PHILCO 2000

ALTAC

TM-5C

ALGEBRAIC TRANSLATOR INTO TAC*

PHILCO CORPORATION
A SUBSIDIARY OF M&W%ﬁm

COMPUTER DIVISION
3900 WELSH ROAD
WILLOW GROVE, PA.

* Tradename of Philco Corporation TM-SC(2-62)

®©Copyright, Philco Corporation, 1962

ii

PREFACE

ALTAC is a Philco 2000 mathematical language compiler which operates
in conjunction with the TAC System to provide a running machine language
program from a program written in algebraic form.

The programmer should be familiar with the Philco 2000 System and TAC
coding before attempting to learn ALTAC. However, no previous knowledge
of the ALTAC language or that found in other automatic coding systems is
assumed. Each new concept should be thoroughly mastered in the order of
presentation. A number of illustrative examples are included in each chapter.
In addition, numerous exercises are presented in Appendix A.

TABLE OF CONTENTS

Page
PREFACE iii
INTRODUCTION 1
CHAPTER
1 SOLUTION OF A PROBLEM USING THE ALTAC
SYSTEM. & . v vt et e e ot on o n oot e 3
ALTAC CODING FORM . . i v i vttt ottt vt annns 4
ALTAC CHARACTERS . o v v v v vttt v vt e e eenan 5
2 BASIC ELEMENTS OF THE ALTAC LANGUAGE. 6
CONSTANTS &« & v ot vt et oot it o e es o eeeeean 6
FIXED-POINT CONSTANTS o & & 8 6 6 & & o & & 5 0 ° 8 o » o 6
FLOATING-POINT CONSTANTS. e e e e 6
VARIABLES . & & o v o o o s o o o s o s s o seenoeneeees 7
FIXED-POINT VARIABLES . &+ v v v v v o v oo v v o v v o nn 7
FLOATING-POINT VARIABLES . . + v v v vttt v o v o v s 7
SUBSCRIP TS . & v v vt vttt e st oo nn e oennoneees 7
3 ALTAC EXPRESSIONS, ARITHMETIC FORMULAS,
AND FUNCTION DEFINITIONS . . . v v v v v v e v a o v v nn 9
OPERATION SYMBOLS v v v v v o v .. e e e e 9
ALTAC EXPRESSIONS @ ¢ 9 5 85 6 3 5 8 & % 0 8 0 0 8 0 e v e 0 9
MIXED EXPRESSIONS. e e e e e e e e 10
ARITHMETIC STATEMENTS . . . vt v o v v v e v o oo v 10
COMPOUND STATEMENTS e e e e e 12
ORDER OF OPERATIONS . . v v vt v vt v ottt v v ev o 12
FUNCTIONS AND FUNCTION STATEMENTS. 13
FUNCTIONS DEFINED BY A SINGLE PROGRAM
STATEMENT . ..t ittt ot teseeeeeeennonenes 14
LIBRARY FUNCTIONS . v v v ot v v v v o v o oo nooenns 16
4 ALTAC CONTROL STATEMENTS . . & v v v v v v o v e v v 19
UNCONDITIONAL G& TO. . v v v v v i et ettt eeeeen 19
ASSIGNED GZ T, . . o v v vt oo v e s n e e e e e 20
COMPUTED G T . . v v vt ittt ettt e eennns 22

TABLE OF CONTENTS (Cont'd)

CHAPTER Page
4 - Cont'd

IF STATEMENT (FORM 1). . . . v v vt v e et et ee e 23

IF STATEMENT (FORM 2). . . v v v vt e et e e e oo e e 23

DB STATEMENT ittt it e e e et e e e e e 26

SENSE LIGHT v v vt et et e et et e e e e e e een 29

IF SENSE LIGHT . . . v v vttt ettt et e nn e oeeenn 29

IFSENSE SWITCH it ittt v ettt oo e eee e 30

IF SENSE BIT v ittt et tn e e 31

IFGVERFLGWttt et et 32

CONTINUE . . .ttt et e e e et et e e e e e, 33

PAUSE. ittt e e e 34

ST P . . et e e e 34

5 ALTAC SPECIFICATION STATEMENTS. 36

DIMENSI@N STATEMENTS . . . o v vt e et 36

EQUIVALENCE STATEMENTS . . . v o v v v v v v v e e 38

CEMME@N STATEMENTS o oo v v it 39

TABLEDEF STATEMENTS v v v v v e eienn. 41

6 ALTAC INPUT-OUTPUT STATEMENTS: « « ¢ v ¢+« + s 4. 42

INTRODUCTION: « ¢ ¢ ¢ ¢ ¢ ¢ o o o v 6 o v o s o s o 0 o o v u 42

ORDER STATEMENTS + ¢ v+ + ¢ 6 o vt o 6 o o o o o o s o s 42

) 1.3 45

INDEXING A LIST - ¢t ¢ v 6 o v o et ettt ettt st ae 45

LISTS REPRESENTING ARRAYS .+ ¢ ¢ v v v v v v v v v .. 48

FORMAT STATEMENTS « « « ¢+ t v 0 v ot vt et e s e v 48

FIELD DESCRIPTORS: - « « + « ¢ v 6 v 0 0 6 o v v e e oo nan 49

IW (INPUT) « + o v v v ot et e e et e e e e e e e e 49

Iw (OUTPUT « v v v e e e e e e e e e e e e e e e e e a 50

Fw.d (INPUT) « « - ¢ v v e i it ittt e e e e as 50

FW.d (OUTPUT): « « « ¢ v ¢t e ot e et et e e i ene 50

Ew.d (INPUT) « + ce v v v vt ot ottt et et oo ne e 51

Ew.d (OUTPUT): + v v v v v vttt ettt e et e e e u 52

oY = 52

LA I I T T T PN 53

AW o o o e 53

 + 54

vi

CHAPTER

TABLE OF CONTENTS (Cont'd)

6 - Cont'd

MIXED FIELDS ¢ i o et it e e et e et e e e e e e
MODIFIERS. . . . vt ittt vt vttt et e e oo e e e

REPEAT MODIFIER (nR).
EXPONENT MODIFIER (nP).

MULTI-RECORD CONTROLS« v v it e v v v e e
ENVIRONMENTAL STATEMENTS
IDENTIFY STATEMENTo it vttt enne e
IGUNITS STATEMENT v v it i i eteenen
IGUNITSF STATEMENT, ittt enne .
C¢MPLETE(H{ENDSTATEMENTS

ALTAC FUNCTION SUBPROGRAMS AND

SUBROUTINES. ittt i it ittt e
CALL. . . . it e e e e e e e e e e e e e e e e

RETURN. i i e e et e e e e

ADDITIONAL FEATURES OF THE ALTAC SYSTEM. . .

TAC CODING WITHIN AN ALTAC PROGRAM
FORMAT CONTROL CARDS.
BITSBITSBITSBITS. ittt oo
TACLTACLTACLTACL.0ttt it i e e e
I CARD i e e e e e e

APPENDICES

A'
B.

C.

EXERCISES. « « o o oo e e e e

TABLE OF ALTAC CHARACTERS

PREPARATION OF FORTRAN II DECKS FOR

ALTAC COMPILATIONt v vt i it e n e e s

vii

54
54

55
55

55
56
57

61
61

71

74

75

TABLE OF CONTENTS (Cont'd)

APPENDICES Page
D. POSSIBLE GROUPING OF CHARACTERS a8

IN ALTAC FORMAT STATEMENTS. 86

E. ALTAC TABLE SPECIFICATIONS. 87

F. ALTAC DIAGNOSTICSttt 88

INDEX . . e e e e e e e e e e 91

viii

INTRODUCTION

This manual contains a detailed description of the rules that must be
followed in writing programs within the limits of the ALTAC language.

The ALTAC (ALgebraic translator into TAC) compiler accepts alge-
braic statements and converts them to TAC language coding., These
algebraic statements may be in either ALTAC or existing FORTRAN* card
format., The TAC System then operates in the usual manner to produce a
running machine language program. The following diagram demonstrates
this process, which is of course continuous.

ALTAC PHILCO PHILCO MACHINE COMPILE

STATE- | 2000 ¥ TAC | 5 2000 |¥]Lancuace| &l

MENTS CODING CODING
\

MACHINE PHILCO PROGRAM

LANGUAGE }— 00 Lo RESULTS | % RUN

CODING 20 TIME
J

Each Philco 2000 illustrated in the diagram may be a different machine.

The ALTAC System is well adapted to applications of a scientific
nature, Operational programs can be prepared in a fraction of the time
needed to code directly in TAC code. Furthermore, the TAC coding thus
produced will maintain a high degree of efficiency.

Automatic coding system used by International Business Machines
Corporation,

Calculations will be performed primarily in floating-point arithmetic
with a retention of 10 decimal digits of accuracy. Provision is also included
for integer arithmetic,

The ALTAC System provides several important features over other
algebraic compilers., These features are covered in detail in the text, The
most outstanding of these are:

1)
2)
3)
4)
5)

6)

Use of symbolic as well as decimal statement addresses.

A sequence of statements may be written in compound form,
Conditional statements provide extreme flexibility.

Easy incorporation of TAC coding into ALTAC programs.
Limitations on form and use of subscripts are minimized,

"Mixed' expressions are permitted.

CHAPTER 1 - SOLUTION OF A PROBLEM USING THE ALTAC SYSTEM
The conventional procedure in solving a given problem on any computer
consists of the following general steps:
1) Analysis of the problem and formulation of a solution.
2) Planning the most efficient method of computer solution,

3) Translation of the problem into a language meaningful to the
computer,

4) Testing and correction of the program (debugging).

5) Entry of instructions, data into the computer.

é) Output and analysis of results,

At Step 3, the problem must be translated into a language capable of
being reduced to machine language. Instructions may be written in TAC
mnemonic code for translation by the assembler -compiler into instructions

in machine language. The algebraic formula Y= X2 - 3X + 5, for example,
would be coded in the TAC language as follows:

COMMAND ADDRESS AND REMARKS
r Mo Fl/ B [$ '
FMthR X |$
T
FMIS U X|$
F|AM| F|/i5]$
T (A M| Y| $

The same algebraic formula would be written in the ALTAC language as
follows:

LOCATION ALTAC STATEMENT

Y = X*%2 - 3%X +5%

where *% denotes ''raising to the power,' and * multiplication.

The statement would then be punched in Hollerith on a card and entered
into the computer. The ALTAC compiler converts the statement to TAC
language coding. The final step in the process reduces the TAC language
coding to machine language instructions capable of being entered into the
Philco 2000 and executed.

ALTAC CODING FORM

An ALTAC program consists of a series of statements written in a
logical order. The format of the coding form is as follows:

IDENTITY AND]
SEQUENCE _9'_-_ 0 LOCATION . ALTAC STATEMENT
COLUMNS HEADING CONTENTS AND DESCRIPTION
1-8 IDENTITY Used for labeling purposes, The com-
and piler will ignore any punching in these

SEQUENCE columns,

9 L An asterisk (*) in this column will cause
the compiler to ignore any punching on
this card, and any punching will be inter -
preted as a remark,

10-16 LOCATION Used for statement references, which
may be any five or less unsigned deci-
mal digits or any symbol acceptable to
T.A-CQ

COLUMNS HEADING CONTENTS AND DESCRIPTION

17-80 STATEMENT All statements are written in these
columns, Blank spaces are ignored
during the compilation process,

Semicolons are used to separate multiple statements. Such statements
may be continued onto the next and succeeding cards starting in column 17,
The first $ character encountered marks the end of the statement or series
of statements,

ALTAC CHARACTERS

Allowable characters in ALTAC are the 10 decimal digits 0-9, 26
alphabetic characters, and the special characters + = * / (),. ;= blank
and $.

CHAPTER 2 - BASIC ELEMENTS OF THE ALTAC LANGUAGE

Since arithmetic is performed by the Philco 2000 in two modes, fixed
point and floating point, the ALTAC language provides rules for the unique
expression of both types of numerical quantities, These may be represented
as constants and variables, When linked together with '"operators,'" these
constants and variables form expressions meaningful to the ALTAC compiler,
as will be seen in Chapter 3,

CONSTANTS

ALTAC constants can be one of two types - fixed-point constants or
floating -point constants, They are expressed in the language of ALTAC
in much the same manner as in the language of mathematics, It is the form
in which they are written that determines the mode in which they are inter -
preted.

FIXED-POINT CONSTANTS

Fixed-point constants are written as positive or negative decimal
integerss Since they are stored in the 16 left-most bits of 2 memory loca-
tion (sign and 15 bits), the range of integers that can be expressed is -32768
to + 32767,

The following are examples of fixed-point constants:
1, "'50’ 32767, 389’ "'20
Plus signs are understood when omitted.

FLOATING-POINT CONSTANTS

Floating-point constants are written as decimal integers, and are
distinguished from fixed-point constants by the appearance of a decimal
point in any position in the field. The range of a floating-point number, N,
is:

A1 x 22047 o N caq i 22047

A signed or unsigned scaling factor, E, with a decimal exponent may
follow the number, Such an exponent must not exceed * 600 in magnitude,

Examples of floating-point constants are:

1., 3.14159’ -.0062

These numbers could also have been written with an E as follows:
10,0 E-1, ,314159 El1, -6,2 E-3
which would result in the same floating-point numbers,

VARIABLES

Both fixed-and floating-point numbers may be represented in a more
general manner by writing symbols in place of the actual numbers. Such
symbols are called variables, and are actually symbolic addresses of
memory locations containing the quantities.

Variables consist of from one to a maximum of seven alphanumeric
characters. The {first character of a variable must be alphabetic for it
determines the mode (fixed or floating point) in which the quantity is repre-
sented in a memory location, The remaining characters may be any com-
bination of a alphanumeric characters. As will be pointed out later, symbols
may also be used as references to functions and to statements in a program,
in which case they have different meanings.

FIXED-POINT VARIABLES

If the first character of a variable is I, J, K, L., M, or N, ALTAC will
treat it as a fixed-point variable.

Examples: J, NUMBER, and MEANS3 represent addresses of fixed-point
variables, Numbers in these locations occupy the 16 left-most
bits of a memory location as do fixed-point constants, Num-=
bers that fall outside the range indicated for fixed-point con-
stants will be reduced modulo 215,

FLOATING-POINT VARIABLES

When the first character of a variable is any alphabetic character other
thanI, J, K, L, M, or N, it is treated as a floating-point variable,

Examples: A, BETA, and DPLLAR4 represent addresses of floating-
point variables, Floating=-point quantities represented by
variables must lie within the same range as floating-point
constants,

SUBSCRIPTS

While variables may be used to refer to single quantities, or locations
in memory, they may also be made to represent n-dimensional arrays of

information in memory, by attaching subscripts to them., These subscripts
may be any expression with fixed-point integer values that is enclosed in
parentheses following the variable,

Examples: A(I), BETA(J), DOLLAR(l), ITEM(2*I+3), MATRIX
(K, L, M, N)

Thus, A(I) is the ALTAC representation of Aj, A fixed-point constant
and an arithmetic expression, as well as a variable, may be used as a sub-
script to a variable, A maximum of four subscripts may be appended to a
variable., Subscripts may be attached to subscripts to any desired depth, as
in the following example:

MATRIX (J(I), K)

which is read as MATRIX ik
i:
J represents an array and, as such, must be dimensioned (see DIMEN-
SION statements, p. 36). ALTAC will pick up the contents of the ith element
of array J in fixed point and will use it as a subscript of MATRIX.

A general method for arriving at the effective address represented by
a subscript or group of subscripts is presented on p, 37.

CHAPTER 3 - ALTAC EXPRESSIONS, ARITHMETIC FORMULAS,
AND FUNCTION DEFINITIONS

In this chapter, it will be seen how meaningful expressions are formed
by linking together a sequence of constants and variables with operation sym-=-
bols. As a result, formulas and functions can be defined as expressions in
a form closely resembling the language of mathematics,

OPERATION SYMBOLS

In ALTAC, there are five basic "operation'' symbols (or characters)
which are defined as follows:

SYMBOL MEANING
+ ADD
- SUBTRACT
" MULTIPLY
ek RAISE TO A POWER
/ DIVIDE

ALTAC EXPRESSIONS

Any of the above operators define relationships between any sequence
of constants, subscripted or non-subscripted variables, and functions, and may

be used with commas and parentheses to produce meaningful ALTAC expres-
sions.,

For example, the simple mathematical expression,

2 3/2

X"+ X + 3X - 3/4

when written in the ALTAC language would appear as follows:

X#%2 o+ X4%(3, /2.)+ 3.%X =~ 3, /4.
or
2.+X105 + 30* - 30 /4¢

MIXED EXPRESSIONS

A special feature in the ALTAC System allows the programmer to
write expressions in "'mixed' modes. A mixed expression is defined as
one containing a combination of fixed-and floating-point variables, The re-
sult of the arithmetic would be in floating-point form, unless the expression
is made equivalent to a fixed-point variable,

For example, if the previous expression were written in the form:
Xak2, +X%%1,5 + 3,*X - L

it would be treated by the compiler as a mixed expression, since L is the
only fixed-point variable present. In any mixed expression, as in this
example, the fixed=-point quantities are converted to floating point before

the arithmetic is performed. If the constant of the X term were written with-
out the decimal point, a floating-point constant would be formed during the
compilation process, In general, when at least one floating-point variable
appears in an expression, or within parentheses, the floating-point mode

has precedence,

Examples: A floating~-point value would result from the following cases:

¥

* 1
* B
< B

A
A

I

¥*

while a fixed-point value would result from the case,

I 5 N

ARITHMETIC STATEMENTS

An arithmetic formula is expressed in the ALTAC language by writing
a variable equal to an expression, in the form V= E, This is read as
""compute the value of the expression, E, and store the result in the loca~
tion represented by the variable, V." The result is always converted to the
mode of V,

10

Thus, the formula I=nX + 5 when written as an ALTAC statement

would appear as:

LOCATION

ALTAC STATEMENT

I=N*X+58$

The ALTAC compiler would then examine this statement and generate
TAC coding as follows:

COMMAND ADDRESS AND REMARKS
T|MQ N|$
FIMMR F|/ [3]2|7]6[8 8 :
T|A[M olofo|1|Fr [x|$:
T [MQ olofo1|F1|X[$:
FM[MR X|$
FIAM Fl/|5|$
XIF |1 X $
T|A 1[$

Other examples of statements involving mixed expressions are:

LOCATION

ALTAC STATEMENT

Y=I-L$

L-I+F$

A(K) = 3%1.025%

AVERAGE - T@TAL/N$

The second example, L=1+F, represents a special situation, Note
that L is a fixed-point variable, In such a case, the value of the expression

11

(I+ F) would be computed in floating point; then, the result would be con-
verted to fixed point, truncated to an integer, reduced modulo 2 5, and
stored in the 15-bit left address of location L.

COMPOUND STATEMENTS

Compound statements are formed by linking together a series of
statements by semicolons on a single line of the ALTAC coding form. Such
statements may be continued on succeeding lines starting in column 17,

The last statement of the series must be terminated by a $ character,

An example of a compound statement is:

LOCATION ALTAC STATEMENT

X=3%Y; A=2%*%; C=A+B $

Each statement is executed in the resulting program in the order in
which it occurs,

ORDER OF OPERATIONS

Parentheses may be used to define the order in which a sequence of
operations is to be performed., If parentheses are not used, the normal
order would be:

1) Raising to a power

2) Multiplication and division

3) Addition and subtraction

As an example, if an expression is written in the form

X+Y+ 2/2
the operations would be performed in machine language as indicated by the

grouping
(X+ Y)+2/2

é..g.i

12

If it is desired to compute X+ Y + Z, the statement must be written
in the form (X+ Y + Z)/2. 2

When similar operations are repeated in an arithmetic expression, the
expression would be ''scanned' from left to right, performing the operations
by taking two variables at a time as indicated by the following example:

The expression VloV2oV30V40oV5 where '"o' means ''operator' would
result in a machine language program ''operation nesting'

(V1o V2)—————>R1
(R1loV 3)=——————>R2

(R20V4)————>R 3
(R30V5)y—————FINAL RESULT

Parentheses may be used in an expression provided that for every left
parenthesis there is a corresponding right parenthesis, If this condition is
not met, errors in compilation will occur,

Expressions involving repeated raising to a power cannot be written in
ALTAC as X¥kY*%Z; they will be meaningless to the compiler in this form.
Consequently, such operations must be defined by the use of parentheses, in
one of the two following forms:

Y, Z

(X*%Y)¥*Z meaning (X 7)

z
X##(Y#+Z) meaning X{¥)
FUNCTIONS AND FUNCTION STATEMENTS

Functions are a predetermined sequence of operations defined and
executed outside the main body of a program, and may be called upon from
the main program to perform a series of calculations as needed. There are
three distinct types of functions in ALTAC:

1) Functions defined by a single program statement,

2) Library functions.

3) Functions defined by separate programs.,

The name of a function is composed of from one to seven alpha-
numeric characters., The first character, which must be alphabetic,

13

determines the mode of the value of the function. The following rules are to
be observed when naming functions:

Rule 1,

If the name of a function is 4 to 7 characters long, with the last
character an F, the value of the function is in fixed-point mode
if and only if the first character is X,

Rule 2,

If the name of a function is less than 4 characters long or if the
last character is not F, the value of the function is in fixed-point
mode if and only if the first character is I, J, K, L, M, or N.
Examples of function references:
SQRTEF (B**2 - 4% A * C)
VALUE (X, M)
VALUEF (X, M)
IVALUE (X, M)
XVALUEF (X, M)
The values of the first three functions are in floating point while those

of the last two functions are in fixed point, The arguments of each function
are enclosed in parentheses and are separated by commas,

FUNCTIONS DEFINED BY A SINGLE PROGRAM STATEMENT

While the first example above is used to refer to the square root func-
tion on the library tape, the last four refer to a function defined by a state -
ment in the program, Note that while VALUE or VALUEF will yield
floating-point results, the values of IVALUE and XVALUEF will be in
fixed-point mode. A statement defining the last function may be written as
follows:

LOCATION ALTAC STATEMENT

XVALUEF(A,N)=P* A+ N**¥2 §$

14

Such a function definition statement must precede the first executable
statement in the program. In the main body of the program, a statement
calling upon the function could be written as:

LOCATION ALTAC STATEMENT

RESULT = 2%X¥%k2 + 3*XVALUEF(X. 1) $

The variables X and L, as they appear, are presented to the function
XVALUEF as arguments, and have a one-to-one correspondence with the
arguments A and N in the function definition statement.

Variables listed as arguments of a defining function (e.g., A and N)
are termed ""dummy variables.'" While they need not be the same variables,
they must agree in number, order, and mode with the corresponding argu-
ments in the calling statement., Variables, such as P in the example, not
listed as arguments are treated as variables, and will assume whatever
values they currently have in the program. A statement defining a function
may in turn refer to another function of any of the four types.

 The arguments of a function reference may take the form of expressions,
and may also include subscripted variables as in the following example:

LOCATION ALTAC STATEMENT

RESULT = 2%X*%2 + 3*%* XVALUEF(X+4*K, ITEM (L)) $

The function XVALUEF would then be computed with the arguments A
corresponding to X +4*K and N corresponding to ITEM (L) — based on

15

the current values of X, K, ITEM;j and P, The quantities would be used as
if the function definition statement had been written in the form:

LOCATION ALTAC STATEMENT

XVALUEF(X +4*K, ITEM (L))=P * (X+ 4 * K) +

ITEM (L)) **2 $

LIBRARY FUNCTIONS

Library functions are subroutines defined on the TAC library tape.
References are made to them in the same manner as for other types of func-
tions, Since these functions will vary among users, each installation will
prepare a list of such functions for reference purposes, Standard functions
are supplied. The following list describes standard functions and specifies
the form in which reference is made.

General Form: FUNCTION NAME (ARGUMENT or ARGUMENTS)
Multiple arguments are separated by commas,
1) FLAATF (ARGUMENT)

The single fixed-point variable within parentheses will be converted
to floating-point form,

2) XFIXF (ARGUMENT)
The single floating -point variable within parentheses will be converted
to fixed point, truncated to an integer value, and reduced modulo

32768.

3) _ABSF (ARGUMENT)
XABSF (ARGUMENT)

These functions will produce the absolute value of a floating-or fixed-
point variable respectively.

16

4)

5)

6)

)

8)

MAXF (ARGUMENTS)
XMAXF (ARGUMENTS)

The largest value of the arguments, which must be at least two and
not over thirty, will be selected. The mode of the arguments and the
value of the functions may be either fixed or floating point,

MINF (ARGUMENTS)
XMINF (ARGUMENTS)

The smallest value of the arguments will be selected, where there
are at least two but not over thirty arguments. The mode of the
arguments and the value of the functions may be in either fixed or
floating point,

M@DFE (TWO ARGUMENTS)

XM@DF (TWO ARGUMENTS)

These functions are used to produce integral remainders and can be
described as

M@DF (Arg,, Arg,) = Arg; - INTF (ArgllArgz)*Arg2
XM@DF (Arg;, Arg,) = Arg; - XINTF (ArgI/Argz)*Arg2

INTF (ARGUMENT)
XINTF (ARGUMENT)

These functions are used to truncate a floating-point fractional
number to the largest integer less than or equal to the absolute
value of the argument, The sign of the argument is preserved,

SIGNF (TWO ARGUMENTS)
XSIGNF (TWO ARGUMENTS)

These functions are used to transfer the sign of the second argument
to the first argument,

17

9) DIMF (TWO ARGUMENTS)
XDIMF (TWO ARGUMENTS)

These functions are defined as
DIMF (Argl, Argz) = Arg1 - MINF (Argl, Argz)

XDIMF (Argl, Argz) =Argl - XMINF (Argl, Argz)

The last type of function, that defined by a separate program, allows
function definition by more than one statement. This type is discussed in
detail in Chapter 7,

18

CHAPTER 4 - ALTAC CONTROL STATEMENTS

This chapter explains the statements the reader will use to control the
sequence of flow through a program,

In general, these statements may be used to

1) Set, alter, or test program switches,

2) Test variables and provide conditional jumps.,

3) Execute a particular sequence of statements repeatedly,

4) Index subscripted variables,

UNCONDITIONAL G& T@

Form: GZ T@ m
Description:

Control is unconditionally transferred to the statement with address m,
where m is either a fixed decimal or a symbolic address,

Examples:
LOCATION ALTAC STATEMENT
GO TO 9 $
9 Some statement
GO TO ALPHA $
ALPHA Some statement

19

ASSIGNED G@& T

A GO TO statement that is subject to modification by an ASSIGN state -
ment is called an ASSIGNED G T@ statement,

The ASSIGN statement may be written as,
Form: ASSIGN n to M
where n is a decimal integer, or as
Form: ASSIGN (n) to M
where n is any symbol. M is a dummy variable.

The GO TO statement subject to modification by one of these ASSIGN
statements may be written in one of two forms:
Form l: G TZ M
or

Form 2: Gg Tg M, (kl’ k k ,.ookn)

2?73

where k,, kZ’ k3, .e .kn are statement (decimal) numbers or symbolic
addresses representing a list of values which may be assigned to M,

20

Examples:

LOCATION ALTAC STATEMENT

Some statement

ASSIGN9 TO M $

G2 TS M

9 SUM= 0,0 $

Some statement

. L] .

ASSIGN (ALPHA) T M $

REF Some statement

G@ TY M, (ALPHA,15,BETA) $

ALPHA Some statement

ASSIGN 15 T® M $

GZ TP REF §$

15 Some statement

ASSIGN (BETA) TG M $

GZ TZ REF §$

BETA Some statement

21

COMPUTED G@ T@

Form: G@ T@ (ml, m,, Mgy o o o 4 mn), I
Description:

This statement functions as a program switch, The possible paths are
listed as arguments, i.e., my, my, M3, « o » », Mm,. The switch is set
prior to reaching the G T statement by assigning a value to I.

Specifically, a jump is made to statements mj, My, M3, « o « o m,
at the time of execution of the statement if I has thevalue 1, 2, 3, + o o o)
n, Imay be a current index value, a preset value, or a value computed by
integer arithmetice ALTAC allows symbolic addresses to be substituted for
mjy, My, M3; ¢ o « o, Mye I should not be zero or a negative quantity, If
I is not an integer in the range 1 to n, an error is indicated at run time,

Examples:
LOCATION ALTAC STATEMENT
G® T@ (10, 15, 20), M §
10 Some statement
15 Some statement
20 Some statement

GO TG (ALPHA, BETA, GAMMA), L $

ALPHA Some statement

BETA Some statement

GAMMA Some statement

22

IF STATEMENT

Form 1: IF (e) m;, m,, m,
Description:

If the expression e is negative, a jump is made to my; if zero, to m,;
if positive, to mg.

This statement is used both as a test and a resulting jump at the time of
program execution, The expression e may take the form of any variable or
arithmetic expression, Symbolic, as well as decimal, statement references
may be used for m,;, m,, and/or m

3°
Examples:
LOCATION ALTAC STATEMENT
IF (B (I) - 2Z) 5, 10, 20 $
5 Some statement
10 Some statement
20 Some statement
IF (B(I) - Z) ALPHA, BETA, GAMMA §
ALPHA Some statement
BETA Some statement
GAMMA Some statement

IF STATEMENT

Form 2: IF (el) r (ez), t

Description:

The expression e] is compared with the expression e, using a rela-
tionship r as a test. If the two expressions satisfy the criterion of the

relationship, imperative statement t is executed, If the test is not satisfied,
a jump is made to the next statement in the program,

23

Let ej} and e, be any fixed=- or floating=-point expressions, and r one
of the following relations:

T MEANING

E EQUAL

NE NOT EQUAL

LT LESS THAN

LTE LESS THAN OR EQUAL

GT GREATER THAN

GTE GREATER THAN OR EQUAL

If the relationship between ej and e, is satisfied, the imperative state-
ment t is performed. Statement t may be a G@& T@ or an arithmetic
statement,

Compound conditional statements (where ej;, e2, are expres-
sions, rj, T2, « « o o relations, and ty, t, « . . . imperative state-
ments) may be written in the ALTAC language as follows:

LOCATION ALTAC STATEMENT

IF (E1)r(FE2), T1; TF {E3)r(E4), T2; IF (E5)r(E6),

Thus, a compound conditional statement is one composed of several
conditional statements separated by semicolons, The imperative statements
T1s T2s o o o « may themselves be compound statements.,

The running program tests the conditional statement; if the condition is
not satisfied, the next conditional statement of the compound conditional
statement is tested and the procedure is repeated until no more conditional
statements remain to be tested, The statement following the compound con-
ditional statement is then executed,

If any of the conditional statements is satisfied, the imperative state-

ment following the satisfied conditional statement is executed, and control
is transferred to the statement following the compound conditional statement.

24

An example of a compound IF statement is:

LOCATION ALTAC STATEMENT
4 IF (X) GTE (Y), G® T® ALPHA; IF (A)E (B), I=1+1;
L=L+2; IF (P)LTE(Q), X=Y$
5 Next Statement
ALPHA Some statement

This statement operates in the manner indicated by the following flowchart:

X%y

(A= B?)_. I=I41 }—pf L=L+2
NO
G w)~

n

25

D@ STATEMENT

Forms: D mn = Vi Vas V3
DY (m) n = Vys Vos Vg

Description:

All of the statements following the D statement, up to and including
statement m are repeateds The number of repeats is determined by the
index value of n, where vj is the initial index value, vp is the limit of the
index value, and v3 is the indexing increment., The last statement, m, of
the DZ loop cannot be an IF statement, since the normal proceeding of an IF
statement to the next statement which follows in sequence would take it out-
side the range of the D loop. However, a compound IF statement of the
Form 2 type is allowed as the last statement in the range of a D@,

Statements under the control of a DO statement are repeated in a manner
similar to a loop of TAC instructions utilizing index registers, However,
unlike TAC, all information needed to set, modify, and test the index is con=
tained in the D@ statement itself.

All statements appearing in sequence following the D@ statement up to
and including statement m are said to be under control of the DY statement,
and are repeated until the DJ indexing is satisfied. The statement imme-=~
diately following statement m is the first statement outside the range of the
DO and is executed when the DY is satisfied,

In a DZ statement, m may be either a statement number or symbolic
address, If m is a symbolic address, it must be enclosed in parentheses,
The index, n, is written as a non-subscripted fixed-point variable. The
parameters of the index, vy, vp, and v3, are written as fixed-point con-
stants, or variables with pre-assigned integer values. v;, vy, and/or v3
must be positive non-zero integers to achieve normal indexing., The index,
n, is initially set to the value v}, Each time statement m at the end of the
range is completed, n will be increased by the increment v3. Statements
under control of the D statement are executed for all values of n less than
or equal to the value of vp. For the first value of n greater than v, control
will pass out of the range of the D& to the next statement in the program.,
Thus v, defines the largest value that the index n can attain in the range of
a D statement. If a DZ statement is written in the form D m n = Vi, V2
the increment of the index will automatically be taken to be 1,

During the execution of statements within the range of a D&, the current
value of the index, n, may be used as a subscript of a variable or as a

26

constant in an arithmetic statement, However, any calculation within the

range cannot change its value; modification may be made only by the normal
D@ indexing operations provided in the D@ statement itself,

The following is an example of the use of a DZ to compute the sum of a
series of numbers:

LOCATION ALTAC STATEMENT
N =200 $
SUM = A(l) $
2| | DY (END) I=2, N §
END SUM = SUM + A(D) $
3 Next Statement

N, the number of elements in the array A to be summed, is assigned
a value prior to reaching statement 2, Statement 2 causes the statement
with the symbolic address END to be executed repeatedly, I is assigned an
initial value of 2, and increased by 1 after each execution of statement END,
When I has reached the value N, the statement is executed for the last time,
and control is then transferred to statement 3 of the program, out of the
range of the DJ,

Calculations involving arrays of more than one dimension may likewise
be indexed by writing statements involving their names with multiple sub-
scripts. Such statements are then included within the range of several D@'s,
Multiple D statements may be written in ALTAC, but limited overlapping
of ranges is permitted, This means that when a D& statement is within the
range of another D&, all statements within the range of the "inner' DJ must
also be within the range of the ''outer' D@.

For example, assume that ALPHA and BETA are two D@ statements

with different parameters which are to be used to set up a loop. Then the
following types of nesting arrangements are permitted,

27

BETA BETA

ALPHA ALPHA

LAST STATEMENT ALPHA LAST STATEMENT ALPHA AND BETA

LAST STATEMENT BETA

An example of a sequence which is not allowed is:

BETA

ALPHA

LAST STATEMENT BETA

LAST STATEMENT ALPHA

For, in the resulting program, the indexing parameters would not be
properly modified.

Jumps into the range of a DJ statement from outside its range are not
permitted. Thus, in a 'mest' of DJ's, jumps can be made from within the
range of an ''inner' DY statement to a statement within the range of an
"outer' DY statement, but not vice -versa.,

There is one exception to this rule, however, If a jump has been made
from within the range of a DJ statement to a section of the program com-
pletely outside the range of the DJ statement, and a series of calculations is
performed in this section which does not modify any of the indexing param-
eters of the DY, then control may be properly transferred back into the
range of the same DO statement from which exit was made.

If the D@ indexing has been satisfied and control has been transferred
out of the range of the DO statement, the value of the index controlled by
the DD is not defined, and must be redefined before it is used again., But,
if control is transferred out of the range before the D@ indexing is satisfied,
the current value of the index is available for use,

28

SENSE LIGHT

A sense light is represented in the Philco 2000 as one bit of a word.
This bit may be one or zero simulating an on or off condition, The lights
or bits are numbered 1 to 48 from left to right, and are used as program
switches,

Form: SENSE LIGHT n

Description:

This statement is used to turn sense lights on and off, i.e., set bits to
one or zero. Ifn has the value zero, all lights are turned off. Any other

integer value of n from 1 to 48 causes that particular bit to be set to 1.

Examples:

LOCATION ALTAC STATEMENT

SENSE LIGHT 0 $

SENSE LIGHT 45 $

IF SENSE LIGHT

This statement provides a means of testing the condition of a sense
light,

Form: IF (SENSE LIGHT n) m,, m

1?7 72

Description:

Sense Light n is interrogated, where n may be any integer from 1 to 48,
If the corresponding bit is set, a2 jump is made to statement m), and the bit
is unset; if the bit is not set, a jump is made to statement m,. Symbolic ad-

dresses may be used for m, and m,.

29

Examples:

LOCATION ALTAC STATEMENT

IF (SENSE LIGHT 2) 5, 10 §

5 Some Statement

L . L)

10 Some Statement

IF (SENSE LIGHT 47) ALPHA, BETA $

ALPHA Some Statement

BETA Some Statement

IF SENSE SWITCH

A Sense Switch is one of the 48 toggle switches on the Philco 2000
console.

Form: IF (SENSE SWITCHn) m, m,

Description:

This statement interrogates one of the 48 toggle switches. The switches
are numbered 0 to 47 from left to right. If the specified toggle switch is on,
jump is made to statement mj; if off, to statement mjy. The reference n
may be any integer or fixed-point variable (assigned or computed) , whose
value is any integer 0-48, with 48 being interpreted as switch 0.

30

Examples:

LOCATION ALTAC STATEMENT

IF (SENSE SWITCH 1) 5, 10§

1)

5 Some Statement

2 . 3

10 Some Statement

| IF (SENSE SWITCH 47) ALPHA, BETA $

"

ALPHA Some Statement

BETA Some Statement

IF SENSE BIT

The IF SENSE BIT statement is used to test the contents of particular
bits of decimal location 49 (Octal 61) in memory. This statement is written
as follows:

Form: IF (SENSE BIT n) m;, m,

Description:

This statement causes transfer of control to statements m., or m,, if
bit n of memory location 49 is 1 or 0, respectively. (Bits 0 and 48 refer to
the sign bit,)

The reference n may be any integer 0-47, or a fixed-point variable.,
m, and m, may be statement numbers or symbolic addresses,

31

Examples:

LOCATION ALTAC STATEMENT

IF (SENSE BIT 3) 5, 10 $

5 Some Statement
10 Some Statement

IF (SENSE BIT 40) ALPHA, BETA §$

ALPHA Some Statement

BETA Some Statement

IF GVERFLEW

This statement tests for floating-point exponent overflow,

Form: IF ZVERFLZW m;, m,

Description:

If floating-point exponent overflow has occurred, and the overflow in-

dicator has been set, a jump is made to statement m) and the overflow in-
dicator is cleared; if not, a jump is made to statement m3.

32

Examples:

LOCATION ALTAC STATEMENT

IF QVERFLOW 5, 10 $

. 1]

5 Some Statement

10 Some Statement

| IF AVERFLOW ALPHA, BETA §

ALPHA Some Statement
BETA Some Statement
CONTINUE

Form: C@NTINUE
Description:

This statement is one which does not produce instructions in the pro-
gram, Its principal use is as the last statement within the range of a DJ.
It provides a common location to which transfer may be made from several
statements within the range of the D@, so as to modify and test the index.

Suppose, for examplé, that a conditional transfer statement is contained
within the range of a D&, and that one of three separate sequences of oper =
ations is to be performed depending upon the outcome of the test. The last
statement of each block of operations could not be used for indexing and
testing purposes, since m (in D@ m) can refer only to one fixed statement
and cannot itself be modified. Therefore, it is necessary to provide a
common statement to which a jump may be made from at least two of the
three independent groups of operations so as to modify and test the index
without performing any operation, In this case, the statement to which m

33

refers would be a CONTINUE statement — interpreted as: '"do nothing, but
proceed to modify and test the index.,"

PAUSE

This statement is used to provide a temporary halt in a program. No
runout is produced. (The reader is referred to the IFPS Manual for a
discussion on RUN@QUT,)

Form: PAUSE m

Description:

When this statement is reached, the program will halt, The octal
number m will be displayed in the program register. (m may be up to 5
octal digits; if omitted, zero is assumed.) Pressing the ADVANCE bar on
the console will cause the program to resume, starting at the next state -

ment,

Example;:

LOCATION ALTAC STATEMENT

PAUSE 777 $

STOP

This statement is used to provide a final halt in a program, The state=-
ment produces automatic runout of all output units described in the
IJUNITS statement (see p. 59).

Form: STZP m

Description:

When this statement is reached, the machine will halt, and the number
m, which must be written in octal, will be displayed in the program register.

(m may be up to 5 octal digits; if omitted, zero will be assumed,) At this
point, it will be impossible to continue,

34

Example:

LOCATION

ALTAC STATEMENT

ST@P 333 %

35

CHAPTER 5 —~ ALTAC SPECIFICATION STATEMENTS

The ALTAC system includes four specification statements:

1) EQUIVALENCE Statements

2) C@ZMMEN Statements

3) DIMENSI@N Statements

4) TABLEDEF Statements
These statements are called specification statements because in allocating
storage, they specify the arrangement of data in memory. In a program an
EQUIVALENCE statement must precede a CAMM@N, DIMENSION or

TABLEDEF statement, A COMME@N statement, in turn, must precede a
DIMENSI@ZN or TABLEDEF statement,

DIMENSIZN STATEMENTS

In the compilation process, ALTAC will assign a separate memory
location for each constant and non-subscripted variable appearing in the
program. Groups of memory locations will also be assigned for arrays,
the elements of which are referred to by subscripted variables, In the
latter case, information specifying the maximum size of each array must
be furnished., This is accomplished by writing a DIMENSI@N statement
containing a list of the variable names (followed by the maximum values of
the subscripts) written as fixed decimal constants and presented as argu-
ments within parentheses, The form of such a statement is as follows:

DIMENSI@ON variable (size), variable (siz€),ceecececee$d

Alternatively, a separate DIMENSI@N statement may be written for
each array, The limit of four dimensions applies to DIMENSIZN statement
arguments as well as to variable subscripts. A DIMENSIQN statement for
an array must appear before any statement in the program which refers to
one of the elements of that array. Also, subscripted references in a pro-
gram musc agree in number of dimensions or subscripts.

36

For example, consider BETA, GAMMA, and DELTA as three groups
of size (5 x 7), 5, and 5 respectively. Their DIMENSI@ZN statement would
appear as follows in a theoretical program:

LOCATION ALTAC STATEMENT

5,7 5), D 5

DELTA (I) = BETA (I,J)+ GAMMA (I) §

It is sometimes necessary for a programmer to compute the address
associated with a subscripted variable, To this end, the following infor -
mation should be of assistance,

General equation for computing the address of a subscripted variable:

General Form of
DIMENSION Statement: DIMENSI@ZN A(N1 ’ Nz' ’ N3 » N 4)

General Form of
Reference: A(II’IZ’ 13,14)

General Equation for
Computing Effective
Address:

AL}, 1,5, 15,1,) = A+(Ij =1)+N; (I, =1+ N N, (I, -1)+N; N, N, (1, -1)

For a variable of less than four dimensions, assume the unused sub-
scripts as equal to 1 when used in the general equation.

37

Example:

The equation for the subscripted variable, A(i,j, k), dimensioned as
A(Nl’ NZ"N3) is

A(i,§,K) = A+(i=1)+N; (j=1)+N; N, (k-1)

If the dimensions were expressed numerically as DIMENSI@ZN A(2, 2, 2)
the address of A(2,1,2) = A+(2=-1)+2(1-1)+4(2=-1) = A+5, the sixth
element of array A,

EQUIVALENCE STATEMENTS

Normally, the ALTAC compiler will reserve a separate memory lo=-
cation for each distinct variable and dimensioned block which has been de-

fined in the program,

However, a situation may exist, especially in the case of a large pro-
gram, where it would be necessary and/or convenient to be able to multiple -
reference certain memory locations, If the logic of the program permits,
this can be accomplished by the use of an EQUIVALENCE statement, which
in effect, conserves memory space,

The form of such a statement presents, as arguments, quantities which
would then be assigned the same memory locations, The statement must
appear at the beginning of the program before any subscripts are used, and
must be of the following general form:

EQUIVALENCE (V1, V2, V3, ...), (V4, V5, V6, ...)$

Vi, v2, V3.,... V4, V5, V6 may be single variable quantities or mem-
bers of groups of locations., They may not be constants.,

Example:

LOCATION ALTAC STATEMENT

EQUIVALENCE (ALPHA, BETA (6), GAMMA (3)) $

38

Assuming that ALPHA is the location of a single non-subscripted variable
and that BETA and GAMMA represent arrays dimensioned 7 and 5
respectively, locations would be assigned as follows:

RELATIVE LOCATION STORAGE ASSIGNMENT
(P) BETA
(P)+1 BETA +1
(P) +2 BETA + 2
(P) +3 BETA + 3, GAMMA
(P) + 4 BETA +4, GAMMA +1
(P) +5 ALPHA, BETA +5, GAMMA + 2
(P) +6 BETA +6, GAMMA + 3
(P) +7 GAMMA +4

Since locations (P) + 3, (P)+ 4, (P) + 5, and (P) + 6 may be multiple-
referenced, the programmer must insure that the proper values appear in
these locations at the time of reference,

In summary, all subscripted variables used in a program must have
appeared, with their maximum values as arguments, in a DIMENSIZN
statement.

COMMON STATEMENTS

The COMM@N statement permits intercommunication between programs
and subroutines. It is used to reserve areas of common storage (outside
the boundaries of the object program) that are equally accessible both to
main programs and to subprograms,

The COMM@N statement is written as follows:

LOCATION ALTAC STATEMENT

C@MM®@N A,B,C $

The parameters A, B, and C are names of single non-subscripted

variables or names of dimensioned arrays. The variables appear in common

storage in the same order that they are placed in the COMMDN statement
provided EQUIVALENCE is not spacified, 2 ’

39

COMMON areas start at location 1000 8) in the 8K version of ALTAC,
and at location 6000(g) in the 16K or 32K versions of ALTAC.

Variables appearing in a COMM®N statement that also appear in an
EQUIVALENCE statement, will be placed (before the other arrays in the
COMMON statement) in the common area in the same order in which they
appear in the EQUIVALENCE statement.,

For example, the statements

LOCATION ALTAC STATEMENT

EQUIVALENCE (D,H), (A,F) $

COMM@N A,B,C,D,E,$

DIMENSI@N B(3), C(2), E(2) $

would provide the following storage assignments:

RELATIVE LOCATION STORAGE ASSIGNMENT

(P) D and H

(P)+1 A and F

(P)+2 B

(P)+3 B+1

(P)+4 B+2

(P)+5 C

(P)+6 C +1

(P)+7 E

(P)+8 E+1

The size of EQUIVALENCE plus the total size of those arrays which
appear in CAMMON and do not appear in EQUIVALENCE is the size of the
area of memory reserved for common storage.

With RPL and ABS programs, if the size of COMM@N (determined by
the method in the preceding paragraph) is smaller than that desired by the
programmer, he can include an additional parameter, nW, in the IDENTIFY
statement (IDENTIFY mK, nX, nW $) to insure that the compiled program

will have at least n words of common storage. (See p. 57 for a discussion
of the IDENTIFY statement.)

40

TABLEDEF STATEMENTS

If a programmer wishes to define an array by means of TAC statements,
the array must be defined in a TABLEDEF statement. ALTAC does_not
reserve storage for any array defined in the TABLEDEF statement, unless
the array also appears in EQUIVALENCE or COMM@N statements.

The general form of the TABLEDEF statement is:

LOCATION ALTAC STATEMENT

TABLEDEF Variable (Size), Variable (Size), seee$

Examples:
LOCATION ALTAC STATEMENT
[) L] °
[4 o L4

DIMENSI@N A(10), BETA(5, 8), DELTA(4, 3, 5)$

TABLEDEF GAMMA(50), KAPPA(7,10)$

According to the above example, 10, 40 and 60 locations would be
reserved for arrays A, BETA and DELTA respectively; while for arrays
GAMMA and KAPPA, no storage locations would be reserved.

Care must be taken to see that the TAC insert used to define an array,
appears between the statements STARTTAC and ENDTAC or if not, that
the TAC insert has a T in the label field (see p. 68).

41

CHAPTER 6 — ALTAC INPUT-OUTPUT STATEMENTS

INTRODUCTION

In this chapter, ALTAC statements which are used to transfer infor-
mation between core storage in the Philco 2000 and magnetic tape units are
discussed.

Information on magnetic tape may be transferred to or from the following
external media:

1) Magnetic tape
2) Punched card
3) Printer

The High-Speed Printer is also included as an output device. A complete
input or output operation can be directed by writing three special types of
statements, They are ORDER, FORMAT, and ENVIRONMENTAL state -
ments.,

An ORDER statement is used to select the appropriate input or output
device and to itemize the fields to be transferred., Field and data conversion
specifications are provided in a FORMAT statement. Through the use of
DESCRIPTORS and MODIFIERS, information can be transferred between
internal (binary) form and external form, with a variety of external formats,
Various kinds of ENVIRONMENTAL statements give the programmer oper -
ational control of the running program and specify necessary parameters,
such as the size of records to be advanced by the ORDER statements.

The programmer has the option of coding input-output operations either
directly in ALTAC form or in TAC form. (The reader desiring more in-
formation on the inclusion of such TAC statements is referred to the IDPS
Manual.)

ORDER STATEMENTS

An ORDER statement generally contains three parts and performs the
following functions:

1) Specifies the appropriate input or output device.

42

2) Refers to a FGRMAT statement which furnishes field definition and
conversion information for certain orders.

3) Provides a list of the quantities to be transmitted,

Because they provide the above features, ORDER statements may be
used specifically to:

1) transfer coded information
2) transfer binary information
3) control magnetic tapes

The general form of an order statement used to transfer coded infor -
mation is:

LOCATION STATEMENT

NAME ORDER, FGRMAT NAME, LIST $

Commas are used as indicated to separate the statement parts. NAME
is the statement number or symbol which may be used by another statement
to refer to the ORDER statement., ORDER is a command which specifies
the input or output operation and initiates the process.

FPRMAT NAME is a statement number or symbolic reference to a
FPRMAT statement to be used in conjunction with the ORDER statement.
The statement is completed by a LIST of the symbolic locations which con-
tain or will contain the information to be transmitted. The elements of a
LIST are separated by commas.

ORDERS WHICH PROVIDE FOR THE TRANSFER OF CODED INFORMATION

ORDER INTERPRETATION EXAMPLE
READ Read Punched Cards READ, 5, LIST $
PUNCH Write Punched Cards PUNCH, 6, LIST $
READ INPUT TAPE n Read Magnetic Data Tape READ INPUT TAPE
number n K, 11, LIST $

43

ORDERS WHICH PROVIDE FOR THE TRANSFER
OF CODED INFORMA TION (Continued)

ORDER INTERPRETATION EXAMPLE
WRITE OUTPUT TAPEn Write Magnetic Data Tape WRITE GUTPUT
number n TAPE 8, 12, LIST $
PRINT Print PRINT, 13, LIST $

(n, as shown above and in subsequent orders, may be any integer or fixed-
point variable for which a value has been determined.)

When information which will not be converted (binary information) is
to be transmitted, the FFRMAT NAME reference and its associated
FPRMAT statement must be omitted.

The general form of an ORDER statement specifying the transfer of
binary information is as follows:

LOCATION STATEMENT

NAME ORDER, LIST $

ORDERS WHICH PROVIDE FOR THE TRANSFER OF BINARY INFORMATION

ORDER INTERPRETATION EXAMPLE
READ TAPEn Read Magnetic Binary READ TAPE 3,
Tape number n LIST $
WRITE TAPE n Write Magnetic Binary WRITE TAPE K,
Tape number n LIST $

The general form of an ORDER statement providing control of magnetic
tapes is as follows:

LOCATION STATEMENT

NAME ORDER $

44

ORDERS WHICH PROVIDE CONTROL OF MAGNETIC TAPES

ORDER INTERPRETATION EXAMPLE

BACKSPACE n Backspace Magnetic Tape BACKSPACE 5 §
number n one record

END FILE n Write End of File END FILE 6 $§
Indicator on magnetic
tape number n

REWIND n Rewind magnetic tape REWIND K $
number n

LIST

A LIST included as part of an ORDER statement contains a sequence of
subscripted or non-subscripted variables, separated by commas. The order
in which information is transferred can be controlled by including indexing
information and parentheses in the LIST,

Example:

Three fields of information are punched on a card, It is desired to
read this information and store it consecutively in symbolic locations
ALPHA, BETA, and GAMMA in the same sequence in which it is punched.
The form of the information and field definition on the card will be governed
by some FORMAT statement, which at this point will be referred to as "X',
Later, it will be shown how such a FORMAT statement is written,

The ORDER statement for this operation is written as follows:

STATEMENT

READ, X, ALPHA, BETA, GAMMA $§

INDEXING A LIST

The programmer may specify in a LIST the order in which information
is to be transferred. This is done by enclosing subscripted variables in
parentheses, along with indexing parameters. Elements of the LIST so de-
fined will be repeated as if they were under the control of a DJ statement,
Corresponding pairs of left and right parentheses are used to define the
range of each D@ operation.

45

Example:

Assume that ALPHA and GAMMA represent single memory locations,
as in the last example., BETA, however, represents an array of 100 memory
locations which have been reserved by a DIMENSI@N statement. The order

in which information that is to be read in and stored is punched on cards, is
as follows:

ALPHA, BETA(1l), BETA(2)) cseseesceccccecsccss BETA(100), GAMMA
The ALTAC ORDER statement is written as follows:

STATEMENT

READ, X, ALPHA, (BETA(I), I = 1, 100), GAMMA $

Card after card would be read, and information transferred, until the
LIST is satisfied. F@RMAT statement X would contain card field and data
conversion specifications. The transfer of elements in the LIST would
occur as if they had been written in the following form:
ALPHA
DY 41=1, 100

4| BETA (I)

GAMMA

Example:

Assume ALPHA, BETA, and GAMMA are three arrays whose sizes
are determined by the following DIMENSI@N statement:

STATEMENT

DIMENSI@N ALPHA(10), BETA(5, 20), GAMMA(20) $

The following sequence denotes the order in which the information to be
read in is punched on cards:

ALPHA(]-)’ ALPHA(Z),00.-00.00000..-.0 ’ALPHA (10),

BETA(I, 1), BETA(Z, 1),0.0-00.0.‘.000 'BETA(S’ 1)’ GAMMA(I)’

46

BETA(I, 2)’ BETA(Z, 2)’......0.......', BETA(s’ 2)’ GAMMA-(Z),

BETA (1, 20), BETA(2,20),s0000000e00000s BETA(5,20), GAMMA (20)

The ALTAC ORDER statement to read this information from punched
cards in the prescribed sequence is written as follows:

STATEMENT

READ, X, (ALPHA(I), I =1, 10), ((BETA(LJ), I =1, 5),
GAMMA (J), J = 1,20) $

Indexing would occur as indicated in the following steps:
DF11=1, 10

1| ALPHA (I)

DG 3 J= 1, 20

Dg21=1, 5

2| BETA (I, J)

3| GAMMA (J)

Each pair of parentheses, excluding those containing subscripts, de-
fines the range of a D@ under control of an index. The maximum index
values may be variable, as long as the values do not exceed the maximum
dimensions of the arrays. Such values may be inserted into the LIST,
provided that they appear in sequence before they are used as parameters
of the indexing operation,

Example:

STATEMENT

READ, X, L, M, N, (ALPHA(I), I =1, L), ((BETA(I, J),

I=1, M), GAMMA(J), J=1, N) §

47

L, M, and N must not exceed 10, 5, and 20 respectively in this case,
The maximum sizes of the arrays are determined by a DIMENSI@N state -
ment at the beginning of the program, The first three fields read in are
L’ M. and N,

LISTS REPRESENTING ARRAYS

Entire arrays may be transferred by writing a LIST containing references
to the names of the arrays as follows:

STATEMENT

READ, X, DELTA, EPSIL@N, MEGA $

The sequence of reading will then be controlled by the maximum values
of the arrays, as specified in their DIMENSI@N statements. The arrays will
be filled sequentially in the order in which they appear in the LIST, and
their elements stored in order of increasing absolute location.

FGRMAT STATEMENTS

An ORDER statement involving a transfer of coded information must
contain a reference to a FORMAT statement. FPRMAT statements furnish
appropriate field and data conversion information which are needed when-
ever information that is to be transferred between an external medium and
core storage is to be converted from one data form to another; e, g., from
coded form to binary. Each FGRMAT statement written defines a record
or a number of records to be transmitted. A record is considered to be a
punched card of input or output (up to 80 columns), or a printed line of out~
put (up to 120 characters not including printer control character s).

The general form of a FGRMAT statement is as follows:

LOCATION STATEMENT

NAME FPRMAT (field descriptors and modifiers) $

As in any other type of statement, NAME is the decimal or symbolic
address which is used to identify the FGRMAT statement and must appear
only in the input or output ORDER statement, The word "FGRMAT" is
always written, indicating the type of statement.,

FIELD DESCRIPTORS and MODIFIERS are presented as arguments
(within parentheses) of FGRMAT statements, and they furnish field
specification information. MODIFIERS are written along with DESCRIPTORS,
and provide additional flexibility in the input or output operation, Numerous
options are provided for their use.

48

FIELD DESCRIPTORS

FIELD DESCRIPTORS are used to provide conversion between external
form (such as alphanumeric) and internal (binary) form. They are separated
by commas in the FRMAT statement, For clarity, input and output DE-
SCRIPTORS are described separately. The following is a list of DE-
SCRIPTORS and their functions to be covered in this section:

DESCRIPTOR INTERNAL FORM EXTERNAL FORM
Iw Integer Binary Integer Decimal
Fw.d Floating Binary Fixed Decimal
Ew.d Floating Binary Floating Decimal
nH Hollerith Hollerith
Ww Coded Characters Coded Characters
Aw Coded Characters Coded Characters
nX Space Symbols Space Symbols

Iw

INPUT: Integer Decimal to Fixed Binary Integer

When used in an input F¢RMAT statement, Iw causes a field w columns
wide to be converted to a fixed-point binary integer, reduced modulo 215
(or 32,768), and stored in the 16 left-most bits (15 bits + sign bit) of a
memory location. The w count includes spaces signs and any number of
decimal digits that may be within the field, If the field width does not in=-
clude the sign, the number will be read in as positive. Leading spaces
(those before the first non-space character) are treated as spaces, all other
space characters are regarded as zeros. The sign, when punched should
immediately precede the leading digit.

Examples:
FIELD Iw INTERNAL NUMBER
12345 I5 12345
A-12345 17 =12345
+256AA 16 +25600
256 I3 256

49

Iw
OUTPUT: Fixed Binary Integer to Integer Decimal

Iw causes the quantity occupying the 16 left-most bits of a memory
location to be converted to a fixed-point decimal number for output. w
specifies the field width in the external medium, which may include spaces
and signs. The number produced is positioned with the least significant
digit at the right end of the field, If a field specified by w is too small to
contain all of the digits to be output, the most significant digits will be lost.

Fw.d

INPUT: Fixed Decimal to Floating Binary

Fw.d converts a fixed decimal data field, w columns in width, to an
internal floating-point binary quantity. The right-most d digits in the field
are taken as the fractional portion of the number. A decimal point appear -
ing in the w field will take precedence over any d specification. In such a
case, the descriptor may be written in the form Fw. (d may be any integer
from 1 to l1; if an integer greater than 11 is specified for d, only the first
eleven significant digits will be used.)

DECIMAL EQUIVALENT

FIELD Fw,d INTERNAolf‘ NUMBER
9.16 F4 .916 x 10

-9.16 F5 -.916 x 10

- 916 F4,2 -.916 x 10

The last two fields, as defined by their descriptors, would be converted
to identical floating-point numbers,

Fw.,d

OUTPUT: Floating Binary to Fixed Decimal

When used as an output descriptor, Fw.d will produce a fixed decimal
data field from a floating-point binary quantity occupying a memory location.
The resultant field, including sign and decimal point, will be w columns in
width, including d decimal digits to the right of the decimal point. The out-
put field will be accurate to ten decimal places. Where more than ten
significant digits are requested, the first ten digits will be accurate, and all
succeeding digits will be zeros.

50

Ew,d

INPUT: Floating Decimal to Floating Binary

Ew,d defines a decimal field in floating-point form, w columns wide,
which will be converted to a floating=-point number. If an actual decimal
point does not appear in the field, the least significant d decimal digits of
the mantissa are considered to be the fractional part of the field, If a
decimal point appears in the field, it will take precedence over any d spec=-
ification in the DESCRIPTOR and the .d need not be included. In such a
case, the DESCRIPTOR may be written in the form Ew.

The mantissa may be signed or unsigned (if positive). The exponent
field follows the last character of the mantissa, and may be separated from
it by spaces, all of which are counted in the field width w. The field must
be punched in one of the following forms where xxx denotes the numerical
exponent:

1) + mantissa +xxx

2) + mantissa Exxx

3) = mantissa E+xxx

If E is omitted, a sign character must precede the exponent field, The
mantissa which should not exceed 11 characters (excluding the sign and
decimal point) is converted to a 35-bit rounded quantity, The exponent can-
not exceed+ 600 in magnitude, The w count includes signs, spaces,

mantissa, and exponent. The following are examples of floating decimal
input fields with their corresponding DESCRIPTORS:

DECIMAL EQUIVALENT

FIELD Ew.d INTERNA?_,FNUMB ER
-1.62E+15 E9 -.162x1016

15E125 E6.0 +,15x10127
234A-100 E8.2 .234x10-98
2.34A+ 100 E9.1 .234x10101

51

Ew,d

OUTPUT: Floating Binary to Floating Decimal

Ew,.d defines a decimal field in floating-point form, w columns wide,
which will be produced from an internal floating-point number. d specifies
the number of decimal digits that will appear to the right of the decimal
point. This fractional field will be accurate to 10 decimal places, When a
value greater than 10 is specified for d, the first ten digits will be accurate,
and all succeeding digits in the fractional field will be zeros. The field to
be produced will be in the following form, where xxx denotes the numerical
exponent:

t+mantissat xxx

The exponent always contains three numerical digits preceded by a sign, and
follows the last character of the mantissa,

The mantissa is of the following general form:
* 0, XXXXXXXKXK

The field width w includes sign, spaces, decimal digits and the decimal
point. d specifies the number of decimal digits to the right of the decimal
point,

nH

OUTPUT: Hollerith Characters

nH is a descriptor which is used only with an output statement to define
a fixed Hollerith field of n characters (alphanumeric, special and space).
The characters are written in the FORMAT statement immediately to the
right of the descriptor. They are thus fixed at the time the FGRMAT state -
ment is written, and are not modifiable at program execution time., Any
symbols, including $, may be used with nH,

Example:
A print ORDER statement with the associated FGRMAT statement
FGRMAT (17H AA PRINTINGA SAMPLE) $
would cause the following line to be printed:

PRINTING SAMPLE

52

Ww

INPUT or OUTPUT: Coded Characters

Ww is used with both input and output statements, Each Ww descriptor
is associated with a word in memory.

Since each Philco 2000 word may accommodate no more than eight
binary-coded characters, w should not be greater than 8, Where more than
eight (e.g., W12) characters are specified, only the last eight characters
will be stored, When less than eight characters are specified, the characters
are right-most positioned in the word, and the rest of the word is filled with
Zeros.,

EXPRESSION
IN EXTERNAL
FIELD Ww HOW STORED MEMORY Ww FORM
SAMPLE Wé OOSAMPLE SAMPLERS W6 MPLERS
DATA W4 OOOODATA DATAFORM w4 FORM
CLASSWORK W9 LASSWORK REPORT A W9 Illegal

If the output of more than eight characters is specified by a single Ww
descriptor, an IPS compilation error will occur.

Aw

INPUT OR OUTPUT: Coded Characters

Aw is similar in all respects to the Ww descriptor, except that when
more than eight characters are specified, only the first eight characters
will be stored; and when less than eight characters are specified, the
characters are left-most positioned in the word and the rest of the word is
filled with space characters.,

EXPRESSION
IN EXTERNAL
FIELD Aw HOW STORED MEMORY Aw FORM
SAMPLE Ab SAMPLEAA SAMPLERS A6 SAMPLE
DATA A4 DATAAAAA DATAFORM A4 DATA
CLASSWO
RK A9 CLASSWOR REPORT A A9 Illegal

53

nX

INPUT or OUTPUT: Space Characters

Unlike the preceding descriptors, nX does not involve conversion of
information., This descriptor serves only to space or bypass unwanted
characters.

The nX descriptor can be used with input or output statements, When
associated with an input statement, actual characters, as they appear in a
field, are bypassed and not read into memory. When associated with an
output statement, this descriptor causes a field of n spaces to be printed or
punched,

MIXED FIELDS

Mixed fields containing both nH and other descriptors may be specified
for output as indicated by the following example:

FORMAT (9H10AASUMA=, F5.2, 10HAPRODUCTA= F10.3)$

where A indicates a space., This would produce a line of printing in the
following format:

SUM =-5,25 PR@DUCT =-25250,325

The descriptors F5.2 and F10, 3 correspond to variables specified in
the LIST portion of an ORDER statement. AASUMA=and APRODUCTA=
are generated under control of their 9H and 10H descriptors, and are not
accessible to the program. nH specifies that the following n characters
(blanks included) are to be interpreted literally as code mode characters.,
A comma may be used to separate the end of the nH specification from the
following descriptor. Thus, when writing such a FIRMAT statement, an
exact count must be made verifying that the (n + 1) significant character
following nH is the beginning of the next field description,

MODIFIERS

FIELD DESCRIPTORS may be further defined by prefixing them with
MODIFIERS, which provide added flexibility in controlling input or output
operations. Some functions of MODIFIERS are:

1) Repetition of similar field specifications

2) Scaling of numbers in the external medium

3) Editing an output format

54

Where necessary, several modifiers can be used with a single descriptor,
MODIFIERS always precede the DESCRIPTORS they modify, but the order of
their appearance is immaterial,

REPEAT MODIFIER (nR)

A single DESCRIPTOR may be used to define consecutive fields of the
same format by prefixing the descriptor with a decimal number, n, which
indicates the number of times the DESCRIPTOR is to be used,

Example:
Instead of writing a FGRMAT statement in the following form:

STATEMENT

FSRMAT (F6.2,F6.2,F6,.2,15,15,F8.3,F8.3,F8.3)$
it may be written as:
FORMAT (3F6.2,215,3F8.3)$

EXPONENT MODIFIER (nP)

The modifier, nP, signifies the nth power of 10 by which the field is
to be modified. n, which may be positive or negative, has the effect of
scaling the field,

Thus, 3PF2 describing the external fixed-point decimal field 16 would
cause the field to be converted to the floating binary equivalent of 16,000
when read into memory., =-3PF2 describing the same field will produce the
floating binary equivalent of .016. When nP is used with an E output de-
scriptor, the mantissa of the output quantity will be multiplied by 10 and
the exponent reduced by n. (n = 0.) nP has no effect on E input descriptors,
The modifier nP will apply to succeeding descriptors (F or E) until OP is
specified,

MULTI-RECORD CONTROLS

FORMAT statements can be written to handle coded information in
multi-record form, where a record of coded information is defined as a
card of input or ‘output or as a printed line of output,

55

Separate ORDER and FGRMAT statements could be written for each
record in order to handle multiple records with different formats. However,
a single ALTAC FORMAT statement can be made to contain all the infor-
mation necessary for such an operation. Succeeding record formats are
separated by slash(/) characters. Repetition of similar formats can be ac-
complished by using parentheses and repeat modifiers.

Example:

STATEMENT

FORMAT (12, F8.2 / 15, 3F12,6)$%

If this FORMAT statement is used in conjunction with an input ORDER state -
ment involving the reading of punched cards, each card would comprise a
record and all odd cards would be read according to the first format; all
even cards would be read according to the second format specification,

When it is desired to cause repetition of similar fields, a limited
parenthetical expression is permitted. A decimal number n appearing to
the left of the expression designates the number of times the descriptors
and modifiers within parentheses are to be repeated. For example,
2(12, 3,1, 1PE12,5) is identical to 12, F3.1, 1PEl2,5, 12, F3.1, 1PEl2,5.

The FIRMAT statement

STATEMENT

F@RMAT (2H10I5, 3F8,2/2H102110, F9.2/ (2H1012F8.2))$

would produce the first two printed lines in the formats I5, 3F8,.2 and 2I10,
F9.2, and the remaining lines in the format 12F8. 2.

In addition, / / will cause a line or record to be skipped, while / / /
will produce two blank lines or skip two records,

ENVIRONMENTAL STATEMENTS

ALTAC Environmental statements do not generate instructions for the
resulting machine language program. They are included to furnish the
compiler with information needed in defining all input and output media which
are used in a program,

56

The Environmental statements are:

1) IDENTIFY)
2) IQUNITS or IQUNITSF

3) C@MPLETE or END

IDENTIFY STATEMENT

STATEMENT

Form: IDENTIFY type, mK, nX, nW §

An IDENTIFY statement is included in a program in cases where the
Philco 2000 on which the compiled program is to be run differs from the
machine which is being used for the compilation process (in core storage
size and number of index registers), All parameters in the statement are
optional and may be deleted when not required,

Type identifies the program to be of ALTAC form or FORTRAN%* form,
and may be one of the following two forms:

TYPE INTERPRETATION
A ALTAC program
F FORTRAN program

If FORTRAN and ALTAC statements are not to be mixed within a pro-
gram, type may be omitted from the IDENTIFY statement, and the compiler
will assume that the program is in ALTAC format.

A detailed discussion of the type parameter for FORTRAN programs
and for programs in which FORTRAN and ALTAC statements are to be
mixed, is presented in Appendix C.

* Automatic coding system used by International Business Machines
Corporation

57

mK defines the size of core storage of the Philco 2000 on which the

compiled machine language program will be run, and may be written in one
of the following forms:

SIZE OF OBJECT MACHINE

mK (Words of Core Storage)
8K 8192

16K 16384

32K 32768

nX defines the maximum number of index registers available in the

machine on which the compiled program is to be run, and is written in one
of the following forms:

NUMBER OF INDEX REGISTERS

nX IN OBJECT MACHINE
8X 8

16X 16

32X 32

nW defines the least number of words of COMM®N storage which must
be contained in the program to be compiled, A discussion of this parameter
is presented under CAMMIN statements.

In cases where the same machine, or a machine with the same params=--
eters, is to be used for both the compilation process and running the re=-
sulting machine language program, it is not necessary to include an
IDENTIFY statement. ALTAC always generates an IDENTIFY statement at
the beginning of each main program and subprogram with descriptors K and
X. If the programmer does not specify either of these parameters, then
ALTAC uses the configuration of the source program computer,

A program that is compiled on a larger machine may run on a smaller
machine; however, a program that is compiled on a smaller machine may
not run on a larger machine., The programmer is therefore advised to
always specify 32K in his IDENTIFY statement,

58

Example of an IDENTIFY statement:

STATEMENT

IDENTIFY 32K, 8X, 1200W §

(The order in which the parameters appear is insignificant.,) The statement
specifies that the program is to be run on a Philco 2000 having 32768 words
of core storage and eight index registers, At least 1200 words of COMM@N
storage will be reserved,

IQUNITS STATEMENT*

An IQUNITS statement is used to provide information regarding the in-
put or output units which are to be used during the input or output operation
of a program, It contains a complete description of each unit to be used,
including such information as record and block sizes, The general form
of such a statement is as follows:

LOCATION COMMAND ADDRESS

IQUNITS unit description; unit
description; etc. $

Only one IFUNITS statement may be in effect during program compilation.
If more than one statement is included, only the units described by the first
statement will be considered, and all succeeding statements will be ignored.
There must be a unit description for each input and/or output unit used by
the program,

A unit description, as it applies to each unit, has the following format:

TYPE, UNIT, GROUP SIZE, RECORD SIZE, ERROR ADDRESS, CORE
STARTING ADDRESS 1, CORE STARTING ADDRESS 2 (OPTIONAL);

TYPE defines the type of input or output medium, It is one of the
following codes:

TYPE INTERPRETATION
PCu Punched Cards (output only)
PRT Printer

* The IJUNITS statement must be in TAC format,

59

TYPE INTERPRETATION

DTu Data Tape (Magnetic)
BTu Binary Tape (Magnetic)

u specifies the use of the medium. If the medium is to be used only for in-
put, I is written for u; if the medium is to be used only for output, & is
written for u, If the medium is to be used for both input and output, I is
written for u, (Only binary tape can be used for both input and output.)

Examples:
TYPE INTERPRETATION
PCg Punched-Card Output
BTIZ Binary Tape Input and Output
DTI Data Tape (Magnetic) Input

(PCI and DTIZ are non-permissible forms.)

UNIT identifies the particular input-output unit used, and may be any
one of the following:

UNIT INTERPRETATION

nT The magnetic tape connzacted to channel n of the Input=-
Output Processor, (n is any integer 0-16; if n > 16 it will
be treated as a symbolic address of a word whose contents
(bits 12-~15) identifies the particular magnetic tape unit,)

SYMBYJL The symbolic addréss of a word whose contents (bits 12-15)
specifies the magnetic tape unit,

GROUP SIZE is the number of cards in a block or records per block,

RECORD SIZE is the number of computer words per card or computer
words per record,

Group and Record Size Parameters are of no effect in an IJUNITS
statement describing printed output (DT& or PRT) or binary tape input or
output (BTI, BTY, BTIJ or BTZI), As shown in the example below, these
two parameters would be omitted from the IFUNITS statement with the
commas normally separating them retained.

60

ERROR ADDRESS is a decimal or symbolic address which defines an
error jump address which will be executed when an input or output
error occurs,

CORE STARTING ADDRESS 1 is the address of the first word of a block
of 128 words used for input or output.

CORE STARTING ADDRESS 2 is-the address of the first word of a
second block for input or output. If this address is present, the pro=-
gram will alternate between areas for reading or writing, If it is not
present, or is identical to CORE STARTING ADDRESS 1, no attempt to
overlap input and/or output operations with computing will be made.
(Binary tape operations require that this second parameter be not
specified,)

Example of an IFUNITS statement:

LOCATION COMMAND ADDRESS

IQUNITS DTY, 12T,,, ERROUT, BLOCK A,
BL@CK B; DTI, 11T, 12, 10, ERRIN,
BUFF 1, BUFF 2 §

The statement describes data tape output on IOP channel 12 and input of
data from IOP channel 11,

IGUNITSF STATEMENT

The IFUNITSF statement is discussed under ALTAC-FORTRAN Con-
version, p. 77.

COMPLETE AND END STATEMENTS

The COMPLETE or END statement is used to signal to the compiler
the end of the program being compiled, It is the last physical statement in
a program and is written in the following format.

STATEMENT STATEMENT

COMPLETE $ END $

Use of either of these statements permits batching of ALTAC programs
on the source tape for compilation,

61

CHAPTER 7 - ALTAC FUNCTION SUBPROGRAMS AND SUBROUTINES

By writing statements in the ALTAC language presented in the preceding
chapters, the reader can direct the Philco 2000 in the performance of prac-
tically any type of numerical calculation. Information may be transferred
between internal storage and an external medium in a variety of formats.
Decisions and paths of flow may be set up through the use of control state -
ments. Existing TAC subroutines and other functions are readily available,
as well as functions incorporated on the TAC library tape.

The reader has seen in Chapter 3 that these functions can be called upon
by writing ALTAC statements containing the names of the functions and lists
of arguments enclosed within parentheses. Functions of his own creation,
not available from these sources, may be defined by a single statement pre-
ceding the first executable statement in the program. Such functions are then
referred to in the same manner as any of the other types.

However, not all functions can be completely defined within the limit of
a single ALTAC statement. Furthermore, in most cases it would be inad-
visable to include them on the TAC library tape due to their limited appli-
cation. It would likewise be inconvenient and inefficient to write them as a
sequence of statements in the main program, repeated each time they are
needed.

A different concept of function definition is presented in this chapter
which will enable the reader to define such functions by writing separate
programs, and compiling and checking them apart from the main program.
Such programs are referred to as subprograms, since they are designed to
operate under control of other programs. A subprogram may in itself con-
stitute a calling program, utilizing other functions or subprograms. Existing
programs may readily be converted into subprograms, and the process ex-
panded indefinitely within the limits of the capacity of the Philco 2000.

A second type of ALTAC subprogram can be written as a subroutine.
While functions are designed primarily to perform intermediate calculations
producing single valued results, such as square root, summations, etc.,
subroutines are more suitable for other purposes. They may be used to per-
form a complete series of calculations, the results of which are stored in
memory locations at program run time.

Linkage of subprograms of either type to referencing or calling programs
can be accomplished by means of five ALTAC statements, namely:

1) CALL

2) SUBR@UTINE

62

3) RETURN
4) FUNCTI@N
5) END

While functions are referred to in much the same manner as functions
of the types described earlier, subroutine subprograms must be referred to
by a CALL statement included as a separate statement in the calling program.
A FUNCTIQN statement must be the first statement identifying a subprogram
of the function type, while a subroutine subprogram must always be headed
by a SUBRQUTINE statement. The last logical statement of each type of sub-
program must be a RETURN statement, which passes control back to the
calling program. The form in which these statements must be written, along
with their components, will be discussed in detail in the sections that follow,
along with appropriate illustrations.

CALL

Form: CALL subroutine name (arguments) $

Subroutine Name is the symbolic name used to refer to a subroutine. It

is composed of from one to seven alphanumeric char-
acters, the first of which must be alphabetic.

Arguments are parameters presented to the subroutine to be operated upon.

They are separated by commas, enclosed in parentheses,
and may be in any of the following forms:

1) Fixed-or floating-point constants.

2) Fixed-or floating-point variables or subscripted
dimensioned variables.

3) Names of arrays with subscripts omitted.
4) Any ALTAC arithmetic expression.

5) Hollerith characters.

The use of Hollerith characters (alphanumeric, special and space)
as an argument of a function is presented below. The other types of
arguments listed above were discussed on pp. 15 - 18.

Hollerith arguments may be used for many purposes. For example,
table look-up, type-out of comments, and so on. If the called subroutine

63

is in ALTAC or FORTRAN language, the dummy variable in the sub-
routine, corresponding to the Hollerith argument in the calling statement,
must be singly dimensioned.

The Hollerith argument in the calling statement must be of the fol-
lowing general form:

where n is any decimal integer greater than zero. The n characters
following the H will be translated by ALTAC into TAC word constants
(W/........), eight characters per word. If n is not a multiple of
eight, the unfilled part of the last word will be filled with spaces. A
sentinel of 48 ones will follow the last word.

What is actually transmitted to the subroutine is a word containing
the starting location of the Hollerith information in its left address. All
this information is generated by ALTAC as pool constants (with.a P in the
label field).

Example:

CALL SUBR (10H AEXAMPLEAL1)

Generated coding:

TMA 0001HQL $
S SUBR $
P 0001H@L C/HLT, 0002HQL $
P 0002HQL W/AEXAMPLE $
P W/ALIAAAAAA $

48/1 $

The CALL statement, when written in the calling program, produces a

jump to a subroutine subprogram at program execution time. To ensure
compatibility, the arguments in the CALL statement must be presented in
the same order, number, form and mode as the corresponding arguments in
the SUBROUTINE statement written at the beginning of the subprogram
being called.

64

SUBROUTINE

Form: SUBRQUTINE name (arguments) $

Name is the symbolic name of the subroutine. The rules for its for-
mation are the same as described above for the CALL statement.

Arguments are variable names without subscripts which are used in the
subroutine. If they represent arrays, a DIMENSIQN statement
must be written in the subprogram as well as in the calling
program.

The arguments are separated by commas and are enclosed in
parentheses. The actual variable names used as arguments in a
SUBRQUTINE statement need not necessarily be the same as the
corresponding variable names written as arguments in the CALL
statement, as long as they agree in order, number, and mode.
If a single element of an array is presented as a subscripted
variable in a CALL statement argument, the array must not be
dimensioned in the subroutine.

Example of a Subroutine Subprogram:
Assume A and B are two single-dimensioned arrays of 100 elements each.

A third array C is to be formed as a result of the following calculations in-
volving A and B:

aaan
I
.,.a.l

[
Fh Fh

The main calling program might appear as follows:

LOCATION ALTAC STATEMENT

DIMENSION A (100), B(100), C(100) $
Erggram

Statements

"CALL CALC (A, B, C) $

Some Statement

65

The subroutine thus referred to could be written in the following
manner:

LOCATION ALTAC STATEMENT

SUBRGUTINE CALC (S, T, U)$

DIMENSI@N S (100), T (100), U (100) $

DO (END) I=1, 100 $

END IF (S(I)) E (0), U(I) =0; IF (T (I))E (0), U(1) = 0;

IF (S(I)) E (T(1)), U(1) =0.;

IF (S(I)GT (T(1)), U(I) = S(I) - T(I); IF (S(I)) LT (T(1)),
U(I) = T(I) - S(1

10 RETURN $

END $

Statement 5 in the main program jumps to the subroutine CALC. Notice that
the arrays S, T, and U used in the subroutine, actually represent arrays A,
B, and C of the same mode (floating point), order, and number. Statement

10 of the subroutine produces a jump back to statement 6 of the main program,
at which time the resulting array C will have been formed.

RETURN
Form: RETURN $
This statement completes a function or subroutine subprogram, and pro-

duces a jump back to the calling program, as in the above example. It must
be the last logical step in a subroutine or function subprogram.

FUNCTI@N

Form: FUNCTI®N name (arguments) $

Nameis the symbolic name of the function subprogram. It is composed
of from one to seven alphanumeric characters, the first of which
must be alphabetic. If the first character is 1, J, K, L, M, or N
the value of the function will be in fixed point. Otherwise the value
of the function will be in floating point.

66

Arguments must be written subject to the same rules as for subroutine
arguments. A function subprogram is called for in the same
manner as other types of functions - by writing an arithmetic
statement including the function name along with a list of
arguments enclosed in parentheses. Thus, the statement
Y = A + B-SUM(T) + C/D $ would call the function subprogram
headed by the statement: FUNCTIPN SUM (ELEMENT) §.

For example, if T is of maximum dimension, 250, in the main program,
the function subprogram would appear as follows:

LOCATION ALTAC STATEMENT

FUNCTI®N SUM (ELEMENT) $
DIMENSIPN ELEMENT (250) $
SUM = ELEMENT (1) $

D& 91-=2, 250 %

9 SUM= SUM + ELEMENT () $
10 RETURN $
END §

Statement 10 would cause a jump back to the same statement in the calling
program from which exit was made, and the calculation would continue. In a
function subprogram, the name of the function must appear as a variable to
be evaluated on the left side of an arithmetic statement, as in statement 9 in
the example.

END

Form: END §$

Description:

An END statement is used to separate subroutine and function subprograms
from each other and from the main program with which they are being com-

piled. The END statement must appear as the last physical statement of a
subroutine or function subprogram.

67

CHAPTER 8 - ADDITIONAL FEATURES OF THE ALTAC SYSTEM

This chapter is devoted to the discussion of TAC coding within an
ALTAC program, the Format Control Cards, BITSBITSBITSBITS and
TACLTACLTACLTACL, and the I Card.

TAC CODING WITHIN AN ALTAC PROGRAM

TAC coding in the standard TAC format may be included in an ALTAC
program in either of two ways:

1) By writing the statement,

STATEMENT

STARTTAC $
followed by the TAC coding, and terminated by the ALTAC instruction

COMMAND ADDRESS

ENDTAC $

All coding between these statements is, at this point, included in
the TAC program that results from the ALTAC translation.

2) By punching a T in the label field (column 9 for ALTAC programs and
column 1 for FORTRAN programs) of every TAC insert. ALTAC re-
places the T in the label field of an ALTAC card witha space character.

It then interprets columns 9-80 literally, as it does with a FORTRAN
card.

A card with a T in the label field must never appear between the
statements STARTTAC and ENDTAC.

Within the TAC portion of the program, reference may be made to vari-
able names used in the ALTAC section. The use of TAC coding to define
arrays is discussed under TABLEDEF statements.

FORMAT CONTROL CARDS

If the source program language is mixed, i.e., TAC language cards with
Binary Relocatable cards, proper control cards (BITSBITSBITSBITS and
TACLTACLTACLTACL) must be used fo identify the type of source language
that follows.

68

BITSBITSBITSBITS

A BITSBITSBITSBITS card is placed immediately before a binary input
deck toindicate to the compiler that binaryinput follows. If binary relocatable
coding with its preceding BITSBITSBITSBITS card follows any card other than
the I Card or other BITSBITSBITSBITS cards, ALTAC generates an ILLEGAL
BITSBITSBITSBITS remarks card and terminates compilation immediately.
BITSBITSBITSBITS is punched in Hollerith, in columns 9-24 of a card.

TACLTACLTACLTACL

A TACLTACLTACLTACL card must be placed immediately before a
TAC language deck (l)to indicate to the compiler that TAC language follows,
or (2)to indicate a change in mode (Image to Code or Code to Image) of the
TAC language deck. TACLTACLTACLTACL is punched in Hollerith, in
columns 9-24 of a card.

I CARD

The I Card is usually the first physical card of a program, and it serves
to identify the program.

Information on the I Card must be written as follows:

L LOCATION ALTAC STATEMENT

1 SAMPLE

An I is written in the label field (column 9), while a name (e.g., SAMPLE)
identifying the program is written starting at column 17. The name can com-
prise as many as 16 characters and is not terminated with a $ character.

At least one non-zero character must appear in columns 17-24 of the 1
Card, otherwise ALTAC will not include the I Card in the generated TAC
coding.

ALTAC permits the ICard to precede a BITSBITSBITSBITS card and any
number of binary relocatable cards, provided no card precedes the I Card
other than any number of optional TACLTACLTACLTACL cards. If no
BITSBITSBITSBITS card follows the ICard, ALTAC permits any number of
blank cards (as well as TACLTACLTACLTACL cards)to precede the ICard.

69

APPENDIX A

EXERCISES

Translate the following arithmetic expressions into acceptable ALTAC

statements:
_ 100A
1. R = “2°
100R5 _
2. 2> = RS
. _ .6838(DATA - RDATA)
3. TEM = “RDATAZz + 459.7
_ OUT9 - (TEM3)ABSOER] + TEM4
4. OUT4 S0 (159, 000)
_ 2 3 RUN
5. OUT3 =543(A(B- W* + C-W>) + TEM) + gt + DATA(KURV +.01)
i 3
6. ROOT = (3:415) - 4A(6.54) | 2, 24 (5A + 3.415)
2A2 F
7. X = (1,000,000A +5,000B + 40C) + (2W2 + 10.598)
8. B,+C, =A
1 1 1
(TEM3)ABSOER, (159, 000, 000)
9. OUT4 = OUT, - IV
10, RUN = A%¢ . B2 + BEAT, ((A%° + B™?) + 3.1416)
11, Given the problem:

1268 X - 1195 Y
1395X + 1003 Y

421
721
Output is to be on Data Tape (Magnetic)

Evaluate X and Y
for later printing.

71

12, Given values for A, B, C, D and 25 values of x.
Evaluate the function

Ax% + Bx + C if x is less than D
F(x) = 0 if x equals D

-Ax%2 + Bx - C if x is greater than D

Assume input data is punched on cards as follows:

CARD 1: A SXXX.XXX Columns 1 -8
B SXXX.XXX Columns 9 -16
C SXXX.XXX Columns 17 - 24
D SXXX.XXX Columns 25 - 32
CARDS 2 - 4 with values of x punched SXXX.XXX
ten values per card. The last value will

be punched in columns 33 - 40 of card
number 4.

Write each value of x, F(x), on a data tape (magnetic) along with
heading identification.
13. Find the values of the variables by 10 successive iterations
5.32X1 + 1.20X2 + .22X3 - 1.60X4 = 7.32
-2.01X1 + 4.21X2 + 3.12X3 + 1.01X4 =6.23

2,52X1 - 1,22X2 + 6.05X3 + 3.12X4 = 4.16

3018X1 + 0099X2 - 0.13X3 + 7.66X4 5.23

Method:
Begin by setting each X equal to zero. Solve

the first equation for X1; the second for X2;
the third for X3; and the fourth for X4.

72

14.

15.

Given: a;, bi’ c, for i = 1,.c00000enn ecsey 100, compute

100 100 100
2 2
RESULT = | 37 (a;c)) 2 (b)) 2 (ab-c)
i=1 i=1 i=1

Find the area of a triangle by using the following formulas:

AREA Vs(s-A) (s-B) (S-C)

il

S = -é—(A+B+C)

Restrictions:

The square root function is not to be used.

Output:

A’ B, C, S’ and AREA

73

vL

PHILCO PHILCO PHILCO
Character Card Anzdogr(;pe Character | Card An%im')lgape Character | Card Anzdoql(‘)ape
(Octal) (Octal) (Octal)

0 0 00 D 12-4 24 Q 11-8 50
1 1 01 E 12-5 25 R 11-9 51
2 2 02 F 12-6 26 - 11 40
3 3 03 G 12-7 27 $ 11-8-3 53
4 4 04 H 12-8 30 * 11-8-4 54
5 5 05 I 12-9 31 / 0-1 61
6 6 06 + 12 20 S 0-2 62
7 7 07 . 12-8-3 33 T 0-3 63
8 8 10) 12-8-4 34 U 0-4 64
9 9 11 J 11-1 41 v 0-5 65
Blank 60 K 11-2 42 w 0-6 66
= 8-3 13 L 11-3 43 X 0-7 67
; 8-4 14 M 11-4 44 Y 0-8 70
A 12-1 21 N 11-5 45 Z 0-9 71
B 12-2 22 @ 11-6 46 , 0-8-3 73
C 12-3 23 P 11-7 (0-8-4 74

47

SYILOVEVHD DVLITV 40 dATdV.L

d XIONdddV

APPENDIX C

PREPARATION OF FORTRAN II DECKS FOR ALTAC COMPILATION

Programs to be compiled by the ALTAC compiler may be in either
ALTAC or FORTRAN format. For programs in FORTRAN format, the
following procedures must be followed in preparing them for ALTAC
compilation.

I CARD

An Identification (I) card is the first physical card of a deck, and it must
be prepared for each program. With the REL option specified, a program is
considered to be a single subroutine or main program preceded by any num-
ber of binary relocatable subroutines. (Each subroutine of a REL program,
therefore, must have an I Card.) With the RPL or ABS option, a program
would be comprised of any number of subroutines preceding a main program
(which must be the last physical deck of cards). The I Card is further dis-
cussed on p. 69.

IDENTIFY STATEMENT

Programs in ALTAC and FORTRAN format may be mixed in any order,
provided the proper IDENTIFY cards are included. An IDENTIFY statement
(illustrated below) must appear ahead of all statements in FORTRAN format,
even before FORTRAN remarks, since ALTAC assumes ALTAC format unless
otherwise instructed.

LOCATION ALTAC STATEMENT

IDENTIFY type, mK, nX, aW $

This statement must start in column 17 or beyond, and is terminated with
a $ character.

75

Parameter ' Explanation

type Type must be F or A. If FORTRAN and ALTAC statements
are to be mixed within a program, an IDENTIFY statement
with the appropriate type (A or F) must precede each change.
An IDENTIFY F indicates that FORTRAN statements follow,
while an IDENTIFY A would indicate that an ALTAC insert
(in a FORTRAN program) follows. The other parameters,
excépt type, in an IDENTIFY statement need only be speci-
fied initially.

mK This parameter defines the size of core storage of the Philco
2000 System on which the compiled program is expected to
be run. (See page 58.) mK is optional.

nX This parameter indicates the number of index registers
available with the Philco 2000 System on which the compiled
program will be run. (See page 58.) If a program is to be
run on the same size (i.e., same size of core and the same
number of index registers)machine as that on which it was
compiled, these parameters mK and nX neednotbe specified.

n'W This parameter states that the program compiled must con-
tain at least n words of CQMMO®N storage. (See page 40.)
This parameter is optional, and is to be included only when
compiling with the RPL or ABS option.

Example:

LOCATION ALTAC STATEMENT

IDENTIFY 8K, 8X, 1200 W, F §

As previously mentioned, the IDENTIFY statement must start in column
17, except when switching from F back to A format, in which case, the
IDENTIFY may be written starting at column 7. (As shown above, the order
of the parameters is insignificant.)

76

According to the above statement, the ALTAC compiler will assume the
deck to be of FORTRAN format as soon as the F is encountered. It will pre-
pare the program to be run on a Philco 2000 having 8192 words of core storage
and eight index registers.

Assuming RPL or ABS option, at least 1200 words of COMM®N storage
will be reserved, provided the first subprogram does not require more.
Assuming REL option, common storage is reserved automatically by a
COMSTOR card for each common variable.

SEQUENCE OF EQUIVALENCE, COMM®N, AND DIMENSI®N STATEMENTS

Before an array is used in a main program or in a subprogram, it must
be defined in the DIMENSI®N statement. In that same program or subpro-
gram, all EQUIVALENCE statements should appear first, followed by all
COMM®PN statements, followed by all DIMENSIPN statements. These should
all appear before the use of any subscripted variables.

IQUNITSF STATEMENT

It was shown that for ALTAC programs an I@QUNITS statement is written
in ALTAC format, starting at column 17 or beyond. For FORTRAN pro-
grams, IPUNITS is written in FORTRAN format, as IQUNITSF starting at
column 7 or beyond. IQUNITSF has the same parameter format as the
I@UNITS statement.

An IQUNITS statement produces coding which assumes that the programmer
is supplying both v (vertical format) and s (data select) control characters for
every line that i to be printed; IQUNITSF automatically produces an s char-
acter of 0 and makes the following changes in the v character:

PRINTER PROGRAM -

CONTROL CHARACTER v S MEANING
0 becomes {i g} Double space
A (a space symbol) becomes 1 0 Single space
1 becomes 7 0 Skip to top of page
+ becomes 0 0 No space
A filler character becomes 1 0 Single space
Anything else becomes 7 0 Skip to top of page

17

If the IOUNITSF statement is written according to FORTRAN conventions,
it must follow the IDENTIFY statement. If, on the other hand, IQUNITSF is
written according to ALTAC conventions and starts at column 17 or beyond,
it must precede the IDENTIFY statement.

ALTAC STATEMENT

I@QUNITSF unit description; unit description; - - - §

The parameters of this statement appear in the same order as outlined
on p. 59 of this manual, and the statement is written in the same form as
any other FORTRAN or ALTAC statement.

All "on-line' units (card reader, card punch, and printer) must be de-
scribed as magnetic tape units in the IQUNITSF statement in the following
manner:

(a) For all READ orders, specify 11T for the Unit Parameter
and DTI as the Type Parameter.

(b) For all PRINT orders, specify 12T for the Unit Parameter
and DT@ as the Type Parameter.

(c) For all PUNCH orders, specify 13T for the Unit Parameter
and PCQ® as the Type Parameter.

Tape units 11T, 12T, and 13T are used to avoid conflict with logical
tapes 1-10 which are used in FORTRAN programs for the IBM 704 computers.

The READ statement is treated as if it were a READ INPUT TAPE 11
instruction. The IQUNITSF statement should therefore contain an entry which
starts with DTI, 11T, 12, 10,............ It is, of course, necessary to
convert the cards off line to magnetic tape in Code Mode, 10 words per card,
12 cards per block.

Similarly, when a PRINT. statement is used, the IQUNITSF statement
should contain DT®, 12T,.... When a PUNCH statement is used, it should
contain PC@®, 13T....

Error addresses, if specified, must be symbolic. Normally, they are
not specified, in which case the PR@PC error exit, which is a standard error
return, is used.

Only one IQUNITSF statement must be given with a complete program.

78

FOARMAT STATEMENTS

The present version of ALTAC requires the following changes in the
FORTRAN program in order to handle Hollerith input and produce compatible
results. Input FQRMAT statements must be checked to determine if Hollerith
input (under the nH descriptor) is specified. This is not permitted in ALTAC
and, if found, must be corrected by performing the following:

(a) Symbolic names must be assigned to locations into which the
Hollerith information will be read. These symbols must then be
inserted in correct sequence into the LIST of the READ statement,
and must also be appropriately added to the DIMENSI®@N statement,
if required.

(b) A new FORMAT statement must be prepared using the Aw descriptor
in place of the nH descriptor. A single Aw descriptor must describe
no more than eight characters of input. Successive Hollerith fields
of the same width can be described by modifying the Aw descriptor
with a repeat modifier. Each Philco 2000 word may contain a
maximum of eight alphanumeric characters. Where less than eight
are specified, as in A4, the characters are left justified in a word
in memory, and the rest of the word is filled with blanks. Where
more than eight alphanumeric characters are specified, for example,
Al2, the last (w~8) characters will be lost. In replacing nH, there-
fore, the following is done:

(1) Divide n by 8.
(2) If the division is exact, prefix the quotient to AS8.

(3) If the division is inexact, prefix the integer part of the quotient
to A8; and suffix the remainder to another A immediately follow-
ing the previous.

For example, 20H would become 2A8, A4; 14H would become A8, A6; and
5H would become A5. In the first example, it would also be necessary to
expand the LIST in the READ statement (which would receive the Hollerith
information) by three memory locations; in the second example, two memory
locations must be inserted into the LIST; and in the third example, an inser-
tion of one memory location is necessary.

79

It is also necessary to include a DIMENSI®N statement, which sets up
the area into which information is read, and to change the corresponding
READ statement to read into this area. Thus, the FORTRAN statements

READ 15

15 F¢RMA.T (ZoH...l'..l!.“........)
should be changed to

DIMENSI®N H@LLI (3)

READ 15, HOLLI

15 FORMAT (2A8, A4)

Because Aw is acceptable to both FORTRAN and ALTAC, its use is rec-
ommended in preference to Ww.

Commas must always separate descriptors. (For example, FORMAT
(5X9H.........) is acceptable to FORTRAN, but should be changed to
FPRMAT (5X, 9H........ .) for proper ALTAC interpretation.)

COMPLETE AND END STATEMENTS

C@OMPLETE and END statements are used interchangeably in ALTAC.
END must always be followed by a dollar sign or a left parenthesis. These
statements are like any other FORTRAN statement. In any program,
(FORTRAN or ALTAC), never use END or COQMPLETE in a compound state -
ment in which it is not the last component.

ARRAYS
All multi-dimensional arrays must be referred to by proper subscripts.
The number of subscripts appending a variable must match the number of

dimensions specified in the DIMENSI¢N statement:

Example 1:

ALTAC STATEMENT

DIMENSI@N A(8, 8)

B =A(9)

80

The above form is not permitted in ALTAC. Instead, A(9) must be
written as A(l, 2) so that the subscripts agree in number with the subscripts
in the DIMENSI@N statement.

Example 2:

ALTAC STATEMENT

SUBR@UTINE SUB (A)

DIMENSIZN A(8)

B =A

Because in ALTAC, A is not always the same as A(l), the above form
(B = A) is not permitted. A, appearing alone, in this case designates the
address of the first word of the array A, while A(l) always designates the
contents of the first word of the array.

SAP CODING

Delete all SAP coding which may appear in the program and replace with
either TAC codi.ng or FORTRAN statements,

The first statement in an ALTAC (cr FORTRAN) main program should
not be a TAC insert, since, during compilation, ALTAC generates the pro-
gram's END-START transfer address upon encountering the first ALTAC
(FORTRAN) statement.

ASSIGNED G@ T@® STATEMENTS

The restrictions in FORTRAN on ASSIGNED G@ T@'s are aot applicable.
If the address of a G TP statement or of an IF statement appearing in the
range of a D@, is not defined in that range, ALTAC assumes that a jump is
going to be made out of the range of the D@. Similarly, if the address of an
ASSIGNED G@ T is not listed, it would appear to ALTAC as though a jump
were being made outside the range of the D{.

81

ST@P AND END FILE STATEMENTS

All ALTAC/FORTRAN programs must contain at least one ST@P or one
END FILE statement to produce the proper RUNGUT of output information,
or it can include the coding:

STARTTAC $
RUNQGUT $
END TAC $

A ST@P statement is the only ALTAC statement that provides proper
RUNQUT of all stored output data.

FLOATING-POINT ZERO

Since floating-point zero and fixed-point zero are not the same in the
Philco 2000, the assumption should not be made that memory has been pre-
cleared to floating-point zero. For example, when testing the contents of a
given location (A) for zero, if A has not been defined previous to the test, the
statement A = 0. should precede any such test. For greater familiarity with
floating-point operations in the Philco 2000, the reader is referred to
Appendix E of the Programming Manual.

DIVISION BY ZERO

Note where division by zero is attempted. Mathematically, division of
a finite number by zero yields infinity. ALTAC therefore yields the largest
positive floating-point number possible:

3777777777773777(8)

Division by zero in most versions of FORTRAN, however, yields zero.
Although such a result is mathematically incorrect, to achieve compatibility
with FORTRAN (in programs using this practice), it is possible to change the
constant ©&/3777777777773777 in the subroutine IBG to F/0. In ALTAC, zero
is always positive. Negative zero cannot be represented in the Philco 2000.

SUBROUTINES

Note that if the computer jumps to memory location 3(1SUBERR) an error
has occurred upon executing a subroutine. For example, the computer will
jump to location 3 if the square root (SQRTF) subroutine is entered with a neg-
ative argument. FORTRAN in such a case takes the square root of the abso-
lute value of the argument, ALTAC does not.

82

SENSE SWITCH STATEMENTS

The programmer must provide information as to the proper setting of
console toggle switches when IF SENSE SWITCH statements are included in
the program. Toggles 1-6 refer to SENSE SWITCHES 1-6.

PAUSE STATEMENTS

A PAUSE statement is usually included in a program to provide time for
operator intervention. In such a case, the programmer must specify the
action to be taken. ALTAC does not produce a runout of the output buffer
areas for a PAUSE statement. (The reader is referred to the I@PS Manual
for a discussion of RUNGUT.)

ENDING A PROGRAM

Programs that end on a card reader select or on an end of file condition
from an input tape, must be modified to be able to recognize when there is
no more data to be processed; and, at this point, to transfer control to a
STPP statement or equivalent TAC coding, to runout partially filled buffers.
A program should not be ended on a read-write-check error.

BINARY TAPE OPERATIONS

Group and Record Size parameters need not be specified in an IGUNITSF
statement for binary tape operations. I@PS has its own fixed group and rec-
ord size for binary tape operations and will ignore any such specification, if
written. Specifying two buffer blocks (double buffering) is not permitted with
binary tape operations; only one buffer block should be specified.

When writing the binary tape order statement, remember that each order
will cause at least one full block to be read from or written on tape. The
larger the list of binary information to be transferred, the more efficient the
execution of the pertinent section of the IGPS program will be.

Note also that there is no restriction on the complexity of the LIST struc-

ture for binary tape orders with ALTAC since input-output operations are

buffered.

83

BASIC ARRANGEMENT OF A FORTRAN PROGRAM
FOR ALTAC COMPILATION

I Card
IGUNITSF _—; ;%
Subprograms: Function - Identifying Statement
IDENTIFY F__,__, __$ Single Statement Functions
Single Statement .
Functions .
RETURN
EQUIVALENCE END §
COAMMEGN
Subroutine -Identifying Statement
DIMENSIgN Single Statement Functions
Input Statements)
Arithmetic Formula
and Control
Statements EEEURN $
Output Statements
ST@P
Format Statements
END $

The same physical order of statements holds for both main- and sub-
programs with the exception of the environmental cards I, IDENTIFY and
IGUNITSF. Only when the REL option is specified must subprograms have
their own Identification (I) and IDENTIFY cards.

Single statement functions should precede EQUIVALENCE, C¢MM¢N,
and DIMENSI@N statements.

CHECK SHEET FOR ALTAC-FORTRAN COMPILATIONS

1. An Identification (I) card should be the first card of the deck.

2. Prepare an IDENTIFY F statement.

84

10.

11.

12.

13.

Prepare an I¢UNITSF statement. All "on-line'' operations involving
peripheral equipment (card reader, card punch, and printer) must

be described as magnetic tape operations involving tapes 11, 13, and
12 respectively.

Subprograms must appear before the main program under RPL or
ABS options.

EQUIVALENCE, C#MM@N, and DIMENSI@N statements must be
arranged in this order, and must appear before any reference to an
array.

FORTRAN-type END statements must terminate all SUBR@UTINE
and FUNCTI@N subprograms. END should be followed by a $
character.

All multi-dimensional arrays must be referred to by proper
subscripts.

Delete all SAP coding and replace with equivalent TAC coding.

Boolean Algebra calculations must be done in TAC coding; ALTAC
does not offer this provision at this time.

Never assume that any variable is preset by ALTAC. Always in-
clude all such necessary '""housekeeping'' in the source program.

When Hollerith input is specified, the associated field descriptors
(nH) must be changed to Aw descriptors.

ST@P or ENDFILE statements should be used at the logical end of
a program to cause proper runout of output information. Do not end
a program with a read-write check error.

In FORTRAN, division of a finite number by zero yields zero. In
ALTAC, the result would be 3777777777773777(g)y. Check to deter -
mine if this difference is significant to the successful running of the
program. Based on this decision, the constant 37777'7’7777773777(8
the subroutine IBG should or should not be changed to F/0,

85

)in

APPENDIX D

POSSIBLE GROUPING OF CHARACTERS ap IN

ALTAC FORMAT STATEMENTS

o
- 3
..m e
s £
ot -
g o
oD

o
= &
0
m O
M A
oo
- 2

o]
o9
8 ©
0 o
® ™
: 3
< O
O w
W g
H o
)
(0] [
(6] Q
()] Q
(YR - |
[o PR]
oo
3 @

H(+n)

Nt ZZZZZZZEAZZZAZEEZ A
K ™ ZZZ 2 ZZEZEZLZEZAZE Z A
|- ZZZZRZRZEZZZZZZZ ZZ
W > 27 NZZZZZLZLEE T
MR R R E T E E T
| M Z R BN ZZZAZZZEZE M
M |12 > Z 222 ZZE ARG Z P
b | 5 Z 22 EZZEZ A A G E M
M Z N Z M ZEZAZZZ AT Z N
B R R R TR
AN EE EEEEE S
~| Mz E N ZEZZZZZZZE N Z A
- |2 zZzZzzZz222222222%%Z32Z%Z%

Nz Z ZZZZZZZZLLZLZZ R
S|t M Z o m N ZZZZZZZZ N Z A
@l Z o Z N ZZZZ AL L E M EZ
ez zzrzZmz2Z22 2222 2ZM227
P R R A T T
© g . B~ -~ F 1 a mEAdE K KA

86

APPENDIX E

ALTAC TABLE SPECIFICATIONS

The following table lists, according to machine size, the maximum
allowable number of certain elements of a program:

SIZE OF MACHINE

8,192 16,384 | 32,768
WORDS | WORDS | WORDS

MAXIMUM SIZE OF TEMPORARY 257 1500 2000
STORAGE AREA

MAXIMUM NUMBER OF D@'s IN A 90 200 200
PROGRAM

MAXIMUM NUMBER OF D@'s IN A NEST 63 63 63
MAXIMUM NUMBER OF FORMAT 125 1000 1000

STATEMENTS IN A PROGRAM

The actual number of words in a
DIMENSIaN Table is approximately equal
to (2m + 3n), where m represents the total
number of one-dimensional arrays appear -
ing in DIMENSI®N statements that do not
appear in EQUIVALENCE and COMM@N
statements, nor as arguments of a sub-
routine or function subprogram. n repre-
sents all other arrays.

The quantity (2m + 3n) should not exceed
the MAXIMUM ALLOWABLE NUMBER OF
WORDS IN THE DIMENSIZN TABLE 480 1000 1000

MAXIMUM NUMBER OF VARIABLES IN 258 750 1500
EQUIVALENCE OR COMM@N STATEMENTS

MAXIMUM NUMBER OF ARGUMENTS IN A 31 255 255
SUBROUTINE OR FUNCTION SUBPROGRAM

87

APPENDIX F

ALTAC DIAGNOSTICS

The following are some of the diagnostics which are generated by ALTAC
and which will appear on the code-edit as a result of the compilation run.

A.

ILLEGAL STATEMENT is printed when

1. An unequal number of left and right parentheses is contained in
a single statement.

2. An illegal character appears in a statement.
Example:

DO 121 =1,25%
where the @ intended is punched as a zero.

ILLEGAL LOCATION is printed when

One of the special characters appears in a location field or when an
alphabetic character appears in a location field whose first non-
space character is numeric.

AMBIGUOUS FLAD is printed when

Two or more subroutines in the same compilation have the same
name,

TOO MANY ARRAYS is printed when

Too many storage locations are used for arrays. There is not
enough room in the ALTAC program to handle all arrays. (ALTAC
does not overlap memory.)

TOO MANY UNKNOWNS

This diagnostic will appear if the following conditions are present:

1. There are more than 31 arguments in a single subroutine in
the 8K version of ALTAC.

2. There are more than 255 arguments in a single subroutine in
the 16K or 32K version of ALTAC.

88

TOO MANY WORDS is printed when

The size of the core specified in the IDENTIFY statement is ex-
ceeded by the variables listed in a DIMENSI@N statement.

TOO MANY EQ./COM. is printed when

Too many EQUIVALENCE and/or C¢MM¢N locations are specified
and the respective lists are exceeded.

TOO MANY DO LOOPS is printed when

The number of D@'s in a program or in a nest exceeds the maximum
allowable number. These limitations are indicated in the table in
Appendix E.

UNENDED DO is printed when

The last statement in the range of a D¢ is not present in the source
program. One or more UNENDED D@'s results in an ILLEGAL D@
NEST diagnostic.

TOO MANY FORMATS is printed when

The number of F¢RMAT statements in a program exceeds the max-
imum allowable number indicated in Appendix E.

ILLEGAL BITSBITSBITSBITS is printed when

Binary relocatable coding follows any card other than I or
BITSBITSBITSBITS.

89

INDEX

Allowable characters, 5, 74
Alphanumeric characters, 5, 53, 74
ALTAC

definition of, iii, 1

features of, 1, 2
Arguments of a function, 14-18,

63-67, 87

Arithmetic statements, 10, 11
Arrays, 7, 8, 27, 36-38, 45-48, 80
Assigned GO TQ statement, 20, 81

BACKSPACE statement, 45
Binary tapes, 44, 60, 61, 83
BITSBITSBITSBITS, 68, 69
Blanks, 5, 49, 50, 52-54, 74
Bypassing characters, 54

CALL statement, 62, 63
Characters
allowable, 5, 74
alphanumeric, 5, 53, 74
blank, 5, 49, 50, 52-54, 74
Coding form, 4
COMMON statement, 36, 39, 40,
76, 87
Compilation, 1, 3
COMPLETE statement, 57, 61, 80
Compound conditional statements,
24
Compound statements, 12, 25
Computed G® TQ® statement, 22
Constants
fixed -point, 6
floating -point, 6
CONTINUE statement, 33

Data transmission and conversion,
42, 46, 50-53, 55
Data tapes, 43, 44
DIMENSI®N statement, 36, 39, 48,
77, 87
D@ statement
exit and return, 26, 28
increment, 26

91

index, 26-28

initial value, 26

multiple D® loops, 27, 28

nesting of DQ®'s, 27, 28, 87

range of, 26, 33

use of, 26

use of index and restrictions,
26, 87

Dummy variables, 15, 20

E descriptor, 51, 52
Element of an array, 36
END statement, 57, 61, 63, 67, 80
ENDFILE statement, 45, 82
End of record indicators, 48, 56
ENDTAC statement, 68
Environmental statements, 42, 56-61
IDENTIFY, 40, 57-59, 75, 76, 84
IQUNITS, 57, 59
IQUNITSF, 57, 61
CPMPLETE, 57, 61, 80
END, 57, 80
EQUIVALENCE statement, 36, 38,
40, 77, 87
Exponent modifier, 55
Exponentiation, 4, 9, 13
Exponent overflow, 32
Expressions
mixed, 10, 11
rules for writing, 9, 11

F descriptor, 50
Field descriptors, 49
» 49, 53
, 49, 51, 52
, 49, 50
» 49, 52
, 49, 50
W, 49, 53
X, 49, 54
Fixed-point
arithmetic, 6, 10
constants, 6
range, 6

kel ld

variables, 7, 10, 11, 15
Floating-point
arithmetic, 6, 10
constants, 6
range, 6
variables, 7, 15
Flowchart, 25
FOQRMAT statement, 42, 43, 48,
79, 87
field descriptors, 48, 49
modifiers, 48, 54
Format control cards
BITSBITSBITSBITS, 68, 69
TACLTACLTACLTACL, 68, 69
FORTRAN, 57, 68, 75, 76, 78
FUNCTIPN statement,

63, 66
Functions

defined by a single program
statement, 13, 14

defined by a separate program,
13, 63-67

defined on a library tape,
13, 14, 16

rules for naming, 13, 14,
63-66

types of, 13, 14, 16-18
Function subprograms, 62

GO T® statements
unconditional, 19
assigned, 20, 81
computed, 22

H descriptor, 49, 52
Hollerith
arguments, 63, 64
characters, 5, 52, 63
fields, 52, 79

I Card, 69, 75, 84

I descriptor, 49, 50

IDENTIFY statement, 40, 57-59,
75, 76, 84

INDEX

IF statements

Form 1, 23

Form 2, 23

IF QVERFLOW, 32

IF SENSE BIT, 31

IF SENSE LIGHT, 29
IF SENSE SWITCH, 30

Imperative statements, 23-25
Index of a D®, 26-28
Indexing of lists, 45
Input-Output statements

FORMAT statement, 42, 43, 79, 87
descriptors, 48, 49-54
modifiers, 48, 54

Order statements, 42-45
for the transfer of coded

information, 43, 44
for the transfer of binary
information, 43, 44
for the control of magnetic

tapes, 43-45

Environmental statements, 42, 56-61
IQUNITS, 57, 59-61
IPUNITSF, 57, 61, 77, 78, 84

IOPS, 34, 42, 83

Language of ALTAC

elements of, 6

Leading zeros, 53
Library functions, 13, 16
List

definition of, 43, 45
indexing of, 45
representing arrays, 46-48
rules for forming, 45

Mixed expressions, 10, 11
Mixed fields, 54
Modifiers

exponent (nP), 55
function of, 48, 54
repeat {(nR), 55

Multiple records,

92

55, 56

Names of variables, 7-15
Nest of D@'s, 27, 28, 87

Operation symbols, 9
Order of operations, 12, 13
Order statements, 42-45
Overflow

IF @QVERFLOW, 32

Parentheses
use of, 12-14, 16, 20, 26, 47,
48, 55
PAUSE statement, 34, 83
PRINT statement, 44
Program identification, 69, 75, 84
PUNCH statement, 43

Raising to a power, 4, 9, 13, 55
Range of a D@, 26, 33

READ statement, 43

READ INPUT TAPE statement, 43
READ TAPE statement, 44
Record, 48, 55, 56, 60, ‘83
Remark cards, 4, 75

Repeat Modifier, 55

RETURN statement, 63, 66
REWIND statement, 45

Sense bit
IF SENSE BIT, 31
SENSE LIGHT statement, 29
Sense switch
IF SENSE SWITCH, 30, 83
Skipping of records, 56
Spaces (see Blanks)
Spacing over characters, 54
Specification statements
COMMON, 36, 39, 40, 76, 87
DIMENSION, 36, 39, 48, 77, 87
EQUIVALENCE, 36, 38, 40,
77, 87
TABLEDEF, 36, 41

INDEX

93

Statement references, 4, 19-23, 43
STARTTAC statement, 68
STOQP statement, 34, 82
Subprograms
Function, 62
Subroutine, 62
SUBRQ@UTINE statement, 62, 65
Subscripts
rules for forming, 7, 8
subscripting of, 8
Subscripted variables, 7, 8, 9, 37
Symbolic addresses, 7

TABLEDEF statement, 36, 41
TAC
coding within an ALTAC
program, 3, 4, 41, 42,
59, 68
TACLTACLTACLTACL, 68, 69
Tape control orders, 45
Trailing blanks, 53
Truncation, 12, 17

Unconditional GO TQ, 19

Variables
fixed-point, 7, 10, 11, 15
dummy, 15, 20
floating -point, 7, 15
non-subscripted, 9
subscripted, 7, 8, 9, 37

W descriptor, 49, 53

WRITE QUTPUT TAPE statement,
44

WRITE TAPE statement, 44

X descriptor, 49, 54

Zero, 53, 82

A SUBSIDIARY OF M(or%w

)_. _- \

U.S.A.

Pri

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	xBack

