the following format:

0000000000000000000000000000000000

0000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

0000000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000000000

Figure 5 - Format of a Symbol Definition Carel

OBJECT PROGRAM FORMATS 55

EXPLANATION OF SYMBOL DEFINITION CARDS FORMAT

LEGEND COLUMNS ROWS CONTENTS

10 3-9 1111110 (Symbol Definition Card identification)

1-8 12-9 Identity and Sequence information, in Hollerith

9-12 12-9 Punches, or zero. If zero, card is ignored. If one

11-12

13

13

15
16

17-20

21-24

12-9

12-11

9

11-9
12-2

12-9

Checksum or zero

or more of these columns con­
tain punches, the card is pro­
cessed.

Type of address defining the NAME. SYMBOL which
appears in column 15:

00 indicates the address is relative to program
origin

10 indicates the address is absolute
11 indicates the address is relative to common

origin

An indicator bit:
o indicates that the information contained in this

symbol-definition field is to be processed

1 indicates that the information contained in this
symbol-definition field is to be ignored *

Address definition of NAME. SYMBOL. (Row 2 of
column 16 contains the F -bit.)

Subprogram NAME associated with SYMBOL. (If
these columns are blank, this symbol-definition field
is ignored, and the next symbol-definition field is
processed.)

12-9 SYMBOL

§ 25-36 Second symbol-definition field. **
• .-4
+>

i~ 00 37-48
0<1)'0

Third symbol-definition field. **
'1""4 Q 1"""4 t-----t-----+---+-----------------------4 ~ I Q) '0 '1""4

'Oo~ 49-60 Fourth symbol-definition field. **
~"E

£ 61-72 Fifth symbol-definition field. **

Columns not mentioned above have no effect on loader processing, other than their
effect on the checksum.

* Note the possible use of this feature to have a double definition of a symbol
ignored.

**For second, third, fourth, and fifth symbol-definition fields, the format is the same
as for the first symbol-definition field shown above.

56

Relocatable Binary
Instruction Cards

TAC ASSEMBLER-COMPILER

Relocatable Binary Instruction Cards contain the symbols whose
definitions are to be found on Symbol Definition Cards, source pro­
gram instructions in relocatable binary form, and certain control
information for a loader.

The format of these cards is:

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000000000

000000000000000000000000000000000000000

00

Figure 6 - Format of a Re/ocatable Binary Instructions Carel

,

OBJECT PROGRAM FORMATS 57

LEGEND

EXPLANATION OF RELOCATABLE BINARY INSTRUCTIONS CARD FORMAT

COLUMNS ROWS CONTENTS

1-8 12-9 Identity and sequence information, in Hollerith.

9-12 12-9 Punches, or zero. If zero, card is ignored. If one or
more of these columns contain punches, the card is
processed.

9 12-9 Core starting Address of first instruction on card.

10 12-1 Row 1 of column 10 is interpreted as the F-bit:

10

10

11-12 .

13-16

17-18
or

17-26

19-80
or

27-80

3

4-9

12-9

12-9

12-9

o indicates that the first instruction starts in
column 17.

1 indicates that the first instruction starts in
column 19.

1 (Relocatable Binary Instructions Card Identifi­
cation)

Number (1-32) of instructions on card.

Checksum or zero

A series of variable length (1-4 bits) indicators, which
specify the type of address in each instruction:

o indicates the address is relative to program
origin

10 indicates the address is absolute
110 indicates the address is relative to common

origin
1110 indicates the address references a REFOUT

symbol

First instruction on card.

An instruction usually occupies two columns on the
card; however, if the address specified in the instruc­
tion references a REFOUT symbol this instruction will
occupy ten columns on the card. (The last eight columns
will contain the RE FOUT symbol.)

12-9 Additional instructions on card.

58

The Relocatable
End-Program Card

TAC ASSEMBLER-COMPILER

The Relocatable End-Program Card is produced during compila­
tion from the END card, and is the last card of the relocatable
binary program deck. This card causes a loader to:

1. transfer control to the address specified in the END
card in order to start execution of program, or

2. commence loading the next relocatable object program.

The format of this card is:

000000000000000000000000000000000

0000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

0000000000000000000000000000000000

0000000000000000000000000000000000

0000000000000000000000000000000000

000000000000000000000000000000000

o 0 0 0 0 0 0 0 0 0 00

0000000000000000000000000000000000

Figure 7 - Format of the Relocatable End-Program Card

OBJECT PROGRAM FORMATS 59

EXPLANATION OF RELOCAT ABLE END-PROGRAM CARD FORMAT

LEGEND COLUMNS

1-8

9-12

10

11-12

13

13

15
16

17-24

ROWS

12-9

12-9

3-9

12-9

12-1

9

11-9
12-2

12-9

CONTENTS

Identity and sequence information, in Hollerith.

Punches, or zero. If zero, card is ignored. If one or
more of these columns contain pun­
ches, the card is processed.

1111111 (Relocatable End-Program Card identifica­
tion)

Checksum or zero

Indicator bits, specifying the type of address in' columns
15 and 16:

0000 indicates that the address is relative to pro­
gram origin

1000 indicates that the address is absolute
1100 indicates that the address is relative to

common origin
1110 indicates that the address references a RE­

FOUT t~AME.SYMBOL"

An indicator bit, which is interpreted follows:

a indicates that next program is to be loaded
1 indicates that after this program is loaded, con­

trol is to be transferred to the jump address
specified in columns 15 and 16

An address in the program to which the loader transfers
control after loading the program. (Row 9 of column
13 must have been 1.)

A NAME. SYMBOL. (Rows 12-1 of column 13 must
have been 1110)

Columns not mentioned above have no effect on loader processing other than their effect
on the checksum.

---------_._._ .. _ __ ._--_.

60

AN ABSOLUTE
BINARY DECK

TAC ASSEMBLER-COMPILER

The binary deck produced on an ABS compilation may be de­
picted as follows:

ABSOLUTE
END-PROGRAM

CARD

ASS DECK

Figure 8 - An Absolute Binary Deck

As shown in the above figure, each absolute object deck contains
the following cards:

1. ABSOLUTE BINARY INSTRUCTION CARDS

2. ABSOLUTE END-PROGRAM CARD*

Except for identity and sequence information in Hollerith in
columns 1-8, all other information on the cards is in binary.

*Also referred to as BINARY JUMP CARD

OBJECT PROGRAM FORMATS

Absolute Binary
Instruction Cards

61

Absolute Binary Instruction Cards contain the source program
instructions in absolute binary form, and certain control inform.a­
tion for a loader. The format of this card is:

Figure 9 - Format of an Absolute Binary Instructions Carcl

EXPLANATION OF ABSOLUTE BINARY INSTRUCTIONS CARD FORMAT

LEGEND COLUMNS

1-8

9-12

9

10

10

or
15-16

15-80
or

17-80

ROWS

12-9

12-9

12-9

12-1

3

CONTENTS

Identity and sequence information, in Hollerith

Punches, or zero. If zero, card is ignored. If one or
more of these columns contain punches, the card is
processed.

Core starting Address of first instruction on card.

Row 1 of column 10 is interpreted as the Fbit:
o indicates that the first instruction is in columns

13 and 14
1 indicates that the first instruction is in columns

15 and 16

o (Absolute Binary Instructions Card identification)

4-9 Number (1-34) of instructions on card

12-9 Checksum or zero

12-9 First instruction on card

12-9 Additional instructions on card. (Two columns per
instruction.)

62

The Absolute
End-Program Card

TAC ASSEMBLER-COMPILER

The Absolute End-Program Card is produced during compilation
from the END card, and is the last card of an absolute binary
program deck. This card causes a loader to transfer control
to an address in the program, prior to the execution of the
program.

The format of the Absolute End-Program Card is:

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000000000

Figure .10 - Format of the Absolute Ene/·Program Care/

EXPLANATION OF ABSOLUTE END-PROGRAM CARD FORMAT

LEGEND COLUMNS ROWS CONTENTS

1-8 12-9 Identity and sequence information, in Hollerith

9-12 12-9 Punches, or zero. If zero, card is ignored. If one or
more of these columns contain pun-
ches, the card is processed.

9 12-9 The address of the first executable instruction in the
10 12-1 program to which a loader transfers control after load-

ing the program. Row 1 of column lOis interpreted as
the F-bit.

10 3-9 0111111 (Absolute End-Program Card identification)

11-12 12-9 Checksum or zero

Columns not mentioned above have no effect on loader processing other than their effect
on the checksum.

OBJECT PROGRAM FORMATS

BINARY OBJECT
PROGRAM TAPE

RPL OBJECT
PROGRAMS

63

All object programs (REL, ABS, and RPL) are recorded on the
Object Program Tape. In the case of REL and ABS programs,
object decks are subsequently produced; in the case of RPL pro­
grams, no object decks are produced. Except for this latter fact,
and the fact that no checksum is calculated for RPL programs,
the RPL program is the same as the ABS program.

PHILCO 2000
COMPUTER

Figure 1.1 - RPL Compilation Output

Evidence of the similarity between ABS and RPL programs may
be found, for example, in the number (34) and arrangement of the
instructions on the cards and on, tape. Also, the RPL instructions
on tape occur in groups, with as many as 34 instructions per group;
and, preceding each group is appropriate load information (see
Figure 12, below).

The RPL object program on tape includes three types of control
words produced during compilation:

1. A PROGRAM IDENTITY control word

2. A LOAD control word

3. A TRANSFER control word

These control words permit a loader to locate the object program
on the Object Program Tape, to load this object program, and to
start execution of the program by transferring control to an
instruction in the program.

The following figure shows how an RPL program is arranged
on tape.

I
...... f-------RPL OBJECT PROGRAM-------....

(4 FRAMES)
;

LOAD CONTROl. WORD

---------,--~ -"...,~~~---------"'-
PROGRAM PROGRAM
I DENTITY IDENTITY
(2 WORDS- CONTROL

WORD
8 FRAMES) (4 FRAMES)

Figure 12 - An RPL Object Program

4
READ
HEAD

TAPE
MOTIol

-----------_._---_ __ _--_._ ... _---

64

The PROGRAM
IDENTITY
Control Word

The LOAD
Control
Word

TAC ASSEMBLER-COMPILER

The RPL object program starts at the beginning of a block.
The first word of the first block is the Program Identity Control
Word. This control word indicates the number of words following
it that contain the program' s identity.

o 89 2324 41

Bits 0-8 identify this word as the Program Identity Control
Word.

Bits 9-23 specify the number (2) of words, following the Program
Identity Control Word, that contain the RPL program' s
identity.

Bits 24-47 are ignored.

A LOAD Control Word precedes ea~h group of instructions of
the program. This control word indicates the number of full
words of instructions following it that are to be loaded into
memory. The format of this word is:

o 89 232425 394041 47

Bits 0-8
Bits 9-24

Bit 24

n ADDRESS

identify this word as the Load Control Word.
specify the number (n) of full words of instructions,
follOwing this load control word, that are to be loaded
into memory. (n represents any number 1-34.)
specifies whether the number of instructions to be
loaded is even or odd:

o indicates an even number of instructions to be
loaded

1 indicates an odd number of instructions to be
loaded

Bits 25-39 indicate the starting address where the instruc­
tions in the group following are to be loaded sequent­
ially into memory.

Bit 40 specifies which half-word is to contain the first
instruction of the group: '

o indicates· that the first instruction of the group is
to be loaded into the left-half of the memory
location specified in bits 25-39.

1 indicates that the first instruction of the group is
to be loaded into the right-half of the memory
location Specified in bits 25-39.

Bits 41-47 are ignored.

OBJECT PROGRAM FORMATS 65

The TRANSFER The last word of an RPL object program is the Transfer Control
Control Word Word. This word causes a loader to transfer control to an instruc­

tion in the program after loading.

The format of the Transfer Control Word is:

o 89 2425 3940 47

address

Bits 0-8 identify this word as the Transfer Control Word.

Bits 9-24 are ignored.

Bits 25-39 indicate the address of the instruction to which con­
trol is to be transferred after the loading function is
completed.

Bit 40 is an F-bit specifying the instruction (0: left, 1: right)
to which control is to be transferred.

Bits 41-47 are ignored.

MIXED
INPUT
DECKS

Chapter 7

Mixed Input. The BITS Input Control

Card. The T ACL Input Control Card.

RELocatable binary decks may be combined with TAC-Ianguage
source decks to form a mixed input deck. (See Figure 13, below).
This mixed deck may then be compiled in one of the three object
formats: REL, ABS, or RPL.

MIXED INPUT

TAC -LANGUAGE
CARDS

PHILCO 2000 --.....fIl..... COMPUTER

RELOCATABLE
BINARY
CARDS

Figure 13 - A Mixed Input Deck

To specify the forms (TAC-language or binary) of the reSpective
decks, the input control cards TACL and BITS (TACL before
the TAC-language decks, and BITS before the relocatable binary
decks) must be included by tlJ,e programmer. Also, the pre­
compilation card-to-tape operation must be performed in image­
mode. *

*See the Philco 2000 Operating System Manual, TM-23, for a
definition of image mode.

67

68

THE BITS INPUT
CONTROL CARD

THE TACL INPUT
CONTROL CARD

TAC ASSEMBLER-COMPILER

The BITS input control card is inserted preceding the relocatable
binary decks of the mixed deck, and it indicates that relocatable
binary cards follow. The characte rs BITS are punched in Holle rith
in columns 9-16 of the card.

The TACL input control card is inserted preceding the TAC­
language decks of the mixed deck, and it indicates that TAC­
language cards follow. The characters TACL are punched in
Hollerith in columns 9-16 of the card.

Chapter 8
THE
CODE-EDIT

CONTENTS OF
THE CODE-EDIT

Contents of the Code-Edit. Source

and Object Program Listing. Error

Indications. Generated Remarks.

Mi scellaneous Information.

The Code-Edit is a printed list of the source program, the object
program, and other information relevant to the compilation
process. The source program is shown from I card to END card
exactly as written by the programmer; the corresponding object
program is printed in octal adjacent to and following the source
program.

The Code-Edit is produced by TAC during compilation, and is
written on the Edited Output Tape*, then printed off-line. In
addition to remarks and error notices which may be included to
aid the programmer in debugging an unsuccessfully compiled
program, the following information is also printed:

o Library tapes used
o REFOUT symbols
o ASTOR symbols
o COMSTOR symbols
o SYMBOUT symbols
o Called library subroutines that are not included in the

compilation
o TEMPORARY symbols
o Program length
o Starting location of Pool Constants
o Amount of common storage
o Symbol Table
o Source and Object Programs
o The coding of called subroutines (if compiled with the

program)
o Pool Constants

A Code -Edit of the sample program in Figure 1 is shown below.
This program was compiled in RE Locatable format; if it were
compiled in ABS or RPL format, information such as SYMBOUTS
and REFOUTS would be irrelevant, and the notice SUBROUTINES
NOT INCLUDED would constitute a serious error condition.

*Also referred to as the Code-Edit Tape.

69

Id:ntity of library Tape used'.

Symbols defined as REFOUTS by TAe.

Routines in which these REFOUT
symbols are defined.

Symbolic definition of first word
in ASTOR area.

Storting location (octo I) of ASTOR area.

Number of words' in ASTOR area, in decimal.

COMSTOR areas reserved" if any.

•
•
•
•

LIBRARIES USED ~

REF'OUTS
I

101-1 .IOf10UT
F'LOG1DX .F'LOG10X
101-1 .IOCNV
IOI-IHB .RUtiALI.
101-1 .F'ILL

ASTORS
1 -------00037 SAMPLE ,COEF'F' 101

SUBROUTINES NOT INCLUDED
SYMBOUT symbols appearing in
program, ' if any.

BinarY,relocatable I ibrarYlsubroutines called. Not

includedlduring compilation, but at, load time.

Undefined symbols in the program.
TEMPORARIES • 00035 SAMPLE ,MiG

Octal definitions supplied by TAC. f-- '00036 SAMPLE ,VALUE •
Length of program, in octal. -G===o0204 PROGRAM MAX

00031 BEGl~NING POOL CONSTANTS
Beginning location of Pool Constants, TOTAL COMMON STORAGE
in octal.

•
Size of common storage area. •

•
•
•
•
•

COCE EDIT or SAMPLE PROGRAM

*If no libraries ore used in the compilation process, the words "NO LIBRARIES USED" are printed.

• PAGE

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• .,
.,
.,

--J
o

t-3
>
C"l

>
(JJ
(JJ

trl

== ttl
t""
trl
::c
~
0

== "'0

t=
trl
::c

The Symbol Tabl he der '.' 1 all bol
'--1""-"-"'-"-- I --- .--, _ .. _--- •• _. -- --- "';;0 .--- --"'r'""

l Name·. Symbol J
lotion process.

• 12-18 11-31,6
Memory address (in octall assigned to adjacent Name. • Symbol. The letters Land R indicate the left and right I
halves 01 the address, respectively. -'- -----• AOOOOOL COMMON ,OX

P00021L SAMPLE ,lTOOO4
AOOOOJL COMMON , JX • A00006L COMMON ,6)(
P00035L SAMI'LE , ARG
P0002JL SAMPLE ,;

Address type indicator*: • P00026L PIOSGEN .R[STORE
r0036L SAMPLE .VALUE

P means address is relative to program origin. •
A means address is absolute. • C means address is relative to common origin.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

*Included only if program is relocatoble.

CODi; EDIT 0; SAMPLE PROGRAI4 PAGE

SYMBOL TABLE

A00003L COMMON ,lSUBERR P00014L SAMPLE ,lTOOO2
A00001L COMMON .1X AD0002L COMMON ,2X
A00004L COMMON .4X A00005L COHMON .5X
A00007l COMHON .7X AOOOOOl COMMON ,8)(
P00037L SAMPLE .COEF'; POOOOOL SAMPLE , EXECUTE:
POOOOJR SAMPLE ,lOOP AD 0144L SAMPLE .N
P0002,R PIOSGEN ,kETURN P0003DL PIOSGEN .SAVE
P00204l COMMON .1 PMAX)

• 2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
0

•
•
•
•
•

>-3
:t
~

Ci
o
t::I
~

~
o
~

-..:J
........

Address Type Indicator', specified for each half·word:

P means address in instruction is relative to program
origin.

C means address in instruction is relative to common

origin.

A means address is absolute.

S indicates some port of the address specified is a

REFOUT. (Definition of this port will be
•

I
A T indicates that some port of the address specified is I
a TEMPORARY.

I Object Progr,am,. in octal. I
Source Progr;;;;;, expanded skeleton coding, ·and generated l
coding, in TAC·language.

12-18 11-31,6 CODE EDIT O. SAMPLE PROGRA~ PAGE

mode at load time, and appears during I • :-:;
compilation as zero on the Code· Edit.)

r
SAMP001D SAMPLE PROGRAM

The instruction (mnemonic and address) in octal.

Address field of instruction,· in octal**.

Mnemonic (reflecting F·bit setting),

Octal location of instruction.

Coding generated to properly load parameter of subroutine

FLOGIOX, and to transfer control to the subroutine.

Macro- i nstructi on.

JUMP instruction inserted for PRT generator call requiring
transfer of control to generated coding.

Generator call not requiring transfer of control to gen­

erated coding.

I
TMD
TOXLC
NOPL
RPTNA
TMO
rMMf<S
SIXOL

TMA
JMPL
TAM
TMD
AIXJ
NOPL

UM
JMPL

JMPL
JMPL

5AMP002U • PROGRAM TO EVALUATE A POlyNOMIAL
SAMP0030 NAME SAMPLE!;

! 1 SAMP0040 COEr. ASTOR N .. a
SAMP005U ASGN N,100$

COEfI:· IS STARTING LOCATION FOR COErrrCIlNT5
DEF"INE DEGREE Or POLYNOMIAl.

00031 00014423
00000,05 64000061
00000 00000003
00145 10062413
00000,05 64000022
00001,05 64000743
00145,05 64062477

00000,05 64000021
00000 00000040
00000,05 64000024
00032 00015023
00001.05 64000474
00000 00000003

5AMP006Q EXECUTETMD L/CO~H$
SAMP007U TOXLC ,55

5AMP0080 R
SAM~0090
SAMP0100
SAMP0110
SA~P0120 SLOOP

5AMP0130
5AMP0140
SAM~0150

RPTNA N.U
TMO 0,5$
r~MR5 1,55
SIXO N.l,'5$
rLOG10X ,55

TAM
T~D
UXJ

,55
C/HLT, COE.r.N.1l C/HL T .1.001'5
1,55

CALCUI.ATE COEfrICIlNTS

SAMP0160 POL YVAL ARGJ N J COEH5 WITH ARGUMENT IN ARG. EVAlUA TE POLYNOMIAL
00036
OOOt'!

00021
00005

00017024 T SAMP0170
00006040 SAMP0180

SAMP0190
00010440 SAMP0200
00002440 5AMP0210

5AMP0220

TAM VALU~ :Ii
PRT r,VALUe: 5 PRINT VALUE OF POLYNOMIAL
FaRHAT (9H1VALUE. ,E17.515
POSITIONS
JMP M/55
END EXECUTE $

Remark generated by T AC. • >)>»»»»> >>»» >>> »»»»»» »»»» > »» »END CARD JUMP ADDRESS 15 POOOUOL

00014L

Object program coding corresponding to POL YVAL Macro- 000 0 6~ TMO 00033 00015423 POLYOOOl
TOXL 00000,01 44000060

) NAME SAMPLE
SlT 1'1/00006 .1H 5
TMC l/COEff.15
TOX ,1XS

•
•
•
•
•
•
•
•
•
•
•
•

instruction call. 00007L
00007R
00010L
00010R

TMA
TMO

00037 00017421
00035 00016422

POLYOO02
P0t.YOOO:S

T I'OLYOO04
T~A COErF"S
Hltl AkG$

Expanded Skeleton Coding inserted in-line to ~atisfy •

POLY VAL Macro call.

Object program coding corresponding to PRT generator call. I

• 00011L 0001111

•
000141. • 00014R
00015l
00015R • 000161.
00016R

• 00017l
00017R
00020L

RPTNA
FMAR
rAM

T JMI1
TMO
TXDLC
TXDRC
TOM
JMPL
TMA
JMPl
JMPL

00144 10062013
00000 00000352
00001,01 44000700

00027 00013/)10
00034 00016022
00000,01 44000063
00000,02 50000263
00030 00014034
00000 00000040
00036 00017021
00000 00000040
00000 00000040

POLYOOO, RPTNA N$
POLYOO06 rMAR 5 • POlYOO07 fAM 1,10
1'01. YO 0 Oil

A
A
P
S
P
S
5
P

•
•
•
•

lT0002

ENDMACRO

1~1:;' -;-l-l-:-:-:-:-': :-:-~-:-:-~ ~-:li---':l'~::d~":':~::::.~":::"'~~~ .m m ~"
JMP IOH. IO><OUTS
TMA VAL-Ur5
JMP IOH. IOCNV$
JMP IOH,rILL-5

Obio<' ' m ~d;". ~ ... ,,'"d;" ... POSITION ~ 00"" JMPL 00026 00013040

...... ~1I. j"D21L T JML 00022 00011010 P
00021R JMPL 000 0 a 00000040 5

• 00022l JMPL 00022 00011040 P

JMP PIOSr.EN, RE5TOrlE:i
TJM (P).1$ ~ •
JMP IOHTA.B.RUNALL~ Coding generated for POSITION generator call.
JMP (PIS

WI (9H1VALU ~~;~.t of series of coding generated for FORMAT generator •

1 T0004

00 0 22~ NOPL 00000 00000003 A
00023 7411 3001 6521 4364 All

Non-Pool constant corresponding to word (wI) constant I ~
generated for FORMAT generator call. (Note that can- • I
stants occupy entire words, and that two Address Type

•
Indicators are specified for each constant-one per half- • word.)

* Included only if program is relocatable.
**Both V and N fields, if en index register is specified.

-..:)
I'V

0-3
>
Ci

> r:n
r:n
~
a:
t:t:I
t""
I?j
;;1:1

~
o
a:
~

t=
~
;;1:1

• 12-18 11-31.6

• 00024
a a 025 • 00026L
00026R

G 00027L
00027~

o 00030

•
CD

If subroutines are compi led with the program, the sub-, •
routines will appear in object program form immediately I---l--=----­
preceding the Pool Constants.

G

o

o

o

o

2560 1360 73~5 0107
330!> 3460 6060 6060

TMO 00030 00014023
TOXLC 00000'.01 44000061
TOXHC 00000.02 50000261
JMPk U0027 00013640
0000 0000 0000 0000

12-18 11-31.6

o

o

AA
AA

P
A
A
P

AI.

PP
AP

CODE EDIT 0, SAMPLE PROGRAM PAGE

WIE a .E17
WI. 5)
NAME

RESTORETMO
TliXLC:

S } Remainder of coding generated for FORMAT generator call.

TOXRC
RE TUKN JM~

SI.VE
SUBR
SUBR
AP ENOli
ENDGENS

PIOS~ENS I PIOSGEN. SAVES
.1$

~ ~~ $ Close-out coding generated by Generator.

IOH$
IOHTABS

} TAC generated instructions.

00032 0010 2000 OOOU 16uO PP 00033 0002 0000 0002 0000

CODE EDIT O. SAMPLE PROGRAM PAGE

PP

For ABS compilation, ·this notice specifies the number of
absolute binary cards. For RPL compilation, ·the number of
RPL bl~cks is specified. SAMPLE PROGHAM IS 8 CARDS IN RELOCATABLE BINARy 2 tlLOCKS

o
Number of serious and possible compilation errors, if any.

CD ENU 0, CODE EDIT

G

o

o

o

o

o

;..3
:c • ~

n • 0
0
~ • ~
0

• :::3

•
•
•
•
•
•
•
0

•

•
•
0

•
•
•
•
•
•
•
•

(j

74

ERROR
INDICATIONS

Serious Errors

TAC ASSEMBLER-COMPILER

If an, error is encountered in the source program during compila­
tion, an appropriate error indication is printed following the
erroneous instructions or constant on the code-edit, and compila­
tion continues. Serious error indications are preceded by minus
signs; possible error indications* are preceded by asterisks.

The following is a list of serious error indications that may be
printed on the code-edit.

SERIOUS ERRORS

- - - - - - - - - - - - - - - - - - - ADDRESS FIELD ERROR
- - - - - - - ADDRESS OF NEXT INSTRUCTION CYCLES MEMORY
- - - - - - - - - - - - - - AMBIGUOUS OR CONFLICTING F BITS
- - - - - - - - - - - - - _. - BINARY CARD "nnnnnnnn" BAD
- - - - - - - - - - - - - - - - - - - COMMAND FIELD ERROR

- - - - - - - - - - - CONTROL CARD ADDRESS FIELD ERROR
- - - - - - - - - - - CSA OF BINARY CARD IMPROPER, USED ZERO
- - - - - - ~ - - - - - - - - - - - DOUBLE ASSIGNMENT

- - DOUBLE ASSIGNMENT WOULD OCCUR IF SYMBOL WERE COMMON
- - - - - - - - - - - - - - END CARD ADDRESS ERROR
- - - - - - - - - ILLEGAL CONSTANT ON PREVIOUS CARD
- - - - - - - - - - - - - - ILLEGAL CONTINUATION CARD
- - - - - - - - - - - - IMPROPER REFERENCE TO AN INDEX REGISTER
- LABEL FIELD ERROR
- - - - - - - - - - - - - - - - - - - LOCATION FIELD ERROR
- - - - - - - - - - - - NAME FIELD ERROR, NONAME USED
- - - - - - - - - - pi CONSTANT NOT PROPERLY POSITIONED
- - - - - - - - - - - PROGRAM CYCLES MEMORY
- - - - - - - - - - - - - SET PARAMETER NOT PREVIOUSLY DEFINED
- - - - - - - - - - - - - SYMBOL TABLE OVERFLOW
- - - - - - - - - - - - - TOO MANY NAMES, NONAME USED
- - - - - - - - - - - - - - - - "xxxxxxxx" NOT DEFINED
- - - - - - - - - - - - - - - - 212 COMMAND IN 211 PROGRAM

*Indications of minor errors which are due to unusual coding
techniques, but may have been intended by the programmer.

THE CODE-EDIT

Possible Errors

75

The following is a list of possible error indications that may be
printed on the code -edit:

POSSIBLE ERRORS

* ADDRESS FIELD OVERLAP
* * * * * * * * * * * * * * * FIELD OVERLAP PREVIOUS CONSTANT
* * * * * * * * * * * * * * * * * IMPROPER INDEX REGISTER FIELD
* IMPROPER LABEL
* INDEX FIELD OMISSION * * * * * * * * * * * NO DOLLAR SIGN (AS THE END SYMBOL OF A LINE)
* * * * * * * * * * * * * * * * * * * NUMERIC FIE LD TOO LARGE·
* * * * * * * * * * * * POSSmLE ERROR REFERENCE TO A CONSTANT
* * * * POSSIBLE ERROR REFERENCE TO TEMPORARY, ASTOR OR COMSTOR
* POSSIBLE F-BIT ERROR * * * * * * * * * * REFERENCE TO COMMON STORAGE MADE ABSOLUTE
* * * * * * * * * * * * * * * * REFOUT ADDRESS IS INDEX MODIFIED
* * * * * * * * * * * * * * RELOCATABLE ADDRESS MADE ABSOLUTE
* * * * * * * TOO MANY FRACTIONAL CHARACTERS PREVIOUS CONSTANT

GENERATED
REMARKS

In addition to the error indications discussed above, any of the
following three remarks about the END card may also be included
on the code-edit by TAC: .

> > > > > > > > > > > > NO ADDRESS IN END CARD
> > > > > > > > > > > > > > REFOUT IN END CARD
> > > > > > > > END CARD JUMP ADDRESS IS xxxxxxxx

Appendix A lists other comments, accompanying the Code-Edit,
that are typed out on the Console Typewriter by TAC during
compilation.

CONSOLE
TYPEWRITER
TYPE-OUTS

Appendix A

Operating System Typeouts of Source

Program Errors,· Tape and Other

Errors Encountered During Compilation.

During the compilation process, one or more of the following
notices are typed out on the Console Typewriter by the TAC
Assembler.

TYPEOUT

ID IS xx . . . xx

TAPE n NOTAV

TAPE n NO LIB

BAD LIB TAPE it
IGNORED

BAD RPL

MEANING

Program Identity is xx . . . xx

Tape unit identified as n is not
available. Computer halts with
M/lllll displayed in its Pro­
gram Register.

The tape mounted on Tape Unit
n was not a library tape.

An illegal control word was en­
counte red in the Table of Con­
tents of the library tape now on
tape n.

A missing control word was
detected in a called Generator
or Macro-generator program.
Computer halts with M/77777
displayed in the Program Reg­
ister.

TAPE n IN LOCAL Tape unit n is in local status.
Computer halts with M/lllll
displayed in the Program Reg­
ister.

77

SUGGESTED RECOVERY
ACTION

Make tape available andpress
ADVANCE to continue.

Mount correct library tape and
press ADVANCE to continue.

None. TAC continues assem­
bling, ignoring the rest of the
Table of Contents o~ that li­
brary tape.

None.

Make tape available and press
ADVANCE to continue.

78

TYPEOUT MEANING

TAP E n WR RING Tape unit n is missing a write
ring. Computer halts with M/
11111 displayed in the Program
Register.

TAPE n ROCKED A Parity or Sprocket error was
5 detected on tape n. Program

tried to correct error five
times and failed. Computer
halts with M/ 11111 displayed in
the Program Register.

TAPE n NO GOOD ~Qn - recoverable tape error
detected on tape n., Program

GEN ERR

1 DMP TAC
or

.2 DMP TAC

T n x, CARDS Y
BLOCKS

RPL BLOCKS Y

A Generator requested more
parameters than were supplied
in its generator call by the
programmer. TAC assumes the
call to be satisfied and pro­
ceeds with the compilation.

A TAC Assembler Program
error. Computer halts with M/
77777 displayed in the Program
Register.

This typeout occurs at the end
of compilation if the object pro­
gram is in REL or ABS format.
It tells the number (x) of cards
of information transfe rred to
the Object Program Tape, n,
and the number of blocks on
this tape that contains this
transferred information. (Card
output blocks are always in
image mode, 20 words per
card, 6 cards pe r block. The
last block is filled with blanks.)

This typeout indicates the num­
ber of blocks(Y) the RPL ob­
ject program comprises on
tape.

TAC ASSEMBLER-COMPILER

SUGGESTED RECOVERY
ACTION

Make tape available andpress
ADVANCE to continue.

Press ADVANCE to attempt to
correct error five more
times, or change tape and re­
start job.

Change tape n and restart
job.

Check generator or generator
call.

Get post-mortem dumps and
call Philco's Programming
Department.

Appendix B
LOADING
OB~ECT

PROGRAMS Typical REL, ABS, and RPL Program.

Loaders. Processing of Object Program

Cards and Tape. Address Modifica­

tions. F-Bit Modifications. Checksum.

THE RELOCATABLE
PROGRAM LOADER

This appendix briefly describes the loading functions performed
by typical TAC loader programs.

During compilation, a binary object program is produced on tape,
together with information necessary for a loader to properly load
this object program. The loader may be 'a RELocatable program
loader, an ABSolute program loader, or an RPL program loader,
depending on whether REL, ABS, or RPL object program format
was specified.

It is not necessary in a REL compilation for every individual
program section, such as a binary library subroutine or a
previously compiled subprogram, to be included in the compilation.
At load time, the separately compiled programs or program
sections can be loaded together by the REL loader to form an
integrated program. All the necessary linkage or intercommuni­
cation between the respective programs is achieved by the loader
from information on SYMBOL DEFINITION CARDS (see page 58),
and RELOCATABLE INSTRUCTION CARDS (see page 60), which
are produced during compilation from SYMBOUT and REFOUT
source cards respectively (see pages 22 and 23).

The loading origin for relocatable programs is. a variable which
depends on the program size and the amount of available memory
locations. The loading origin of a relocatable program is calcu­
lated by the Relocatable Program Loader, by subtracting the
length of the program, which is supplied on a PMAX card by TAC
(see page 56), rfrom the address of the last available memory
location. For example, if a REL program requires 4000 memory
locations, and the amount of available memory is 32,768 locations,
then, the program's loading origin would be location 28,768
(i.e., 32,768 - 4000).

If the address definition assigned to the symbol ALPHA during
compilation is 2000, ALPHA will refer to location 30,768 (i.e.,
2000 locations relative to 28,768).

79

80 TAC ASSEMBLER-COMPILER

REL object programs,are loaded in a forward direction (in order
of increasing location) at the end of memory. The first object
program is loaded in such a way that the last location of the
program occupies the last memory location; the second object
program is loaded so that its last location occupies the location
immediately preceding the location occupied by the first location
of the first program, and so on. (Refer to Figure 14, below.)

REL PROGRAMS

f-------T-...J---BEGINNING OF MEMORY

OPERATING
SYSTEM

COMMON
STORAGE

THIRD
RELOCATABLE

BINARY
DECK

SECOND
RELOCATABLE

BINARY
DE'CK

FIRST
RELOCATABLE

BINARY

RELOCATABLE
LIBRARY SUBROUTINES

LOADING ORIGINS

L-__ D_EC_K __KIt--_END OF MEMORY

Figure 14 - Loading of Re/ocatable Object Programs

For REL programs, the common storage area starts immediately
after the last memory location occupied by the operating

LOADING OBJECT PROGRAMS 81

REL LOADER
PROCESSING OF
OBJECT PROGRAM
CARDS

Processing Done
For All Cards

Address
Modifications

system. * The length of this area will be the largest of the common
storage requirements indicated on the individual PMAX cards.

An error check is made by the REL loader to insure that no
relocatable program overlaps the common storage area. It adjusts
all addresses relative to the common origin or relative to a
program origin.

After all the respective binary card decks representing the
individually compiled program sections are loaded, the REL loader
checks for remaining undefined symbols (REFOUTs). If undefined
symbols exist, the loader searches the TAC binary relocatable
library tape for the subroutines containing definitions on SYM­
BOL DEFINITION CARDS for these REFOUT symbols. These
subroutines are then loaded. If undefined symbols still exist after
the library search is completed, an appropriate error notice is
given and the loader transfers control to the operating system.

The REL loader processes every object program card. The
manner in which the information on these cards (shown in the
format explanation charts in Chapter 6) is processed is described
below.

o Columns 1-8 of each card are ignored. These columns contain
Identity and Sequence information in Holle rith, and have no
effect on loader processing.

o Columns 9-12 of each card are checked to determine if they
contain punches. If these columns contain no punches, the
card is ignored.

o If one or more of columns 9-12 contain punches, row 3 or
rows 3-9 of column 10 are checked for card identification.
If these rows are not punched, loader processing halts and"
control is returned to an error routine in the operating
system.

o Columns 11 and 12 of each card contain a checksum for that
card. If this checksum and that computed by the loader do not
agree, loader processing halts and control is returned to an
error routine in the operating system. * *
If columns 11 and 12 are blank, no checksum is computed for
the card.

The Relocatable Program Loader adjusts all relative addresses
appearing on the SYMBOL DEFINITION CARDS, the RELO­
CATABLE BINARY INSTRUCTION CARDS; and the RELOCAT­
ABLE END-PROGRAM CARD. Absolute addresses are not
modified.

* If ·SYS (the Philco" 2000 Operating System) is the operating
system used, the last memory location occupied by the
operating system is 777 octal. If 32K SYS is the operating
system used, the last memory location occupied by the
operating system is 7,777 octal.

** Refer to the checksum technique discussed on page 88.

82

Processi ng The
PM AX Card

Processing Symbol
Definition Cards

TAC ASSEMBLER-COMPILER

In addition to the processing indicated on page 81, which is done
for all object program cards, the PMAX' card is further processed
by the loader as follows:

• The loader determines the loading origin for the object
program from the contents of columns 13, 14, and 16:

If row 9 of column 16 is punched (one), the address
specified in columns 13 and 14 is the loading origin
of the object program.

If row 9 of column 16 is notpunched (zero), the informa­
tion contained in columns 13 and 14 is subtracted from
the address of the last available memory location, and
this difference becomes the loading origin of the object
program.

• The loader establishes the origin of the common storage
area as that location immediately following the last location
occupied by the operating system, and adjusts all common
addresses, specified by the contents of columns 25 and 26 of
the PMAX card, relative to this common origin.

• After processing the information in the other colu-mns of the
PMAX card, the loader checks to insure that available
memory is not exceeded, and no overlap of the common
storage area occurs. If memory is exceeded or an overlap
occurs, loading is terminated, an appropriate error indica­
tion is typed by the console typewriter, and a post-mortem
dump is performed.

The loader constructs a list of the symbols whose definitions are
found on SYMBOL DEFINITION CARDS. This symbol list occupies
the area that was assigned to AS TORS, TEMPORARIES, and
common storage at compile time. The loader inserts the defini;...
tions specified in these cards into the symbol list as follows:

• If the symbol is not already in the list, it is placed in the list
with its definition.

• If the symbol is already in the list, and is undefined (that is,
it is placed in the list because of a previously encountered
REFOUT on a RELOCATABLE INSTRUCTIONS CARD OR
RELOCATABLE END-.PROGRAM CARD), its definition is
placed in the list, -and each address, on the previously en­
countered RELOCATABLE INSTRUCTIONS and RELOCAT ...
ABLE END-PROGRAM cards, that contains a reference
to the symbol is replaced with the sum of the definition of
the symbol and the compiled definition of the address.

• If the symbol is already defined in the list, a "double defini­
tionll error notice is typed on the Console Typewrite r, and
the first definition specified is used.

LOADING OBJECT PROGRAMS 83

Processing
Relocatable Binary
.Instruction Cards

Processing The
Relocatable
End-Program Card

In processing a RELOCA TABLE BINARY INSTRUCTION CARD,
the Relocatable Program Loader adjusts the definitions of the
addresses on the card relative to program origin or to common
origin, according to the indicator bits in columns 13-16 of the
card. No adjustment is made for absolute addresses.

If the address references a REFOUT symbol, the loader:'

o Adds the RE FOUT symbol to the symbol list if it is not
already in the list, or

o If the symbol and its definition is already in the list (derived
from the symbol's appearance on a previously encountered
SYMBOL DEFINITION CARD), the loader obtains its defini­
tion from the list, and replaces the address referencing that
symbol with the sum of the definition of the symbol anii the
compiled definition of the address.

If an address element was specified in the address and remarks
field of the END source card, the resulting RELOCATABLE END­
PROGRAM CARD will cause the loader to transfer control to this
address after loading the program. Before transferring control,
however, the loader:

o Adjusts the address in columns 15 and 16 of the card accord­
ing to the indicator bits in column 13, in the same manner as
described above in proces'sing RELOCATABLE BINARY
INSTRUCTION CARDS.

o Checks its list for any remaining undefined 'symbols (RE­
FOUTs). If no undefined symbols remain, control is trans­
ferred to the address in the End-Program Card.

If undefined symbols remain, the loader searches the TAC
relocatable binary library tape for subroutines containing
defintions on SYMBOL DEFINITION CARDS for these REFOUT
symbols. The loader then loads these subroutines and trans­
fers control to the address in the End-Program Card.

If undefined symbols still exist after the library search is
completed, an appropriate error notice is given, and the
loader transfers control to the operating system.

If no address element was specified on the END source card, the
loader will attempt to load the next program directly after loading
this program.

-------------_ _._-- .. _----

84

F-Bit Modifications·
At Load Time

Checksum Performed
by The Loader

TAC ASSEMBLER-COMPILER

In order to have an instruction that contains a REFOUT symbol
refer to the proper half of the address represented by that symbol,
the relocatable program loader may modify the F-bit of the
instruction by adding zero or one (corresponding to the address
being left or right, respectively) to the F-bit. For example, if
the symbol ENTRANl represents a right address in a called
subroutine, and the instruction TDM in a calling program refers
to this address, TDM will be changed to SCD at load time.

The loader computes the checksum for an object program card
by summing all the relevant data bits on the card, and compares
this computed checksum with the checksum value existing in
columns 11 and 12 of the card. If these two columns are blank,
no checksum is computed.

The checksum values will agree when data on the card has
been transferred accurately. If these values do not agree, loader
processing halts, and control is returned to an error routine
in the operating system.

The following coding shows the checksum procedure; assume
that symbolic index register CARD is set to the address of
a word containing columns 1-4 of the card being checksummed:

L Location Command Address and Remarks

TJM CKSUMX $
CD $
TXDLC 0, CARD $
TOM CARDLOC $
TMQ 2, CARD $ TEST FOR COLUMNS
ETA 24/1T47 $ 11-12 BLANK
JAZ CKSUMX $
ETA 24/1T23 $ COLUMNS 9-10 TOAL CQ $
SRAQ 1 $
AIXOL 3, CARD $ SET TO COLUMN 13

R VARRPT RPTAN (0) $ PRESET BY CARD
TYPE

AMA 1,CARD $
SRAQ 1 $
AQA $
TAD $
SCD 24 $
AD $
SRA 24 $
TMD CARDLOC $
TDXLC O,CARD $ RESET TO COLUMN 1
TMQ 24/1 T47 $ COMPARE WITH
ES 2,CARD $ CHECKSUM ON CARD

CKSUMX JAZ CKSUMX $ CHECKSUMS AGREE
JMP ERRORB $ NO AGREEMENT

LOADING OBJECT PROGRAMS 85

Because the number of colunms to be summed depends on the
card type, the symbol VARRPT in the above coding should be
assigned:

• the value 17for PMAX, SYMBOL DEFINITION, andRELOCAT­
ABLE END-PROGRAM cards

• the value 0 for ABSOLUTE END-PROGRAM cards

• the symbol Y for RELOCATABLE and ABSOLUTE BINARY
INSTRUCTION CARDS. The symbol Y is defined as the
integer part of the quantity (x+k+l), where

Number of instructions on card specified in rows 4-9 of column 10
x = ----------2.!.....----------

and k = 1/2 or 1, depending on whether the F-bit in row
1 - column 10 of the card is zero or one, respectively.

THE ABS AND RPL The loading origin for absolute programs is the compilation base.
PROGRAM LOADERS· ABS and RPL programs are loaded in a forward direction, starting

at the compilation base.

The common storage area may be located anywhere in memory.
The ABS or RPL loader does not keep a record of common stor­
age, not checks for memory overlap.

The following figure shows the loading scheme for ABS and RPL
programs.

ABS a R PL PROGRAMS

OPERATING
SYSTEM

SINGLE
PROGRAM

(ALL CALLED
SUBROUTINES

AND SUB­
PROGRAMS
·INCLUDEDl

BEGINNING
OF

MEMORY

....... --- LOADING ORIGIN

'-------.,,-.' ... ---END OF MEMORY

Figure 15 - Loading of Absolute Object Programs

86

ABS LOADER
PROCESSING OF
OBJECT PROGRAM
CARDS

TAC ASSEMBLER-COMPILER

The ABS loader processes every object program card: The in­
formation in columns 1-12 of these cards are processed in the
same manner as for Relocatable Program Cards, indicated on page
85. No address modifications are performed.

ABS Loader Processing In processing an Absolute Binary Instructions Card, the ABS
of Absolute Binary loader loads the instructions appearing onthe card consecutively
Instruction Cards into memory, according to the Core Starting Address specified

in columns 9 and 10 of the card.

ABS Loader Processing The address indicated in columns 9· and 10 of the Absolute End-
of The Absolute Program Card is the address originally specified in the address
EndPro.gram Card field of the END source card, and it is to this address that the

loader transfers control subsequent to loading the program.

Appendix C
CALLS ON
FORTRAN SUBROUTINES

The F label is used for calls on FORTRAN type subroutines.
It is currently a feature of the 32KSYS version of TAC* only.

The general form of this call is:

L Location Command Addess and Remarks

F symb entrance Param 1; Param 2; . .. ; paramn$

where symb represents and optional symbol, and each param is
a parameter of the subroutine.

The format of the call on a FORTRAN subroutine is similar to
that on a standard TAC subroutine (see page 37) except that:·

• F in the label field signifies a call on a FORTRAN subroutine.

• None of the parameters may be omitted from the call.

The resultant in-line coding generated for the FORTRAN sub­
routine call is:

JMP
NOP
NOP

NOP

entrance.entrance$
paraml$
param 2$

paramn$

The symbol in the location field, if any, is assigned to the loca­
tion of the generated JMP instruction. Because FORTRAN sub­
routines expect transfer of control to have come from a right hand
instruction, the JP instruction is always made to occupy the right
half of the word as if an R had been written in its label field.

A NOP instruction is generated for each parameter. The address
field of the NOP is the address of the parameter.

*The version ofT AC that is designed to operate under control of
the Philco Operating System, 32KSYS.

87

T'ABLE OF
PHILCO
CHARACTERS

PHILCO OCTAL HOLLERITH
CHARACTER CODE PUNCH

0 00 0
1 01 1
2 02 2
3 03 3
4 04 4
5 05 5
6 06 6
7 07 7
8 10 8
9 11 9
@ 12 8-2 CD
= 13 8-3 . 14 8-4 ,
- 15 8-5 CD
& 16 8-6 CD , 17 8-7

+ 20 12
A 21 12-1
B 22 12-2
C 23 12-3
D 24 12-4
E 25 12-5
F 26 12-6
G 27 12-7
H 30 12-8
I 31 12-9
n@ 32 12-8-2. CD . 33 12-8-3
) 34 12-8-4
% 35 12-8-5 ~
? 36 12-8-6 1
" 37 12-8-7 CD

CD Multiple punched.

Appendix D

PHILCO OCTAL HOLLERITH
CHARACTER CODE PUNCH

- 40 11 or 8-4 CD
J 41 11-1
K 42 11-2
L 43 11-3
M 44 11-4
N 45 11-5
0 46 11-6
p 47 11-7
Q 50 11-8
R 51 11-9
-, 52 11-8-2 (!)
$ 53 11-8-3
* 54 11-8-4
< 55 11-8-5 <D

#= 56 11-8":6 CD
w 57 11-8-7 (!)

Blank (space) 60 Blank
/ 61 0-1
S 62 0-2
T 63 0-3
U 64 0-4
V 65 0-5
W 66 0-6
X 67 0-7
y 70 0-8
Z 71 0-9
I 72 0-8-2 CD
, 73 0-8-3
(74 0-8-4

75 0-8-5 CD
.>

76 0-8-6 CD
e@ 77 0-8-7 (!)

® These two characters are not acceptable T AC characters, and are included
here only to show the complete character codes.

89

TAC
MNEMONICS

Appendix E

The following TAC mnemonics are currently acceptable to the TAC Assembler.

MNEMONICS

AD DORMS FMA JAGQFR MMAR SRD
ADXL DR FMAA JAGQL MMARS" SRDN
ADXR FMAAR JAGQR MMAS SRQ
AIXJ EA FMAARS JANL MMR SRQN
AIXJEG EI FMAAS JANR MMRS SWD
AIXJS EIS FMAD JAP.L MMS
AIXOL ENDDP FMAR JAPR MSU TAD
AIXOR ES FMARS JAZL TAM
AM ETA FMAS JAZR NOPL TAQ
AMA ETD FMM JBTL NOPR TCM
AMAS ETX FMMA JBTR TCXS
AMS FMAAR JDPL RPT TCXZ
AQ FAD FMAARS JDPR TDA
AQA FAM FMAAS JL SCD TDC
AQAS FAMA FMMR JMPL SD TDM
AQS FAMAS FMMRS JMPR SDXL TDQ
AWCS FAMS FMMS JNOL SDXR TDXL

FAQ FMSU JNOR SETDP TDXLC
CA FAQA FSD JOFL SIXJ TDXLY
CAM FAQAS FSM JOFR SIXJES TDXR
CAMA FAQS FSMA JQEL SIXJG TDXRC·
CAMAS FCAM FSMAS JQER SIXOL TDXRY
CAMS FCAMA FSMS JQNL SIXOR TIJL
CAQ FCAMAS FSQ JQNR SKC TIO
CAQA FCAMS FSQA JQOL SKF TIXS
CAQAS FCAQ FSQAS JQOR SLA TIXZ
CAQS FCAQA FSQS JQPL SLAN TJML
CD FCAQAS JQPR SLAQ TJMR
CM FCAQS HLTL JR SLAQN TMA
CQ FCSM HLTR SLQ TMD
CSM FCSMA LWD SLQN TMQ
CSMA FCSMAS Icas SM TQA
CSMAS FCSMS Icaz MA SMA TQD
CSMS FCSQ INCAL MAA SMAS TQM
CSQ FCSQA INCAR MAAR SMS TTD
CSQA FCSQAS MAARS SQ TXDL
CSQAS FCSQS JAEDL MAAS SQA TXDLC
CSQS FDA JAEDR MAD SQAS TXDLY

FDAQ JAEQL MAR SQS TXDR
DA FDAQS JAEQR MARS SRA TXDRC
DAQ FDAS JAGDL MAS SRAN TXDRY
DAQg FEA JAGDR MM SRAQ TYXS
DAS FES JAGQFL MMA SRAQN T.yXZ

91

SUMMARY
LIST OF
TAC CONTROL
INSTRUCTIONS

Appendix F

This appendix provides a convenient reference to all TAC control instructions discussed
in the manual.

INSTRUCTIONS
Page

Command Address and Remarks Reference

AFEND n 14

ASGN symb, n 17

ASTOR n 13

C OMS TOR n 21

DEFINE symb, c 17

END addr 24

IDENTIFY mk,nX 12

NAME P 11

PAGE 23

REFOUT addr 20

SAME symb,n 17

SET addr 15

SETLARGE addr l' addr 2 16

SETSMALL addr l' addr 2 16

SPACE n 23

SUBR name 23

SYMBOUT addr 19

93

TM-35 6 -64 lM -l

PHILeo
A SUBSIDIARY OF ~~otorY5~

COMMUNICATIONS & ELECTRONICS DIVISION
3900 Welsh Road * Willow Grove, Pa.

