Plink 1l

gl

EC

1651 Third Ave., New York, N.Y. 10028 (212) 860-0300 Telex 640693

PHOENIX SOFTWARE ASSOCIATES LTD.
Plink-I1

User's Manual

January 15, 1981

Written by Dave Hirschman

Copyright 1981 by Phoenix Software Associates Ltd.

Reproduced with Permission and Distributed by

Lifeboat Associates
1651 Third Avenue
¥New York, New York 10028
Telephone (212) 860-~0300 Telex 640693

Plink-IT: P34 Object Module Linkage Editor

Table of Contents

Tabie of Corntents

3
A

1 InLlroduction e e e e e e e e e e e

Plink=II . .+ « v ¢ v o v a e e e e e e e e
rmat e e e e e e e e e e e e

Statements e e e e e e e e e e e e e e

Initiatin
Command Fc
al Purpos

X3

oI

[

2 Overview of Plink-IT Concepts + & v « « & « « & o« + . &
5 Plink-11 Inpubt Format . . « v v v o v v v e e e e e e .. b
4.1 Literals o . 0 . . 0 e v e e e e e e e . e e . . . b
3.2 16-bit ValuesS .+ v v v v s & o v v v e e e e e e e e b
3.3 Local Variables v v v v v e v e e e e e e e e e e e T
3.4 EXPressions o v v v v v e e e e e e e e e e e e e
7.5 Identifiers . v v v v e e e e e e e e e e e e ... B
3.6 Disk File Names . v v v v v 4 o o« v v v e e e w . . . 8

7 9

8 10

[ANV WY
.

o
T
~
ot
[42]

—d
[V

4.1 outTrPyurT e e e e s e e e e e e e e e e e e e e e e 12
4.2 PROGID e 12
4.3 PDOS e 13
T T . I S
4.5 PAGE e 14
5.6 DATE e 14
4.7 REPORT e T4
4.8 MAIN e 15
4.9 DEFIKE . e e e e e e e e e e e e e e e e e e e 15
i e e e e e e e e e e e e e e e e 15

s

1
@
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
~3

.10 CONCATENATE . . .
ining Program Struct
i SE

5. vILE, LIBRARY, S e e e . 17
G.2 INCLUDE, EXCLUDE .« & v v v v v v e e e e e e e T
5.3 MODULE, SECMENT+ « v « &« v o « v « o« o v v o 18
S04 SECTION o v v v v v e v e e e e e e e e e e e e .18
5.5 NOSORT

5.6 LDATA L .o
5.7 SCTEND . .

. - . - . B - B " e

. - - » - - . . . “ »

—td ek
WO WO O 0

5.8 LOCATE L o v o 00 h e e e e e e e e e e

5.9 ACTUAL C s e e e e e e e e e e e e e e e e e e e 20

5.10 FnrsMrNORY e e e e e e e e e e e s s e e e e e e 20

.11 Creating Overlays o 0 0 v v v v v v v v e e e e e e 21

5.12 Selecting an Overlay Loader « .« + + v « + . 26
6 Transfer otf Control « . 4 « « v 4 & o + &« o o « « . 28
7 Console Input/QOutput e e e e e e e e e e e e e e e e e e e 29
Appendix A - FPre-Defined Symbols 3
Appendix B - COM and PRG File Format e e e e e e e e e 32
Appendix C - More Plink-IT Examples . . . « . « « « « « « « . 34
Appendix D ~ MicroSoft Hints+ « « « 3%
Appendix E -~ PSA Assembler Hints 37
Appendix F - The EXECUTE Utility e e e e e e e e e e e e e 40
Appendix G - The Overlay Loader +« « « v « v « . bz
Appendix ¢ - Command Syntax Summary+ v & « v e . < . . Lo
Appendix I - Error Messages « . .« .« < . o kv

Plink-1IT1: PSA Objiect Module Linkage Editor 2
Intrcduction

1 Introduction

Plink-I1 is a Phoenix Software Asscclates Ltd., software
system that can hind together individually compiled modules of a
program 1nto a single [ile that may be loaded and executed by the
operating system. It runs on a 280 (%) micro-processcor under any
of the CP/M (%) compatible operating systems,.

Plink-~I1 will accept PSA and MicroSoft relocatable files as
put {8some MicroSoft variants are accepted also: see Appendixz).
ink-I1 offers complete contrecl over the memory utilization of
e ﬁrogrdm, including the ability to create arbitrary overlay
structure

Library files consisting of many separately compiled modules
may be used as input. Plink-II offers methods for including aill
or only the required modules of a library into the program,.

Plink-I1 is a two-pass linkage editor. That 1is, each of the
input files is read twice. Since the output file is built up on
disk, Plink-II has the ability to «c¢reate ©6U4K ©programs that
completely fill the address space of the machine, unlike other
‘inkage editors which require that the output file share memory
space with them and their tables. It is even possible to use a
smali machine to create programs intended for execution on a
larger one. A double disk Dbuffering scheme insures adequate

a

execution speed, When overlays are used, programs consisting of
up to 4 megabytes of code may be created,

There are many advantage to the practice of Linking
together separately compiled modules instead of working with a
single, large program, A large program may be decomposed intc
small modules which ma be edited and compiled mcore quickly.

Indeed, most compilers available for the Z80 can only handle
modules of a limited size, and create output files that require
linking before use

For example, to correct a bug, the programmer need only
re~compile the atfected modules and re-link the program, instead
of re-compiling the entire program, The linkage process is much
faster than compilation.

It often happens that a routine is used in several programs,
a special I1I/C routine or CO3INE function, for example. Instead
of copying the source code for this routine into each program, it
may be compiled once and then linked in wherever it may be
rwqu*rpd. Furthermore, using Plink-II, routines generated wiih
ifferent compilers may Dbe combined into a single program. The
programmer can gradually build up a library of general purpose
routines and avoid the useless effort of solving the same
srogramming problems over and over again.

o

o

Plink-I1: P
Introeduction

92]

A Obliect Module LLinkage Editor

ot

Using a linkage editor eases the problems encountered when
several programmers must work together on a large program, Cnece
the programming problem has been broken down into Separate
modules, each programmer may work relatively independently.

The remainder of this guide describes how to use Plink-IT.
An overview of Plink-II cencepts and operation 1is offered in
secticn 2., The following sections describe Plink~II input
statements, The manual 1is designed to be read sequentially, with
side-issues deferred to appendices, The reader should Thave as
vackground some simple programming experience.

80 1s a trademark of Zilog.

i)z
7 CP/M is a trademark of Digital Research Corporation.

(
(%

Plink-II1: PSA Object Module Linkage Editor]
Overview of Plink-I1 Concepts

2 Overview of Plink-II Concepts

Plink-II accepts as input RELOCATABLE or REL files. These
are the files that are created by most compilers and assemblers.
The term "relocatable" refers to the fact that the machine code
in these files may be "relocated" by the linkage editor; that is,
the code can be modified to execute at any memory address in the
computer. Thus, the programmer 1is freed frem having to choose
memory locations himself, and the same code can be loaded at
different addresses in different programs.

Each REL file may contain one or more MODULEs. A MODULE 1is
the relccatable code output by the compiler or assembler for a
program unit (e.g. Fortran subroutine). REL files containing
more than one module are referred to as LIBRARYs. Typically, 2
manufacturer of a compiler will supply a Library along with It
which centains I/G, math, and other support routines needed by
the programs compiled in that language. Since the routines are
kept in separate modules, Plink can select only those modules
that are required by a particular program, thus keeping progran
size to a minumunm.

Fach module has a name. Modules with the same name may be
included in the same program, but there are several statements
that use the module name, and these will refer to a randomly
selected module 1if there are duplicates. Iin the PSA Assembler,
the .IDENT pseudo operation is used to declare the module name.
Its use is highly reccmmended, as the default module name 13
" MAIN.¥, and dupliicate module names will result if more than one
of these modules is used. The available compilers for the Z80
all generate a module name automatically.

Fach module is made up of SEGMENTs (alsoc called "relocation
bases"). Sezments are the basic units of code and/or data
invelved in the linkage edit. After Plink-II is aware of what
modules are to be 1included in the program, it assigns memory
addresses to each segment in each module, Any code in each

segment i3 relocated so that it will execute at the address Lo
which it is assigned.

Several kinds of segments may be contained in a module, and
they all have names that may be referred to during the linkage
edit, The main code segment, usually containing all of the
executable code in the module, has the same name as the module
itself, The main data segment of each module also has the same
name as the module, preceded by a dcuble quote ("), For example,
a module named ARCTAN would contain a code segment named ARCTAN
and a data segment named "ARCTAN (here duplicate module names
result in duplicate segment names).

L1l of the other segments in each module are COMMON blocks.
One of these segments 1s named ".BLNK."™, and i3 referred to as
the "unlabeled common®,. This is the common block that will be
created by FORTRAN compilers when the programmer doesn't supply a

Plink~11: P3A Cbject Module Lir
Overview of Plink-I!l Concepts

-

kKage Editor 5

specific name for a common block. UOther common blocks have names
specified by Lhe programmer,

Common blocks typically contaln only dat
aitl common blocks of th

a, and by defauilt,
same name share the same memory space,
In other words, this 1s a method for defining a block of data
thaet may be shared among several modules. Unliike many other
linkage editors, Piink~II doesn't require commons of the sane
name to be of the same size, or reqguire that the module declaring
the largest size be linked first: it simply allocates the maximum
space needed.

The CONCATEHNATE statement changes a common block so that the
memory sgpace 1 ng shared: each module 15 a‘loLatec its own
sSpace wWwithin the common. This 1s useful for tasks such as
creating tables where each module contributes & single table
entry.

O

or

A SYMBOL is a name given to a particular address within a
segment (a RELATIVE symbol) or to scme 16-bit number {(an ABSOLUTE
gsymupel). One of the major features of the 1linkage edit process
i that each separately compiled module may agccess symbols
defined in other moduxﬂ . An INTERNAL symbol is one whose
address 15 available to modules other than the one in which it is

defined, M"du’e symbols wnich are not INTERNAL are invisible to
other module An iXTERNAL symbol 1s one which is used in a
module, but is defined elsewhere. All EXTERNAL references must
be satisfied by INTERNAL declarations in another module, or the

symbols must be defined 1in some other fashion.

An ENTRY point is an INTERNAL symbol which comes into pley
during a library sSearch, In this mode of operation only tho:ce
licrary modules naving ENTRY points which are referenced as
EXTERNAL symbols by one or more already 1linked mocdules are
included in the program (see the SEARCH and LIBRARY statements).

Muplicate symbols (having the same name) are allowed, but
the i&ysb definition encountered is used. A warning message |1
given for the others.

9]

Plink-11 offers a great deal of contrcl over how the module
segments are arranged in memory. By default, segments are
glincated to the next available space, but the LOCATE statement
may be used to cause subsequent allocations to be made at a
higher address. Segments that form a contiguous unit in memory
are organized into SECTIONS,. Also, each program overlay is a
SECTIGN,.

To sum uJp, the output of a compiler or assembler i3 a
MODULE. One or modules make up a REL file. Plink-1I1 decomposes
the MODULEs into SEGMENTS, re-groups the SEGMENTS into SECTIONS,
and organizes the \uJTIWMS inte the output program, In the
following chbion, the commands required to carry out these tasks
are descoribed in detall,

J..

Piink-IT1: PSA Object Module Linkage Editor 6
Plink-II Input Format

3 Plink-II Input Format

The following sections describe some basic input elements,
Later sections show how these are combined to create full
statements. An appendix gives an abbreviated BNF syntax for

those famillar with formal languages,

3.1 Literals

A LITERAL 1is a sequence of characters delimited by single
quotes ('). If a quote may be placed in a literal by using two
quotes, Here are some valid literals:

tThis 1s a literal!
"This literal contains a '' character'

Literals are limited to a length of 128 characters, and must
be entered on a single input line.

3.2 16-bit Values

A 16-bit value may be expressed as a number, or as a literal
of one or two characters, for example: Vi, If a single
character i1s used, i1%ts value 1is formed by using the character as
the least significant byte of a word quantity, with zerc a@s the
most significant byte,. In other words, "A' would become 0041
hex. When two characters are used, the first becomes the MSEB,
and the second, the L5B: "AB' becomes 47142 hex,

A number may be expressed in several different bases, as
shown in the table below. A radix character immediately
following the number indicates which number system 1is being used:

Base Radix Valid Digits Valid Range
hex H -9 , A-F 0 - OFFFF
decimal . 0-9 0 - 65535
cetal O 07 0O - 177777
binary B 0 and 1 16 digits
If the trailing radix character is omitted, "H" (hex) is
assumed. All numbers must begin with a numeric digit (0-9). &

preceding minus sign indicates a negative number. In this case,
a two's complement representation is used,.

The following are examples of 16-bit values:

14170 - an octal number

0C1B5 - a hex number

~-55. - a negative decimal number
YA - a one character literal
118 - 11 binary

11BH - 11BR hex

P

SA Oblect Module Linkage Editor 7

input Tormat

following are not valid 16-bit values:

140000, - decimal number tco large

560 - invalid octal digit
YA - missing closing gquote
c1cz2 - dees not begin with a digit
3.3 Local Variables
Plink-II offers 50 variables that can store 16-bit values
during the linkage edit, and may be used wherever a 16-~bit value
is needed, These are referenced as "#a"%, where u 15 a value in
the range | - S0. For instance, "#1" is a reference to the first
local variable.
“ote that any 16-~pit value will de for n. In particular
another loca

and #

a8 &h

input

2 equal

To

(SR RS

Loc
ir

L el

b

al

(3]

& de

€ 10

v
¢+

3.0 Expressi

form:

Here

Plink-I
<16-vi
oparaticuns

o

+

o %

-

The min

are

3

[9341)

4
i

.\
-

#o
1

3
1 variable may be used. For instance, if #1 =2quals 2
10, the value of ##1 is 10.

,gn a valus to a local variable, enter f#in =z <value>,
oW

#1 o= 10

$#2 1= 5 + 5
ariables become useful when the command file requests

the operator during the linkage edit (see section 8).

%

T upports simple, unparenthesized expressions of the
t value> <op> <16-bit value>, The following
re offered:

: addition

: subtraction

: multiplication

: integer division

; remainder after division
: 16 bit logical and
: 16 bit logical or

us sign may also be used as a unary minus (negative;.
examples:

D

.1
cisy

10 {contents of local times

5 5 10H)
4 00011000B (mask contents of local 1)

Plink-ITI: PSA Object Module Linkage Editor 8
Piink~I1 Input Format

3.5 ldentifiers
An identifier is the name of some object, such as a module
or segment. A simple identifier is a sequence of no more than
eight characters containing no spaces, and containing none of the
following:
"=y <>/ N\ #gRe -8 DEL

Note that an identifier for the data segment of a module {(as
discussed in the previous section) is preceded by a double quote

("), and can therefore reach nine characters in lengthn. Lower
cage letters, when used, are auvtomatically translated into upper
case. The first character of an identifier may not be a digit 0
- G,

A concatenated identifier may be c¢reated by following the
character string by a "“v character, and then entering a locsal
variable designation. The value in the local variable is
converted to an ascil string in decimal (base 10, notation, with
leading zercs truncated, and is appended to the end of the
identifier string. For instance, if #3 contains the value ten,
"LABEL #3" would be treated the same as "LABEL10O". The total
length of the generated label must be eight characters or less.

The following are examples of valid identifiers:

Programl

SORTS3

"SORTS (a data segment name)
FOO$3$3$

BREANCH #1 (valid oniy if #1 =< 99)

Tne following are not valid identifiers:

I4ABC - begins with a number
CHECKERSI ~ too many characters

NIM A - contains a space

PROG -1 - contains an illegal character

3.6 Disk File Names

Plink II adapts 1itself to the file name format used by the
operating system it is executing under, However, it assumes that
the characters

"7z 3<>/, DEL
do not appear in file names. In this manual, CP/M format file
narses are used for purposes of discussion. These file names are
of the form {device:lnamel.typel, with optional portiona in
brackets, Here are scme examples:

FROG1,COM

Plink-ITI PSA Object Module Linkage Editor 9
Plink-11 anut Farmat

(‘1

¢ cQ SR
I E‘_»'L).L‘I{u
N IN

l

NER

.
e
R

e

:zx

i

When the "device:(" is not used, Plink-ITI assumes that the
currently logged-in disk is to be used, However, in the case of
input files, Plink-II wiil look for a file on drive A 1f tne file
is not found on the logged-~-in drive. When tne PDOS operating
system is used, Plink-I1 will also look in user #5, drive A, in
an effort te find the file.

3.7 Initiating Plink-II

Plink-I1 may be used interzctively, or input may be given as
it is executed:

‘link-1I1 <statements> <cr>

where <cr)> means to press the RETURN key. This means that
Plink-I1 may used Iin submit files.

To uge Plink-11 in the interactive mode, enter
Plink-II <erd

on the console. Plink-II will read commands from the console,
prompting with an asterisk "#m, All input is stored uninspected
until a carriage return is typed. The standard line editing
feavures (rubout , backspace, CTRL-U, CTRL-C, CTRL-E, eve.)
aupplied by the operating system are available.,

o
i

£ digk File containing all or only part of a command may be
inserte nto the input at any point by preceding the disk file
name Wit no o ven, The default file type is ".,LNK". These disk
files may not contain further rgn specifications. The most
common use of this feature 1s to prepare a file containing =z
compiete command; then,

Plink~II €<file name> <Lcr>

links the program. Usually, these " ,LNK" files may be prepared
once for a given program and used over and over again, greatly
simplifying the wnole process,

Plink-II reads an entire command, checking for syntax only,
before any file processing 1is done. Then, the program is created
before the next command is read,

: PSA Object Mcdule Linkage Editor 10

Plink-I1I
11 Input Format

Plink-

3.8 Command Format

A11 Plink-1II commands have the same format, regardless of
whether the interactive mode 1s used, Commands are separated by
a semi-~colon W', Plink-I1 terminates when it receives the "Q"

.

command {(quit). For example,
<command> ; <command> ; <command> ; Q

Plink~-II also terminates when input provided with its
execution is exhausted,.

All input 1is free format. Blank lines are ignored, and a
command may extend to any number of lines, Comments may be
included with input from any source by using a percent sign "3".
When this iz encountered, all remaining characters on the same
line are ignored.

If a CTRL-C is typed while Plink-II is runnping, it will quit
and return to the operating systemn,. If CTRL-E 1is typed, the
current command is abtorted, and Plink-II will prompt for more
input 1if 1t 18 being used interactively.

Eacnh command to Plink-II 1links one program, and 1s a 1ist
of statements:
{statement> <{statement> ... <{statement’>

lhe statements that make up a command typically begin with a
key woerd, and many are followed by arguments separated by commas.
For example, in

FILE A,8,C

ILE is the key word, and A, B, and C are the arguments.
Key words may be abbreviated by omitting trailing characters, as
long as the abbreviation iz unique among the entire group of Kkey
words, For instance, the previous statement could have been
entered as

FI A,B,C
but it could not be entered as
F A,B,C

since this abbreviation could be confused with ¢the FREEMEMORY
command .

If the program is linked successfully, its name i3 printed
on the console, along with the address of the highest byte in
memory used in Lhe pregram and the program memory size rounded up
te the nearest K (1K = 1024 bytes).

Plink-1T: PSA Object

t Module Linkage Editor 11
Plink-1II Input Format

If a syntax error is found, the current input line 1s echoed
with two guestion marks inserted after the point at which the
error was detected. This 1is followed by an error message (see
Appendix}. The command must then be re-entered.

If some other error occurs, the linkage edit terminates with
an error message aiso listed in the appendix.

—
N

Module Linkage Editor

Plink-IT: PSA Object
tements

General Purpose Sta

4 General Purpose Statements

4.1 GUTPU

s}

The OUTPUT statement gives the name of the file that will be
created Lo hold the linked program, The file type, if given,
indicates what kind of file is to be produced. It #must be one of
the foliowing:

PRG -~ P3A code file, possibly containing overlays. These
may be executed directly wunder PSA's operating
system PDOS., A utility progran (EXECUTE) is
provided to execute themn under other operating
systems (see appendix).

COM - Absolute binary core-image file, reasdy to be loaded
and executed by the operating system,.

If the file type is not given, it defaults to PRG if
Plink-I1 is running under the PSA operating system and to CCM for
others. If the QUTPUT statement is not wused at all, the name of
the first input file specified is used, with a default file type.
An error will occur if the selected file type does not agree with
other statements in the command (for example, overlays in a .COM
output filed.

The output file replaces any existing file of the same name,
Examples:

OUTPUT PROG1
ouTPUT PROG2.COM

4,2 FROCGID

This statement may be used to set the program ID, version
number, and revision number of a .PRG output file header (see
appendix). The format is:

PROGID <name> [,<version> [,<revision>]]

with optional input indicated by brackets [J. The <name> is a 6
character identifier, and the <{version> and <revision> are values
lying in the range 0 - 255, The <name> defaults to blanks, and
the versicn and revision numbers default to zero.

Examples:
PROGID CHESS,2,1

PROGID TEST!
PROGID PROGS, 10

Plink-I1: PSA bbjeot Module Linkage Editor 13
General Purpose Statements
4.% PDOS

This statement has an effect only when a .PRG file is being

created, it sets the minimum version and revisilon of the
operating system (PDOS) that must be used to execute the progream.
Its svntax is:

PDOS <version> [,<revision>]

The version and revision values must 1lie in the range (0-25%, and

the revision number defaults to zero 1f not entered. If the PDOS
statement is not used, zerc 1s assumed for both values, meaning

that the program will run under any PDOS operating system. The
purposs of the statement is to prevent programs from being
execute which rely on new operating system features.

Zxamples:

PDGS 2

PDOS 1,9
4.4 MAP

The MAP statement may Dbe used to obtain various reports
which describe the output of the linkage edit. Reports can be
selectaed that show the memory addresses assigned by Plink-II to
the secticns, segments and symbols in the linked program, or that
describe the modules that were included.

The format of the MAP statement is:
MAP <flag 1> ,<flag 2> ... ,<flag m>

The <ilag>s select the desired reports, as follows:

G - Global symbols (i.e. all internal symbols of all lcaded
modules). The =symbols are listed in alphabetical

order, with their assigned addresses.

S - Segments. All of the program segments are 1listed in
ailphabetical order, and the assigned address and size
iz given for each.

A - All. This option 1lists the entire output program,
organized into sections. The sections are listed in
address order, except where overlays maxke this

impossibie. The segments of each section, and the
symbols 1in each segment, are listed in order of
ascending memory address. Symbols created via the
DEFINE statement or automatically sSupplied by Plink~II
are listed separately.

Plink-II: PSA Object Module Linkage Editoer 14
General Purpose Statements

M - Modules. Each module is 1listed, along with its ID
number, version and revision number, and date and time
assembled. This information is available only for PSA
format modules. It is supplied by the .PROGID pseudo
op in the PSA assembler.

If no <flagrs are given, "MAP A" is assumed. Examples:

MAP M,S5,G
MAP
MAP S

4,5 PAGE

This statement may be used to set the page width of the
memory map reports. For example,

PAGE 132

sets the page width to 132 characters, The various report
generators make use of available page width by <changing the
number of columns per line,

L.6 DATE

Plink-II uses the current calendar date in map report
headings and to tag .PRG output file headers with the creation
date. If the operating system is able to supply the date, and it
looks reasonable, Plink-II will use it. If it is not reasonable,
the operator is asked to enter it (it must be entered character
for character as shown in the prompt message).

If the operating system can't supply the date, blanks are
used unless the DATE statement appears in the input. The
operator will then be prompted to enter it as described above.
The DATE statement has no arguments:

DATE

4,7 REPORT

Normally, all wmemory map reports are written to the 1ist
device. This statement can be used o have them written to a
disk file instead. A file name may be specified if desired,
PRECEDED BY AN EQUAL SIGN. Otherwigse, a file 1is c¢reated having
the same name as the output preogram but with a type of .MAP,

Examples:
REPORT
REPORT=BUDGET,LST
REPORT = EXPENSE

Plink~-IT: PSA Object Module Linkage Editor 5
General Purpose Staltements

4.8 MAIN

Plink-I1 requires that a starting address Yor tLhe program b
detined. The starting address is part of the {ile header in
.PRG file {zee azppendix), and PDOS transfer: control to tna
address after lcading the program into memory. Execution ot a
is assumed to begin at address 100H, 30 Pli

D

o

LCuM fitle 5 irk-I1 places
2 Jump at this locatvion to the true starting addre of the

program,

The : address 1is always represented by = symbol named
JMAINLT, If this symbol appears in the program modules, that
one will be used. Otherwise, Plink-I1 will create it, and obtain

a starting address from the first input module that has cne. The
MAIN statement may be used to override this default action and
specify which module 1s the main module of the program. Piink-T11
will tnen lock only at this module in order to find starting
address.,

@

Example

MAIN PROGT

If thne MAIN medule does not have a starting address Plink-11
assumes tnat it i3 at the freont of tha module.

A starting address is defined in the PSA Assemuler by
supplying a label with the "_END" pseudo oyu. Most compilers
speclify a starting address for the main module automatically, so
this statement usually need not be used (foer exceptions, see
"MicroSoft Hints" appendix)., The starting address may Dbe in an
overlay i desired,.

r

4,9 DECINE

This opbion may te used to glve values to symbols which are
not defined npy any module 1in the program. These defined symbols
are then used to resolve EXTERNAL references made by the progran
modulies, T ymbols can be given absolute values, or may b
defined @s & plus or minus offset to some other symbol. For
example!

s

(T

DEFINE CO

iST1=1238., FLAGS = 10110011B, COUNT = #5,
1 = 10, 52 = 31, S3 = 52 + 5

Note that when a symbol is defined as an offset to another,
the expression folliowing the plus or minus sign i3 evaluated
separatel For instance,

EFINE A = B -~ 2 4 3
is equivalent to

o
Tl
[
=,
(T}
pg
t
we)
|
1

Plink-I1: PSA Object Module Linkage Editor 16
General Purpose Statements

There are some symbols which are pre-defined by Plink-IT. A
ligt of them is given in Appendix A,

4,10 CONCATENATE

As discussed in the overview, module segments other than the
program and data segments are treated az common blocks, so that
each module sShares the same memory Space. The CONCATENATE
statement changes a common block into a "Yconcatenated segment",
In these, each module is allocated 1ts own memory space and no
sharing takes place. However, the space used by all modules is
concatenated together (in the order encountered) to form a single
segment. This statement is useful for tasks such as constructing
a table where each module ccntributes one table entry,

The segments tc be concatenated are 1listed, separated by
commas:

CONCATENATE COMMON1, COMMONZ

Plink-T1: FS5A Cbject Module Linkage Editor 1
Defining Program Structure

-3

5 Defining Program Structure

irn this section the statements that cause particular files
and modules to be linked into the program and define the memory
structure of the program are described. As discussed in the
overview, Plink-I1 groups program sSegments having similar
crnaracteristics into SECTIONs. In other werds, segmentis are
loaded into the same section until something like a crrange of
memory address or an instruction to start an overlay area 18
encountered. Then, a new section is begun.
5.% FILE, LIBRARY, SEAERCH

These statements are used te define the LREL files and
librarys that will bte the input to the linkage edit. Each of
them 1s followed by a list of .REL file names, separated by
commas:

FILE MAIN, PASS1.REL, PASSZ2
SEARCH PASLIB
LIBRARY MATH.LIB, APPLIB

The default file type for these files 1s .REL. All of iLre
modules contained in fileg 1listed Iin the FILE statement are
included in the output program (except for those specifically
eliminated by a following statement), When the LIBRARY statement
is used, oniy those modules defining symbols that were used by
modules already linked, but not defined yet, are selected. Thi
seiection process .3 known as a "library search", and is commonl
used for the runtime support librarys supplied with mos
compilers: the size of the program is reduced, because oni
those parts of the runtime support that are actually needed ar

b

toaded.

R N

[

o

The SEARCH statement 13 the same as LIBRARY except thna=a

Flink-~11 may makKe muitiple passes through the file if undefined
symbols remain even after all specified files have Dbeen read.
This capability 1s provided because sometimes a library module
has unaefined symbols that are defined only by modules that hav

O W

already cteen passed over. It shculd hardly ever be necessary &t

4+

use it: most librarys are set up to be loaded with a single pass.
The modules encountered in files loaded with the FIL
LIBRARY, and SEARCH statements are normally assignec to t

current sgection, hut other statements (described later)
override this default action.

5.2 I[NCLUDE, EXCLUDE

These statements apply to the file last mentioned in a FILE,
LIBRARY, or SEARCH statement, and are used to eliminate one or
more modules from the linkage edit. The moduies are listed,
separated by commas:

Plink-IT1: PSA Object Module Linkage Editor 18
Pefining Program 3Structure

INCLUDE MOD1,MOD2
EXCLUDE MODS3

The EXCLUDE statement prevents the named modules from being
inciuded in the 1linkage edit. When the INCLUDE statement is
used, all modules except the ones named are excluded. This
action ocoecurs prior to any library search selection, INCLUDE and
EXCLUDE may not be used on the same file.

5.3 MUDULE, SEGMENT

When the FILE, LIBRARY and SEARCH statements are used, all
of the selected modules are usually loaded into the current
section. These statement override this default action, and place
given modules or segments into the current section. The module
or segment names are listed, separated by commas:

MODULE MAIN, MODS
SEGMENT MAIN, "MAIN, MODS

The SEGMENT statement may be used on any segment,.

The
MODULE statement should be used only on modules, and is the
equivalent of a S3EGMENT statement on the program and data (if

any) segments of the module. For instance, in the asbove example
the two statements have the same effect if MOD% has no data
segment.,

5.5 SECTION

The SECTION statement is used to give an 8 character name to
the current section:

SECTION global
The name 1is usead for memory map reports, If a name of
. ROOT. is used however, this statement has the effect of
specifiying the main section of the program, This is the section
tnat will be loaded from the .PRG file when <the program 1is
executed, Any other sections are loaded by the overlay handler
(see discussion of overlays following).

5.5 NOSORT

Normally, the segments within each section are sorted so
that uninitialized ones are grouped at the end (an uninitislized
segment 1s one hat may reserve memory sSpace, but has no code or
data in it¢). Sorting a section this way minimizes the disk space
reguired to store it, since no space is needed for the
uninitialized segments at the end. Note that the program must be
careful about initializing data in this case, because garbage 13
left in memory in the uninitialized ©places when the section is
loaded. If this is a preoblem, or if the user requires for other
reascns that the segments within a section be left in input
order, the NOSUOKT statement may be used. It applies to the

Plinw-~11: PSA Object Module Linkage Editor 1

refining Program Structure

(So)

current section only, and has no arguments.

Aside from moving the uninitialized segments to the end, the
sorter leaves the segments in the order encountered in the input
files, However, the Fortran blarnk common .BLNK. is sorted last
(if wninitialized). This is done to facilitate the access of
Fortran programs to free memory.

5.6 LDATA,

Jccasionalliy it is convenient to group together all dat

-~ 91

segments of a pregram into a single section, for example, to

¢

create a ROMable program,. The .DATA. statement, whiach has no
arguments, is used for this purpose. When encountered, a
separate section 1is created, and all data segments are assigned
to 1v, unless the MODULE or SEGMENT statements are used on them,
These 3tatements overyride the FILE, LIBRARY and SEARCH
statements.,

€ 7 SCTOND

REP 'S I WIS I W

This statement may pe used to end the c¢urrent secticn and
cause a new one to be started. It nas no arguments.

5.3 LOCATE

Normally, Plink-I1 assigns memory addresses sequentially to
seyments as they are encountered in the input files. This
stavement changes the address where subsequent memory alloccation
will occur, and begins a new section. The new address must be
greater than or equal to the current allocation address.

Example:

FILE PROG1,PRCGZ
LOCATE 400CO0OH
MODULE HMOD1

In this example, the modules in files PROG! and PROG2 are
ioaded at the peginning of available memory, but module HMOD'! is
loaded atb address H000H, even if it 1is contained in PROG1 or
PROG 2.

Ancther handy use for the LOCATE statement is the creation
of @ "patch area" within a program:

OuT PROG.COM
LOCATE 200
FILE PROG1T,PROG2,PROG2Z

This program has & “hole” starting at address 107H and
extending up to address 200H, which could be used for patches
. .

{see appendix for .COM file format),

Plink-IT1: PSA Object Module Linkage Editor 20
Defining Program Structure

When a COM file is being output, "holes" created with the
LOCATE statement appear in the disk file as well as in memory: &
coM disk file 1is always an exact image of what the program will
be when Loaded into memory. When a PRG file is created, however,
the hole 18 not present 1in the disk file. Gnly the space needod
by each s<ction is allocated, and when the program is execubed,
only the "globail" section is loaded inte memory by the operating

system: any other sections are automatically loaded Dby
initialization code generated by Plink-IT, ising the overlay
nandler (see discussion of overlays following). The global

section is the wusually the first non-overlaid section, or may bLe
specified by using the SECTION statement.,

5.9 ACTUAL

As discussed In section 2, each program segment 1s normally
reilocated to execute at the memory address at which 1t is to be
lcaded. When this statement is used, however, a new section i3
begun, and ail segments within it will ©be assigned execution

adoreuse% starting at the given value. This includes changing
the value of all addresses referenced from inside or outside
those segments {(presumably, the segments will be moved at run
time to the correct execution address). The ACTUAL applies only
to the new section (for instance, it can be turned off via a
SCTEND statement)

»rooexample, suppose it is necessary to create a program whi
i1l run on a non~-CP/M type system which loads programs
ddress 4000H:

s
<

fe

Fe
v
a

ouT PROG.COM
ACTUAL 4000H
FILE PROG.REL

Here, a ,COM file is created having the code for PROG.REL at
the front, but the addresses within the code are adjusted to
execute abt 4000H. This feature is alsc ideal for tasks such as
the creation of booctstrap routines and I/0 drivers which have to
be moved to non-3tandard addresses before use

5.10 FREEMEMORY

Oftven, a program reguires the address of any free memory
left uvcr after the program 1is loaded (for examnple, the PASCAL

heap PLIWP—Ji Wwill use the first byte folliowing the programn
fo Snb free memory address by default, but this statement may be
uSed to put the free memory at the current allocation address

instead. Fer example,

FILE MAIN, MOD1, MODZ2, MODS3
FREEMEMORY
FILE INTIT

Plink-TIT1: PSA Object HModule Linkage Editor 21
Defining Program 3Structure

Here, the space used by the initializatiocn code in file INIT
is re-used as free memory when the main program begins execution.
FREEMEMURY begilins a new section, which in this case starts with
Y\{Y
PR IR -

Plink~11 c¢reates a symbol named Y".END." which has as its
value the free memory address. Also, the words at symbols $MEMRY
anrd ?MEMRY are initialized to this value (if the symbols exist)
for Microboft and Digital Research PL/1 programs.
5.11 Creating Overlays

1f a program 1is too large to fit intoc memory, CVERLAYs must
e used. Overlays are simply sSections of the program which are
set up to use the same memory area. When overlays are specified,

an overlay loader module 1s automatically included into the
program. The loader reads the overlays from disk into menmory
automatically as reqguired by the executing progran. Since

portions of the program share the same memory space as the
program runs, the memory requirment of the program is reduced.
The disadvantage, c¢f course, 1s that the program runs more 35lowly
due toe the extra time needed to lcocad the overlays from disk.

These statements are used to define overlay structures,
Normally, arbitrarily complex overlay structures may be created
with no modifications to the program modules, put some rules
concerning calling sequences and accessing data must De obeyed.
Also, the overlay structure should be organized to minimize the
number of times overlays have to be loaded in: if a program loop
that 13 exescuted 100,000 times has to switch from one overlay to
another each time, and it takes .05 seconds to load an overlay,
the program willl run for almost three hours! Some ©f these
issues will be discussed more fully later on,

An OVERLAY AREA is & group of overlays which share the same
memory address. To create an overlay area beginning at the
current memory allocation address, the BEGINAREA tatement is
used (no arguments). Each overlay area must be ended by an
ENDAREA statement. Each overlay within the overlay area 1s begun
by an OVERLAY statement. This is followed by FILE, LIBRARY
SEARCH, MODULE, or SEGMENT statements to place the desired items
into the overlay.

-

Here is a simple example:

QUTPUT TEST.PKRG
FILE Fi
BEGIN OVERLAY FILE F2

OVERLAY FILE F3
OVERLAY FILE FU4 END

Plink-T11: PSA Cbject Module Linkage Editor 22
Defining Program Structure

This command creates a program named TEST.PRG. When it is
loaded by the operating system {or tne EXECUTE utility i a
non-PDOS operating system is being used) only the code in file F1
is loaded: this i3 referred to as the RESIDENT section of the

Pprograi ., Then execution beging. Suppose a call 18 made Lo 30me
code from file [F2. The overlay loader i1s automatically invoked
to read that overlay from the .PRG file, and then & branch i3

made to the called rcoutine,. Later, if a call i1s made to code 1in
F3, for example, F3 will be loaded, over—-writing Fe. If F2 1is
called again before F3 ¢r F&4, however, no disk I/0 need be done
since the required cverlay 1s still in menmory. Note that
overlays are not stored back onm disk when they are over-written
and a fresh copy is loaded the next time the overlay is needed
the PRG file is never modified.

.

Plink~I1 accomplishes these tasks by replacing an addres
pcinting to an overlaid routine wWith a call to a small pisce o
code which calls the c¢verlay loader, to insure that the proper
overlay 1s in wmemory, and then jumps to the overlaid routine
This piece of code is called an OVERLAY VECTOR. Note that a
program can either call or jump te an overlaid routine,. However
the user nmust insure that when a return to the caller 18 made,
that the caller is =still in memory. In the previous example, for
instance, 1if F2 calls F3, F2 will be smashed by F3 before the
return to FZ is made, resulting in a program bug. F2 could jump
teo F3 with no problem, however.

v D

bt

-

Note that Plink has no way of knowing whether an address in
an overlay represents code or data. In this example, for
instance, 1if F2 references F3, it is always assumed to be a call
or Jjump: data can't be accessed from one overlay to another 1in
the same area. A more exact rule for how data may be acceszel
within overlays will be given shortly.

In order to more easily discuss cverlay structures, Memory
Diagrams such as figure 1 will be used. In these diagrams, the
vertical dimension represents memory addresses, with ilower
addresses at the Dbottom. The horizontal dimension is used ¢t
indicate where memory lccations are shared. In figure 1, for
instance, Fi1 reaches all the way from left to right because i
shares its memory with 1no one: it is resident, F2, F3, and F
share the same memory space within the overlay area. Since F3 is
larger than F2 or F4, some memory is unused when these overlay:
are in memory. These wasted areas are shaded in.

Plink-I1: PSA Object Module Linkage Editor 23
Defining Program Structure

&
I

Figure 1

More than one overlay area may be created. Any additicnal
ones are allocated to the next available space 1in memory, as in
the following command:

OUTPUT TESTZ2
FILE F1, F2, F3, F4, F5, F6, F7
BEGIN OVERLAY SEG MOD1
OVERLAY SEG MOD24, M(OD2B, MOD2C
OVERLAY SEG MOD3 END
BEGIN OVERLAY MOD MODY
OVERLAY SEG MOD5
OVERLAY SEG MOD6 END

Here two independant overlay areas are created. One overlay
from the first and one from the second may Dbe in memory
simultaneously, as shown in Figure 2. Anocther feature of thisg
command should be noted. All of the input files are simply
iisted in the beginning, and the desired segments Lo be overlail
are pulled out via the SiGment or MODule commands., Therefore,
most of the data segments and common blocks will be allocated ¢
the resident =2ection, This 1is usually desirable, as any data i\
an overlay may be smashed when another overlay overlapping it in
memory 13 read in. Another way of accomplishing this task is by
using the .DATA. statement outside of the overlay areas: this
will automatically pull all of the data segments and common
bilcoccks out of the overlays. If it 1is desired tc have a dat.:
segment assigned to the same overlay as its related progran
segement, the MODULE statement could be used instead of SEGMENT,
as shown for MODY,

Plink-I1: PSA Obiect Module Linkage Editor 24
Defining Program 3Structure

3
(¢]
Q.
&=

AL I | (-~ area 2
{ "modld [e-m-em i i
: i mod5 | mod6 |
fm e e \
Pesiises:) mod2e i
:--:-:w‘) : _______ :
Piivirsty mod2b | i <=~ area |
: """"""" : 7 mod3 :
I modi ! mod2a | !
]
]

Figure 2

Notice that in Figure 2, the second overlay area starts in
memory after the largest overlay 1in the first area, The SHARE
statement can be used to cause Plink-I to ignore the following
item when calculating the maximum size of an overlay area.
Suppose, in the example of Figure 2, that Mods 4 - 6 will never
be accessed when Mods 2a -~ 2c are in memory. Then the program
could be made slightly smaller as follows:

QUTPUT TEST2A
FILE Fi, F2, F3, F4, F5, Fb, F7
BEGIN OVERLAY SEG MOD1
SHARE OVERLAY SEG MOD2A, MODZB, MCD2C
OVERLAY SEG MOD3 END
BEGIN OVERLAY MOD MODY4
OVERLAY SEG HMODS
OVERLAY SEG MOD6 END

The resulting memory organization would be as shown in
Figure 24, When the Modl2a - ¢ overlay 1s in memory, none of the
others may be. When Mod?1 or Mod 3 are in memory, one of Mods 4
& may be in memory simultaneously.

Plink-T11: PS5A Ouvject Module Linkage Editor
Defiring Program Structure

N
(6]

Pevsrrott modl it lemeeee i <-- area 2
o "mod# |e-e--- i i

! modZe | i modt | modb |

) i L |

I omodl2b it i <~- area 1
i Rt | mod3 :

) g i

.

Figure Za

Another mechanism for «creating overlay structures results
from the fact that the BEGINAREA and ENDAREA statements may be
nested to create overlay structures up to 32 levels deep, as
shown in the following example:

QUTPUT TESTS
BEGIN OVERLAY SEG MOD1
OVERLAY SEG MODZ2 BEGIN OVERLAY SEG MODA
OVERLAY SEG MODS
OVERLAY SEG MOD6 END
TVERLAY SEG MOD3 END
FILE F1, F2, ¥3, FU4, F5, F6, F7

In order to discuss this overlay structure {see figure 3),
some new ‘terminolcoygy must Dbe developed. Every section of &
program i3 assigned a LEVEL NUMBER. Hesident sections arce
assigned a level number of zero. Whenever a BEGINAREA command 1i:
entered, the level number is increased by one, and it i:
decreased by one at an ENDAREA statement. In Figure 1, Fi ic
level zero, while F2, F3 and F4 are level 1. In Figure 3, MODs
thru 3 are level one, and MODs 4 thru 5 are at level 2.

Every overlaid section has an ANCESTOR. An overlay':
ancestor is the last section defined prior to the beginning of
the overlay arez and at a lower level number. In figure 1, F1 i«
the ancestor of F2, F3 and F4,. In figure 2, the global sectiorn
i3 the ancestor of all the overlays. In figure 3, the globa:
section is the ancestor of MODs 1 thru 2,3 while MOD2 is the
ancestor of MODs 4 thru 6

The ANCESTOR3S of an overlay consist of the overlay':s
ancestor, the ancestor of that overlay, and so on, until ¢
resident section i3 reached. Notice that the number of ancestor:
an overlay has is equal to 1its level number. For instance, 11
figure 3, the ancestors of MOD5, which 1s at level 2, are MOD:
and the resident section.

Plink-I1I: PSA Object Module Linkage Editor 26
Defining Program Structure

Conversely, a section's DESCENDANTS <consist of all those

sections which have it as an ancestor. The descendants of MODZ
are MODs U4 thru 6.

......

e i A e e e e e W= e A W WP e S e G M A WD M e e T Wem e

Now the rule for accessing data within overlays can be

explicitly stated: data within an overlay may be accessed only
from within the overlay, or from one of the overlay's
descendants. For instance, data within MODZ may be accessed only

from within MOD2 or from MODs 4 thru 6. The data within MOD1 may
be accessed cnly within MOD1, since it has no descendants,.

Plink-11 works with the overlay loader to guarantee tLh:
"data access rule" by c¢beying the following rules:

1. Whenever an overlay i3 in memory, all of its ancestors must
be in memory as well. For instance, if in the example of
Figure 3 MOD6 were to be called with no call to MODZ, MOD2
would be automatically loaded anyway.

2. The overlay vecteors are never used when an overlay accesses
a descendant. This means that any instructions which
access data in this direction are not modified.

The SHARE statement may be used on an entire overlay area.
In this case, the size of the overlay area is not included in the
maximum size of the surrounding overlay area.

5.12 Selecting an Overlay Loader

Noermally, the overlay loader must reside on disk in a file

named OVERLAY.REL. It should not appear in a FILE, LIBRARY or
SEARCH statement,

Three versicns of the overlay loader are supplied on the
Plink-II distribution disk. OVERLAY.REL is the standard loader,
and requires a 280 (¥*¥) processor. OVERLAY8.REL i3 a loader which
will run on an 8080 (¥) processor. It may be selected by using
the 18080 statement, which has no arguments. There is alsc an

Plink-II: ?SA Object Module Linkage Editor o7
Defining Program Structure

OVERLAYD.REL file, It contains a debugging overlay lioader which
displays messages on the console indicating what overlaid
addresses are being called, and which overlays are being loaded.
The mewmory map A report will be helpful in interpreting these
mesaages. This loader will also execute on an B§080 processor,
and may be selected Dby using the DEBUG statement, with no
srguments.

For example, suppose you have a Plink-I1 command file
PROGT.LNK which links some program with overlays, and you wish to
create a version of the program that wuses the debugging overlay
loader. Typing

PLINK-II DEBUG E6PROGI

would create the desired program.

(%) 280 is a trademark of Zilog.
(#*) B080 is a trademark of Intel Corp.

Plink-IT: PSA Object Module Linkage Editor 28
Transfer of Control

6 Transfer of Control

Any Plink-I1 statement may be optionally preceded Dby a
LABEL, which i8 simply an identifier followed by a colon:

L1: FILE PROGI

These labels may be wused as branch points with some simple
statements described here.

The GOTO statement causes an unconditional branch to the
given lavel:

GOTO L1

When this statement 1is used, Plink-I1 searches forward
through the input stream (wherever it is coming from, see section
3) to find the label. If the end of the input is reached without
finding 1it, the input stream 18 reset to the front, and the
search beginsg again. If input is coming from the console, it is
reset to the beginning of the current line only: transfer of
control statements are generally useful only when input is coming
from a disk file.

Since this search process 1is rather slow, the BACKTO
statement is supplied. It is the same as GOTO, but resets the
input stream to the front immediately before Dbeginning th»
search. It is therefore faster when the label precedes the goto
statement.

Either GOTO or BACKTO may be preceded by an IF statement to
create a conditional Dbranch. The IF is followed by a simple
relational test, 2as in the following example:

IF #1 = 'Y' BACKTO L2

The relational test ccnsists of two 16-bit values separated
by one or two relational operators from the set =, <, and >,
which mean "equals", "less than" and "greater than",

respectively. For example, Lo test for "not equal" one would use
"<>H.

The transfer of control statements become useful when the
input stream performs alternative actions based wupcn operator
input, as described in the next section.

Plink-IT1: PSA Object Module Linkage Editor
Console Inpubt/0utput

R
o

7 Console Input/Cutput

This section describes statements that can display messages
and get 1input from the censole., When these statements are used
in an n@" file, In conjunction witn the transfer of control
statements given in the previous section, Plink-II can be used as
a program configuration system that generates different versions
of the program based on operator input.

AY statement takes as arguments items to be

The DISPL
cn the console. The following items may be displayed:

displayed

literal - the literal is displayed as 1s, without the
surrounding quotes.

TAB - a tab character 1s ocutput.
CR - a carriage return/linefeed sequence 13 ocutput.
BELL -~ a O07H 1is output.

16-bit value The value is displayed in the current radix.

HEX - this does not cause any display to take placc,
but changes the radix that all following 16-%bi
values are printed in to hexidecimal. This |
the defauit at the start of the DISPLAY
statement.

n cr

-

T

DECIMAL - this displays nothing, but changes the 16-bit
value display radix to decimal, l.Leading zeroces
are truncated.

Here 1s an example of DISPLAY usage:
DISPLAY BELL, 'Linkage edit completed', CR

There are three commands for getting values f{from the
operator., They all require a local variable as the first
argument, which 1s where the value will be stored, and optionally
take a CR as the second argument. When used, this will cause o
carriage~-return line-feed to be echoed following the operator's
input.

The GETVAL statement inputs a 16-bit value in any of the
allowed forms, PROMPT inputs a single character, converts it to
upper case, and interprets that as a 16-bit value. GETCHR is the
same, but requires the operater to hit the return key after the
single character has Dbeen entered. This gives the operator a
chance to inspect the character and/or correct it,

Plink-IT: P3A Object Module Linkage Editor 30
Ccnsole Input/Output

Here is an example of how the input/output statements might
be used. Suppose wWe have a program that wuses some special
purpose data communications hardware that comes in two
varlations. Three modules are written which have the same ENTKY
symbcels but different code to support the two versiocns of the
hardware, and a third module for testing purposes. A single
commana can link all three versions of the program, asking the
operator which version of the data communications driver is
wanted:

ASK:
DISPLAY BELL,'Enter 0 for ACME 510 Modem',
' 1 for ABC Electronics Modem' ,CR
12 for self-~test loop =>!
GETVAL #1, CR
IF #1=0 GOTO ACMES10
IF #1=1 GOTO ABC
IF #1=z2 GOTO SELF
BACKTO ASK
ACME510: FILE ACMES10
GOTO END
ABC: FILE ABC
TO END
SELF: FILE SELFLOOP
END:

The correct file is linked depending on the operator's
selection, This particular problem could have been handled by
having three separate link command files, but what 1if a systemn
has 10 versions of one module, and 10 of & second module? Then
100 versions of the program are possible, and the interactive
methods offered here are clesrly advantageous.

Another way to handle the above example is to use the
"concatenated ID" mechanism described earlier to create a label
to GOTO by appending the operator's response toc a label prefix.
Also, the three modules to be selected from are combined here

into a library, and the INCLUDE statement is used to select the
correct one,

FILE DRIVERS.LIR
GETVAL #1,CR
IF #1>2 BACKTO ASK
GOTO LAB™#1
LABG: INC ACME1O0 GOTO EKD
LAB1Y: INC ABC GOTO END
LAB2: INC SELFLOOP
END:

Plink-ITI: PSA Object Module Linkage Editor 3
Appendix & - Pre-lefined Symbols

Appendix 2 - Pre-Defined Symbols

There are & few global symbols which are pre-defined by
Plink-1I before the linkage edit begins. They are listed below,
The user should not attempt to define these symbols, as naming
confiicts will result (except 1in the «case of .MAIN.). Future
versions of Plink-II masy have more of these symbols, They will
be of the form .XXXX.,, so the use of symbols of this form should
be avoided.

LEND, - This symbol has as its value the address of free memory.
Normalily, this will be the address o¢f the first byte
above the program, but this default action may be
changed via the FREEMEMORY statement,

LMAIN, - This symbol may be defined by the user, or will be
defined by Plink-I1I ctherwise. It nas as its value the
starting address of the program (zee tne MAEIN

statement).

LOVLY, -~ This is the entry point to the overlay 1loader used by
the overlaid symbol vectors,

.LOADP., - This is another overlay loader entry point which 1is used
to load sections of code 1in .PRG files which are
resident but not loaded by the operating system at
execution time,. It may alsoc be used by the program to
cause any overlay to be loaded., The A register must
contain the overlay number. These numbers are given in
the memcory map A report.

OVEX. - This symbol points to the last instruction in the
overlay loader before control 1is transferred to the
overlay., It i3 useful for debugging (breakpoints can't
be set in an overlay until it is present in memory),

JINIT. - Tnis symbol points to the initialization <code for o

program containing overlays. In such programs, contro.
is passed to the overlay loader's initialization routine
after Lhe program is loaded. When the overlay loader i
finished initializing itself, it Jjumps to this label.
The linkage editor generates code here to load resident
sections of the program not lcaded by the operating
svatem (using the .LOAD. entry point in the overla:
loader) and then jumps to LMAIN. , the true starting
address of the program.

In additicen to the above pre-defined symbols, if a Microsof-.
format REL file was included as part of the input, and ha:
defined a global symbol named "$MEMRY", then the value of L(END.
is stored at that address. The 7MEMRY symbol is handled the sam-
way for Digital Research PL/I programs.

Plink~IT: PSA Object Module Linkage Editor P
COM and PRG File Format

Appendix B - COM and PRG File Format
COM File Format

COM files are the standard executable file accepted by CF/M
type operating systems., They are designed to be loaded into
memory at address 10CH. Therefore, disk addresses equal memory
addresses minus 100H, Plink-I11 places a 7 byte initialization
routine at address 100H which loads a pointer to free memory into
the stack register and then jumps to the start of the program:

LHLD 6
SPHL
JMP .MAIN.

If the initialization routine is not wanted, a "LOCATE 100"
statement may be used to start the program at 100H, overwriting
it. Hopefully, the first executable instructions of the program
would be at the very front.

.PRG File Format

PRG files are ocutput files that can be executed directly
only on Phoenix Software Asscociate's PDOS operating system. A
utility program 1is suppliied to execute these programs under CP/M
type operating systems (see appendix). A PRG file must Dbe
created 1f overlays are used,

PRG files have a 128 byte header in front which has the
following format:

PRG file header

Address Size Contents
{hex) {bytes)
0 6 Program ID
) 3 Date linked (packed BCD)
g 3 Time] 1
C 2 Minimum PDOS version and revision
required for execution

E 2 Program version and revision
10 Z Required program memory space
12 2 Memory load address

14 2 Program starting address

16 2 Program load 3ize

18 2 Requested stack address

1A 2 Address of overlay table

1C 100 Reserved for future expansion

When the program 1s to be executed, the minimum PDOS version
and revision number are checked against their current values.
Loading continues only if the current version is greater than or
equal to the version naumber given in the Theader. In this way,
programs using new PDOS features are protected against execution
under operating systems not having these features.

Plink-II: PSA Object Module Linkage Editor 23
COM and PRG File Format

Next, the total amount of memory needed to run the program
is checked against the amount actually available. The execution
is aborted if not enough memory 1s available. This check
prevents programs from being executed which might fit into memory
initially, but will smash the operating system when overlays are
done.

If the program passes these tests, it is loaded from disk
{(beginning after the header) into memory (at the specified memory
load address). Only the amount of the program given in the load
3ize field is loaded: the rest of the .PRG file, if any, consists
of overlays.

Wnen loading is complete, the stack register SP 1s set to
the value given in the PRG header. If ¢this value 13 minus 1,
however (FFFFE), SP is loaded from address 6, which contains the
highest address available to the program (recall that the Z&0
stack grows down in memory). Finally, control is transferred to
the given starting address.

Mcst of the other information in the PRG nheader may be
printed by using the PDOS VERSICN command.

Plink-IT: PSA OCbject Module Linkage Editor
Appendix C - More Plink-1I1 Examples

LAt
£

Appendix C - More Plink-II Examples

Here, some examples that illustrate a few points not brought
up tully in the body of this guide are presented.

Example 1

Suppoese you have a program consisting of just one module,
contained in file TEST.REL. To produce & file TEST.COM to
execute, just type:

Piink-~II FI TEST<cr>

Recall that the name of the output file defaults to the name
of the firgt input file (the only input file in this case). This
is a simple link, with no memory map or other cphtions., The
module must have a defined starting address, and no external
symbols,

Suppose a program has been created consisting of threc
modules: MOD1, MOD2, and MOD3. Each of these modules exists in
separate disk files, called MOD1.REL, MOD2.REL and MCD3,REL.
MOD1 i3 the module where sxecution is to begin, and it has &
defllined starting address. To create a COM file ready for
execution, execute Plink-I1, and in response to the prompt, enter
the following command:

o)
c
-

PROG.COM

MOD1, MOD2, MOD3
P M A

EPORT;

=+ e B
-

£

Twe memory map reperts will be written to disk file
PROG,MAP, When Plink~TI1 has finished, enter Q (followed by a
carriage return) to terminate it.

Suppose that 1t is desired to add an I/0 driver for a line
printer to the system. The I/0 driver is to be loaded high up in
memory, so that it will not interfere with normal user programs.
When executed as a normal program, the driver is to automatically
load itself into the correct address and stay there until the
computer is powered off. This is easily accomplished by using
some of Plink-~II's special options,

Plink-IT: PSA Cbjiect Meodule Linkage Editor 35
X

Appendix C - More Plink-II Examples

The program will consist of two modules: the driver itself,
and » loader module. Suppose that the printer 1is interfaced
through a single port, number 90. An input from this port gives
the printer status: a zero indicates that the printer is ready
to zccept another character, while anything else indicates that
the printer is not ready (power off, out of paper, etc,).
Characters are printed by writing them to port 90. The driver is
used by calling it with a «character to be printed in the A
register. The following 280 assembler code makes up the driver
mo>dule:

.IDENT DRIVER
ENTRY PRINT

PRINT: MOV C,A s SAVE CHARACTER
Lo WT Ik 50H yWAIT FOR READY
o) 0
JRNZ coWT
MOV 4,C yRESTORE CHARACTER
SUT 90H ;OUTPUT IT
RET
.END

A module i3 produced with a single entry point, PRINT. Now
for the Plink-Il input. The following Plink-II command is placed
into a file called PRINTER.LNK:

3UT PRINTEK.PRG
FILE LOADER
LOoC 0FB00
FILE DRIVER

Finally, after assembling LOADER and DRIVER, typing:
Plink-~I1 @PRINTER
causes the desired program, PRINTER.PRG, to be created.

What happens when PRINTER is executed? Since there is a gap
between the LOADER and DRIVER modules because of the LOCATE
statement, Plink-~II1 includes the overlay handler intc the
program,. Only the LOADER module 1is 1loaded by the operating
system: initialization code generated by Plink-II calls the
overlay loader to load DRIVER. In other words, the LOADER module
doesn't have to do anything but return to the operating system!
Ail the rest is taken care of automatically.

If at a later time it is desired to load the printer driver
at a different address, this may be accomplished by simply
changing the argument to the LOCATE statement. Neither of the
modules would have to be re-assembled.

Plink-1T1: PSA Object Module Linkage Editor 36
Appendix D - MicroSoft Hints

Appendix D - MicroSoft Hints

As described earlier, Plink-II will accept MicroSoft format
REL (relocatable) files as 1input to a linkage edit. he
MicroSoft format is rapidly becoming an industry standard for 780
compiler output. However, several manufacturers are selling
compilers which output files that look 1like MicroSoft's, but
actually contain subtle differences. Piink <¢an handle some of
these is, and scme can be handled 1if certain restricticons are

maints 3, but others will not work, Also, MicroSoft
p@r*cdi ally makes minor changes to the format in order to

support new language features.

Thhe list below indicates which compilerz have been checked
out with Plink-IT. Usually, lower numbered versions are also
handied correctly. If a compiler you wish to use 1s not on this
list, either insure that 1t outputs a format compatible with =

listed one, or contact Fhoenix Software Associates

»

- Cobcl 4,071 in 4,01, Uhe SECTION statement may not be used,
- Fortran 3.31: the blank common 18 automatically renamed to
.BLNK, by Plink-I1,.

Cromemco
- Coboli 3.01

Digital kesearch
- PL/1T 1.2: the indexed .IRL files are not supported: they will
have to be converted to normal form with the LIB program.

MT MicrodSystems:

Pascal MT+ 5.1: L.ERL files designed to Dbe input to the
disassembler are not supported. Also, the MAIN statﬁment nust
be used to indicate the main module of the program since these
LREL files do not specify the starting address.,

Yhen using Micro3oft format file
shou.d¢ be rememberedy:

5]

the following points

1. When overlay structures are created, a common block may not
share the same memory space wWith another common when both ar
accessed by tne same mnodule, or error #93 will result. Thi
is due to the fact that fix up addresses are given in terms of
memory addresses, addresses in overlapping commons are
ambliguous,

v @

]

%]

A runtime suppory library is provided with most compilers, and
it usually must be specified via the LIBRARY command (i.e. it
s scarche oniy oncel, However, some compilers use the
automatic library search feature that 1s offered in the
Micro3Soft format, Iin these cases the LIBRARY statement need
not be used, although it will do no harm if entered.

Lal
~J

Plink~11: P32 Object Modul nkage Editor
A 1 s
Appendix € - PSA Assembier Hints

is appendix is a 1list of hints which may be of help in
up PS54 Assembler modules for use with Plink-II.

Tnternal and External symbols are created by using the
LAIBTERN ana JEXTERN pscudo operations, JENTRY 1s used tu create
entry-~point symbols,

When assembling a module for use with Plink~IT1, do not use
tne PADBS or JELINK switches, Do use the .PREL and .LINK
sWwiteches {these are defaults). You may use the .PHEX switch to
get an ASCII (REL file, but using .PBIN (the default); will result
in a savings of disk space.

SOV TVITT D R AR o
MODULE NAME

Always use the .(IDENT operation to give each module a unique
name., It you don't, the wmodules will all have the name .MAIN.,
creating naming conflicts 1f Plink~I1 statements reference those
vlies or their program and data segments.

LLOC Paeude Op
Do not attempt to load some code or data at an absolute
address by using the .LOC pseudo op with a number, If you want

to load something at an absolute memory address, make it a
separate module or common block, and use the LOCATE statement of
Plink-I1 to put it where you want it. Error #50 will occur 1if an
attempt 13 made to specify an absolute load address in a module.

STARTING ADDRESS

A label should be supplied with the .END pseudo op to define
the starting address of the main module of the program. If any
other mocdules to be linked also have a starting address, it is &
goed idea to use the MAIN statement of Plink-II to indicate the

main module.

Alternatively, make the starting address .MAIN., and deciare
N. as an LINTERN symbol.

The starting address MAY NOT be an absolute symbol: it has to be
relative to some module,.

Piink-IT: PSA Object Module Linkage Editor 38
Appendix E - PSA Assembler Hints

LIBRAKRIES

Libraries may be created by using the .PRGEND switch. This
redults in the creation of a new module starting at that point.
Alternatively, individual REL filies may be concatenated 1into a
single file by most file copy utility programs. One has to be
careful, however, that CNTL-Z is used as an end of file condition
for ASCII files, but physical end of file 1is used for BINAKY
flies. Binary and ASCII modules may be mixed together in a
library. Microsoft and PSA REL files may not be mixed in the
same library.

MEMORY MAP

If the M report of the memory map 1is wanted, use the .PROGID
pseudo op to define the ©program name, version number, and
revision pnumber.,

COMMON BLOCKS

Toc make =z common block, declare Lhe common block name to be
an LEXTERN in each module that must reference it. The common

should not be declared .INTERN by any module. Then, use .LOC to
define the common. For example,

LEXTERN TABLE

.LOC TABLE
A .WORD 5
2 ,BLKB 10
C . "ABCDEFG®

declares a common named TABLE consisting of A, a word, B, 10
bytes long, and C, an ASCII string. A useful way to handle
commons referenced in several different modules is to keep the
common definition in a separate file and vuse the LINSERT
statement to include it with each module.

Hemember that most FORTRAN compilers will name a commori
.BLNK. if the programmer does not give it a name.

DATA AREA

Objects are placed into the data segment of a module by
preceding them with a .LOC .DATA. The programmer may .LOC .DATA.
over and c¢ver again in the program: each definition is added on
to the end of the previous ones. For example:

Plink-171: PSA Object Module Linkage Editor 39
Appendix E - PSA Assembler Hints

.LoC .DATA,
FOO: .ACRD G
BAR: L.BYTE 55H
.RELOC
.LOC .DATA .
PTR: .WORD TABLE
TABLE: BLEW 100
.RELOC

regerves space for four variables in the data segment.
Plink-I1 can be instructed to 1load data segments and common
blocks anywhere in memory via the SEGMENT statement,

Plink-11: PSA Ovject Module Linkage Editor 50
Appendix F - The EXECUTE Utility

Appendix F - The EXECUTE Utility

PRG output files may be executed directly only under Phoenix
Software Assoclilates' PDOS cperating system. The EXECUTE utility
program 1s provided to allow them to be executed on any CP/M type
operating system.

To perform this action, enter EXECUTE followed by the
standard command that would be given to execubte the program
normally. For instance, gsuppose a program named COPY.PKRG 1is to
be executed with twe file names as arguments, On a PLUOS system,
the operatcr would enter

corPY FILEA FILEB
but on other systems, the operator would enter
EXECUTE COPY FILEA FILEB

The EXECUTE program lcads the program for execution exactly
as PDOS would, including the initialization of all memory areas
from address zero tc 100 hex.

Sometimes it may be desirable to create a COM file that
executes a particular FRG file, to save typing if a program i
frequently used, or te create a program for unsophisticated
users, FXECUTE performs this function also, By giving as
arguments a slash (/) folilowed by the name of the PRG file that
will be executed, and the name of the COM file that will execute

that particular PREG file. The COM file name and drive id default
tc the PRG file counterparts. Continuing with the above example,

EXECUTE /COPY COPY

would create a specialized version of the EXECUTE utilty named
COPY.COM, which would be configured to execute the COFY.PRG (ile
directly. This could have been abbreviated as

EXECUTE /COPY

since the COM file name defaults to the PRG file name, Note
that the drive 1id given with the COM file name specifies what
drive the COM (ile will be written to (logged-in disk if
cmitted), while the PRG drive id specifies on what drive the COM
file will lock for the PRGC file (again, logged-in disk 1if
omitted). For example,

EXECUTE COPY B:COPY

creates a file COPY,COM on the B drive which, when executed,

1
attempts to load CCPY.FRG from the 1logged in disk. On the other
hand,

EXECUTE A:COPY B:

Plink-I1: PSA Object Module Linkage Editor L
Appendix F - The EXECUTE Utilit

creates a file COPY.COM on the B drive which, when executed,
attempts to load COPY.PRG from the A drive,

This scheme thus offers a way bto create programs for CP/M
systems with many overlays that nevertheless consist of only two
files: all of the program code and overlays are contained in a
single PRG file.

Plink-11: P3A Object Module Linkage Editor 4
hppendix G - The Overlay Loader

(3%

Appendix G - The Overlay Loader

It may cccasionally be necessary to write your own overlay
loader to create programs that run under a non-CP/M compatible
operating system, or to be able to do memory-mapped overlays, for
instance. This appendix gives the technical information
necessary to accomplish this task.

When a program contains overlays, Plink~1I consgtructs a
common block containing various tables for use by the overlay

loader. This segment is named .0OVTB., and is formatted as
follows:

Overlaid

]
i
Symbol Vectors i
]

1 «INIT.: i
' (initialization |
; code) i
) JMP _MAIN. i

i

The overlay loader module must be in a file of the proper
name (see section on selecting overlay loader), and must have a
module name of .OVLY. It is automatically included in the
program whenever a program contains overlays. When the program
first begins execution, control 1is passed to the front of the
overlay loader, which should initialize itself and then jump to
label LJINIT. The code here causes resident portions of the
program which were not loaded by the operating system to be
loaded by calling the .LOAD., entry point of the overlay loader
with the overlay number in the A register. Execution of the
actual program then beginsg via a Jjump to label .MAIN.

The overlaid symbol wvectors are routines that are used as
the program executes. Their task 18 to call the overlay loader
to insure that an overlay 1is in memory:

CALL LOVLY.,
.BYTE <overlay #>
.WORD {symbol address>

When the overlay loader is called at its .OVLY. entry point,
it must load the given overlay (if not lcaded already), and then
jump to the given address. It must save and restore ail user
registers, and it is probably a good idea to wuse the program's
stack as little asz possible to avoid an overflow.

Piink-II: PEA Obliect Module Linkage FRditor 43
Appendix G - The Overlay Lecader

The symbol vectors are used whenever an overlaid symbol is
called from a ction that is not a descendant of or the same as
the section containing the symbol., In other words, the user's
code 1s not modified when a reference 1s made from a2 section to
its ancestcr. This allows overlays to acrcess data in their
ancestors. Therefore, the overlay loader must guarantee that
when an overlay 1is in memory, all of its ancestors are in memory

a1 9
al 3G,

Q3w

o~

Thie overlay table contains the addresses needed to read the
overlays from the . PRG file and ancestor information, It
consizsts of a seven byte entry for each overlay, and the entries
are ilmpiliecitly numbered beginning with one, There are a maximum
of 255 entries, each having the following format:

Offset Size Contents

o 1 Number of ancestor overlay, zero if none.
1 2 Starting memory address

3 2 Ending memory address

5 z Starting disk record (128 bytes/record)

T

The taole 1s ended by a dummy entry with a -1 (255H) in the
ancestor ftield. ote that Lhere 1 no ending disk record number:
the overiay loader must check the starting disk address of the
following sntry to determine the disk size of the overlay. This

size is Jdifferent from the memory size, because the disk size is
synchronized to & record boundry, and may be smaller than the
memory size 1f there 1s uninitialized space at the end of the
overliay. The last dummy entry in the table <containsg the record

numper of the end of the last overlavy,

The algoerithm to read an cverlay intc memory might proceed
as follows. The overlay loader maintains an FCB for the ,PRG
file (its name may Dbe obtained from address 50 in memory during
the initialization phase)., This file is positioned to the
gtarting record number either by calculating an extent and FCB
record number or by using any random I/0 capabilities offered by
the operating system, Then disk reads are done until either the
end of the overlay is reached on disk or until memory space runs
out. 1/0's may be done directly into the wuser's memory, except
that the last one may not have a full 128 bytes of memory and
Wwill have to be done in a separate buffer.

The overlay locader should keep track of what overliays are
currently in memory (via a bit map, for instance), so that the
loading process can be skipped if the overlay 1is already present.
Wnen an overlay 1s loaded, the loader should then delete any
other overlays overlapping it in memory by comparing the starting
and ending memory addresses.

Plink-I1: PSA Object Module Linkage Editor Ly
Appendix G - The Overlay Loader

The remaining task faced Dby tne loader 1is satisfying the
rule described above that an overlay's ancestors mwust be in
memcery when 1t is, If the applications to be handled never use
overlay structures more than one level deep, then none of the
overlays have overlays for ancestoras, 30 nothing need De done.
Otherwise, the ancestor requirement can be handled via the
following two steps.

First, whenever an overlay is loaded, make sure its ancestor
is loaded as well, and so on, until an overlay i
that is already loaded, or until the end of the ance
reached {ancestor number equal to zero).

5 encountered
stor chain 1is

Second, whenever an overlay 1s deleted, mark all of its
descendants deleted also. Due to the fact that the overlay table
is constructed so that an overlay always has a number higher than
its ancestor, this process can be combined with the overlap check
described abhove. The loader loops through the overlay table from
start to finish. FEach overlay 1is first deleted if it has an
ancesator that's deleted; otherwise, the check for overlap with
the loaded overlay is made. The ordering of the table guarantees

that an overlay 13 deleted ©Dbefore any of 1its decendants are
encountered.

Plink-~1IJ: PSA Object Module Linkage Editor ng
Appendix H - Command Syntay Summary

Appendix H - Command Syntax Summary

This appendix deiines Plink-IT input syntax via a modified
familiar with formal computer languages. The
2l ":::=" means "is defined to be®, Angle Dbrackets delimit
es of subsequent definiticons, Everything else must be entered
as shown, icept that key words may be ebbreviated by truncating
the lower case letters from the right. In any case, Plink-I1
translates any lower case letters in key words Lo upper case

o
=
T
PR
o
3
ot
o
C
w
@

automatically, A vertical bar means choi : eitner of the items
may be used. Sometimes, a set of alternatives is surrounded by
parenthesis. Square brackets delimit optional input. Curly
braces indicate input which may be omitted, or included as often

as needed.,

Cinput iz <cemmand> {:<command>}
{command?> 1:= <{statement> {<statement}>
<statement’> =

i OUtput <file>

i Report [=<file>]

i (IDent | MAIn) <module>

! PRUOGLd <program> [,{version>]
i PDos <Kversgion>

i MAP <option> {,<opticn>}

i Phge <byte>

P DAte

i DEFine <definition> {,<definition>}

v {FIle | LIbrary | SEArch) <file> {,{file>;

" {COHcatenate | SEGment) <segment> {,<{segment>}

o iMOdule | INClude i EXClude) ’wodu1e> { ,<module>}
' {LOcatelACtual) <expr>

PSECtion <id>d

\ C

J
ENDarea
Mosort
DATA
{2EBug | 180803

Display <s=-itemd> { ,{gs-item>}
(GETVal | GETCnr | PROMpt) <locald> [,CR]
i <local’s =z <expr>

¢ [1F <reiatiounr]l (GOto | BAckto) <label?>
{label>» ::= <id>»8 | <local>
<map option> :z:= A { 5 1+ G | H

efinition> ::=z (symbol> = <{expr>

; <symbol> = <symbold> [(+i-) <expr>]
iz <literal> | TAB | CR | BEL | [HEXIiDECimall <Lexpr>
<hyte> [,<byte>]
expr> with msb=FF or 00

A xs

<byte> .=
{relation>
(r-0p>

= C(expr> <r-opr(<r-op>] <expr>
= < 4 o> 4 o=

2e e

Plink-I1: PSA Obliect Module Linkage Editor Lé

Appendix H - Command Syntax Summary

<expr> = <value> [(+ | - U * 1 /7 1 N\ | & | 1) <value>]
i -~ <value>

<yvalue> ::= <local> ; <number> | <literal>?

<local> #<value>, where value <= 50,
<program> ::=z <id>6
<{module>» iz <(id>b6
(segment? ["1<id>8
<gymbol> <id>8§
<id> ::=z 2ny string not beginning with a digit and
not containing the following chars:
Tz <>/ N1 #&ERL: 8 DEL
standard file name for operating system and
not containing the chars: "2z ;<>/, DEL
{literai> ::= Any character string delimited by single
guotes, A Qquote character 1is included
in a literal by entering two quotes.
{number> !z Any s8tring beginpning with a digit 0-9

[F I

N~
"
.
—
@
N
i

Plink-11: PS5A Object Module Linkage Editor 47
Appendix 1 - Error Messages

o

I

—
2

—
Pong

Appendix I -~ Error Messages

""" inside @-file. Disk files containing commands and used
via an "6" may not contain further "@" specifications,

ile 1is missing. The file name after an "an
ication doesn't exist.

Input token too large. The string of characters entered a
this point is too large to be a keyword, name, cor literal.

(e

Invalid digit in number. Which digits are legal depends
of course, con the radix being used {(default is hex).

Number too large. The given value can't be expressed as 3
16 bit quantity.

Invalid file name. The input stream should contain a valid
ile name for the particular operating system being used.

-

Expecting a statement. A key word which begins a statement
should be present here,

Expecting "i1=",

Invalid output file type. The type of the file given in
trhe QUTFUT statement must be .COM or .PRG.

tin identifier. A section, module, segment, or
,

Expec '
el name must be entered at this point.

symb

Expecting "="

Expecting a value. An expression or 16-bit quantity must
appear at this point.
Data s T

egments of modules may not be used in the CONCATEHNA
e

statement, because they are unique to a particular module.

b

Expecling segment name.
Expecting byte value. The value used here must lie in the
range 0 to 25% (or -128 to 127 in signed notation). Thar

is, it must be possible to represent the value in 8 bits.

The IF <relation> statement must be followed by a GOTO or
BACKTO statement.

The label used in a GOTO ©or BACKTO statement does not
exist.

Invalid relational operator.

N

Plink~IT1: PSA Object Module Linkage Editor 48

Appendix I - Error Hessages

24 Invalid DISPLAY item,

25 expecting CR in GETCHR, PROMPT, or GETVAL statement.

26 invalid local variable name, A local wvariable name 1is a
pound sign "#" followed by a value in the range 0-50.

27 Inconsistant statements for OUTPUT file type. Statements
were used that imply a particular output file type, but 2
different type was specified,. For instance, the OVERLAY
statement may be used only with a .PHG file

40 No more menmory. Plink-~II ran out of memory for its
internal tables and disk buffers; therefore, the program
could not be linked,

45 Premature end of file. The end of the indicated .REL file
was reached unexpectedly. Possibly, the .REL file was
truncated by copying it with a program that assumes a
CNTL-Z (1AH) is end of file. Try re-compiling.

46 No disk directory space for output file,

uv No more disk space for output file,

4R Frotection violation in output file.

4G Can't close output file. Was the floppy diskette changed
before Plink-II finished execution?

50 hRttempt toe load to an absolute address. This error will
occur if an attempt 1is made to .LOC to an absclute address
in an assembler module and then load code or data. Use the
LOCATE statement in Plink-I1 instead, making a common block
cout cof the data that 1s to be loaded at a particulear
address.

55 A segment was mentioned in the MODULE, SEGMENT or
CONCATENATE statements, but was never encountered in the
input REL fiies.

60 Undefined symbols exist. The listed symbols were external
to orne or more modules, but were never defined. They will
have to be defined as internals of 3ome module, or created
via the DEFINE statement.

61

Symbol 1s self-defined. The given symbol was defined
relative to a ancther symbol, and that symbol defined
relative to yet another symbol, and 50 on, until the
criginal symbol was reached again. Thus, a circular chain
was created with no symbol actually ever being defined.

Plink-I1: PSA Object Module Linkage Editvor 49

Appendix I - Errvor HMessages

65 The (ROOT. section may not be an overlay.

6H6 Uverlays zre nested toc deeply. The maximum nesting level
i3 3z (5i.e no more than 32 BFGIQARFA statements may be used
without entering an ENDAREA ztatement).

65 Too many ENDAREA statemerts The number of Lhese must bLe
equal to the number of BEGINAREA statements.

68 Not enougn ENDAREA statements, The number of these must be
equal to the number of BEGINAREA statements

69 Too many overlays or overlay entry points. There may be &
maximum of 25% overlays and about 9000 overlay entry
points.,

70 LOCATE error., The specified address overlaps previously
loaded items.

T Program address space 1s too large. The program will not
fit into the address space of a 16-bit computer.

2% %1t19 no modules were included in the linkage edit, or the
entire program i3 overlaid., At least one section of the
program musi be permanently resident, and must contain
something.

73 loading below address 100H in .C0M file., Since .COM files
are always loaded at addres 100H by the operating system,
nothing may be loaded below this address.,

T4 The OVERLAY and QOVEHRELAP statements may be used only inside
an overlay area (BEGINAREA/ENDAREA)

78 No FILLE LIBERARY or SEARCH statement has been given yet, 350
INCLUDE and EXCLUDE may not be used.

79 Can't THCLUDE and EXCLUDE from the same file. Only one of
these statements may be used with a particular file.

8¢ Dupiicate input file. Eacin file used in the FILE, SEAKRCH
or LIBRARY statements must have a unique name,.

83 The program starting address defined by a particular module
may not be an absolute address, or a symbol external to
that module,

g4 The module mentioned in the MAIN statement was rnever
encountered in the input .REL files.

85 Missing starting address The MAIN statement was not used,

gymbol MALN, did not exist, and none of the program
modules had a defined starting address,

Plink-I1: PSA Object Module Linkage Editor 5

O

Appendix I - Error Messages

86

91

93

55

96

97

100

102

103

104

.MAIN. may not be an absolute symbol, or an external
symbol. It must be an INTERNAL symbol of some module,.

Invalid external byte reference, In the PSA macro
assembler module named, an external byte reference (whose
relocation ©base number is supplied) was made to 3

ncrn—-absolute symbel, or one with too large 3 value.
External byte references may bLe made only to absolute
symbols with a value in the range 0 to 255 {(or -128 to 127
in signed notation).

MizroSoft Commons overlap in menmory., Due to the defined
overlay structure, two or more MicroSoft common blocks
that are accessed by the same module overlap 1n memory.
This is illegal Dbecause it makes "fix ups" Lo already
loaded code impossible,

Too many common blocks in Micro3oft module. A maximum of
251 common blocks are allowed in each module.

Invalid special link item 1n MicroSoft file. This .REL
file i3 either smashed, or 1is not legally formed according
to the MicroScft format, or represents a MicroSoft Cobol
program containing SECTION statements,

invalid B field in MicroSoft .REL file. This field is
supposed to contain an ascii name of up to 8 characters,
The LJREL file is probably smashed: try re-compiling.

Mcre than one library search was called for in a2 MiecroSoft
format module that is 1itself being library searched. This
MicroSoft format module was incorrectly generataed and may
not be linked.,

expecting PSA .REL module. This error often occurs when
there 13 garbage at the end of the previous module in s
library file.

Invalid record type in P3SA .REL file, The file is probably
smashed: try re-assembling.

Expecting carriage return (ODH) in PSA .REL file.
expecting line-feed (OAH) in PSA .REL file.

Expecting icdentifier in PSA REL file.

Plink-I1: P2ZA Object Mod

uie Linkage Editor
Appenaix I - Error Message

(11
—

&7}

Diagnostic Errors

ol a
Plink-I1 haz occurred through no error on the user's part. Try
running Plink-~11 again. If the error persists, please gather the
relevant information {error message, Plink~11 wversion, input
files, etec,) and nctify the scfware distributer from whom you
obtained Flink-IT. These error messages are documented only for
completeness in this manual,

Errors with the following numbers indicate that a bug irv

150 -~ Too many files open simulftaneoustiy.

151 - rFile de-allocation bug.

155 ~ Relocation base is undefined.

156 - Relocation vase undefined for disk address,
157 -~ Bad relocation base (BS.SCT)

160 -~ Duplicate segment (SG.ADD).

161 ~ Missing segment (SG.FND).

162 ~ End of segment 1list (SG.FST, SG.NXT;.

163 -~ Segment nct in assigned Section's segment 1ist {(3SGsect).
164 ~ Segment undefined (SG.OFF).

176 -~ Missing symbol.

171 -~ End of symbol list.,

172 - Undefined symbol.

3
w
o
-

if-defined symbol,.

179 - End of Section list,

180 - End of File list,

181 -~ Module excluded/not included.

185 -~ End of P3A ,BEL module,

190 - MicroSoft fixup bug (FixLnk)

191 - MicroSoft Cobol symbol bug (ModEnd).

250 - Aborted commeand.,

o

S/Wno oN
bDe— &1

LbI%
8 3
@A § g }"MDS‘V%_‘ e HaLue
9l |

G/ — meosid
‘i leqr 290
LS wom- VT BhbE
Wﬁ':ﬁ' Eﬂfﬁﬂ 3’7&_“
IS TDE HLLNA

|0 |

» . r)

?1iP
Upda

vers
Bugs

k-II: PSA Object Mcdule Linkage Editor II
te Notes for Version 1.10 (§/16/81)

Update Notes for Version 1.10

This note lists Plink-II bug iixes and enhancements effective with
ion 1.10.

e
e

Some versions of the Digital Research PL/1 compiler generate
invalid .REL files when an empty string 1is declared: 256 garbage
bytes are written to the - DATA, segment causing the linkage editor
to cverwrite the memory assigned to the following segment. This
usually doesn't matter since the next segment 1is typically from a
module that hasn't been loaded yet, but the problem may surface if
some of Plink-II's commands for moving segments around in the

program are used (e.g. SEGMENT, MODULE, LOCATE). Ancther PL/1

Hew

prebiem has been fixed: modules having no code 1in them are now
handled correctly. These would sometimes cause {ixup errers or
miscing ccde or data in the ocutput file,

I1f more than 2 wundefined segments exist (warning #%5), Plink-II
would die with diagnostic error #1064, HNow programs may be linked
with undefined segments: they are ignored. This is wuseful for
tasks such as the creation of overlay structures that are used 1in
many programs where not all of the segments mentionzd in the
structure are used in each program.

DEFIRE dsymbol> = <local variable> would cause a syntax error.
s nas been corrected,

Commen bloeks would not be handled properly if they had the same
name as a module: each instance of the common was assigned &
different memory area. This situation is now handled properly.

MicroeSoft aprarently handled this problem in their Fortran by
setting the | order it in the first character of each common
block name. Unfortunately, this means that MicroSoft Fortran and
Besic modules may not be combined into the same program because the
new Eazic compller does not set the bit. Plink-Il can match the
commoen names properly, but ancther Basic problem 1s described
below.

[

The overlay loader would be incorrectly 1linked in a .COM program
when the LOCATE command was used. This has been fixed.

Features:

When the LOCATE statement is wused in a .PRG program a new section
i8 created. 3ince only the main section is loaded by the operating
system when the program is execubted, Plink-II includes the overlay
loader into the program to load the other sections before executiocn
of the program begins. This action may now be inihibited by using

the new PAD option provided with the LOCATE command. For exanmple,
LOCATE 3000, PAD

causes the previous section ¢to be filled owut until it reaches
address 300C. In this way, the next section 1s forced to be

adjascent tu the previous one and will be locaded &2t the same time

Plink-II: PSA Cbject Module Linkag tor 11
1

d
Update Notes for Version 1,10 (9/ 1

i
)

from disk: the overlay loader is not reguired.

e E
6/ 8

- The COMMON command has been added. It may be used to define the
size of a common block to be larger than the definiticn of the
commecn provided by any module, It alsc performs the function of
the SEG ccommand by placing the common block in the current section.
The syntax is COMMON <namel> = <sizel>, <name2> = <sizee>, ... For
example:

COMMON C1=100, C2 = #1 # 5

The COMMON command may not be used on a .DATA. segment or error #18
will result. Also, the COMMON and CONCATENATE statements should
not be used on the same common or the results will be
unpredictable.

- The various overlay loaders selected via the DEBUG and I8080
commands are now combined into a single library file called
OVERLAY.REL instead of being in separate files. Each has a
different module name: ,0VLZ. 15 the standard loader, .OVLD, is
selected when the DEBUG command is used, and .OVL8. when the 18080
command is used. Older overlay JREL files should be discarded:
they will no lornger work.

- Many people have reported problems with linking modules produced by
MicroSoft's new Basic compiler. Plink-II can now handle these. If
the /0 switch is wused in the Basic compiler (to avoid the. use of
the runtime module) some of Plink-II's special commands have to be
used, :

The problem is that the initialization code in these Basic programs
attempts %o clear the blank commen (.BLNK.) and counts on having
the data segment for the module ("BASIC) immediately following
.BLNK. in memory in order ¢o determine its ending address.
Plink=I1 normally moves LBLNK. to the end of the section s0 that
Fortran programs can access free memory; therefcre, the clearing
routine wipes out the operating svstem.

The SEGHENT command of Plink-Il c¢an be used to specify that the
named segments are to bhe llocated memory at the current load
address, OClder versions of Plink-Il always put .BLNK, at the end
of the current section, but versicen 1.10 will not do this if .BLKK.
is used in the SEGHMENT command, Plink-IIl will move all
uninitialized segments to the end of the section, and .BLNK. and
"BASIC are normally uninitialized, so the NOSORT command must also
be used tos inhibit this action. To sum up, entering

SEGMENT .BLNK., "BASIC KOSORT

into the Plink-II command will cause the correct memory structure
tc be be generated. '

If the /0 switch is NOT used in the Basic ccmpiler, the program is
linked sc as to wuse the vruntime support module, and no extra
Plink-II commands are required: everything 1s sorted dinto the
correct order in memory. A .COM file must be specified for output,
overlays may not b2 used, and the LOCATE, ACTUAL, and .DATA.
commands should not be used.

r

e g 2 TP VA Y 4 AT T

T R

Plink-II: PSA Object Module Linkage Editor II
Update Notes for Version 1.10 (9/16/ 81)

Valid Plink input files:

The MicroSoft relocatable file format has become arn industry
standard for 280 - CP/H compiler output. However, several
manufacturers are selling compilers which output files that look like
MicroSoft's, but =actvally contain subtle differences. Plink can
handle some of these, but others will not work., Also, MicrodSoft
periodically makes minor changes to the formet in order to support
naw language features,

The list below indicates which compilers have been checked ocut with
Plink 3.28. Usually, lower numbered versions are also handled
correctly. If a compiler you wish to use is not ¢n this list, either
insure that it outputs a format compatible with a listed one, or
contact vour software distributor.

MicroSoft:
~ Cobol 4.01 (in 4,01, the SECTION statement may not be used).
« Fortran 3.31
-~ Basic 5.30 (see comments above).

Cromemeo:
- Cobol 3.01

Digital Eesearch
- PL/1 1.3 (the indexed LIRL files are not supported: they will
have to be converted 1o normal form with the LIB program).

MT MicroSystems:
- Pascal MT+ 5.2 (.ERL files designed tc be input to the
disassembler =zre not supported).

Wnitesmiths
~ C 2.0 (see discussion in update letter for Plink-II 1.08)

Ithaca Intersystems

-~ Pascal/Z 3.0.

3 &

v S G

S A

-

Plipk-I1 2
degvelopment na

o & 5w
L NP N et
NGO

Plink-IT

Qutput: .COM file or FSA . PRG file with overlays. The .PRG files execute
directly only under the FDO3 operat1g§ system, but a utility program ia
supplied to allow them to be run in a CP/M type environment. Dual 1% output
buffers insure adequate executicn speed, and any randem I70 calls suppoertec
by the operating systex are used.

Merory Map: Flink-II cap create 4 different reporta: symbols sorted
alphabetically, progran segments asorted alphabetically, the entire progran
prfnt@d in address order, and program modules priunted with date and tilume of
¢reation and version nusber FS LREL files only). The reports nay ve
writtean to the 1ist dovice or a disk file, Veriable page wldth ds
supported., The date and time {8 inoluded (on systems unot supporting date
and %ime, blanks are uzed, or Plink-II can prompt the cperator]).

Common Blocks: Fiink-IX asupports Fortran type common Dblocks, with o
requirement that the largest instance of the common be ipmput first. Alsc,
fooncatenatad® common blocks mag bas copreated: 1n these commons, each nodule
is alloeated its own Space in the common, inatead of sharing the space with
other wodules., This feature 435 useful for tasks such as creating & table
vhere each entry in the table is contributed by a separate module,

Memcry allocaticn: program modules are roken down into code, data, and
commorn segmants, re-grouped inte Fsections®, and alloeazted at aﬂ¥ menory
address desired b§ the user. A 3ymbol JEND. i3 created %o signify the fres
memory available to the program, aund its locatlon may he deflned at aay
point, The free memory symbols used by the MicroScft arc Whitesmith formats
are handled as well, rogra®m segftionsd may be set up o execute &l an
address different than the lcad address.

reh: Libraries of relocatable files may be loaded in their
r with spesific modules included or excluded. They wmay be
o that z module is included only if required oy fﬁrtions of the
ready lcaded, Each library file mav be {ndividually marked to be
nly onez, or to ba searched repetitively until all references to
undefined symbols have Deen smatisfled. Library modules may be inserted
enmasse into the mailp program or a particular gverlay, or may be separately
allocated by the user te different program ssections,

Overlays: any nuzber of Pires-structured® overlay arsas sy be created, to
2 paxizum of 255 overlays and to a depth of 32 levels, and these may be
overlappsed in a1 arbitrary fashion to create non-treg-structured
orgahizatlionsa, FEach overlay c¢an bave an nusber of oatry noints. An
overlzy lcoder module Is automatically inciuded with the progras. When an
overlay entry symbol ls accessed, the overlay and all of ito Fancestors® in
the overlay tree arg autqmaticaily loaded. Ho source c¢hanges are reguirad
in the rrogram ncdules. The madn prograwm and all overlaye are ¢reated with
a single lIinkags edit, auad outpug 0 a2 single file, Hauwoery overhead is
approxinately T bytes per ovarlay & bytes per overlay entry svabol and 1K
bytes for the gverlay handler, butput file disk space wmay §3 inimized by
kaving Plink-IX ¥sori® the uninitialized portions of eaca overlay to the
#nd: these poritions nsed oot agpear in the disk file. Veraions of ths
overiay loader which run on an 8080 and display debugging messages as the
jram executes are offered., Techpdeal information allowing vser-created
overlay loaders iz supplied. ”

Control Statements: Fifty temporary 16 bit variablss are supplied., These

be aasi%n@d values, slimple arithmetic and logical expressions, or
nyole input,; and may De ested via raslational operatora and brznch
instructions. Temporar{ variablea, character strings, and ginple
cipressions may be dizpleyed on the conscle,

Py ~
z W KT

B

renix Software Asscciates' systems sof'tware

iz a ®ho
o s Pdevealop-I1I,

P
xag

[4:]

34, Plink-I1, FDOS, and Pdevelop-II1 are trademarks of Phosnix Software
ssoclates Ltd.,

o P03

< -

&0 is a trademark of Intel Corp.

0 18 a trademark of Zilo;

/¥ 13 a trademark of Digltal Ressarch

TOH 1= & tracegark of Tecbhndecal Design Labs, Ine.

LG

